当前位置: 仪器信息网 > 行业主题 > >

苯甲酸钙水合物

仪器信息网苯甲酸钙水合物专题为您提供2024年最新苯甲酸钙水合物价格报价、厂家品牌的相关信息, 包括苯甲酸钙水合物参数、型号等,不管是国产,还是进口品牌的苯甲酸钙水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯甲酸钙水合物相关的耗材配件、试剂标物,还有苯甲酸钙水合物相关的最新资讯、资料,以及苯甲酸钙水合物相关的解决方案。

苯甲酸钙水合物相关的论坛

  • 水合物中的水

    [color=#444444]质谱可以打出水合物中的水吗,[color=#444444]比如五水合物质谱上最大的峰是含水的还是不含水的呀,真心求问。[/color][/color]

  • 脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    巯基乙酸钙盐三水合物 CAS号:5793-98-6 分子式:C2H8CaO5S 分子量 184 结构式http://ng1.17img.cn/bbsfiles/images/2017/10/2016042817011772_01_1490617_3.png 《化妆品安全技术规范》(2015年版)当中,3.9巯基乙酸第三法——化学滴定法的反应方程如下:https://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670059_1490617_3.png 原理是https://ng1.17img.cn/bbsfiles/images/2016/04/201604281715_591808_1490617_3.png 该方法的适用范围中这样描述:本方法适用于脱毛类、烫发类和其他发用类化妆品中巯基乙酸及其盐类和酯类含量的测定。客户委托了一款产品,要求按照巯基乙酸钙含量出报告,含量计算公式中有一个系数0.184,描述是1mmol碘溶液相当于巯基乙酸钙的克数,这样显然其指的巯基乙酸钙不是CAS:814-71-1 分子式C4H6CaO4S2(分子量222.3),不知道巯基乙酸钙盐三水合物是否依然按照上述原理与碘反应。 求高手指教,前辈指点!谢谢

  • 请问测甲醛用的酚试剂到底是3-甲基-2-苯并噻唑酮腙盐酸盐还是其水合物

    98.0%(HPLC)(T) 分子式(M.F.) / 分子量(M.W.) C8H9N3S·HCl / 215.70 CAS编码 4338-98-1 相关CAS编码 149022-15-1,38894-11-0 第一个是别名 (英文)MBTH Hydrochloride Hydrate 别名 (英文)Sawicki's Reagent Hydrate 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物 中文别名3-甲基-2-苯并噻唑啉腙盐酸盐水合物 第二个是别名 (英文)MBTH Hydrochloride 别名 (英文)Sawicki's Reagent 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐 中文别名MBTH盐酸盐 中文别名Sawicki's试剂

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

  • 【求助】气相出口居然还会形成水合物?

    HYSYS模拟低温分离器,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口居然还会形成水合物,怎么办啊?这是用HYSYS模拟现场集输的问题。流程为天然气和乙二醇混合,节流,进低温分离器,节流前后无水合物形成,但分离后,由于乙二醇被分走了,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口温度又低,水合物公用工具显示的水合物形成的温度和压力都在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]物流的温度和压力范围内,经换热器仍然是这个效果,人家总不能形成水合物还往外输吧?但是水露点和烃露点又都很低小于-10度。请高手给点思路,希望您不要惜字如金啊,有什么想法都可以说的!

  • 【讨论】请教关于水合物的结构

    [size=4][color=#00008B]最近做硝酸盐水合物的XRD,发现本应含两个结晶水,得到的谱图是含六个结晶水的,有没有这种可能,因为有其他非水小分子存在,将两个结晶水的物质重新结晶成六个结晶"水"的结构。麻烦遇到相似情况的给我辅导一下,万分感激![/color][/size]

  • 【谱图】水合物DSC图谱鉴别

    【谱图】水合物DSC图谱鉴别

    [img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061023_228948_1165844_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061024_228949_1165844_3.jpg[/img]根据以上图谱可以得出什么结论?据称第一个图是八水合物,第二个是九水物,八水物含水量为22%,九水物含水量为24%。如果含水量有区别可不可以根据DSC得出这是两种不同的晶型?

