当前位置: 仪器信息网 > 行业主题 > >

雷洛昔芬二聚体

仪器信息网雷洛昔芬二聚体专题为您提供2024年最新雷洛昔芬二聚体价格报价、厂家品牌的相关信息, 包括雷洛昔芬二聚体参数、型号等,不管是国产,还是进口品牌的雷洛昔芬二聚体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合雷洛昔芬二聚体相关的耗材配件、试剂标物,还有雷洛昔芬二聚体相关的最新资讯、资料,以及雷洛昔芬二聚体相关的解决方案。

雷洛昔芬二聚体相关的资讯

  • 斯坦福医学院案例cell分享 | MST技术检测蛋白的二聚体亲和力
    Part 1研究背景在生物化学中,蛋白质二聚体是由两个蛋白质单体或单个蛋白质形成的大分子复合物,它们通常是非共价结合的。蛋白质二聚体是一种蛋白质四级结构。有些蛋白需形成同源或者异源二聚体才能发挥其特定的功能,且不同聚集体的亚型与不同靶蛋白特异性结合,如14-3-3蛋白。对聚集体的状态维持和解离研究能更加清楚的了解生物学过程,并且开发特异性的靶标药物,用于疾病的治疗。由于聚集体是蛋白的四级结构组成部分,因此,一般来检测聚集体的亲和力需要先形成蛋白单体,也就是极低的蛋白浓度,对于很多互作方法来说无法实现检测。下方这篇Cell文献介绍了MST成功检测蛋白的二聚体亲和力以及小分子对聚集过程的影响。Part 2研究内容美国斯坦福大学Paul A. Khavari小组使用葡萄糖解聚DDX21二聚体来调节mRNA剪接和组织分化。2023年1月出版的《Cell》杂志发表了这项成果。https://doi.org/10.1016/j.cell.2022.12.004IF: 64.5 Q1葡萄糖是一种普遍的生物能量来源,此外,研究发现,葡萄糖可能重塑分化所需蛋白质的功能,使分化过程得以实现。DDX21是一种DEAD-box RNA解旋酶,为同源二聚体状态,DDX21调节黑素细胞干细胞的分化。然而,DDX21在表皮分化中的功能尚未不清晰。在该研究中,作者发现,葡萄糖结合DDX21的ATP结合域,改变其构象,进而造成DDX21解离。在分化过程中,DDX21以葡萄糖依赖的方式定位于mRNA内含子中特定的模体,并促进关键的促分化基因的剪接。为了更清楚地了解葡萄糖对DDX21二聚化的影响,作者需检测(不)结合葡萄糖时DDX21二聚体亲和力。MST技术上机检测的浓度可以低至pM-nM,保证DDX21为单体状态,进而获得准确的二聚体亲和力结果。此外,MST对缓冲成分没有要求,并且是检测达到平衡状态时的亲和力。因此,可以将葡萄糖作为缓冲成分加入到体系中,并且使葡萄糖和DDX21达到平衡后再进行检测。MST亲和力结果表明,葡萄糖显著抑制DDX21二聚化(降低了近7倍)。图1:微量热泳动(MST)检测DDX21的二聚化(黑色)以及存在350uM葡萄糖(红色)或者半乳糖(蓝色)时亲和力。Part 3技术优势在这篇工作中,通过MST技术确定了DDX21形成二聚体的亲和力,以及葡萄糖与DDX21的作用。对于分子互作亲和力的检测,MST上机浓度极低,保证蛋白的单一状态,同时节省样本。当检测多个分子互作时,可以孵育达到平衡,获得准确的多元的亲和力。
  • 有望减缓温室气体增加,科学家用冷冻电镜全面解析微生物一氧化二氮还原酶组装过程
    无味无毒的气体一氧化二氮(N2O,nitrous oxide)可以通过生物和非生物两类过程形成,这导致大气中 N2O 浓度每年稳定增加 0.2-0.3 %。一氧化二氮是一种消耗臭氧的物质;它的全球变暖潜力超过了二氧化碳的 300 倍,因此已经被认为是 21 世纪最关键的人为排放物。微生物可以将 N2O 转化为 N2,这是反硝化过程的最后一步,这一反应完全由一氧化二氮还原酶(N2OR 酶)催化。大气中 N2O 释放和不断积累的一个主要因素是,在高流量氮的环境下,微生物还原 N2O 的能力有限。因此,利用 N2OR 酶的性能进行农业或生物修复应用是相当有意义的,这需要对该酶及其反应过程有一个详细的了解。除了 [ 4Cu:2S ] CuZ 簇,它还含有混合价的双铜电子转移中心 CuA,这使其成为目前已知最复杂的含铜酶。各种真核生物和原核生物酶在涉及氧运输、电子转移或氧化还原催化的过程中都会使用过渡金属铜,但其巨大的细胞毒性、对铁硫簇代谢的不利影响以及产生活性氧的倾向性,使得细胞内必须进行严格的平衡和调节。N2O 还原剂通过完全在细胞质外组装 CuA 和 CuZ 来规避与细胞内铜有关的风险,尽管 apo-N2OR 已经以折叠状态通过 Tat 途径被输出。然而,这种策略导致了新的复杂情况,特别是包括在周质中没有还原当量和高能化合物,如核苷三磷酸酯。I 族 N2O 还 原催化剂的共同结构包括两个核苷酸结合结构域(NosF)和两个跨膜结构域(NosY)。一些细菌输出体进一步与附属蛋白相互作用,以建立复杂的运输系统,NosD 蛋白被认为是与 NosFY 一起发挥这种作用。由于 NosDFY 的实际货物分子尚未被确定,不能排除 CuZ 成熟所需的周质硫源。为了了解 N2OR 成熟的分子基础,这项研究制作并表征了 NosDFY 复合物,并通过冷冻电子显微镜(cryo-EM)研究了它与 NosL 和 N2OR 的相互作用,揭示了由细胞质中 ATP 水解驱动的周质酶铜位点的顺序组装线。2022 年 7 月 27 日,德国弗莱堡大学生物物化学研究所所长奥利弗 艾因斯(Oliver Einsle)与美国范 安德尔(Van Andel)研究所首席研究员杜娟合作,在 Nature 发表其最新论文,题为《一氧化二氮还原酶的组装机制中的分子相互作用》(Molecular interplay of an assembly machinery for nitrous oxide reductase ) [ 1 ] 。该工作详细地解析了 N2OR 酶的三维结构和组装机理。▲图 | 相关论文(来源:Nature)p. stutzeri (施氏假单胞,一种革兰氏阴性细菌)在大肠杆菌中被生产为稳定的五亚基复合物 NosDF2Y2,并在膜部分溶解后通过色谱方法分离出来。NosF2Y2 异源四聚体形成了复合物的核心,45kDa 的 NosD 蛋白从其中突出到周质中,成为一个细长的 β 螺旋,与糖类结合的蛋白质以及糖水解酶家族具有结构相似性。NosD 的主轴从与 NosFY 对相关的双轴上倾斜,打破了分子的对称性。在 NosD-NosY 界面,NosD 的 C 端折叠成三个 α - 螺旋(hI-III),部分位于膜内,紧紧楔入 NosY 二聚体。▲图 | 无核苷酸状态下 P.stutzeri NosDFY 的三维结构(来源:Nature)为了描述 NosDFY 的 ATP 结合状态,研究者们产生了一个 NosF(E154Q)变体。在这一变体中,非活性谷氨酰胺取代了催化性谷氨酸残基 154,且该单点变体的 ATP 水解活性降低得十分明显。当在特定的背景下表达时,它会使得 N2OR 酶缺乏活性位点 CuZ 簇,从而导致功能失调。无效的 E154Q 变体使 NosF 处于 ATP 结合状态,正如其他 ABC 蛋白(ATP 结合盒式蛋白,ATP-binding cassette transporter)已经报道的那样。具体来说,ATP 的结合使得 NosF2 二聚体大幅度闭合,这一动作将直接传导到 NosY 二聚体,从而实现关闭跨膜间隙,最终诱导 NosD 在周质中发生复杂的构象变化。这一过程可以用三种主要的旋转模式来描述。▲图 | NosDFY 及铜与 NosD 的结合的构型动力学(来源:Nature)据悉,NosDFYL 在正十二烷基 β -D- 麦芽糖苷(DDM)中会被分离出来,并被重组到糖二醇胶束(GDN)和膜支架蛋白(MSP)纳米盘中,以 3.3- (纳米盘)或 3.04- (GDN 胶束)的分辨率进行冷冻电镜观察。NosL 在复合物中的位置立即变得清楚,其 N 端被解析到 NosL ( C24 ) 的脂质附着点,该位点正好位于膜界面,而脂质附着点本身并没有被解析。这种排列明晰了 NosL 实际上并不像以前提出的那样位于外膜中,而是位于细胞质膜的外叶中。▲图 | 无核苷酸的 NosDFY 接受来自 NosL 的 Cu+(来源:Nature)在三个组成部分的相互作用中,ATP 驱动的 NosD 的旋转运动控制着与其伙伴 NosL 和 N2OR 的相互作用,其具体相互作用模式见下图。负载铜的 NosL 只能在无核苷酸状态下与 NosDFY 结合,在这种状态下,NosD 上的铜结合点朝向膜,允许 Cu+ 从 NosL 转移到 NosD。随后 ATP 与 NosF 的结合引发了 NosD 的旋转,而与膜相连的 NosL 无法跟随,导致其释放。在这种构象中,NosD 现在可以通过相同的界面与 N2OR 相互作用,将其 " 含铜货物 " 转移到该酶的金属位点。然后 NosF 中的 ATP 水解使 NosDFY 回到其无核苷酸的开放构象,而 N2OR 二聚体向膜的移动最终将迫使其释放,并释放出 NosD 上 HMM 三联体的铜结合位点,以装载 NosL 的另一个金属阳离子。在任何一个方向,各自的相互作用伙伴的释放都是通过 NosD 的旋转运动机械地触发的,NosDFY 及其伙伴的复合物的结构十分详细地显示了 ATP 驱动的 NosD 的变形如何使单核伴侣 NosL 的单个铜离子逐步转移,最终组装成四核 CuZ 簇。因此,ABC 运体 NosDFY 作为一个跨膜能量转换器,动态地促进新生酶与 NosD 的铜供体的结合和分离,将一个主要的活性转运蛋白重新利用为 ATP 驱动的杠杆,跨越分隔两个非常不同的细胞区间的边界。▲图 | 铜从 NosL 经 NosDFY 到 N2OR 的运输模型(来源:Nature)总之,该研究以 NosDFY 与 NosL 和 N2OR 酶组成的复合结构为解析对象,这一结构中含有高度复杂的铜位点,利用冷冻电镜,复合结构的组装途径被完全展示。在这一途径中,NosDFY 作充当机械能量转换器的角色,而并不直接起到转运作用。这项工作是科学家首次解析如此复杂的 N2O 还原酶结构,将为微生物 N2O 降解提供完整的理论支撑,并有望推动 N2O 还原降解的技术研究。
  • 李昂 雷晓光获四面体青年科学家奖
    p   近日,国际出版集团爱思唯尔(Elsevier)宣布,中国科学院上海有机化学研究所李昂研究员、北京大学雷晓光教授获得2017年“四面体青年科学家奖(Tetrahedron Young Investigator Award)”。这是除美国外,四面体青年科学家奖首次授予同一个国家的两名学者。两位获奖者将应邀出席2017年6月27日-30日在匈牙利布达佩斯举办的第18届四面体会议并作大会报告。 br/ /p p   四面体青年科学家奖由《四面体》系列杂志2005年设立,是有机化学领域的重要国际奖项。该奖分“有机合成”、“生物有机与药物化学”两个领域单独评审,每年仅分别评出一名获奖者,旨在奖励40岁以下的杰出青年有机化学家。该奖的获奖者包括普林斯顿大学戴维· 麦克米兰(David MacMillan)、斯坦福大学卡罗琳· 贝尔托齐(Carolyn R. Bertozzi)等国际著名的有机合成或生物有机化学家。作为之前唯一获奖的中国学者,北京大学施章杰教授曾于2012年获得有机合成领域的四面体青年科学家奖。 /p p   李昂研究员主要从事天然产物全合成研究。他发展了6p电环化-芳构化和Prins环化等高效构建多取代六元环的创新策略,完成了虎皮楠生物碱、五味子降三萜、台湾杉醌二萜二聚体、噁唑二萜、吲哚单萜生物碱、吡咯并吲哚生物碱、吲哚萜类等10多个家族天然产物的全合成。电环化-芳构化策略打破了从苯环起始原料出发逐级取代的传统思路,提高了立体化学环境复杂的多取代苯环的合成效率。李昂研究员曾获得2012年优秀青年科学基金项目和2015年国家杰出青年科学基金项目资助(项目编号:21222202,21525209)。 /p p   雷晓光教授主要从事分子探针导向的化学生物学研究。他系统地利用小分子探针,揭示出一系列新颖的程序性细胞死亡生物作用机制和化学调控方法 高效构建了一系列倍半萜多聚体类、石松生物碱天然产物分子探针,阐明了它们的生物作用靶点和全新的分子作用机制,进而开发出对肿瘤、感染性疾病与自身免疫性疾病有良好治疗前景的、基于天然产物的药物先导。雷晓光教授曾获得2012年优秀青年科学基金项目和2016年国家杰出青年科学基金项目资助(项目编号:21222209,21625201)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/noimg/8400429e-755f-4b41-883a-3de1f7ad7245.jpg" title=" 未标题-1.jpg" / /p
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 11月9日开播!蛋白分析及表征技术进展主题网络研讨会
