当前位置: 仪器信息网 > 行业主题 > >

三二叔丁基羟基

仪器信息网三二叔丁基羟基专题为您提供2024年最新三二叔丁基羟基价格报价、厂家品牌的相关信息, 包括三二叔丁基羟基参数、型号等,不管是国产,还是进口品牌的三二叔丁基羟基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三二叔丁基羟基相关的耗材配件、试剂标物,还有三二叔丁基羟基相关的最新资讯、资料,以及三二叔丁基羟基相关的解决方案。

三二叔丁基羟基相关的资讯

  • 食品中抗氧化剂检测解决方案
    食品抗氧化剂是能阻止或延缓食品氧化变质、提高食品稳定性和延长贮存期的食品添加剂。氧化不仅会使食品中的油脂变质,而且还会使食品退色、变色和破坏维生素等,从而降低食品的感官质量和营养价值,甚至产生有害物质,引起食物中毒。但过量使用抗氧化剂也可能对人体的肝脏、肾脏等产生有不利影响,有的甚至还有致畸、致癌。 近期某知名品牌爆出非法添加过量抗氧化剂。Sigma-Aldrich积极响应热点话题,提供食品中抗氧化剂检测解决方案,提供HPLC和GC两种方法。 美国AOAC 983.15是检测油、脂肪、黄油中酚类抗氧化剂的方法。依据AOAC方法,采用Ascentis RP-Amide液相色谱柱能将方法中的物质在13min内实现完全分离。Sigma-Aldrich同时提供气相色谱解决方案,能分离几种常见的抗氧化剂。 AOAC 983.15方法液相分离抗氧化剂 色谱柱:Ascentis RP-Amide, 15 cm x 4.6 mm内径, 5 &mu m (货号565324-U) 流动相A:5%乙酸溶于去离子水 流动相B:95:5 甲醇:乙腈 流速:2.0 mL/min. 温度:30 ° C 检测器:UV,280 nm 进样量:10 &mu L 样品:分析物各10ug/ml溶于乙腈:2-丙醇 50:50中 梯度: Min A% B% 0 65 35 12 5 95 16 5 95 1. 乙氧喹 2. 没食子酸丙酯 3. 2,4,5-三羟基苯丁酮(THBP) 4. 叔丁基对苯二酚(TBHQ) 5. 去甲二氢愈创木酸(NDGA) 6. 叔丁基对羟基苯甲醚(BHA) 7. 2,6-二叔丁基-4-羟甲基-苯酚(Ionox 100) 8. 没食子酸辛酯 9. 3,5-二叔丁基-4-羟基甲苯(BHT) 10. 没食子酸月桂酯 气相色谱方法分析常见抗氧化剂 色谱柱: SAC-5, 30 m × 0.25 mm内径, 0.25 &mu m (货号24156) 柱温: 200 ° C 检测器: FID, 250 ° C 载气: 氦气,30 cm/s 进样量: 2 &mu L,分流 100:1 样品: 200 &mu g/mL 每个组分 1.叔丁基对羟基苯甲醚 (BHA) 2.3,5-二叔丁基-4-羟基甲苯 (BHT) 3.叔丁基对苯二酚 (TBHQ) 4.乙氧喹 5.2,6-二叔丁基-4-羟甲基-苯酚(Ionox 100) 6.2,4,5-三羟基苯丁酮(THBP) 7.没食子酸丙酯 (PG) 色谱耗材 货号 描述 规格 目录价(元) 565324-U Ascentis RP-Amide液相色谱柱 15 cm x 4.6 mm, 5 &mu m 3037.25 24156 SAC-5气相毛细管色谱柱 30 m × 0.25 mm x 0.25 &mu m 4899.96 标准品 货号 中文名 英文名 CAS 包装 目录价 47168 3,5-二叔丁基对甲酚 (BHT) 3,5-Di-tert-4-butylhydroxytoluene 128-37-0 500mg 228.15 31519-250MG 乙氧喹 Ethoxyquin 91-53-2 250mg 226.98 91215-100MG 没食子酸 Gallic acid 149-91-7 100mg 1120.86 PHR1118-1G 没食子酸丙酯 Propyl gallate 121-79-9 1g 656.37 47863 L-抗坏血酸 L-Ascorbic acid 50-81-7 1g 198.9 47783 DL-&alpha -维生素E DL-&alpha -Tocopherol 10191-41-0 100mg 290.16 76524-100MG 甘氨酸 Glycine 56-40-6 100mg 1178.19 40048-U 酚类抗氧化剂标准品套装 Phenolic Antioxidant Kit 2                     Kit 1729.26                   没食子酸丙酯 (PG) Propyl gallate 500mg 叔丁基对苯二酚 (TBHQ) tert-Butylhydroquinone 500mg 去甲二氢愈创木酸 (NDGA) Nordihydroguaiaretic acid 500mg 叔丁基对羟基苯甲醚 (BHA) Butylated hydroxyanisole 500mg 2,6-二叔丁基-4-羟甲基-苯酚 2,6-Di-tert-butyl-4- hydroxymethylphenol(Ionox-100) 500mg 3,5-二叔丁基-4-羟基甲苯 (BHT) 3,5-Di-tert-butyl-4-hydroxytoluene 500mg 没食子酸月桂酯 Lauryl gallate 500mg 没食子酸辛酯Octyl gallate 500mg 乙氧喹 Ethoxyquin 500mg 关于Supelco 美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco(上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001)正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 生态环境部发布《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年6月12日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)  3.《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》编制说明    生态环境部办公厅  2023年5月6日  (此件社会公开)
  • 携领新品,震撼来袭|抗氧化剂检测样品预处理方法包(气相法)
    我们新研发推出的气相色谱法检测液态油脂中3种合成抗氧化剂(TBHQ、BHA、BHT)——样品预处理专用方法包B系列产品,从常温下呈液态的食用动植物油脂和含油食品提取的液态油脂样品中,实现同时提取、分离和净化这3种合成抗氧化剂,以用于气相色谱技术对这些合成抗氧化剂的检测。本系列样品预处理方法包主要用于叔丁基对苯二酚(TBHQ)、叔丁基对羟基茴香醚(BHA)和 2,6-二叔丁基对甲酚(BHT)的检测,这三种合成抗氧化剂是我国广泛使用的、合法的油溶性合成抗氧化剂,其作用主要是减缓食用油脂(包括含油食品中的油脂)氧化变质的速度,其zui大添加限量(以油脂中的含量计)均为200mg/kg。目前,国家标准中用于气相色谱检测这些合成抗氧化剂的预处理技术为凝胶渗透色谱技术(GPC),GPC法是一种使用多孔填料或多孔交联高分子凝胶作分离介质的液相色谱技术。需要昂贵的专用仪器——凝胶渗透色谱仪,以及专用耗材——凝胶渗透色谱柱,色谱柱损耗也较快,成本高昂。由于GPC技术需要大量的流动相,每预处理一个样品,需要消耗上百毫升的有机溶剂,且单次只能处理一个样品,效率较低。预处理后收集的溶液量比较大,单次实验要对几十毫升溶剂进行浓缩蒸干,对实验人员危害较大。并且GPC难以去除与目标分子大小相近的杂质分子,影响气相检测效果。本系列方法包分型:气相色谱法检测液态油脂中3种合成抗氧化剂(TBHQ、BHA、BHT)样品预处理专用方法包分为BL-1型和BL-2型。本系列方法包主要的优势1预处理成本低:无需昂贵的仪器和耗材,仅需多管涡旋振荡器、离心机等实验室常规仪器和耗材;2预处理效率高:每次实验可对多个样品进行预处理操作,最短耗时可控制在15min左右;3有机溶剂用量少:每个样品预处理操作消耗不到30mL;4安全环保:无需对大量有机溶剂进行蒸发浓缩的操作,减小对实验人员的危害;5净化效果好:可去除绝大部分的甘油三酯及其衍生物,有效防止对气相色谱仪器和色谱柱的污染,同时降低油脂中的其它杂质对气相检测合成抗氧化剂的干扰;6回收率高、稳定性好:一般情况下,TBHQ、BHA、BHT的回收率在80%~110%之间,各自回收率的重复性RSD典型气相色谱检测条件和检测色谱图1气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2进样口温度:230℃;3升温程序:初始以80℃的柱温维持1.5min,然后以10℃/min的升温速度将柱温升到250℃,并维持5min;4检测器温度:250℃;5进样量:1μL;6进样方式:进样后以不分流模式维持1.5min,然后以1:10的分流比进行分流模式的检测;7载气:氮气,纯度≥99.999%,流速1mL/min。8检测色谱图:
  • 日立应用|是什么防止了材料的氧化变色?