  • 天然气水合物勘查开发产业化面临的挑战和建议

    [align=center]天然气水合物勘查开发产业化面临的挑战和建议[/align][align=center][size=15px]吴能友 叶建良 许振强 谢文卫 梁金强 王宏斌 刘昌岭 [/size][/align][align=center][size=15px] 胡高伟 孙治雷 [/size][size=15px]李彦龙 黄丽 [/size][/align][size=14px]1.天然气水合物勘查开发工程国家工程研究中心,中国地质调查局广州海洋地质调查局;[/size][align=center][size=14px]2.自然资源部天然气水合物重点实验室,中国地质调查局青岛海洋地质研究所[/size][size=15px][/size][/align][size=15px]能源安全是关系到国家经济社会发展的全局性、战略性问题。发展清洁能源,是改善能源结构、保[/size][size=15px]障能源安全、推进生态文明建设的重要任务。天然气水合物(俗称“可燃冰”)是一种由水和气体分子(主要是甲烷)在低温高压下形成的似冰状的固态结晶物质,是21世纪最有潜力的清洁替代能源。自1961年苏联首次在西西伯利亚麦索亚哈油气田的冻土层中发现自然界产出的天然气水合物以来,全球累计发现超过230个天然气水合物赋存区,广泛分布在水深大于300m的深海沉积物和陆地永久冻土带中。据估计,天然气水合物中的甲烷资源量约为2.0×10[size=12px]16[/size]m3(Kvenvolden,1988),其含碳量约为当前已探明化石燃料(煤、石油和天然气)总量的两倍。因此,加快推进天然气水合物勘查开发产业化进程,对保障国家能源安全供应、改善能源生产和消费结构、推动绿色可持续发展具有极其重大的现实意义。[/size]01国内外研究现状和发展趋势[size=15px]目前,全球已有30余个国家和地区开展天然气水合物研究。中国、美国、日本、韩国和印度等国制[/size][size=15px]定了国家级天然气水合物研究开发计划,美国、日本等率先启动开发技术研究,并于2002年开始在陆域和海域进行多次试验性开采,取得了重要进展。[/size][size=15px]纵观世界各国天然气水合物勘查开发研究勘查历程(图1),大致可归纳为三个阶段。第一阶段[/size][size=15px](1961—1980年),主要目标是证实天然气水合物在自然界中存在,美国布莱克海台、加拿大麦肯齐三角洲的天然气水合物就是在这一时期发现的。第一阶段研究认为,全球天然气水合物蕴含的甲烷总量在10[size=12px]17[/size]~10[size=12px]18[/size]m3量级(表1)。这一惊人数据给全球天然气水合物作为潜在能源资源调查研究注入了一针强心剂。第二阶段(1980—2002年),开展了以圈定分布范围、评估资源潜力、确定有利区和预测资源量远景为主要目的的天然气水合物调查研究。该阶段,随着调查程度的逐渐深入和资源量评估技术的不断进步,全球天然气水合物所含的天然气资源量预测结果降低至10[size=12px]14[/size]~10[size=12px]16[/size]m3量级,但数据差异很大(表1)。第三阶段(2002年至今),天然气水合物高效开采方法研究成为热点,国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。2002年,加拿大主导在Mallik5L—38井进行储层降压和加热分解测试,证明水合物储层具有一定的可流动性,单纯依靠热激发很难实现天然气水合物的高效生产。目前,中国、美国、日本、印度、韩国是天然气水合物勘查与试采领域最活跃的国家。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b1/db/eb1dbd7333b27ced746350e5fd63e438.png[/img][/size][/align][align=center][size=14px]图1 国内外天然气水合物资源勘查开发历程[/size][/align][align=center][size=14px]表1 全球陆地永久冻土带和海洋中的天然气水合物资源量[/size][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/f5/3d4f5d650651c92996cc9731f194eda2.png[/img][/align][size=15px]总的看来,天然气水合物资源量巨大,但其资源品位差、赋存沉积物聚集程度弱,现有技术条件下[/size][size=15px]的资源经济可采性差(吴能友等,2017)。近年来,国内外在天然气水合物开采方法与技术的室内实验模拟、数值模拟、现场试采等方面,都取得了重要的进展。基于对天然气水合物储层孔渗特征、技术可采难度的认识,国际学术界普遍认为,砂质天然气水合物储层应该是试采的优选目标,其处于天然气水合物资源金字塔的顶端(图2)。因此,日本在2013年和2017年的海域天然气水合物试采也都将试采站位锁定在海底砂质沉积物中。前期印度、韩国的天然气水合物钻探航次也将寻找砂层型水合物作为重点目标,以期为后续的试采提供可选站位。我国在早期天然气水合物钻探航次和室内研究中,也大多瞄准赋存于砂层沉积物中的天然气水合物。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/59/76/4597680e28410e6a296005b34bde9882.png[/img][/size][/align][align=center][size=14px]图2 天然气水合物资源金字塔[/size][/align][size=15px]然而,全球天然气水合物总量的90%以上赋存于海底泥质粉砂或粉砂质泥沉积物中。2017年,我国[/size][size=15px]在南海北部陆坡开展的泥质粉砂型天然气水合物试采获得了成功(Lietal.,2018),证明赋存于海底黏土质粉砂中的沉积物也具备技术可采性,从而扭转了国际水合物研究界的常规认识。这是我国天然气水合物勘查开发研究从跟跑到领跑的重要标志。然而,无论是我国首次海域天然气水合物试采,还是国外历次水合物试采,均处于科学试验阶段,要真正实现产业化还有很多关键技术需要解决。2020年,我国采用水平井实现第二轮水合物试采,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m3(叶建良等,2020)。一方面,进一步证实泥质粉砂水合物储层开采具可行性;另一方面,充分说明水平井等新技术应用对提高天然气水合物产能至关重要。[/size][size=15px]在我国天然气水合物试采成功后,美国加大资金投入开展墨西哥湾天然气水合物资源调查,并计划[/size][size=15px]在阿拉斯加北坡开展长周期试采。美国能源部甲烷水合物咨询委员会在致美国能源部部长的信中写道:“尽管美国在天然气水合物相关技术领域处于领先地位,但正面临着来自中国、日本、印度的挑战。”日本致力于实现天然气水合物的商业开采,但许多技术问题尚待解决,正积极寻求与其他国家合作,提出了在2023—2027年实现商业化开发的目标。印度联合美国、日本在印度洋开展资源调查工作,计划实施试采。美国康菲石油公司和雪佛龙公司、英国石油公司、日本石油天然气和金属公司、韩国国家石油公司和天然气公司以及印度石油和天然气公司等能源企业参与热情也空前高涨。由此可见,在天然气水合物勘查开发这一领域的国际竞争日趋激烈,产业化进程将进一步加快。[/size][size=15px]总体上,国际天然气水合物勘查开发呈现出以下趋势。一是纷纷制定天然气水合物开发计划。从国[/size][size=15px]家能源安全、国家经济安全、战略科技创新等角度出发,中国、美国、日本、印度、韩国等国家制定了国家级天然气水合物勘查开发计划,加大投入、加快推进。二是从主要国家天然气水合物产业化进程看,已从资源勘查发现向试采技术攻关、产业化开发转变。特别是,在我国海域两轮试采成功的引领下,进一步加强技术攻关和试采准备。[/size]02[font=微软雅黑, sans-serif]天然气水合物试采面临的产能困局[/font][size=15px]实现天然气水合物产业化,大致可分为理论研究与模拟试验、探索性试采、试验性试采、生产性试采、[/size][size=15px]商业开采五个阶段。在各国天然气水合物勘探开发国家计划的支持下,迄今已在加拿大北部麦肯齐三角洲外缘的Mallik(2002年,2007—2008年)、阿拉斯加北部陆坡的IgnikSikumi(2012年)、中国祁连山木里盆地(2011年,2016年)(王平康等,2019)三个陆地冻土区和日本东南沿海的Nankai海槽(2013年,2017年)、中国南海神狐(2017年,2020年)两个海域成功实施了多次试采(表1)。[/size][size=15px]2002年、2007年、2008年在加拿大Mallik冻土区采用了加热法和降压法进行开采试验,但是由于[/size][size=15px]效率低和出砂问题被迫中止。