    蛋白质作为生命基本构成单元,几乎承担着所有生命活动。深入研究蛋白质的功能和结构,全面分析蛋白质间的相互作用和调控机制,不仅能更好地了解生命的奥秘,还为疾病的预防和治疗提供新思路和新方法。为帮助广大实验室用户及时了解蛋白质分析及表征技术最新进展及前沿应用,仪器信息网将于11月09日举办“蛋白分析及表征技术进展”主题网络研讨会,聚焦蛋白质的结构表征、相互作用和动态变化等前沿研究,涵盖质谱、X射线晶体衍射、核磁共振、原子力显微镜和冷冻电镜等技术分享,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/fbs (点击报名)『会议日程』蛋白分析及表征技术进展(2023年11月09日)报告时间报告方向专家单位09:30-10:00结构蛋白组学质谱仪器与方法徐伟北京理工大学 教授10:00-10:30分析型超速离心机在生物大分子药物分析中的前沿应用李文奇清华大学蛋白质研究技术中心 蛋白质制备与鉴定平台主管/高级工程师10:30-11:00分析实验中移液产品的正确选择和使用庄昕晔普兰德(上海)贸易有限公司 产品专员11:00-11:30大分子晶体学在蛋白分析中的应用范仕龙清华大学蛋白质研究技术中心 X射线晶体学平台主管/高级工程师11:30-12:00基于等温滴定微量热技术的蛋白互作分析研究吴萌中国科学院分子细胞科学卓越创新中心 高级工程师12:00-13:30午休时间13:30-14:00高速原子力显微镜的生物大分子研究焦放中国科学院物理研究所 特聘研究员14:00-14:30生物型原子力显微镜在蛋白质形貌和结构表征中的应用樊友杰布鲁克(北京)科技有限公司 高级应用/服务工程师14:30-15:00蛋白质表观分子量的核磁共振检测方法李红卫北京大学北京核磁共振中心 高级工程师15:00-15:30冷冻电镜制样技术经验交流郭振玺北京大学冷冻电镜平台 副主任/高级工程师15:30-16:00利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究谢成北京大学张文彬教授课题组 博士后『精彩报告预览』徐伟 教授北京理工大学《结构蛋白组学质谱仪器与方法》【报告摘要】:针对生理条件下微量生物分子三维结构及功能研究这个科学问题,首先发展了具有高稳定性、高重复性的液相离子迁移电泳技术与仪器,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。为了获取生物大分子较全面的立体结构,课题组进一步将离子迁移电泳与非变性质谱技术相结合,通过气相非变性质谱实验获得了分子的溶液可及表面积、通过液相迁移电泳实验获取了分子体积,再结合流体力学Stokes Flow方程,最终获取了蛋白及蛋白复合体的三维几何尺寸信息,该方法可应用于蛋白-小分子复合体结构研究和蛋白质内部几何结构解析。基于液相离子迁移原理,课题组进而开发了液相离子阱装置,在液相条件下实现了离子的富集、选择性传输与顺序弹射分析。通过该装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度提升100倍以上。报名占位李文奇 蛋白质制备与鉴定平台主管/高级工程师清华大学蛋白质研究技术中心《分析型超速离心机在生物大分子药物分析中的前沿应用》【报告摘要】:生物大分子药物包括抗体药、细胞治疗药、疫苗、重组蛋白类药物等;生物大分子药物具有分子量大,结构复杂的特点,随着生产工艺的不断优化和分析技术的进步,生物大分子药物的质量控制将日趋规范和严格,国家药品监督管理部门也在不断提升该类产品的质量控制要求。有效的质量控制分析方法是确保产品安全性和有效性的基础,报告介绍了生物大分子药物市场规模以及临床现状,结合生物大分子药物的研发流程和基本性质,针对性的对其成药性评价,制备和工艺开发提出相对应的质量控制分析方法,尤其是分析型超速离心机在生物大分子药物分析中的主要应用和发展前景,通过分析超速离心技术在国内外进而对于不同类型的生物大分子药物制定分析策略。报名占位庄昕晔 产品专员普兰德(上海)贸易有限公司《分析实验中移液产品的正确选择和使用》【报告摘要】:移液操作是实验工作的基本技能之一,同时也是最容易被忽视的技能。 液体移液仪器、体积量具在实验室移液操作中扮演着重要的角色。这决定了几乎所有化学与生物学分析测试的精度和结果的可靠性、重复性,正确的选择、使用移液产品是生化实验的必要基础。本次报告将介绍BRAND瓶口分液器、移液器、连续分液器、容量瓶、移液管等移液产品的原理和操作。报名占位范仕龙 晶体学平台主管/高级工程师清华大学蛋白质研究技术中心《大分子晶体学在蛋白分析中的应用》【报告摘要】: 大分子晶体学是一种通过生物大分子(如蛋白质和核酸)形成晶体,以获得其高分辨率三维结构的技术。在蛋白性质研究中,大分子晶体学发挥着重要的作用。 通过大分子晶体学,可以确定蛋白质的三维结构,这对于理解蛋白质的功能和作用机制非常重要;通过大分子晶体学,可以解析蛋白质与其他分子(如酶底物、配体等)的结合位点,以及相互作用的方式。这有助于揭示蛋白质的功能机理,例如酶的催化机制、信号传递等。从而指导药物设计和研发。通过解析药物与靶蛋白的结合模式,可以优化药物的结构和性能,提高药物的特异性和效力;最后大分子晶体学可以提供结构信息,帮助药物研发人员进行结构优化工作。通过研究晶体结构和结合位点的特性,可以设计和改进蛋白质受体和配体的结构,使其具有更好的稳定性、活性和选择性。 总之,大分子晶体学在蛋白性质研究中发挥着至关重要的作用,可以帮助揭示蛋白质的结构、功能机理和多样性,指导大分子和小分子药物设计和优化。报名占位吴萌 高级工程师中国科学院分子细胞科学卓越创新中心《基于等温滴定微量热技术的蛋白互作分析研究》【报告摘要】:蛋白质与其他分子的相互作用是蛋白组学研究中的重要内容,用于研究蛋白-蛋白相互作用的技术和方法有很多种。等温滴定微量热技术是最早发展起来可用于蛋白间相互作用研究的定量检测技术,具有可在溶液中无需任何标记、样品无损地进行检测的特点。本报告结合工作实际对等温滴定微量热技术(ITC)的原理、操作及应用着重进行介绍。报名占位焦放 特聘研究员中国科学院物理研究所《高速原子力显微镜的生物大分子研究》【报告摘要】:待定。报名占位樊友杰 高级应用/服务工程师布鲁克(北京)科技有限公司《生物型原子力显微镜在蛋白质形貌和结构表征中的应用》【报告摘要】:蛋白质在细胞中发挥着各种各样的功能,涵盖了细胞生命活动的各个方面,如发挥催化作用的酶和参与生物体内的新陈代谢的胰岛素,还有可以进行物质运输的分子马达蛋白。细胞免疫反应、细胞分化、细胞凋亡等过程中也都有大量蛋白质的参与。 研究蛋白质的形貌和结构以及蛋白质与其他分子之间的相互作用,有助于理解蛋白质的作用,了解蛋白质是如何行使其生物功能,这无论是对于生物学还是医学和药学,都是非常重要的。通过对蛋白力学结构的分析,可以进行功能注释和指导设计特异性的蛋白的合成。 本报告我们将向大学介绍Bruker生物型原子力显微镜在蛋白质领域的相关应用,包括蛋白质形貌的表征和原位动态过程的观察,还有单分子力谱在蛋白结构解析中的应用。 Bruker生物型原子力显微镜的全针尖扫描模式的设计能从结构上很好地与现在的主流倒置显微镜进行无缝的耦合联用,能够让我们从多变量角度对蛋白质进行解析。报名占位李红卫 高级工程师北京大学北京核磁共振中心《蛋白质表观分子量的核磁共振检测方法》【报告摘要】:蛋白质表观分子量更加真实的反映了其在接近生理条件下的存在状态。本报告介绍一种可以极大降低环境因素的影响、提高测试结果的可重复性的蛋白质表观分子量的测定方法,方法在蛋白质研究以及蛋白质类产品的研发与生产过程中具有较高的实用价值。通过该方法,发明人旨在探索一条从方法创新到实验室应用再到企业应用的途径。报名占位郭振玺 副主任/高级工程师北京大学冷冻电镜平台《冷冻电镜制样技术经验交流》【报告摘要】:冷冻电镜样品制备是冷冻电镜技术发展的瓶颈之一,制约着解析生物大分子复合物三维结构的效率。本报告将结合报告人所在冷冻电镜平台自主开展的支撑科研工作者快速制备冷冻样品的几种方法,与大家进行交流。报名占位谢成 博士后北京大学化学与分子工程学院张文彬教授课题《利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究》【报告摘要】:我们探究了氢键对肌红蛋白(Mb)结构域交换二聚体的形成和稳定性的影响。当Mb二聚体铰链区氢键网络附近的 Leu137 突变为亲水性氨基酸(Glu 或 Asp)后,二聚体的稳定性增强。铰链区氢键网络更紧密的突变体中,氢键数量更多,α螺旋刚性更强,二聚体结构更加稳定。本研究证明了氢键对于设计稳定结构域交换蛋白质二聚体的重要性和实用性。报名占位扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • qPCR体系优化和常见问题分析
    前言聚合酶链式反应(PCR)是用于扩增特定DNA片段的分子生物学实验技术。实时荧光定量PCR(以下简称qPCR)作为第二代PCR技术,自1996年推出以来,已经广泛应用于基因表达分析、病原微生物检测、动植物育种等许多研究领域,为了获得最理想的检测结果,qPCR从样本采集、核酸提取、cDNA合成到上机检测的流程有许多可以优化的参数。qPCR实验的工作流程首先需要确定研究的目的,根据实验设计规划好实验分组、重复次数等细节。接下来分为样本准备和引物探针验证两个重要的步骤。样本准备主要是核酸提取逆转录等步骤,引物探针需要去测试特异性和效率。接下来需要使用qPCR仪来对样品中的目的核酸进行扩增qPCR结束后根据实验目的对目的核酸进行相对或者绝对定量。接下来讲的qPCR体系优化会围绕着这个流程展开。1.样本的采集与处理首先,提前做好功课,了解样本的不同分型,或者了解详细的细胞分群。如果条件允许尽可能覆盖所有的组织类型或者细胞类型。其次,尽可能增加样本数量,也就是生物学重复,从而更客观地反映生物变异程度。另外,qPCR实验也需要有技术重复来降低误差。采样是需要严格规划的过程,比如材料的时效性、珍贵程度等,都要纳入考量范围。样品要尽量新鲜,取样尽可能快速。戴手套操作,防止污染。如果不马上提取核酸,需要-80°C保存,并尽快处理。2.核酸的提取和检测模板的质量直接影响到检测性能。核酸提取需要有效地将RNA或DNA从其他混合物中分离。RNA样本中的污染物——基因组DNA、DNA结合蛋白、酚类化合物或在提取RNA过程中引入的外源杂质(如手套中的粉末)——都已被证明会抑制下游实验,如逆转录和PCR扩增。核酸提取需要使用无菌无酶的试剂耗材,避免RNase或DNase污染,并对内源RNAse或DNAse进行有效抑制;多糖多酚样品要考虑多糖多酚杂质的有效去除。低温保存防止RNA或DNA降解。降解或不纯的RNA会限制逆转录反应的效率,降低产量。部分降解的RNA可能不能给出准确的基因表达结果。对于基因的定量,必须使用高质量的RNA,这意味着需要非常仔细地检查RNA的浓度和质量。可采用高分辨率琼脂糖凝胶检测核酸质量和分光光度法(A260/A280=1.8和A260/A230=2.0)检测核酸纯度和浓度。3.cDNA合成RNA 质量对 cDNA 合成结果会产生重要影响。并且RNA 很脆弱,容易降解。为了保证 RNA 的完整性,我们需要非常注意,比如在冰上操作,用 RNase-free 的枪头和离心管,减少操作时间等。在反应体系中加入 RNase 抑制剂也能有效防止 RNA 降解。如何评价样品中的杂质对逆转录的影响呢?可以梯度稀释后绘制标准曲线,如果低浓度的样品点数值偏大比较明显,基本可以判定杂质影响显著。不同厂家的反转录试剂会有差异,对RNA中的杂质耐受程度也不同。逆转录酶在整个反转录体系中具有关键性影响。除了活性以外,逆转录酶的热稳定性同样很重要,在较高温度下进行逆转录,能够减少 RNA 的二级结构,增加逆转录的效率。除了掌握 RNA 的完整性之外,反转录之前还需要对 RNA 浓度进行测定。一般反转录试剂盒会对上样量有要求,建议 total RNA 上样量小于 5 μg。超过这个范围,会使反转录产物产生偏好性 (表达丰度高的基因优先被反转录) 而造成定量结果不准确。逆转录出来的cDNA可以直接放在4°C保存,若长期不用,可分装,然后-20°C保存。4.qPCR方法的建立① 定量方法绝对定量:检测起始模板数的精确拷贝数,需要标准品构建标准曲线。标准品可以是纯化的基因组DNA、质粒DNA或者体外转录RNA(cDNA),其作用是生成标准曲线,建立Ct值与浓度之间的线性关系。标准品与待测样品的PCR效率一致,且接近100%,与样品的性质尽可能接近,与样品相同的扩增条件(PCR体系、耗材、同一次扩增),大于或等于5个梯度稀释的标准品。相对定量:在一个样本中,目的基因相对于内参基因的量的变化。内参基因选择建议筛选不少于三个内参基因来归一化RT-qPCR数据。目的是消除外部样品偏差,例如总RNA含量,RNA稳定性,酶效率或样品装载量的变化。对候选的内参基因进行qPCR 实验,得出Ct平均值以及 Ct值的标准偏差,选择SD最小的基因作为实验内参。可通过geNorm 、 BestKeeper 、 NormFinder、RefGenes 等工具来评估您的内参基因。② 荧光标记方法染料法:利用能与DNA双链结合的染料来实现,如SYBR Green I。该染料在游离状态下呈现微弱的荧光,一旦与双链DNA的双螺旋小沟结合,其绿色荧光增强约1000倍。因此其总的荧光强度与双链DNA含量成正比,利用这一关系可以反映生成的PCR产物的量。TaqMan荧光探针:是一种寡核苷酸探针,荧光基团连接在探针的5' 末端,而淬灭剂则在3' 末端。PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,探针完整时,报告基团发射的荧光信号被淬灭基团吸收 PCR扩增时, Tag酶的5' -3' 外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。常用的荧光基团是FAM,TET,VIC,HEX。引物探针设计可以参考Gene π网站:https://www.gene-pi.com/item/primers-and-probes-2/③ 引物扩增效率验证标准曲线是评估PCR扩增效率最可靠和稳定的一种方法,该方法涉及到制作一系列的样品来控制目标模板的相对数量。最常用的是10倍梯度稀释样品,采用标准qPCR程序进行扩增获得Cq值,最后根据各样品浓度及相应的Cq值绘制标准曲线,得到线性方程Cq= -klgX0+b,扩增效率E=10(-1/k)-1。利用qPCR进行定量分析时,要求扩增效率范围在90%-110%(3.6>k>3.1)。④ 反应体系优化▶ 根据仪器类型,选择合适的耗材和qPCR试剂。▶ 每对引物先进行预实验,确定特异性以及最适浓度。▶ 配置不同的PCR反应体系,选择每个组分合适的浓度。▶ 设置温度梯度测试引物最合适的退火温度。▶ 实验设置NTC、NRT、 NEG和POS等对照组,来监控实验体系或污染。实时荧光定量PCR常见问题分析1.可疑的扩增曲线真正的扩增曲线,有特征的形状:首先背景信号,然后是三个增长阶段(指数增长期、线性增长期和平台期)。如果不是同时具有特征性的三个增长阶段,没有典型的指数增长期,那就不存在扩增。平台期很低也是常见的异常扩增曲线。可能是模板的浓度太低。通常如果模板的起始浓度太低, 反应体系中会形成大量的引物二聚体。大量引物二聚体的形成使得引物很快消耗完,从而造成扩增曲线的平台期很低。这种情况可通过调整引物和模板的比例。2.异常的荧光信号NTC出现荧光信号---引物二聚体形成或气溶胶污染,查看熔解曲线是否为单一峰。3.扩增效率过高或过低过低的扩增效率( 110%)可能存在的原因:▶ 移液器校准不良或移液技术差。▶ 不正确的稀释导致标准曲线出现错误。▶ 引物二聚体或非特异性扩增。▶ 标准曲线动态范围太小。▶ 基因组DNA污染。4.重复性差为精确定量,对每个样品都要做重复实验,复孔之间的Ct值不应超过0.5,标准偏差不大于0.2,这样,实验结果就有很好的精确度。造成重复性差的原因:▶ 加样误差(操作或者加样器导致)。▶ 没有将试剂和样品充分混匀。▶ 低拷贝的目的片段→泊松分布。▶ 基线阈值设定不合理。Cielo™ 实时荧光定量PCR系统Harness of the power of qPCR☑ 数据可靠性:连续1000次实验后,结果高度一致。☑ 应用灵活性:提供多种qPCR应用分析。☑ 流程智能化:中英文用户界面,触控操作,可多机联用。☑ 在线便捷性:主机可独立运行qPCR程序,数据可USB、Wi-Fi等网络传输。