    前言抗氧剂1010化学名为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯,是一种主抗氧剂,具有防止由光和热引起变色的作用。抗氧剂168化学名为三[2.4-二叔丁基苯基]亚磷酸酯,能显著提高制品的光稳定性。抗氧剂168是一种辅助型抗氧剂,可以与主抗氧剂1010并用发挥协同效应,提高抗氧化效果,广泛应用于通用塑料、工程塑料、合成橡胶、纤维、热熔胶、树脂、油品、墨水、涂料等行业中。本实验根据中国化工行业标准HG/T 3713-2019和HG/T 3712-2010分别对抗氧剂1010和抗氧剂168样品进行测定,分析这两种样品的含量,并与标准规定的技术要求进行确认。1分析条件仪器配置:日立Primaide高效液相色谱仪,包括PM1110泵、PM1210自动进样器、PM1310 柱温箱、PM1410紫外检测器。日立Primaide高效液相色谱仪1抗氧剂1010色谱条件色谱柱:Hitachi LaChrom(5μm),4.6 x 250 mm流动相:A为甲醇,B为水,采用梯度洗脱;B起始比例为90%,在8min内变为100%,并保持14min。流 速:1.5 mL/min柱 温:40 ℃检测波长:275nm进样量:10μL2抗氧剂168色谱条件色谱柱:Hitachi LaChrom Ultra(5μm),4.6 x 150 mm流动相:甲醇流 速:1.2 mL/min柱 温:40 ℃检测波长:275nm进样量:10μL2测试结果寒假时间即将到来,为了让孩子们度过一个安全、愉快有健康的寒假生活,幼儿园寒假放假通知温馨提示,请各位家长做好孩子的安全防护工作。1抗氧剂1010样品测定称取抗氧剂1010样品0.08~0.1g,置于50mL容量瓶中,加入25mL乙酸乙酯使样品溶解完全,再加入甲醇至刻度,摇匀,超声脱气,过膜上机。抗氧剂1010样品测定抗氧剂1010样品结果表根据HG/T 3713-2019标准,计算抗氧剂1010的主含量和有效组分含量,其中抗氧剂1010主含量为96.868%,可以满足技术指标≥94%;有效组分的质量分数≥99.089%,可以满足技术指标≥98%。2 抗氧剂168样品测定称取抗氧剂168样品80~100mg,置于50mL容量瓶中,加入25mL乙酸乙酯使样品溶解完全,再加入甲醇至刻度,摇匀,超声脱气,过膜上机。标准样品测定抗氧剂168样品测定抗氧剂168样品结果表通过测定标准样品的峰面积,得到抗氧剂168标样和2,4-二叔丁基苯酚的校正因子分别是2.42*10-5和9.27*10-6。根据HG/T 3712-2010标准,代入校正因子进行计算,得到样品中抗氧剂168主含量为99.32%,可满足标准的技术要求≥99%;2,4-叔丁基苯酚含量为0.12%,可满足标准的技术要求≤0.2%。3实验结论使用日立Primaide HPLC建立了抗氧剂1010和抗氧剂168的分析方法,可以很好地对其进行定性和定量分析;其中抗氧剂1010样品的主含量≥94.0%、有效组分含量≥98.0%,抗氧剂168样品的主含量≥99.0%、2,4-叔丁基苯酚含量≤0.2%,均能完全满足中国化工行业标准的技术要求。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 今年中秋节,你吃的月饼检测过抗氧化剂了吗?
    佳节团圆不忘食品安全月饼是我们中华民族中秋节传统的美食,深受大家的喜爱。但你们知道吗,月饼可是典型的高油脂含量食品,虽然不同种类的月饼其配方也不同,但一般而言,月饼的含油率在20%左右,甚至更高。同时,月饼还是高蛋白含量、高糖含量的食品,所以月饼是典型的“三高”食品,再喜欢吃,也要少吃。正是由于月饼营养丰富,所以月饼的保质期比较短,一般为20天~90天左右。为此,许多生产厂家就千方百计的、想方设法延长月饼的保质期,其中在生产月饼所用的食用油脂原料中添加合成抗氧化剂,就一种有效而低成本的方法。根据《食品安全国家标准 食品添加剂使用标准》(GB 2760-2014)的规定,目前共有4种化学合成的酚类物质,可作为合法的食品抗氧化剂,分别为没食子酸丙酯(PG)、叔丁基对苯二酚(TBHQ)、叔丁基对羟基茴香醚(BHA)和 2,6-二叔丁基对甲酚(BHT)。这4种合成抗氧化剂一般具有较好油溶性,并表现出延缓各类食品氧化变质速度的作用,主要添加于各类食用动植物油脂、油脂制品(如人造奶油等)和含油食品(如油炸面制品、月饼、饼干、焙烧食品、膨化食品等)。其中又以叔丁基对苯二酚(TBHQ)抗氧化效果比较好、油溶性较稳定而在食品行业中应用的最为广泛。但作为化学合成的物质,若TBHQ在食品中添加量过多,就会对人体建康造成不利的影响,所以《食品安全国家标准 食品添加剂使用标准》对食品中TBHQ的添加量是有严格限制的,在食品生产中超限量添加TBHQ是严重违反食品安全法的行为。此外,若在月饼生产过程中添加TBHQ,按照我国现行相关的食品安全法律法规的要求,必须在月饼包装的配料表中明确标明,该月饼产品中添加了TBHQ,否则,即使添加量未超过限量,也属于违法行为。那如何检测月饼中是否添加了TBHQ? 目前高效液相色谱技术是国内主要测定食品中TBHQ含量的检测技术之一。但是由于月饼的成分复杂,且多变,极易对高效液相色谱技术的检测造成干扰,甚至污染、堵塞宝贵的液相色谱柱,所以从月饼中提取、分离和净化各种合成抗氧化剂的技术——样品预处理技术就成为了检测的关键。在这里向大家推荐我们月旭科技(上海)股份有限公司研发的新产品——高效液相色谱检测食品中合成抗氧剂专用样品预处理方法包(AL-1型)。其具体的操作如下:月饼中油脂的提取. 1将一定量的月饼将其完全研磨捣碎并混匀,加入其样品体积3-6倍的石油醚(30℃~60℃沸程),搅拌分散后,静置浸泡过夜。再过滤取清液收集于烧瓶中,于45℃的的水浴中,将石油醚全部旋转蒸发蒸干,剩余的不挥发的液体为月饼中提取的食用油脂。样品预处理. 2取2g所提取的油脂样品,按照AL-1型样品预处理方法包的操作说明书进行TBHQ的提取、分离和净化操作。如流程示意图所示。高效液相色谱检测. 3液相检测色谱条件:1)液相色谱柱分析柱:Ultimate® XB-C18,4.6mm×250mm,5μm,(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,(货号:00808-04001)(配不锈钢保护柱柱套,货号:00808-01101)。2)流动相A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序4)流速:1.0mL/min;5)检测波长:280nm;6)柱温:35℃;7)进样体积:20μL。液相检测样品预处理专用方法包操作流程示意图典型检测结果. 4采用月旭科技(上海)股份有限公司研发的高效液相色谱检测食品中合成抗氧剂专用样品预处理方法包(AL-1型),货号:ATOX4-P01,可以快速、高效的从各种月饼提取的食用油脂中分离、提取和净化TBHQ,从而可以保障最终高效液相色谱技术对其中TBHQ含量的测定。
  • 446项行业标准及72行业标准样品报批公示,涉及光谱、质谱、电镜等检测方法
    根据行业标准制修订计划,相关标准化技术组织已完成《电池用二氧化钛》等73项化工行业标准、《氧化石墨烯粉体定性分析 傅里叶变换红外光谱法》等118项冶金行业标准、《动力锂电池用铝壳》等137项有色金属行业标准、《黄金行业数字化车间 通用要求》1项黄金行业标准、《耐碱玻璃纤维网布》等54项建材行业标准、《烧结2:17型钐钴永磁材料》1项稀土行业标准、《船舶行业企业工作场所照明管理规定》等3项船舶行业标准、《风味食用盐》等48项轻工行业标准、《一次性蒸汽眼罩》等10项纺织行业标准、《热收缩标签》1项包装行业标准的制修订工作及《钢中碳硫标准样品4#》等72项冶金行业标准样品的研制工作。在以上标准及标准样品发布之前,为进一步听取社会各界意见,现予以公示,截止日期2024年7月24日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2024年6月25日—2024年7月24日工业和信息化部科技司 2024年6月25日446项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准化工行业1 HG/T 6294-2024电池用二氧化钛本文件规定了电池用二氧化钛的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于电池用二氧化钛2 HG/T 6314-2024抗氧剂 1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯(1330)本文件规定了抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2,6-二叔丁基苯酚、均三甲苯为原料合成抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的质量控制3 HG/T 6315-2024抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯(245)本文件规定了抗氧剂三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2-叔丁基-6-甲基苯酚、二缩三乙二醇为原料合成抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的质量控制4 HG/T 6316-2024电池用氢氧化钾本文件规定了电池用氢氧化钾的分类、要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于精制氯化钾经离子膜法电解所得的电池用氢氧化钾5 HG/T 6317-2024硅铝基蜂窝支撑填料本文件规定了硅铝基蜂窝支撑填料的产品分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于硅铝基蜂窝支撑填料6 HG/T 6318-2024碱式硫酸镁晶须本文件规定了碱式硫酸镁晶须的要求、试验方法、检验规则、标志及随行文件、包装、运输和贮存本文件适用于碱式硫酸镁晶须7 HG/T 6319-2024工业氢碘酸本文件规定了工业氢碘酸的要求、试验方法、检验规则、标志、标签和随行文件以及包装、运输和贮存本文件适用于工业氢碘酸8 