2012年,在美国阿拉斯加北坡运用降压法和CO[size=12px]2[/size]置换法进行开采试验,同样效率不高(Boswelletal.,2017)。2013年、2017年日本在南海海槽进行了开采试验。2013年,日本在南海海槽首次实施天然气水合物试采,维持了6d因出砂问题而被迫中止;2017年,实施第二次试采,第一口井再次因出砂问题而停产,第二口井产气24d,产气量约20×10[size=12px]4[/size]m[size=12px]3[/size],两口井的产量都未获有效提高(Yamamotoetal.,2019),表明生产技术仍有待改进。2017年、2020年我国在南海神狐海域进行了开采试验。2017年,针对开采难度最大的泥质粉砂储层,在主动关井的情况下,试采连续稳产60d,累计产气量30.90×10[size=12px]4[/size]m[size=12px]3[/size],创造了连续产气时长和产气总量两项世界纪录,试采取得了圆满成功(Lietal.,2018);2020年,攻克了深海浅软地层水平井钻采核心技术难题,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m[size=12px]3[/size],创造了累计产气总量和日均产气量两项新的世界纪录(叶建良等,2020),提高了产气规模,实现了从“探索性试采”向“试验性试采”的重大跨越,向产业化迈出了极为关键的一步。[/size][size=15px]目前,我国已将天然气水合物产业化开采作为攻关目标。天然气水合物能否满足产业化标准,一方[/size][size=15px]面取决于天然气价格,另一方面取决于产能。这里,我们仅从技术层面考虑提高天然气水合物产能,采用固定产能作为天然气水合物产业化的门槛产能标准。天然气水合物产业化开采产能门槛值应该不是一个确定的数值,随着低成本开发技术的发展而能够逐渐降低。国内外研究文献普遍采用的冻土区天然气水合物产业化开采产能门槛值是3.0×10[size=12px]5[/size]m[size=12px]3[/size]/d,海域天然气水合物产业化开采产能门槛值为5.0×10[size=12px]5[/size]m[size=12px]3[/size]/d(Huangetal.,2015)。图3对比了当前已有天然气水合物试采日均产能结果与上述产能门槛值之间的关系(吴能友等,2020)。由图可见,当前陆域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/138,海域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/17。因此,目前天然气水合物开采产能距离产业化开采产能门槛值仍然有2~3个数量级的差距,海域天然气水合物试采日均产能普遍高于陆地永久冻土带试采日均产能1~2个数量级。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c0/61/0c0612ef00f7d45e957709c1ae9abdfa.png[/img][/align][align=center][size=14px]图3 已有天然气水合物试采日均产能与产业化门槛产能值之间关系[/size][/align]03我国天然气水合物产业化面临的工程科学与技术问题[size=15px]我国南海天然气水合物资源极为丰富。从勘查角度而言,南海天然气水合物赋存类型多样,成矿地[/size][size=15px]质条件复杂,勘查难度较大,现有的勘查技术水平无法满足高精度探测和及时、准确获取原位参数的需求,制约了资源高效勘探及精细评价。从开发角度来说,天然气水合物储层中甲烷存在固—液—气三相。在开采过程中将发生甲烷的复杂相态变化,决定了其开采方案将不同于常规油气田。研究分析不到位,天然气水合物产能提升的路径选择和开采效果将受到影响,严重时可导致工程地质灾害及环境安全问题。[/size][size=15px]当然,天然气水合物作为一个新兴矿种,勘查开发产业化很大程度上还涉及市场和政策制度保障因素。[/size][size=15px]但是,从工程科学与技术角度出发,我们亟须针对不同成因类型、不同储层类型的天然气水合物开展精细勘探及原位探测,深化储层认识,优化开采理论,加大开采工程化理论研究、工程技术和装备攻关力度,构建天然气水合物开采安全保障技术体系,建立智能化环境监测及评价体系,促进天然气水合物勘查开发产业化进程。[/size][size=15px]3.1 高精度勘探及储层原位探测技术亟待加强[/size][size=15px]目前,天然气水合物主要发现于陆域冻土区和海洋深水沉积物中,其中海洋集中了世界上99%的天[/size][size=15px]然气水合物资源。天然气水合物的稳定存在需要特殊的温压条件,其在海洋中具有水深大、埋藏浅、垂向多层分布、横向变化大等特点,造成高精度勘探和储层原位探测的难度大幅度增大。[/size][size=15px]当前,海域天然气水合物勘查技术的精度及水平,距产业化开发的需求仍有一定差距,关键技术难[/size][size=15px]题体现在三个方面。①矿体成像精度不够、精细刻画难。常规的地震勘探系统纵、横向分辨率有限,不能完全满足矿体精细刻画的需求,现有的近海底高精度探测装备技术体系有待完善,矿体高精度勘探技术水平有待提升。②储层原位探测存在瓶颈。现有的取样钻具难以实现高保真天然气水合物取样,地面测试设备尚不健全,无法准确获取原位温压条件下储层物性参数,严重影响了资源量计算精度。③保压取样钻具、随钻测井等关键核心技术和装备仍受制于人。因此,亟须大力推进高精度探测、储层原位探测、随钻测井、保温保压取样与带压测试等方向的关键技术自主研发,实现天然气水合物矿体精细刻画和原位探测取样及测试,为产业化提供资源保障。[/size][size=15px]3.2 储层渗流规律、产能调控关键技术研究亟待深化[/size][size=15px]摸清储层物性演化、多相流体运移规律、固液作用以及储层中天然气水合物相态变化等关键开发规律,[/size][size=15px]是提高天然气水合物开采产能的重要因素。以上关键地质规律的探索,离不开降压开采储层多孔介质中气—水两相渗流规律、天然气水合物相变机制及多相流运移等方面的储层实验模拟研究。[/size][size=15px]当前,天然气水合物实验与模拟的仪器和技术水平尚不能支撑高效、经济的开发,主要体现在四个[/size][size=15px]方面。①未固结特低渗透率储层产能评价存在技术瓶颈。泥质粉砂型天然气水合物属于特低渗透率储层,针对这类储层的模拟技术国外鲜有经验可循,且现有产能评价软件没有相关模型算法,无法开展准确的产能模拟。②天然气水合物储层渗流能力改善方法和手段有待探索。天然气水合物分解后,储层气、液、固存在运移不畅难题,泥质粉砂储层多相流运移机理不明,目前无法有效改善储层渗流能力,极大制约了天然气水合物的开采效率。③天然气水合物开发产能调控难,天然气水合物开采效率与生产机制匹配度有待提高。④天然气水合物开发井眼轨迹与产能关系有待深入研究。因此,亟须针对不同储层类型的天然气水合物,结合应力、温度、压力、饱和度等多场耦合机制研究,开展关键实验模拟技术探索,在厘清未固结泥质粉砂型复杂渗流特征、研究泥质粉砂储层多相流运移技术等基础上,更有针对性地研发适合我国天然气水合物储层特点的改造技术。[/size][size=15px]3.3 开发钻完井、储层改造、防砂技术亟待突破[/size][size=15px]天然气水合物储层埋藏浅、未固结、温度低,地质“甜点”横向展布和纵向分布非均质性强。首次[/size][size=15px]试采中采用的直井井型实现了探索性试采,第二轮试采采用单井水平井技术大幅度提高了产能,实现了试验性试采,但要进一步提高产气规模、实现经济高效开采,安全高效钻完井、储层增产改造、完井防砂、人工举升和流动保障等面临巨大挑战。[/size][size=15px]当前,亟须解决的关键技术问题包括四个方面。①需探索采用对接井、多分支井、群井等国际空白[/size][size=15px]工艺井型,增加井眼与储层的接触面积,进一步提高产气规模。井型结构对产能的影响研究表明,采用垂直井进行开采,选择恰当的降压方案、井眼类型或井壁厚度等都能一定程度上提升产能,但不足以有量级的突破。从短期现场试采和长期数值模拟结果来看,单一垂直井降压很难满足产业化开采需求。以水平井和多分支井为代表的复杂结构井在未来水合物产业化进程中将有不可替代的作用。水平井能扩大水合物分解面积,但受成本、技术难度限制,超长井段水平井仍然存在困难。以多分支井为代表的复杂结构井被认为是实现水合物产能提升的关键(图4)(吴能友等,2020)。为了充分发挥多井协同效应,并在短期内快速达到产业化开采产能的目标,日本天然气水合物联盟MH21提出了多井簇群井开采方案,其基本思路是:基于同一个钻井平台,利用井簇形式将整个储层进行分片区控制,每组井簇包含一定数量的垂直井井眼并控制一定的储层范围,多井同步降压。