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 安捷伦科技公司将举办有关大麻素和苯二氮卓类LC/MS/MS分析方法的网络研讨会
    安捷伦科技公司将举办有关大麻素和苯二氮卓类 LC/MS/MS 分析方法的网络研讨会 2013 年 6 月 4 日,北京 &mdash 安捷伦科技公司(纽约证交所:A) 今日宣布将于 6 月 20 日(周四)举办一场法医学网络研讨会,该研讨会将聚焦用于定量全血样品中大麻素和苯二氮卓类的液相色谱/串联质谱法。 此新型定量分析方法设计用于安捷伦的 LC/MS/MS 仪器,可满足严格的验证指南要求,针对美国最常见的两类滥用药物为法医毒理学实验室提供了一套完善的定量分析方案。这套安捷伦方法是弗吉尼亚法医学部目前所评估一系列方法中的首套方法。其它方法将覆盖 150 种最常见的滥用药物,其中包含 10 多类药物,包括法医毒理学中使用的策划药物。 在本次网络研讨会上,弗吉尼亚法医学部的研究分析员 Rebecca Wagner 博士将详细介绍这些方法以及它们的应用。与会者将获得相应的电子访问权,可访问全套的标准操作规程、详细验证数据和 LC/MS/MS 方法信息,帮助他们所在的实验室实施这些分析方法。本次网络研讨会还可根据需要进行重播。 &ldquo 实验室采用新型分析技术时面临的最大一项挑战就是方法的开发与验证,&rdquo 安捷伦法医和毒理学产品全球营销经理 Tom Gluodenis 说道,&ldquo 为应对这一挑战,我们与弗吉尼亚法医学部实验室主任 Linda Jackson 及其团队密切合作,共同开发出了一套标准化 LC/MS/MS 方法,可针对执法过程中最常测试的药物进行分析。这套标准化方法将帮助法医毒理学实验室以最少的投入获得即时的优质结果。&rdquo &ldquo 我们已经开发出两套用于定量分析大麻素、苯二氮卓类及其代谢产物的不同方法,&rdquo Wagner 博士说道,&ldquo 这些标准化方法能够满足严格的验证指南要求,包括由法医毒理学科学工作组提出的要求。有了这些标准化方法,毒理学家们不必再费神开发自己的定量分析方法,针对某些最常分析的化合物,他们还可获得全面详细的验证方法。&rdquo &ldquo 现在,您的实验室购买安捷伦的 LC/MS/MS 仪器后,&rdquo Gluodenis 说道,&ldquo 我们不仅可以提供高度可靠的技术,还将为您带来一套先进的筛选解决方案,这些解决方案已通过一家全国知名法医学机构的验证。&rdquo 方法开发 弗吉尼亚法医学部将分析 DUI/DUID、法医和警方案件所收集生物样本中是否存在药物和酒精。大麻素和苯二氮卓类是弗吉尼亚联邦的 DUID 案件中最常进行定量分析的两类化合物。2012 年,执行此类分析的 DUID 案件达 2,524 个。在这些案件中,35% 的分析结果涉及大麻素,31% 的结果涉及苯二氮卓类。 分析人员开发了两种不同的定量方法并进行了方法验证,其中包括但不限于法医毒理学科学工作组所推荐方法验证指南中介绍的实验。大麻素定量法的目标化合物是 THC、THC-COOH、THC-OH、大麻酚和大麻二酚。而苯二氮杂卓类定量法的目标化合物则有 22 种物质,包括母化合物和代谢物。法医学部的验证程序完全融合了推荐的 SWGTOX 指南,能够轻松实施标准的方法开发和验证计划。6 月 20 日举办的直播网络研讨会将详细介绍此方法,具体内容涵盖最初的开发过程,乃至此方法在四个实验室(包括弗吉尼亚法医学部)中的实施情况。 要注册参加本次网络研讨会 &mdash &ldquo 使用 LC/MS/MS 验证大麻素和苯二氮卓类检测方法并与推荐的 SWGTOX 方法验证标准进行对比&rdquo ,请访问美国北卡三角洲国际研究院(RTI International)的法医学教育网站。 关于弗吉尼亚法医学部 弗吉尼亚法医学部是一家国家认可的法医学实验室系统,服务于弗吉尼亚州所有的州级及地方执法部门、法医和联邦律师。部门的检验员们将提供技术协助、培训、证据评估和分析,并提供犯罪现场所得各种物证相关的专家证词。 关于法医毒理学科学工作组 法医毒理学科学工作组致力于开发和推广统一的法医毒理学专业级实践标准,并为法医毒理学家建立工作方案,包括质量保证和质量控制、教育和培训、评审和认证。 关于安捷伦科技公司 安捷伦科技(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 基于小球藻细胞的磁性复合多聚体微机器人用于高效靶向给药
    微纳机器人在低雷诺数流体中可将能量转化为有效运动,因此在生物医学领域具有巨大的应用前景。近年来,磁性微纳机器人作为一种有发展前景的靶向给药平台而受到了特别的关注。科研工作者设计了不同的磁性微纳机器人用于高效递送抗癌药物至靶向肿瘤部位并取得了较好的效果。研究发现,作为体内给药的平台或载体,一方面,微纳机器人的生物相容性是至关重要;另一方面,微纳机器人的重构对于其在复杂变化环境中高度灵活地完成给药具有重要意义。然而,目前来说,微纳机器人的研究在同时满足这两方面的要求上仍具有一定的挑战性。 天然生物模板具有良好的生物相容性和精致结构的固有优势,有望为磁性微纳机器人的制备提供新的机遇。小球藻是一种具有良好的生物相容性和生物降解性的单细胞微藻。它们具有均匀的球状结构,直径约为3-5μm。这些特性使它们具有作为理想天然生物材料用于生物医学领域的优越性。然而,由于扇贝定理的限制,在低雷诺数流体中采用动态磁场有效地驱动具有简单对称球体形状的单一微球是不可行的,这限制了微藻细胞在微机器人领域的应用潜力。近日,北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于面投影微立体光刻(PμSL)技术设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验(图1)。图1,BMMs的制备和靶向给药示意图。图2,自组装BMMs的驱动性能。图3,BMMs的生物相容性和化疗性能。图4,BMMs的体外靶向给药试验。BMMs具有两种不同的运动模式,包括动态磁场下的旋转和垂直旋转磁场下的翻滚;运动速度的测量以及精确定位的实现表明BMMs具有优异的驱动能力(图2)。BMMs还表现出良好的生物相容性、高效的DOX装载能力、pH触发释药能力以及显著的化疗效果(图3)。另外,采用PμSL(nanoArch S140, 摩方精密)技术结合PDMS倒模技术制备了哑铃形微流控通道,在该通道内,利用磁场驱动实现了BMMs对HeLa癌细胞的靶向给药。结果表明BMMs可以实现精准靶向给药,并对抗肿瘤治疗具有良好的疗效。此研究在靶向抗癌治疗方面具有巨大的应用潜力。该研究成果,以“Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery”为题发表在ACS Applied Materials & Interfaces上。
  • 网络讲座|实体瘤微环境和类器官分析——三维立体成像成新趋势
    图像数据采集和分析为深入分析高度异质的肿瘤细胞和可塑多变的肿瘤微环境提供了宝贵的空间分布信息,这是传统组化或2D成像的方法无法企及的,伴随样本前期制备必需步骤切片而带来伪信号、人为偏碍和后期数据叠加拟合引入误差等因素带来巨大局限性。三维整体光片成像该技术为肿瘤免疫治疗药物开发早期阶段开展药物递送途径、监测免疫细胞浸润等研究提供更直观的数据依据。光片成像与免疫细胞浸润示踪以CAR-T细胞用于实体肿瘤治疗为例,CAR-T细胞向肿瘤实体内部有效浸润、分布及持续存在时间是开发构建CAR-T细胞早期的重要评价依据,但现有研究技术缺乏能获取相关数据的方案,更无法使之可视化。在用于胰腺癌细胞治疗方案前期开发中,科学家构建了CD66c-LNGFR+ 的二代CAR T细胞,并采用较长波长可激发的荧光染料Vio® 667 Dye对之进行标记(可有效提升光片成像信号强度并降低信噪比)。三维成像图中可清晰观察到实体肿瘤内部坏死区域(黑色无信号),CD66c-LNGFR+ CAR-T治疗可令肿瘤血管化程度明显提高(Rhodamin-Lectin标记血管)但该CAR-T细胞不具备较好浸润肿瘤实质的作用(Vio667仅位于肿瘤表层的信号分布)。三维立体成像效果:类器官3D光片成像在当前领先的肿瘤类器官在个体化治疗的药物筛选应用中,类器官鼻祖Hans Clevers也极为认同三维整体成像技术能更好提取类器官立体空间中特定细胞位置与分化的关系,是类器官研究的技术趋势。同时结合高通量成像方法,可有效降低不同实验批次的组内差异,为获得治疗有效性预测提供稳定可靠的依据。网络直播课程作为目前较领先的成像技术,完整组织三维光片成像技术尚未普及。基于当前最先进光片成像系统美天旎UltraMicroscope和在肿瘤免疫学的专业积淀,我们将介绍当前最为领先的完整组织三维立体成像的方法实现高分辨率的实体肿瘤微环境可视化分析。此次网络课程包含如下内容:大样本组织三维立体光片成像的基本原理满足光片成像的样本制备解析大样本组织三维立体光片成像技术在肿瘤免疫学中的应用概述如何针对多个肿瘤样本进行图像采集及数据分析实例展示光片成像在细胞浸润肿瘤实体并进行示踪的应用识别描下方二维码免费注册观看直播(可收看直播和回放)
  • 扫描隧道显微镜发明者罗雷尔逝世 享年80岁
    据瑞士媒体报道,瑞士物理学家、1986年诺贝尔物理学奖获得者之一海因里希• 罗雷尔(Heinrich Rohrer)因病于5月16日在家中逝世,享年80岁。 海因里希• 罗雷尔(Heinrich Rohrer)   罗雷尔1933年生于圣加伦州布克斯市,拥有瑞士联邦工学院博士学位。据媒体报道,1981年他与同事成功研制出了扫描隧道显微镜(STM)。1983年,他们利用STM在硅单晶表面第一次直接观察到周期性排列的硅原子阵列。由于STM这一发明,他与Ernst Ruska、Gerd Binnig分享了1986年诺贝尔物理学奖。
  • 原生环境质谱直接从组织中分析高达145kDa的完整内源性蛋白质组装体
    大家好,本周为大家分享一篇发表在Anal Chem上的文章,Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue [1]。该文章的通讯作者是来自英国伯明翰大学的Helen J. Cooper教授。非变性原位质谱(native ambient mass spectrometry, NAMS)是一种新型的自上而下质谱分析方法。它结合非变性质谱和原位质谱的优势,可直接在蛋白质及其复合物的生理环境中进行对其进行无标记表征。NAMS可提供蛋白质结构、空间及瞬时相互作用的信息,具有直接从组织中分析内源性蛋白质组装体的巨大潜力。但是,目前,NAMS仅成功应用于直接检测低分子量 (图 1. 离子图像和 HCD MS2光谱表明大鼠脑中蛋白质复合物的亚基解离。(a) H&E染色的连续组织切片的光学图像。标签:Ce,小脑;C,大脑皮层;CC,胼胝体;F,穹窿;V,侧脑室区;Mb,中脑;Me,髓质和脑桥;H,海马;Th,丘脑;Ht,下丘脑;BG,基底神经节;OR,嗅觉区域。(b) Nano-DESI 全扫描质谱,代表光学图像中标记为“(b)”的像素。(c,d)巨噬细胞抑制因子同源三聚体显示均匀分布。(e,f)PGAM1同型二聚体分布。(g,h)MDH2同型二聚体分布。此外,作者在大鼠肾脏中鉴定了四种同源二聚体蛋白组件(61.2-94.2kDa),包括ω-酰胺酶 (61.2kDa)、MDH2 (66.4kDa)、苹果酸脱氢酶1 (MDH1, 72.8kDa) 和α-烯醇化酶 (94.2kDa),并将其成像(图2)。其中观察到的α-烯醇化酶为金属结合形式,每个亚基上结合了2个Mg 2+离子。图 2. (a)大鼠肾脏的H&E染色连续切片显示皮质(C)和髓质(M)组织。(b)在MSI期间获得的大鼠肾皮质组织中单个nano-DESI 像素的示例全扫描质谱。(c, d)α-烯醇化酶同型二聚体。(e, f)苹果酸脱氢酶1。(g, h) MDH2同型二聚体。(i, j) ω-酰胺酶。研究还从大鼠肝组织中鉴定出同型三聚体鸟氨酸转氨甲酰酶(OTC,108.8kDa)和同型四聚体乳酸脱氢酶A(LDHA,145.4kDa)(图3)。其中,在全扫描模式下,nano-DESI可以检测到145.4kDa的LDHA的较弱信号。通过nano-DESI-PTCR MS2的进一步确认,检测到的物质确实为LDHA。图3. (a) 直接来自大鼠肝组织的完整OTC同源三聚体的nano-DESI-PTCR MS 2。(b) 完整OTC同源三聚体的nano-DESI-HCD MS2显示亚基质量为36.2kDa。(c)完整LDHA同源四聚体 (145.4kDa)的nanoESI-PTCR MS2。(d)完整LDHA 同源四聚体的nanoESI-HCDMS2。在此研究中,作者成功利用NAMS质谱分析方法,直接从组织中检测并鉴定出内源性蛋白质组装体,分子范围为37.0-145.4kDa,包括二聚体、三聚体以及四聚体。其中检测到的上限(145.4kDa)超出LESA MS报道的质量上限的两倍,比nano-DESI 报道过的质量上限高出100kDa。通过调整离子光学和高m /z的气体压力,或者后续仪器和方法的开发,NAMS有可能进一步突破145.4kDa的上限,检测到分子量更大的蛋白组装体。[1]Hale OJ, Hughes JW, Sisley EK, Cooper HJ. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Anal Chem. 2022 Apr 12 94(14):5608-5614.[2]Hale OJ, Cooper HJ. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. J Am Soc Mass Spectrom. 2020 Dec 2 31(12):2531-2537.
