当前位置: 仪器信息网 > 行业主题 > >

羟基赖百当二烯

仪器信息网羟基赖百当二烯专题为您提供2024年最新羟基赖百当二烯价格报价、厂家品牌的相关信息, 包括羟基赖百当二烯参数、型号等,不管是国产,还是进口品牌的羟基赖百当二烯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟基赖百当二烯相关的耗材配件、试剂标物,还有羟基赖百当二烯相关的最新资讯、资料,以及羟基赖百当二烯相关的解决方案。

羟基赖百当二烯相关的资讯

  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • 广东省食品流通协会发布《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    由广东省食品流通协会提出的《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿提出宝贵的意见和建议,并将意见反馈表于2023年10月28日前反馈至协会标准化专委会处,意见接收邮箱:gdfcastandard@126.com。附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明附件3、广东省食品流通协会团体标准征求意见表关于对《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见的函.pdf附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿).pdf附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明.pdf附件3、广东省食品流通协会团体标准征求意见表.docx
  • 广东省农药协会发布《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    各有关单位及专家:广东省农药协会立项的《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2023年12月3日前将《标准征求意见汇总表》(见附件1)以电子邮件的形式反馈至广东省农药协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:沈文胜;联系电话:020-37288797, 13802631090;电子邮箱:swsg@163.com 附件:1. 标准征求意见汇总表2. 《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》征求意见稿 广东省农药协会2023年11月3日广东省农药协会关于征求《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准意见的通知.pdf附件1:标准征求意见汇总表.docx附件2:农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定(征求意见稿).pdf
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。   2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。   SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 瑞莱谱医疗多款临床质谱产品获批二类注册证
    近日,由瑞智谱(瑞莱谱子公司)研发生产的25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)、25-羟基维生素D质控品正式获批二类医疗器械注册证。该类产品的上市将进一步完善瑞莱谱医疗临床质谱整体解决方案体系,在全自动无机质谱检测系统整体解决方案之后,快步推进全自动LC-MS/MS整体解决方案的落地。
  • 岛津推出用于分析疏水多肽蛋白的MALDI新基质
    岛津制作所(SSI)近日发布了ATHAP-MALDI基质方法工具包,用于改进对包含跨膜疏水蛋白和多肽的分析能力。传统的LC-MS/MS和MALDI-TOF 很难分析包含疏水基团的膜蛋白。烷基化三羟基苯乙酮(ATHAP)新基质在此方法中发挥了特殊的作用。  许多疾病的生物标志物是包含疏水基团的膜蛋白。之前用液质和MALDI-TOF的检测效果都不理想,这类蛋白和多肽一般不被目标分析物列表所包含。由于疏水多肽的低溶解性,其难于在液相质谱中得到检测。采用如α -氰基-4-羟基肉桂酸 (CHCA)、芥子酸(SA)、二羟基苯甲酸(DHB)等传统基质的MALDI法离子化效率较低,从而导致用MALDI-TOF检测这些物质灵敏度很差。  “疏水性是将横跨膜片段整合到脂质双分子层的主要动力。这些新的基质工具包为科学家分析这些重要物质的生物和物理化学性质提供了前所未有的可能性。”岛津公司Scott Kuzdzal博士说。“这些工具包可以提高分析灵敏度,开拓对从抗菌肽到癌症蛋白标志物等关键疏水性分子结构和功能的研究。”  ATHAP基质由广岛大学和田中耕一尖端科技实验室联合开发,并授权给岛津制作所。本研究得到日本学术振兴会(JSPS) “世界领先创新科技研发资助项目 (FIRST Program) ”的赞助支持。编译:郭浩楠
  • 中国环境质谱大会第二天:六大主题百余专家精彩开讲
    仪器信息网讯 2023年3月25日,由中国物理学会质谱分会主办、山东科技大学承办、国家自然科学基金委环境化学学科支持的“中国环境质谱大会”于山东省青岛市盛大开幕。本次会议以“质谱技术使环境更美好”为主题,邀请国内质谱领域的著名专家学者做大会报告和邀请报告,旨在促进发展,提高交流水平,推动质谱技术在各大科技领域的广泛应用。来自个100多家单位的600多位代表参会。26日,环境分析中的质谱装置、环境质谱分析中样品前处理技术、食品安全中的质谱技术与应用、质谱成像与环境毒理以及生命健康与环境/新型污染物质谱分析新方法与新技术等5个专场同步开讲,共有超过100场精彩报告。以下为部分报告集锦,以飨读者。环境质谱分析中样品前处理技术分会场剪影分会场现场直击样品前处理,是制约分析结果准确度的关键因素之一,论坛多种前处理技术多种质谱技术助力环境前沿科学问题的研究进展,报告现场如下:中山大学 欧阳钢锋教授报告题目:《固相微萃取质谱联用环境分析技术研究》中科院大连化学物理研究所 叶明亮研究员报告题目:《基于能量状态差异的药物靶蛋白系统鉴定方法的发展及其应用于污染物靶蛋白的鉴定》苏州大学 王殳凹教授报告题目:《锕系元素组分分离新策略》四川大学 刘百仓教授报告题目:《质谱法解析页岩气工业废水的水质特征、处理及资源化利用》曲阜师范大学 赵先恩教授报告题目:《羟基多环芳烃代谢物多通道LC-MS/MS分析与暴露评估应用》厦门大学 王秋泉教授报告题目:《色谱-质谱联用技术的几个基础问题》四川大学 侯贤灯教授报告题目:《原子光谱/质谱分析中的分离技术》河南大学 卢明华教授报告题目:《基于新型纳米材料的环境样品分析中的前处理技术》四川大学 黄秀 副研究员报告题目:《新型碳纳米探针应用于痕量新污染物高通量质谱筛查与鉴定》郑州大学 杨静(张文芬副教授)报告题目:《功能化固相微萃取探针的制备及其在环境分析中的应用研究》新型污染物质谱分析新方法与新技术分论坛风采:杭州师范大学 程和勇副教授报告题目:《反应纸喷雾质谱在微合成和污染物分析的应用》核工业北京地质研究院 郭冬发正高级工程师报告题目:《环境样品中放射性同位素质谱分析新进展》宁波大学 丁传凡教授报告题目:《分子同分异构体的识别及其应用》青岛海关技术中心 崔鹤研究员报告题目:《离子色谱质谱联用技术应用》浙江大学 郭成 副研究员报告题目:《基于质谱的核酸表观遗传修饰分析及应用》
