当前位置: 仪器信息网 > 行业主题 > >

双酰草胺同位素

仪器信息网双酰草胺同位素专题为您提供2024年最新双酰草胺同位素价格报价、厂家品牌的相关信息, 包括双酰草胺同位素参数、型号等,不管是国产,还是进口品牌的双酰草胺同位素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双酰草胺同位素相关的耗材配件、试剂标物,还有双酰草胺同位素相关的最新资讯、资料,以及双酰草胺同位素相关的解决方案。

双酰草胺同位素相关的资讯

  • 首次在集约化管理草地上进行N2O的在线同位素表征测量
    首次在集约化管理草地上进行N2O的在线同位素表征测量 文献信息:B. Wolf1, L. Merbold, C. Decock et al. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences, 2015. doi:10.5194/bg-12-2517-2015 文献摘要:对四种主要的N2O同位素(14N14N16O,14N15N16O,15N14N16O,14N14N18O)进行了分析,特别是15N的分子内的分布(“位置偏好”,SP)被认为是区分源过程和帮助限制全球N2O预算的工具。然而,由于离散烧瓶取样和随后的实验室质谱分析相结合的研究受到有限的空间和时间分辨率的限制。量子级联激光吸收光谱(QCLAS)可以选择性高精度地分析痕量的N2O同位素,用于原位测量。这里,我们介绍了第一次实地考察的结果,这是在瑞士中部一个集中管理的草地上进行的。利用连接到自动N2O预浓缩装置的改良光谱仪,以高时间分辨率测定了大气表层(2.2m高度)的N2O摩尔分数和同位素组成。通过对压缩空气罐的重复测量确定了分析性能,结果表明δ15Nα、δ15Nβ和δ18O的测量重复性分别为0.20、0.12和0.11‰。同步涡动协方差N2O通量测量确定了土壤中N2O的通量平均同位素特征。我们的测量结果表明:总体上,硝化反硝化作用和反硝化作用是活动期间N2O的主要来源,同位素组成的变化是由于N2O被还原为N2而不是其他途径,例如羟胺氧化。管理和灌溉事件表现为分子内15N位点偏好(SP)、δ15Nbulkandδ18O值较低,表明了硝化菌反硝化和不完全异养细菌反硝化对诱导干扰的响应最强烈。集约经营草地N2O的通量平均同位素组成SP、δ15Nbuk和δ18O分别为6.9±4.3、-17.4±6.2和27.4±3.6‰。本文提出的方法能够为其他N2O排放生态系统提供长期数据集,可用于进一步限制全球N2O库存。文献监测方案:从注入S1(锚定)开始,动态稀释至50ppm,预浓缩后环境N2O的摩尔分数。用合成空气冲洗吸收池后,注入S2(校准标准)并稀释至50ppm。为了确定已经报告的轻微浓度依赖性,再次注入S1,但注入的摩尔分数更高,为67ppm(后来称为S1h)。该摩尔分数表示高浓度表层空气预浓缩后预期的摩尔分数。随后,再次注入S1并稀释至50ppm,然后将然后将细胞充满预先浓缩的环境N2O(A)。注射S1和预浓缩环境N2O的子程序(S1+A)耗时35分钟,重复三次。为了独立测定重复性,第四个样品是预先浓缩的压缩空气(目标气体)。在实验中,使用了两个压缩空气钢瓶(C1和C2,称为目标气体)。试验开始前,在实验室测定了两个储气罐的同位素组成和N2O混合比(表1)。实验室和现场分析的N2O摩尔分数和同位素组成在其分析不确定度范围内。表1为实验期间使用的参考气体和压缩空气罐。S1和S2代表锚定和校准标准。C1和C2是用于确定系统性能的目标气体。报告精度为1σ。 N2O同位素比值分析仪器装置:四种最丰富的N2O同位素物种采用了改良的QCLAS(Aerodyne Research Inc.,Billerica MA,USA)进行量化,该系统配备了光谱发射为2203cm?1的连续波量子级联激光器(cw-QCL)、像散的Herriott多通道吸收池(204 m路径长度,AMAC-200)和一个短(5 cm)的参考路径充满N2O的吸收池,以锁定激光发射频率。实验期间,QCLAS在位于涡流协变(EC)塔以西60米处的空调拖车中运行。该拖车位置对主通量的贡献小于20%,且位于主导风向的远端。样品空气入口装置布设在EC塔入口附近(2.2m高)。样气经过一个膜泵(PM 25032022,KNF Neuberger,Switzerland)通过聚四氟乙烯管(内径4mm)吸入。在泵的上端,用渗透干燥器(MD050-72S-1,PermaPure Inc.,USA)对样气进行预干燥。继泵之后,使用减压阀将压力维持在4棒过压。通过使用一个包住Mg(ClO4)2的烧碱石棉的化学捕集器定量去除气流中的湿度和CO2。最后,样气通过烧结金属过滤器(SS-6F-MM-2,Swagelok,USA)并被引导至之前详细描述的预浓缩装置。为了将N2O混合比从环境水平增加到约50 ppm N2O,需要预浓缩大约8 L的环境空气。然后,预浓缩的N2O被引入QCLAS的真空多道吸收池中。预富集过程中的同位素分馏(δ15Nα、δ15Nβ和δ18O分别增加0.31±0.10、0.34±0.16和0.29±0.07‰)通过具有已知同位素组成的N2O的预富集来量化并随后进行校正。最近在实验室间比较活动中证明了通过QCLAS进行的N2O同位素组分分析与同位素比值质谱(IRMS)实验的兼容性。 测量和校准策略确保分析系统的高精度和可重复性,测量和校准策略采用了类似于Mohn等人(2012)提出的一种方法。它基于两种不同于N2O同位素组成的标准气体,这两种气体是由纯医用N2O(瑞士Pangas)的动态稀释产生的,包含其同位素纯度(98%)14N15N16O(美国剑桥同位素实验室)和(99.95%)14N14NO(ICON Services Inc.,USA)的规定量。随后用高纯度合成空气(99.999%,Messer-Schweiz AG)进行重量稀释,得到含有90 ppm N2O(每摩尔干空气含有10-6摩尔微量气体)的加压气体混合物。这两种标准都是根据东京理工学院(TIT、Toyoda和yoshida)先前测量的主要标准进行校准,以将δ值固定在国际同位素标准刻度上。第一个标准(S1,表1)用作国际δ标度的锚定点,并用作数据分析算法的输入数据(见数据处理)。数据采集方式及频率:数据处理基于仪器软件(TDLWintel,Aerodyne Research Inc.,Billerica,MA,USA)记录的四种主要N2O同位素物种的单独混合比和光谱仪特征。 结果:(1)δ值和N2O摩尔分数无明显漂移,表明所用测量技术的稳定性。(2)土壤中N2O摩尔分数的增加与δ值的降低有关,表明土壤释放到表层的N2O比大气背景下的N2O减少了15N。(3)相比之下,溶解有机碳浓度(DOC)对管理事件没有反应,但在活动的干燥阶段较高(p组之间存在显著差异。(6)对于上述平均值中包括的一些中午至中午时段,因此包括夜间N2O摩尔分数至少增加12 ppb,EC系统检测到负的N2O通量(?0.17±2.1 nmol m?2s?1;n=14)。 Aerodyne仪器特点:(1)可以区分多个N2O同位素,可以实现14N14N16O,14N15N16O,15N14N16O,14N14N18O的测量;(2)量子级联激光吸收光谱(QCLAS)可以选择性地高精度地分析痕量的N2O同位素,弥补其他仪器的不足;(3)该方法能够为其他N2O排放生态系统提供长期数据集。 咨询联系电话:010-82675321
  • 稳定同位素标记化合物产业化基地建设进展-阿尔塔
    阿尔塔科技有限公司参加由中国计量科学研究院牵头的十三五“食品安全关键技术研发”重点专项,并承担了“食品检测稳定性同位素标记RM研制及产业化”任务,旨在利用阿尔塔标准品和稳定同位素标记物研发平台的优势,开发多系列食品安全检测用有机稳定同位素标记物的制备共性关键技术,研制农兽药及禁限用食品添加剂等有害物的稳定同位素标记物,建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。在食品与环境安全问题中,农药和兽药等有害化学品的污染引起了世界各国的广泛关注。WHO/FAO—CAC(世界卫生组织食品法典委员会)、GB2761、GB2762、GB2763、GB31650等国际和国家标准中对食品中有害物质最高残留限量(MRL) 作了相应的规定。有些发达国家利用食品中有害物质残留限量标准及其检测技术作为对我国食品国际贸易的技术壁垒,极大地削弱了我国农产品在国际市场上的竞争力。面对当前的国际国内形势,消除此项壁垒并开发出适应新要求的食品安全检测技术变得更加迫在眉睫。近几年发布的食品检验农药残留和兽药残留方面的国家标准及行业标准中越来越多的采用了稳定同位素内标法作为规范的检测方法。在质谱的检测方法中,使用稳定性同位素标记物作为内标可以提高目标化合物的回收率和方法稳定性,有效避免基质效应、前处理和质谱检测器等因素对分析方法测定结果的影响,保证了检出结果的准确性。但是,由于我国稳定同位素标记产品短缺,在以往的国标、行标中普遍使用进口的稳定性同位素标记物,遭遇“买到什么用什么”的困境,严重影响和制约了我国食品安全分析方法开发和痕量危害物检测的发展。因此,发展具有自主知识产权的稳定同位素制备共性关键技术和产品研究,建立独立自主的产业化基地,为我国的科技创新和食品环境安全检测提供大量、可靠、经济、新型的稳定同位素内标物,摆脱“买到什么用什么”的困境,实现“想用什么买什么”,既是科研创新发展必不可少的组成部分,也符合国家发展战略的根本要求。阿尔塔科技致力于高质量标准品和稳定同位素标记化合物的开发和全套解决方案的提供,公司的标准品开发平台基于公司创始人张磊博士及分析检测和标准品领域内多名专家的广泛深入合作。此次承担“国家食品安全重大专项-食品检测稳定性同位素标记标准物质研制及产业化”项目,阿尔塔科技依托公司研发平台的优势,从现行标准中常检出农兽药及禁限用添加剂入手,开发稳定同位素标记物的制备共性关键技术,制备具有自主知识产权的稳定性同位素标记物系列产品,建成世界一流的稳定同位素标记物生产技术示范应用产业化基地,以实现对进口产品的全面替代和超越。经过阿尔塔技术专家两年来的攻坚克难,已经成功开发了有机磷类、磺胺类、喹诺酮类、瘦肉精类、塑化剂类等多系列内标物的关键共性技术,实现了上百种稳定同位素标记的量产和持续供应能力,并将在未来5年内完成五百余种稳定同位素标记标内标物的研发和稳定供应,基本扭转食品检测用稳定同位素标记物严重依赖进口的局面,初步达到让检测人员“想用什么买什么”、“需要什么能做什么”。目前,阿尔塔科技自主品牌的稳定同位素标记化合物超过1500种,已成为国内稳定同位素标记化合物品种最多的自主研发和持续供应企业。另外,阿尔塔科技设立了博士后科研工作站和院士创新工作站,通过引进和培养更多高端专业人才完成更多标准品和稳定同位素标记物的研制、新方法开发和标准制定,为我国食品安全检测行业由“跟随”到“引领”的转变提供强有力的产品及技术支持。*阿尔塔申请专利:CN 109574868A,一种四环素类及其差向异构体氘代内标物的制备方法CN 110746445A,一种头孢哌酮氘代内标物的制备方法CN 112358446A,一种稳定同位素标记的盐酸曲托喹酚的制备方法CN 112409257A,一种氘标记的去甲乌药碱稳定性同位素化合物的制备方法CN 113061096A,一种新的稳定同位素标记的克伦丙罗的制备方法CN 113149851A,一种新的稳定同位素标记氯丙那林的制备方法CN 113061094A,一种新型盐酸莱克多巴胺-D6的制备方法CN 113061070A,一种氘标记的美替诺龙稳定性同位素标记化合物 *阿尔塔发表文章:秦爽等. 稳定同位素标记化合物盐酸曲托喹酚-D9的合成与表征. 审稿中刘晓佳等. 稳定同位素氘标记的盐酸莱克多巴胺的合成与表征. 审稿中曹炜东等. 稳定同位素氘标记克伦丙罗-D7新的合成方法研究与结构表征. 审稿中韩世磊等. 稳定同位素氘标记去甲乌药碱的合成与表征. 同位素, 2021, 34(4), 317-324.韩世磊等. 稳定同位素标记化合物二氢吡啶-13C4的合成与表征. 食品安全质量检测学报, 2020, 11(18), 6372-6377.
