当前位置: 仪器信息网 > 行业主题 > >

运动发酵单胞菌

仪器信息网运动发酵单胞菌专题为您提供2024年最新运动发酵单胞菌价格报价、厂家品牌的相关信息, 包括运动发酵单胞菌参数、型号等,不管是国产,还是进口品牌的运动发酵单胞菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合运动发酵单胞菌相关的耗材配件、试剂标物,还有运动发酵单胞菌相关的最新资讯、资料,以及运动发酵单胞菌相关的解决方案。

运动发酵单胞菌相关的论坛

  • 【资料】酵母菌:发酵之旅

    我们平常所吃的馒头、面包,都是面经过发酵而制成的,它们蓬松有弹性,口感很好,还带有特殊的香味。而用来发酵的无论是从前的酵头,还是现在的发酵粉,其实都是添加剂酵母菌。现在酵母菌的作用已经不仅仅只停留在发酵作用上了,由于其独特的品性,酵母菌的用途也越来越广,成为一种多功能的食品添加剂。 酵母菌功用之一发酵 发酵是酵母菌最主要的功用。人类很早就开始将酵母菌应用于食品生产中,例如酒精饮料、酱油、食醋、馒头和面包的发酵等等。在面包和馒头的生产中,酵母发酵产生大量二氧化碳.使面团膨胀,形成松软的组织。 在食品工业上常见的酵母菌有啤酒酵母,用于生产啤酒、白酒和酒精,以及制做面包;葡萄酒酵母,也称酿酒酵母,用于酿造葡萄酒和果酒,也用于啤酒和白酒的酿造。其中啤酒酵母是食品工业上应用最为广泛的微生物之一,啤酒酵母菌体内维生素、蛋白质含量很高,其药用价值也很高,还可以用于做饲料,提取核酸、麦角醇、谷胱甘肽、凝血质和三磷酸腺苷等。

  • 引用 在发酵工艺角度看蛋白表达

    本文引用自发酵《在发酵工艺角度看蛋白表达》引用发酵 的 在发酵工艺角度看蛋白表达在分子生物学角度讲,找到或合成外源蛋白基因,构建质粒,并导入细胞以表达具有生物活性的折叠正确的蛋白,是一种成熟的常规技术。目前,包括酶,抗原,抗体,激素,其他小分子调节蛋白在内的很多蛋白,都已经用这种技术实现了工业化生产。在具体的工艺选择上,历史沿袭习惯和表达体系的选择,对工艺稳定性,成本,有巨大的影响。 目前,常用的蛋白表达系,有3个类别:1,大肠杆菌表达系。大肠杆菌的遗传背景十分清楚,代谢相对简单,发酵副产物少,在不是很严格的情况下,是表达蛋白的首选。通过按经验选择合适的菌株及合适的质粒,既可以以包涵体的形式得到大量的目标蛋白,又可以在细胞外得到可溶性蛋白,是常见的一种表达系。2,酵母菌表达系。用酵母做表达系,理由之一,也是遗传背景清楚,而且,当蛋白分子量过小,不能形成包涵体时,或蛋白的二硫键过多,不易体外复性时,酵母菌就成了合适的选择。另外,酵母对蛋白也会有一个简单的修饰,近似于高等动物的蛋白糖基化过程。这样,在合成在体液中发挥作用的蛋白,而且,又不能(技术水平限制)用动物细胞时,就可以退而求其次的选用酵母菌表达。一般是用信号肽把蛋白导出细胞,在发酵液中以可溶性蛋白的形式存在。这也是一个常见的表达系。3,动物(或说,人的)细胞表达系。这种情况,在纯度或毒性方面有较高要求的产品应用。一般国外产品应用较多,国内还没有用动物细胞表达蛋白实现商业化生产的报道。由于技术限制,国内工业化生产用这个方法目前还有较大难度。这3种表达系,各自有自己的优缺点。首先,在潜在的毒性影像方面讲,由于和真核生物亲缘关系太远,大肠杆菌就最不合适。其次是酵母菌。而在表达量和代谢控制成本上来讲,酵母菌和动物细胞又是差强人意的。现在,很多蛋白习惯性的选用酵母菌做表达系,就是因为早期提取蛋白技术低下,而动物细胞培养技术又不过关的原因所致。目前,虽然提取工艺提高了,但作为蛋白这种高附加值产品,运作成本集中在销售而不是生产,所以,降低生产成本的诉求很低。站在降低开发难度的角度讲,一方面,质粒构建和质粒与菌株的匹配方面依赖大量经验,另一方面,发酵工艺策略选择与发酵工艺优化又需要很大的投入,所以,技术开发部门沿用自己熟悉的,已经积累了大量经验的表达系,是合理的。不过,随着分子技术进一步的发展,分子技术进入低附加值的产品领域又是必然的,降低生产成本就变的越来越必要了。 大肠杆菌表达系有两种得到外源蛋白的方法:1,缓慢的表达,得到可溶性蛋白,这种方法产量和酵母菌表达类似,与酵母菌比,不具有明显的优势,一般是有做大肠杆菌传统的研究机构生产小分子蛋白的一种沿袭性做法。2,使用T7启动子表达蛋白,这样,高速的蛋白表达速率使蛋白来不及折叠,在细胞内形成非水溶性的包涵体。最后目标蛋白可以达到总细胞质量的15%-25%,这样,就为降低成本提供了一种可能。不过,在使用T7启动子表达时,也存在两个难点:1,蛋白的复性技术,如果形成可溶性蛋白,那利用(使用分子技术加载在目标蛋白上)信号肽,只要过一遍柱子就能分离得到纯度非常高的,具有生物活性的产品,而形成包涵体,对提取,复性就有较高的要求,特别是二硫键的存在,会对复性产生很大的影响。在目前国内和国际流行技术看,并不是所有的蛋白都能在预定成本下复性的。2,任何情况下,高产都是代谢网络互相依赖与作用的结果。在如此高的表达量下,甚至细胞的形态都已经发生很大变化,正常代谢受到严重干扰,以至于放大时,摇瓶工艺对发酵工艺几乎没有任何参考价值。发酵工艺策略的选择将直接依赖于工程人员在生化,生理水平对菌株的理解,而匮乏可资参考的数据资料。发酵工艺的优化要离开摇瓶经验在发酵罐上逐步进行,这样,整个发酵工艺的确立就需要比想象中要大得多的人员与时间的投入。另外,再说一下糖基化的问题。在动物细胞内合成的折叠正确的蛋白,在分泌入体液前会有一个糖基化的过程,加上一个糖链就不会很快被蛋白酶当做折叠错误的蛋白水解掉。但是以微生物为表达系表达的蛋白,不具有动物细胞的修饰过程,用大肠杆菌表达的目标蛋白,很快会在血液中被降解。解决或回避这个问题,有两种方法:1,用动物细胞表达,一般,是用癌化的人类细胞。由于动物细胞培养技术要求过高,在国外比较昂贵的医药中有应用,国内不常见。2,由于酵母菌也有一个对蛋白的粗略的修饰过程,可以用酵母菌表达目标蛋白。这个技术,国内国外都在用,可以是一个权宜之计。主要难点集中在对合适菌株的分子水平的改造,以达到尽可能接近满意的修饰效果。这样,就可以在不同目标蛋白上表达系和发酵工艺上做出选择。如果是小分子,无糖基化修饰或不在体液中发挥作用的蛋白,可以选择大肠杆菌和酵母菌表达系,得到可溶性蛋白,然后提取。如果分子量合适,并对生产成本有诉求,而且可以比较方便的复性,则选用大肠杆菌表达系,得到包涵体,然后复性。如果是需要在体液中发挥活性并有糖基化要求的 蛋白,则选用经过分子生物学改造的酵母菌表达系。当然,并不是任何一个实验室都同时拥有或擅长所有的方向的。而难点,往往集中在以下3个方面:1,大肠杆菌蛋白包涵体复性。2,糖基化修饰。3,发酵工艺(工程菌株的工业水平)的确定。做工程一般是理科实验室的弱项,而工科实验室做基础又很少,在把工科和理科结合方面,我们实验室还是有经验和成功先例的。下面,以溶菌酶为例,阐述一下蛋白表达系的选择和工艺的确定。溶菌酶是一类具有种属差异的非特异性免疫物质,在动物界中普遍存在,种类繁多,其实,在植物和微生物中也有发现。但研究最多的还是动物。开发兽用溶菌酶,主要是想作为抗生素的替代物,作为添加剂使用。因此是一个低附加值的产品。下面一切的工作,都会围绕“兽用”和“低附加值”展开。首先,比较几种常见和认为有效的溶菌酶,杀菌效果最好的是人的溶菌酶,但考虑到潜在的危险(具有对人溶菌酶产生抗性,并使抗性基因扩散),舍尔求其次,用了鸟类蛋清溶菌酶,作为表达对象。然后,在得到溶菌酶蛋白的一级结构后,对此进行了分析。此蛋白不会用于体液内,故没有糖链修饰的问题。分子量不是很大,但也不太小,130左右的氨基酸构成,足以形成包涵体,这就为用大肠杆菌表达系高效表达提供了可能。讨厌的是有4个二硫键,其中有两个在结构复杂区域,折叠正确有一定的困难。但是,如果用酵母菌做,可能没法解决成本问题,即便优化工艺现在过去了,也不会是最终版本----肯定会有人用大肠杆菌做。所以,结论就是必须知难而进,拿下复性工艺。另外,由于是低附加值产品,发酵吨位就不能太小。以往分子生物学流行的50升,100升小罐发酵,肯定是不行的。发酵罐的放大,除了溶氧,剪切力发生变化,更重要的是搅拌线速度改变了胞外酶以及包括细胞本身的代谢方式和速度。在胞内体现就是氧化还原电势的改变,这在工艺上会带来很多麻烦。虽然说,一般是放大后产量往往提高,但放大过程中,小罐的经验就不能照搬了。同时,也因为是低附加值产品,发酵过程中诸如质粒丢失等稳定性要求,就很高了,应为只有稳定,才能控制成本。这样,工艺就成了第二个难点。明白这些之后,按照大肠杆菌的喜好,合成了溶菌酶的基因。然后构建质粒,导入细胞。在摇瓶水平表达溶菌酶。在筛选复性条件的同时,就同时在发酵罐水平对工艺稳定性进行了优化。首先,为了进一步提高质粒稳定性,对初始培养基进行了重新设计。并改动发酵工艺策略,由于是胞内产物,我们应用高细胞密度发酵控制法延长限制性生长时间(不能用经典发酵的延长对数期生长时间的办法,对工程菌不适合,会造成质粒丢失,代谢紊乱等一系列问题),提高细胞量,并改变了诱导时机,得到了稳定的高产,具体数据比较枯燥,就不在此展开了。提取方面,经过不懈的努力,我们也掌握了比较成功的复性条件(具体由另外人员负责,也不做详细介绍了)。这样,工艺才基本拼凑好。进一步优化,在试生产多次重复时在进行。以上,是外源蛋白表达的粗略的技术和工艺的过程。