HG/T 6320-2024硝酸羟胺水溶液本文件规定了硝酸羟胺水溶液的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于硝酸羟胺水溶液9 HG/T 6322-2024超薄压敏胶粘带本文件规定了超薄压敏胶粘带的产品分类、技术要求、检验规则及标志、包装、运输和贮存,描述了相应试验方法本文件适用于以聚对苯二甲酸乙二醇酯为基材的超薄压敏胶粘带10 HG/T 2902-2024模塑用聚四氟乙烯树脂本文件规定了模塑用聚四氟乙烯树脂的技术要求,描述了相应的取样、试样制备、试验方法,规定了标志、包装、运输和贮存等,给出了术语、定义和便于技术规定的产品分类本文件适用于悬浮聚合法生产的模塑用聚四氟乙烯树脂HG/T 2902-199711 HG/T 3028-2024糊状挤出用聚四氟乙烯树脂本文件规定了糊状挤出用聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于分散法聚合生产的糊状挤出用聚四氟乙烯树脂本文件不适用于含有着色剂、填充剂的聚四氟乙烯树脂HG/T 3028-199912 HG/T 2903-2024模塑用细颗粒聚四氟乙烯树脂本文件规定了模塑用细颗粒聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于悬浮聚合法生产并经粉碎制得的白色粉状聚四氟乙烯树脂HG/T 2903-199713 HG/T 2904-2024聚全氟乙丙烯树脂本文件规定了聚全氟乙丙烯树脂的分类、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由四氟乙烯和六氟丙烯为主要原料制得的聚全氟乙丙烯树脂HG/T 2904-199714 HG/T 2017-2024普通运动鞋本文件规定了普通运动鞋的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于热硫化工艺生产的,供一般体育锻炼穿用的胶鞋HG/T 2017-201115 HG/T 3085-2024橡塑冷粘鞋本文件规定了橡塑冷粘鞋的术语和定义、要求、试验方法、检验规则以及标志、包装、运输和贮存本文件适用于鞋底以橡塑并用或热塑性弹性体、聚氨酯等为主要材料,鞋面以合成或天然材料为主要材料,以冷粘工艺生产的一般穿用的鞋HG/T 3085-201116 HG/T 3086-2024橡塑凉、拖鞋本文件规定了橡塑凉、拖鞋的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输、贮存本文件适用于以合成或天然材料为帮带材料,橡塑并用体、热塑性弹性体和浇注型聚氨酯等为鞋底材料,以冷粘、组装、注射成型等工艺生产的一般穿用的橡塑凉、拖鞋HG/T 3086-201117 HG/T 6296-2024N-氰基乙亚胺酸乙酯本文件规定了N-氰基乙亚胺酸乙酯的要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以乙醇、乙腈、干燥氯化氢和单氰胺为主要原料生产的N-氰基乙亚胺酸乙酯18 HG/T 6297-2024氯甲酸甲酯本文件规定了氯甲酸甲酯的要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以光气(三光气)、甲醇为原料生产的氯甲酸甲酯19 HG/T 6298-2024β-丙氨酸本文件规定了β-丙氨酸的技术要求、试验方法、检验规则、标识、包装、运输和贮存本文件适用于以丙烯酸或L-天门冬氨酸为原料,经酶法生产的β-丙氨酸20 HG/T 6299-2024三氟化硼四氢呋喃络合物本文件规定了三氟化硼四氢呋喃络合物的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以硼酸、氟化氢、四氢呋喃为主要原料制得的三氟化硼四氢呋喃络合物21HG/T 3752-20246-硝基-1,2-重氮氧基萘-4-磺酸本文件规定了6-硝基-1,2-重氮氧基萘-4-磺酸的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于6-硝基-1,2-重氮氧基萘-4-磺酸产品的质量控制HG/T 3752-201422 HG/T 2667-2024C.I.分散红60(分散红FB 200%)本文件规定了C.I.分散红60(分散红FB 200%)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散红60(分散红FB 200%)的产品质量控制HG/T 2667-201423 HG/T 4023-2024C.I.分散蓝60(分散翠蓝S-GL)本文件规定了C.I.分散蓝60(分散翠蓝S-GL)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝60(分散翠蓝S-GL)的产品质量控制HG/T 4023-201424 HG/T 3901-2024分散蓝EX-SF 300%本文件规定了分散蓝EX-SF 300%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散蓝EX-SF 300%的产品质量控制HG/T 3901-201425 HG/T 3405-2024C.I.酸性黄17(酸性嫩黄2G)本文件规定了C.I.酸性黄17(酸性嫩黄2G)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.酸性黄17(酸性嫩黄2G)的产品质量控制HG/T 3405-201026 HG/T 3415-2024红色基B(2-甲氧基-4-硝基苯胺)本文件规定了红色基B(2-甲氧基-4-硝基苯胺)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于红色基B(2-甲氧基-4-硝基苯胺)的产品质量控制HG/T 3415-201027 HG/T 6300-2024工业用亚麻油酸本文件规定了工业用亚麻油酸的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以亚麻籽油为原料,采用水解、蒸馏脱色工艺制得的工业用亚麻油酸28 HG/T 6301-20244,4'-二氨基二苯醚本文件规定了4,4'-二氨基二苯醚的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由4,4'-二硝基二苯醚加氢还原,经直接升华或升华后重结晶制得的4,4'-二氨基二苯醚29 HG/T 6302-20244-溴-4'-苯基-二苯胺本文件规定了4-溴-4'-苯基-二苯胺的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以苯胺、4-溴联苯、N-溴代丁二酰亚胺为主要原料制得的4-溴-4'-苯基-二苯胺30 HG/T 6303-2024C.I.分散黄246本文件规定了C.I.分散黄246产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散黄246的产品质量控制31 HG/T 6304-2024C.I.分散蓝366本文件规定了C.I.分散蓝366产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝366的产品质量控制32 HG/T 6305-2024C.I.分散蓝367本文件规定了C.I.分散蓝367产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝367的产品质量控制33 HG/T 6306-2024邻硝基苯甲醚本文件规定了邻硝基苯甲醚的要求、安全信息、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于邻硝基苯甲醚产品的质量控制34 HG/T 6307-2024分散宝蓝ADD-2 200%本文件规定了分散宝蓝ADD-2 200%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散宝蓝ADD-2 200%的产品质量控制35 HG/T 6308-2024数码喷墨色浆 C.I.酸性黄79本文件规定了数码喷墨色浆 C.I.酸性黄79产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于数码喷墨色浆 C.I.酸性黄79的产品质量控制36 HG/T 3704-2024氟塑料衬里阀门通用技术条件本文件规定了化工用氟塑料衬里阀门的材料、设计、标记、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、聚全氟乙丙烯(FEP)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)热塑性塑料为衬里层的衬里阀门HG/T 3704-200337 HG/T 2437-2024塑料衬里复合钢管和管件通用技术条件本文件规定了化工流体输送用塑料衬里复合钢管和管件的原材料、设计、标记、要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)热塑性塑料为内衬层的化工流体输送用塑料衬里复合钢管和管件HG/T 2437-200638 HG/T 4088-2024塑料衬里设备 通用技术条件本文件规定了化工用塑料衬里设备的术语和定义、原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、聚烯烃(PO)为内衬层的化工用热塑性塑料衬里设备HG/T 4088-200939 HG/T 6323-2024两片罐上色胶辊本文件规定了两片罐上色胶辊的标记、产品结构、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于两片罐曲面印刷系统中两片罐上色胶辊的生产、检验与使用40 HG/T 6324-2024高纯工业品 无水氟化氢本文件规定了高纯工业品无水氟化氢的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于高纯工业品无水氟化氢41 HG/T 6325-2024高纯工业品 