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 把一滴水做到极致:张新星团队揭示百草枯在小水滴中的自发超快降解
    夺命百草枯——好用的除草剂,危险的杀人药百草枯、敌草快等紫菁类农药由于其毒性高、无解药、难以降解(在水中半衰期23周,在土壤中半衰期6年)的特性,涉及到的自杀、误食、投毒事件数不胜数,近年来在媒体和社交网络上臭名昭著。从中毒机制来看,紫菁在人体内通过一系列电子传递反应生成大量具有高度氧化能力的活性氧物种,通过对人体脏器的快速氧化,导致服毒者在极大的痛苦中缓慢死亡。受害者遭遇惨痛,几乎无一幸免。有媒体将其形容为“给你后悔的时间,不给你活命的机会”(图1)。针对百草枯的极大危害,我国农业农村部已经停止了百草枯水剂在国内的销售和使用。然而,由于百草枯的除草效果极佳,很多不法商家将其经常冠以不同的商品名偷偷售卖,引发的案件造成了恶劣的社会影响。图1:左)曾经市面上常见的几种百草枯商品;右)2021年12月29日,央视网通报的又一起百草枯投毒案。鉴于此,近日,南开大学张新星研究员团队另辟蹊径,通过把紫菁化合物的水溶液喷雾成微米级大小的小水滴,并结合原位质谱检测手段,对紫菁降解产物进行了研究。实验中发现,在微液滴反应体系中,只需要几十微秒,就实现了紫菁降解的超快动力学,相关论文近期以“Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation”为题发表在美国化学会会志JACS上。(论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c12028)神奇的小水滴化学近几年来,以斯坦福大学的Richard Zare院士、普渡大学的Graham Cooks院士为代表的科学家,发现很多原本在液相中难以进行的化学反应,在通过载气喷雾或者超声雾化产生的微米级小液滴中(如图2中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且液滴的尺寸越小,这些现象越明显。图2:家庭中常见的加湿器,产生的微液滴中可以是微小的反应容器。Zare认为,微液滴的表面自然带有高达109 V/m的电场(相比之下,在空气中生成闪电的击穿电压仅有106 V/m)。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上为微液滴表面极高电场的存在提供了新的证据。张新星指出,本实验中紫菁化合物在微液滴中的自发降解现象,是通过微液滴表面自发生成的电子还原了正二价的紫菁化合物,生成了相对不稳定的紫菁正离子自由基,并以此为基础,通过Beta消除反应和霍夫曼消除反应进一步分解。而质谱为上述反应机理涉及的自由基和中间产物提供了有力的证据(图3)。图3:a) 微液滴喷雾装置的示意图;b) 乙基百草枯的降解产物的质谱解析图。把一滴水做到极致——小水滴化学的研究未来在记者的采访中,张新星表示,相比这项工作的应用价值——开发了一种新的十分简便的降解百草枯的方法,他更在意这项工作背后的科学意义。水对于很多化学体系来说都是极其稳定的、无污染的绿色溶剂,为什么体相的水被打散成小水滴之后就能促成原本无法发生的化学反应的进行?是由于微液滴表面的极高电场吗?那么微液滴表面自发生成的极高电场的物理来源是什么,是正负离子在微液滴表面自发生成的双电层吗?如果这是真的,这些离子都倾向于扩散到微液滴的表面的物理驱动是什么?微液滴表面极高电场解离氢氧根产生的电子是以自由电子还是以水合电子的形式存在?微液滴表面解离氢氧根同时产生了电子和羟基自由基,前者具有极高的还原性,而后者具有极高的氧化性,这对矛盾是如何共存的?几乎所有大气化学的模型研究都是在水的体相中进行的,而云彩和雾都是微液滴,那么此前所有体相中的大气化学研究是否需要重新审视?张新星表示,上述的问题,有的已经部分有了答案,有的还在探索之中。无论如何,这些问题的解答都必将推动分析化学和物理化学认知的进步。通讯作者简介张新星,复旦大学学士、美国约翰霍普金斯大学PhD,美国加州理工学院博士后,南开大学化学学院研究员,研究方向为分析化学、物理化学、科学仪器的智能制造等多学科综合交叉的科学技术问题,迄今已发表SCI论文75篇,含第一或通讯作者论文56篇。2017年入选国家第14批海外高层次人才引进计划,2021年入选了天津市杰出青年基金。2018年回国独立工作以来,以南开大学为通讯单位发表了论文32篇,其中包括PNAS 1篇,JACS 3篇,Angew. Chem. 7篇,Nat. Commun. 1篇,JPCL 2篇。在科研上,开发了多项国际上独特独有的新型(智能)装置用于多学科交叉的化学体系研究,并由此获得了2020年中国化学会第二届菁青化学新锐奖(本届全国共5名),2021年美国质谱学会ASMS新兴科学家称号(本届全球共11名,2015年该称号设立以来唯一中国大陆获得者),2021年中国物理学会质谱青年奖(全国唯一获奖人),以及2021年天津市科协优秀青年科技工作者等称号。原文信息:Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation. 作者:宫矗、李丹阳、李熙来、张冬梅、邢栋、赵玲玲、苑旭、张新星* JACS
  • 中国分析测试协会团体标准入选工信部2018年度“百项团体标准应用示范项目”