目前,特殊工艺井建井地层垂向造斜空间有限、承压能力低,管柱摩阻大,井眼极限延伸距离有限,仍需进一步深化定向井技术工艺和配套工具研究。[/size][size=15px]针对实际天然气水合物储层,应优化多井簇群井开采方法,发展多井型井网开发模式和大型“井工厂”作业模式,在增大网络化降压通道的同时,辅以适当的加热和储层改造,通过建立海底井工厂,实现天然气水合物资源的高效、安全开发利用。此外,针对存在深层天然气的水合物储层,可形成深层油气—浅层水合物一体化开发技术。但需注意的是,在大力发展海底井工厂等集成作业模式,提高生产效率的同时,必须要兼顾环境友好及经济性。②储层改造技术是增加产气通道、提高通道导流能力、提高低渗非均质地层产能的重要手段,但目前该技术面临地层未胶结成岩、泥质含量高、塑性强、储层改造机理不明确等问题,改造后难以维持通道导流的能力,亟须开展增产机理和储层改造工艺研究。③天然气水合物储层砂粒径小、地层未胶结易垮塌,实际开采面临出砂易堵塞气流通道、出砂机理不明确、防砂精度要求高等技术难点,需进一步开展砂粒径小、地层未胶结易垮塌的天然气水合物储层出砂机理研究,建立完井防砂技术体系,确保长周期、大产量稳定生产。④天然气水合物开采过程中三相运移规律复杂,容易发生井筒积液和沉砂;同时,伴随天然气水合物二次生成和冰的生成,需进一步开展开发过程中井筒和地层三相运移规律研究,形成大规模产气条件下的排水采气关键技术体系。因此,需进一步加大特殊井型工艺和配套设备研究,加强深水浅软未固结储层增产、防砂、流动保障等技术攻关。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/32/0b/a320bdcf5e03048b891d5da040acdaaa.png[/img][/align][align=center][size=14px]图4 多井簇群井开采天然气水合物概念图[/size][/align][size=15px]3.4 开采安全保障技术体系亟待构建[/size][size=15px]南海天然气水合物储层埋藏浅、固结弱、聚集程度差,天然气水合物开采过程中储层强度降低、地[/size][size=15px]层应力扰动加剧、地层物质持续亏空,可能会诱发泥砂产出、井壁失稳、海底沉降、井筒堵塞等一系列潜在风险,对天然气水合物安全开采带来了极大挑战(吴能友等,2021;Wuetal.,2021)。如果开采过程中控制不当,甲烷释放到海水甚至至大气中,将引起海洋酸化、全球变化等环境问题。随着未来天然气水合物开采周期的延长、规模的扩大,上述环境风险的发生概率进一步增大,将威胁生产安全和环境安全。[/size][size=15px]目前,天然气水合物开采安全风险演化模式研究极为零散,没有形成系统性的认识,未来水合物资[/size][size=15px]源的规模化开发面临极大的不确定性,亟须构建针对突出地质、工程和环境风险的安全保障技术体系。主要技术难点体现在三个方面。[/size][size=15px](1)与常规成岩储层相比,南海天然气水合物储层开采过程中,安全风险最大的独特性体现在水合[/size][size=15px]物分解过程中储层存在蠕变,储层的微观孔隙结构、宏观应变位移都具有极强的时变性,而微观结构、宏观位移则直接影响了地层泥砂迁移、井壁垮塌和海底沉降的发生和发展(吴能友等,2021)。因此,无论是构建海洋天然气水合物开采的泥砂迁移规律预测模型,还是构建井筒失稳和海底沉降规律预测模型,都必须以厘清海洋天然气水合物储层的蠕变特性为前提。因此,构建泥砂产出调控、井壁垮塌控制和海底非均匀沉降控制方法的难点,是必须时刻考虑天然气水合物地层的蠕变效应,随时修正调控/控制方法,做到对安全风险的动态闭环调控。[/size][size=15px](2)泥砂产出、井壁垮塌都会导致固相颗粒大规模侵入生产井筒,给井底工作设备造成巨大的压力。[/size][size=15px]砂沉导致井筒被埋,使试采安全受到直接威胁。然而,对于海洋天然气水合物开采而言,不仅面临上述泥砂磨损、堵塞的挑战,还面临二次水合物生成导致的“冰堵”风险,且泥堵和冰堵之间存在显著的耦合效应。从地层流入井筒的泥砂原本就是赋存天然气水合物的介质,一旦井底温度压力条件满足二次形成水合物的条件,这些产出的泥砂将为水合物的二次聚集提供附着点,极大地增加了水合物开采引起井底堵塞的风险(Wuetal.,2021)。因此,厘清泥砂与二次水合物堵塞之间的耦合关系,对于制定合理的水合物开采井底防堵、解堵方法至关重要。[/size][size=15px](3)环境保护技术体系有待完善,监测技术难以实现对天然气水合物开发前、中、后期储层—海底—[/size][size=15px]海水—大气全方位、长周期、大范围、实时立体的监测。现有的无缆绳通讯数据传输技术受海况影响大,监测精度及长期稳定运行难以保证。海底监测组网技术不成熟,难以实现开采区域范围内的阶梯分布和有效覆盖,监测数据无法实时传输。因此,研发监测技术装备,建立“井下、海底、水体、大气”四位一体的智能化环境监测体系,确保开发过程中环境安全极为重要。[/size]04结论和建议[size=15px]国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。我国经过20年的不懈努力,已经[/size][size=15px]比较系统地建立了天然气水合物勘查开发理论、技术和装备体系,积累了深厚的技术储备、创新平台、软硬件条件、人才队伍等基础,为推进天然气水合物资源勘查开发产业化进程提供了重要保障。但从勘查评价、实验模拟、工程开发、安全保障工程技术与装备角度分析,仍有不少问题。实现天然气水合物安全高效开发是一项极为复杂的系统性工程,涉及理论、技术、装备等众多方面,制约天然气水合物高效开发之根本,是关键技术尚未突破,尤其是高精度勘查、储层产能模拟、开发工程技术、安全保障和环境防护等技术亟待攻关。为此,提出以下建议。[/size][size=15px](1)瞄准天然气水合物产业化推进中的重大技术难题,突破关键核心技术和重大装备等瓶颈制约。[/size][size=15px]①要加大南海天然气水合物资源调查力度,开展南海区域性资源调查评价,查明资源家底;开展重点海域普查,落实资源量;开展重点目标区详查,明确地质储量,为推进产业化奠定坚实的资源基础。②要开展不同类型天然气水合物试采,研发适应不同类型特点的试采工艺和技术装备;开展重点靶区试采,建立适合我国资源特点的开发技术体系。③要把加强安全保障和环境保护放在突出位置,围绕安全和环境保护进一步完善理论技术方法体系,为安全可控的资源开发创造条件;持续开展环境调查与监测,获取海洋环境参数,评价天然气水合物环境效应;加强环境保护与安全生产技术研发,实现天然气水合物绿色开发。④将南海神狐先导试验区打造成高质量发展样板,加快建设天然气水合物勘查开采先导试验区。[/size][size=15px](2)围绕天然气水合物产业化目标,加强多科学交叉、多尺度融合,充分利用天然气水合物勘查开[/size][size=15px]发工程国家工程研究中心和自然资源部天然气水合物重点实验室等科技创新平台,着眼加快重大科技成果的工程化和产业化,为各类创新主体开展技术成熟化、工程化放大和可靠性验证等提供基础条件,促进提高科技成果转化能力和转化效益。①海洋天然气水合物开采增产理论和技术的实验模拟、数值模拟和研究要向“更宏观”和“更微观”的两极发展,揭示目前中尺度模拟无法发现的新机理;研究手段要从“多尺度”向“跨尺度”联动,带动基础理论的发展和开发技术的进步。②要加强天然气水合物开发学科体系建设。学科体系建设是培养后备人才,保证海洋天然气水合物开发研究“后继有人”的必然要求。天然气水合物开发学科体系包括天然气水合物开发地质学(储层基础物性与精细刻画、开采目标优选与产能潜力评价、开发地球物理学、开发工程地质风险理论)、天然气水合物开发工程学(开发工程地质风险调控技术、储层多相渗流理论基础、增产理论与技术、海工装备开发)和下游学科(集输、储运、利用等)。③要特别重视现场开采调控技术对地质—工程—环境一体化的需求升级。在开采过程中,地质条件和环境因素共同制约了水合物开采效率的“天花板”。我们既要实现多快好省开采水合物及其伴生气的工程目标,又要注意可能承受不了工程折腾太“凶”的地质条件限制,更要关注悬在公众心中的一把“利剑”的环境风险。长期开采条件下的工程地质风险预测技术、安全保障技术与环境监测技术装备的研发势在必行,要从室内模拟→多尺度预测→原位监测→开采风险预警→一体化调控方案,建立完整的研究链条。[/size][size=15px](3)提升产学研用协同创新的效能,深化体制机制改革和创新。①探索建立以知识、技术、数据为[/size][size=15px]生产要素,由市场评价贡献、按贡献决定报酬的机制,激发科技人员推动技术创新和科技成果转化的积极性、主动性和创造性。②以建立国家战略科技力量为目标,坚持合作开放,充分发挥国内外优势力量,联合高校、科研院所、企业,组建多学科交叉的协同创新团队,构建协同创新体系,共同推进天然气水合物勘查开发产业化。③要推进天然气水合物勘查开发科技成果快速、有效转化,实现核心技术与装备的国产化、工程化。[/size]