  • 发酵乳前期灭菌要求及温度时间设计原则

    [font=SimSun, STSong, &]对于低温长时间灭菌,如85℃、20min。此类灭菌方式属于什么,相较于95℃、30min,哪些灭菌方式不会导致奶在低温长时发酵不会有杂菌风险,且能够出现凝乳.另外据我所查,高温灭菌有单独计算公式,但是又会导致蛋白变性等,从而影响发酵乳无法凝乳等情况。那么我应该参考一个什么样标准去设计灭菌时间和温度来确保37℃、48h长时间发酵不会有染菌风险。如灭完菌初始菌数、芽孢等要求,求助各位专家[/font]

  • 【资源】大肠杆菌发酵经验总结

    大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生:比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。3、 控制葡萄糖的浓度:葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。 恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不 同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。三、培养方式 微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

  • 工程菌高密度发酵

    基本原理发酵工业是既古老又崭新的工业,它的形成经历了漫长的岁月。随着科学技术的发展,发酵工业不断地得到发展和充实。现代发酵工业就是传统的发酵技术与现代DNA重组、细胞融合等新技术相结合,而发展起来的现代生物技术,并通过现代化学工程技术生产有用物质或直接用于工业化生产的一种大工业体系,是生物技术的重要组成部分。 发酵工业在基因工程药物的研制方面起着不可替代的作用。重组DNA技术和大规模培养技术的有机结合,使得原来无法大量获得的天然蛋白特别是基因工程药物能够大量生产,应用于临床的基因工程药物的市场正以每年5~15%的速度增长。采用高密度发酵技术,可以提高菌体的密度,最终提高产物的比生产率(单位体积单位时间内产物的产量)不仅可以减少培养体积、强化下游分离提取,还可以缩短生产周期,减少设备投资从而降低生产成本,提高市场竞争力。 发酵工程菌除有高浓度、高产量、高产率外还应该满足:能利用易得的廉价原料;不致病,不产生内毒素;容易进行代谢调控;易于进行DNA重组技术。目前应用最多的是大肠杆菌(遗传背景清楚、操作简便、培养条件容易控制、成本低)。 工程菌生长繁殖需要的条件是:良好的物理环境--发酵温度、pH值、溶氧量等;合适的化学环境--适宜工程菌生长代谢所需的各种营养物质的浓度,并限制阻碍生长代谢的有害物质的浓度。在发酵过程中许多控制参数对工程菌的生长构成影响,需不断加以调整(见下表),从而达到优化控制目的。http://www.biomart.cn//upload/userfiles/image/2012/08/1345599372_small.jpg发酵工艺分为批式发酵、流加式培养(Fed-batch)和程控发酵

  • 【第三届原创参赛】微生物发酵放大研究

    【第三届原创参赛】微生物发酵放大研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061908_264953_2019107_3.jpg 微生物发酵放大研究摘要: 工业发酵过程的研究一般可分为三个阶段: 首先在实验室进行菌种选育和培养基及培养条件的优化;再进行小试、中试, 以验证并完善发酵工艺, 获得适合发酵罐的发酵工艺;最后进行大规模生产。由于发酵过程的复杂性, 往往存在着“放大效应”, 即在实验室研究中, 目标产物的产量较高, 而在放大过程中, 随着发酵规模的扩大,目标产物的产量反而不断下降, 无法重复实验室试验的结果, 影响了工业发酵过程的效率, 因此对“放大效应”进行研究, 采用适当的放大策略, 去降低“放大效应”, 既具有重要的理论意义, 又会产生良好的经济效益。过程优化与放大技术具有潜在的深远意义,是永恒的话题。关键词: 发酵工艺,放大,动力学Key words :fermentation technology , enlarge, dynamics 发酵工程是细胞大规模培养技术中最早被人们认识并发展利用的。迄今, 利用发酵技术进行包括医药、轻工、食品、农业、环保等产品生产, 在国民经济中占有很大比重, 可以分为以常规微生物的传统生物技术和以基因工程细胞培养的现代生物技术产业, 无论对当前或今后发展均具有重要的经济和社会意义。 对具体某一体系来说,用何种放大规模可以快捷的成功过渡到工业化生产,没有固定模式,必须针对具体菌种生理生化及培养基及环境条件的放大效应综合考虑。反应器的不足可以通过工艺及控制手段来弥补,工艺的欠缺有时也可以通过改善反应器形式来修正。一、发酵工程中涉及的主要技术问题与工程学观点为了提高发酵生产水平, 人们首先考虑的是菌种选育或基因工程构建, 往往忽视了生物反应器中工程问题所必须加以考虑的工艺变化和过程优化。在得到一个高产菌株后, 随后的逐级放大与优化基本上是以最佳工艺控制点为依据, 采用人工经验为主的静态操作, 在方法上基本以正交试验为基础。 随着对细胞大规模培养技术的深入研究和对以分批培养为主要对象的发酵过程参数的时变性、多样性、耦合性和不确定性的认识, 建立了以过程动力学为基础的数学模型, 引进了一系列现代控制理论, 其中有静态和动态优化、系统识别、自适应控制、专家系统、模糊控制、神经元网络、直到各种混沌现象的研究。这种适应发酵过程非线性特征的研究方法对细胞大规模培养技术研究的深入开展以及提高学术研究水平起到很大的推进作用。但是, 也应该看到, 在实际工厂生产上仍有很大局限性, 效果不明显。 从发酵过程放大来说, 有人把“放大”分为两个基本问题, 其一是发酵条件的研究与设计; 其二是设计满足这些过程条件的反应器。就某种意义上, 第一个问题实质上是发酵过程动力学的问题,第二个是工程水平的传递和混和问题。必须认识到, 除非完全以微生物反应动力学与周围环境传递条件相结合的模型建立, 否则过程放大最终还是落实到系统几何相似、流体运动学相似和流体动力学相似等, 具体来说有因次分析法、经验法则法、综合机理的数学模拟法以及时间常数法等放大方法。事实上, 要同时满足这些相似条件是不可能的, 于是, 发酵过程放大仍旧是一个使人感到困惑的问题, 从摇瓶到发酵罐的差异, 甚至尽可能采用同样的操作条件, 只不过发酵罐的容积从几十升放大到几十立方米, 但结果往往面目全非。1.1、放大相关的参数及放大准则 在放大过程中必须考虑到各种参数随培养规模的变化所发生的改变。其中表面通气放大效应和培养基粘度效应必须给予重视。一般归纳为下列几种放大准则:(1)氧传递系数KLa,它代表氧的供应情况,在放大过程中常以大、小罐KLa=常数法进行放大;(2)单位输出功率Pg,在放大时,可维持Pg=常数法;(3)混合特性参数——混合时间,在放大过程中可以维持小罐的混合时间为t=5~30s,大罐的混合时间维持t=30~120;(4)剪切强度——可以用搅拌转速来衡量,在放大过程中要维持相似的剪切强度,常以叶尖搅拌线速度Vtip=常数法来放大;(5)维持相同的空气线速度Vs;(6)维持相同的热传递速度;(7)保证同样的培养基质量。放大的必要前提必须使大型设备和小型设备中的环境条件完全相同,一般的过程放大都是通过摇瓶所得最初工艺条件,进而通过实验室小规模摸索其发酵条件,在这些工艺参数中,从摇瓶转化到小型发酵罐过程中常见的为培养基成分的改变,往往是培养基不适合小型发酵罐中菌体代谢物的积累。放大成功与否,与所采用的放大模型有关,因为所采用的模型常常不是根据机理推导而是一种近似的黑箱操作;第二,与主体溶液的混合、热交换、空气线速度有关;第三,与表面活性剂(消泡剂、鼓泡特性)等有关。而在放大过程中最关键的还是氧的供应问题和细胞形态的变化。大多情况下,放大的主要矛盾来自氧的供应问题,成功的关键在于氧供应问题的好坏。总之,传统的工业放大均无一例外的是通过摇瓶——实验小试——中试-工业化生产逐级放大的模式,这样既浪费时间,又缺乏科学依据,完全靠试验摸索,其结果往往不尽人意。1.2、发酵放大过程 一般来说, 放大成功与否来自两方面的因素: 一是氧的供应, 二是菌丝形态。由于微生物是一个复杂的体系,在发酵放大时必须考虑到它本身的特性,如微生物对机械剪切力的敏感程度及丝状菌易形成菌丝团增加传质困难等。现在常用的发酵放大方法是使KLa或溶解氧浓度基本相等,它主要考虑使不同发酵规模的微生物生理活动条件相一致,而不着重考虑发酵罐的几何相似性。1.2.1[fon

  • 实验室自制发酵菌

    在实验室自制发酵菌需要在严格的无菌条件下进行,以下是一般的步骤和注意事项: [color=initial]一、准备工作[/color] [list=1][*] 设备和材料准备 [list][*]超净工作台:提供无菌操作环境。[*]高压灭菌锅:对培养基、培养皿、移液管等进行灭菌。[*]恒温培养箱:提供适宜的温度进行菌种培养。[*]天平、量筒等:用于准确称量和量取试剂。[*]培养基原料:如蛋白胨、酵母提取物、葡萄糖、琼脂等,根据所需菌种选择合适的培养基。[*]无菌水、移液管、培养皿、锥形瓶等。[/list][*] 环境消毒 [list][*]在进行实验前,对实验室进行全面消毒,包括桌面、地面、墙壁等。可以使用紫外线照射、化学消毒剂擦拭等方法。[*]确保超净工作台的过滤器正常工作,开启超净工作台进行通风和紫外线照射,进一步净化操作环境。[/list][/list] [color=initial]二、菌种来源选择[/color] [list=1][*] 从自然界分离 [list][*]可以从土壤、水体、植物表面等环境中采集样品,通过稀释涂布法、平板划线法等分离出单一的菌种。[*]例如,从果园土壤中采集土样,经过一系列处理后,在特定的培养基上培养,挑选出具有发酵潜力的菌落进行进一步培养和鉴定。[/list][*] 已有菌种保藏中心获取 [list][*]如果实验室有菌种保藏条件,可以从专业的菌种保藏中心购买或申请所需的菌种,然后进行活化和培养。[*]在使用外来菌种时,要确保其来源可靠、无致病性和污染风险。[/list][/list] [color=initial]三、培养基制备[/color] [list=1][*]按照配方准确称量培养基原料,加入适量的蒸馏水溶解。[*]将溶解后的培养基装入锥形瓶中,用棉塞或硅胶塞封口。[*]将锥形瓶放入高压灭菌锅中进行灭菌,一般在 121℃下灭菌 15-20 分钟。[*]灭菌后的培养基在超净工作台中冷却至适宜温度(一般为 45-50℃),然后倒入无菌培养皿中,待其凝固备用。[/list] [color=initial]四、菌种培养[/color] [list=1][*]如果是从自然界分离菌种,将采集的样品进行适当处理后,用无菌移液管吸取少量样品,涂布在培养基表面。[*]如果是活化已有菌种,用无菌接种环从保藏菌种中挑取少量菌体,划线接种在培养基表面。[*]将接种后的培养皿放入恒温培养箱中,根据菌种的特性设置适宜的温度和培养时间。例如,乳酸菌一般在 37℃下培养 24-48 小时。[/list] [color=initial]五、菌种筛选和鉴定[/color] [list=1][*]观察培养皿中的菌落形态,挑选出具有所需发酵特性的菌落,如形态规则、生长旺盛、有特定颜色等。[*]对筛选出的菌落进行进一步的鉴定,可以通过显微镜观察菌体形态、生理生化试验、分子生物学方法等确定菌种的种类。[*]将鉴定后的菌种进行纯化培养,确保菌种的纯度。[/list] [color=initial]六、菌种保存[/color] [list=1][*] 短期保存 [list][*]可以将菌种接种在斜面培养基上,放入冰箱冷藏保存,一般可保存数周至数月。[*]定期转接菌种,以保持其活性。[/list][*] 长期保存 [list][*]采用冷冻干燥法、液氮保存法等进行长期保存。[*]冷冻干燥法是将菌种在保护剂的作用下冷冻干燥,然后密封保存于低温环境中。液氮保存法则是将菌种悬浮在液氮中,可长期保持菌种的活性。[/list][/list] [color=initial]七、注意事项[/color] [list=1][*] 严格无菌操作 [list][*]在整个实验过程中,要始终保持无菌意识,严格遵守无菌操作规范。所有操作都要在超净工作台中进行,使用的工具和材料都要经过灭菌处理。[*]避免交叉污染,不同菌种的操作要分开进行,使用的工具和培养皿等要专用。[/list][*] 安全防护 [list][*]对可能具有致病性的菌种进行操作时,要采取相应的安全防护措施,如佩戴手套、口罩、实验服等,在生物安全柜中进行操作。[*]严格遵守实验室的安全规定,避免发生意外事故。[/list][*] 记录和标识 [list][*]对实验过程中的每一个步骤都要进行详细记录,包括菌种来源、培养基配方、培养条件、鉴定结果等。[*]对培养的菌种进行明确标识,注明菌种名称、培养日期、保存条件等信息,以便于管理和使用。[/list][/list]