  • 岛津特色质谱技术丨多维液相色谱质谱解决复杂体系分离难点
    药物分析方法开发共性难点岛津技术团队在与行业用户专家和用户交流中,收集以下共性难点反馈:1、基质化合物组成极性范围宽,色谱峰容量不够。2、中药基质复杂,在对特征峰鉴定时可能受到目标物附近其他峰干扰,影响鉴定准确度。3、聚合物杂质检测通常采用排阻色谱法,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。4、采用HPLC-UV法进行杂质测定,但该方法无法将HPLC中使用的不挥发性流动相直接应用到LC/MS分析中,或者流动相与质谱不匹配。针对以上行业分析难点,岛津多年来持续致力于多维色谱质谱联用解决方案开发,将多类型色谱分离优势和质谱分析优势进行结合。岛津多维液相色谱质谱解决方案全二维液质联用系统&中心切割1二维液质联用系统Nexera-e 全二维液相色谱仪《中国药典》0512高效液相色谱法通则:二维液相色谱可以分为差异显著的两种主要类型:中心切割式二维色谱和全二维色谱。中心切割式二维色谱是通过接口将前一级色谱中某一(些)组分传递到后一级色谱中继续分离,面对复杂基质环境时,将一维目标峰切到二维进行更好的分析。全二维色谱是通过接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离,如此两个独立的分离模式正交组合可实现尽可能高的峰容量。二维色谱可以是相同的分离模式和类型,也可以是不同的分离模式和类型,二维色谱可以和质谱联用。详情参考:https://www.shimadzu.com/an/products/liquid-chromatography/hplc-system/nexera-e/index.html2全谱二维液质联用系统极性覆盖范围宽:可一针实现宽极性多目标物的同时分析,可以胜任绝大多数分析项目中宽极性、多组分分析的要求。该系统和岛津最新推出的LCMS-9050高分辨质谱正负极离子同时采集功能结合,能得到4in1技术优势--相比岛津前一代方案,可以节省3/4的样品、分析时间,并减少3/4的质谱污染。3 SEC-RPLC-QTOF二维液相色谱-高分辨质谱为了解决前述聚合物杂质鉴定难题,岛津与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。详情参考:https://mp.weixin.qq.com/s/etytDIXLjrICzsNfHOKgAw。4 Trap-Free 二维液质联用系统Trap-Free 2DLC系统是一套支持在线流动相转换的二维液相与色谱-质谱联用仪的组合系统,系统结构示意图见图 1。本系统的第一维液相色谱系统,可使用非挥发性流动相或者与质谱分析不匹配的流动相体系,通过系统中切换阀、程序命令的组合,对第一维液相色谱系统分离的组分进行分馏。本系统的第二维液相色谱系统,可以采用适合 LCMS 分析的液相色谱条件,针对分馏的组分,进行针对性的质量分析。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf全谱二维液相色谱与四极杆飞行时间质谱联用分析不同产地当归的活性成分a) 正模式火山图结果 b)负模式火山图结果根据多元统计分析OPLS-DA 结果的 VP 值,可以初步筛选出甘肃产当归和云南产当归的差异活性物质,进一步筛选则通过结合单变量统计火山图结果(P-value 与Fold change) 进行。最终正模式下筛选得到 1351 个差异物质,负模式下筛选得到1716 个差异物质。通过 MSDIAL软件,对化合物进行鉴定,共鉴定出 43种差异性化合物,包括藁苯内酯类有机酸类等天然活性物质,下表为部分差异性化合物鉴定结果表。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-073.pdf岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式图1 头孢西丁钠破坏样品检测色谱图本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)详情参考:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378二维液相色谱联用四极杆飞行时间质谱仪对赤芍配方颗粒特征图谱2号峰鉴定配方颗粒特征图谱(1D) 配方颗粒特征图谱(2D)一维液相特征图谱中的2号特征峰切入至 50 μL定量环进行收集,再由二维流动相进行洗脱,该组分在二维液相上的保留时间为 35.267 min。采用岛津 2DLC+LCMS-QTOF对赤芍配方颗粒特征图谱中2号特征峰进行了高分辨质谱定性研究。经 MS1、MS2质谱图信息、相关文献信息以及标准品确认,最终鉴定2号特征峰为原花青素 B1。本研究为中药配方颗粒特征成分研究提供了思路,为赤芍中药配方颗粒特征图谱标准制定提供参考依据。Trap-Free 2D LC Q-TOF 定性分析宫缩抑制剂阿托西班中的多聚体杂质阿托西班二聚体的[M+3H]3+峰分子式预测结果 阿托西班二聚体解卷积分析结果阿托西班三聚体的[M+2H]2+峰分子式预测结果 阿托西班三聚体解卷积分析结果针对多肽药物中的由两个或多个多肽组成的稳定的多聚体杂质,可利用体积排阻色谱法(SEC)分离相关杂质。本案例采用岛津Trap-free 2DLC+LCMS-9030,既能避免SEC的色谱条件与质谱离子源不匹配,也能有效解决液相色谱分析浓度过高而导致的质谱信号饱的问题。结果显示阿托西班二聚体和三聚体的 MS1的离子质荷比同理论值均小于1mDa。使用 Insight Explore 软件中解卷积功能预测目标物的分子量,预测分子量和理论分子量的误差小于3ppm。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf注:本文中所用数据均为岛津实验室特定条件下的测试数据,结果可能随实际情况变动文中涉及最佳、最低类描述,限于实验组别对比结果。本文内容非商业广告,仅供专业人士参考。
  • 强生召回婴幼儿布洛芬 总局:国内未售
    强生召回20万瓶婴幼儿布洛芬 食药总局:召回产品未在我国销售   美国食品药品管理局(FDA)官网日前公告称,因生产时鉴别有误,强生公司已在美国开始召回20万瓶可能含有微小塑料颗粒的婴幼儿布洛芬药物,该颗粒物被指易引发潜在危险。国家食品药品监督管理总局9月12日通报了强生公司在美国召回布洛芬产品有关情况,确认此次召回的产品未在我国销售。   产品存在潜在风险   据了解,本次召回涉及布洛芬原始浆果风味悬滴剂(Motrin Infants' Drops Original Berry Flavor)的三批产品,该产品主要用于2岁或2岁以下婴幼儿的退烧及镇痛。该药品的制造商——强生在美国的一家子公司麦克尼尔(McNeil)表示,公司从正在生产的一个批次产品中发现有微小的塑料颗粒,这种颗粒来自于第三方布洛芬原料供应商。由于可能存在潜在风险,公司现已启动主动召回程序。   被确认召回的产品可通过批号鉴别,分别为:DCB3T01、DDB4R01及DDB4S01。麦克尼尔告诫消费者,药品中可能含有一定的聚四氟乙烯(PTFE),常用于特氟隆涂料中,建议尽快停用该产品。截止目前,尚未发现任何伤痛病例。   据记者了解,强生旗下的布洛芬药物在中国也有销售。上海强生制药有限公司生产的美林布洛芬混悬滴剂,主治6-36个月的婴幼儿发热及感冒引起的头痛、咽喉痛等症。对此,上海强生制药有限公司表示,强生制药在中国市场销售的非处方药均在中国大陆生产,且生产工厂已通过新版GMP认证。问题产品并未销往中国大陆和香港,消费者可放心服用。   9月12日,国家食品药品监管总局针对此事公告称,近日,强生公司向监管部门报告,强生在美国主动召回特定批次的布洛芬产品,召回的原因是国外供应商提供的布洛芬原料存在质量问题。食品药品监管总局经核实确认,未批准强生公司进口布洛芬产品。强生公司在中国注册的布洛芬产品产地为中国上海市,原料供应商为中国本地公司,此次召回的产品在中国市场没有销售。   强生陷入召回怪圈   这并非布洛芬第一次“出事”。此前的一起美国官司,让经典解热镇痛药布洛芬陷入质疑漩涡。美国一女童在服用强生美林布洛芬后双目失明,强生公司为此被判赔偿6300万美元。   而对于强生而言,“召回”似乎成了其近年来的代名词。自2009年以来,强生因生产质量问题屡次宣布召回,而2010年更被外界戏称为强生“召回年”。在2010年,强生大大小小有15次召回,产品包括感冒药、止疼片、抗过敏药以及隐形眼镜等,公司损失金额高达数亿美元。   有媒体统计发现,作为全球500强企业之一的强生,近些年其产品频频遭遇“质量门”,短短7年时间,强生产品召回就高达51次。值得注意的是,在这51次的召回中,48次的召回跟中国无缘,一度引发业内质疑。今年6月份,强生也因此成为因质量召回被国家药监局首家约谈的外企。   对于强生屡次陷入“召回门”的原因,有观点认为,这属于罕见的系统性问题,原因可能在于强生错误地将生产和质量控制的监管分散化。也有观点认为,强生的问题在于过分追求降低成本。据外媒报道,强生出于节约成本的考虑没有重视麦克尼尔工厂生产中存在的问题,此外强生最近几年在投资新设备方面总是犹豫不决,因为投资新设备和确保生产质量需要大量的资金投入。   专家指出,召回事件频发,对强生的形象带来严重的负面影响。不过,召回是一种正常现象,要肯定召回制度建立的正面作用,这是一个公司敢于负责的行为,也有利益公司的风险控制。同时,强生的召回事件也给国内的药品生产企业敲响了警钟,中国应加快健全商品的召回制度,并完善召回后续赔偿等配套措施。
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 雷尼绍倾情参加第二届拉曼光谱网络会议
    为了分享拉曼光谱技术及应用的新进展,促进各相关单位的交流与合作,雷尼绍将倾情参加仪器信息网举办的第二届拉曼光谱网络会议本次将由雷尼绍拉曼光谱事业部应用经理王志芳博士带来题为《雷尼绍拉曼光谱系统在生物医学领域的应用及发展》的精彩报告,请您锁定9月24日10:15--10:45.报告简介:拉曼光谱作为一种无损的快速分析手段,在生物医学领域引起了极大的关注。通过拉曼光谱的测量,可以得到核酸、蛋白质及脂类等的生物分子信息,从分子水平上研究生物样品的结构与功能。本次报告主要通过一些案例介绍拉曼光谱及成像在细胞、组织及微生物方面所作的一些工作及应用进展,并且介绍雷尼绍发展的适用于生物样品测试的拉曼技术。报名请您点击此链接,谢谢https://www.instrument.com.cn/webinar/meetings/iCRS2020/
  • 生物药分析路上乘风破浪的Nexera Bio生物兼容液相系统