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

  • 迪马产品应用有奖问答5.19(已完结)——对羟基苯甲酸酯类化合物

    迪马产品应用有奖问答5.19(已完结)——对羟基苯甲酸酯类化合物

    10,抽取5个版友);中奖名单:莫名其妙(注册ID:moyueqiu)玲儿响叮当(注册ID:jshbhh)馨语(注册ID:huangdm)sixingxing(注册ID:v2889187)吕梁山(注册ID:shih20j07)http://ng1.17img.cn/bbsfiles/images/2016/05/201605191518_593903_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/05/201605191518_593904_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================对羟基苯甲酸酯类化合物方法:HPLC基质:标准溶液应用编号:101088化合物:对羟基苯甲酸甲酯;对羟基苯甲酸乙酯;对羟基苯甲酸丙酯;对羟基苯甲酸丁酯固定相:Diamonsil C18(2)色谱柱/前处理小柱:Diamonsil C18(2) 5u 150 x 4.6mm色谱条件:流动相:乙腈:20 mM K2HPO4(pH=7.0)=50:50 流速:1.0 mL/min 温度:室温 检测器:UV 254 nm文章出处:AN: D1112关键字:对羟基苯甲酸类化合物,HPLC,Diamonsil C18(2),钻石二代,对羟基苯甲酸甲酯;对羟基苯甲酸乙酯;对羟基苯甲酸丙酯;对羟基苯甲酸丁酯谱图:http://ng1.17img.cn/bbsfiles/images/2016/05/201605191013_593851_1610895_3.jpg图例:1. 对羟基苯甲酸甲酯;2. 对羟基苯甲酸乙酯;3. 对羟基苯甲酸丙酯;4. 对羟基苯甲酸丁酯

  • 迪马产品应用有奖问答08.30(已完结)——对羟基苯甲酸甲酯类化合物

    迪马产品应用有奖问答08.30(已完结)——对羟基苯甲酸甲酯类化合物

    10,抽取5个版友);中奖名单:翠湖园(注册ID:hhx050)zgx3025(注册ID:v2844608)ZHAOGUANGXI(注册ID:ZHAOGUANGXI)玲儿响叮当(注册ID:jshbhh)mengzhaocheng(注册ID:mengzhaocheng)http://ng1.17img.cn/bbsfiles/images/2016/08/201608301508_607432_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608301508_607433_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================对羟基苯甲酸甲酯类化合物方法:HPLC基质:蜂制品应用编号:101253化合物:对羟基苯甲酸甲酯;对羟基苯甲酸乙酯;对羟基苯甲酸丙酯;对羟基苯甲酸丁酯固定相:Spursil C18-EP色谱柱/前处理小柱:Spursil C18-EP 5u 150 x 4.6mm色谱条件:流动相:乙腈:20 mM 磷酸二氢钾(pH 7.0)=50:50 流速:1.0 mL/min 柱温:室温 检测器:UV 220 nm文章出处:AN: S1107关键字:对羟基苯甲酸甲酯,对羟基苯甲酸乙酯,对羟基苯甲酸丙酯,对羟基苯甲酸丁酯,对羟基苯甲酸甲酯类化合物,HPLC,Spursil C18-EP,思博尔谱图:http://www.dikma.com.cn/Public/Uploads/images/S1107-01%20copy.png图例:1. 对羟基苯甲酸甲酯;2. 对羟基苯甲酸乙酯;3. 对羟基苯甲酸丙酯;4. 对羟基苯甲酸丁酯