  • 【发酵工程】与【生物化工】

    发酵工程概况 发酵是指利用微生物制造工业原料或工业产品的过程。根据各种微生物的特性,在有氧或无氧条件下利用生物催化 ( 酶 ) 的作用,将多种低值原料转化成不同的产品的过程。如酿酒、制酱和醋等发酵技术古已有之。 20 世纪 40 年代中期美国抗菌素工业兴起,大规模生产青霉素以及日本谷氨酸盐 ( 味精 ) 发酵成功,大大推动了发酵工程的发展。 70 年代以石油为原料生产单细胞蛋白,使发酵工程从单一依靠碳水化合物 ( 淀粉 ) 向非碳水化合物过渡,从单纯依靠农产品发展到利用矿产资源,如天然气、烷烃等原料的开发。 80 年代初基因工程发展,人们能按需要设计和培育各种工程菌,在大大提高发酵工程的产品质量的同时,节约能源,降低成本,使发酵技术实现新的革命。 发酵工程的内容 发酵工程主要包括菌种的培养和选育,发酵条件的优化,发酵反应器的设计和自动控制,产品的分离纯化和精制等。除食品工业外,化工、医药、冶金、能源开发、污水处理、防腐、防霉等开发,给发酵工程带来新的发展前景。http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/11.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/12.jpg(菌种的培养)(食品工业)http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/13.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/14.jpg(医药工业)(污水处理)目前已知具有生产价值的发酵类型有以下五种: 微生物菌体发酵 这是以获得具有某种用途的菌体为目的的发酵。传统的菌体发酵工业: 有用于面包制作的酵母发酵及用于人类或动物食品的微生物菌体蛋白发酵两种类型。新的菌体发酵可用来生产一些药用真菌:如香菇类、天麻共生的密环菌、以及从多孔菌科的获苔菌获得的名贵中药获答和担子菌的灵芝等药用菌。这些药用真菌可以通过发酵培养的手段来生产出与天然产品具有同等疗效的产物。http://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/pic006.jpghttp://learn.gxtc.edu.cn/NCourse/swjs/fermentation/IMAGES/pic005.jpg面包酵母生产工程(气升环流式反应器,50 M3)(药用菌) 微生物酶发酵 酶普遍存在于动物、植物和微生物中。最初,人们都是从动、植物组织中提取酶,但目前工业应用的酶大多来自微生物发酵,因为微生物具有种类多、产酶的品种多、生产容易和成本低等特点;微生物酶制剂有广泛的用途,多用于食品和轻工业中,如微生物生产的淀粉酶和糖化酶用于生产葡萄糖,氨基酰化酶用于拆分DL一氨基酸等。酶也用于医药生产和医疗检测中,如青霉素酰化酶用来生产半合成青霉素所用的中间体6一氨基青霉烷酸,胆固醇氧化酶用于检查血清中胆固醇的含量,葡萄糖氧化酶用于检查血中葡萄糖的含量等等。 微生物代谢产物发酵 微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物。在菌体对数生长期所产生的产物,如氨基酸、核并酸、蛋白质、核酸、糖类等,是菌体生长繁殖所必需的。这些产物叫做初级代谢产物,许多初级代谢产物在经济上具有相当的重要性,分别形成了各种不同的发酵工业。在菌体生长静止期,某些菌体能合成一些具有特定功能的产物,如抗生素。生物碱、细菌毒素、植物生长因子等。这些产物与菌体生长繁殖无明显关系,叫做次级代谢产物。次级代谢产物多为低分子量化合物,但其化学结构类型多种多样,据不完全统计多达47类,其中抗生素的结构类型,按相似性来分,也有14类。由于抗生素不仅具有广泛的抗菌作用,而且还有抗病毒、抗癌和其他生理活性,因而得到了大力发展,已成为发酵工业的重要支柱。 微生物的转化发酵 微生物转化是利用微生物细胞的一种或多种酶,把一种化合物转变成结构相关的更有经济价值的产物。可进行的转化反应包括:脱氢反应、氧化反应、脱水反应、缩合反应、脱梭反应、氨化反应、脱氨反应和异构化反应等。 最古老的生物转化,就是利菌体将乙醇转化成乙酸的醋酸发酵。生物转化还可用于把异丙醇转化成丙醇甘油转化成二羟基内酮、葡萄糖转化成葡萄糖酸,进而转化成2一酮基葡萄糖酸或5一酮基葡萄糖酸,以及将山梨醇转变成L一山梨糖等。此外,微生物转化发酵还包括甾类转化和抗生素的生物转化等等。生物工程细胞的发酵 这是指利用生物工程技术所获得的细胞,如DNA重组的"工程菌",细胞融合所得的"杂交"细胞等进行培养的新型发酵,其产物多种多样。如用基因工程菌生产胰岛素、干扰素、青霉素酚化酶等,用杂交瘤细胞生产用于治疗和诊断的各种单克隆抗体等。4.l.2 发酵技术的特点及应用 由于微生物种类繁多、繁殖速度快。代谢能力强,容易通过人工诱变获得有益的突变株,而且微生物酶的种类很多,能催化各种生物化学反应。同时由于微生物能够利用有机物、无机物等各种营养源,不受气候、季节等自然条件的限制,可以用简易的设备来生产多种多样的产品。所以,在酒、酱、醋等酿造技术上发展起来的发酵技术发展非常迅速,且有其独有的特点:①发酵过程以生物体的自动调节方式进行,数十个反应过程能够象单一反应一样,在发酵设备中一次完成。 ②反应通常在常温常压下进行,条件温和,能耗少,设备较简单。③原料通常以糖蜜、淀粉等碳水化合物为主,可以是农副产品、工业废水或可再生资源(植物秸杆、木屑等),微生物本身能有选择地摄取所需物质。④容易生产复杂的高分子化合物,能高度选择地在复杂化合物的特定部位进行氧化、还原、官能团引人等反应。⑤发酵过程中需要防止杂菌污染,设备需要进行严格的冲洗、灭菌;空气需要过滤等。 发酵过程的这些特征体现了发酵工程的种种优点。在目前能源。资源紧张,人口、粮食及污染问题日益严重的情况下,发酵工程作为现代生物技术的重要组成部分之一,得到越来越广泛的应用:医药工业:用于生产抗生素、维生素等常用药物和人胰岛素、乙肝疫苗、干扰素、透明质酸等新药。食品工业:用于微生物蛋白、氨基酸、新糖原、饮料、酒类和一些食品添加剂(柠檬酸、乳酸、天然色素 等)的生产。能源工业:通过微生物发酵,可将绿色植物的秸杆、木屑。工农业生产中的纤维素、半纤维素、木质素等废弃物转化为液体或气体燃料(酒精或沼气)。还可利用微生物采油、产氢、产石油以及制成微生物电池。化学工业:用于生产可降解的生物塑料、化工原料(乙醇、丙酮\丁醇、癸二酸等)和一些生物表面活性剂及生物凝集剂。冶金工业:微生物可用于黄金开采和铜、钢等金属的浸提。农、牧业:生物固氮、生物杀虫剂的应用和微生物饲料的生产,为农业和畜牧业的增产发挥了巨大作用。环境保护:可用微生物来净化有毒的高分子化合物,降解海上浮油,清除有毒气体和恶臭物质以及处理有机废水、废渣等等

  • 再请教粪大肠菌群初发酵的几个问题

    再请教粪大肠菌群初发酵的几个问题

    请教大家:听一些经常做粪大肠菌群的人说,初发酵产酸产气就可以判断为阳性,可以省了再发酵的部分。我现在做了初发酵,出现几种情况,想问大家能否根据这个阶段的表现来判断是否为阳性:1、10ml样品加入三倍乳糖蛋白胨培养液:产气,培养液的下半部分变成黄色,上半部分仍然是紫色。http://ng1.17img.cn/bbsfiles/images/2015/01/201501071524_531486_2970540_3.jpg2、1ml样品加入单倍乳糖蛋白胨培养液:不产气,培养液的下半部分变成黄色,上半部分仍然是紫色。http://ng1.17img.cn/bbsfiles/images/2015/01/201501071526_531487_2970540_3.jpg谢谢~~~