    p   2019年1月14日,工业通信业百项团体标准应用示范项目推进会在北京召开。会议认真贯彻落实中央经济工作会议和全国工业和信息化工作会议对标准化工作的要求,总结了近年工业通信业团体标准化工作,部署了下一阶段的重点任务。受工业和信息化部罗文副部长委托,工业和信息化部科技司胡燕司长宣读了罗副部长的书面讲话。罗副部长强调,标准是实现工业通信业高质量发展的重要基础,也是衡量和引领产业高质量发展的标尺和标杆。全行业要以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届二中、三中全会精神,按照中央经济工作会议的部署,紧扣全国工业和信息化工作会议的要求,立足制造强国、网络强国的建设全局,找准产业发展中存在的重大标准化短板和弱项,特别是要加快培育发展团体标准,把标准化改革与创新推向纵深,将系统性、先进性、创新性和国际性作为构建新型标准体系的主攻方向,推动工业通信业高质量发展。 /p p   会议公布了工业和信息化部2018年度“百项团体标准应用示范项目”名单,45家社会团体发布的102项团体标准成功入选,涵盖了机器人、绿色制造等重点领域。由北京普析通用仪器有限责任公司等三个单位起草、中国分析测试协会标准化委员会提出并归口的中国分析测试协会标准(CAIA标准)——《T/CAIA/SH002-2014 饮用水 氟化物的测定 2-(对磺苯偶氮)-1,8-二羟基-3,6-萘二磺锆分光光度法》 成功入选。该标准可应用于市政工程中城市自来水的日常监测,保障居民饮水安全 可应用于卫生监督执法相关检测,提高执法效率 可应用于环境污染事故应急监测,以及排污单位的污染物排放监测。该标准的应用可减轻供水企业实验室自检压力,使其合理利用实验室资源,进而有效保障水源区水质质量 也可作为一种能在较短时间内发现潜在饮水危险因素的技术规范,提高了卫生监督的工作效率和力度,为饮用水的卫生监督工作提供有力保障。该标准作为饮水监管的强有力手段和措施,符合我国国情的迫切需要。 /p p   截至目前,工业和信息化部共发布了208项团体标准应用示范项目,这些示范项目的发布,对扩大工业通信业团体标准的市场影响力、打造团体标准高品质形象、引领相关产业高质量发展具有重要意义。 /p p   协会的吴淑琪研究员代表协会出席了会议,领取了入选工业和信息化部2018年度“百项团体标准应用示范项目”的荣誉证书。 /p p style=" text-align: right "   中国分析测试协会 /p p style=" text-align: right "   2018年1月18日 /p
  • 北大王初与芝加哥大学赵英明课题组合作开发深度组蛋白修饰鉴定分析方法
    近日,北京大学王初课题组与芝加哥大学Ben May癌症研究所赵英明课题组合作,在Science Advances杂志上发表题为“Identification of 113 new histone marks by CHiMA, a tailored database search strategy”的研究文章。在这项工作中,作者详细探索了传统数据分析方法应用于组蛋白修饰组鉴定修饰肽段存在的问题,并进行了针对性优化发展了一种名为“Comprehensive Histone Mark Analysis (CHiMA)”的数据分析方法。应用CHiMA对此前的组蛋白修饰组数据进行重分析发现了113个新的组蛋白修饰位点(histone mark)。  组蛋白翻译后修饰是细胞对DNA转录调控的重要手段之一。蛋白质组作为一种高通量全局性分析蛋白质翻译后修饰的技术,在组蛋白修饰的发现和功能研究中发挥了重要作用。如赵英明课题组在2019年利用蛋白质组手段首次鉴定到了组蛋白上来源于L型乳酸(L-lactate)的赖氨酸乳酰化修饰,并揭示了其在调控基因表达中的重要作用。组蛋白修饰组相对于全蛋白质组数据有着显著的区别,譬如:1)组蛋白修饰组中包含的肽段数目远少于全蛋白质组中的肽段数目 2) 组蛋白由于富含赖氨酸和精氨酸,经过胰蛋白酶切后,氨基酸数目小于或等于6个的短肽占比远超全蛋白质组中比例。尽管如此,目前还没有研究探索传统蛋白质组数据分析策略是否适用于组蛋白修饰组中修饰位点的鉴定,以及针对组蛋白修饰组优化开发的搜库方法。为了验证传统蛋白质组数据分析策略应用于组蛋白修饰位点鉴定是否会产生漏报的情况,作者首先准备了四组组蛋白乳酰化修饰组数据。这些数据使用同样色谱条件和质谱条件采集,因此同一条修饰肽段在四组数据中应在相似时间被色谱洗脱并送入质谱鉴定,从而可以利用在其他三组数据中的鉴定肽段来检查漏报。作者使用ProLuCID+DTASelect2.0作为搜库软件并使用传统分析策略进行搜库,发现在这四组数据中均存在着不同比例(12.5%-36.4%)的修饰位点漏报。为了验证这一结果不是由特定搜库引擎的算法所导致,作者使用另一种常用的搜库引擎Andromeda(内置于MaxQuant)进行了同样的测试并得到了相似的结果。  搜库分析首先将实验产生的二级谱图与蛋白质数据库中模拟酶切产生肽段的理论谱图进行比对,以得到每个二级谱图潜在的匹配肽段。随后需要对所有的肽段-谱图匹配(peptide-spectrum matches, PSMs)进行过滤以筛选出高置信度的鉴定结果。传统的搜库方法通常使用target-decoy策略来进行PSM筛选[3]。这一策略首先在蛋白质数据库中产生与正确蛋白质序列(target)同样数目的诱饵序列(decoy,通常为正确序列的反向序列)。诱饵序列不存在于细胞中,所以匹配于诱饵序列的鉴定结果均为假阳性。同时由于数据库中正确序列与诱饵序列数目相同,可以通过decoy PSMs的数目估算出同等打分筛选条件下的target PSMs数目,从而估算出假阳性率(false discovery rate, FDR)。由于组蛋白修饰组通常只含有数十条或最多上百条修饰肽段,作者猜测使用 target-decoy-based FDR进行PSM过滤会导致打分线完全取决于打分最高的1-2个decoy PSM,从而丧失统计效力。为了验证这一猜测,作者对数据A搜库过程每一步的结果进行了仔细检查,发现所有漏报的修饰肽段均被搜库软件正确匹配到了相应的二级谱上,而漏报确实产生于后续的PSM过滤过程。作者随后绘制了测试数据中target PSM和decoy PSM的打分分布曲线,发现两者也几乎完全重合,只有65个target PSMs的打分高于打分最高的decoy PSM,因此在该数据中打分线仅由这一个decoy PSM决定,导致其他正确修饰肽段被漏报。作者随后对搜库策略进行优化以解决这一问题。谱图匹配的质量是最重要的衡量肽段鉴定可靠性的标准。因此,对于组蛋白修饰组这样的小数据集来说,完全可以根据谱图质量来筛选高置信度的PSM。由于数据中仅含有少量阳性肽段,筛选出的鉴定结果可以在随后很方便地进行手动验证。通常来说,一个正确的PSM中肽段的碎片离子(fragment ion)应该尽可能多地被匹配到谱图中的离子。因而,我们选择碎片离子覆盖率(fragment ion coverage,FIC)作为筛选高质量PSM的标准。经过一系列的评测,作者证明基于FIC的筛选策略在测试数据集中显著优于基于FDR的筛选策略,而50% 的FIC可以在不引入过多假阳性鉴定的情况下鉴定到所有的正确修饰肽段。  