    近年来,生物药由于其在临床治疗中的优良表现发展迅猛,成为了制药行业不可抵挡的新趋势。在生物药研发、生产过程中,企业通过引入关键质量因素(CQA)对整个药物质量进行控制,以保证生物药安全性和有效性。这些CQA包括氨基酸序列、聚集体、电荷异质性、糖型和肽图等,其中聚集体和电荷异质性分别采用尺寸排阻色谱(SEC)、离子交换色谱(IEX)进行分析。 在使用SEC或IEX进行色谱分析过程中,通常使用高离子强度流动相,比如高浓度磷酸盐和氯化钠溶液,甚至极端pH分析条件。在这些条件下,可能会导致系统堵塞或泵头腐蚀。此外,蛋白质易与固定相填料或液相系统管路之间发生次级交互作用或吸附作用,产生色谱峰形拖尾,以影响色谱分离。这样高盐分析条件和蛋白类生物药独特性质给液相色谱仪分离带来严峻的挑战。 Nexera Bio生物兼容液相系统来啦!!! 岛津生物兼容液相Nexera Bio系统流路采用生物惰性材料,不仅耐腐蚀,而且能减少生物大分子的吸附,保证生物大分子的完整性,有效保障分析重复性和仪器耐用性。 图1 Nexera Bio生物兼容液相系统 Nexera Bio生物兼容液相系统特点:• 泵头、混合器、进样针、样品环和接头配件等均采用生物惰性材料,耐腐蚀、抗吸附;• 耐高压不锈钢包覆的Peek管路,提升系统耐压至66MPa;• 标配输液泵柱塞清洗蠕动泵,有效降低盐析,实现良好的送液稳定性,并防止泵头腐蚀。 举些“栗子”,带您一窥究竟 • 聚集体分析 图2 mAb二聚体分析 通过优化尺寸排阻色谱(SEC)分析单克隆抗体(mAb)的流动相组成,得到150 mmol/L磷酸钠缓冲液和150 mmol/L氯化钠溶液的较优流动相条件。通过图2对比图可知该单抗在普通液相系统条件下拖尾严重,但在Nexera Bio系统下峰形对称性良好,无拖尾现象。此外,重复性结果显示,二聚体和单体的保留时间和峰面积的RSD%均小于0.5%,重复性良好(表1)。实验数据表明Nexera Bio生物兼容色谱系统和Shim-pack Bio SEC色谱柱在SEC分析中,可以提供良好色谱峰型,带来快速有效分离,保证稳定可靠分析。 电荷异质性分析 图3 盐梯度方法下mAb的电荷异质体分析 采用Shim-pack Bio IEX和Nexera Bio生物兼容液相系统,在盐梯度方法下进行mAb的电荷异质体分布,在5min内实现了电荷异质体的高度分离。3.448min处的峰被命名为主峰。主峰之前和之后的峰分别被称为酸性峰和碱性峰。mAb的电荷异质体的主峰约占50.99%,酸性峰和碱性峰分别占34.94%和14.07%。且六针重复测定结果表明重现性非常好,所有峰保留时间RSD%均小于1%,主峰,酸性峰和碱性峰的峰面积RSD%均小于2%。实验数据表明Nexera Bio生物兼容色谱系统稳定可靠。 最后小编还是要强调下在使用SEC或IEX进行色谱分析过程中,不管是高盐还是极端pH条件,Nexera Bio均可长期耐受,不会造成仪器的腐蚀或堵塞等问题,更重要的是在分析过程中蛋白类药物无吸附,无拖尾,乘风破浪,确保生物药分析结果的稳定可靠。
  • 助力毒品现场分析,打赢全民禁毒战役 | 珀金埃尔默芬太尼类物质现场快速检测方案
    6月26日是国际禁毒日。在这场旷日持久的禁毒战中,现场快速分析测试一直发挥着重要的作用,尤其随着毒品以越来越隐形的方式出现。芬太尼是一种强效麻醉性止痛剂,被WHO列入基本药品清单,它是一种容易翻新和衍生新品种的物质,如舒芬太尼、阿芬太尼、瑞芬太尼、卡芬太尼等,被称为实验室毒品或第三代毒品。其中,卡芬太尼药效是芬太尼的100倍,海洛因的5000倍,吗啡的10000倍,成年人致死量仅为0.02克。我国分别于2005年颁布《麻醉药品与精神药品管理条例》,2015年颁布《非药用类麻醉药品与精神药品列管办法》,对25种芬太尼及其衍生物进行管制。2019年5月1日开始实施《关于将芬太尼类物质列入〈非药用类麻醉药品和精神药品管制品种增补目录〉的公告》,对包括所有与芬太尼结构类似的、具有相似活性的、可以引起精神愉悦感的芬太尼衍生物或前体药物整类列管。一直以来,气相色谱质谱联用仪(GC-MS)作为管控芬太尼类药品的“黄金标准”检测大部分的目标化合物。样品从现场采集后送至司法实验室进行检测,往往需要排期走流程,花费较长的时间,而且实验室分析样品的时间较长,单个样品的分析通常需要15-60分钟,以致影响案件认定和审理。珀金埃尔默《第三代毒品芬太尼类物质的现场及实验室快速检测解决方案》,包括在现场即可完成替代实验室检测工作的傅里叶红外光谱(FT-IR)分析方案和便携式GC-MS分析方案,以及在数分钟内完成快速、准确定量的高效液相色谱质谱联用(LC-MS/MS)分析方案。一红外光谱现场快速检测芬太尼类药物固体样品,现场采集,研磨后无需其它处理,现场直接使用珀金埃尔默Spectrum Two红外光谱仪,配备金刚石 ATR(衰减全反射)附件,通过光谱比对(图1)和相似度得分分析,现场快速判断实际收缴样品是否为国家管控药物。约1min完成样品分析确认。Spectrum 系列红外光谱仪AVC专利技术,实时扣除背景和样品中的空气背景干扰OpticsGuard专利防潮技术,强力保护光学部件,干燥剂3年免维护图1. 实际收缴样品的红外谱图与数据库检索对比图二微萃取-便携式 GC-MS 现场快速筛查芬太尼类药物使用Custodion® 微萃取 (CME) 技术采集、处理样品后,现场使用珀金埃尔默Torion T-9便携式GC-MS,在10分钟内完成从样品采集到结果确证。采用去卷积算法同时在Wiley Designer Drug 2017毒品数据库中进行搜库匹配,获得准确实验结果,如图2和3所示。Torion T-9便携式GC-MS总重14.5Kg尺寸38cm×39cm×23cm开机5min内到达工作状态样品分析运行时间图2. Torion T-9便携式GC-MS现场检测卡芬太尼样品质谱图图3. Torion T-9便携式GC-MS现场检测现场检测玻璃器皿残留芬太尼及其类似的质谱图(A) CME-GCMS分析在玻璃器皿上残留的芬太尼及其类似物的总离子流图(B) Torion T-9获得的芬太尼质谱图(蓝色)与NIST数据库芬太尼质谱图(红色)对比三LC-MS/MS快速检测芬太尼类药物实验室解决方案样品采集后用甲醇溶解;使用珀金埃尔默Qsight LC-MS/MS检测。图4为包括芬太尼在内的阿片类药物的提取离子色谱图。珀金埃尔默QSight三重四极杆液质联用仪双离子源同时工作检测通量高离子源即插即用更换方便实验室内部移动方便复杂基质灵敏测定快速样品定量图4. 国家管控阿片类药物的QSight LC-MS/MS提取离子色谱图欲了解珀金埃尔默《第三代毒品芬太尼类药物快速检测解决方案》的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。扫描上方二维码即可下载右侧资料➡
  • 中国科大发展固体核磁共振方法揭示氟离子通道渗透机制
    核磁共振方法除可获得分子结构信息外,还可观测分子的动态特性,这些可为阐明蛋白质等生物大分子的功能机制提供重要信息。随着高速魔角旋转技术的发展,固体核磁谱分辨率大幅提高,从理论上突破了液体核磁观测的分子量的限制,逐渐被运用于研究磷脂膜环境中的膜蛋白等超大生物分子复合物体系的动态构象。但低信号强度和低分辨率限制了生物分子固体核磁研究的广泛开展。自然界中氢原子和氟原子的旋磁比大、NMR信号强,是比较理想的NMR观测对象。氟原子在生物分子结构中极少存在,无观测背景信号,是理想的NMR观测探针。因此,氢检测和氟检测方法的发展可能显著扩展固体核磁在复杂生物体系中的运用。   2023年8月23日,中国科学技术大学微尺度物质科学国家研究中心史朝为课题组在国际著名学术期刊ScienceAdvances上在线发表了题为“Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR”的研究论文,研究团队以氟离子通道蛋白Fluc-Ec1作为研究对象,结合氘代和19F定点标记方法,发展并优化膜蛋白固体核磁氢检测及氟检测研究方案,为膜蛋白核磁研究提供新思路。环境中的氟离子可通过弱酸积累效应在细菌细胞内积累,产生毒害作用。微生物通过F-膜转运蛋白将F-运输至体外进而抑制其毒性作用。来自Fluc(fluoridechannel)家族的Fluc-Ec1蛋白是由130个左右的氨基酸组成的离子通道,具有独特的双重拓扑二聚体的结构,且对氟离子具有高度选择性。静态的F-通道蛋白的晶体结构难以描述F-渗透的具体机制,F-通道蛋白被抗体类似物固定在一种构象上。氟原子和氧原子相似的电子云密度以及分子动力学模拟数据使得晶体结构中极性轨道(polartrack)上的氟离子结合位点(F1and F2sites)引发争议,另外突变体功能保留或丧失的机制目前仍不清楚。   研究团队通过观测磷脂膜环境中的Fluc-Ec1在不同氟离子浓度中的构象,结合基因密码子扩展方法,在蛋白质前庭位置引入非天然氨基酸三氟甲基苯丙氨酸(tfmF),设计19F-19F自旋扩散实验,验证了Fluc-Ec1存在新的氟离子结合位点(F0site)。研究团队利用1H-1H自旋扩散实验直接检测水和蛋白质的相互作用,通过氘代来减少氢原子的非相干背景,结合water-hNH谱图以及自旋扩散传递和衰减规律,得到了主链酰胺质子和水分子的距离信息,证明了F1位点结合的是水,而不是氟。   此外,晶体学研究无法从结构的角度解释F80M突变体具有功能活性而F83M突变体丧失功能活性的现象,研究团队通过分别对比F80M、F83M和野生型蛋白脂质体样品的碳检测谱图,结合液体核磁共振技术验证loop 1突变体功能,发现loop 1是F83M突变体丧失通道活性的重要因素,进一步揭示了loop 1在F-渗透过程中的重要性。综上,研究团队更正了先前推测的氟离子通道离子配位位点,提出氟-水交替“water-mediated knock-on”的渗透模型,为全面理解Fluc通道中的渗透和门控机制提供科学依据。中国科学技术大学张瑾、宋丹、李娟以及德国亚琛工业大学的Florian Karl Schackert为该论文的共同第一作者,中国科学技术大学微尺度物质科学国家研究中心史朝为特任研究员为该文章的通讯作者。中国科学技术大学的龚为民教授、田长麟教授、项晟祺教授以及德国Jülich研究中心的Paolo Carloni和Mercedes Alfonso-Prieto教授团队也参与了该研究工作并给予了大力帮助。该研究得到了科技部、国家自然科学基金、中国科学院、中国科学技术大学以及德国科学基金会的经费资助。
  • 1.1类乳腺癌新药吡咯替尼获批,凭借2期研究获SDA优先审批上市
    p   今日,业内传来重磅新药上市消息,江苏恒瑞医药宣布,其自主研发的1.1类新药吡咯替尼(商品名:艾瑞妮& reg )凭借2期临床研究获国家药品监督管理局(下称“SDA”)优先审批上市,目前状态为审批完成,待制证。吡咯替尼是一种泛-ErbB受体酪氨酸激酶抑制剂,用于人表皮生长因子受体 2(HER2)阳性晚期乳腺癌的靶向治疗。值得注意的是,该药物凭借1期研究结果登上全球顶级期刊《JCO》,又凭借2期临床获得SDA的优先审评上市,回顾整个过程可谓是中国自主研发创新药物优先审批的典范之一。 /p p style=" text-align: center " img width=" 276" height=" 184" title=" 2018.8.14 2-1.jpg" style=" width: 329px height: 152px " src=" http://img1.17img.cn/17img/images/201808/insimg/e6cc6de8-0bf7-44f9-a99f-9a447161c25c.jpg" / /p p   吡咯替尼是获得国家“重大新药创制科技重大专项”资助,作为泛-ErbB受体酪氨酸激酶抑制剂,可同时靶向作用于人表皮生长因子受体2(HER2)、表皮生长因子受体(EGFR)和人表皮生长因子受体4(HER4),其疗效显著优于多个小分子抗HER2药物。 /p p   · 2017年5月,《JCO》杂志首次全文发表了吡咯替尼的1期研究结果,中国自主研发抗肿瘤药物仅凭1期研究就登上全球知名期刊十分难得。 /p p   · 2017年8月,吡咯替尼凭借2期研究结果中极为出色的疗效被国家食品药品监督管理局药品审评中心(下称:CDE)列为优先审评创新药物。同年12月,2期临床研究结果在美国圣安东尼奥乳腺癌大会上报道,并被列入2017年乳腺癌重大事件年度回顾。 /p p   · 2018年8月, SDA正式批准吡咯替尼用于HER2阳性晚期乳腺癌治疗。吡咯替尼凭借2期临床研究的结果即获得优先审批,且从递交临床数据报告及上市申请到正式获得上市批准仅历时10个月。 /p p   吡咯替尼是一款不可逆的泛-ErbB受体酪氨酸激酶抑制剂,靶点包括HER2、EGFR和HER4。吡咯替尼与EGFR、HER2和HER4的胞内激酶区ATP结合位点共价结合,阻止同/异源二聚体形成,不可逆的抑制自身磷酸化,阻断下游信号通路的激活,抑制肿瘤细胞生长。 /p p   据了解,吡咯替尼单药治疗晚期乳腺癌1b期临床研究旨在确定最大耐受剂量,评估药代动力学和初步疗效。研究结果显示出其极为出色的抗肿瘤疗效及较好的安全性。值得一提的是,1b期研究结果全文发表在全球顶级期刊《JCO》,中国自主研发抗肿瘤药物仅仅凭借I期研究就登上全球知名期刊十分难得。同期,另一肿瘤领域顶级期刊《Lancet Oncology》杂志也对吡咯替尼的1b期研究发表点评,对该新药出色疗效和较好的安全性做出了高度评价。 /p p   基于1b期研究的疗效和安全性,恒瑞迅速开展了2期临床研究,评估吡咯替尼联合卡培他滨方案对比拉帕替尼联合卡培他滨方案治疗HER2阳性转移性乳腺癌的有效性和安全性。研究结果表明,其临床获益,且较现有治疗手段具有明显优势,这一结果首次在2017年美国圣安东尼奥乳腺癌大会上报告。 /p p   由于研究结果与现有治疗相比存在重大突破,吡咯替尼仅凭2期临床研究结果即被CDE列入优先审评。由于其临床获益且较现有治疗手段具有明显优势,符合国家对临床急需药品(指对用于治疗严重危及生命且尚无有效治疗手段的疾病的创新药)有条件批准上市的相关要求。 /p p style=" text-align: center " img width=" 600" height=" 416" title=" 2018.8.14 2-2.jpg" style=" width: 445px height: 238px " src=" http://img1.17img.cn/17img/images/201808/insimg/074fb1a4-8553-4941-950d-0fd1e9f386aa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  恒瑞吡咯替尼获批状态 /span /p p   2018年8月,吡咯替尼已经进入审批完毕,待制证状态。这是自1998年抗HER2治疗开始以来,中国首个自主研发的抗HER2靶向药物。 /p p & nbsp /p
  • 与大咖相聚直播间|第二届“生物医用材料”主题网络研讨会来袭!