碘本文件规定了高纯工业品碘的要求、试验方法、检验规则、标志、标签和随性文件、包装、运输和贮存本文件适用于磷矿伴生碘经提纯生产或高温焚烧熔融精制法生产的高纯工业品碘42 HG/T 4131-2024工业硅酸钾本文件规定了工业硅酸钾的分类和编码、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业硅酸钾HG/T 4131-201043 HG/T 2963-2024工业六氰合铁酸四钾(黄血盐钾)本文件规定了工业六氰合铁酸四钾(黄血盐钾)的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业六氰合铁酸四钾(黄血盐钾)HG/T 2963-200944 HG/T 4120-2024工业氢氧化钙本文件规定了工业氢氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化钙HG/T 4120-200945 HG/T 2828-2024工业碳酸氢钾本文件规定了工业碳酸氢钾的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于离子交换法生产的工业碳酸氢钾HG/T 2828-201046 HG/T 4205-2024工业氧化钙本文件规定了工业氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氧化钙HG/T 4205-201147 HG/T 6326-2024化妆品用硫酸锌本文件规定了化妆品用硫酸锌的要求、试验方法、检验规则、标志和随行文件以及包装、运输和贮存本文件适用于以硫酸和氧化锌(或氢氧化锌)为原料,或由闪锌矿经焙烧后硫酸浸取、精制而得的化妆品用硫酸锌48 HG/T 6327-2024化妆品用碳酸钠本文件规定了化妆品用碳酸钠的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于以工业盐、天然碱或工业碳酸钠为原料,由氨碱法、联碱法或其他方法制得的化妆品用碳酸钠49 HG/T 4201.1-2024稳定二氧化锆 第1部分:钇稳定二氧化锆本文件规定了钇稳定二氧化锆的要求、分型、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于钇稳定二氧化锆HG/T 4201.1-201150 HG/T 4513-2024工业硅酸镁本文件规定了工业硅酸镁的分型、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于可溶性镁盐与碱土金属硅酸盐合成的工业硅酸镁HG/T 4513-201351 HG/T 3607-2024工业氢氧化镁本文件规定了工业氢氧化镁的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化镁HG/T 3607-2007序号标准号标准名称有效期研 制 单 位冶金行业
  • 火眼“金”睛:测定水中丁基黄原酸的在线监测解决方案
    黄金抗腐蚀性强,极为稳定,是首饰业、电子业、现代通讯、航天航空业等部门的重要材料,因为稀有而逐渐成为了珍稀品,甚至成为了一个国家的财富象征。“点石成金”的神奇药水丁基黄原酸盐“点石成金”的故事众所周知,仙道点铁石而成黄金,化腐朽为神奇。跟传说的手指一点而成金不同的是,21世纪的今天,“点石成金”靠神奇药水---丁基黄原酸盐。丁基黄原酸盐为黄色粉末固状,俗称“丁基黄药”,是一种重要的金属硫化矿捕集药剂,被广泛应用于各种重金属硫化矿(如PbS、ZnS、CuS等)和部分贵金属硫化矿(如Au2S3、Ag2S等)的浮选捕收。Tips:浮选捕收剂的目的是通过在被浮矿物表面选择性吸附形成疏水层,从而使疏水性矿粒附着气泡上浮至泡沫产品中,成为精矿,实现了真正的“千淘万漉不辛苦,吹尽狂沙始到金”。浮选捕收剂的结构示意图浮选捕收剂与矿物作用的原理图“危害健康”的有毒药水丁基黄原酸盐丁基黄原酸盐也是会对身体造成伤害的有毒药水,金矿在提炼过程会产生大量的毒副产品,如部分丁基黄原酸盐随废水排入地表水,污染饮用水源和土壤。此外,金矿提炼过程中还伴随着如铅、汞、镉等重金属污染,严重者会导致该地三十年内寸草不生!Tips:丁基黄原酸盐对人体和畜禽的危害主要表现在伤及神经系统和肝脏器官,对造血系统也有不良影响。谱育科技全新工业污染物监测方案根据《水质 丁基黄原酸的测定 吹扫捕集/气相色谱-质谱法》(HJ 896-2017)中的描述:水样中需加入硫代硫酸钠、氢氧化钠、氟苯及磷酸对丁基黄原酸进行衍生(衍生方程式如下),通过测定二硫化碳,间接测定水中丁基黄原酸的浓度。C4H9OCSSK(Na) + HCl→CS2↑+ C4H9OH + K(Na)Cl谱育科技EXPEC 2100 水中挥发性有机物在线监测系统可以实现对丁基黄原酸的在线监测。吹扫捕集-气相色谱-质谱法测定水中的丁基黄原酸我国在《集中式生活饮用水地表水源地特定项目标准限值》(GB 3838-2002)中对生活饮用水中丁基黄原酸的含量进行了严格限定。谱育科技可为您提供吹扫捕集-气相色谱-质谱法 对水中的丁基黄原酸进行分析,该方法具有灵敏度高、重复性好、无人化操作等优点。方案特点★ 丁基黄原酸在0.2-4μg/L线性相关系数R2>0.999,连续6针进样的重复性RSD为8.24%;★ 丁基黄原酸的检出限为0.03μg/L,达到实验室检测水平;★ EXPEC 2100产品提供高精度压力控制,保证卓越的保留时间稳定性和峰面积稳定性;★ 搭配EXPEC 2100可实现无人化操作,可以实现对水中挥发性有机物的在线监测。EXPEC 2100水中挥发性有机物在线监测系统可实现对丁基黄原酸的全自动在线监测,助力实现“既要金山银山,也要绿水青山”这一美好愿望。
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 百灵威正丁基锂新品上市
    正丁基锂(n-Butyllithium),可去除多种碳-氢键中的质子,尤其是当电子离域化或杂原子作用下共轭碱稳定时。正丁基锂性质独特,是有机合成中z重要的有机锂化合物之y。百灵威隆重推出Amethyst Chemicals 品p正丁基锂产品,特点如下: ◆ 通过多项严格检测,活性锂含量高,浑浊杂质少,反应收率高。 ◆ 产品溶解于正己烷溶液,有效保证正丁基锂的稳定性。 ◆ 包装设计独特,含密封衬垫可抽取包装,较同类包装密闭性提升1.5倍,抽取面积扩大15倍;可多次抽取,使用率高。 ◆ j具竞争力的价格,比同类进口产品低50%,g内现货充足,提供大包装。 反应收率高 &bull 可多次抽取 &bull 成本优势好 编号 CAS 产品名称 规格 目录价 274232 109-72-8 n-Butyllithium, [1.6M in hexanes] 100mL 800mL ¥342 ¥605 913796 109-72-8 n-Butyllithium, [2.4M in hexanes] 100mL 800mL 10L ¥351¥712 询价 温馨提示: 1.正丁基锂对空气和水敏感,请将产品储存于密闭、干燥、低温(2-8℃)环境中。 2.长期存放可能会产生少量浑浊,这属于正常现象,不影响产品pz。 3.使用注射器抽取溶液时,应在瓶口用注射针连接氮气球,以平衡正丁基锂吸出时的压力变化。 4.正丁基锂的反应体系需保持氮气环境,以阻挡空气和水气进入,所用溶剂应为无水或c干溶剂。
  • 关于巴拉圭冬青叶(马黛茶叶)等9种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对巴拉圭冬青叶(马黛茶叶)等3种物质申请新食品原料、食用单宁等2种物质申请食品添加剂新品种、N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]等4种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年11月23日巴拉圭冬青叶(马黛茶叶)等3种新食品原料.pdf一、新食品原料解读材料(一)巴拉圭冬青叶(马黛茶叶)巴拉圭冬青叶(马黛茶叶)是以冬青科冬青属植物巴拉圭冬青(Ilex paraguariensis A.St.-Hil.)的叶为原料,经采摘、烘烤、切碎、干燥等工艺制成。主要营养成分为碳水化合物、粗纤维、蛋白质、脂肪、维生素、矿物质和氨基酸等,且含有少量的多酚、黄酮和皂苷类等物质。巴拉圭冬青叶(马黛茶叶)在美国被作为“一般认为安全的物质(GRAS)”管理,欧盟批准其作为新食品原料使用,加拿大批准其作为天然健康食品使用,巴西批准巴拉圭冬青的叶和茎可用于制茶。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对巴拉圭冬青叶(马黛茶叶)的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于巴拉圭冬青叶(马黛茶叶)在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。(二)酵母蛋白酵母蛋白是以酿酒酵母(Saccharomyces Cerevisiae)为菌种,经培养、发酵、离心后收集获得菌体原料,经去除核酸、离心、酶解、提取、纯化、分离、灭菌、干燥等工艺制成。主要营养成分为蛋白质(≥70.0g/100g)、脂肪、膳食纤维和水分等。目前,美国已批准酿酒酵母蛋白作为营养补充剂添加到食品中,欧盟已批准酿酒酵母蛋白作为新食品原料,均未做食用量限定。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对酵母蛋白的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于酵母蛋白在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)儿茶素儿茶素是以茶叶为原料,经醇提取、浓缩、分离、萃取、酶解、浓缩、干燥等工艺制成。其中主要成分为儿茶素类,包括表儿茶素(EC)、表没食子儿茶素(EGC)、水合表儿茶素没食子酸酯(ECGH2O)、水合表没食子儿茶素没食子酸酯(EGCGH2O)、没食子儿茶素没食子酸酯(GCG)、儿茶素(dl-C),儿茶素类总含量(以干基计)≥90 g/100g,其中EGCG含量≥50 g/100g。原卫生部2010年第17号公告批准表没食子儿茶素没食子酸酯(EGCG)为新资源食品,每日推荐食用量为≤300毫克/天(以EGCG计)。