作者随后对组蛋白修饰组数据更进一步探索发现组蛋白赖氨酸乙酰化(Kac)和一甲酰化(Kme1)和精氨酸一甲基化(Rme1)在测试数据集中被广泛发现共存于目标修饰的肽段上。这些赖氨酸和精氨酸上的背景修饰(尤其是Kac)可以导致酶切效率的降低,产生更长的含目标修饰的肽段,从而使得短肽上的修饰位点被鉴定到。因此考虑这些高丰度的背景修饰可以促进对目标修饰位点的鉴定,同时也有助于对组蛋白修饰crosstalk的研究。在两个测试数据集中,作者证明在搜库时考虑Kac,Kme1和Rme1帮助多鉴定到了45%和75%的组蛋白乳酰化修饰位点。基于以上对搜库分析流程的优化,作者建立了深度组蛋白修饰鉴定分析方法CHiMA (Comprehensive Histone Mark Analysis)。作者在两个测试数据集中对CHiMA进行详细地测试证明其相对传统搜库方法能够多鉴定到近一倍的组蛋白修饰位点。在以上方法开发过程中,所有鉴定结果作者均进行了手动验证以确保准确性。  作者最后使用CHiMA对组蛋白赖氨酸乳酰化、2 -羟基异丁酰化、巴豆酰化和苯甲酰化的数据进行重分析,发现了113个新的组蛋白修饰位点(histone mark),将此前的数目提高了几乎一倍。作者手动检查了所有新鉴定位点肽段的PSM质量,并将其分为了高置信度和中等置信度两类,其中后者的PSM可能有如下瑕疵:1) 肽段碎片离子的信号强度过低 2)谱图中高质核比区间(大于母离子质核比)有无法被解释的高强度离子。为了确保这些新鉴定的组蛋白修饰位点的可靠性,作者合成了所有中等置信度的乳酰化和巴豆酰化新鉴定位点的肽段。所有合成肽段的二级谱图均与鉴定肽段的谱图一致,证明了这些新鉴定位点的正确性。除了这些新鉴定位点之外,作者还总结了所有共存于同一条肽段上的修饰组合,并人工合成了其中部分肽段以验证其正确性。  综上所述,CHiMA提供了第一个专为组蛋白修饰鉴定量身定做的数据分析方法,为组蛋白修饰参与的表观遗传学研究提供了重要工具。在本工作中新发现的组蛋白修饰位点也将为未来表观遗传学的机制研究提供重要的基础。本文的通讯作者为芝加哥大学Ben May癌症研究所的赵英明教授和北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。赵英明课题组博士后高晋君(王初课题组2019届毕业生)为本文第一作者,明尼苏达大学陈悦教授、北京大学张迪教授、赵英明课题组盛心磊博士等合作者为本课题做出了贡献。该工作得到了国家自然科学基金委、科技部重点研发计划、北京市杰出青年科学家等项目的经费支持。  文章链接:https://www.science.org/doi/10.1126/sciadv.adf1416  原文引用:DOI: 10.1126/sciadv.adf1416
  • 大会报告:糖蛋白的最新分析技术与研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   作为会议议题的主要内容之一,糖蛋白广泛存在于生物体内,是重要的生物活性物质,具有很多重要功能,关于其的最新研究进展已受到国内外科学家们的高度关注。在本次大会上,南京大学的梁亮博士、美国约翰霍普金斯大学李岩博士、上海交通大学系统生物医学研究院的张延研究员等多位专家学者作了关于糖蛋白最新研究进展的报告,本文对关于糖蛋白研究的部分报告主要内容进行简要报道:   报告题目:应用糖蛋白质组学和糖组学的方法筛选癌症分子标记物   报告人:美国约翰霍普金斯大学李岩博士 李岩博士   李岩博士在报告中表示,目前分子标记物研究主要面临的挑战主要是,样品的复杂性与患者的个体差异性,应对其建立高准确度、高灵敏度、高通读、高重复性的分析检测方法。糖蛋白在分子标志物研究中的重要意义,大部分分泌蛋白、跨膜蛋白、和细胞表面蛋白是糖基化蛋白,他们涉及大量的生物学功能,并且,美国FDA已批准的生物标记物几乎全是糖蛋白。   在其报告中,分别通过糖蛋白质组学糖组学的方法对分子标记物进行了分析比较分析。   在糖蛋白质组学研究中,其分别采用多维色谱-质谱法(MALDI-TOF/TOF)和SRM-MS对糖蛋白进行了定量检测 在糖组学研究中,其表示,现有的糖组学方法不能用于临床样本检测,而新方法有待确立,李岩博士通过凝集素-抗体反应方法检测了糖的motif在前列腺组织中的表达水平。通过对糖蛋白质组学和糖组学方法的分析比较,其建立了适用于临床的检测方法,对于在前列腺中发现可能的分子标志物选择临床治疗方案有很大的帮助。   报告题目:用于糖蛋白富集的团队硼亲和方法研究   报告人:南京大学梁亮博士 梁亮博士   梁亮博士在报告中首先提到,糖蛋白(包括糖肽)的富集是糖蛋白质组学研究中的一个关键科学问题。目前用于糖蛋白富集的主要方法有凝集素亲和法、肼化学法、亲水作用色谱法和硼亲和色谱法等。和其他些方法比较,硼亲和方法虽具有显著的优点,但也有两个明显的缺点:(1)在中性pH下的亲和能力极弱,必须在碱性pH下才能与顺式二羟基化合物结合,这造成了操作上的不便,增加了样品变性的危险 (2)在碱性pH时取代硼酸带负电,与样品及样品基体间存在静电相互作用,因而导致专一性的下降。   为了同时解决以上两个问题,其科研团队提出了“团队硼亲和”的原理以及相应的方法。该方法要求分子团队成员在分子的另一端带上氨基,通过与环氧开环形成多孔整体材料,分子团队固定到整体材料的表面。该方法只需要一步反应即可制备得到所需的整体柱,操作十分简单,对操作者和环境友好。制备得到的整体柱可以直接应用于生理样品中的核苷等生物分子的专一性富集。最近,其科研团队提出了构建团队硼亲和的另一个绿色化学路线:分子自组装法。分子团队成员在分子的另一端带为噻吩或巯基,利用在金表面的分子自组装,一步反应即可得到团队硼亲和材料。利用该方法,制备了团队硼亲和磁性纳米颗粒和团队硼亲和MALDI靶板,其优异的亲和力和专一性得到验证,成功实现了在中性pH条件下对糖蛋白的专一性富集和纯化。利用团队硼亲和磁性纳米颗粒作为微萃取探针,通过MALDI-TOF MS检测,在生理pH条件下,存在于浓度高100倍的非糖蛋白基体中的糖蛋白能被专一性地萃取。   报告题目:蛋白质的O-糖基化修饰研究   报告人:上海交通大学系统生物医学研究院张延研究员 张延研究员   糖链修饰是一种重要的蛋白质翻译后修饰。细胞内50%以上的蛋白质都有糖链修饰。糖链参与了细胞识别、细胞分化、发育、信号传导、免疫应答等各种重要生命活动。按糖链与氨基酸的糖苷键结合方式的不同,真核生物中蛋白质糖基化可分为N-糖基化修饰和O-糖基化修饰,蛋白质的O-糖基化修饰中最主要的O-GalNAc修饰。   张延研究员通过对O-GalNAc糖基转移酶的糖基化修饰特性进行研究,利用UDP-GalNAc衍生物糖探针的荧光标记技术,结合质谱及多肽蛋白质芯片技术,建立了一种高通量发现蛋白质O-糖基化的新策略。
  • 千人参会 第二届“颗粒研究应用与检测分析”会议回放视频出炉!