    p style=" text-align: justify text-indent: 2em " 生物医用材料是现代医学的两大支柱--生物技术和生物医学工程的重要基础,而材料表征和生物相容性评价是生物医用材料研究中始终贯穿的主题。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于2019年12月27日组织举办第二届“生物医用材料”网络研讨会,邀请该领域专家,围绕生物医用材料常用的表征技术和生物相容性评价方法带来精彩报告,为生物医用材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高生物医用材料研究及应用水平。 span style=" color: rgb(255, 0, 0) " ( /span strong span style=" text-decoration: none color: rgb(255, 0, 0) " a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" 点击立即免费报名参会 /a /span /strong span style=" color: rgb(255, 0, 0) " ) /span /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/ac37e513-e64b-4cbf-be48-ac816145e963.jpg" title=" 1920_420.jpg" alt=" 1920_420.jpg" / /a /p p style=" text-align: center " strong span style=" font-size: 18px color: rgb(255, 0, 0) " 具体日程安排(初定) /span /strong /p p style=" text-align: center " strong style=" margin: 0px padding: 0px color: rgb(255, 0, 0) font-family: 宋体, " arial=" " font-size:=" " text-align:=" " white-space:=" " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/48f0427d-e2fb-4510-a393-87327c2fd5ac.jpg" title=" 1.png" alt=" 1.png" / /strong /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) font-size: 18px " 报告嘉宾介绍 /span /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) font-size: 18px " img style=" max-width: 100% max-height: 100% width: 150px height: 229px " src=" https://img1.17img.cn/17img/images/201912/uepic/86de8913-d501-4ecd-b26b-2961b7fb2374.jpg" title=" 只金芳老师.png" alt=" 只金芳老师.png" width=" 150" height=" 229" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " 只金芳,中国科学院理化技术研究所研究员/博导。南开大学化学系本、硕士学位,日本东京大学工学部博士学位。日本NOK先端技术研究所任研究员。日本学术振兴事业团博士后。2003年8月作为中国科学院理化技术研究所国外引进人才回国。现任任中国感光学会常务理事,中国光催化专业委员会秘书长,副主任。中国抗衰老促进会专家委员会委员等。研究领域包括微生物传感器、碳基纳米材料在生物医学领域的应用以及有机-无机纳米复合光功能材料的开发。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 150px height: 211px " src=" https://img1.17img.cn/17img/images/201912/uepic/f3d709e5-afee-4cc5-9c7f-52437f1edbbd.jpg" title=" 王怀雨老师.png" alt=" 王怀雨老师.png" width=" 150" height=" 211" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 王怀雨,中国科学院深圳先进技术研究院研究员/博导,国家自然科学基金委优秀青年基金获得者/广东省特支计划科技创新青年拔尖人才/中国科学院青年促进会会员/深圳市孔雀计划B类人才。2004年本科毕业于北京大学药学院,2009年博士毕业于中国科学院理化技术研究所,2007-2009年以及2009-2013年分别以研究助理和博士后身份在香港城市大学进行研究工作,主要研究方向为生物材料的表/界面功能构建。先后承担国家自然科学基金、中国科学院STS区域重点、深港创新圈联合资助、深圳市基础研究布局等项目元。共发表SCI论文60余篇,引用3500余次;一作/通讯作者论文27篇,其中包括多篇发表在Nat. Commun., Adv. Mater., Angew. Chem. Int. Ed., Adv. Sci., Biomaterials, Small等权威刊物。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 150px height: 210px " src=" https://img1.17img.cn/17img/images/201912/uepic/a393c10c-5068-44d8-b603-bb3eabe5b092.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 150" height=" 210" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 秦蒙,北京化工大学副教授。秦蒙博士于2018年经“海外高端人才计划”引进北京化工大学,目前从事仿生纳米药物的研究。秦蒙博士擅长从事交叉学科,融合材料化学、模式动物、分子生物的先进技术,在转基因/人源化小鼠、非人灵长类动物模型上完成多个候选新药及其制剂的药效评价及分子机制研究。以第一/并列第一作者在Advanced& nbsp Materials、Stem Cell Research & amp Therapy、Stem Cells Translational Medicine、Vascular Pharmacology等期刊上发表SCI论文8篇,以共同作者在Nature Biomedical Engineering、Therapy-Nucleic Acids等期刊上发表SCI论文14篇。申请发明专利9项,授权3项。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 150px height: 200px " src=" https://img1.17img.cn/17img/images/201912/uepic/ed738800-e3e0-4938-9608-dc508652ac85.jpg" title=" 黄达.jpg" alt=" 黄达.jpg" width=" 150" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 黄达,福州大学讲师。北京化工大学学士学位,中国科学院化学研究所硕士、博士学位,现任职于福州大学生物科学与工程学院,主要从事生物医用高分子材料的设计、制备及应用研究,包括高分子纳米材料和水凝胶材料的制备及其在药物递送、组织工程、生物成像以及分析检测等领域的应用研究。目前已在Biomaterials、Polymer Chemistry、Journal of Materials Chemistry B等SCI期刊上发表论文20余篇,其中第一作者或通讯作者论文11篇,授权专利2项。主持和参与多项国家自然科学基金和福建省自然科学基金。曾获得中科院化学所青年科学奖优秀奖。 /p p style=" text-align: justify text-indent: 0em " strong style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: arial, helvetica, sans-serif font-size: 18px text-align: justify white-space: normal " span style=" margin: 0px padding: 0px color: red " 报名连接 /span /strong span style=" margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: arial, helvetica, sans-serif font-size: 18px text-align: justify " : /span a href=" https://www.instrument.com.cn/webinar/meetings/biomedicalmaterial/" target=" _self" style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " 第二届“生物医用材料”主题网络研讨会 /span /a /p p style=" text-align: center " strong 扫一扫,进入生物医用材料交流群 /strong br/ /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/6a993818-d2cd-469f-8fda-fa64d6beedc0.jpg" title=" 群聊.PNG" alt=" 群聊.PNG" / /strong /p
  • 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF轻松鉴定抗生素中聚合物杂质
    目前,在抗生素新药申报日益严格的大背景下,聚合物杂质的研究常常是药品审评中心(Center for Drug Evaluation, CDE)发补及退审的理由。抗生素中聚合物杂质是引起临床不良反应的主要过敏原,严格控制其含量具有重要的意义。传统的聚合物杂质检测通常采用排阻色谱法,该方法检测时间长、分离度和专属性不足,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。 为了解决这些难题,岛津公司与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF 参考2020年版《中国药典》头孢米诺和头孢地嗪有关物质Ⅱ检测方法,一维采用岛津Shimpack Bio Diol-60高效凝胶色谱柱进行分离,将聚合物杂质指针性地导入样品环;然后采用中心切割在线除盐进行二维反相色谱分离目标杂质,并通过LCMS-9030四极杆飞行时间高分辨质谱采集,获得准确的一级和二级质谱数据来达到鉴定杂质的目的。 SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台流路图 抗生素杂质数字化标准品数据库 创新中心开发的《抗生素杂质数字化标准品数据库》已收录《欧洲药典》β-内酰胺类抗生素相关杂质标准品基于岛津液相色谱-高分辨质谱仪LCMS-9030采集的ESI正/负双模式,7个不同碰撞能量下的二级质谱图,同时数据库已登录化合物信息、可能的结构式、分析方法的色谱条件和《中国药典》流动相条件对应的保留时间等。此外,为方便使用者从高分辨质谱方法向低分辨质谱方法的转化,本数据库还登录了14种抗生素品种相关杂质的MRM方法文件,适用于液相色谱-三重四极杆质谱产品的检测。 目前数据库包含头孢甲肟、拉氧头孢、氟氧头孢钠、头孢呋辛、头孢曲松、头孢他碇、头孢吡肟、头孢唑啉钠、阿莫西林、头孢呋辛酯、头孢哌酮钠舒巴坦钠、头孢克肟、头孢泊肟酯和头孢地尼等14种β-内酰胺类抗生素品种,153种杂质和主成分对照品,以及50余种高分子聚合物杂质的共计1483张二级质谱图。 应用案例:阿莫西林聚合物杂质的鉴定 采用SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台共检出阿莫西林热降解溶液中14种杂质成分,成功分离出阿莫西林二聚体,三聚体,四聚体及其异构体。下图为阿莫西林二聚体在数据库中的检索结果。 阿莫西林二聚体鉴定结果 详细信息请参考:《阿莫西林胶囊热降解聚合物杂质的2D-HPLC分析及质谱裂解机理探讨》《药物分析杂志》中图分类号:R917 文献标识码:A 文章编号:0254-1793(2021)07doi: 10.16155/j.0254-1793.2021.07。 总结 创新中心搭载的专属性中心切割二维反相色质谱联用分析平台SEC-RPLC-QTOF,采用中心切割技术,在线除盐分离出目标杂质,利用LCMS-QTOF配合自主开发的质谱库进行鉴定。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。
  • 节日聚会时,毒品莫沾身 | 珀金埃尔默第三代毒品芬太尼类物质的现场及实验室快速检测解决方案
    新春佳节,人们走亲访友,欢乐过年。但是,此时也是毒品传播的高发期,各地公安禁毒机构对此高度重视。毒品通常分为传统毒品(海洛因、大麻、鸦片、可卡因等)、合成毒品(精神药物,如冰毒、氯胺酮等),以及实验室毒品(如芬太尼类药物)。芬太尼是一种强效麻醉性止痛剂,被WHO列入基本药品清单,它是一种容易翻新和衍生新品种的物质,如舒芬太尼、阿芬太尼、瑞芬太尼、卡芬太尼等。卡芬太尼药效是芬太尼的100倍,海洛因的5000倍,吗啡的10000倍,成年人致死量仅为0.02克。我国分别于2005年颁布《麻醉药品与精神药品管理条例》,2015年颁布《非药用类麻醉药品与精神药品列管办法》,对25种芬太尼及其衍生物进行管制。2019年5月1日开始实施《关于将芬太尼类物质列入〈非药用类麻醉药品和精神药品管制品种增补目录〉的公告》,对包括所有与芬太尼结构类似的、具有相似活性的、可以引起精神愉悦感的芬太尼衍生物或前体药物整类列管。一直以来,气相色谱质谱联用仪(GC-MS)作为管控芬太尼类药品的“黄金标准”检测大部分的目标化合物。样品从现场采集后送至司法实验室进行检测,往往需要排期,走流程,花费较长的时间,以致影响案件审理和司法判决,而且实验室分析样品的时间较长,单个样品的分析通常需要15-60分钟。珀金埃尔默《第三代毒品芬太尼类物质的现场及实验室快速检测解决方案》包括在现场即可完成替代实验室检测工作的傅里叶红外光谱(FT-IR)分析方案和便携式GC-MS分析方案,以及在数分钟内完成快速、准确定量的高效液相色谱质谱联用(LC-MS/MS)分析方案。01.红外光谱现场快速检测芬太尼类药物固体样品,现场采集,研磨后无需其它处理,现场直接使用珀金埃尔默Spectrum Two红外光谱仪,配备金刚石 ATR(衰减全反射)附件,通过光谱比对(图1)和相似度得分分析,现场快速判断实际收缴样品是否为国家管控药物。约1min完成样品分析确认。Spectrum Two红外光谱仪AVC专利技术,实时去除背景和样品中的空气背景干扰OpticsGuard专利防潮技术,强力保护光学部件,干燥剂3年免维护图1.实际收缴样品的红外谱图与数据库检索对比图02.微萃取-便携式GC-MS现场快速筛查芬太尼类药物使用Custodion® 微萃取 (CME)技术采集、处理样品后,现场使用珀金埃尔默Torion T-9便携式GC-MS,在10分钟内完成从样品采集到结果确证。采用去卷积算法同时在Wiley Designer Drug 2017毒品数据库中进行搜库匹配,获得准确实验结果,如图2和3所示。Torion T-9便携式GC-MS总重14.5Kg尺寸38cm×39cm×23cm开机5min内到达工作状态样品分析运行时间图2.Torion T-9便携式GC-MS现场检测卡芬太尼样品质谱图图3.Torion T-9便携式GC-MS现场检测现场检测玻璃器皿残留芬太尼及其类似的质谱图(A) CME-GCMS分析在玻璃器皿上残留的芬太尼及其类似物的总离子流图(B) Torion T-9获得的芬太尼质谱图(蓝色)与NIST数据库芬太尼质谱图(红色)对比03.LC-MS/MS快速检测芬太尼类药物实验室解决方案样品采集后用甲醇溶解;使用珀金埃尔默Qsight LC-MS/MS检测。图4为包括芬太尼在内的阿片类药物的提取离子色谱图。珀金埃尔默QSight三重四级杆液质联用仪双离子源同时工作检测通量高