  • 发酵培养基的配制

    首先需了解微生物需要的营养物质。 (1)微生物需要的营养物质营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。① 水水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。② 碳源碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。③ 氮源凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。④ 无机盐无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。⑤ 生长因子一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分。各种微生物所需的生长因子不同,有的需要多种,有的仅需要一种,有的则不需要。一种微生物所需的生长因子也会随培养条件的变化而变化,如在培养基中是否有前体物质、通气条件、pH和温度等条件,都会影响微生物对生长因子的需求。从自然界直接分离的任何微生物,在其发生营养缺陷突变前的菌株,均称为该微生物的野生型。绝大多数野生型菌株只需简单的碳源和氮源等就能生长,不需要添加生长因子;经人工诱变后,常会丧失合成某种营养物质的能力,在这些菌株生长的培养基中,必须添加某种氨基酸、嘌呤、嘧啶或维生素等生长因子。⑥ 能源能源是指为微生物的生命活动提供最初能量来源的营养物或辐射能。化能异养型微生物的能源即碳源;化能自养型微生物的能源都是还原态的无机物,如NH4+、NO2-、S、H2S、H2、Fe2+等,它们分别属于硝化细菌、亚硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。一种营养物常有一种以上营养要素的功能,即除单功能营养物外,还有双功能,甚至三功能营养物。辐射能是单功能;还原态无机养分常是双功能的(NH4+既是硝化细菌的能源,又是它的氮源)甚至是三功能的(能源、氮源和碳源);有机物常有双功能或三功能作用。(2)配制培养基必须遵循的原则微生物的培养基通常指人工配制的适合微生物生长繁殖,或积累代谢产物的营养基质。广义上说,凡是支持微生物生长繁殖的介质或材料,均可作为微生物的培养基。一个适当的培养基配方,对发酵产品的产量和质量有着极大的影响。针对不同微生物,不同的营养要求,可以有不同的培养基。但它们的配制必须遵循一定原则。① 营养物质应满足微生物的需要。不同营养类型的微生物对营养的需求差异很大,应根据菌种对各营养要素的不同要求进行配制。② 营养物的浓度及配比应恰当。营养物浓度太低,不能满足微生物生长的需要;浓度太高,又会抑制微生物生长。糖和盐浓度高有抑菌作用。碳氮比(C∶N,以还原糖含量与粗蛋白含量的比值表示):一般培养基为C∶N=100∶0.5~2。在设计培养基配比时,还应考虑避免培养基中各成分之间的相互作用,如蛋白胨、酵母膏中含有磷酸盐时,会与培养基中钙或镁离子在加热时发生沉淀作用;在高温下,还原糖也会与蛋白质或氨基酸相互作用而产生褐色物质。③ 物理、化学条件适宜。pH:各种微生物均有其生长繁殖的最适pH,细菌为7.0~8.0,放线菌为7.5~8.5,酵母为3.8~6.0,霉菌为4.0~5.8。对于具体的微生物菌种,都有各自的特定的最适pH范围,有时会大大突破上述界限。在微生物生长繁殖过程中,会产生能够引起培养基的pH改变的代谢产物,尤其是不少微生物有很强的产酸能力,如不适当地加以调节,就会抑制甚至于杀死其自身。在设计培养基时,要考虑培养基的pH调节能力。一般应加入缓冲液或CaCO3,使培养基的pH稳定。其他:培养基的其他理化指标,如水活度、渗透压也会影响微生物的培养。在配制培养基时,通常不必测定这些指标,因为培养基中各种成分及其浓度等指标的优化,已间接地确定了培养基的水活度和渗透压。此外,各种微生物培养基的氧化还原电位等也有不同的要求。④ 培养目的:培养基的成分直接影响培养目标。在设计培养基时,必须考虑是要培养菌体,还是要积累菌体代谢产物;是实验室培养,还是大规模发酵等问题。用于培养菌体的种子培养基营养成分应丰富,氮源含量宜高,即碳氮比值应低;相反,用于大量积累代谢产物的发酵培养基,氮源应比种子培养基稍低;当然,若目的产物是含氮化合物时,有时还应该提高培养基的氮源含量。在设计培养基时,还应该特别考虑到代谢产物是初级代谢产物,还是次级代谢产物。如果是次级代谢产物,还要考虑是否需加入特殊元素(如维生素B12中Co)或特殊的前体物质(如生产青霉素G时,应加入苯乙酸)。在设计培养基,尤其是大规模发酵生产用的培养基时,还应该重视培养基组分的来源和价格,应该优先选择来源广、价格低廉的培养基。(3)几种培养基的配制原则① 种子培养基:适用于微生物菌体生长的培养基,目的是为下一步发酵提供数量较多,强壮而整齐的种子细胞。一般要求氮源、维生素丰富,原料要精。② 发酵培养基:用于生产预定发酵产物的培养基,一般的发酵产物以碳源为主要元素。发酵培养基中的碳源含量往往高于种子培养基。如果产物的含氮量高,应增加氮源。在

  • 乳酸菌发酵

    乳酸菌发酵(发酵植物)过程中是否可以用OD600来表示发酵进程?我知道可以用pH4.0-4.5来表示

  • 【转帖】豆粕发酵工艺

    发酵豆粕属于发酵饲料中的一种,所谓发酵饲料,就是利用微生物在饲料原料中的生长繁殖和新陈代谢,积累有用的菌体、酶和中间代谢产物来生产加工和调制的饲料,因此也称为微生物饲1490 [actual=1489]料[17]。 发酵豆粕在1983年王厚德教授发现的扣囊拟内孢霉时就已有研究。扣囊拟内孢霉 Endomycopsis Sp是从酒精废醪中分离出的一株酵母菌,在固态基质上的好氧条件下可大量繁殖,并可达到较高的细胞数。用固体菌种地面蒲层发酵晒干,以豆粕为主作原料,无毒性问题,由于量小,产品质量易于控制,生物效价较高,只要适当平衡赖、蛋氨酸、钙磷后,接近或超过秘鲁鱼粉,产品一度供不应求[18]。豆类发酵一般流程:精选大豆—清洗—浸泡—脱皮—蒸煮—冷却—调酸—接种混匀—发酵—成品 [19]常规豆粕发酵工艺:常规豆粕发酵采用米粉作发酵基质生产根霉孢子作为发酵剂,发酵时间要48-72h。传统发酵豆粕的发酵剂主要有三种: (1)前一批发酵豆粕饲料 (2) 以前豆粕发酵时使用的覆盖物中霉菌残留物 (3) 高热过度生长真菌菌丝体。而吴定等用少孢根霉RT-3菌丝作发酵剂发酵豆粕新工艺,使得发酵时间缩短了24~36 h。主要的步骤是先将豆粕置高压锅115℃、20 min ,取出加适量水,加10%麸皮,再用乳酸酸化基质,混匀,接种发酵剂,再混匀,置39℃培养。待菌丝将豆粕完全覆盖,结成块后,40~50℃真空干燥,粉碎成颗粒饲料。利用菌种对豆粕进行发酵,生产大豆异黄酮甙元,提高豆粕的经济附加值[8]。也有的采用多菌种作发酵剂对豆粕进行混合发酵,如姚晓红等用酵母菌y-021、y-028 、乳酸菌Lc三种菌株共同作用于豆粕中[3]。

  • 分子生物学对现代发酵影响

    2006,07两年,是国外发酵技术大批登陆大陆的两年,在06年后,大陆的发酵工业(不仅仅是科研,中试,而是大生产),正式进入了分子时代。分子技术对发酵行业的影响,在工业上的体现有两点,1,调控方面,由工艺技术的生理水平调整,进入生化水平的代谢流加强与敲除控制。比如说,(我拿有机酸举例子,因为初级代谢研究的更多些)以往代谢流调控,以谷氨酸为极端,使用营养缺陷型,并破坏细胞膜,使产物在胞外积累。但是,由于有些通路代谢的先天不足,某些产物(如琥珀酸)不会积累,而没有商品化,另外,产品产量很难继续提高。而做了分子水平的改进后,以上问题就得以解决了。作为经典发酵,代谢调控对应是用工艺手段,菌种用诱变,以工艺为重。而现代发酵,分子调控,菌种和工艺是分不开的,有时,工艺唯一的目的,就是保证菌种出于某种特定状态而已。2,产物方面,以往产物决定于菌种筛选,但分子时代,A,如果是初级代谢产物,则通过DNA水平调控和改变代谢流实现,B,如果是其他代谢产物,(不管来源是什么,动物,植物),则找到基因,导入细胞表达(大肠杆菌或酵母等)。分子生物学,并不是分子水平的生物,或生化,或生理学。其实,它是指分子水平的DNA学,除了DNA外, 对其他有机物也是围绕与DNA的关系展开的。考虑到在我们发酵生理学的视点下,DNA的价值,是蛋白的信息载体,而一切生理变化,都是蛋白活性的宏观表达。那么,目前的生物技术,可以认为只有两个大的方面(或技巧):1,通过分子水平DNA技术,抑制细胞内源蛋白活性。2,表达细胞外源蛋白及其活性。 表现在宏观上,就可以实现代谢流调控,蛋白产品的获得,用外源酶合成或催化反应等。比如像代谢流调控,我们找到编码琥珀酸脱氢酶的基因,并敲除之,使这个蛋白不能表达,则从琥珀酸到延胡索酸的反应不能进行,来积累琥珀酸,属于第一种情况。我们敲除PTSG这个基因,使细胞对各种不同的糖没有选择性,也属于第一种情况,而引入另一个基因,使糖代谢加强,就是第二种情况了。在合成PHA时,外源基因指导合成三个外源酶,并在细胞内表达活性,就属于第二种情况。当然,表达外源蛋白最典型的,还是直接以被表达蛋白为产品,不过当蛋白需要被修饰时(如糖基化),就又需要这两种技巧的配合或反复使用了。 这样得到的菌株,生产产物的代谢十分直接,往往转化率在90%或以上。但是,细胞本身的活力比较弱,也会有大量的宏观上类似回复突变的生理问题。这就是为什么我说:“现代发酵,分子调控,菌种和工艺是分不开的,有时,工艺唯一的目的,就是保证菌种处于某种特定状态而已。”----因为,许多本来由我们过程工程师在生理水平控制的代谢,分子技术已经帮我们在种子阶段解决了,而同时,又丢给我们一些不大不小的新问题。以往,类似味精发酵,获得初级代谢产品,并减少中间代谢产物和副产物,需要工艺近似苛刻的控制,而现在,就不必了。 以上是分子技术在经典发酵视角下的情形。而通过分子生物学技术改造过的基因工程菌,由于其特殊的营养和环境需求,往往对发酵原料有较高的要求。安琪试剂级酵母浸粉产品无论是产品颗粒度、流动性、分散性、抗吸潮能力、溶液吸光度、颜色、磷酸盐沉淀等感官指标,还是产品中多肽、氨基酸、核苷酸、维生素、微量元素等营养物质含量指标均达到国际先进水平;通过微生物的培养效果测试,产品使用效果也完全可以与进口产品媲美,且不同批号的产品品质具备高度的一致性,完全可以替代进口同类产品在生物发酵产业中予以应用;另外,安琪产品在销售价格上则具备相当大竞争优势,可以有效帮助解决相关生物发酵企业面临的成本瓶颈。