    2021年4月7-9日,由仪器信息网与中国颗粒学会联合举办的第二届“颗粒研究应用与检测分析”主题网络会议成功举办,共吸引1000余名来自高校及科研院所、能源颗粒材料及制药企业、相关政府检测机构的用户报名参会,并获得到参会用户的积极反馈。会议为期2.5天,分设能源颗粒和电池材料、药物制剂与粒子设计、气溶胶与新冠病毒、超微及纳米颗粒、颗粒测试与表征五个主题会场。会议伊始,中国颗粒学会秘书长王体壮率先致辞,对各位嘉宾及参会同行表示热烈欢迎,并简单介绍颗粒学研究范围及中国颗粒学会的使命和责任等;随后进入专家报告环节,23位来自高校、科研院所、颗粒测试与表征仪器企业的专家学者围绕其最近研究及最新技术进展,展开学术分享交流。为方便更多用户学习,会议主办方特将本次会议回放视频整理如下,以飨读者(可回放视频已经标蓝色,并加超链,点击报告名称即可直接观看回放),其中部分专家的报告内容不便公布,敬请谅解。分会场一:能源颗粒和电池材料主持人:王雪锋报告主题报告人单位颗粒,颗粒学和我们的使命王体壮中国颗粒学会秘书长颗粒控制对提高固态电池聚合物性能的作用连芳北京科技大学颗粒检测在新能源领域面临的挑战和相关解决方案李雪冰丹东百特仪器有限公司生物质基硬碳材料的可控制备及其储锂性能研究谢莉婧中国科学院山西煤炭化学研究所电极材料粒度控制要点及激光粒度仪的应用官泽贵珠海欧美克仪器有限公司颗粒物性表征方法在能源及电池行业的应用严秀英大昌华嘉科学仪器部冷冻电镜观察电池材料颗粒与界面王雪峰中科院物理研究所分会场二:药物制剂与粒子设计主持人:唐星 / 常津报告主题报告人单位纳米生物技术在若干重大疾病诊疗方面的应用常津天津大学无定形药物制备与稳定性研究蔡挺中国药科大学纳微粒子生物医药新剂型的设计和应用岳华中科院过程工程研究所不同粒子结构微粒给药系统载药机制与开发应用研究唐星中国药科大学分会场三:气溶胶与新冠病毒主持人:于明州 / 申芳霞报告主题报告人单位新冠病毒类型气溶胶动力学及其分析方法于明州中国计量大学一种新的气溶胶吸湿性测量方法唐明金中国科学院广州地球化学研究所呼吸源生物气溶胶申芳霞北京航空航天大学如何成为高被引学者李顺诚香港理工大学分会场四:超微及纳米颗粒主持人:毋伟 / 白红存报告主题报告人单位复杂环境纳米界面吸附与检测陈岚国家纳米科学中心纳米颗粒测试技术最新进展及应用张瑞玲马尔文帕纳科化学链过程高效载氧体的设计及性能优化白红存宁夏大学二维纳米材料的液相剥离法制备毋伟北京化工大学分会场五:颗粒测试与表征主持人:沈建琪报告主题报告人单位50微米至毫米级大颗粒在线测试技术及其应用沈建琪上海理工大学气相二氧化硅表面硅羟基含量检测方法及标准化研究刘伟丽北京市理化分析测试中心单颗粒和单细胞ICP-MS技术在环境和生物分析中的应用华瑞珀金埃尔默图像与光散射融合的颗粒测量技术蔡小舒上海理工大学颗粒标准化助力粉体产业高质量发展李兆军中国科学院过程工程研究所添加群主微信,加入颗粒测试表征技术交流群
  • 香奈儿等品牌面膜在香港被检测出防腐剂
    在都市白领最爱的护肤品中,面膜产品的销量、关注度一直名列前茅,许多国际品牌的畅销款面膜,均以各自高营养性的定位、立竿见影的速效而吸引众多女士甚至男士消费者。   然而近日,香港消费者委员会在针对市面上30种畅销面膜的调查中发现,其中过半产品检验出可致过敏的防腐剂,长期使用可能引致红疹等过敏性皮肤病。   过敏人士慎用含防腐剂面膜   据香港消委会7月15日公布,本次检验的30款面膜大部分都为消费者熟知的国际品牌,价格在港币30元至400元不等,其中17款面膜检验出含有可致敏防腐剂“对羟基苯甲酸酯”,含量从0.01%至0.3%不等。   其中,号称风靡好莱坞的明星品牌“Kiehl's”的“水分舒缓面膜”防腐剂含量最高,其他诸如大牌香奈儿的“深层保湿水盈面膜”、英国“美体小铺(The Body Shop)”的“维他命E深层补湿面膜”、大众品牌欧莱雅的“水感保湿面膜”等也赫然在列。   据香港消委会介绍,香港目前并没有化妆品含防腐剂的标准含量,如果以内地颁布的《化妆品卫生规范》作为参考标准,这些面膜产品的相关防腐剂含量仍在0.8的上限范围之内。   香港消委会宣传小组副主席许树源在采访中公开表示,检验中发现的5种常见的对羟基苯甲酸酯类防腐剂,本身毒性不高,故化妆品厂商普遍用来防止产品储存时的微生物滋生。他表示,目前欧盟、美国及中国内地均准许对羟基苯甲酸酯应用于化妆品,此次公布的17种产品并非含量超过法定标准,一般使用问题不大。   “不过如果消费者对此类防腐剂过敏,应特别留意面膜卷标上有否表明了含对羟基苯甲酸酯,长期使用可能会令防腐剂残留在皮肤表面,导致接触性皮肤炎。”   美容师提醒警惕面膜潜在风险   记者在银泰百货武林广场店一楼化妆品专柜发现,香港消费委员会提及的17种面膜产品大多都能在商场中买到。采访中,Kiehl's、香奈儿等国际品牌的专柜销售人员均表示,本品牌的面膜产品都是由国外原装进口,并拥有多项国际检验合格资质。欧莱雅、屈臣氏等品牌则表示,面膜产品是由广州、深圳等地的生产基地正规制造,并通过质监部门的卫生检测标准,根本不存在有害成分含量过高等质量问题。   一些化妆品专柜人员告诉记者:“现在面膜里添加适量的防腐成分很正常,不然面膜只能像鲜奶一样放在冰箱里保存,还怎么确保消费者的面膜在存放了半年、甚至更久之后仍然还优良有效?只要没有超过国家规定的标准,使用时掌握正确方法,肯定不会对皮肤造成过敏,消费者不用过度担心。”   杭城某大型连锁美容会所负责人、资深美容咨询师潘宇英告诉记者,对羟基苯甲酸酯类是一种常见的防腐剂成分,面部长期接触会破坏皮肤皮脂膜,降低分泌皮脂功能,含有引致皮肤干燥、接触性皮肤炎等潜在危害。   据介绍,目前一般正规和知名品牌的化妆品都会在说明书中标明产品成分,如果发现成分表中含有对羟基苯甲酸乙酯、尼泊金酯,或是英文单词后缀“Paraben”,就是含有防腐剂。   她指出,许多面膜产品虽在成分含量上没有超标,但各种添加剂,包括防腐剂和一些号称速效美白面膜中常见的重金属汞、铅等,长期使用都可能会对皮肤造成“内伤”,增加潜在风险。   “每个人的体质肤质不同,一款面膜产品可能别人用了都没事,偏偏自己出事,也可能反过来。我建议消费者尽量不要盲目、急切地尝试那些自己不熟悉的面膜产品,尤其是一些以低廉价格吸引买家的产品。”