  • 食品添加剂苯甲酸检测方法研究进展

    食品添加剂苯甲酸检测方法研究进展 王俊红 (浙江大学动物科学学院, 浙江杭州 310029) 摘 要:苯甲酸作为食品添加剂,其添加量多少将直接影响到人体健康。该文综述高效液相色谱法、毛细管电泳法、气相色谱法、紫外分光光度法及薄层层析法等检测方法基本原理及其近几年在苯甲酸检测技术方面研究进展,最后展望这些检测方法在苯甲酸检测方面发展前景。 关键词:苯甲酸;食品添加剂;食品安全 中图分类号:TS202.3文献标识码:A文章编号:1008―9578(2010)12―0037―02 苯甲酸外观为白色结晶体,有安息香或苯甲气味,其蒸气具有很强刺激性,主要用作食品添加剂,具有抑制食品中微生物繁殖或杀灭、防止食品腐败变质、保持食品鲜度作用。但若过量添加,不仅能破坏维生素B1,还能使钙形成不溶性物质,影响人体对钙的吸收,同时对胃肠道有刺激作用;过量食用可诱发癌症〔1〕,长期使用可诱发哮喘、荨麻疹及血管性水肿等变态反应,对人体健康造成不利影响。 近年来,食品安全已成为全社会共同关注热点。苯甲酸作为食品添加剂,我国GB2760–1996《食品添加剂使用卫生标准》规定其使用限量应<0.1g/kg,故有关苯甲酸含量检测研究也备受关注。本文就苯甲酸检测方法研究进展作一综述,为我国开展食品添加剂苯甲酸检测提供参考。 1·高效液相色谱法 高效液相色谱是从20世纪60年代后期开始发展起来的,具有填料颗粒小、且均匀,小颗粒具有高柱效特点,该法是目前应用最多一种色谱分析方法。与经典液相色谱相比,其优点是分辨率高、灵敏度高、样品量少、易回收和色谱柱可重复使用等〔2〕。 中国国家质量监督局发布乳与乳制品中苯甲酸和山梨酸测定方法为高效液相色谱法,标准规定奶制品中苯甲酸检测制样和高效液相色谱测定方法,适于乳与乳制品中苯甲酸和山梨酸含量测定。祝伟霞〔1〕、Pingqi〔3〕分别以醋酸锌和亚铁氰化钾溶液作为沉淀剂,对奶粉、酸奶和其它发酵乳制品进行处理,然后采用反相色谱法测定其中苯甲酸含量。证明该法具有前处理简单、方便、灵敏度高、重现性好等优点。 液相色谱法除可检测乳制品中苯甲酸含量,还能测定其在其它食品中含量。Tfouni等〔4〕采用高效液相色谱法测定巴西食品中苯甲酸含量。分别将饮料、果汁、黄油及奶酪等食品进行粉碎处理,然后与蒸馏水混合,再用氢氧化钠溶液将pH值调为碱性,最后离心处理,取上层清液进行反相色谱法测定,其检测精密度和准确度均能满足分析要求。Liu等〔5〕采用液相色谱仪测定面粉和油炸食品中苯甲酸含量,样品经乙醇超声破碎后提取苯甲酸,然后用C18柱进行梯度洗脱。经实验测得苯甲酸线性检出范围为0.50~15.06mg/L,最低检出限为0.22 mg。 2·毛细管电泳法 毛细管电泳(简称CE),是上世纪80年代初发展起来一种新型高效分离技术〔6〕。以毛细管为分离通道,以高压支流电场为驱动力,通常使用内径为25,000~100,000 nm弹性涂层熔融石英管。该毛细管特点是容积小、侧截比大,可用自由溶液或凝胶等为支持介质,在溶液介质下能产生平面状电流场〔7〕。该法具有高效、快速、样品量少、测定成本低等优点。 Han等〔8〕以对羟基苯甲酸为内标,采用毛细管电泳系统对食品中苯甲酸含量进行检测,经实验证实,检出限范围为10~20 ng/mL。胡美珍等〔9〕对样品进行超声、除二氧化碳处理,然后用乙醚进行抽提、净化,再将提取物用高效毛细管电泳仪进行检测。通过对实验条件优化选择,最终测得苯甲酸在浓度5 mg/L~50 mg/L时线性关系良好,样品回收率95%以上:实验过程快速、回收率高,在食品分析领域具有良好应用前景。李利军等〔10〕采用ACS2000高效毛细管电泳仪对苯甲酸进行测定,通过对缓冲体系、检测波长、分离电压等条件优化,测得苯甲酸缓冲体系为含有15 mmol/L十六烷基三甲基溴化铵体积分数1%乙酸,检测波长285 nm,分离电压20 KV,线性范围为5~40μg/mL。该法具有良好重现性和准确度,可用于苯甲酸生产过程质量控制和检测。 3·气相色谱法 气相色谱法出现于1952年,已成为分离科学中较为成熟、使用最普遍、运行最容易一种分离分析方法〔11〕。该法以气体作为流动相,除应用于分析气体试样,还可分析易挥发或可转化为易挥发液体和固体;不仅可分析有机物,也可分析部分无机物。随着检测技术发展,还出现与气相色谱仪联用气相色谱―质谱检测技术。 刘敏红等通过样品酸化,用乙醚提取苯甲酸,然后用带氢火焰离子检测器气相色谱仪进行分离测定。通过对柱温箱、载气流量等条件进行优化,并通过精密度试验、准确度实验、灵敏度实验,最终证明该检测方法可行性,为苯甲酸检测研究提供另一种思路。Farahani等〔12〕运用气相色谱―质谱仪(GC/MS)分析饮料和生活用水中苯甲酸含量。首先将样品进行前处理,然后采用GC/MS对样品进行分析,最终测得苯甲酸线性检出范围为0.5~500μg/mL,相关性≥0.99,重复性良好(RSID<10.3%,n=8),回收率为90%~113%,从而证明该法准确、有效。 4·紫外分光光度法 该法检测原理是苯甲酸为共轭型有机化合物,在近紫外光区具有较强吸收〔13〕,经实测证实,苯甲酸在230 nm处有最大吸收峰。苯甲酸在10°时溶解度为0.21 g/100 mL水,20°时为0.28 g/100 mL水〔14〕。因此可将标样和样品用水溶解后采用紫外分光光度计进行含量检测。 曾启华〔15〕运用7520型紫外分光光度计测定酸性食品中苯甲酸含量,经试验证实,该法操作简单、易于掌握,在操作和结果准确性上具有一定优势,与气相色谱法比较,其结果极为接近,不会影响到对结果判断。杜向东〔16〕用751G紫外分光光度计检测面粉中添加苯甲酸,其检测原理是将苯甲酸与乙醚混合后,在260~280 nm之间有典型吸光特性,最终测得苯甲酸最低检出量为1 mg/kg,回收范围84.4%~95.3%,从而证明紫外分光光度法稳定性、抗干扰性及准确性。 5·薄层层析法 该法原理是将试样酸化后,用乙醚提取苯甲酸,将试样提取液浓缩,点于聚酰胺薄层板上展开,显色后,根据薄层板上苯甲酸比移值与标准比较定性,并可进行概略定量,〔GB/T2009.29–2003〕。张秀尧〔17〕采用聚酰胺薄膜层析检测食品中苯甲酸,经实验测得苯甲酸检出下限为1μg。 6·展望 随着苯甲酸在食品中添加量检测方法相继建立,理想分析方法应是简单、快速、准确、有效、灵敏、专一、经济等特点。薄层层析法对样品前处理繁琐、复杂、耗时,易受时间、杂质等因素干扰,准确性相对较低。高效液相色谱法、气相色谱法、毛细管电泳法是近年发展起来检测方法,此类检测方法快速、准确、稳定;但所需仪器设备投资大,对操作技术要求高,尚未能得到广泛应用。而紫外分光光度法具有灵敏度高、分析时间短、成本低等优点,适于批量检测。随着待测食品种类扩大和食品基质成分复杂化,来自食品中非测定成分干扰将日益增多。因此对检测样品纯化、检测手段要求将越来越高,发展廉价、灵敏、专一、快速净化手段和检测方法是今后研究方向。 〔参考文献〕略

  • 苯甲酸测定的讨论?