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之二:稳定同位素标记磺胺类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。本期向您推荐稳定同位素标记的磺胺类化合物。部分稳定同位素标记磺胺类化合物:产品号中文名称英文名称推广规格溶剂1ST4018磺胺嘧啶-D4Sulfadiazine-D4100μg/mL,1mL甲醇1ST4026磺胺邻二甲氧嘧啶-D3Sulfadoxine-d3100μg/mL,1mL甲醇1ST4025磺胺间二甲氧嘧啶-D6Sulfadimethoxine-d6100μg/mL,1mL甲醇1ST4022D4磺胺二甲基嘧啶-D4Sulfamethazine-D4100μg/mL,1mL甲醇1ST4033磺胺间甲氧基嘧啶-D4Sulfamonomethoxine-d4100μg/mL,1mL甲醇1ST4043D4磺胺脒-D4Sulfaguanidine-d45mg100μg/mL,1mL甲醇1ST4037磺胺对甲氧嘧啶-D4Sulfameter-D4100μg/mL,1mL甲醇1ST4006D4磺胺邻二甲氧嘧啶-D4Sulfadoxine-d45mg100μg/mL,1mL乙腈1ST4057磺胺苯吡唑-D4Sulfaphenazole-d4100μg/mL,1mL甲醇1ST4051磺胺噻唑-D4Sulfathiazole-d45mg100μg/mL,1mL甲醇1ST4048磺胺间二甲氧嘧啶-D4Sulfadimethoxine-d45mg100μg/mL,1mL甲醇1ST4050磺胺甲恶唑-D4Sulfamethoxazole-d45mg100μg/mL,1mL乙腈1ST4008D4磺胺甲噻二唑-D4Sulfamethizole-d45mg100μg/mL,1mL甲醇1ST4003D4磺胺吡啶-D4Sulfapyridine-d45mg100μg/mL,1mL甲醇了解更多产品或需要定制服务,请联系我们
  • 科学家新发现超重元素的六种同位素
    美国能源部劳伦斯伯克利国家实验室10月26日宣布,该实验室的科研小组发现了部分超重元素的6种同位素。据悉,科学家此次在获得了还未命名的第114号元素的新同位素后,通过观察阿尔法粒子连续性辐射,又发现了第112号元素(copernicium)、第110号元素(darmstadtium)、第108号元素(hassium)、第106号元素(seaborgium)和第104号元素(rutherfordium)的5种同位素。此项研究成果将发表在10月29日出版的《物理评论快报》上。   从新的同位素中获取的信息将有助于科学家更好地认识原子核壳体结构理论,该理论是“稳定岛理论”预测的基础。20世纪60年代,理论物理学家预言,位于质子数为114和中子数为184的双“幻数”球形核附近,存在一个“超重稳定岛”,岛内的元素具有超常寿命。   发现超重元素同位素科研小组的负责人为劳伦斯伯克利国家实验室核科学部重元素原子核与辐射化学组组长海诺尼奇,他同时还是加州大学伯克利分校化学教授。研究文章第一作者为伯克利分校化学系研究生保罗埃里森,他负责对具体实验提出建议并进行管理。尼奇表示,借助实验室的88英寸(约2.2米)回旋加速器,他们对钙48进行加速并撞击充气分离器中的钚242,从而获得了新的超重元素的同位素。这与他们去年证实第114号元素存在时的实验布置类同。   科研小组共有20名成员,他们来自美国劳伦斯伯克利国家实验室、加州大学伯克利分校、劳伦斯利弗莫尔国家实验室、俄勒冈州立大学、德国GSI亥姆霍兹重离子研究中心以及挪威能源技术研究所。他们中的许多人曾参与了2009年9月第114号元素的确认研究。第114号元素于10年前由俄罗斯杜布纳联合原子核研究所的科学家分离出来,但直到去年才被确认。   《科技日报》总编辑圈点   看中一件商品后,无论你与卖家如何讨价还价,最终都会在一个相对确定的区间成交,通常不会过于离谱(买房子是例外)。稳定岛理论在生活中的普适性毋庸质疑,但却困扰了核物理领域近半个世纪,至今不得证实。科学家们之所以不离不弃,是因为合成和鉴别双幻核并研究其衰变性质,对于检验超重元素的核结构理论具有特别重要的意义。新近发现这六种同位素让人们再次听到了遥远而真切的呼唤,但愿那依稀可辨的“岛子”不是海市蜃楼。
  • 导热性能提升150%的硅同位素纳米线
    有电的地方就会产生热量,而这正是缩小电子设备的一个主要障碍。一个改变游戏规则的发现,可以通过传导更多的热量来加速计算机处理器的发展进程。TEM图像显示涂有二氧化硅(SiO2)的 28Si 纳米线。来源:Matthew R. Jones 和 Muhua Sun/莱斯大学科学家们已经验证了一种硅同位素(28Si)纳米线新材料,其热导率比先进芯片技术中使用的传统硅材料高出150%。这种超薄硅纳米线器件可以使更小、更快的微电子技术成为可能,其热传导效率超过了现有技术。由有效散热的微芯片驱动的电子器件反过来会消耗更少的能源——这一改进可以减轻燃烧富含碳的化石燃料产生的能源消耗,这种能源消耗导致了全球变暖。“通过克服硅导热能力的天然局限性,我们的发现解决了微芯片工程中的一个障碍,”报道此新研究成果的科学家 Junqiao Wu 说(课题组主页,https://wu.mse.berkeley.edu)。Wu 是加州大学伯克利分校材料科学系的一名教师科学家和材料科学与工程教授。01热量在硅中缓缓流动我们使用的电子产品相对便宜,因为硅 - 计算机芯片的首选材料 - 既便宜又丰富。可是,尽管硅是电的良导体,当它被缩小到非常小的尺寸时,它就不是热的良导体——而当涉及到快速计算时,这对微小的微芯片来说却是一个巨大问题。艺术家对微芯片的渲染。来源:dmitriy-orlovskiy/Shutterstock每个微芯片中都有数百亿个硅晶体管,它们引导电子进出存储单元,将数据比特编码为1和0,即计算机的二进制语言。电流在这些辛勤工作的晶体管之间流动,而这些电流不可避免地会产生热量。热量会自然地从热的物体流向冷的物体。但是热流在硅中变得很棘手。在自然形式中,硅由三种不同的同位素组成 - 化学元素的形式,其原子核中含有相同数量的质子,但中子数量不同(因此质量不同)。大约 92% 的硅由同位素 28Si 组成,它有14个质子和14个中子;大约 5% 是 29Si,有14个质子和15个中子;只有 3% 是 30Si,相对重量级为14个质子和16个中子,合作者 Joel Ager 解释道,他拥有 Berkelry Lab(伯克利实验室)材料科学部门的高级科学家头衔,也是 UC Berkeley(加州大学伯克利分校)材料科学与工程的兼职教授。左起:Wu Junqiao 和 Joel Ager。来源:Thor Swift/伯克利实验室 Joel Ager 的照片由加州大学伯克利分校提供作为声子,携带热量的原子振动波,在蜿蜒穿过硅的晶体结构时,当它们撞击 29Si 或 30Si 时方向会发生改变,它们不同的原子质量“混淆”声子,减慢它们的速度。“声子最终看到了这个表象,并找到了通往冷端以冷却硅材料的方法,”但这种间接的路径允许废热积聚,这反过来又会减慢您的计算机速度,Ager 说。02迈向更快、更密集的微电子学的一大步几十年来,研究人员推测,由纯 28Si 制成的芯片将克服硅的导热极限,从而提高更小、更密集的微电子器件的处理速度。但是,将硅提纯成单一同位素需要付出高昂的代价和能量水平,很少有设施可以满足 - 更没有哪家工厂能专门制造市场上可用的同位素材料,Ager 说。幸运的是,2000年代初的一个国际项目使 Ager 和杰出的半导体材料专家 Eugene Haller 能够从前苏联时代的同位素制造厂采购四氟化硅气体 - 同位素纯化硅的原料。(Haller 于1984年创立了伯克利实验室的美国能源部资助的电子材料项目,并曾是伯克利实验室材料科学部门的高级科学家和加州大学伯克利分校材料科学和矿物工程教授。)这直接导致了一系列开创性的实验研究,包括 2006 年发表在《自然》杂志上的一项成果,其中 Ager 和 Haller 将 28Si 塑造成单晶,他们用它来证明量子存储器将信息存储为量子比特或量子位,单位存储的数据同时作为 1 和 0 的电子自旋。99.92% 28Si 晶体的光学图像,伯克利实验室科学家 Junqiao Wu 和他的团队使用这种材料制备纳米线。来源:Junqiao Wu/伯克利实验室随后,用 Ager 和 Haller 提纯的硅同位素材料制成的半导体薄膜和单晶显示出比天然硅高 10%的热导率——这是一个进步,但从计算机工业的角度来看,可能不足以证明花一千多倍的钱用同位素纯硅制造一台计算机是合理的,Ager 说。但 Ager 知道,硅同位素材料在量子计算之外具有的科学重要性。因此,他把剩下的东西存放在伯克利实验室一个安全的地方,以备其他科学家可能的不时之需,因为他推断,很少有人有资源制造甚至购买到同位素纯硅。03用 28Si 实现更酷的技术之路大约三年前,Wu 和他的研究生 Ci Penghong 试图找到提高硅芯片传热速率的新方法。制造更高效晶体管的其中一项策略,涉及使用一种称为环栅场效应晶体管(Gate-All-Around Field Effect Transistor,GAAFET)的技术。在这些器件中,硅纳米线堆叠以导电,并同时产生热量,Wu 解释到。“如果产生的热量不能迅速排出,该器件将停止工作,这就像在没有疏散地图的高楼中发出火灾警报一样,”他说。FinFET(鳍式场效应晶体管)和环栅场效应晶体管(GAAFET)结构示意图。来源:Applied Materials但硅纳米线的热传递甚至更糟,因为它们粗糙的表面 - 化学处理的疤痕 - 更容易分散或“混淆”声子,他解释说。由硅纳米线桥接的两个悬浮垫组成的微器件的光学图像。来源:Junqiao Wu/伯克利实验室“然后有一天我们想知道,如果我们用同位素纯 28Si 制造纳米线会发生什么?”Wu 说。硅同位素不是人们可以在公开市场上能够轻松购买到的东西,有消息称,Ager 仍然在伯克利实验室储存了一些少量的硅同位素晶体,且仍然足以分享。“希望有人对如何使用它有一个很好的想法,” Ager 说,“如 Junqiao 的新研究就是一个很好的例证。”04纳米测试后的惊人大揭秘“我们真的很幸运,Joel 碰巧已经准备好了同位素富集的硅材料,正好可用于这项研究,”Wu 说。利用 Ager 提供的硅同位素材料,Wu 研究团队测试了 1 mm 尺寸的 28Si 晶体与天然硅的导热性 - 他们的实验再次证实了 Ager 和他的合作者几年前的发现 - 块状 28Si 的导热性仅比天然硅好 10%。尽管块状晶体硅具有相对较高的热导率(室温下 κ∼144 W/mK),但当其尺寸减小到亚微米范围时,由于声子显著的边界散射,κ 会受到强烈抑制。60 K 条件下,115 nm 尺寸的硅纳米线,κ~16 W/mK, DOI: 10.1063/1.1616981;300 K 条件下,31-50 nm 尺寸的硅纳米线,κ~8 W/mK,DOI: 10.1103/PhysRevLett.101.105501。现在进行纳米级别测试。Ci 使用一种化学蚀刻技术制造了直径仅为 90 nm(十亿分之一米)的天然硅和 28Si 纳米线 - 大约比一根人类头发细1000倍。