  • 我国科学家造出“纳米纸”实现应用功能“百搭”
    浙江大学的科学家用滤纸和二氧化钛薄膜制作出一种新型“纳米纸”,这种材料能继续与多种化学分子结合并展现不同特性,实现材料应用上的“百搭”。   “通过前体物溶液浸润再水解的方式,可以让二氧化钛薄膜包裹在滤纸的纳米纤维上,之后再用含有其他化学分子的溶液继续浸润纳米纸,就能制造出不同用途的新材料。”浙江大学化学系教授黄建国和他的研究团队从2007年开始着手创制环保、高效、成本低廉、制作简单的“百搭”材料,实验室常备的滤纸和二氧化钛两种常见的材料成为他们的首选。   肉眼看来,纳米纸的外观与普通滤纸没有差别,但功能却有了极大差异,黄建国说:“滤纸由无数的纤维素纤维组成,自然形成的精细结构非人力所及,而二氧化钛水解后产生的羟基具有足够的化学活性,能够和绝大多数的分子相结合,这两个材料的特性共同决定了纳米纸‘万金油’的特点。”   不久前,黄建国在纳米纸纤维上“铺”了一层名为“萘胺”的染料,让纳米纸变身为一遇亚硝酸盐就变色的检测试纸。“这种纳米纸轻薄灵敏,色彩的浓淡则表明了亚硝酸盐浓度的高低,对于检测食品中的亚硝酸盐浓度非常有效。”这项研究于2月18日在线发表于英国《皇家化学学会进展》期刊。   黄建国介绍说,纳米纸还可用于检测水体中汞离子、氟离子的含量,甚至用于检测DNA的特定序列段。而将碳氟链化合物与纳米纸组合而成的防菌纳米纸,还可用于食品保鲜与包装。由于碳氟链化合物不亲油,也不亲水,于是纳米纸也变得“油水不沾”,细菌也因此无法在纳米纸上停留。   “纳米纸是一个理想的平台,可以针对具体问题设计出相应的材料,绝不仅局限于目前进行尝试的几个方向。”黄建国说,下一步他将尝试把纳米纸进行必要处理后用于癌症、糖尿病等疾病的便捷检测。
  • 兵马俑在守护谁?试问水吸附分析仪
    世人称之为“世界第八大奇迹”的秦始皇兵马俑是为“千古一帝”秦始皇陪葬,这本已是众所周知。可是,随着最近《芈月传》的播出,许多民间研究者又提出异议,认为兵马俑是为秦宣太后陪葬的。最近央视一个节目中,建筑学学者陈景元先生就认为兵马俑陪葬的不是秦始皇,而是秦始皇的祖母秦宣太后(芈月)。在电视节目中,陈景元提出了一个又一个论据,被誉为“秦俑之父”的袁仲一先生则进行了针锋相对的批驳,双方你来我往,唇枪舌战,似乎说得都有道理。那么,真相到底如何? 文史圈儿的事儿,按说科技圈儿不好多嘴,毕竟隔行如隔山。只是,正因为隔行如隔山,可能两位学者对于接下来要提到的这款设备,或许也不是那么了解,虽然,它可能对于评判甚至解决这个争议,的确能扮演非常重要的角色。事实上,在2009年,英国曼彻斯特大学和爱丁堡大学的研究者就已经利用这款仪器,开发出了一项新技术,用于对上千年的古代陶瓷和砖瓦进行年代确定——它就是美国康塔仪器公司的全自动双站水吸附分析仪Aquadyne DVS。当然,我们并不是说国外的招儿在国内也一定有用,但他山之石或许可以攻玉,聊作参考也未为不可。 目前,英国这项基于美国康塔仪器公司水吸附分析仪开发的技术已经成为与碳14断代方法的并行方法,这款水吸附分析仪可以通过精确控制温度和湿度的条件,能将样品质量测量至0.1微克。这项技术不仅使对考古学断代和高度仿真的赝品测年成为可能,也可以通过研究已知年代的标本,为调查气候变化提供帮助。这项研究报告- ' Dating fired-clay ceramics using long-term power law rehydration kinetics' - 已经发表在英国皇家协会会刊(Proceedings of the Royal Society A) 这项断代技术的关键是基于以下事实:烧制粘土类终生都自始至终地从大气环境中吸附水汽,其吸附速率与周边平均温度和粘土性质有关。已经确认,少量样品(通常3-5g)被加热到105°C后,其毛细管中的水即被去除,从而得到“初始接收”质量,然后加热到500°C四小时,即可除去样品一生累积吸附的所有水分。这个“初始接收”质量和最终质量的差值代表了样品终生吸附的水汽。 其次,在样品冷却后,对样品质量在所控温度和相对湿度条件下进行吸湿性监测,能够获得样品重新结合水后的动力学增长曲线。相对湿度通常保持在30.0±0.1% RH,而温度设定为在样品发现地的长期平均温度(经验值)。 对水汽的吸附,这里术语叫做再羟基化(rehydroxylation,RHX),符合1/4幂次方规律。质量数据采集由美国康塔仪器公司Aquadyne DVS 全自动双站水吸附分析仪执行,每30秒采集一次质量数据,一个测量周期一般为2到5天。从图上,我们能够推断出“初始接收”质量,因此我们能测定出样品的年代。当伦敦博物馆提供了一个来自于查尔斯二世在格林威治的建筑中的未知样品时,研究者测定出其原始煅烧年代为1691± 22年。事实上,该建筑建造于1664-1669,新的断代技术所确定的年代与十七世纪九十年代的变化是相符的。其他2000年以前的样品也已成功地进行了分析,研究人员相信,该技术对上万年的样品同样有效。 好吧,根据英国这边的实验表明,利用康塔仪器水吸附分析仪这项技术,断代误差在30年以内(上文写的是22年)。那么,秦始皇和秦宣太后差了大概有55年(具体的,以文史专家给出的数字为准)?如果是这样,其实答案就简单了,一测便知真假。当然,或许事情并不只是这么简单。毕竟如上所说隔行如隔山,对于另一个领域,我们应保佑起码的尊敬,真相以专家结论为准。我们所能解决的,终归只是技术层面的问题,下面要讲到的,就是较为纯粹的技术了,兴趣不大的,可以绕行。Aquedyne DVS 非常适合这个应用有多种原因。 显然,长期稳定地测量质量精确到0.1ug的能力是至关重要的,但严格控制样品室的温度和相对湿度也是重要因素。此外,美国康塔仪器公司的完整的微天平具有双称量盘,这意味着可以同时进行两个样品的平行分析,并提高了生产率。曼彻斯特大学机械、航天和土木工程学院的莫伊拉威尔逊博士(Dr Moira Wilson)认为:比起其它技术,Aquadyne DVS产生的数据要好得多。"