绿茶儿茶素已被日本批准为特定保健食品用功能配料。本产品推荐食用量为≤300毫克/天(以儿茶素类总量计)(即儿茶素类总含量为100 g/100g的原料的推荐食用量为≤300毫克/天,含量为90-100 g/100g的按照实际含量折算)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对儿茶素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于儿茶素在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)食用单宁1.背景资料。食用单宁作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于黄酒、啤酒、葡萄酒和配制酒的加工工艺,油脂脱色工艺。本次申请扩大使用范围用于制糖工艺。日本厚生劳动省允许其作为加工助剂用于各类食品。2.工艺必要性。该物质作为食品工业用加工助剂用于制糖工艺,提高澄清效果。其质量规格执行《食品安全国家标准食品添加剂食用单宁》(GB 1886.303)。(二)乙酸乙酯1.背景资料。乙酸乙酯作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于配制酒的加工工艺、酵母抽提物的加工工艺。本次申请扩大使用范围用于茶叶提取物的加工工艺。欧盟委员会、澳大利亚和新西兰食品标准局允许其作为提取溶剂用于各类食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-25mg/kgbw。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶提取物的加工工艺,用于提取茶多酚和茶氨酸。其质量规格执行《食品安全国家标准食品添加剂乙酸乙酯》(GB 1886.190)。三、食品相关产品新品种解读材料(一)N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]1.背景资料。该物质在常温常压下为白色固体粉末。《食品安全国家标准食品接触材料及制品用添加剂使用标准》(GB 9685)已批准其作为添加剂用于橡胶和聚乙烯(PE)、聚丙烯(PP)等多种塑料材料及制品中。本次申请将其使用范围扩大至聚氨酯(PU)传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(二)2,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯 四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯1.背景资料。该物质在常温常压下为白色固体粉末。GB 9685批准其作为添加剂用于橡胶、涂料及涂层、黏合剂以及PE、PP等多种塑料材料及制品中。本次申请将其使用范围扩大至PU传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(三)咖啡渣1.背景资料。该物质为烘焙咖啡豆经水萃取咖啡后的剩余物料,在常温下为褐色(棕色)至深咖啡色的粉末状细颗粒,不溶于水。葵花籽壳和木质纤维等类似材料已被美国食品药品管理局和欧盟委员会允许用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为填充料,用于聚乳酸(PLA)和聚丁二酸丁二醇酯(PBS)塑料材料及制品中,可改善材料的综合力学性能、成型加工性能和产品的使用性能。(四)甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物1.背景资料。该物质不溶于水,几乎不溶于正辛醇等有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,可用于水性涂料,涂膜附着力强,耐腐蚀性较好。“三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布17条征求意见,共涉及62种化合物。(2023年“三新食品”公示名单汇总!)点击了解更多“三新食品”》》》关于“三新食品”目录及适用的食品安全标准的公告及解读》》》国家卫生健康委员会关于桃胶等15种“三新食品”的公告》》》解读《关于蓝莓花色苷等14种“三新食品”的公告》》》》关于文冠果种仁等8种“三新食品”的公告与解读》》》关于蓝莓花色苷等14种“三新食品”的公告
  • 赛默飞发布针对左乙拉西坦中四丁基铵的检测方案
    2015年8月20日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布针对左乙拉西坦中四丁基铵的检测方案。左乙拉西坦是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦的结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用,原料药的合成工艺准则要求必须要严格控制其残留量。赛默飞发布的测定左乙拉西坦原料药中四丁基胺的离子色谱方法,采用Thermo ScientificTM DionexTM ICS-900 基础型离子色谱系统,样品中基体不影响待测物质的准确分析。ICS-900配备SCS1柱容量较小的分析柱,采用MSA+35%乙腈作为淋洗液,采用抑制电导的方式检测,四丁基胺的检出限可以做到8 ug/L,待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全能够满足左乙拉西坦中残留的四丁基胺根离子的检测要求。ICS-900基础型离子色谱系统检测方案下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/pharma/documents/Suppressed-Conducitivity-Ion-Chromatography-Method-Determination-Tetrabutyl-Ammonium-Levetiracetam.pdf----------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 江桂斌院士团队ES&T | 口罩中细颗粒物/有机污染物的识别与风险评估
    在新冠肺炎(COVID-19) 疫情爆发期间,一次性聚丙烯口罩为我们提供了有效保护。据相关统计及估计,疫情大流行期间欧美有超过60%的人在公共场所佩戴口罩,在我国这一比例达到了90%;2020年全球每月消耗约1290亿个口罩。考虑到口罩中的添加剂及副产物,以及大量微纳米级的颗粒物,大量废弃口罩导致的污染物的环境释放以及长期佩戴口罩可能造成的健康影响引起了广泛关注。中国科学院生态环境研究中心环境分析与毒理研究组在口罩中污染物分析与识别方面开展了系统工作,取得重要进展。研究成果以“Disposable Polypropylene Face Masks: A Potential Source of Micro/Nanoparticles and Organic Contaminates in Humans"为题,发表于环境领域顶级期刊Environ Sci & Technol (2023, 57, 5739-5750)上(文末阅读原文可查看)。选取一次性医用口罩(DMM)、外科口罩(MSM)和 (K)N95 口罩为研究对象 表征了口罩中微纳米颗粒的形状、尺寸、数量以及化学组成;使用GC-Orbitrap/MS,通过非靶向分析技术,在口罩中鉴定出了79种有机化合物,在口罩纺粘无纺布和熔喷布脱落的微纳米颗粒上鉴定出了18种化合物; 开展了初步健康风险评估。△ 研究内容示意图(点击查看大图)01口罩中有机化合物的筛查 针对佩戴口罩中的有机化合物,研究者首先提取了完整口罩中的有机化学物质。同时,收集口罩生产原材料(散装纺粘无纺布和熔喷无纺布)中的微纳米颗粒,提取颗粒上的有机化学物质。利用GC-Orbitrap/MS,在60,000分辨率下全扫描获得高分辨数据。基于TraceFinder 5.0和Deconvolution软件,结合保留指数进行非靶向分析,在整体口罩中初步检测到79种化合物,包括苯衍生物16种、烷烃20种、酚类10种、卤化物11种、萘类5种、酯类5种、联苯类2种、酮类3种、醚类3种。在颗粒物检出的18种化合物中,有 10种与口罩中检出物重合。 TraceFinder软件非靶向分析中,数据过滤条件包括精确质量偏差、信噪比、峰强度、离子重叠窗口、谱匹配参数、保留指数差值、标准品确认等。图1以随机样品为例,展示了筛选过程中化合物数量的变化情况。△图1. 随机抽取DMM、MSM 和 (K)N95 口罩中化合物数量随过滤条件的变化(点击查看大图)△图 2.口罩中二丁基羟基甲苯(BHT)、2,4-二叔丁基苯酚(DTBP)和三(2,4-二叔丁基苯基)亚磷酸酯(TMS)在Tracefinder 数据处理软件的光谱解卷积结果 (上图)与其分析标准品的 EI质谱图匹配(下图)(点击查看大图)02去除背景 从采样到测试整个过程都可能引入分析伪影。由于完全物理去除污染物无法实现,尤其是当背景和伪影峰重叠时。有效解决办法是在分析过程始终正确采用程序空白。基于程序空白,数据处理过程中出现的任何背景可有效去除。 本文所有分析数据均附有程序空白。其中,从口罩原材料的颗粒中提取有机化合物的程序空白是对铝箔进行清洗、提取的提取液。GC-Orbitrap/MS配套的数据处理软件可自动扣除背景空白,当样品中色谱峰的响应比空白中峰响应高一定倍数时,便计入特征。 03定性识别的置信度 在非靶向和疑似靶向分析中,即使是 HRMS,仍存在假阳性率高的问题。因此,定义报告化学注释置信度的框架尤为重要。本研究基于Koelmel等人提出的置信框架(图3)对所识别化合物结构的可信度进行注释。口罩中共筛选出79种化合物,其中置信度为1的化合物4种,置信度为2的化合物70种,置信度为3的化合5种。置信度1有标准品。且在实验室内部用相同方法测试,对比保留时间、EI 质谱和参考质量一致。置信度2没有标准品,通过外部质谱库检索匹配到的唯一可能结构或母核相同的异构体,△RI、分子离子、EI谱图匹配。置信度3没有标准品,通过外部质谱库检索匹配到的暂定侯选物,△RI或分子离子或EI谱图匹配。置信度4没有标准品,外部谱库无匹配结果,可得到唯一化学式或化学系列类别。