为了测量热导率,Ci 将单根纳米线悬浮于两个装有铂电极和温度计的微加热器垫之间,然后向电极施加电流以在一个垫上产生热量,然后通过纳米线流向另一个垫。“我们预计,使用同位素纯材料进行纳米线的热传导研究结果只会有 20% 的增量效益,” Wu 说。但 Ci 的测量结果让他们都感到惊讶。28Si 纳米线的热导率提高不是 10% 甚至 20%,而是比具有相同直径和表面粗糙度的天然硅纳米线好 150%。这大大的超出了他们的预期,Wu 说。纳米线粗糙的表面通常会减慢声子的速度,那这是怎么回事呢?莱斯大学(Rice University)的 Matthew R. Jones 和 Muhua Sun 捕获的材料高分辨率 TEM(透射电子显微镜)图像发现了第一条线索:28Si 纳米线表面上的玻璃状二氧化硅层(SiO2)。而纳米线导热性研究的知名专家 Zlatan Aksamija 领导的马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)研究团队计算模拟实验表明,同位素“缺陷”(29Si 和 30Si 的不存在)阻止了声子逃逸到表面,其中 SiO2 层会大大减慢声子的速度。这反过来又使声子沿着热流方向保持在轨道上 - 因此在 28Si 纳米线的“核心”内不那么“混淆”。(Aksamija 目前是犹他大学(theUniversity of Utah)材料科学与工程副教授。)“这真的出乎意料。发现了两个独立的声子阻断机制 - 表面和同位素,以前被认为彼此独立的 - 现在协同作用,这使我们在热传导研究中获得了非常令人惊讶的结果,却也非常令人满意,“Wu 说。“Junqiao 和团队发现了一种新的物理现象,”Ager 说,“对于好奇心驱动的科学研究来说,这是一个真正的胜利。这真的是太令人兴奋了。”研究小组接下来计划将他们的发现推进到下一个阶段:研究如何“控制,而不仅仅是测量这些材料的热传导性能”,Wu Junqiao 说。莱斯大学、马萨诸塞大学阿默斯特分校、深圳大学和清华大学的研究人员参与了研究工作。这项工作得到了美国能源部科学办公室的支持。原文信息Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires,Penghong Ci, Muhua Sun, Meenakshi Upadhyaya, Houfu Song, Lei Jin, Bo Sun, Matthew R. Jones, Joel W. Ager, Zlatan Aksamija, and Junqiao Wu,Phys. Rev. Lett. 128, 085901 (2022)https://doi.org/10.1103/PhysRevLett.128.085901
  • 嗨,这里有你要的HJ 1183 同位素内标
    上周小编和大家共同学习了《HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法》; 该标准覆盖了大部分的有机磷农药,但是对于沸点低,热稳定性差的农药,是不适合气相色谱法分析的;因此,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四级杆质谱法》,该标准为首次发布,并将于2021年12月15日起实施 氧化乐果、乙酰甲胺磷、辛硫磷是有机磷农药生产行业的特征污染物控制指标,乙酰甲胺磷在自然条件下易降解为甲胺磷,这4种有机磷农药均具有较强的生物毒性,其进入环境后对于生态环境和人体健康具有较大的危害。HJ 1183标准的出台,规定了地表水、地下水、生活污水和工业废水中氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定方法,将有效支撑《农药工业水污染物排放标准》的执行工作,满足我国氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷水质监测和排放控制工作的需要,也是今后开展水体中这几种有机磷农药环境调查与排放监控的技术基础,对于保障水环境质量及人民群众的身体健康具有重要意义。 试剂与材料:章节类别试剂与材料要求用途5.1试剂乙腈(CH3CN)色谱纯溶剂5.2甲醇(CH3OH)色谱纯溶剂5.3乙酸乙酯(CH3COOCH2CH3)色谱纯溶剂5.4盐酸:ρ = 1.19 g/ml优级纯调节样品 pH 值5.5氢氧化钠(NaOH)。分析纯调节样品 pH 值5.6甲酸铵(HCOONH4)。分析纯流动相5.9溶液乙腈溶液φ( CH3CN )=50%标准稀释液5.10乙腈-乙酸乙酯混合溶液φ( CH3CN )=50%固相萃取洗脱液5.11甲醇溶液φ( CH3OH) =80%固相萃取洗脱液5.12盐酸溶液φ=50%调节样品 pH 值5.13氢氧化钠溶液c(NaOH) = 0.1mol/L调节样品 pH 值5.14甲酸铵溶液c(HCOONH4) = 5.0 mmol/L流动相5.15甲酸铵-乙腈溶液c = 5.0 mmol/L流动相5.16有证标准溶液氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准贮备液ρ=1000 μg/ml待测目标,坛墨编号:81426b5.18乙腈中甲胺磷-D6同位素ρ=100 μg/ml内标物,坛墨编号:92684a乙腈中氧化乐果-D6同位素ρ=100 μg/ml内标物,坛墨编号:92685a乙腈中辛硫磷-D5同位素ρ=100 μg/ml替代物,坛墨编号: 92686a5.20固相萃取柱Ⅰ填料为十八烷基键合硅胶,或同等柱效的萃取柱,规格为500 mg/6 ml。5.21固相萃取柱Ⅰ填料为二乙烯苯和N-乙烯基吡咯烷酮共聚物,或同等柱效的萃取柱,规格为500 mg/6 ml。 实验与分析:章节实验步骤实验过程7.17.1样品采集与保存按照HJ/T 91、HJ 91.1和HJ 164的相关规定进行样品的采集。用棕色采样瓶(6.4)采集样品,样品满瓶采集。如果采集的样品pH不在2~8之间,用盐酸溶液(5.12)或氢氧化钠溶液(5.13)调节pH至2~8,4℃以下冷藏避光运输和保存,3天内完成样品分析工作。7.2试样的制备A:地表水、地下水经滤膜(5.22)过滤,弃去2 ml初滤液后,移取1.0 ml过滤后的样品于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 B: 基体复杂的样品(生活污水和有机磷生产废水)经固相萃取净化后再进样。取5.0 ml样品,以约3 ml/min(约1滴/秒)的流速通过固相萃取柱。甲胺磷、氧化乐果和乙酰甲胺磷用固相萃取柱Ⅰ净化,10 ml乙腈-乙酸乙酯混合溶液洗脱;辛硫磷用固相萃取柱Ⅱ净化,10 ml甲醇洗脱。合并洗脱液,经浓缩装置浓缩至近干,用乙腈溶液定容至5.0 ml.经滤膜过滤后,取1.0 ml滤液于棕色样品瓶中,加入10.0 μl内标使用液,混匀待测。 7.3空白试样的制备以实验用水代替水样,按照与试样的制备(7.2)相同的步骤,制备空白试样。8.1仪器条件仪器:液相色谱-串联质谱联用仪流动相A:甲酸铵溶液;流动相B:甲酸铵-乙腈溶液;梯度洗脱;流速:0.3 ml/min;进样体积:5.0 μl;柱温:40℃。 质谱条件:正离子模式;离子化电压:5 500 V;离子源温度:550℃;喷雾气压力:380 kPa;辅助加热气压力:410 kPa;气帘气压力:210 kPa;多离子反应监测方式(MRM)。8.2标准曲线移取适量的氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准使用液,逐级稀释,配制至少5个浓度点的标准系列,各组分质量浓度分别为0.00 μg/L、2.00 μg/L、5.00 μg/L、10.0 μg/L、50.0 μg/L、100 μg/L(此为参考浓度)。移取1.0 ml配制好的标准系列溶液于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 按照仪器参考条件,由低浓度到高浓度依次对标准系列溶液进行测定。以标准系列溶液中目标组分的质量浓度(μg/L)为横坐标,以其对应的峰面积(或峰高)与内标物峰面积(或峰高)的比值和内标物浓度的乘积为纵坐标,建立标准曲线。可用平均相对响应因子法或标准曲线法进行标准曲线绘制。8.3试样的测定按照与标准曲线的建立(8.2)相同的仪器条件进行试样(7.2)的测定8.4空白试验按照与试样测定(8.3)相同的仪器条件进行空白试样(7.3)的测定。 分析结果表述:根据样品中目标化合物与标准系列中目标化合物的保留时间和特征离子定性,内标法定量。 坛墨质检秉持一直以来对环境安全的高度关注,依据该标准推出如下混标产品方案, 欢迎垂询!针对该标准,坛墨推出如下配套的产品方案:商城编码名 称浓 度说 明81426b乙腈中4种有机磷混标1000μg/mL标准储备液92684a乙腈中甲胺磷-D6同位素100μg/mL内标储备液92685a乙腈中氧化乐果-D6同位素100μg/mL内标储备液92686a乙腈中辛硫磷-D5同位素100μg/mL内标储备液欢迎大家到坛墨商城选购,有任何疑问,随时与我们交流。 原文章链接:https://www.gbw-china.com/ns_detail/1106.html
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之一:稳定同位素标记beta-受体激素类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。作为系列报道的开篇之作,本期向您推荐稳定同位素标记的beta-受体激素类化合物。部分稳定同位素标记beta-受体激素类化合物产品号中文名称英文名称包装规格溶剂1ST1352克伦特罗-D9盐酸盐Clenbuterol-d9 hydrochloride100μg/mL, 1mL甲醇1ST1353沙丁胺醇-D3Salbutamol-d3100μg/mL, 1mL甲醇1ST1304D9A特布他林-D9盐酸盐Terbutaline-d9 hydrochloride5mg;100μg/mL, 1mL甲醇1ST1381莱克多巴胺-D3盐酸盐Ractopamine-d3 hydrochloride100μg/mL, 1mL甲醇1ST1360莱克多巴胺-D6盐酸盐Ractopamine-d6 hydrochloride100μg/mL, 1mL甲醇1ST1355西马特罗-D7Cimaterol-d7100μg/mL, 1mL甲醇1ST1363克伦普罗-D7Clenproperol-d75mg;100μg/mL, 1mL甲醇1ST1385喷布特罗-D9盐酸盐Penbutolol-d9 hydrochloride5mg;100μg/mL, 1mL甲醇1ST1328D3苯乙醇胺A-D3Phenylethanolamine A-d35mg;100μg/mL, 1mL甲醇1ST1371沙美特罗-D3Salmeterol-d3100μg/mL, 1mL甲醇1ST1303D9盐酸妥布特罗-D9Tulobuterol-d9 hydrochloride100μg/mL, 1mL甲醇1ST1313D7氯丙那林-D7Clorprenaline-d75mg;100μg/mL, 1mL甲醇了解更多产品或需要定制服务,请联系我们!