起初我们想用传统的顶装盘,但结果表现出太多散点。当我们试用Aquadyne DVS的微天平头,所产生的清晰的图形曲线给我们留下深刻印象。” 虽然Aquadyne DVS不是市场上唯一的水吸附分析仪,威尔逊博士还是没有任何犹豫地选择了它:“我的一位同事以前曾经使用过康塔仪器微天平系统,并认为它是非常优秀的。并且,他在英国布里斯托尔大学的同事也对这种微量天平给出一致好评。实验表明,Aquadyne DVS可以满足我们的所有要求,并且具有明显优势。” 此外,当威尔逊博士和她的团队开发新的断代技术时,他们得到制造商的持续服务和支持,为此受到广泛赞赏。人们很早就知道,陶瓷吸收水分,但测量非常小的应变(扩展)结果是极其困难的。改成基于质量的测量方法不仅创造了为古代陶瓷断代的机会,它也使现代陶瓷中与吸湿性有关的问题-- 如釉料开裂--更容易地调查原因。 新的测年技术之所以出色,原因之一是它仅需的装置是一个小型高温炉炉和水吸附分析仪,用于测量“初始接收”质量和再羟基化之前的最终质量。这使得该技术更简单,更快,比现有的陶瓷断代技术花费低,如热释光方法。 威尔逊博士继成功开发烧制粘土的测年技术后,现在准备进一步用Aquadyne DVS开展工作,如测量胶结材料的水化率和碳化率,调查粒径对粉末陶瓷吸附动力学的影响。 技术介绍 再羟基化(RHX)的测年方法完全是在研究烧制粘土砖水分膨胀的可逆性时获得的意外收获。RHX的过程是由粘土烧制陶瓷对大气水分的化学吸附,这个过程是通过超慢的纳米级固态运输(一维扩散,SFD)进入粘土体内的。这项工作导致发现了一个新的动力学定律:水分膨胀的超慢反应动力学(以及质量增加)服从(时间)?幂律[1]。简单地说,对t?的时间依赖性意味着相等的质量将以1,16,81,256等增加(对应14,24,34,44等)。这些时间单位可以是秒,分,天或年。 因为再羟基化的过程是一个化学反应,其进程主要取决于温度。已证明[2],可根据出土样品的地点对“有效寿命温度”(ELT)进行估计,它是从执行分析到所能看到的近乎样品的终生的可靠温度。 在英国曼彻斯特大学的研究已经率先使用的微重量测量,使用Aquadyne DVS重量法水吸附分析仪(康塔仪器)进行RHX测年[3]。它的有效寿命温度(ELT)主要取决于获取样品的地点,在样品的有效生命周期内,提供一个适合的温度环境使其能顺利的分析样品。图1:这个图表显示了原始实验数据m2,证明了RHX测量方法的精确性。它的成功需要维持持续恒温以及空气中的相对湿度。 根据曼彻斯特大学的研究分析,运用全自动双站水吸附分析仪可以做微重量RHX数据分析。 在原理,RHX测年法的核心就是简单明了;然而,想要成功测出一片烧制陶器的年代还是有些困难的,所以我们尝试用RHX测量超慢速度质量的增加,一般地,每3天增加6mg. 在持续恒温和相对湿度的条件下测量样品(大约0.1ug);全自动动态水吸附分析仪可以做到这点,请看图1. 实验方法 Wilson已经详细说明了RHX测年法的过程。首先,m1样品需要在105摄氏度下脱气,直到达到一个恒定的质量。在这点上所有的物理吸附水分用T0表示,化学吸附脱气可能会超出样品能承受的脱气温度。然后把样品放在天平室,温度控制在ELT,(一般8到11摄氏度),相对湿度需要仔细的控制在可以提供水分子表面的层面。在这些条件下,样品可以保持平衡。当样品达到平衡点,会测量出原始样品质量m2. 在这些温度和湿度的条件下,通过RHX测年法测出陶土的原始质量以及水吸附值。 接着,将样品加热至500摄氏度直到脱尽样品中的所有水分,包括物理吸附和化学吸附(T0,T1,T2)的水。监测m1的质量损失,直到达到恒定质量m3. 然后把样品放置在与之前相同的温度和湿度条件下,得到数据m2。获得原始质量数据后,重新加热到500摄氏度,Savage等【5】描述了特征性的质量增加时的两个阶段过程。 第I阶段是样品从500℃冷却并在未来的环境条件下的平衡。第II阶段的质量增益,只是由于再羟基化过程(T2)。质量增加的这个部分只是来自于M4,从M4可以推断出M2并用于年代测定。 图2:该图显示了原始实验数据。红色划线部分是用来计算RHX速率常数(阶段II)。在这之前看到的质量增加是因为几个过程同时存在(阶段I)。虚线与Y轴相交点就是m4. [4] 样品的再羟基化所引起的归一化质量改变(ya)与样品寿命时间的1/4幂次方成正比:Yα=α(T)t1/4 比例常数α(T)是在温度T所获得的数据,以质量的线性部分相对t?作图时的斜率,如图2所示。Yα=(m2-m4)/m4样品的年代(tα)计算可用公式:tα=(yα/α)4这些关系示于图3。这里可以清楚地看到的三种不同类型的水的质量贡献。图3:再加热到500摄氏度后,质量增加量对时间?的关系。(a) 特征性的二个阶段的质量增加。这是所有3种类型的水分T0+T1+T2(~27,000数据点) 结合。这些成分的结合所贡献的总质量值也可以被分割成(b)和(c),如图所示。(b) 只有T0+T1会影响质量值,并且当样品与周围的环境达成平衡时,质量值就会停止变化。这个质量值的变化可以用于跟踪环境温度和相对湿度的改变。(c) 因T2再羟基化而产生的质量增加。 结论 Aquadyne DVS全自动双站水吸附分析仪可以精确的控制相对湿度和温度,并且超级灵敏的微天平可以使其测出上百年甚至是几千年前的陶瓷、陶器和粘土文物的年代。 袁仲一先生西北大学、西安交通大学教授,秦始皇兵马俑博物馆馆长。现任中国考古学会理事,陕西考古学会副会长,陕西省司马迁研究会会长,秦始皇兵马俑博物馆名誉馆长,陕西省秦俑学研究会会长和秦文化研究会副会长。1998年10月被陕西省人民政府聘任为省文史研究馆馆员。被尊称为“秦俑之父”。(介绍来自百度百科) 陈景元先生毕业于西安建筑工程学院建筑系,后长期在江苏省国土厅工作的建筑学家陈景元1961年曾参与秦始皇陵的保护规划,1984年他发表文章质疑兵马俑的真正主人是否秦始皇,未得到重视。今年,他又在《中国科学探险》杂志(第2期)发表了《兵马俑的主人根本不是秦始皇》一文,遭到学界反驳。为此,陈景元上月到河北至咸阳的崤函故道进行实地考察,确信殁于河北邢台的秦始皇不可能被运回陕西安葬,因而,非但兵马俑不是秦始皇的陪葬,就连陕西骊山脚下的秦始皇陵也值得质疑……(介绍来自百度)