置信度5没有标准品。不能识别,但具有可重现的质谱图。△图3. GC-HRMS非靶向分析的置信度框架 04稳定性 在整个仪器分析过程中,每间隔 6-7 个样品注入质控混标溶液(含10个浓度均为10 ng/mL的目标物和1个内标)对 GC-HRMS 仪器的稳定性进行监测,总共测试 11 次质控样。计算每种化学品的绝对峰面积和内标校正峰面积的标准偏差,绝对峰面积RSD小于10% ,IS 校正峰面积RSD小于 4%,表明仪器的稳定性满足分析要求。△图 4. 质控混标10 种化学品的绝对峰面积 (a) 和 IS 校正峰面积 (b)(点击查看大图)05检出率 鉴定出的79种化合物中,18 种化合物的检出频率≥80%,44 种化合物的检测率低于20%,该特征在三类口罩中类似。低检出频率的化学品可能与个性化设计、制造、包装和储存条件有关,例如,在仅有的2个印刷口罩样本中检测到了5种着色剂。高检出频率的化合物反映了口罩生产中原材料和标准工艺流程相关的风险。例如,香兰素和二苯甲酮在口罩中的检出率较高,它们分别被用作塑料生产中的光引发剂,这表明口罩中存在有意添加的化学物质(IASs);此外,萘的高检出频率也说明非有意添加物(NIASs)的存在。这些有害物质或与工艺相关的未知化合物显然不属于常规检测的清单化合物,其发现依赖于非靶向分析。GC-Orbitrap/MS具备高灵敏度、高选择性、宽线性范围、完善的工作流,非常适用于此类分析。 06健康风险评估 以3种置信度为1的酚类为例进行初步的健康风险评估,发现计算出的暴露水平处于总允许暴露限值的1%以下,提示戴口罩造成的这些化合物相关的健康风险较低。当然,有些化学品即使在低暴露水平下也可能毒性很大,并且可能会发生复合暴露,因此需要进行详细的健康风险评估。GC-Orbitrap/MS实力非凡,对口罩这类重要的日用品开展非靶向分析,鉴定出79种置信度较高的化合物,发现了与原材料和生产工艺相关的添加剂和副产物。结语中科院生态环境研究中心江桂斌课题组主要开展新污染物的环境转化过程、毒理与健康效应研究,发展分析新技术、新仪器与新方法。研究成果发表在Nat Nanotechnol、Nat Commun、Chem Rev、Chem Soc Rev、Angew Chem Int Ed、Environ Health Perspect、 Environ Sci Technol等期刊。2021年课题组研制成功国际首台高通量多功能成组毒理学分析系统,为环境中未知有毒污染物的筛查及复合效应等的研究提供了全新的技术手段和通用平台。课题组成员包括多名杰青、优青,曾获得国家自然科学奖、美国化学会ES&T杰出成就奖、长江学者成就奖、科学探索奖、中国分析测试协会科学技术奖、 国家环保总局科学技术奖、中国科学院杰出科技成就奖等。
  • 无浸出物吸头,和鬼峰说拜拜
    Overview在样品储存和样品制备过程中,化合物会从日常的实验室设备中浸出。这些化合物会在HPLC、GC 和MS 的图谱中引入不需要的鬼峰,并在包括分析质量控制在内的一系列活动中干扰样品分析。使用HPLC、GC-MS 和LC-MS,对赛多利斯Optifit 和Safetyspace® 滤芯吸头及其低吸附吸头在移取易溶出样品时的浸出物情况进行了测试。这些移液器吸头被证明实际上不含浸出化合物,因此适用于高度敏感的分析方法。引言塑料器具被广泛用于实验室环境,但低品质的产品可能会对高精度的分析产生影响。污染源可能是样品管、微孔板、移液器吸头和塑料注射器,它们可以浸出着色剂和增塑剂,如邻苯二甲酸盐或DiHEMDA( 二(2-羟乙基) 甲基十二烷基铵),导致鬼峰并干扰分析结果。为避免出现鬼峰,许多实验室已将常用的一次性塑料器具更换为需要清洁和预润洗的玻璃器皿。在本研究中,使用高效液相色谱法(HPLC)、气相色谱-质谱法(GC-MS)和液相色谱-质谱(LC-MS)法,然后在乙醇和DMSO中萃取,从而对赛多利斯Optifit和Safetyspace® 滤芯吸头及其低吸附吸头的化学浸出物进行分析。这些溶剂的选择是基于它们的广泛使用以及与较温和的溶剂(如水)相比的腐蚀性,后者可能不会产生相同水平的潜在污染物。方法实验室设备相关的浸出物测试使用100μl的1)乙醇或2)DMSO冲洗各种移液器吸头(200μl Optifit 吸头(产品编号790200)、Safetyspace® 滤芯吸头(产品编号790201F)和低吸附吸头( 产品编号LH-L790200和LH-LF790201)),将溶剂吸入移液器吸头,保持5秒钟并直接分液到样品试管中。使用多个相同类型的移液器吸头(5个移液器吸头,共500μL,混合样品) 产生足够的测试体积,通过HPLC-UV/VIS、GC-MS或LC-HRMS 进行实验室设备相关的浸出物分析。HPLC-UV/VIS将乙醇提取物进样至配备Nucleosil C18(5μm × 250mm × 4.6mm) 色谱柱和紫外/可见光(UV/VIS) 检测器的Agilent 1200 infinity(Agilent TechnologiesInc.,California,USA)HPLC系统。流速:1ml/min;波长:220nm;进样体积:20μl;温度:40°C;流动相:A) 乙腈 | B) 水GC-MS通过液- 液萃取制备乙醇和水提取物,并进样至Clarus 600GC-Clarus 600TMS Turbo(PerkinElmer Inc.,Massachusetts,USA) 和C18 Elite-5MS(60m×0.25mm×0.25μm) 色谱柱。通过使用内标2-氟联苯(10μg/ml) 进行液体注射,使用甲苯-d8(0.1μg/ml) 进行顶空注射,进行半定量。LC-MS将乙醇和DMSO提取物直接进样至配备BEH C18(1.7μm,2.1×100mm) 色谱柱的Waters ACQUITY UPLC I-Class-Waters Xevo G2-XS QTof(Waters Corp,Massachusetts,USA)LC-MS 系统中( 流速:0.5ml/min;进样体积:1μl;温度:40°C;流动相:A) 乙腈 | B) 含有10mmolNH4CH3COO 的水,梯度:0–0.5 分钟 5% A,0.5-9分钟 5% A,9-39.5 分钟 99% A,39.5-40分钟 5%A)。通过分别对空白样品与样品的碱基峰离子(BPI) 色谱图,以及空白样品与样品的UV/VIS 色谱图进行目视对比,来进行筛选。结果对赛多利斯Optifit和Safetyspace® 滤芯吸头及其低吸附吸头进行了GC-MS和LC-MS分析。通过GC-MS对油酰胺进行定量,最大浓度为0.11ppm( 定量限,LOQ,0.01ppm;图1);使用LC-MS对芥酸酰胺( 图2-3) 和bDtBPP( 双(2,4-二叔丁基苯基)- 磷酸酯;图4) 进行定量,最大浓度为0.14ppm(LOQ 0.001ppm) 和.026ppm(LOQ,0.001ppm)。此外,在GC-MS中,对Optifit低吸附吸头中的十六烷酸乙酯进行定量,最大浓度为0.25ppm,检测到一种保留时间为8.32分钟的未知化合物,最大浓度为0.13ppm,但其结构信息不足,因此无法对其进行表征。在HPLC-UV/VIS 中,在Optifit低吸附吸头中仅发现了少量普遍存在的抗氧化剂Irgafos 168(CAS 95906-11-9)。未检测到超出其定量限的其他化合物(表1)。图1. 使用GC-MS对赛多利斯移液器吸头EtOH提取物的化学浸出物进行分析。保留时间:油酰胺,19.28分钟;芥酸酰胺,22.66分钟( 结果低于检测限);未知化合物,8.32分钟;十六烷酸乙酯,25.20 分钟;内标Irganox 1035,12.35分钟。图2. 使用LC-HRMS(ESI+)对赛多利斯移液器吸头EtOH提取物的化学浸出物进行分析。保留时间:芥酸酰胺,9.84分钟;内标Irganox 1035,9.27分钟。图3. 使用LC-HRMS(ESI-)对赛多利斯移液器吸头DMSO提取物的化学浸出物进行分析。保留时间:芥酸酰胺,9.84分钟;内标Irganox 1035,9.24分钟。图4. 使用LC-MS(ESI+)对赛多利斯移液器吸头EtOH提取物的化学浸出物进行分析。保留时间:bDtBPP,6.97分钟;内标Irganox 1035,9.26分钟。图5. 使用HPLC-UV/VIS对赛多利斯移液器吸头EtOH提取物的化学浸出物进行分析。保留时间:Irgafos 168,40.17分钟;内标Irganox 1035( 硫代二亚乙基双[3-(3,5- 二叔丁基-4- 羟基苯基) 丙酸酯],CAS 41484-35-9),30.00分钟。结论从赛多利斯移液器吸头中定量的浸出物水平低于文献中报告的每种化合物所报告的相关浓度(表1)。观察到的具有抗炎作用生物学相关浓度:油酰胺,100ppm(Yang 2016);芥酸酰胺,0.338ppm(Watson 2009);bDtBPP 对CHO 细胞生长有抑制作用,浓度为0.035-0.1ppm(Kelly 2016);DiHEMDA,0.03ppm(McDonald 2008)。因此,在细胞培养实验室操作或生物分析样品的制备中使用赛多利斯Optifit和Safetyspace® 滤芯吸头及其低吸附吸头,预计不会对敏感的生物或生化分析产生干扰。表1. 赛多利斯移液器吸头化学浸出物* 低于定量限(LOQ)† 低于检测限(LOD)‡ 没有样品的DiHEMDA 呈阳性,因此未确定LOQOptifit 吸头和 Safetyspace滤芯吸头Download《使用赛多利斯的无浸出物移液器吸头避免 HPLC、GC 和 MS 色谱图中的鬼峰》点击链接 获取全文https://www.instrument.com.cn/netshow/SH100266/down_1019705.htm
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 食品安全丨科学认识食品添加剂