  • 发酵过程中细胞浓度在线检测系统-在线活细胞浓度分析仪

    发酵过程中,细胞浓度是一个非常重要的生理参数,不但可以计算比生长速率,底物消耗速率、生物量产率和维持系数等参数,还可以及时判断是否有染菌等异常情况发生。目前测量细胞浓度的方法主要有化学法(DNA/RNA分析)和物理法(干重、光密度、呼吸商等)两大类。一般来说,与物理法相比,化学法能较准确的测量有代谢活性的生物量,缺点是花费时间长,而利用物理法测量,无法区分区分处于悬浮状态的颗粒和微生物,也无法分别活死细胞。 实现在线活细胞浓度一直是发酵领域的热门话题,仅些年来出现了不少的测量方法,依据的工作原理也是五花八门,其中最具代表性的有声学,激光散色、荧光、核磁、量热或电容。 其中法国fogale公司的测量仪器,以电容法为工作原理,直接将传感器安装与发酵罐上,可承受121℃高温灭菌,理论技术也比较成熟,是目前最为理想的适合工业级别的在线活细胞传感器。工作原理:电容传感器采用活细胞的介电特性,实时连续测量活细胞的生物体积,可应用于实验室桌面型的反应器或者是工业规模的大型反应器两对对电极位于传感器的顶部,一对用于在培养基中产生交变的电场,在电场范围内,带有完整细胞膜的细胞会在培养基中发生极化现象,发生极化的细胞可以认为是极小的电容,死细胞或者其他粒子没有完整的细胞膜,所以不能形成电容型号。另一对电极用于检测培养基中的介电信号,培养基中的介电信号和细胞的浓度是精确关联的。细胞的极化率和电场的频率纯在函数关系,当频率增加时,培养基中细胞的介电常数由低频峰(最大极化)降低到高频峰(最小极化)。这种随频率增加极化率降低的现象称为β-散射。传感器采用双频测量模式:培养基的基线在10MHz左右得到,细胞的信号在临界频率区域获得,在曲线的拐点,(动物细胞和细菌在1MHz,酵母在2MHz)我们获得了最佳的信号线性。应用:这项技术可广泛应用于各种细胞培养,生物发酵过程。已被文献证实可应用的细胞如下:动物细胞:CHO, BHK, MDCK, PERC6, NSO, HEK, Hela,Hybridoma, Vero细 菌:E.Coli, Bacillus Thuringensis, Salmonella,Streptomyces, Lactic Bacteria酵 母:Pichia Pastoris, Saccharomyces Cervisiae, PolymorphaHasenula昆虫细胞:sf9, Hi-5真 菌:Absidia

  • 【原创大赛】多管发酵法测水中总大肠菌群的方法

    [align=center]多管发酵法测水中总大肠菌群的方法[/align][align=center]化工室:周琰[/align]一、方法原理 总大肠菌群是指那些能在37℃48h之内发酵乳糖产酸产气的、需氧及兼性厌氧的革兰氏阴性的无芽孢杆菌。主要包括有埃希式菌属、柠檬酸杆菌、肠杆菌属、等菌属的细菌。二、标准溶液配制 此方法无标准溶液三、操作步骤1、样品采集 应采用在160~170℃灭菌2小时的玻璃瓶采样,采好的水样,应迅速送往实验室,进行总大肠菌群数检验。一般从取样到检验不宜超过2h,否则应使用10℃以下的冷藏设备保存样品,但不得超过6h。若超过会引起水样污染,从而影响监测结果。 若医院污水经过氯消毒应在采样后立即用5%硫代硫酸钠溶液充分中和余氯。2、样品准备 2.1、污水 污水样品应至少取200mL,使用前应充分混匀。 根据预计的污水样品中总大肠菌群数确定污水样品接种量。总大肠菌群数量相对较少的接种量一般为10mL、1mL、0.1mL。总大肠菌群数较多时接种量为1mL、0.1mL、0.01mL或0.1mL、0.01mL、0.001mL等。 接种量少于1mL时,水样应制成稀释样品后供发酵试验使用。接种量为0.1mL、0.01mL时,取稀释比分别为1:10、1:100.其它接种量的稀释比依次类推。1:10稀释样品的操作方法为:吸取1mL水样,注入到盛有9mL灭菌水的试管中,混匀,制成1:10稀释样品。因此,取1mL1:10稀释样品,等于取0.1mL污水样品。其它稀释比的稀释样品同法制作。 2.2初发酵试验在5只装有5mL已灭菌的三倍乳糖蛋白胨培养液的试管中(内有倒管),以无菌操作加入充分混匀的水样10mL;在5只装有10mL已灭菌的单倍乳糖蛋白胨培养液的试管中(内有倒管),以无菌操作加入充分混匀的水样1mL;在5只装有10mL已灭菌的单倍乳糖蛋白胨培养液的试管中(内有倒管),以无菌操作加入充分混匀的水样1mL1:10稀释的水样。置于37℃培养箱培养24h。2.3平板分离经初发酵试验培养24h后,发酵管颜色变黄为产酸,小玻璃倒管内有气泡为产气。将产酸产气及只产酸发酵管,分别接种于伊红美蓝培养基上,置于37℃培养箱培养18~24h。2.4鉴定 挑选可疑总大肠菌群菌落,进行革兰氏染色和镜检。可疑菌落有:1)深紫黑色,具有金属光泽的菌落;2)紫黑色,不带或略带金属光泽的菌落;3)深紫红色,中心色较深的菌落。 上述涂片镜检的菌落如为革兰氏阴性无芽孢杆菌,则挑选上述典型菌落1~3个接种于普通乳糖蛋白胨培养液中,置于 37℃恒温培养箱培养24h。2.4计数根据证实有总大肠菌群存在的阳性管数,查表可得100mL污水中总大肠菌群MPN值,求出1L水中的总大肠菌群数四、实际样品的测定 医院污水中,不同程度的含有多种病毒、病菌、寄生虫卵和一些有毒有害物质,我国水污染防治法第二十条规定“排放含有病原体的污水必须经过消毒处理,符合国家有关标准后,方可排放”。二氧化氯被认为是一种安全高效强力杀菌剂,对水传播的病原微生物,包括病毒芽孢及水路系统中的异氧菌,硫酸盐还原菌和真菌等有很好的消毒效果。 西安高新医院的污水执行《医疗机构水污染排放标准》具体限值见表一 表一综合医疗机构和其它所有医疗机构污水污染物排放限制(日均值)[table][tr][td]控制项目[/td][td]排放标准[/td][/tr][tr][td]总大肠菌群数(个/L)[/td][td]500个/L[/td][/tr][tr][td]pH[/td][td]6-9[/td][/tr][tr][td]总余氯(mg/L)[/td][td]3-10 mg/L 消毒接触池接触时间≥1h[/td][/tr][/table] 2015年4月,对西安高新医院处理后排放污水中的总大肠菌群进行了监测。监测结果如下表: 表二 总大肠菌群数测定[table][tr][td][align=center]采样地点[/align][/td][td=3,1][align=center]西安高新医院[/align][/td][td=3,1][align=center]西安高新医院(平行样)[/align][/td][td=3,1][align=center]西安高新医院(平行样)[/align][/td][/tr][tr][td=1,2][align=center]接种量及管数[/align][/td][td][align=center]10[/align][/td][td][align=center]1[/align][/td][td][align=center]0.1[/align][/td][td][align=center]10[/align][/td][td][align=center]1[/align][/td][td][align=center]0.1[/align][/td][td][align=center]10[/align][/td][td][align=center]1[/align][/td][td][align=center]0.1[/align][/td][/tr][tr][td=3,1][align=center]各5管[/align][/td][td=3,1][align=center]各5管[/align][/td][td=3,1][align=center]各5管[/align][/td][/tr][tr][td][align=center]初发酵[/align][/td][td][align=center]4[/align][/td][td][align=center]2[/align][/td][td][align=center]1[/align][/td][td][align=center]5[/align][/td][td][align=center]1[/align][/td][td][align=center]0[/align][/td][td][align=center]4[/align][/td][td][align=center]2[/align][/td][td][align=center]1[/align][/td][/tr][tr][td][align=center]平板分离[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]0[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][/tr][tr][td][align=center]复发酵[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]0[/align][/td][td][align=center]4[/align][/td][td][align=center]1[/align][/td][td][align=center]1[/align][/td][/tr][tr][td][align=center]MPN值[/align][/td][td=3,1][align=center]21[/align][/td][td=3,1][align=center]17[/align][/td][td=3,1][align=center]21[/align][/td][/tr][tr][td][align=center]总大肠菌群数个/L[/align][/td][td=3,1][align=center]210[/align][/td][td=3,1][align=center]170[/align][/td][td=3,1][align=center]210[/align][/td][/tr][/table]五、结论 西安高新医院的污水总大肠菌群数为210,完全符合《医疗机构水污染排放标准》中的限值。六、注意事项1)采好的水样,应迅速送往实验室,进行总大肠菌群数检验。一般从取样到检验不宜超过2h,否则应使用10℃以下的冷藏设备保存样品,但不得超过6h。2)采样瓶必须提前灭菌,所使用的玻璃仪器都应高温灭菌。3)革兰染色时要控制好每一步的时间。

  • 乳酸菌发酵

    我在做乳酸菌发酵,培养一段时间后,镜检下菌量挺高,但几个小时之后再取样检测发现镜检菌量大量下降,发酵液静置一会产生一些絮状物质,形状跟棉花似的,一点都不粘底,但好像大部分不是菌体,,请问大家,絮状物质是什么东西,大家遇到过这种情况吗,是不是感染噬菌体了?