  • PALL蛋白纯化填料试用申请活动即将开始
    PALL蛋白纯化填料试用申请活动即将开始 蛋白纯化新选择: 多一次尝试,多一种选择,不同的结果。 PALL蛋白纯化填料试用申请活动即将开始 申请有效期2011年5月4号-2011年6月4号 您是否为蛋白纯化结果不理想而烦恼? 试试PALL的层析填料吧,提供与传统填料不同的层析选择性! 你是否为蛋白纯化过程耗时而烦恼? 试试PALL的高流速层析填料吧,满足您在高流速下高结合性的要求。 您是否为填料的载量不高而烦恼? 试试PALL的Q/S HyperCel 层析填料吧,结合载量大于134-190mg/ml(BSA) 您是否为抗体纯化费时、费经费而烦恼? 试试PALL的MEP HyperCel层析填料吧,单抗纯化步骤,经济而简单 众多填料如何选择?请参考选择推荐。 MEP HyperCel、HEA HyperCel、PPA HyperCel: 混合模式层析填料:能替代传统的疏水层析模式,支持在低盐或者无盐状态下上样,洗脱PH更温和,最大限度保留蛋白生物活性的同时简化下游纯化流程。 MEP HyperCel 同时含亲和层析模式,替代传统的Protein A 亲和层析,优势: 无需调整料液,直接上样:直接从各种培养系统中捕获蛋白。省去微滤、超滤浓缩的步骤。 支持低浓度捕获,即使单抗浓度为50μg IgG/mL也能高效捕获。省掉浓缩的步骤。 温和的条件下洗脱:IgG一般在pH 5.5 to 4.0 的范围洗脱。 有效降低多聚体,同时去除DNA和HCP。 价格更经济。 Ceramic HyperD 系列: 如果您追求超高流速下高结合能力,Ceramic HyperD绝对是首选,在满足高流速下,同样拥有高分辨率。 CM Ceramic HyperD:在具备高流速下的高结合能力外,同时能接受180mM的盐浓度下上样,简化了上样流程,上样前无需脱盐操作。 推荐Ceramic HyperD 混合包装,货号:IEXVP-C001。内含四种1ml预装柱,DEAE、CM、S、Q 任您选择不同的离子交换。(不参加试用活动)。 此次参与试用申请的填料还有Protein A 亲和层析填料,IMAC HyperCel 亲和纯化His标签填料等,如需更多的具体性能的资料,请登录PALL的网站http://www.pall.com/查询。 样品申请货号及数量可见下表,详情请下载产品试用清单(附件一) 层析类型 货号 产品描述 配基 应用 可申请 总数 混合模式(离子交换;疏水层析;亲和层析) 12035-C001 ACROSEP MEP HYPERCEL,1ml 预装柱 甲基嘧啶 ●直接捕获多种不同类型、压型和种属的多抗和单抗; ●酶和重组蛋白; ●重组抗体片段; ●从多聚体中分离单抗单体; ●低盐浓缩物中蛋白的直接捕获 5支 20250-C001 ACROSEP HEA HYPERCEL, 1ml 预装柱 乙胺基 5支 20260-C001 ACROSEP PPA HYPERCEL,1ml 预装柱 苯基 5支 12035-069 MEP HyperCel 5mL, 瓶装 甲基嘧啶 3瓶 20250-012 HEA HyperCel 5mL,瓶装 乙胺基 3瓶 20260-015 PPA HyperCel 5mL,瓶装 苯基 3瓶 24775-075 HA Ultrogel 5mL 羟基磷灰石 交联的琼脂糖和羟基磷灰石 ●免疫球蛋白; ●糖蛋白; ●疫苗 2瓶 亲和层析 20078-C001 ACROSEP PROTEIN A HYPE 1ml 预装柱 重组蛋白A ●免疫球蛋白; ●MAbs 5支 20078-036 Protein A Ceramic HyperD F 5mL瓶装 2瓶 20093-C001 ACROSEP IMAC HYPERCEL 1ml 预装柱 亚胺-乙酰乙酸(IDA) ●His-tag重组蛋白 5支 20093-069 IMAC HyperCel 5mL,瓶装 3瓶 离子交换 20050-C001 ACROSEP CM Ceramic HyperD F,1ml 预装柱 羧甲基(CM) ●重组蛋白; ●质粒纯化; ●蛋白,疫苗; ●Mabs; ●捕获阶段; ●免疫球蛋白纯化 2支 20050-084 CM Ceramic HyperD F,5mL 瓶装 2瓶 20062-C001 ACROSEP S Ceramic HyperD F;1ml 预装柱 磺酸基(S) 2支 PRC05X050SHCEL01 PRC05X050 S HCEL01,1ml 预装柱(工业放大推荐) 2支 20195-013 S Hypercel 5ml瓶装 3瓶 20066-C001 ACROSEP Q Ceramic HyperD F 1ml 预装柱 季氨基(Q) 2支 20196-012 Q Hypercel 5ml 瓶装 3瓶 PRC05X050QHC001 PRC05X050 QHCEL01,1ml 预装柱 2支 20067-C001 ACROSEP DEAE Ceramic HyperD F 1ml 预装柱 二乙基氨基乙基(DEAE) 2支 20067-070 DEAE Ceramic HyperD F 5mL 瓶装 2瓶 申请方式:网上申请 下载并完整的填写产品试验申请单(附件二),Email到Jessie_Jing_Chen@ap.pall.com 经过审核后(完整的填写能方便您拿到样品),送出样品. 6月10号公布配送单号。 配送方式:送货上门或.邮寄 配送时间:2011年6月13号-6月17号 申请要求:1.限高校、科研单位实验室客户;数量有限,每个实验室限申请一种填料。 2.申请的客户承诺开始试用后两个月内,给PALL公司提供使用反馈情况 颇尔公司保留对该活动的解释权。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制