  • 科学家利用空间分辨的同位素示踪揭示组织代谢活动
    同位素示踪有助于确定器官的代谢活动,但研究不同器官内代谢异质性的方法尚不成熟。美国普林斯顿大学的研究团队利用空间分辨的同位素示踪揭示组织代谢活性,相关论文于近日发表在Nature Methods杂志上,题为:Spatially resolved isotope tracing reveals tissue metabolic activity。研究人员将稳定同位素标记的营养输注与基质辅助激光解吸电离成像质谱法(iso-imaging)结合,以空间分辨的方式定量哺乳动物组织中的代谢活动。他们在肾脏中观察了皮质及髓质的糖异生通量和糖酵解通量发现,肾脏各区域对三羧酸循环基质的使用不同,皮质优先使用谷氨酰胺和柠檬酸,髓质优先使用脂肪酸。此外,他们还观察了在生酮饮食下大脑中碳被利用于三羧酸循环和谷氨酸的具体情况。在富含碳水化合物的饮食中,葡萄糖始终占主导地位,但在生酮饮食中,3-羟基丁酸在海马体中的贡献最大,在中脑中的贡献最小,脑内氮的来源也有所不同,支链氨基酸主要分布在中脑,而氨则主要分布在丘脑。综上,这种方法将稳定同位素注入与成像质谱法相结合,可以空间分辨率定量分析哺乳动物组织中的代谢活动。原文链接:https://www.nature.com/articles/s41592-021-01378-y
  • 稳定同位素比质谱“编译”冰芯中的无字天书
    继探险时代之后,美国、俄罗斯、法国、英国等国家先后在两极建立了众多科学考察站,这些探险和考察活动极大丰富了人类发展的文明史。中国是极地科学考察事业中的后来者,截至目前,我国在南北极共建立了6座科考站,分别是长城站、中山站、昆仑站、泰山站、罗斯海新站、黄河站。图文无关神秘的南极和北极,天寒地冻,冰雪皑皑,深深地影响着人类居住的蓝色星球。自古以来,地球两极就吸引着无数人的目光。这里的冰芯是研究古气候和古环境变化最可靠的“天然档案馆”之一:冰芯中有古代空气的微小气泡,这些气体经提取后直接用质谱仪分析其浓度;而温度的测定则是通过冰芯融化后释放的水分子的同位素组成推断出来。我们知道,一个水分子(h2o)是由两个氢原子和一个氧原子组成的分子,但事情并没有那么简单,因为氢有1h、2h和3h三种同位素(3h有放射性,这里不予讨论),氧也有16o、17o和18o三种同位素。(17o自然丰度很低,约为0.039%)水中的重同位素和轻同位素的比值(即2h/1h和18o/16o)随气候变化而变化,根据这一原理,科学家通过测量冰芯样品中氧和氢的同位素比值,可以了解过去发生的气候变化。为什么会这样呢?我们以16o和18o举例简单说明。蒸发和冷凝是影响海洋中16o和18o比例的两个重要过程,含有16o的水分子比含有18o的水分子更容易蒸发,同理,含有18o的水蒸气分子更容易凝结。当空气上升或向两极移动而冷却时,部分水蒸气开始凝结并形成降水,含有18o的水蒸气分子比含有16o的水蒸气分子更容易凝结,未凝结的水蒸气分子随着空气继续向极地移动,在此过程中,水蒸气18o越来越少(衰减),16o则越来越多(富集)。1h和2h也有同样的规律。近几年,科学家测量了在南北极多个位置降雪的样本中δ18o(δ2h)与年平均温度之间的近似线性关系,并沿着冰芯的深度绘制δ18o或δ2h的深度图,揭示不同年代的气候变化。图1:数据来源jouzel et al., stable water isotope behavior during the last glacial maximum: a general circulation model analysis. 1994图2:不同冰层反应不同年代的气候 德国元素elementar的同位素质谱联用双路进样 (di-irms)技术是碳酸盐和水样分析中更精确、更灵敏的技术,具有更高的精度(≤0.05‰, 1σ, n=10),而且提供了三种不同样品预处理装置:iso aqua prep装置分析地面水、冰芯、生物水;iso carb prep装置分析碳酸盐矿物和化石碳酸盐; iso multi prep 装置则可以同时满足以上分析需求。 产品特性 高灵敏度;测量精度高;占地空间小;高度自动化;带有自主专利的微型冷指设计,液氮消耗量少
  • 同位素质谱高峰论坛成功举办 | 德国元素elementar
    为加强学术交流,进一步提升稳定同位素技术在科研领域的应用范围,11月2号,由德国元素elementar主办的2022年稳定同位素质谱线上高峰论坛成功举办。浏览德国元素elementar稳定同位素比质谱选型方案,助力科研贴息贷款浏览德国元素elementar125年来的传承和创新此次论坛特别邀请了奥地利伦茨水域生态研究中心Leonard I. Wassenaar博士、中国科学院沈阳应用生态研究所方运霆研究员和浙江农业科学院质量安全与营养研究所袁玉伟研究员,受邀嘉宾分享了稳定同位素技术在各自领域的研究进展,深入交流对稳定同位素技术的探索经验。在交流互动环节,与会者积极提问,互相碰撞出学术的火花,收获学术成果、增进友谊沟通。首先,袁玉伟研究员作了《肥料对有机食品蔬菜和大米氮同位素的影响》的精彩报告。近年来,我国农业生产从数量满足型向质量需求型转变,老百姓的饮食习惯也从以前的吃得饱转变为现在的吃得健康和吃得有营养,有机绿色消费成为新时尚,有机农业绿色发展成为现代农业的新模式。不同来源肥料的δ15N不同,有机肥的通常高于化学肥料的。采用氮稳定同位素δ15N来检测氮肥来源和有机食品的标识特征,可以为有机生产过程的监督和消费权益保障提供强有力的技术支持。随后,方运霆研究员分享了铵盐和硝酸盐15N丰度的测定技术,总结了过去几十年来铵盐和硝酸盐稳定同位素丰度测定方法的历史发展变化,重点介绍了次溴酸盐氧化结合羟胺还原法测定铵盐的氮同位素、反硝化细菌法和镉粉叠氮酸还原化学法测定硝酸盐的氮氧同位素等行业内通用方法。通过稳定同位素技术,方运霆研究员也对北京市冬季灰霾期间大气不同粒径气溶胶所含铵态氮15N自然丰度进行测定,成功推算出大气中不同氨气来源的贡献。最后,Leonard I. Wassenaar博士介绍了稳定同位素技术在生态取证的一些最新应用,比如稳定同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究鸟类迁徙等生态学应用。作为此次论坛的主办方,德国元素elementar致力于服务客户,与客户紧密合作,确保他们既有高质量的仪器,又有专业的技术支持,共同推动稳定同位素技术在国内的普及应用。以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 同位素地质研究专用仪器成功研发
    我国大型高端质谱仪器一直以引进为主,受国外技术封锁,一些用于高精度同位素分析和核科学研究的质谱仪器引进十分困难,且价格高昂。  为了推动我国高端质谱仪器的自主研发,针对目前宇宙样品及地球化学珍贵样品稳定同位素、稀土元素微区原位分析的难题,国家重大科学仪器设备开发专项设立“同位素地质学专用 TOF-SIMS(飞行时间二次离子质谱)科学仪器”项目,由中国地质科学院地质研究所国家科技基础条件平台北京离子探针中心牵头实施。  据了解,根据记者掌握的情况,项目研制的两台分别用于稳定同位素分析和稀土元素分析的TOF-SIMS-SI和TOF-SIMS-REE仪器,将为岩石成因学、矿床成因学、地球环境、气候变化、月球及行星演化等热点研究领域提供最先进的技术支撑。  专家称,用于高精度同位素丰度分析的TOF-SIMS 是一项全新的技术,它的成功研制,将是质谱学技术划时代的里程碑,同时将进一步推动地球化学和宇宙化学向更微的空间发展。像 SHRIMP 的诞生一样,这项新技术的诞生将带来一系列重要的科学成果,特别是将直接为我国探月工程在获得月球样品后的分析研究工作奠定坚实的技术基础。  据介绍,经过近4年的技术攻关,北京离子探针中心联合中国科学院大连化学物理研究所和吉林大学等单位完成了两台TOF-SIMS仪器的整体设计,对一次离子源等关键部件进行了设计加工和单独调试,并完成了TOF-SIMS专用系统控制软件和数据处理软件的开发和优化。  自2014年8月起,项目组开始对两台TOF-SIMS整机进行总装配和总调试工作。2015年6月,TOF-SIMS整机的质量分辨率可达12000(m=106)。截至2015 年初,项目共取得新装置 12套、核心部件20个;新申请专利 33项,获专利授权8项(其中发明专利2项);登记软件著作权3项;发表论文24篇,取得了重要的阶段性成果。  一是首次将飞行时间二次离子质谱(TOF-SIMS)技术应用于精密同位素分析和元素丰度测定。近年来,随着离子接收系统在技术上取得突破性进展,北京离子探针中心和相关合作单位在国内率先尝试将 TOF技术应用于高精度同位素分析仪器的研发。  二是开发了一套适用于珍贵地质样品(如月岩、宇宙颗粒等)高灵敏度、高分辨率同位素分析的小束斑氧离子一次源和离子光学系统。  三是开发了提高地学样品分析灵敏度的二次中性粒子激光后电离技术。实验结果表明,在优化条件下,飞秒后电离技术可使信号提高60 倍。  四是研发了高分辨TOF质量分析器。有效解决了双聚焦SIMS质谱的低离子通过率、体积庞大、成本高昂的不足。  五是开发了一套满足超高真空环境下高精度同位素分析要求的创新型三维样品台及样品传送系统。  项目组专家表示,该科研项目尽管取得了一定的成效,但该仪器目前尚处于研发阶段,待目标仪器的技术指标达到任务书的设计要求后,项目组将启动以下两项应用示范研究工作:一是应用TOF-SIMS-SI仪器分析金属硫化物(黄铁矿、闪锌矿等)的硫同位素,探讨典型铜矿床铜的富集和矿床形成机理 二是应用TOF-SIMS-REE仪器对月岩和月球陨石样品中锆石的稀土含量和配分模式进行分析,以探讨月岩中锆石的成因 测定月岩样品和月球陨石中锆石的Ti元素含量,估算其结晶时的温度,从而推算撞击事件的温度。  据中国矿业报记者了解到,2015年8月,项目组已将TOF-SIMS-REE仪器应用于纯金属样品铜和银的同位素丰度分析,分析精度可达 1%。
  • 公认检测技术 稳定同位素技术可鉴别假葡萄酒
    根据我国国标GB15037-2006的要求以及国外的定义,葡萄酒应该是完全以葡萄或葡萄汁为原料经完全或部分发酵酿制而成的含有一定酒精度的发酵酒。随着葡萄酒行业的发展,我国在2003年正式废除了半汁葡萄酒标准,并禁止半汁葡萄酒在2004年7月1日之后继续流通,这种产品只能按配制酒进行销售。然而由于利益驱动,市场上依然存在着掺水的葡萄酒,甚至精心勾兑"三精一水的葡萄酒"的现象,不过,现有的先进技术,已经可以轻松检测出这种勾兑葡萄酒。   现有国标主要针对理化指标检测   我国现在施行的葡萄酒相关质量标准及检测方法,如GB15038,主要是针对葡萄酒的理化指标进行检测,但造假者有可能根据各项指标进行单独造假,从而逃脱监管和处罚。   稳定同位素技术是解决葡萄酒掺水鉴别的有效解决手段。中国食品发酵工业研究院稳定同位素食品分析实验室负责人钟其顶介绍了目前国际上同样采用稳定同位素技术鉴别葡萄酒掺水造假的现象。   稳定同位素是指原子序数相同,但质量数不同的核素,这些核素的化学性质相同,但物理特性具有差异。如主要的稳定氧同位素有18O和16O,这两种氧原子均可构成水分子,植物生长过程中由于蒸腾失水,由16O构成的水分子更容易被蒸发掉,由18O构成的水分子就相对更多地留在了植物组织内,因此植物水分中18O明显高于地下水。根据这一原理,早在二十世纪七十年代,新西兰科学家John Dunbar就用于研究全汁葡萄酒的特征,近年来,国际葡萄与葡萄酒组织做了大量的研究工作,并颁布了一些标准用于全汁葡萄酒鉴别,效果良好。   国际已认可稳定同位素检测   国内的此类研究由中国食品发酵工业研究院稳定同位素实验室于2011年开始,截至目前,稳定同位素食品分析实验室不仅开发了可靠的分析方法,得到了国际认可,而且对全国葡萄酒从原料到产品的稳定同位素特征进行了调查研究,结果表明该技术对于解决国内的全汁葡萄酒鉴别问题是很有帮助的。   钟其顶说,由于稳定同位素技术是基于产品原子水平的特征进行鉴别,因此造假者难以通过简单的添加化学成分改变造假产品的稳定同位素特征,一旦葡萄酒掺水,就可以很容易被检测出来。   近年来,国家和行业都很重视葡萄酒质量检测和真实性鉴别,也做了很多努力,取得了一些成果,但与发达国家相比还存在一定差距。目前,中国食品发酵工业研究院稳定同位素实验室已完成技术储备和原始数据积累,正在组织制定相关国家标准和行业标准。   ■ 链接   葡萄酒相关标准进一步制定中   在2013年8月23日,由全国酿酒标准化技术委员会组织在烟台召开了葡萄酒领域相关标准起草会议,会议讨论了行业标准"葡萄酒的水中18O/16O比值测定方法"和国家标准"全汁葡萄酒识别技术导则"等多项标准草案。   这些标准研究制定将有助于根本性解决掺水葡萄酒假冒现象和"三精一水"勾兑葡萄酒的造假现象,进一步规范市场,推动我国葡萄酒市场健康稳定发展。