  • 生物产业发展规划催熟体外诊断产业
    业内人士指出,受益于医疗支付体系改革带来的药占比下降,未来几年体外诊断行业的市场规模将会实现加速提升。   据中国证券网报道,尽管体外诊断的概念有些陌生,不过在如今的诊疗过程中,通过血液、体液、组织等样本进行检测获取临床诊断信息的流程早已普及。实际上,临床诊断信息的80%左右来自体外诊断,而其费用占医疗费用不到20%。   多年来,我们习惯把体外诊断简单地认为就是诊断试剂。其实,体外诊断产业是生物产业的重要组成部分,涉及到生化、免疫、分子生物学、基因工程等多个方面。   在刚刚发布的《生物产业发展规划》中,明确提出建设体外诊断试剂研发和产业化平台,加强原料酶、诊断性抗体等试剂原料基地建设,构建量值溯源体系及其参考实验室网络,推动我国体外诊断产业的发展。   在庞大的生物医药产业链中,体外诊断行业规模占比并不大,但是市场空间和发展潜力却是巨大的。2010年我国体外诊断市场规模为122亿元,其中体外诊断仪器市场规模约为23亿元,体外诊断试剂市场规模约为99亿元。目前中国是第二大体外诊断自动化仪器需求国,近几年每年需求4000套生化分析系统、9000套血液分析系统、3000套免疫分析系统。由于医保覆盖度增加效果体现,未来几年行业仍将快速增长,预计将保持22%-25%增速。   高毛利水平也是体外诊断产业的魅力之一。在公立医院逐步取消药品加成后,医疗机构无疑会更加重视检验业务对盈利的贡献。而相对于药品及医疗器械的政府价格管控,体外诊断行业的限制相对宽松,部分省份医院试剂自行采购。一般来说,药品的加成率在15%左右,而体外诊断检验的毛利率在50%左右。   以主营体外生化试剂的利德曼为例,体外诊断业务在2008-2011年间发展迅速,营业收入由2008年的1.02亿元增长到2011年的2.21亿元,同时毛利率从60%稳步提升至68%左右。   体外诊断试剂按检测原理或方法划分,主要有生化诊断试剂、免疫诊断试剂、分子诊断试剂、微生物诊断试剂、尿液诊断试剂、凝血类诊断试剂、血液学和流式细胞诊断试剂等,其中生化、免疫、分子诊断试剂是我国诊断试剂主要的三大类品种。   日信证券研究员认为,受益于基层慢性疾病的防御和诊断,县级医院全自动生化分析仪和基层医院半自动生化分析仪的普及率将逐步提升,未来几年我国生化试剂市场将会呈现超过行业平均增长速度的高速增长。同时,考虑行业的竞争状况,生化检验领先企业将持续受益于生化试剂行业集中度提高。   “花费低、速度快是临床生化试剂的优势,在医疗检测中一直保持较大份额,这在相当长一段时间内很难被取代。” 北京大学人民医院检验科副主任杨铁生表示,“随着国内企业研发、生产技术水平不断地提高,部分企业的产品质量已经达到国际先进水平。目前,中生北控、科华生物、利德曼、上海复兴是生化试剂领域的佼佼者,无论是产品种类,抑或产品质量,都已经可以和外资品牌掰掰手腕。”   从市场竞争格局来看,经过多年发展,我国在生化诊断试剂领域的自主创新能力已显著提升,整体技术水平已基本达到国际同期水平,并涌现出了一些具备与国际巨头竞争的企业。   港股上市的中生北控在技术上拥有一定的先发优势,是中国最早推出生化双试剂的本土企业。科华生物目前已经成为中国生化试剂的龙头企业之一,其生化试剂销售早已过亿元,成为其稳定和主要的收入来源。利德曼是目前国内生化试剂产品种类最全的生产企业之一,其生产的胱抑素试剂盒、D-3羟丁酸、D-二聚体等产品成为了国内生化试剂的代表。   业内人士认为,随着国内企业试剂产品技术质量的进一步提高,以及生化分析仪自主开发能力的提升,未来我国生化诊断试剂市场的国产化替代趋势将进一步增强。
  • “珞珈二号”遥感图像发布 雷达成像填补国际空白
    7月12日,国际首个星载Ka频段高分辨率SAR珞珈二号遥感应用系统发布在武汉商业航天论坛公布了入轨后获得的首批影像,画面里山峦、河流、公路、农田地貌分明。记者从中国航天科工二院23所了解到,影像成像的数据是由星载Ka频段高分辨率合成孔径雷达(SAR)提供,该雷达填补了国际上在该频段高分辨SAR卫星的空白。  为什么是Ka频段?据介绍,传统的雷达由于受到频段的限制,难以获得草、叶子、乔木、灌木等地貌的信息,而Ka频段由于其波长特性,能清晰分辨出林木、草地、农田等地貌信息,并反演地形等地理信息。这是其他现有在轨微波卫星不具备的特征。  基于此,星载Ka频段高分辨率SAR可以服务自然资源调查、水资源监测、灾害预警预报等多个领域,为国家基础地理测绘、“双碳”战略提供重要技术手段。  星载Ka频段高分辨率SAR是大范围、大比例尺的遥感数据能定期、快速、及时获取的“利器”,可全天时多天侯对地面目标进行观测并获取高分辨率微波影像。雷达图像接近光学效果,能满足目标识别级的遥感感知的高分辨率探测需求。  据了解,研制团队利用相控阵天线设计了多角度成像模式及视频成像模式,极大地丰富了目前星载雷达对地遥感探测的手段。多角度成像模式,可以克服陡峭山区雷达阴影、叠掩等几何畸变的制约,我国西南地区地势复杂,测图困难,测绘的数据处理起来也很复杂,星载Ka频段高分辨率SAR的观测结果则有望提供更优质的解决方案,为交通建设等建设规划提供数据支持。视频成像模式除了生成图片,还能生成动态视频,观测结果将更清楚、更立体、更动态。
  • 亮点抢先看!6月5日“第二届分子互作”主题网络会重磅来袭
    生物分子的活性功能是通过分子间相互作用来实现的,研究生物分子间的相互作用,对于阐明生物反应的机理,揭示生命现象本质具有重要意义。仪器信息网将于2024年6月5日举办“第二届分子互作创新技术与前沿应用”主题网络研讨会,特别邀请10余位专家围绕分子互作创新技术分享,以及在药物研发、天然产物筛选、生物传感器、高通量检测等领域的前沿研究展开探讨与交流,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/YBo(点击报名)会议亮点1. 技术路线多元:不仅涵盖SPR、BLI主流非标记技术,还有MST、ITC、AUC等创新技术分享2. 报告主题火热:从抗体研发、中药活性发现、药物靶标研究,再到分子互作传感器、高通量分子相互作用分析等前沿应用展开探讨3. 嘉宾阵容强大:力邀清华北大、分子细胞卓越中心、微生物所、药生所、昆明植物所、深圳先进院、海军军医大学、清华珠三角研究院等10余位业内专家4. 多款仪器亮相:赛多利斯、极瞳生命、普瑞麦迪等分子互作厂商带来最新的技术分享和解决方案介绍公益性讲座,人人可参与,抓住足不出户与专家对话的机会!点击图片报名参会会议日程“第二届分子互作创新技术与前沿应用”网络研讨会(更新中)2024年06月05日报告时间报告方向专家单位9:00-9:30生物层干涉技术在抗体研发中的应用樊峥中国科学院微生物研究所 高级工程师9:30-10:00高通量分子互作Octet® 在生物医药领域的应用张财辉赛多利斯 生物分析产品南区应用经理10:00-10:30分子相互作用技术在中药活性成分发现和靶标确认中的应用王静北京大学药学院副主任技师/特聘副研究员10:30-11:00待定待定普瑞麦迪11:00-11:30分析超速离心技术在生物分子相互作用研究中的应用李文奇清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师11:30-12:00荧光互补技术在分子互作研究中的应用陈明海中国科学院深圳先进技术研究院 副研究员12:00-13:30午休13:30-14:00表面等离子体共振技术——原理、仪器设计及创新应用毕研刚清华珠三角研究院 研究员14:00-14:30待定待定极瞳生命科技(苏州)有限公司14:30-15:00表面等离子共振技术在药物研究多种领域中的应用曹岩海军军医大学药学系副教授15:00-15:30分子互作技术联用发现活性天然先导物和靶标研究刘将新中国科学院昆明植物研究所 研究员15:30-16:00靶向互作清除肿瘤起始细胞李珂中国医学科学院医药生物技术研究所 研究员16:00-16:30两种微量热技术在分子互作检测中的应用吴萌中国科学院分子细胞科学卓越创新中心 高级工程师会议嘉宾樊峥 中国科学院微生物研究所 高级工程师报告题目:《生物层干涉技术在抗体研发中的应用》个人简介:协和医科大学生物化学与分子生物学博士,中国科学院微生物研究所公共技术中心副主任,高级工程师,分子相互作用分析技术平台负责人。从事分子相互作用分析技术研究与支撑工作十余年,熟悉各类分子互作以及生物化学和分子生物学分析技术,包括表面等离子共振技术、生物层干涉技术、等温滴定量热技术、蛋白纯化技术、差式扫描荧光分析以及动态光散射技术等。发表研究论文20余篇,为NATURE、SCIENECE、CELL、PNAS等国际著名学术期刊论文提供了大量分子相互作用等分析数据。「报名参会」王静 北京大学药学院 副主任技师/特聘副研究员报告题目:《分子相互作用技术在中药活性成分发现和靶标确认中的应用》个人简介:王静,博士,北京大学药学院天然药物及仿生药物全国重点实验室副主任技师,北京大学宁波海洋药物研究院特聘副研究员。主要研究方向为分子互作、拉曼光谱和纳米递送技术在生物医学和药学研究中的应用。使用分子互作技术建立了靶标垂钓、中药活性成分发现、药物筛选与验证、竞争抑制研究、分子相互作用的亲和力检测等一系列新方法新体系。主持国家自然科学基金青年项目、国家自然科学基金面上项目和宁波市重点研发计划暨“揭榜挂帅”项目等。近年来以第一作者/通讯作者在Nat. Commun., Adv. Mater., J. Am. Chem. Soc., Theranostics, Anal. Chem.等国际著名期刊上发表科研论文13篇,其他作者论文30余篇。申请发明专利多项。「报名参会」李文奇 清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师报告题目:《分析超速离心技术在生物分子相互作用研究中的应用》个人简介:李文奇,博士毕业于清华大学生命科学学院,清华大学蛋白质研究技术中心蛋白质制备与鉴定平台主管,高级工程师;曾任国家蛋白质科学研究(北京)设施清华基地副主任。担任生物学杂志编委,电子显微镜学会仪器共享委员会委员。多年从事蛋白质表达纯化,理化性质分析与相互作用研究工作:熟悉原核、酵母、昆虫细胞、哺乳动物细胞等蛋白表达系统以及蛋白质无标签纯化、亲和标签纯化、活性组分纯化等多种分离纯化手段;熟练掌握发酵工程工艺;精通圆二色光谱、差示扫描量热技术、生物膜干涉技术、表面等离子共振技术、微量热泳动技术、分析超速离心技术等多种理化性质分析和相互作用研究技术。「报名参会」陈明海 中国科学院深圳先进技术研究院 副研究员报告题目:《荧光互补技术在分子互作研究中的应用》个人简介:中国科学院深圳先进技术研究院副研究员,博士生导师。2017年获微生物学博士学位,2019年7月加入中国科学院深圳先进技术研究院,任副研究员职位。主要研究方向是基于合成生物学技术发展新型荧光传感系统用于病毒-宿主互作分子事件研究。研究成果以第一/通讯作者身份发表于ACS Nano, Biomaterials, Chem. Sci., Anal. Chem.等期刊。主持国家重点研发计划课题、中科院先导B课题、国家自然科学基金青年项目、广东省自然科学基金面上项目等项目。担任 Front. Cell. Infect. Microbiol.期刊客座编辑。曾获中国科学院优秀博士论文奖和中国科学院院长奖,入选第六届中国科协青年人才托举工程。「报名参会」毕研刚 清华珠三角研究院 研究员报告题目:《表面等离子体共振技术——原理、仪器设计及创新应用》个人简介:教育背景2000.09-2004.06 清华大学精密仪器与机械学系机械设计、机械工程及自动化专业获学士学位,2005.09-2013.06 清华大学精密仪器与机械学系仪器科学及技术专业获博士学位 工作履历2004-2019年 解放军某部2020年-今 清华珠三角研究院研究概况近年来开展的工作主要围绕特种传感器和生物医疗仪器。主持和参与研制了防爆型红外气体传感器、盾构刀具磨损检测传感器等多款传感器。参与流式细胞分选和表面等离子体共振等仪器设备的研制和产业化工作。作为主要成员先后完成和参与国家科技专项若干,作为主要完成人获得北京市科学技术一等奖一次。「报名参会」曹岩 海军军医大学药学系 副教授报告题目:《表面等离子共振技术在药物研究多种领域中的应用》个人简介:曹岩,海军军医大学药学系副教授,硕士生导师,上海市浦江人才。毕业于第二军医大学,药物分析专业,博士学位,美国密歇根大学访问学者。以复杂药物体系的分析技术为主要研究方向,主要从事基于表面等离子共振传感器的药物分析新方法研究,在中药活性成分的高通量筛选和体内药物的快速检测技术上形成特色。累计发表第一和通讯作者SCI论文20余篇,最高影响因子24.4,累计影响因子大于200。主持国家自然科学基金项目、国家重大科学仪器开发项目、上海市基金项目等6项课题。申请国家发明专利8项。「报名参会」刘将新 中国科学院昆明植物研究所 研究员报告题目:《分子互作技术联用发现活性天然先导物和靶标研究》个人简介:刘将新,研究员,博士生导师,中国科学院昆明植物研究所,植物化学与天然药物全国重点实验室。重点开展基于药物靶标和分子互作技术的天然活性先导化合物发现、成药性评价以及活性天然产物新靶标和作用机制研究。主持云南省重大科技专项生物医药专项、国家自然科学基金面上项目、青年项目,中科院“西部之光”人才项目、云南省万人计划青年拔尖人才、校企合作等项目十余项。以通讯作者/第一在Nat. Commun., J. Med. Chem., Eur. J. Med. Chem.等国际高水平期刊上发表论文多篇。担任中国药理学会中药与天然药物药理专业委员会青年委员,《Chinese herbal medicines》, 《Natural Products and Bioprospecting》等杂志青年编委。「报名参会」李珂 中国医学科学院医药生物技术研究所 研究员报告题目:《靶向互作清除肿瘤起始细胞》个人简介:获国家优青、万人计划青年拔尖等荣誉称号,主要研究领域为靶向蛋白质稳态清除肿瘤起始细胞。