  • 【分享】谷氨酸发酵液除菌体提取谷氨酸研究进展

    谷氨酸发酵液除菌体提取谷氨酸研究进展作者:佚名 文章来源:本站原创点击数: 222 更新时间:2010-4-14 13:19:04 file:///C:/Users/%E9%83%AD%E9%9B%B7/AppData/Local/Temp/msohtml1/01/clip_image001.gif我国味精生产,从发酵液中提取谷氨酸大多采用带菌体冷冻等电加离交法,由于发酵液中存在大量的菌体蛋白、悬浮物及其它杂质,给谷氨酸提取操作、提取收率、谷氨酸质量带来显著影响,且废水含高C0D、高B0D等严重污染环境的物质,又给废水治理带来重重困难。 近几年来,国内一些味精生产企业、研究所,对谷氨酸发酵液除菌体及提取谷氨酸进行了大量研究,除菌体工艺有高速离心机分离,絮凝剂分离、膜分离等,都取得了明显成果。按除菌体不同工艺、除菌体率分别达到70%~96%,以膜分离法除菌率最高达95%以上,得到的发酵液澄清,0D低,谷氨酸提取操作方便,由于除去了影响谷氨酸结晶的大量杂质,因而谷氨酸结晶颗粒大,纯度高、质量好,易于沉降分离,提取收率明显提高。高纯度谷氨酸有利于味精精制,味精中和脱色过滤可降低活性碳或树脂用量,提高味精结晶质量,大大降低味精生产成本。除菌体后的发酵液及等电提取后的废液中C0D、BOD大大减少,减轻了环境污染,降低了废水治理负荷与难度。得到的菌体经干燥后可以综合利用,作高蛋白质饲料或作核苷酸的生产原料。 谷氨酸发酵液除菌体及多种新工艺提取谷氨酸的研究,是对我国味精工业清洁生产的有益探索。随着研究的不断深化,许多先进工艺技术将会被应用,味精生产终将进入一个新水平。 1 高速离心分离除菌体,浓缩等电提取 沈阳味精厂从瑞典引进4台ALFA—LAVA公司的FESX5l2S一3lC型蝶片式高速喷咀离心机,转速4650I1) 分,功率45kw,对玉米淀糖为碳源,尿素作氨源、玉米浆为生物素的T一6l3菌发酵液进行了工业性除菌体,进料量20m ,喷咀直径1.0mm,菌体分离率达70%以上,轻流占75% ,重流占25%左右,除菌体后发酵液中谷氨酸略增,还原糖下降,0D值明显降低,工业规模运转证明,该设备对分离谷氨酸发酵液性能可靠,比较适宜。 发酵液除菌体后采用浓缩等电点提取法。 除菌体后的发酵液,经减压蒸发到含谷氨酸12%~15% ,后与重液经水解浓缩制成的二次蒸发液进行等电中和(60℃、40l1)m搅拌),然后冷却、沉淀、离心分离,提取达83.14%~85.03%,比带菌体浓缩等电点提取收率77.24%显著增加。且谷氨酸含量高达96%(干),用于制造味精时脱色液过滤快,透光率高,味精质量好。 2 凝聚剂除菌体一次等电或浓缩等电提取 使用安全性高的壳聚糖作絮凝剂,其阳离子性能与发酵液中菌体(带负电荷)与蛋白凝聚使其沉淀而进行分离。壳聚糖对金属离子、蛋白质、氨基酸、核酸均有很强的吸附能力,特别对胶体微粒有甚大的絮凝作用,其官能基团主要是氨基。在最佳pH、搅拌速度、用量、温度条件下,菌体去除率可达9O%左右。 壳聚糖不易溶于水,而溶解于酸性溶液中。配成一定浓度后,于发酵液中慢慢加人,搅拌速度也以慢为好。过快易将凝絮物打碎,难过滤。菌体凝聚沉降后,抽取上清液,沉降物可加硅藻土或珍珠岩作助滤剂,尤以硅藻土作助滤剂好,不吸附谷氨酸。中试规模过滤可用板框压滤,小试规模实验室中,采用高速离心机分离。应用国产高速离心机分离除菌体凝絮物(包括菌体)至今未见报导,这也是用凝絮法除菌体不能很快推广的一个较大问题。凝聚法去除菌体后的谷氨酸发酵液的提取方法有: 2.1一次等电点法 谷氨酸发酵液经絮凝处理后,采用一次等电点法,(即用酸逐步调到pH3-2法)提取收率可达76.18% ,比对照收率71.3%提高6.2% ,谷氨酸结晶的透光率52.25% ,比对照l1.25%提高了4倍;谷氨酸提取后的母液,可减少谷氨酸0.06%~0.11%。这是提高谷氨酸收率的一个重要原因,即去除了干扰谷氨酸结晶因素。 2.2 浓缩等电点法 将除菌体经过滤的发酵液,真空浓缩一倍,用加热快速调pH的方法,一次性直接调到pH3.2。搅拌到常温,再搅拌2h~3h时,沉淀3h,离心分离谷氨酸,谷氨酸一次收率平均可达85%左右,纯度可达95%左右,且调节pH的酸用量比普通谷氨酸等电点法用量要少。 2.3 先等电提取后浓缩再提取法 谷氨酸发酵液除菌体后,先用一次等电点法(常温或冷冻)提取出谷氨酸的60%~75%,残母液中含1.2%~1.5%左右的残谷氨酸,再加以浓缩(通过多效蒸发器)3倍,再提出剩余谷氨酸,总收率可达85%以上。母液浓缩成浆状可作肥料,再根据当地的土质情况,适当添加磷、钾等肥效成分。这条工艺路线是既提高了谷氨酸的提取收率,又产生综合效益。从发酵液分离出

  • 【金秋计划】重组工程菌发酵表达

    [size=16px][b]一、准备阶段(大肠杆菌为例)[/b] 根据试验需求,准备合适的培养基,比如说[font=&]LB[/font],参照相关内容。 准备[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]枪头,接种环,玻璃棒等。 [b]二、种子培养阶段 [font=&]1[/font].菌种活化:[/b]方法参照相关内容。 [b][font=&]2[/font].种子液接种:[/b]从保存的平板上挑取单克隆至种子培养液中([font=&]50mL/250mL[/font]),将其放置于恒温([font=&]37[/font][font=宋体]℃[/font])摇床中振荡([font=&]200rpm[/font])培养,过夜([font=&]约12h[/font])。 [b]三、摇瓶发酵培养阶段 [font=&]1[/font].摇瓶接种:[/b]将上述种子培养液按照一定比例(一般[font=&]1%[/font]-[font=&]10%[/font])接种至新鲜的发酵培养基中([font=&]100mL/500mL[/font])。 [i]按照需要选择合适的三角瓶,比如说[font=&]50mL/250mL[/font]、[font=&]100mL/500mL[/font],如果需要量比较小,也可以选择[font=&]5mL/50mL[/font],[font=&]10mL/50mL[/font]等。[/i] [b]2.发酵培养:[/b]将接种后的三角瓶放置于恒温([font=&]37[/font][font=宋体]℃[/font])摇床中振荡([font=&]200rpm[/font])培养。 定期检测发酵生物量 [i]摇起来有助于氧气的供应、微生物和营养物质均匀分布,使微生物更好地生长。[/i] [b]3.诱导阶段:[/b]约摇瓶培养[font=&]2h左右,OD600达到0.6-0.8,此时添加诱导剂(IPTG)开始诱导,诱导目的基因表达,约5h。[/font] [font=&]一般诱导剂的浓度[/font][font=&]0.1mM-1mM[/font][font=&],浓度过低过高都会影响表达效果。如果不知道多少合适,可以先选择[/font][font=&]0.5mM进行试验,后续再进行浓度筛选。[/font] 4.发酵结束:发酵结束,离心后去上清,收集菌体。 [font=&]不同的微生物,表达产物的位置不同,收集相应的菌体或上清。[/font] [b]5.[/b][font=&]细胞破碎[/font]:取一定量菌体,用PPS重悬后,使用超声破碎仪破碎。 [font=&]注意破碎功率和时间,注意冰水混合液降温。(糗事:第一次破碎忘记加冰。)[/font] [b]6.[/b][font=&]检测:[/font]定性检测,定量检测蛋白浓度,还有[font=&]Western Blotting[/font]、酶活检测等。 [font=&]酶活测定可以采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],也可以采用比色法等方法。[/font][/size]

  • 固态发酵的分类知识

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://cnfjgc.blogbus.com/logs/68539628.html 一、传统固态发酵与现代固态发酵 虽然固态发酵与液态发酵相比,具有它独特的优势,但也存在着许多不足。特别是传统固态发酵是发酵工业中古老而又落后工艺的代名词。甚至,在发酵工程或生化工程的教科书中,也很少提到固态发酵。现代发酵技术的关键条件是纯种大规模集约化培养.随着科学技术发展和可持续发展的影响,国内外逐步重视对固态发酵的研究开发,已取得了很大进展。因此,依据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与现代固态发酵。现代固态发酵是为了充分发挥固态发酵的优势,针对传统固态发酵存在的问题,使之适应现代生物技术的发展而进行的,可以实现限定微生物的纯种大规模培养。 二、固态发酵的形式 1.按微生物的情况和形成的产品条件不同分类 固态发酵可以以许多不同的形式进行,按照使用的微生物的情况和形成的产品条件不同,固态发酵可分为自然富集固态发酵、强化微生物混合固态发酵、限定微生物混合固态发酵和单菌固态纯种发酵。 自然富集固态发酵是指利用自然界中的微生物,由不断演替的微生物进行的富集混合发酵过程。典型的例子是传统酒曲和酱油、腌莱、烟草发酵、茶叶发酵、青贮、堆肥等。它不需要人工接种微生物,其所需发酵的微生物主要依赖于当地空气和物料中的自然微生物区系,多种微生物演替成最适于生长代谢或共生协作的小生态环境。其微生物富集区系不仅与当地空气和物料中的自然微生物区系有关,而且与小生态环境自然变化密切相关。 强化微生物混合固态发酵是指在自然富集固态发酵的基础上,根据人们部分掌握的微生物代谢机制,人为强化接种微生物茵系不明确的富集培养物或特定微生物培养物所进行的混合发酵过程。强化微生物混合固态发酵除应用于沼气发酵、白酒发酵作用外,在石油采收、湿法冶金、食品发酵等领域同样显示其优势。人们在长期的科学研究和生产实践中却不断发现,不少生命活动及其效应是借助于两种以上的生物在同一环境中的共同作用下进行的,甚至是单独不能或只能微弱进行的。例如废物的处理,纤维索和本质素的降解,甲烷的产生和利用等。自然界的微生物没有一种是单独存在的,单靠纯培养很难反映它们的真实活动情况。因此,强化微生物混合固态发酵微生物资源具有非常广阔的应用前景。 限定微生物混合固态发酵是在对微生物相互作用和群落认识的基础上,接种混合培养的微生物是已知和确定的,通常使用两种或两种以上经过分离纯化的微生物纯种,同时或先后接种同一灭过茵的培养基中,在无污染条件下进行的固态发酵过程。人类对微生物的利用经历过天然混合培养到纯种培养两个阶段,纯培养技术使得研究者摆脱了多种微生物共存的复杂局面,能够不受干扰地对单一目的菌株进行研究,从而丰富了人们对微生物形态结构、生理和遗传特性的认识。但是,在长期的实验和生产实践中,人们不断地发现很多重要生化过程是单株微生物不能完成或只能微弱地进行的,必须依靠两种或多种微生物共同培养完成。虽然微生物混合培养在很多领域中的作用已得到充分肯定,部分成果己成功应用于实践,但对大多混合菌体系中菌间相互关系和作用机制的研究尚不够深入。因此,目前对于具有协同作用关系的菌株筛选和组合还是一个随机过程的,缺乏有效的理论指导,而且对于已经应用的混合培养体系也不能有效地协调菌间的关系,使其达最佳生态水平,发挥最大效应。这严重地阻碍了混合菌培养的发展和应用。因此,如果从生理、代谢和遗传角度对混合茵间关系和协同作用机制进行深入研究,对混合菌培养的理论和应用都将有巨大的突破。随着混合菌培养在各方面应用研究的深入,人们不再满足于传统的反应模式,已开始引人一些新兴的生物工程技术,使该领域的研究更具活力。采用固定化细胞技术固定混合菌可使反应系统多次使用,降低成本,增加效率,在实际应用中很有意义。利用细胞融合技术和基因工程技术由具有互生或共生关系的微生物构建工程菌,可使工程菌既具有混合培养的功能,又拥有纯培养菌株营养要求单一、生理代谢稳定、易于调控等优点,也是极有前景的研究方向。 单菌固态纯种发酵是在纯培养基础上建立起来的,对于选育良种、保持生理活性和代谢过程中的稳定起很大作用。它对于扩大固态发酵的应用范围和潜力的发挥起到非常重要作用,同时,也是固态发酵一个重要方向。 2.按固态发酵固相的性质分类 根据固态发酵固相的性质,可以把固态发酵分为两种类型。一种是以农作物(如麸皮、豆饼等)为底物的固态发酵方式。这些底物既是固态发酵过程中的固相组成部分,又为微生物生长提供营养,在这里可以称这种发酵为传统固态发酵方式(或固体底物基质固态发酵)。另一种固态发酵方式是以惰性固态载体为固态发酵过程令的固相,微生物生长的营养是吸附在载体上的培养液,称这种发酵方式为惰性载体吸附固态发酵。 同体底物基质固态发酵利用的培养基是既充当固相,又为微生物生长提供营养的初级农作物产物,如麸皮、马铃薯、谷子、豆饼以及其他含淀粉和纤维素的农作物产品。第二种固态发酵采用的固体是惰性载体,这些载体可以是天然的,也可以是人工分成的。这些载体材料有珍珠岩、聚氨酯泡沫体、蔗糖渣和聚苯乙烯等。 固体底物基质固态发酵的一个主要的不足之处就是碳源是它们的结构组成部分,在微生物发酵生长过程中,培养基被分解了,底物容易结块,孔隙率也降低,结果底物的外形和物理特性都发生了变化,降低了发酵过程中的传质和传热。例如,麦片在发酵过程中由于淀粉的降解和水的挥发,会导致固体底物变形结块,结果使传质和传热受到影响。而具有稳定结构的固态载体充当固态发酵的固相可以克服这一缺点,从而更有利于微生物的生长和产物产量的增加。例如,采用聚氨酯泡沫体为载体吸附固态发酵核酸酶P1时,产量和活力分别比采用麸皮固态发酵提高9倍和4倍。 另外,惰性载体吸附固态发酵与固体底物基质固态发酵相比,还具有产物提取简便的优点。可以很容易地从惰性载体中提取到胞外产物,而且所得到的产物含有较少的杂质,载体还可以重复使用。例如,利用聚苯乙烯作为载体,以肋生弧茵产生L-谷氨酰胺酶时,产物比采用麦麸粉固态发酵时得到的产物黏性要低。另外,前者的产物不含蛋白质污染物,而后者含有多余的淀粉酶和纤维素酶等。 与固体底物基质固态发酵相比,惰性载体吸附固态发酵还具有其他很多优点,如:能够对培养基营养成分进行合适的调节;容易了解产物中的各成分并进行分析,从而有利于发酵过程的控制以及动力学研究与模型建立等。