    我看到过很多有关山梨酸、苯甲酸测定的论文,可是看的越多我就越晕[em06] ,在样品处理中,有的加NaOH,而有的不加,那么最终测定的物质有可能是苯甲酸钠或者是苯甲酸.显然用什么来表示得出的结果差距会很大了,可都叫苯甲酸的测定.我本人现在做的也是不家NaOH,难道国家规定的就用苯甲酸的形式来表示么?可我总觉得我们测定的目的是要了解苯甲酸钠的量.苯甲酸钠才是防腐剂么.恳请同仁发表意见.

  • 二氯代对甲基苯甲酸 GC

    要做某样品中的二氯对甲基苯甲酸的残余。该物质沸点330.51.首选了ffap柱二氯对甲基苯甲酸标品用溶剂溶解,不出峰。衍生化,出很小的峰。2.rtx-1柱这么高的沸点,6min出峰了。

  • CNS_17.002_苯甲酸钠

    CNS_17.002_苯甲酸钠

    [font='宋体'][size=21px]CNS_17.002_苯甲酸钠[/size][/font][font='宋体'][size=21px]乔和田[/size][/font][font='宋体'][size=21px]2021年7月28日[/size][/font][align=center][/align][align=center][font='calibri'][size=18px]摘要[/size][/font][/align]苯甲酸及其钠盐是一种很常用的药品、食品添加剂,有防止变质发酸、延长保质期的效果,在世界各国均被广泛使用。但近年来对其毒性的顾虑使得它的应用受限,有些国家如已经停止生产苯甲酸钠,并对它的使用作出限制。本文将从苯甲酸钠的理化性质与作用机理出发,介绍其制备方法、检测方法、限量与应用。[font='黑体'][size=16px]关键词:[/size][/font]苯甲酸、苯甲酸钠、防腐剂、食品添加剂[align=center][font='calibri'][size=18px]引言[/size][/font][/align]食品腐败变质主要是指以微生物为主的作用导致食品质量下降或失去食用价值的一切变化。食品本身含有的丰富的营养成分最易使微生物滋生且大量繁殖,并最终导致食品的腐败变质。因此,人们尝试用各种方法去阻止食品腐败,如低温保存、隔绝空气、干燥、高渗、高酸度、使用防腐剂等。其中最为普遍和有效的方法就是添加防腐剂来抑制或杀灭微生物, 从而达到防腐的目的。食品防腐剂分为化学防腐剂、天然防腐剂和复合型防腐剂三种。其中,使用最为广泛的是化学防腐剂,而苯甲酸钠正属于化学防腐剂中的苯甲酸类。。[font='calibri'][size=18px]1、 [/size][/font][font='calibri'][size=18px]苯甲酸钠概述[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548153425_329_1608728_3.png[/img]苯甲酸铵的分子式为C[font='calibri'][size=13px]7[/size][/font]H[font='calibri'][size=13px]5[/size][/font]O[font='calibri'][size=13px]2[/size][/font]Na,CAS编号65-85-0,相对分子质量 144.1。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548154704_2148_1608728_3.jpeg[/img][size=13px]图[/size][size=13px]1 [/size][size=13px]苯甲酸钠结构式图[/size][size=13px]2 [/size][size=13px]苯甲酸钠固体[/size][font='calibri'][size=16px]1. [/size][/font][font='calibri'][size=16px]理化性质[/size][/font][align=left]苯甲酸(AR-COOH)又称为安息香酸,是羧基和苯环碳原子相连最简单的芳香酸,苯甲酸为有光泽、白色的单斜晶薄片或针状结晶。熔点为122. 13℃,沸点 249℃,相对密度1.2659( 4℃) 。常温下难溶于水,溶于乙醇、氯仿和非挥发性油,在热空气中有挥发性。100℃时迅速升华,其蒸气有很强的刺激性,吸入后易引起咳嗽。苯甲酸广泛应用于医药、食品、染料和化工等领域,是一种重要的有机合成中间体。苯甲酸存在于果蔓、梅干、肉桂、丁香、桃、李子、草莓和苹果等食物以及蒺藜果实、白芍根、板蓝根和红芽大戟等许多中药材中,苯甲酸及其衍生物也普遍存在于许多天然植物中,是植物的次级代谢产物,具有重要的生理作用,如作为植物保卫素和激素调节剂。一些越橘属植物( 蔓越莓、越橘、欧洲越橘和美洲越橘) 的成熟果实中游离苯甲酸含量高达 300 mg / kg~1300 mg / kg,食物中的苯甲酸多是作为微生物谢的产物存在,如乳制品。[/align]苯甲酸及他的盐类如苯甲酸钠或铵,其衍生物如甲基对羟基苯甲酸和丙基对羟基苯甲酸是普遍使用的一类化学防腐剂,其中苯甲酸是主要的防腐成分,其盐类只有在酸性环境中转化为未离解的苯甲酸才有防腐作用。苯甲酸内的支链增加,其防腐力也随之增强,因此用对烃基苯甲酸酯作为防腐剂的趋势在增长。其中,苯甲酸钠为颗粒或结晶状粉末(大多为白色颗粒),是苯甲酸的钠盐,无臭或微带安息香气味,味微甜,有收敛性。别名安息香酸钠。[font='calibri'][size=16px]2. [/size][/font][font='calibri'][size=16px]制备[/size][/font][font='arial'][size=16px]2.1 [/size][/font][font='arial'][size=16px]工业制备[/size][/font][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548155896_9458_1608728_3.png[/img]目前工业上常用的制备方法是甲苯氧化法:由甲苯在环烷酸钴催化剂存在下,以空气氧化先制取苯甲酸,再以苯甲酸为原料,用碳酸氢钠中和,活性炭脱色,再经过过滤、干燥、粉碎制得产品。生产苯甲酸的流程图如下所示:[/align][align=center]图3 苯甲酸钠甲苯氧化法生产工艺流程图[/align][align=left]工业上,制备苯甲酸的方法还有邻苯二甲酸酐水解、脱羧法,但应用较少:以萘、苯或邻二甲苯氧化的产物苯二甲酸酐为原料,经水解得邻苯二甲酸,再经部分脱羧制得苯甲酸,其反应如下:[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548157038_5555_1608728_3.png[/img]图4 苯甲酸钠邻苯二甲酸酐水解、脱羧法生产工艺流程图[/align][align=left][/align][align=left][font='arial'][size=16px]2.2 [/size][/font][font='arial'][size=16px]实验室制备[/size][/font][/align][align=left]方法一:苯甲酸与过量的氢氧化钠溶液反应,即可制得粗产品;然后用分液漏斗,取下层液体,为苯甲酸钠和氢氧化钠混合物;最后蒸发、结晶。[/align][align=left]方法二:将水和碳酸氢钠加入中和锅,加热至沸溶解成碳酸氢钠溶液。搅拌下投入苯甲酸,至反应液pH为7-7.5。加热使二氧化碳逸尽,加活性炭脱色半小时。