  • Adamas/阿达玛斯 | 同位素标记物 为“舌尖上”的安全护航
    最近,食品行业发生了安全问题——鸡蛋中含有杀虫剂氟虫腈。氟虫腈被世界卫生组织列为“对人类有中度毒性”的化学品,欧盟法律规定不得用于人类食品产业链中的畜禽。到目前为止,毒鸡蛋事件已经蔓延到欧洲16国,甚至中国香港也受到了波及。每次出现类似的重大食品安全事件,我们都会思考,从农田到餐桌,究竟如何来保障“舌尖上”的安全。提起过去几年中国曾发生过的食品安全事故,至今仍让人心有余悸。在食品安全问题受到日益重视的今天,我们不妨把它们再度重提,当作警钟,常抓不懈。苏丹红事件“苏丹红”是一种化学染色剂,它具有致癌性,对人体肝肾器官具有明显的毒性作用。2005年,肯德基被相关部门查出,其售出的汉堡和鸡翅中含有苏丹红成分,并被责令停售。此次事件后,我国紧急制定了食品中苏丹红染料检测方法的国家标准,苏丹红开始受到“全国通缉”。多宝鱼事件2006年,多宝鱼又深陷药残事件。多宝鱼本身的抗病能力差、养殖技术要求高,为了预防和治疗鱼病,一些养殖者非法大量使用违禁药物,导致多宝鱼体内药物残留严重超标,仅山东省在此次多宝鱼事件损失就超过40亿元。碱性橙事件2007年,毒豆腐皮掀起风波。黄橙橙的豆腐皮,看上去诱人,经检测竟是用工业染料“块黄”染的。碱性橙ii是化工染料,为致癌物,主要用于纺织品、皮革制品及木制品的染色,并非是食品添加剂。三聚氰胺事件2008年,很多食用三鹿集团生产的奶粉的婴儿被发现患有肾结石,甚至造成婴儿死亡,经检查是因为奶粉中含有一种叫做三聚氰胺的化工原料。不仅仅是三鹿集团,伊利、蒙牛、光明、圣元及雅士利在内的多个厂家的奶粉都检出三聚氰胺。该事件后,三鹿集团最终破产,中国奶制品行业的信誉更是一蹶不振,至今仍不得民心。瘦肉精事件2011年,央视315特别节目曝光了河南孟州等地养猪场采用违禁动物药品“瘦肉精”饲养生猪,并且有毒猪肉流入中国最大的肉类加工企业济源双汇食品有限公司。此事一出,引发广泛关注,双汇也因“瘦肉精”事件损失超过121亿元。塑化剂事件2012年,中国白酒行业出现“地震”,高端酒行列品牌酒鬼酒被爆出塑化剂超标2.6倍。检测报告显示,酒鬼酒中共检测出3种塑化剂成分,其中邻苯二甲酸二丁酯(dbp)的含量为1.08mg/kg,超过规定的最大残留量。民以食为天,食以安为先。从“苏丹红”到“塑化剂”,从“毒大米”到“毒鸡蛋”,过去十多年间发生的重大食品安全事故,无一不存在有害化学成分的身影。因此对于食品卫生工作来说,分析检测食品中是否存在不可食用化学成分,是保障食品安全必不可少的环节。为了保障我们“舌尖上”的安全,泰坦科技(titan)旗下品牌阿达玛斯最新推出了新品——稳定同位素标记物,其主要产品有氘、碳-13,、氮-15、氧-18标记的农用示踪剂、农兽药残留检测试剂、食品非法添加物检测试剂、标记氨基酸(可带保护基因)、标记多肽、标记诊断试剂、标记基础有机试剂、标记标准样品等。自上市以来,同位素标记物作为内标试剂已成熟应用于食品安全检测,得到了广大用户的一致好评。除了食品检测方面的应用,同位素标记物也被广泛应用于在农业、环境、生物、临床医学等领域。上述产品详细信息可点击下方图片查看
  • 样品测试 | 氢氧稳定同位素样品采集及预处理方法
    氢(δD)、氧(δ18O)稳定同位素是广泛存在于自然水体中的环境同位素。在测量氢氧稳定同位素之前,样品采集和预处理是主要的任务, 样品运输应当保证样品性质稳定,避免污染和同位素分馏。如您不清楚样品采集和预处理的具体方法、不确定样品储存的适宜条件和运输注意事项,请看本文介绍。水样品1、野外采集样品封口膜密封,低温保存:取样后(取样量根据老师研究需要自行决定)立即在瓶口处用封口膜密封并且低温保存(如样品暂时不测情况下,可以冰冻储存(如需冰冻储藏则建议用塑料瓶盛装样品,玻璃瓶会被冻裂),以防止蒸发。2、送样前分装封口膜密封,阿拉伯数字编号:用1ml的一次性注射器来取水样品(取一次即可),经过一次性0.45μm滤器(滤器分水系和有机系,根据样品不同来选择)过滤至2ml样品瓶里,盖好瓶盖并用封口膜密封,样品用阿拉伯数字编号,(不是数字编号的话需要您提供电子版样品清单)。3、低温储存OR运输冰箱冷藏储存,顺丰冷链寄送:密封好的样品可放置在冰箱冷藏储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,以防止样品蒸发分馏,来保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息土壤/植物样品1、野外采集样品封口膜密封,低温保存:采集的土壤/植物样品需要装在12ml的样品瓶(规格:19mm*65mm或18mm*66mm)里,样品量可根据样品具体情况适当增减,原则为保证能抽提的水量不少于1ml,如果样品含水量特别低,需要准备两瓶或者多瓶样品,样品装好后,瓶口处用脱脂棉塞紧,然后拧紧瓶盖,样品瓶盖外需用封口膜密封以保证密封性良好来防止分馏。样品用数字编号(不是数字编号的话需要您提供电子版样品清单)2、低温储存OR运输冷链寄送,冷冻储存:密封好的样品可放置在冰箱冷冻储存;样品邮寄建议顺丰冷链寄送,并嘱咐快递小哥多放几个冰袋,防止样品蒸发分馏,以保证数据准确。发送样品和快递信息给小编(以便及时接收您的样品):单位名称:样品数量:测试指标:是否回收:快递单号:接收样品后我们及时和您核对样品相关信息提示一、对于植物样品和土壤样品来说,建议直接用12ml样品瓶采样和储存样品,能有效减少分馏情况发生,不建议用密封袋采集和储存样品,因为:1、如样品在密封袋中储存,抽提前就需要将样品从密封袋中腾装进样品瓶,这个过程会增加样品与空气接触时间,增加蒸发分馏的可能;2、植物样品冰冻储存过程中会冻出水分,水分会附着在密封袋上,腾装样品的这个过程不可能把粘在袋子上的水汽完全收集到进样瓶中,这种情况下将直接影响数据准确性。二、关于植物样品采样部位:根据不同的研究目的,植物样品的采集部位会有差异,为了研究植物水分来源,乔木和灌木应采集植物非绿色的枝条,而草本则应尽可能采集根茎结合处的非绿色部分。因为这些植物器官没有气孔,不会因蒸腾作用而导致目标同位素的分馏。附:相关耗材和测试过程照片:1.即将进行抽提的植物样品2.抽提工作正在进行3.抽提结束冷凝水收集4.收集完毕并密封好的待测样品5.氢氧同位素测试中以上内容仅供参考,如您有任何建议,欢迎与我们联系,非常荣幸能和您讨论学习。
  • “同位素分析技术在地质和环境领域中的应用进展”论文征稿
    创刊:1982年(双月刊)主编:罗立强主管:中国科学技术协会主办:中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心 《岩矿测试》于1982年创刊,是中文核心期刊、中国科技核心期刊、“中国期刊方阵”双效期刊。荣获科学出版社“期刊出版质量优秀奖”,2020年入编首批《地学领域高质量科技期刊分级目录》。中文核心期刊中国科技核心期刊“同位素分析技术在地质和环境领域中的应用进展”论文征稿 同位素分析技术是确定地质事件时代和成岩成矿年龄,示踪成岩成矿物质和污染物来源的重要手段,成为推动地球和环境科学发展的重要动力。当前,同位素技术应用的广度和深度得到很大拓展,被普遍应用于地球科学、农业、生态、水利、医学和环境等领域。其中,微区/微量样品Re-Os同位素、U-Pb同位素、Rb-Sr同位素、锂镁铁铜钼硒等非传统稳定同位素已成为国际同位素地球化学研究的前沿和发展趋势,同时稳定同位素技术逐渐应用于示踪污染物迁移转化过程和污染物源解析研究,为生态文明建设提供技术支撑。 为反映同位素分析技术在地质科学、环境科学等相关领域的新热点、新进展、新技术、新方法,促进国内外学术交流,《岩矿测试》编辑部组织 “同位素分析技术在地质和环境领域中的应用进展”专辑。即日起正式对外征集专辑论文,欢迎学者们积极参与,踊跃投稿。投稿/录用流程:请作者登陆《岩矿测试》网站(http://www.ykcs.ac.cn)进行投稿。投稿时请作者在论文首页标注:“同位素分析技术在地质和环境领域中的应用进展”专辑论文。论文提交截止日期:2021年12月30日 地址:北京市西城区百万庄大街26号E-mail: ykcs@cags.ac.cn电话:010-68999562
  • 同位素 | 三种不同气候下露水的稳定同位素变化
    全球变暖增加了当地大气对水分的需求,导致许多地区降水减少,两者都会导致干旱。水汽可以在辐射冷却到露点温度以下的表面凝结成露水。露水因其对地表水平衡的重要贡献而被认为是一个重要水源,尤其是在半干旱和干旱地区。干旱地区,年露水量占降雨量的9%-23%。在热带岛屿旱季,露水可以作为一种替代水源。露水对干旱地区或干旱期植物的生存、生长和发育十分重要,例如带来夜间水分以及通过植物气孔或特殊的物理特征(如气生植物)直接被叶片吸收利用。因此,露水可以增加叶片的净光合产物积累,提高植物水分利用效率。露水还参与了大气中的化学过程,例如亚硝酸盐氧化物的昼夜(和夜间)循环。从1961-2010,中国露水频率降低了5.2天/10年,这主要是因为近地表增温和相对湿度(RH)下降。此外,中国干旱区露水频率下降率(50%)高于半湿润和湿润地区(40%和28%)。因此,随着全球气候变化,不同地区露水具有不同的趋势,需了解不同气候区域的露水特征以更好地预测未来露水动态变化。图片来源于网络,如有侵权请联系删除δ2H和δ18O是天然和传统的水文示踪剂,在追踪与不同类型水(例如降雨、降雪、露水、雾、地表水、植物水和冰芯)相关的不同水文气象过程中发挥着重要作用。两种质量分馏过程,平衡分馏和动力学分馏,是水相变过程中同位素差异的根本原因。它们分别由饱和水汽压和不同同位素的扩散速率决定。17O-excess(17O-excess = ln(δ17O + 1)-0.528×ln (δ18O + 1)),作为一种新的示踪剂,可用来提供有关水分输送、降雨和蒸发的额外限制,以探测水文和气象过程。与传统的依赖于温度和RH的同位素相比,17O-excess主要对10-45℃的RH敏感。δ′18O(δ′18O = 1000×ln(δ18O + 1))和 δ′17O(δ′17O = 1000×ln (δ17O + 1))之间的关系可用来更好的解释自来水和降水形成机制,区分干旱类型和纳米布沙漠不同类型的凝结。此外,利用17O-excess与δ′18O(或 d-excess)之间的关系(如实验室模型试验、降水和天然水体(河流、渠道、水井、泉水、地下水、湖泊和池塘))来推断经历平衡分馏或动力学分馏的不同水分蒸发过程是一种有效的方法。然而,到目前为止,还没有公布δ2H,δ18O,δ17O,d-excess和17O-excess日露水同位素记录。图片来源于网络,如有侵权请联系删除基于此,在本文中,作者于2014年7月-2018年4月从3个不同的气候区域(纳米布沙漠中部的戈巴布(沙漠气候)、法国尼斯(地中海气候)、美国中部印第安纳波利斯(湿润大陆性气候))收集了黎明前日露水。利用基于离轴积分腔输出光谱技术的三参数水汽同位素分析仪(T-WVIA-45-EP)同时分析了露水的δ2H,δ18O,δ17O,然后计算了d-excess和17O-excess。该报告介绍了3个气候区域的日露水同位素数据集。在研究全球露水动力学和露水形成机制时,研究者可以利用该数据集作为参考。【结果】表1 戈巴布(2014年7月-2017年6月)、尼斯(2017年12月-2018年4月)和印第安纳波利斯(2017年1月至2017年10月)的每日露水记录汇总。图1 戈巴布(紫色)、尼斯(蓝色)和印第安纳波利斯(红色)露水的稳定同位素变化。图2 基于戈巴布、尼斯和印第安纳波利斯每日露水的δ18O和δ2H之间的关系及δ′18O和 δ′17O之间的关系(b)。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310465&idx=2&sn=e1d3675059e7a6e4221f5633291cd304&chksm=bee1abbe899622a8ec8b2b200b841a8a8def0dc591af3b2ae6543b52a6c03d08f7ce4fd95b10&token=234254584&lang=zh_CN#rd