  • 【信息】转基因酵母能进行多种糖分混合发酵

    据美国物理学家组织网12月27日报道,美国伊利诺伊大学香槟分校食品科学与人类营养系、加州大学劳伦斯伯克利国家实验室和英国石油公司(BP)的科学家表示,他们对酿酒酵母进行了基因改造,新得到的酵母菌株可以发酵葡萄糖、纤维二糖(葡萄糖的前体物,由两个结合在一起的葡萄糖组成)和木糖,能更好更多地把植物发酵成替代燃料乙醇。相关研究发表在最新一期的美国《国家科学院院刊》上。酵母以糖为生,并在这个过程中能产生很多对人来说是“宝物”的废物——乙醇和二氧化碳,因此生物燃料工业也使用酵母将植物糖转变为生物乙醇。然而,大多数酵母无法将植物中的葡萄糖、纤维二糖和木糖这三种糖全部转化成有用的燃料,比如,酿酒酵母能很好地发酵葡萄糖,但对木糖却有心无力,这使得利用酵母制造生物燃料的成本居高不下。之前,科学家对酵母菌种进行基因改造,让其代谢木糖,但速度很慢,效率过低。研究小组成员之一、伊利诺伊大学食品科学和人类营养学教授金泳恕(音译)表示,经过基因改造的酵母无法发酵木糖的主要问题是,它接触木糖之前会吸收所有葡萄糖,酵母表面的葡萄糖转运蛋白更愿意同葡萄糖依附在一起。在此项新研究中,基因改造后的酿酒酵母可以同时将纤维二糖和木糖转化为乙醇。转化效率和转化得到的乙醇数量都提高了一倍,这主要归结于混合发酵的协同作用。金泳恕表示,新酵母菌种将木糖转化为乙醇的效率至少比目前已知酵母菌高20%,使其成为最好的发酵木糖的细菌。研究团队通过对酿酒酵母做出几个关键的改进而获得了这样的结果。首先,他们给予这种酵母一个纤维二糖转运蛋白,这意味着其能将纤维二糖直接带入细胞中,而只有当纤维二糖进入到细胞内部时,它才会被转化为葡萄糖。这种方法可以战胜酿酒酵母本身对葡萄糖的偏好,从而专注于将木糖吸收进酵母细胞中。接着,研究人员将从一个消耗木糖的酵母中提取的3种蛋白质插入酿酒酵母中,由此提高了新酵母菌种代谢木糖的速度和效率。他们也对一种人造的同功酶进行了基因修改,让木糖代谢的正常中间产物木糖醇积聚的数量最少。最后,该研究团队使用“进化工程”让新菌种利用木糖的能力达到最大。研究人员表示,混合发酵的成本优势也很明显,其乙醇产量也高于工业标准,这种研究很快将被商业化。

  • 发酵工业污染的防止与挽救

    本文引用自laoding《发酵工业污染的防止与挽救》南山人编著 第一节 工业发酵染菌的危害 发酵工业自从采用纯种培养以后,产率有很大提高,然而,防止染菌的要求也更高了。人们在与杂菌污染的斗争中,积累、总结了很多宝贵的经验。为了防止染菌,使用了一系列的设备、工艺和管理措施。例如:密闭式发酵罐,无菌空气制备,设备、管道和无菌室的设计,培养基和设备灭菌,培养过程及其他方面的无菌操作等,大大降低了染菌率。但是至今一些现代发酵工业还遭受染菌的严重威胁,甚至由于染菌而造成巨大的经济损失。据报道, 国外抗生素发酵染菌率为2%~5%,国内的抗生素发酵、青霉素发酵染菌率2%,链霉素、红霉素和四环素发酵染菌率约为5%,谷氨酸发酵噬菌体感染率1~2%。染菌仍是发酵工业的致命伤。轻者影响产率、产物提取收得率和产品质量;严重者造成“倒罐”,浪费大量原材料,造成严重经济损失,而且扰乱生产秩序,破坏生产计划。遇到连续染菌,特别是又找不到染菌原因,未有防治措施时,往往会影响人们的情绪和生产积极性,造成无法估量的危害。 染菌对发酵产率、提取收得率、产品质量和三废治理等都有很大影响。然而,生产不同品种,污染不同种类和性质的杂菌,不同的污染时间,不同的污染途径、污染程度,不同培养基和培养条件,所产生后果是不同的。1、染菌对不同品种发酵的影响 由于各种发酵的菌种、培养基、发酵条件、发酵周期以及产物性质等不同,受污染的危害程度也不同。青霉素发酵,由于许多杂菌都能产生青霉素酶,当青霉素发酵无论是在前期、中期或后期感染都能产生青霉素酶的杂菌,都能使青霉素迅速破坏,使发酵一无所获。疫苗深层培养,一旦受污染,无论污染的是活菌、死菌或内外毒素,都应全部废弃。柠檬酸发酵,在产酸后,pH值很低,一般杂菌不易生长,柠檬酸主要防止前期染菌。谷氨酸发酵周期短,生产菌繁殖快,培养基不太丰富,一般较少污染杂菌,但噬菌体污染对谷氨酸发酵的威胁非常大。肌苷、肌苷酸发酵,由于生产菌是多种营养缺陷型,生长能力差,培养基营养丰富等,容易受杂菌污染,且杂菌污染后,营养成分迅速被消耗,严重抑制生产菌生长和代谢产物的生成。然而,无论哪种发酵,染菌后都由于糖等基质被消耗,影响发酵产物的生成,使产量大为降低。 2、感染不同种类和性质的杂菌对发酵的影响 抗生素发酵中,青霉素发酵污染细短产气杆菌比污染粗大杆菌危害更大,链霉素发酵污染细短杆菌、假单孢杆菌和产气杆菌比污染粗大杆菌更危害,四环素发酵最怕污染双球菌、芽孢杆菌和荚膜杆菌。柠檬酸发酵最怕污染青霉菌。肌苷、肌苷酸发酵最怕污染芽孢杆菌。谷氨酸发酵最危险的是污染噬菌体,因为噬菌体蔓延迅速,难以防治,容易造成连续污染。 3、不同污染时间对发酵的影响 (1)种子培养期染菌 (2)发酵前期染菌 (3)发酵中期染菌 (4)发酵后期染菌 (1)种子培养期染菌种子培养主要是生长繁殖菌体,菌体浓度低,培养基营养丰富,比较容易染菌。种子培养期染菌,带进发酵罐中危害极大,应严格控制种子污染。当发现种子受污染均应灭菌后弃去,并对种子罐、管道进行检查和彻底灭菌。 (2)发酵前期染菌 发酵前期主要是菌体生长繁殖,代谢产物生成很少,这个时期容易染菌,污染后杂菌迅速繁殖,与生产菌争夺营养成分和氧分,严重干扰生产菌的生长繁殖和产物的生成,要特别防止发酵前期染菌。当发酵前期染菌时,由于营养成分消耗不多,应迅速重新灭菌,补充必要的营养成分(如果体积太大,可放出部分受污染发酵液)重新接种进行发酵。(3)发酵中期染菌发酵中期染菌将严重干扰生产菌的代谢,影响产物的生成。有的杂菌繁殖后产生酸性物质,pH值下降,糖、氮消耗迅速,菌(丝)体自溶,发酵液发粘,产生大量泡沫,代谢产物的积累迅速减少或停止,有的已生成的产物也会被利用破坏,有的发酵液发臭。由于发酵中期染菌,营养成分大量消耗,一般挽救处理困难,危害性很大。所以,发酵中期染菌应尽力做到早发现,快处理。处理方法应根据各种发酵的特点和具体情况来决定。如:抗生素发酵,可将另一罐发酵正常、单位高的发酵液的一部分输入染菌罐中,以抑制杂菌繁殖,同时采取低通风,少流加糖;柠檬酸发酵中期染菌,可根据所染杂菌的性质分别处理,如污染细菌,可加大通风量,加速产酸,降低pH值,以抑制细菌生长,必要时可加入盐酸调节pH3.0以下,抑制杂菌;如污染酵母,可加入O.025~O.035 g/L硫酸铜,抑制酵母生长,并提高风量,加速产酸;如污染黄曲霉,可加入另一罐将近发酵成熟的醪液,使pH值下降,使黄曲霉自溶;但污染青霉则危害很大,因为青霉在pH值很低下能够生长,如果残糖较低,可以提高风量,促使产酸和耗糖,提前放罐。 (4)发酵后期染菌发酵后期产物积累较多,糖等营养物质接近耗尽。如果染菌量不太多,可继续进行发酵;如污染严重,破坏性较大,可以采取措施提前放罐。发酵后期染菌对不同产物的影响不同,如抗生素、柠檬酸发酵后期染菌影响不大,而肌苷、肌苷酸和谷氨酸、赖氨酸等发酵后期染菌会影响产物的产量、产物提取和产品质量。 在染菌严重时,有人主张加入不影响生产菌正常代谢的某些抗生素、呋喃鲁西林、对苯二酚、新洁尔灭等灭菌剂、抑制杂菌生长。例如:庆大霉素发酵染菌,可加入少量庆大霉素粉或对苯二酸;灰黄霉素发酵染菌时,可加入新霉素。但是,在发酵开始时都加入杀菌剂以防止染菌,似无必要,也增加成本,若当发酵染菌后再加入杀菌剂又为时已晚,实际效果值得探讨。 4、染菌程度对发酵的影响染菌程度愈太,即进入发酵罐的杂菌数量多,对发酵的危害愈大。当生产菌已迅速繁殖,在发酵液中占有优势,污染极少数杂菌,如每1L中有1~2个杂菌,对发酵不会带来影响,因为这些杂菌需要时间繁殖才能达到危害发酵的程度,而且环境对杂菌的繁殖已不利。当75m3发酵液污染1个杂菌,要达到大幅度(106个/mL)污染时需要的时间(h)为: 条件 污染10000000个/mL 污染100000000个/mL 增代时间tg=30 min 23 26 延迟6h tg=30min 29 32 增代时间tg=2h 92 10000000 延迟6h tg=2h 98 11*11但是污染幅度较大时,特别是发酵前期和中期污染,将造成严重的危害。5、染菌对产物提取和产品质量的影响对于丝状菌发酵被污染后,有大量菌丝自溶,发酵液发粘,有的甚至发臭。发酵液过滤困难,发酵前期染菌过滤更困难,严重影响产物提取收率和产品质量。在这种情况下可先将发酵液加热处理,再加助滤剂或者先加絮凝剂,使蛋白质凝聚,有利于过滤。染菌的发酵液含有较多蛋白质和其他杂质:(1)如果采用沉淀法提取产物,那么,这些杂质随产物沉淀而影响下工序处理,影响产品质量。如谷氨酸发酵染菌后,在等电点出现β-型结晶,使谷氨酸无法分离,β-结晶谷氨酸含有大量发酵液,影响下工序精制处理,影响产品质量。(2)如果采用溶媒萃取的提取工艺,由于蛋白质等杂质多,极易发生乳化,很难使水相和溶剂相分离,也影响进一步提纯。(3)如果采用离子交换法提取工艺,由于发酵液发粘,大量菌体等胶体物质粘附在树脂表面或被树脂吸附,使树脂吸附能力大大降低,有的难被水洗掉,在洗脱时与产物一起被洗脱,混在产物中,影响产物的提纯。 此外,发酵染菌也造成三废处理困难和对环境的污染。 第二节 染菌的检查、原因分析和防止措施 1、染菌的检查与判断