    从“土坑酸菜”到“牛奶中检测出丙二醇”,再到近期“科技与狠活”有关食品添加剂的视频陆续出现,食品安全的话题再次被推到风口浪尖,引发消费者高度关注。食品添加剂究竟是什么?食品添加剂=非法添加剂?食品添加剂不等于非法添加剂,食品添加剂是为改善食品品质和色、香、味,以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。《GB 2760-2014 食品安全国家标准 食品添加剂使用标准》规定了食品添加剂的使用原则、允许使用的食品加剂品种、使用范围及最大使用量或残留量。合理合法且规范使用食品添加剂不会对人体健康造成危害。食品添加剂有哪些种类?目前允许使用的食品添加剂有23个类别,共2400多种,包括甜味剂、着色剂、防腐剂、抗氧化剂、香味物质等。(点击产品名称即可购买)甜味剂糖精钠、甜蜜素、阿斯巴甜、安赛蜜常见于饮料、糕点、糖果等着色剂胭脂红、赤藓红、柠檬黄、亮蓝常见于冰激淋、果汁饮料、糖果等防腐剂苯甲酸及其钠盐、山梨酸及其钾盐、脱氢乙酸钠、丙酸钙常见于果酱、蜜饯、酱油等抗氧化剂叔丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)、没食子酸丙酯(PG)常见于油脂和含油食品、干鱼制品、饼干、速煮面等香味物质麦芽酚、乙基麦芽酚、2-乙基呋喃常见于果汁、调味品、罐头等国务院食品安全委员会已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”。常见种类如下:禁用色素苏丹红、碱性橙、罗丹明B常见于辣椒粉、豆腐皮、辣椒油等非法添加剂三聚氰胺,常见于乳及乳制品硝基呋喃类,常见于猪肉、禽肉、动物性水产品孔雀石绿,常见于水产或鱼类
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。   2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。   SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 韩国食品添加剂标准拟修订案
    5月份,韩国向WTO发布了G/SPS/N/KOR/361通报,对食品添加剂做出了新的规定,以下两项需引起重视:   1. 韩国删除了脂肪含量0.1g/kg以下的食用肉(家禽类)中丁基羟基茴香醚限量。而CAC标准和我国规定,在经加工整块或切块的肉、家禽和野味制品中丁基羟基茴香醚限量为200mg/kg。这将对我国出口到韩国的食用肉产品产生一定影响,建议相关企业做好应对工作。   2.韩国法规规定在谷物食品类新增使用糖精钠(限量为0.1g/kg),而CAC标准和我国均禁止在谷物食品类使用糖精钠。建议加强从韩国进口的谷物食品中糖精钠的检测和监管。
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 全球新冠持续多久?梅奥顶级专家给出答案
    新冠出现动物感染,或将无休止传播  日前,科学期刊《疫苗》主编、梅奥诊所顶级流行病学家格雷戈里波兰博士 (Gregory Poland) 在接受媒体采访时对疫情的走势作出最新研判:新冠疫情将持续到下个世纪,后代将持续接种疫苗。根据微信公众号「加拿大家园」摘引外网,Gregory Poland作为美国疫苗接种和免疫学方面的顶级专家之一,他结合研究和疫情实际情况对这一结论给出了详述。  他指出:尽管许多人做出了乐观的预测,但现在认为新冠病毒将成为地方性流感病毒还为时过早。它对一些全球卫生专家所指出的「新冠病毒大流行转变为地方性流感病毒」的说法表示不认同。  此前,有不少专家表示,奥密克戎变种病毒虽然有快速传播的特征,也有温和的性质,新冠病毒的模式将稳定且可预测,但Gregory Poland博士并不持有同样乐观的观点。  「我们还没有处于可以预测流行病的任何阶段,我们无法根除它。」需要特别强调的是,Gregory Poland博士指出:新冠病毒已显示出感染动物的能力,这意味着它可能跨物种传播,并继续变异、无限期地传播。这种病毒会传播很长时间,以至于人们仍然会在未来几代人中接受新冠疫苗。  不管是已接种疫苗还是未接种疫苗甚至动物之间,新冠都能如此猖獗的传播,Gregory Poland博士和其他专家都在担心未来几十年内无法控制住,如果一定要作出一个预测,他指出,子子孙孙都将接种新冠疫苗。  对于这个结论,Gregory Poland博士给出了一个类比:如果你今年秋天接种了流感疫苗,那么这针流感疫苗其实是针对1918年出现并引起大流行的流感病毒株。央视新闻客户端消息:1月23日据美国有线电视新闻网报道,斯坦福医学院流行病学家和传染病研究学者伊芳马尔多纳多(Yvonne Maldonado)表示,奥密克戎变异株过后,另一个全新的新冠病毒毒株或将袭来,随之奥密克戎变异株则被代替,但新冠病毒可能永远不会完全消失。  世卫组织发言人:可能永远也无法消灭病毒  疫情严峻对社会的影响似乎已经渗透多个角落。  2月6日,央视新闻客户端消息:为了掌握美国新冠病毒扩散程度,美国疾控中心从1月17日至31日的15天里,要求全美各地400多个废水监控站点每天对当地公共废水系统进行新冠病毒监测。  当地时间4日,美国疾控中心在媒体简报会上公布了这一监测数据,结果显示,在这15天中,废水监控系统一共收集了代表约5300万美国人的34000多份废水样本,其中98%的监测站点在其所有收集的样本中都检测到了新冠病毒。与此同时,美国国家环境保护局还指出,由于大约五分之一的美国家庭房屋没有连接公共下水道,只使用当地化粪池系统,这意味着利用废水监测以评估全美新冠病毒传播水平,仍有一定的局限性,并不能完全反映出美国疫情的严重程度。  如果病毒已经覆盖地球多个角落,那么人类下一步的策略是什么?  日前,世卫组织在2022年世界经济论坛上举行了有关疫苗公平问题的会议。在发言中,世界卫生组织卫生紧急项目负责人迈克尔瑞安表示,新冠病毒可能最终会成为这个地球生态系统的一部分,同时他还呼吁,应保证新冠疫苗的公平分配。  迈克尔瑞安:我们今年不会消灭新冠病毒,人们可能永远也无法消灭新冠病毒,我们可以结束的是公共卫生紧急状态。  「目前人们要做的是降低发病率,最大限度地为所有人接种疫苗,这需要更加公平的疫苗分配。截至目前,全世界已有一半以上的人口接种了两剂新冠疫苗,但在非洲地区,这个数字只有7%。」迈克尔瑞安还表示。  世卫组织也仍建议对新冠病毒感染者进行14天隔离。  新华社日内瓦1月12日电,世界卫生组织指出,新冠变异病毒奥密克戎毒株在几乎所有国家正迅速取代德尔塔毒株,各国应做好准备,谨防在即将到来的春季新冠和其他呼吸道疾病同时暴发。  世卫组织新冠病毒技术负责人玛丽亚范克尔克霍夫当天在记者会上说,随着人们社交活动的增加,以及春季流感病毒等其他呼吸道病原体的流行,预计未来将出现新冠和其他呼吸道疾病同时暴发的状况。她呼吁各国为此做好准备,确保呼吸道疾病监测系统的一体化运行。  世卫组织表示,住院人数没有出现之前激增的情况可能是由于奥密克戎毒株的毒性程度降低,以及人们因接种疫苗或感染后康复而产生的广泛免疫力。但世卫组织警告说,庞大的新增病例数正在给医疗系统带来沉重负担。  吴尊友:全球新冠大流行,3月不可能结束  新冠肺炎疫情已连续两年打乱全球民众的正常生活,如何彻底终止这场大流行成为人们心中越来越强烈的期盼。近段时间,一些来自国外的研究不断传递出这样的声音——“奥密克戎传播力强但毒性弱的特点已呈现出‘流感化’的趋势,新冠病毒给全人类造成的危害似乎在逐渐降低”。我们是否有理由对在不远的将来彻底终结新冠疫情抱以乐观的态度?就相关问题,《环球时报》记者近日独家专访了中国疾控中心流行病学首席专家吴尊友。  “奥密克戎不可能是‘大号流感’”  环球时报:国外现在有种声音,认为奥密克戎传播力强但致病力弱,越来越像是“大号流感”。对此,您怎么看?  吴尊友:奥密克戎不可能是“大号流感”,因为它感染的部位和流感是不一样的,它造成临床症状的严重性和流感完全是两个级别。流感病毒的感染部位是上呼吸道,而新冠病毒的感染部位是下呼吸道。上呼吸道感染很少会引起肺炎,除非久病不治,拖了很长时间,这种情况下少数患者会引起肺炎。而下呼吸道感染多数人会出现肺炎,包括感染奥密克戎毒株。此前天津的数据显示,在361例感染病例中,有42%的感染者有不同程度的肺炎症状,这个比例已经很高。  出现这么高比例的肺炎患者,如果不是因为我们的疫苗发挥了保护作用,病人病情的严重性会大得多。因为有疫苗“打底”以后,感染者具有一定的免疫力,所以症状就会轻很多。此外,就是我们国家的反应比较快,当病人刚刚确诊尚未出现症状,或是仅仅是轻症的时候,所有病例都会住院治疗,这和欧美国家不一样。在国外,没有症状或者症状较轻的,根本就不会安排住院治疗。这也就是我们国家从2020年6月北京新发地出现疫情后几乎没有死亡病例的原因——因为我们治疗的早。  放眼世界,奥密克戎造成肺炎的比例较高,除中国外,其他国家因奥密克戎导致的重症率、病死率远比流感要高得多。以美国为例,奥密克戎毒株流行期间,其造成的死亡人数,甚至远远高于德尔塔毒株流行期间造成的死亡人数。流感造成死亡的比例还是比较小的。所以奥密克戎不可能是一个“大号流感”。如果把它当成“大号流感”来看的话,会淡化疫情,削弱人们对它的重视程度,对疫情防控非常不利。  环球时报:1月19日,顶级医学学术刊物《柳叶刀》发表了美国(华盛顿大学)健康指标与评估研究所(IHME)主任默里的一篇论文。该论文预测,新冠病毒全球大流行即将结束,3月将成为关键时间点。请问您如何看待这种观点?  吴尊友:我认为这篇论文中表达的观点不太准确。这篇论文的作者是一名统计学家,是数学模型领域的全球顶级专家,他对生物学以及病毒的了解并不是特别清楚。他是根据流感来提出这种假设——如果此前的流感能在两年之内结束,那么新冠已流行两年,应该到了要结束的时候。他是基于这种逻辑来展开分析的,但因为流感和新冠有很多不同,他的这种假设有一些要接受现实挑战的地方。首先就在于感染流感后免疫力维持时间通常能达到一年,而感染新冠后免疫力维持时间一般在3到6个月左右。其次就在于新冠病毒的变异很快,差不多每天都在变。而流感病毒的变异是有规律性的,且变异周期较长,通常是一年一变或几年一变,在这一年或几年内,病毒的变异若仅在“亚型”内,不会影响交叉保护。所以,从病毒变异的特点以及从新冠流行两年的规律来看,“3月份成为新冠疫情世界大流行结束的关键时间点”这种观点,科学的依据是不充分的。  “新冠病毒流行的趋势肯定会减弱”  环球时报:您的判断呢?  吴尊友:今后一段时间内新冠病毒流行的趋势肯定会减弱,因为每一种新毒株的流行在到了高峰以后总会下降,奥密克戎在南非已开始出现下降趋势,在其他国家经过一段时间流行后也有下降迹象。如印度在去年4月、5月德尔塔毒株大流行后,有一段时间处在较低的流行水平,我们当时还在研究为什么印度的疫情突然就降低了,现在第四波疫情发生以后,印度的疫情又升上来。