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical AtomicSpectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 科学家4天发现45种新放射性同位素
    日本理化学研究所6月8日宣布,一个国际联合研究小组利用RI射束工厂的放射性同位素射束加速器,在4天之内发现了从锰(25号元素)到钡(56号元素)的45种新放射性同位素。新发现的同位素数量高于世界上约40种年平均发现的同位素数量。对破解长期以来元素的合成以及中子过剩原子核之谜打开了一扇窗口。   新放射性同位素是把铀238(92号元素,质量数238)通过超导环形回旋加速器以光速的70%速度加速后,冲击标靶铍和铅的原子核,利用其引发的飞行裂变而生成的。研究小组把生成的同位素,用超导光束分离生成装置(BigRIPS)进行收集和分析,发现了中子过剩的新同位素。此次发现的新放射性同位素中,特别值得注目的是中子数为82的钯128。 该研究成果将发表在《日本物理学会杂志》(Physical Society of Japan)上。   原子核由质子和中子组成,其性质由质子数和中子数决定。地球上约有300个金、铁等天然存在的稳定性原子核,但理论上认为有10000个原子核,其中大部分为放射性同位素这样的不稳定原子核。比稳定原子核中子数少的原子核称为质子过剩核,比稳定原子核中子数多的原子核称为中子过剩核。   约100年前科学家发现了放射性同位素,同时创建了原子核物理学。自此,科学家开始了对天然存在的稳定原子核和半衰期较长的不稳定核的研究。之后,科学家利用加速器人工生成同位素,原子核物理学与加速器技术以及同位素分离技术同时发展、成长,直至目前可以对半衰期极短的不稳定核进行研究。   该国际联合研究小组把稳定的原子核重离子射束通过高能加速,对标靶进行照射。利用“弹丸碎裂反应”和“铀238的飞行裂变”产生放射性同位素射束。特别是铀238的飞行裂变,能够从质量数50至150的范围内高效生成中子过剩同位素。   研究小组在超导环形回旋加速器、理研环形回旋加速器和固定周波型环形回旋加速器、中段环形回旋加速器构成的加速器系统中,用铀射束撞击标靶,飞行裂变后生成放射性同位素。通过增强铀射束强度,从20号元素至60号元素范围内生成中子过剩的新放射性同位素可能性大为提高。   之后,研究小组把生成的同位素通过超导放射性同位素分离生成装置(BigRIPS)的第一步,选别和分离中子过剩同位素。然后,分离后的中子过剩同位素通过BigRIPS第二步,进行新同位素的粒子识别。粒子识别是根据生成的同位素的飞行时间、能量损失和到达检测器的位置信息磁钢度测定得出。   这些新发现的同位素可能在宇宙中参与了从铁至铀的元素合成过程。特别是硒95、溴98、氪101、铷103、锶106、锶107、钇109、钯128、碲143,是在元素合成过程中具有重要位置的原子核。今后通过对铀射束增加强度,期待大量生成新的同位素,并对其半衰期和质量的测定,解破宇宙中元素合成过程之谜。
  • 传承不息,焕新升级 | 德国元素IRMS同位素质谱选型方案
    近日,国务院出台《推动大规模设备更新和消费品以旧换新行动方案》,是加快构建新发展格局、推动高质量发展的重要举措,鼓励对仪器设备的淘汰落后与更新升级,旨在大力促进先进设备生产应用,推动先进产能比重持续提升,实现当前与长远的双赢。薪火传承,创新致远德国元素Elementar助力仪器设备更新迭代加快产品更新换代是推动高质量发展的重要举措,可以体验到更先进的仪器分析技术,提高分析的准确性和效率。德国元素Elementar凭借在元素分析领域超过120余年的经验传承,在原先老仪器的坚实基础上不断优化升级,推陈出新,打造全系列高效、稳定、精准和便捷的元素分析仪,已成为专业元素分析的代名词,蜚声国际,为化工、农业、能源、环境、鉴定、材料等领域的客户提供卓越及客户友好的元素分析解决方案。德国元素Elementar是全球同位素分析领域的领导者,以浓厚兴趣与责任为经,以奉献与专一为纬,通过设计、制造和提供高质量的解决方案推动稳定同位素分析的发展,同时有效协调硬件和软件系统,让复杂的同位素分析变得简单而高效。德国元素Elementar稳定同位素分析解决方案visION系列一体化方案,成就大繁至简GeovisION主要配置:vario PYRO cube、visION主要应用:古气候、古环境、考古学研究分析元素:13C,15N,34S,2H,18OBiovisION主要配置:vario ISOTOPE cube、visION主要应用:食品真实性鉴定,产地溯源分析元素:13C,15N,34S,2H,18OEcovisION主要配置:vario ISOTOPE select、visION主要应用:食物链、鸟类迁徙等生态学研究分析元素:13C,15N,34S,2HBiovisION Honey主要配置:iso CHROM LC、Agilent 1260 II LC、visION主要应用:蜂蜜掺假分析元素:13CEnvirovisION主要配置:iso FLOW GHG、visION主要应用:硝酸盐反硝化和温室气体研究分析元素:CO2-13C,18O,CH4-13C,2H,N2O-15N,18OAnthrovisION主要配置:Agilent 8890GC、GC5、visION主要应用:公安刑侦、反兴奋剂研究分析元素:13C(低温碳模式),15N,2H(低温氢模式),18OPetrovisION主要配置:Agilent 8890GC、GC5、visION主要应用:能源勘探等研究分析元素:13C(高温和低温碳模式),15N,2H(高温氢模式),18OAromavisION主要配置:Agilent 8890GC、GC5、visION主要应用:研究香精和香料等来源分析元素:13C(低温碳模式),15N,2H(低温氢模式),18OprecisION系列有史最灵活,探索无限可能isoprime precisION除了可以和EA、GC、LC、iso FLOW GHG联用,还可以和以下外设联用,实现更多的基础性科学研究。iso FLOW 顶空分析仪主要配置:iso FLOW、precisION主要应用:水文学、地球科学研究分析元素:碳酸盐13C和18O,水样2H和18Oiso TOC cube主要配置:iso TOC cube、LCM、precisION主要应用:陆地和水生系统总有机碳和结合态氮同位素分析分析元素:TIC, TOC 的13C,TNb的15Niso Dual Inlet 双路进样主要配置:iso Dual Inletiso AQUA PREP(水样)iso CARB PREP(碳酸盐样品)iso MULTI PREP(水样和碳酸盐样品)主要应用:古气候、地质研究分析元素:碳酸盐13C、18O水样2H、18OCO2团簇同位素Δ47进样系统控制模块 NICM主要特点:进样系统控制模块NICM提供了将客户定制的进样系统与IRMS联用的途径,通过定制的输入/输出端口,允许电脑软件自动控制整个分析过程。lyticOS专业的同位素分析软件主要特点:行业领先的同位素分析软件,兼容实时分析和数据处理功能,内嵌多点同位素校正、空白扣除、漂移校准和自动峰匹配等多项功能。ArDB专业的数据库管理软件主要特点:分析结果的数据库管理和功能强大的数据解析和可视化,支持lyticOS同位素分析数据与ArDB实时传输。
  • LI-2100 | 内陆山区径流稳定同位素的气候与景观控制
    水,我们生活中无处不在的重要元素。它润泽着大地,孕育着生命。然而,水的旅程并不仅仅局限于地表,它通过蒸发和降水,与大气、植被形成了紧密的互动。而这种互动的背后隐藏着一系列的谜题,需要科学家们通过不断研究来揭示。水同位素研究便是一种重要的手段,通过分析水中的同位素元素,科学家们能够了解水的来源、循环和变化。水同位素研究为科研人员提供了一种宝贵的工具,帮助他们更好地了解水、植被和气候之间的复杂关系。一起来了解一下,来自西北师范大学的研究团队,用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)做的相关研究。水资源是制约干旱区社会发展的主要自然资源,山区是内陆干旱区重要的水源涵养区,山区冰川积雪融水对干旱区淡水供应至关重要。随着气候变暖,冰川积雪融化加速,地表蒸散发增强,降水变异性加剧,气候变化将增强山区河流水文过程的复杂性。水稳定同位素是深入了解区域水文过程的有效方法,研究内陆山区径流同位素时空变化的主要控制因素,对认识内陆山区水文过程变化,合理调配干旱区水资源至关重要。基于此,在本研究中,来自西北师范大学的研究团队监测了中亚干旱区典型的内陆山区流域-西营河流域不同水体同位素数据(地表水、降水、地下水以及积雪融水)和相关水文气象数据,结合相关气象观测数据及植被覆盖指数(NDVI),评估气候和景观对内陆山区径流稳定同位素的影响。研究可以为厘清内陆山区径流稳定同位素的控制机制提供更全面的参考。01 不同水体稳定同位素组成西营河流域不同景观区域气象要素和水体稳定同位素特征。(a)不同景观区域气温、相对湿度以及降水量的变化;(b)不同水体稳定同位素在不同景观区域的组成特征,P为降水,R为径流,M为积雪融水,G为地下水;(c)~(e)不同水体δ2H与δ18O的关系,(c)为冰川-灌丛区,(d)为中高覆盖度草地-森林区,(e)为低覆盖草地-裸地区。02 不同景观区域的径流同位素组成西营河流域不同景观区域径流同位素随NDVI指数以及海拔的变化特征。03 气候对山区径流同位素的影响西营河不同景观区域气象要素与降水稳定同位素的相关性分析,(a)降水δ18O与温度,(b)降水δ18O与相对湿度,(c)降水δ18O与降水量04 自然和人为景观变化对径流稳定同位素的影响西营河流域不同景观区域LEL的变化,LELs为局地蒸发水线。(a)冰川-灌丛区(GSARs),(b)中高覆盖草地-林地区(MHGFARs),(c)低覆盖草地-裸地区(LGBARs)。X轴和Y轴上的柱状统计图代表δ18O和δ2H的分布曲线。西营河流域海拔变化对降水稳定同位素的相关性分析,(a)径流δ18O与海拔,(b)降水δ18O与海拔。西营河降水(a)和径流(c)d-excess的变化,以及西营水库入口(b)和出口(d)处径流水线的变化。研究结论本研究利用典型内陆山区流域不同水体稳定同位素数据,结合相关气象观测数据和植被覆盖(NDVI)数据,为进一步了解内陆山区流域径流稳定同位素变化特征及其控制机制提供了依据。在内陆山区流域,气候和景观特征会随海拔而产生显著差异。因此,我们认为,在内陆山区,径流同位素组成及其控制因素需要做进一步更深入的研究。本研究强调了气象要素以及地表景观的空间差异对内陆山区流域径流稳定同位素的控制过程。这些结果有利于全面认识内陆山区径流稳定同位素的控制机制。1、气象要素通过控制径流的蒸发过程和补给源同位素特征来控制径流同位素变化;2、在植被覆盖度较低的区域,地表景观特征通过改变补给源同位素特征来控制着径流同位素组成;3、在植被覆盖度较高的区域,地表植被覆盖通过控制蒸发过程来影响径流稳定同位素。
  • 赛默飞成功举办第七届稳定同位素比质谱仪用户交流会