  • 葡萄酒真菌多样性随着发酵过程在显著降低

    真菌多样性随着发酵过程显著降低,而细菌多样性在发酵中期之前无显著变化。发酵环境的变化重塑了微生物群落的多样性和组成。微生物与葡萄酒挥发性化合物之间存在的复杂关系。主导初始自发发酵的微生物可以通过产生风味活性化合物来促进葡萄酒的整体香气,这取决于微生物的种类和菌株以及这些物种在发酵过程中的数量和持续时间。该研究为了解代谢活跃的微生物提供了重要的见解,有利于葡萄酒“风土”的表达。

  • 工业发酵过程优化与控制研究进展

    传统的酿造工业和近代发酵工业多为劳动密集型产业,自动化程度较低。近些年来随着连续发酵技术、现代生物分离技术、生物反应器技术、生物传感器技术等现代生物工程技术快速发展.基因工程生物新产品不断出现,加快了发酵工业向技术密集型转变的进程。而影响这一进程的关键因素之一就是发酵过程最优化控制技术,特别是发酵过程连续在线监测控制技术。发酵过程是一个非性线、多变量和随机性的动态过程,发酵体系是一个复杂的被控对象。温度、溶氧、pH、培养基成分、细胞形态、细胞浓度、产物组成及含量等均是发酵过程的重要控制参数。以往测定这些参数采用离线分析,不能及时反映发酵过程的状态,无法实现自动控制和连续跟踪。因此,工业发酵过程中最优化控制技术主要是在线测控系统。在线测控系统可连续、迅速、准确实现取样、检测、信号处理、反馈控制等过程,实现工业发酵过程最优化的自动控制。随着计算机及控制技术的突飞猛进,生物传感器技术的发展,发酵动力学模型研究的完善,发酵过程控制系统愈来愈多,应用范围亦越来越广。但是,工业上实现发酵过程最优化自动控制的实例却不多,仍以人工控制和半自动控制为主。1 工业发酵过程最优化控制的现状与难点总的来看,目前发酵工厂发酵过程的计算机应用和自动化控制程度不高,落后于其他领域。现代化的发酵工厂已初步实现对部分因素如温度、溶氧、pH、搅拌转速、流速等的在线检测,也可对其变化进行单因素控制,但仍与发酵最优化的自动控制目标相去甚远,即难以成功建立对培养系统进行系统的反馈性控制。其发展滞后的主要原因如下:1.1 微生物生长代谢的特殊性 这是由于发酵过程的微生物学属性,使得其不同于一般的化学反应系统,其特殊性表现在:1)微生物细胞的生长繁殖、产物的代谢既随外界条件的变化而变化,亦随遗传基因的变异而变化;2)微生物细胞是有生命的,必然要经历幼龄、壮龄、衰老和死亡等过程,发酵过程微生物之间是不同步的,微生物个体之间是有差异的;3)相当一部分发酵过程的生物化学反应途径尚不清楚,难以对反应变化进行精确的计算。因此,目前的发酵动力学模型多为经验或半经验模型,或为简化的模型;4)人类对生命科学的认知程度很低,即使对最简单的生物一微生物的认知程度也不充分,对发酵机理的认识还远远不够,对许多发酵产物形成的代谢调控机制还没有完全研究清楚,难以确立最佳的控制条件和手段;5)细胞的生长和目的代谢产物的形成最优控制条件往往是不一致的。1.2 发酵生产过程控制的复杂性 影响发酵生产过程的因素较多,远比一般化工生产过程复杂,对生产过程控制的难度较大,具体体现在以下几个方面:1)发酵过程是生化反应与化学物质跨膜(细胞膜)传输过程的叠加,属于气、液、固三相反应系统;2)由于菌体(尤其是菌丝体)的数量变化和各种代谢产物的不断积累,发酵过程发酵液粘度变化复杂,多呈非牛顿型流体性质,给传质、传热的控制带来困难;3)影响生化反应的因素除物理因素和化学因素外,还有生物因素,如细胞之间的影响、杂菌的干扰等;且这些因素又互相关联,给反应过程控制带来困难。无菌操作对生产设备和工艺都有特殊的要求;4)发酵原料多属生物材料,一般使用天然或半天然培养基,培养基成分复杂。因此,实际生产中只能对主要成分进行检控;5)生物反应器不同于一般的化学反应器,要人工提供微生物生长代谢的最佳物理、化学和生态的环境。要在生物反应器内保持菌种的最佳状态,减少各种营养物、代谢物对细胞生长和代谢的阻遏效应等均较困难;6)供在线检测用的传感器的种类和质量还远不能满足发酵最优化控制的要求。2 工业发酵过程最优化控制对策目前的最优化控制条件大多建立在经验的基础上,要取得发酵过程最优控制的突破,首先需要具体发酵产品的微生物生长代谢,发酵调控原理认识的突破,并在此基础上运用科学的方法建立发酵过程数学模型,为计算机的应用提供条件。其次,建立和完善硬件技术,即发酵过程各种参数在线检测控制的设备技术。2.1 发展完善发酵过程在线测控技术 发酵过程在线测控装置一般包括三个部分:分析检测装置(传感器)、将检测装置与发酵介质相结合的取样过滤装置、实现控制理论的反馈和控制装置,即信号传输装置和计算机。目前正在应用和研究的在线测控装置有以下几种。2.1.1传感器系统 一种直插式传感器,为直接安装在反应器内实现在线监控的传感器。已用于发酵生产中的主要是罐内物化参数的测定,如温度、溶氧、pH、转速、罐压、粘度、浊度及流量等。此类传感器的性能较稳定,应用也较为普遍,在氨基酸发酵、啤酒发酵等生产中均有应用,实现了部分参数的在线监控。其主要特点是能够承受高温高压环境,常用的有热电偶传感器、转速传感器、测力传感器、玻璃传感器、光学传感器及溶氧传感器等。另外,微生物传感器可用于测量发酵工业中的原材料(如糖蜜、乙酸等)和代谢产物(如谷氨酸、乳酸等)测量装置基本上都是由适合的微生物电极与氧电极组成原理是利用微生物的同化作用耗氧通过测量氧电极电流的变化量来测量氧气的减少量从而达到测量底物浓度的目的。在测定微生物细胞数量时,在阳极Pt表面上菌体可以直接被氧化并产生电流,这种电化学系统可以应用于细胞数目的测定。测定结果与常规的细胞计数法测定的数值相近,利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线测定。2.1.2 流动注射检测系统(FIA) 有些传感器不能承受高温高压环境或不适合微生物发酵环境,因此不能作为直插式传感器直接在发酵罐内使用,如生物传感器。流动注射检测系统(FIA)可较好地解决这一问题,FIA 系统由取样装置、样品预处理装置、泵、注射选择阀、传感器、信号转移和数据处理计算机等组成。生物传感器安装于反应器外,样品被处理后送至反应器外与生物传感器接触反应产生信号,实现发酵过程的在线测控。常用于FIA系统的生物传感器有电流式电极、pH 电极、Bio—FEF电极、光学生物传感器、光纤生物传感器以及化学发光传感器等。2.1.3 映象在线控制系统 随着光学技术的不断发展,直接将光学显微镜安装在反应器内,在线监测发酵过程中细胞的形态和生理状态,并可以对细胞数量、大小、种类进行计算统计,荧光显微镜还可以监测细胞代谢过程。将映象在线控制系统与流动注射检测系统结合,可成为更有效的监测系统。一个典型例子是用于在线监测细胞培养状态的FI—FCM系统。该系统样品首先从生物反应器传人多位置的真空管并同时排空,数十种不同的样品和反应剂被筛选,通过连接着十条真空管的精密注射泵导人系统,连接着双向真空管的微室用于稀释样品或将样品与不同的反应剂混合。然后将处理后的样品通过自由脉冲方式注人流动细胞测定仪,流动细胞测定仪可测定培养过程中细胞大小和数量、通过观察荧光变化检测绿色荧光蛋白形成的动力学过程等,流动细胞测定仪的数据处理由主机完成,连接有系统控制板和数据控制板的计算机对系统进行控制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制