再如日本,在去年东京奥运会期间,疫情比较严重,但在奥运会结束后,疫情一下子呈现大幅度下降趋势,我们也试图解释为什么日本的疫情突然就平缓了,然而,全球第四波疫情来袭时,日本的疫情突然又升上来。新冠病毒就呈现这样一个流行规律,它一波流行峰过去后必然有下降的时候,所以从全球角度而言,3月或者未来一段时间流行趋势减弱,这种可能性是存在的,而且这种可能性是很大的。  全球新冠这一轮的大流行是有几个重要因素促成的,一个是冬季比较适合新冠病毒的生存和传播;第二个是冬季的节日比较多,感恩节、圣诞节以及新年,人们都会聚集,等到冬季过去,人们回到工作岗位,促进流行的因素也就减少了;第三个因素就是变异毒株的奥密克戎传染性比较强,特别是既往感染过或接种过疫苗的人也会感染、传播。  环球时报:有观点认为,根据病毒进化的特点,病毒的传播力越强,其毒性越弱,致病力也就越弱,到最后会呈现“强弩之末”的态势,直至与寄主和谐共生,请问这种观点是否科学?  吴尊友:这种观点把几个问题混淆而谈了。新冠病毒的传染性与致病性,在生物学上并没有必然的联系,它更多的是从社会学的角度来看这样一个问题。以我个人理解,这种传染性越强,致病性越弱的反向关系,更多的是社会性因素。以新冠病毒、“非典”还有中东呼吸综合症这三种呼吸道传染病为例,它们都是冠状病毒,但病死率是完全不一样的。新冠的病死率不到2%,非典的病死率大概在10%左右,中东呼吸综合症的病死率大概在34%,在三种冠状病毒当中恰恰是病死率最低的新冠,对人类造成的影响最大。  为什么会出现这种情况?主要是因为病人的症状如果比较轻的话,就不容易去就诊,就像我们前面讲的奥密克戎一样,它造成症状较轻的患者不容易去就诊,反而更容易传染给家人,传染给社会。但如果感染以后就出现重症的情况,病人很快就会去住院,病毒传染给他人的机会自然就会降低,病毒的传染性就减弱了。传染性是和人的社会行为有关的,交流越频繁,人口越密集,传染性就越强,而患病的严重性会限制病人和社会之间的互动能力。  所以,“传播力越强,其毒性越弱,致病力也就越弱”这种说法在生物学上基本是不可能实现的,它更多的是从社会学的角度来看这样一个问题。我个人不认为新冠的流行最终会呈现这种趋势,新冠病毒的变异,至少到目前为止也看不到这种规律,未来会不会出现呢?我想这种观点可能过于乐观了。  “对付新冠病毒,要通过综合的方法”  环球时报:新冠病毒不仅可以感染人类,还可以在动物中传播,因此有观点认为,人类可能永远也无法彻底终结新冠的流行,将与病毒长期共存,请问您如何看待这种观点?  吴尊友:应分为两个层面来表述这一问题。第一个就是新冠与人类共存,目前看来应是永久性的。第二个就是新冠流行的严重程度和规模将取决于人类与新冠斗争的程度。应该说新冠病毒会永远存在,只是流行水平会不一样。  现在难以判定的是,它是像目前这样维持一个高水平的流行,持续影响人们的生活和社会经济的发展,还是可以通过人类的智慧,运用科学技术能够把它控制在一个地方性传染病的流行水平,不再影响人们的生活和工作及社会活动。我们现在难以确定未来新冠流行的程度,这要依赖于我们对新冠科学认识的水平,以及人类防控疫情的技术水平和能力。  环球时报:近一段时间以来,在我国多地暴发的疫情中,感染者基本上都是轻症和无症状感染者,为什么会出现这样的情况?  吴尊友: 近期轻症和无症状感染者的增多有两方面的原因,其中一部分是由于奥密克戎的感染者其本身的症状可能相对比较轻,但不论是感染奥密克戎,还是德尔塔毒株,感染者都出现症状比较轻的情况,这是由于我国的疫苗接种,在70%到80%的接种人群中已产生一定免疫力,虽然这种免疫力不能完全阻止感染,但却使得感染者的症状大大减轻,或者根本就不显示症状。  无症状感染者的增多确实也增加了防控工作的难度,因为在发现疫情后想要把传播链理清楚就更难了。但应该看到,疫苗在控制疫情方面发挥的作用是巨大的,感染者的症状减轻了,需要医疗照顾或者发生重症、危重症甚至死亡的病例大幅度减少,也就减少了医疗的负担。所以疫苗仍然是我们控制新冠,包括奥密克戎最重磅的“武器”。  环球时报:世卫组织相关发言人1月24日在回复《环球时报》记者问询时表示,当全球疫苗接种率达到70%时,就意味着大流行最关键时期已过去,请问中国是否有这样的时间表?  吴尊友: 目前看来,世卫组织这一说法是值得商榷的。在第四波新冠疫情大流行发生以前,德法英等欧洲多数国家的两针疫苗接种率都已超过70%,包括美国的疫苗总体接种率也是在70%以上。这里就存在一个问题。原来我们所说的接种疫苗实现群体免疫的概念,在奥密克戎出现以后,因为突破病例的发生使得群体免疫的概念受到挑战。  如果新冠的变异毒株,多数都具有免疫逃逸能力的话,想要通过接种疫苗实现群体免疫从而终止新冠疫情的大流行,这个方法就不再适用了。所以说“70%的疫苗接种率就意味着大流行最关键时期已经过去”这个说法本身就是有问题的,我们国家已经达到70%了,但只要有病毒具有逃逸性,还是会感染,这一轮天津疫情感染的病例当中多数都是接种过疫苗的,疫苗只是让感染者的症状更轻了。现在已不能用疫苗接种率这样一个指标来制定新冠大流行终止的时间表,因为它是很复杂的,没有一个单独的方法能把新冠控制住。现在要通过综合的方法,疫苗毫无疑问是对付包括奥密克戎在内的新冠病毒最重要的重磅武器。还有严格的公共卫生措施,良好的个人卫生习惯,及时的医疗干预,中西医结合,预防加治疗这些手段综合的应用才能够控制住新冠的大流行。  “‘动态清零’是到目前为止最佳的防控方式”  环球时报:国外媒体一直试图从各种角度攻击中国的“动态清零”政策,为什么说中国的“动态清零”仍然是应对疫情最佳方式?如果要调整目前的“动态清零”,可能将会依据什么标准?  吴尊友: 实际上中国的“动态清零”政策使得中国的疫情比全世界的平均水平低出几百倍。全球目前因为新冠流行失去生命的人数很多,仅美国一个国家因为新冠累计死亡人数就达到了92万余人,而我们只是在早期武汉暴发新冠疫情时出现了几千死亡患者,在武汉的疫情结束以后,几乎再未出现感染新冠死亡的病例。这些数据足以证明“动态清零”不仅对疫情防控、减少死亡病例行之有效,同时对社会经济的发展也是非常有效的。中国人民现在的生活应该说是非常幸福的,人民普遍有安全感,虽然说局部疫情的暴发会对少数人造成一些影响,但是从全国一盘棋的角度而言,疫情的防控,世界上没有哪个国家能像中国这样成功,应该说“动态清零”政策是到目前为止最佳的防控方式。如果我们没有找到一个新的方法能够确保病毒输入后不造成大范围传播,没有一个更好的办法能够控制住疫情的话,动态清零的策略暂时也不会调整。
  • 一文科普|顶级SCI期刊除了NCS还有哪些?(附最新SCI影响因子完整版)
    今日,2021JCR正式发布!点击查看本网报道:(2022年SCI期刊影响因子正式发布(附完整版下载))2021年推出了全新的指标 Journal Citation Indicator(JCI)。JCR分区是按照wos的254个学科,将所有的期刊先按照学科领域划分,然后以期刊影响因子降序排列,将期刊分为4等份,影响因子高的划分到高分区中,分区为Q1~Q4/。今年有60%以上的期刊IF值实现了上涨,但也有下跌的期刊,有的期刊影响因子从508.702降低到了286.130。什么是顶刊?事实上顶级期刊并没有严格的认定标准,一般来说顶刊是那种影响力比较大,口碑比较好,影响因子比较高的刊物。对于顶刊并不能一概而论,大家的评判标准也不同。说到顶刊大家比较熟悉的就是NCS系列,《nature》、《cell》和《science》。但是不同学科领域的刊物影响因子水平也存在差异,是否是顶刊还要根据小类学科的期刊排名情况百分比比较合适。【材料领域顶级期刊】AM《Advanced Materials》,是是工程与计算大学科、材料与化学大领域(包含材料化学,材料物理,生物材料,纳米材料,光电材料,金属材料,无机非金属材料,电子材料等等非常多的子学科的顶级期刊,在国际上材料介绍享誉盛名。【化学领域顶级期刊】JACS《Journal of the American Chemical Society》是美国化学会创办的,该期刊在化学界享有极高的声誉。ANGEW《Angewandte Chemie International Edition》是德国的化学类期刊,由Wiley公司出版,分德语版和英语版。Angew.Chemie 上收录的文章以简讯类为主,简讯主要分布在有机化学、生命有机化学、材料学、高分子化学等领域。【医学领域顶级期刊】《The Lancet》(柳叶刀)是由爱思唯尔(Elsevier)出版公司主办的医学学术期刊之一。《The New England Journal of Medicine》(简称NEJM,新英格兰医学杂志)是由美国麻州医学协会出版的评审性质的医学期刊和综合性医学期刊。《The Journal of the American Medical Association》(简称JAMA,美国医学会杂志)自1883年7月14日在美国芝加哥市创刊,是国际上知名的国医学杂志之一。《British Medical Journal》(简称BMJ,英国医学期刊)是英国医学会会刊,全球著名的四大主导医学期刊之一。四大医学期刊2021年度影响因子分别为:由上述分享的内容能够更加确定顶刊要根据学科来说,想要在顶级期刊上发表论文要了解自己所在的专业领域顶级期刊是什么,然后才能选对本专业认可度比较高的刊物。欢迎在留言区补充 你所在的研究领域的那些顶级期刊吧
  • 青岛科大牵手世界顶级生产商共建橡胶实验室
    继全球最大的合成橡胶材料生产厂商德国朗盛将该公司亚洲最大的研发中心落户青岛科技大学之后,日前世界顶级橡胶加工分析仪器生产商美国阿尔法(Alpha)公司也向青岛科技大学伸出橄榄枝,将与该校橡塑材料与工程教育部重点实验室携手共建橡胶测试示范实验室。   Alpha公司座落于世界橡胶科学研究及技术研发的重要基地美国阿克隆(Akron)市,是世界顶级的橡胶加工分析仪器生产商。橡塑材料与工程教育部重点实验室是教育部在国内高校中设立的唯一一个橡塑领域的专业实验室。根据协议,Alpha公司将在橡塑材料与工程教育部重点实验室设置示范实验室,室内将免费放置Alpha公司主打产品橡胶硫化仪、门尼粘度仪、毛细管流变仪以及炭黑分散度测定仪等价值百余万元的国际顶级测试仪器,并负责议器的维护和软件升级 重点实验室将依托这些世界顶级仪器开展橡胶测试技术的示范推广工作,为国内橡胶企业提供更精准的测试数据,提高中国橡胶企业的国际竞争力。
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制