以第一/通讯作者身份在Cancer Cell、Science Translational Medicine、Nature Communications、Autophagy及Oncogene等国际权威学术期刊发表多篇论文。另有多篇合作学术成果发表在Immunity、Gastroenterology等国际学术期刊。全部论文已被Cell、Cancer Cell等杂志引用930余次,研究成果获得7项授权发明专利。主持5项国家自然科学基金项目。鉴定导致变异型急性早幼粒白血病发病的全新融合基因NUP98-RARA,被纳入《2021版CSCO恶性血液病诊疗指南》。获中国药理学会“施维雅青年药理学家奖”。作为主要完成人获教育部高等学校科学研究优秀成果二等奖、北京市科学技术三等奖及中华医学科技三等奖等荣誉。任中国抗癌协会抗癌药物专业委员会常委。「报名参会」吴萌 中国科学院分子细胞科学卓越创新中心 高级工程师报告题目:《两种微量热技术在分子互作检测中的应用》个人简介:高级工程师,现就职于中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)分子生物学技术平台,负责生物分子相互作用相关检测仪器管理,主要从事分子互作技术服务、平台仪器管理、用户使用培训及相关工作。深耕生物分子互作技术领域,积累了大量相关经验,为科研工作者论文发表提供高质量的技术服务支持。「报名参会」张财辉 赛多利斯 生物分析产品南区应用经理报告题目:《高通量分子互作Octet® 在生物医药领域的应用》个人简介:赛多利斯生物分析产品南区应用经理,从事蛋白药物与免疫细胞分析工作近十年。熟悉分子相互作用分析、细胞成像分析和流式细胞等相关应用,有着丰富的使用和troubleshooting经验。目前主要负责赛多利斯Octet® 高通量分子互作仪、Incucyte® 实时活细胞分析系统、CellCelector 全自动无损细胞分离系统和iQue® 高通量流式细胞仪的应用支持和产品推广工作。「报名参会」会议赞助会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn 扫码加入分子互作交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附历届会议页面:1.“第一届分子互作创新技术与前沿应用”主题网络研讨会(点击查看)2.“表面等离子体共振技术(SPR) 在药物研发中的应用”主题网络研讨会(点击查看)3.“精准捕捉:从小分子到大分子的BLI垂钓策略”主题网络研讨会(点击查看)
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 突破!西湖大学冷冻电镜成功解析新冠病毒细胞受体空间结构
    p style=" text-indent: 2em text-align: left " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2月19日凌晨,西湖大学浙江省结构生物学研究重点实验室(施一公任主任)研究团队的鄢仁鸿(一作)、周强(通讯作者)等在预印版平台bioRxiv上线最新研究成果:利用冷冻电镜技术,成功解析新冠病毒受体血管紧张素转换酶2(ACE2)的全长结构。 span style=" text-indent: 2em color: rgb(0, 112, 192) " 成果对抗疫特效药研发具有重大指导意义,这也是全球首次成功解析ACE2的全长结构。 /span /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 342px " src=" https://img1.17img.cn/17img/images/202002/uepic/4b257d5c-8236-478c-93f3-907498318ef9.jpg" title=" 00.png" alt=" 00.png" width=" 600" height=" 342" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(127, 127, 127) " (注:预印本网站bioRxiv的所有论文未经同行评议) /span /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(127, 127, 127) " 几天前,2月15日 /span span style=" text-indent: 2em color: rgb(0, 0, 0) " , /span a href=" https://www.instrument.com.cn/news/20200217/522050.shtml" target=" _blank" style=" color: rgb(84, 141, 212) text-decoration: underline " span style=" color: rgb(84, 141, 212) " 美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文,报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构。 /span /a /p p style=" text-indent: 2em " 血管紧张素转换酶2(ACE2)是SARS冠状病毒(SARS-CoV)的表面受体,与刺突糖蛋白(S蛋白)直接相互作用。 ACE2也被认为是新冠状病毒(2019-nCoV)的受体,表现为严重的呼吸综合征。 B0AT1(SLC6A19)是中性氨基酸转运蛋白,其在肠道细胞中的表面表达需要ACE2。 发表成果中,西湖大学研究团队成功解析了与B0AT1结合的全长人ACE2的2.9埃分辨率冷冻电镜结构。 该复合物组装成ACE2-B0AT1异二聚体的二聚体,由于ACE2的肽酶结构域(PDs)转移,显示出开放和封闭的构象。 ACE2上新解析的类集合域(CLD)介导了同源二聚化。 结构建模表明ACE2-B0AT1复合物可以同时结合两个S蛋白,为冠状病毒识别和感染的分子基础提供了重要线索。 /p p style=" text-indent: 2em " strong ACE2 /strong 主要生理作用是促进血管紧张素的成熟,在肺、心脏、肾脏和肠道广泛存在。但当病毒入侵时,ACE2就被病毒“绑架”了。ACE2是SARS冠状病毒和人类冠状病毒NL63的受体,可以说是多数冠状病毒侵入人体的关键。 /p p style=" text-indent: 2em " strong 西湖大学研究团队称 /strong :“在SARS病毒和‘新冠病毒’侵入人体的过程中,ACE2就像是‘门把手’,病毒抓住它,从而打开了进入细胞的大门。” /p p style=" text-indent: 2em " ACE2全长结构的解析,对于后续疫苗和抗病毒药物的研发,无疑提供了重要的结构生物学数据支撑。 /p p style=" text-indent: 2em " 根据西湖大学公布的资料,ACE2的全貌如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/noimg/8d748624-c69c-46dc-8357-e206d6d1b33a.gif" title=" bf26资料图.gif" alt=" bf26资料图.gif" / /p p style=" text-indent: 2em " 上面的蓝色和灰白色部分,是ACE2的两个结构PD(肽酶结构域)和CLD(样域),但ACE2很难在体外稳定获得,常常是与肠道内的一个氨基酸转运蛋白B0AT1打包一同出现。 /p p style=" text-indent: 2em " strong 西湖大学研究团队给出假设 /strong :这个复合物极有可能稳定住ACE2,并通过共表达的方法,能够获得优质稳定的复合物,就构成了上面这种X形状。 /p p style=" text-indent: 2em " 在确定了ACE2的这种特殊存在形态后,就在冷冻电镜下解析了它的三维结构: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 538px " src=" https://img1.17img.cn/17img/images/202002/uepic/892b1c38-aa26-4f48-a8a5-9009ef1ddfad.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 538" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 分辨率为2.9埃的ACE2三维结构图 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 315px " src=" https://img1.17img.cn/17img/images/202002/uepic/6193d14b-1fc4-455a-8b2e-28927a0b1189.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 315" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 2em " 整 /span span style=" color: rgb(0, 176, 240) text-indent: 2em " 个ACE2的结构图 /span /p p style=" text-indent: 2em " 研究团队称,这一研究揭示了二聚体组装中全长ACE2的高分辨率结构。 建模分析表明,冠状病毒的两个S蛋白三聚体同时与ACE2二聚体结合。本研究的结构为阐明2019-nCoV感染的机制提供了一个重要的框架,并可能促进潜在疗法的发展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202002/uepic/5098d370-0dd0-44d9-a878-7b7120e1e300.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 第一作者鄢仁鸿(左)与通讯作者周强(右) /span /p p style=" text-indent: 2em " 这项研究中,西湖大学的冷冻电镜和超级计算机中心分别提供了冷冻电镜和计算支持。并获得国家自然科学基金(项目31971123,81920108015, span style=" text-indent: 2em " 31930059)和浙江省重点研发计划(2020C04001)的资助。 /span /p p style=" text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) font-size: 18px " strong ▊关于浙江省结构生物学研究重点实验室 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 333px " src=" https://img1.17img.cn/17img/images/202002/uepic/c1dc0fa7-335f-48e8-9d1a-4addcb741fec.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 浙江省结构生物学研究重点实验室是西湖大学第一批获准成立的浙江省重点实验室之一。 /p p style=" text-indent: 2em " strong 研究内容和方向 /strong :旨在建设一个能够引领世界结构生物学研究方法和技术发展的重点实验室。实验室将围绕重要的生物学问题和技术需求,以冷冻电子显微学为核心(包括单颗粒冷冻电子显微镜三维重构、冷冻电子显微镜断层成像、冷冻电子显微镜交叉学科发展三个研究方向),以X-射线晶体学、化学生物学、蛋白质设计、分子动力模拟等相关学科为助力,充分发挥各前沿学科的优势,探索出一套高效的多学科人才合作研究新机制,开发出若干具有我国自主知识产权的革新技术与软件算法,取得一系列具有里程碑意义的结构生物学原创成果,促进浙江省乃至我国在相关领域内基础研究力量和创新能力的提升,以及相关研究成果的转化。 /p p style=" text-indent: 2em " strong 人员构成 /strong :国际著名结构生物学家、中国科学院院士、西湖大学校长施一公教授任实验室主任。中科院上海生科院植物生理生态研究所研究员张鹏教授任学术委员会主任。全球范围内遴选的多名优秀青年科学家担任重点实验室骨干。 /p p style=" text-indent: 2em " strong 发展方向 /strong :实验室将整合多学科优势,积极推进基础科研应用和后期成果转化,在未来5-10年开发一系列具有深远影响的结构生物学新成果新技术,促进浙江省生物技术、生物制药等相关产业的发展。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 论文链接 /span : a href=" https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1" target=" _blank" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1 /span /a /p
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet® 分子互作分析系统,Incucyte® 实时活细胞分析系统以及iQue® 高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue® 高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue® 高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue® 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet® 分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet® Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet® 分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte® 实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte® S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte® 实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte® S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet® ,iQue® 和Incucyte® 相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制