    2014年6月18日,上海——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在成都峨眉山世纪阳光大酒店成功举办第七届稳定同位素比质谱仪用户交流会。翠色山峦下,花溪迎曲巷,风景如画的峨眉山迎来了本次会议的参会人员共计100余人,环境、地质、海洋、生态、食品安全等多个行业的稳定同位素比质谱仪资深用户,出席了本次会议。 赛默飞无机质谱销售经理为大会做了开幕致辞,60多年以来,赛默飞始终是稳定同位素分析仪器的领先的供应商,其中,稳定同位素比质谱仪作为无机质谱产品线上最重要的组成部分,提供了久经考验的全球经销、支持和服务网络,在同位素分析领域已获得无数客户的满意和信赖,目前越来越广泛地应用于各行各业。赛默飞无机质谱销售经理 赛默飞无机质谱产品专员为大家介绍了近期发布的稳定同位素分析仪器三款新产品,分别为Delta Ray、MAT253 Ultra和新一代GC – IRMS。1. 小巧便携的Delta Ray稳定同位素比红外光谱仪,采用了DFG中红外激光差频发生器,引用了基于ConFlo IV – IRMS技术的URI万用参考气接口,第一次将气体稳定同位素比的测定从实验室移到了野外,实现了大气CO2同位素比的原位连续观测,获得了CO2的δ13C和δ18O及其浓度的高测定精度和准确度,Delta Ray在碳储量和碳封存、温室气体监测、植物生态学和火山监测等研究方向具有广阔的应用空间。2. MAT253 Ultra 高分辨率稳定同位素比质谱仪,采用了双聚焦磁分析器等新设计,大大提高了质量分辨率,足以区分实际质量非常接近的同位素体,同时,增加了二次电子倍增器,大大降低了检测器的噪音信号,有效地检出了丰度极低的同位素体,针对当前的热门研究——利用耦合同位素 (Clumped isotope)确定矿物形成温度,MAT253 Ultra在测定耦合同位素方面越来越不受到仪器技术的限制。3. 新一代GC – IRMS,采用了最新的前端处理装置,即TriPlus RSH自动进样器、TRACE 1310 GC专用气相色谱仪和GC IsoLink II燃烧和转化单元,色谱分离更彻底,模块化程度更高,连接更简便,而且还能与Thermo ScientificTM的GC-MS系列产品中的任何一款台式质谱仪(例如ISQ单四极杆质谱仪)相结合,组成GC – MS – IRMS联用系统,只需一次注射,即可同时获得复杂混合体系中的每一个目标化合物的结构特性和同位素比信息。Delta Ray、MAT253 Ultra和新一代GC – IRMS三款新产品可作为现有的稳定同位素仪器技术的扩展和补充,为目前开展的更高端、更前沿、更专业的稳定同位素示踪技术与热点应用提供了新的契机。 赛默飞无机质谱产品专员 赛默飞亦有幸邀请到了中科院南京土壤研究所、同济大学、中科院地质与地球物理研究所、中国食品发酵工业研究院、国家地质实验测试中心、广东石油化工学院、核工业北京地质研究院、中科院微生物研究所、河北农科院遗传所、中科院地质古生物研究所等16位特邀专家出席了本次会议,并为本次会议奉献了精彩的报告。 稳定同位素比质谱仪用户交流会的精彩瞬间 赛默飞2014稳定同位素比质谱仪用户交流会合影留念 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • Picarro+LI-2100 | 双同位素+功能基因-研究无土栽培系统中N2O的生产和消耗过程
    中国是最大的温室蔬菜生产国,约占世界生产面积的83%。由于全年生产和大量施肥,温室蔬菜产量高,但也导致了土壤质量的恶化和严重的环境问题。近来,无土栽培系统(SCS)在温室蔬菜生产中逐渐发展起来,它可以减少甚至消除传统栽培方式的许多问题,。在SCS中,无土栽培基质,也称为无土栽培生长介质,可代替土壤固定根系系统,为植物提供水分和养分,为根区提供充足的通风。然而,由于N肥的大量输入,N2O排放较高。N2O是一种温室气体,具有温室效应,加剧全球变暖,在大气中存留时间长,可输送到平流层,导致臭氧层破坏,引起臭氧空洞。无土栽培基质已成为SCS中N2O排放的主要载体,但尚不清楚其产生和消耗的相关途径,因此亟待研究SCS无土栽培基质的N2O排放源。且无土栽培基质与土壤理化和生物性质高度不同,其具有更准确的水和养分分布,因此也有必要确定管理措施对SCS中N2O排放的影响。基于此,在本文中,来自中国农业科学研究院的一组研究团队基于稳定同位素技术结合qPCR分析在两种灌溉模式下(滴灌和潮汐灌溉)对成都市农林科学院((103°86′E,30°71′N)温室里两种无土栽培基质(60%泥炭+20%珍珠岩+20%蛭石+少量植物纤维/商用椰壳纤维基质)进行了相关研究,共设置4种处理:滴灌+泥炭基质(PD),滴灌+椰壳基质(CD),潮汐灌溉+泥炭基质(PT)以及潮汐灌溉+椰壳基质(CT)。旨在:(1)研究两种灌溉模式下典型无土栽培基质的N2O排放,(2)评估N2O排放及其驱动因子之间的关系以及(3)理解N2O生产和消耗的微生物机制。作者于2020年3月12日在育种室进行西红柿播种,4月9日转移至温室中。施肥后的不同时间里收集气体样品,计算NH3和N2O通量,并测量N2O同位素值。同时,收集了无土栽培基质样品,去除可见根系,过筛,测定质量含水量(ω),计算充水孔隙度(WFPS)。然后测定无土栽培基质的NH4+-N、NO3--N、pH、导电率(EC)、有机质(OM)。提取基质中的总DNA,进行qPCR分析。此外,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取基质样品中的水分,利用Picarro L115-I同位素分析仪测定水的δ18O值。通过δ18O和δ15NSP关系图来区分N2O生产和消耗途径。【结果】四种处理下(A)总含水量(B)NH4+-N(C)N2O通量(D)充水孔隙度(E)NO3--N以及(F)NH3通量的时间变化。基于pearson相关方法的不同参数之间的相关性热图。δ18O和δ15NSP关系图(A)以及N2O生产和消耗的微生物过程的贡献(B)。BN:细菌硝化作用;AN:古细菌硝化作用;ND:硝化细菌反硝化作用;BD:细菌反硝化作用。Ni:BN + AN;De:BD + ND。【结论】N2O排放由微生物组而非矿物N含量决定,由基因丰度而非基因拷贝数决定。在N2O产生途径上,泥炭基质以反硝化为主,椰壳基质以硝化为主。在无土栽培系统中,N2O还原(还原-混合)的情况可能更接近现实。反硝化和N2O还原受基质类型而非灌溉方式的影响显著,且在泥炭基质中贡献较大。综上所述,N2O排放及其微生物过程是由基质类型决定的,而非灌溉模式。更重要的是,N2O同位素值和功能基因相结合可阐明N2O产生和消耗的微生物过程。
  • 四川红华打造“国字号”同位素质谱仪
    作为现代化国家综合实力的重要基础,关键核心技术是国之重器,要不来、买不来、讨不来。党的二十大报告强调,要以国家战略需求为导向,集聚力量进行原创性引领性科技攻关,坚决打赢关键核心技术攻坚战。  自1998年第一台自主研发的气体同位素质谱仪问世以来,四川红华实业有限公司分析研发中心始终坚持自主研发道路,走过20余载的探索之路,具有中核特色的自主创新发展蓝图徐徐展开,擦亮高精磁质谱中国智造新名片。  质谱仪科研团队  探索“无人区”  质谱仪是核工业主工艺的“眼睛”,其重要性与安全性不言而喻。  上世纪90年代,四川红华开启了自主研发之路。质谱仪研发涉及精密电子、精密机械、高真空、软件工程、自动化控制、电子离子光学等多项技术及学科,而摆在他们眼前的只有老旧的国外机器。他们一边使用老机器一边探索新方向,同时紧盯国际最新前沿技术,在艰难的求索中踯躅前行。  在前一代科研人员积累的技术基础上,接过前辈接力棒的研发人员充分发挥运维经验优势,加速突破,终于在1998年的冬天筑梦成功——一台名为BFQT-5的气体同位素质谱仪样机在大山深处横空出世,“机器上的螺丝钉都是我们自己的”。该质谱仪填补了国内空白,其技术性能已达到国际同类先进水平。  走出了科研人员完全掌握整机研发制造技术的第一步,又该如何持续改进样机并使其转化为生产力?2002年,四川红华与某研究院签订了商务合同,经过一年多的努力,第一台商用质谱仪成功交付用户,为开拓仪器市场打下坚实基础。  此后的10余年里,科研人员以实现核用商用级质谱仪中国智造为目标,不断创新设计、优化性能、完善工艺,使之定型并达到批量生产的能力,共研制、销售了30余台质谱仪,销售产值达2亿元。  BFQT-5的气体同位素质谱仪样机  耕耘“丰产田”  在研发中心大厅里,有一面特别的“专利墙”,墙壁上密密麻麻地挂着各式各样的专利证书——“高灵敏度同位素分析质谱仪离子源”、“一种高精密质谱仪磁分析系统”、“质谱仪薄壁冷阱的制造方法”……每一张证书都见证着一项关键技术被攻克,也见证着不同型号的质谱仪的孕育和落地。  历经几十年如一日的不懈奋斗,仪器的分析精度越来越高、干扰越来越小、系统更加稳定可靠、操作更加便捷、功能愈发强大。此外,研发人员还完成了核能开发项目及高分辨质谱仪研制,参与完成科技部国家重大科学仪器设备开发专项项目。  为实现质谱仪产业化,2020年7月,四川红华成立质谱仪开发部,一年后,2021年4月,分析仪器研发中心在成都温江成立,是国内唯一、世界第三家具有核用商用级高精磁质谱仪正向开发、设计、制造、销售、维护能力全链条的研发中心。  “从开发部成立起,我们就一直致力于无机高精磁质谱的研究,不到两年就成功研制出G900和T900质谱仪,其各项性能指标均达到国际先进水平。”研发中心副主任李海军介绍道,“现在,我们是美国和德国之外第三个突破这项技术的国家。”  为了突破这项技术,这位荣获多项国家“专利”的技术大拿,带领着研发人员,一步步调研、探索、尝试、推翻重来,仅设计图纸就达上万张。刚入职一年的四川大学研究生李浩云打趣道:“新时代的年轻人就得有一股‘闯’劲,才能冲破迷局,才能把高新技术、核心技术掌握在咱们自己手里!”  擦亮“国字牌”  “我们的研发方向,就是做国家需要的事!”研发中心主任林跃武表示:“国产质谱仪研发正处于‘冲顶’之时,尽管担有千钧,但绝不能有丝毫松懈,打造具有全球竞争力的‘国字号’质谱仪,也是我们每一个人的毕生事业与终极理想。”  从青丝到白发,55岁的林跃武,是质谱仪科研团队中最年长且最有经验的专家,一直领航着科研人员奋战在质谱科研最前线。面对研发任务,他不顾心脏安装着支架的特殊身体状况,毅然挂帅出征,带领由老中青三代20多人组成的“科研铁军”再一次冲击“新高地”。  欲流之远者,必浚其泉源。据研发人员介绍,研发中心已开发全谱系的特种气体同位素、热电离、双聚焦高分辨质谱仪,目前正在加速研发新型气体同位素、ICP质谱仪。这5种新型的超高灵敏设备,不仅对进样方式进行了拓展,也实现了同位素检测由中子密度法向质谱分析法的升级,更重要的是,它们将普遍应用于所有型态以及核工业特殊材料的分析。在持续提升技术的同时,研发中心将在未来不断拓展更多技术应用场景,最终使质谱分析技术在未来切入到生活的每个领域。
  • 从2017年无机及同位素质谱学术大会看岛津无机质谱技术新进展
    2017年8月19日,由中国质谱学会、表面物理与化学重点实验室主办2017年中国质谱学会无机及同位素质谱学术会议在四川成都隆重揭幕。来自高校、科研院所、以及相关企业的200余人参加了本次会议。组委会邀请了相关质谱领域的院士和著名学者进行大会报告,同时举行分组专题报告和墙报论文展示,交流无机质谱、同位素质谱以及相关技术的最新研究、仪器研发和应用成果。 大会现场传真 会议由本次会议组织委员会主任、北京师范大学教授谢孟峡主持开幕,中国质谱学会副理事长、核工业北京地质研究院郭冬发研究员,中国工程物理研究院机械制造工艺研究所王宝瑞所长,中国核工业建设集团公司研究员李金英致开幕词,期待本次大会能够增进质谱事业的发展以及质谱设备研发水平的提高。简短的开幕仪式后,进入大会报告环节。中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告,介绍了材料与试验标准体系现状,以及中国材料与试验团体标准CSTM的情况。他强调标准应该是前端的、与技术同步。随后,中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告,核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告,清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告,中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告,上述权威专家的大会报告中,与“核”相关的报告有3个之多,可见无机及同位素质谱技术在核工业领域的广泛应用。 中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告 中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告 核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告 清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告 中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告 岛津公司倾情赞助了本次大会并披露了在无机及同位素质谱的最新研究成果。在“无机质谱技术及应用”分会上,岛津公司分析测试仪器市场部的资深技术专家石欲容博士做报告,重点介绍了岛津无机质谱的联用技术,岛津公司可以提供LC、GC、IC、CE、LA与ICPMS联用的所有产品及技术支持。她在报告中主要介绍了岛津的LC-ICPMS做汞形态分析及地下水中硼、溴、碘形态价态的同时分析。汞的形态分析需要考虑汞的残留,岛津公司的联用系统采用全惰性的液相色谱,PEEK材质的泵头、管路、进样针、联机组件的切换阀,同时也采用了一根带PEEK内衬的C18柱,将汞的残留降低到最低,在等度的条件下将二价汞、甲基汞、乙基汞进行了很好的分离。由于硼大量的工业化应用,加上水臭氧消毒过程将水中的溴、碘氧化成具有一定毒性的衍生物,岛津公司采用离子色谱柱,在等度的条件下同时分析了硼、溴、碘形态分析,同时加标回收、重现性、检测限都得到理想的结果。此外,岛津公司分析中心的技术专家还发表了多篇代表岛津公司先进水平的墙报,引起与会者的关注。 岛津公司分析测试仪器市场部石欲容博士做报告 岛津展台传真 并排而列的岛津公司分析中心的墙报发表引起与会者的关注 岛津分析中心孙友宝与他的发表墙报《电感耦合等离子体质谱法同时测尿的液中多种元素》人体内的痕量元素可以分为必需元素(如Se、Mo、Co、Cu、Zn 等)和有毒元素(如Be、 Pb、Cd等)两大类。通过对尿液中痕量元素的监测,本文参考《SFZ JD0107017-2015 生物检材中32种元素的测定电感耦合等离子体质谱法》,采用直接稀释前处理方法,使用岛津ICPMS-2030型电感耦合等离子体质谱仪测定了尿液中的多种金属元素的含量并通过加标回收率实验对方法进行了验证。实验结果表明,各元素线性相关系数大于0.999,该方法精度在5%以内,元素检测线在0.001-0.07μg/L,尿液样品回收率在90%~110%之间。该方法操作简单,定量准确,线性范围宽,可满足人尿中多种金属元素成分分析的要求。 岛津分析中心盖荣银与他的发表墙报《ICPMS-2030测定中药材甘草中砷、镉、铜、汞、铅元素的含量》对于中药市场的检查发现,市场上的甘草存在硫熏、细菌、重金属超标等问题,达不到药用要求,甚至出现伪品,冒充甘草出售。所以对于中药材甘草中砷、镉、铜、汞和铅重金属的测定非常重要。本文使用岛津ICPMS-2030直接测定中药材甘草样品中重金属元素的含量,并进行加标回收实验。加标回收率在98.6%~101%之间。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,可行性高等特点,可以完全满足药典规定的 岛津分析中心曾力与他的发表墙报《ICPMS 同时测定人发中多种金属元素的含量》人体含有多种必需的、非必需的和有害微量金属元素。准确检测这些微量元素,有利于指导人们的膳食结构,控制人体体液的离子平衡,保障身体健康。本文采用岛津新品电感耦合等离子体质谱仪 ICPMS-2030 结合微波消解前处理方法,测定了头发样品中的 23 种金属元素含量的方法。将所建立方法应用于人发标准物质中的金属含量分析,分析结果线性相关系数良好, r0.9998,实验结果与标准值吻合,方法准确、可靠。该方法具有灵敏度高,检出限低,易于操作的特点,为人发样品中的金属元素测定提供了有用的参考。 岛津分析中心钟跃汉与他的发表墙报《HPLC-ICP-MS 法测定环境水样中的形态汞》水环境中的汞及其化合物是全球性污染物,是欧美、日本、俄罗斯和中国等多个国家优先控制的污染物之一。本文建立了联用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030,使用PEEK column InertSustain C18, 4.6*250mm, 5μm 色谱柱分离测定环境水样地表水和地下水中无机汞、甲基汞和乙基汞含量的方法。将所建立方法应用于环境水样地表水和地下水中的汞形态分析,分析结果线性相关系数良好,r0.9998,加标回收率在 83.1%~106.6%之间,方法准确、可靠。该方法不仅可以同时分析不同形态的汞,并且具有灵敏度高,检出限低,易于操作的特点,为环境水样品中的汞形态分析测定提供了有用的参考。 在大会举办前夜,岛津公司举办了招待晚宴,为全体与会嘉宾提供了一个轻松交流的平台。岛津公司分析测试仪器市场部胡家祥部长发表了热情洋溢的致辞。首先他对能够在魅力城市成都与各位新老朋友相聚表示非常高兴。他在致辞中指出,目前在各个领域无机质谱和同位素质谱所发挥的重要日益显著,岛津公司不断革新与挑战,开发生产具有高附加价值的产品。岛津推出的ICPMS-2030电感耦合等离子体质谱仪具有显著优势,在推出后短短的一年中得到了包括医药、环境、疾控、农业、独立检测等领域众多客户的高度认可与好评。他在致辞的最后表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用。 岛津公司分析测试仪器市场部胡家祥部长发表致辞,表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用
  • 聚焦碳监测!Sercon同位素检测系统助力温室气体精准溯源
    引言我国的碳达峰碳中和是国际上排放规模最大、排放降速最快、转型任务最重、投入成本最高的复杂系统工程。为贯彻2021年全国生态环境保护工作会议精神,生态环境部编制了《碳监测评估试点工作方案》(环办监测函〔2021〕435号),推进碳监测评估体系建设,为落实减污降碳总要求作出积极贡献。方案选取上海、杭州太原等16个城市,试点开展大气中主要温室气体浓度监测,探索自上而下的碳排放量反演方法,形成技术指南,构建温室气体监测量值溯源体系。并试点开展盐沼、红树林、海草床和海藻养殖海洋碳汇监测,构建典型海岸带生态系统和海藻养殖碳汇监测技术体系。检测项目包括:高精度CO2、高精度CH4、高精度气象参数,碳同位素(13CO2)和碳同位素(14CO2)等。 Cercon CryoFlex- HS2022 IRMS:高效准确的温室气体同位素检测系统二氧化碳(CO₂)、氧化亚氮(N₂O)、甲烷(CH₄)是大气中主要的温室气体。产生温室气体的因素复杂多样,且排放主体难以确定。与过去更注重末端降碳减排相比,如今越来越多的城市开始将功课前移,对温室气体的“精准溯源”成为治理的第一步,实现精细化排查。英国Sercon公司开发的CryoFlex-HS2022 IRMS系统为温室气体的同位素检测提供了全面的解决方案。图1 CryoFlex-HS2022 IRMS系统左侧为CryoFlex-CryoGas系统,包含 GC柱、CO/CO2 化学捕集器及开放式杜瓦瓶液氮系统;右侧为HS2022稳定同位素比质谱其中CryoFlex是一款多功能痕量气体净化富集装置,基于冷冻富集聚焦及色谱分离原理,并借助化学捕集和热解/燃烧技术,对温室气体(CO2、CH4、N2O)以及CO、N2、NO等多种气体进行富集净化,并与HS2022稳定同位素比质谱联机,用于测定C、H、O、N等多元素的稳定同位素比值。图2 CryoFlex系统原理结构示意δ13C-CH4 测定:样品经CO/CO2化学捕集,通过低温回路T1(-196℃),去除可冷凝气体后进入热解炉将CH4燃烧生成的CO2冷凝保留在T2中,升温使CO2蒸发转移到T3,并从T3 转移到色谱柱中进行痕量气体分离。最后通过 HS2022-IRMS测定δ13C-CH4。性能测试结果图3测试表明HS2022-IRMS系统可精确测量100 mL空气样品中的δ13C-CH4和δ2H-CH4值,可达理想的识别精度(分别为0.3‰和3.0‰)。图 3 δ13C-CH4 (A)和δ2H-CH4(B), 100 and 0.8 nmol CH4天然样品中CH4同位素比值变化极大,而HS2022- IRMS系统较宽的动态范围,可将样品记忆效应的影响降至最低。图4显示HS2022-IRMS系统系统用于测定δ13C-CH4和δ2H-CH4,结果均在允许误差范围内,且未观察到明显的样品残留。 图4 同位素残留试验Sercon CryoFlex- HS2022 IRMS稳定同位素比质谱系统的优势:l HS2022稳定同位素比质谱采用全不锈钢和金属垫圈结构的质谱飞行管,确保高真空度,最小化本底;l 离子源采用高稳定性、长寿命镀钍灯丝;l 真正的差动泵真空系统,真空度低至1×10-9mbar,确保离子传输效率;l 离子源配备额外真空泵,保证离子化效率,减少副反应;l 卓越的灵敏度及联机精度;l CryoFlex痕量气体富集净化系统采用一体化设计,集转化炉和冷阱与一体,无需额外管路连接,可轻松完成痕量气体的净化富集;l CryoFlex可配置1500℃高温的裂解炉,用于CH4中H的转化;l 自动进样器可适配 6 /12/30/60/125/ 250 mL等多种规格的样品瓶;l CryoFlex也可作为多功能接口与多种外设(如TOC、LA)联机使用。
  • 华嘉公司参加在深圳举行的“同位素地球化学与同位素地质分析研讨会”
    瑞士华嘉公司, 做为英国IsoPrime稳定同位素质谱仪的中国总代理,将于2008年12月15日--17日参加在深圳举行的由中国国土经济学会主办的&ldquo 同位素地球化学与同位素地质分析研讨会&rdquo , 宣传推介最新型号的IsoPrime IRMS 同位素质谱仪分析系统。
  • 地质地球所提出硫化物颗粒的高精度硫同位素分析方法
    硫化物是自然界中常见的一类矿物,其形成往往与地质运动或生命活动相关。硫化物中的硫同位素组成是示踪生命活动,厘定地质过程的重要依据。传统离子探针硫同位素分析精度虽然可以达到0.1-0.2 &permil ,但其束斑一般为10-30 &mu m,不适用于微生物活动相关的微细硫化物颗粒(5 mm)和硫化物复杂环带等样品的硫同位素分析。纳米离子探针具有高空间分辨的特点,但通常其分析精度较传统离子探针逊色,前人在~2 mm空间分辨下,硫化物硫同位素分析的精度仅为2-4&permil ,制约了其在地球科学中的应用。   为获得更高的空间分辨和分析精度,中国科学院地质与地球物理研究所地球与行星物理院重点实验室张建超工程师与其合作者以纳米离子探针为平台,开展了超高空间分辨与高精度的硫同位素分析方法研究。QSA效应(电子倍增器无法记录几乎同时到达的两个离子而造成的测量误差)是制约高精度同位素分析的关键因素,该研究创新性地提出了精确校正QSA效应方法,并成功研发了不同空间尺度内硫同位素高精度分析的实验方法,其空间分辨和外部分析精度分别为:~5 mm尺度内分析精度0.3&permil 、 ~2 mm尺度内分析精度0.5&permil 、 ~1 mm尺度内分析精度1&permil 。这一结果是同等空间分辨下最优的分析精度,处于国际领先水平层次,能够满足微米-亚微米尺度的硫化物颗粒(如草莓状黄铁矿)及复杂环带的高精度硫同位素分析的需求。   该研究成果近期发表在国际分析技术刊物Journal of Analytical Atomic Spectrometry 上(Zhang et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry, 2014, 29(10) : 1934-1943)。   地质地球所提出硫化物颗粒的高精度硫同位素分析方法
  • 我国已形成同位素计量基标准
    记者从中国计量科学研究院获悉,国家“十一五”科技支撑计划项目《以量子物理为基础的现代计量基准研究》中的“同位素丰度基准的研究”课题,日前通过国家质检总局组织的专家验收。该课题形成了具有自主知识产权的同位素计量基标准,填补了我国同位素丰度基准研究空白,建立了锌、钐、硒、镉、镱5种元素的同位素基准测量方法,研制了锌、钐、硒、镉4种元素同位素系列基准物质共计152种、系列标准物质共计50种,测定了硒、镱的原子量。   元素的同位素组成被认为是其特有“指纹”。中国计量科学研究院联合中科院地质与地球物理研究所等3家单位开展同位素丰度基准方面研究,在国际上首次在宽泛的锌、钐、硒、镉4种元素的同位素比值变化范围内,研究了多接收电感耦合等离子体质谱的质量歧视效应变化规律 首次建立了使用3种以上浓缩同位素配制校正样品的硒、镱同位素的绝对质谱测量方法 推导出不确定度灵敏系数的计算公式 锌、钐、镉、硒、镱主同位素丰度比测量值的不确定度,达到国际领先或先进水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制