抽滤,滤液浓缩后缓缓放入结片机液盘内,经滚筒干燥结片,粉碎,得苯甲酸钠。[/align][align=left][/align][font='calibri'][size=16px]3. [/size][/font][font='calibri'][size=16px]应用[/size][/font][align=left]3.1 [font='arial'][size=16px]食品与药品添加剂(防腐剂)[/size][/font][/align][align=left]苯甲酸和苯甲酸钠作为防腐剂在食品加工保藏中被广泛使用,在强酸食品中效果较好,常用于保藏高酸性水果、果酱、饮料糖浆以及其他酸性食品,可以与低温杀菌合用,起到协同作用。[/align][align=left]苯甲酸和苯甲酸钠一般只限于蛋白质含量较高的食品。苯甲酸钠对微生物的作用于苯甲酸相同,可由于是钠盐,若要取得与苯甲酸相同的杀菌效果,所需添加量是苯甲酸的1.2倍。[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548158083_4900_1608728_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548159128_4244_1608728_3.jpeg[/img][size=13px]图[/size][size=13px]5 [/size][size=13px]常见食品(碳酸饮料)中的苯甲酸钠[/size][/align][align=left]同时,苯甲酸类防腐剂也应用于医药工业的杀菌剂。[/align][align=left]3.2 [font='arial'][size=16px]在制剂中的助溶作用[/size][/font][/align][align=left]在某些药品中添加苯甲酸钠后,可以增加药物的溶解度,同时也可以增加药物的体内吸收程度。例如苯甲酸钠咖啡因(安钠咖),由苯甲酸钠和咖啡因以1:1的比例配制而成,苯甲酸钠可将咖啡因的溶解度增大50倍,以促进人体吸收。陈德梅将阿莫西林原料药粉末与苯甲酸钠粉末按照0.03∶0.25(质量比)的比例混合后制成胶囊,结果阿莫西林溶出度提高了25%。陆奇志研究发现,一定浓度的苯甲酸钠溶液可将呋喃西林的溶解度提高到1 : 3 000,助溶效果明显优于聚山梨酯-80和二甲亚碱。也可用作血清胆红素实验的助溶剂。[/align][align=left]3.3 [font='arial'][size=16px]其它作用[/size][/font][/align][align=left]张建勇等的研究表明,苯甲酸钠对大鼠肝脏缺血再灌注的损伤有保护作用。黄进等的结果表明,苯甲酸钠对DNA损伤有很好的保护作用,能明显抑制和延迟DNA的化学发光,且其作用随着苯甲酸钠浓度的增大而加强。[/align][align=left]在合成药品中作原料:张培培利用苯甲酸工艺制备人绒毛膜促性腺激素(HCG)粗品获得成功。在三乙胺存在下,苯甲酸钠与苄基氯作用,生成苯甲酸苄酯。苯甲酸苄酯是复方己酸孕酮原料,也用于配制百日咳药、气喘药等。[/align][align=left]苯甲酸钠也可用于植物遗传研究。[/align][align=left][/align][font='calibri'][size=18px]2、 [/size][/font][font='calibri'][size=18px]苯甲酸钠的作用机理与毒理学研究[/size][/font][font='calibri'][size=16px]1. [/size][/font][font='calibri'][size=16px]防腐与拮抗作用机理[/size][/font][font='宋体'][size=13px]苯甲酸类防腐剂以未解离的分子发挥作用。其分子亲脂性强,易通过生物膜进入微生物体内,干扰霉菌和细菌等微生物细胞膜的通透性,阻碍微生物细胞膜对氨基酸的吸收,抑制其生长繁殖 同时进入微生物体内的苯甲酸分子可酸化细胞内的储存碱,抑制微生物内呼吸酶系的活性,阻止乙酰辅酶A缩合反应,从而起到防腐作用[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]王妤[/size][/font][font='宋体'][size=13px]的研究表明苯甲酸钠在罗汉果止咳糖浆中有良好防腐效果。陈文秋[/size][/font][font='宋体'][size=13px]等人的研究表[/size][/font][font='宋体'][size=13px]明苯甲酸钠和羟苯乙酯连用在银黄口服液中有良好防腐作用。其用效果与pH值有很大关系,在低pH条件下对微生物有广泛的抑制作用, 但对产酸酶作用很弱, 在pH值5.5以上时,对很多霉菌无抑制效果, 最适pH为 2.5 ~ 4.0, 适用于酸化食品和饲料。[/size][/font][font='宋体'][size=13px]同时,除了防腐机理外,苯甲酸还与氯化钙有拮抗作用, 与氯化钠、异丁酸、葡萄糖酸、半胱氨酸盐等也有类似作用。[/size][/font]2. [font='arial'][size=16px]苯甲酸在人体内的代谢过程[/size][/font][font='宋体'][size=13px]苯甲酸主要在肝脏进行代谢,有学者提出这一过程可能会导致肝脏发生病理改变[/size][/font][font='宋体'][size=13px],因此肝功能缺陷或衰弱者不宜多食用含苯甲酸类食品。人类在食入苯甲酸后,很快在小肠被身体吸收,大部分与甘氨酸结合形成马尿酸 (甘氨酸苯甲酰),反应过程[/size][/font][font='宋体'][size=13px]为:[/size][/font][align=center][font='宋体'][size=13px]AR-COOH + C[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]N = AR-C[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]N (马尿酸) + H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O[/size][/font][/align][font='宋体'][size=13px]剩余的苯甲酸会与葡萄糖醛酸结合,形成1-苯甲酰葡萄糖醛酸。75%~80%的苯甲酸在摄入6 h内从体内排出,10 h[/size][/font]~[font='宋体'][size=13px]14 h完全排出体外[/size][/font][font='宋体'][size=13px],这种解毒作用使苯甲酸不会在体内蓄积,在体内无残留。有研究显示,用示踪剂C[/size][/font][font='宋体'][size=13px]14[/size][/font][font='宋体'][size=13px]试验证明苯甲酸不在机体内积蓄[/size][/font][font='宋体'][size=13px]。目前对于不同来源的苯甲酸在机体内代谢的途径和时间研究较少,但有研究表明环境中的苯甲酸,其代谢方式可有儿茶酚途径、原儿茶酸途径和龙胆酸途径等有氧生物降解方式,以及在厌氧条件下的还原裂解途径等方式。[/size][/font]3. [font='arial'][size=16px]安全性评价[/size][/font][font='宋体'][size=13px]各种食品药品添加剂的使用范围和用量,都有严格的规定。根据我国卫生部《食品安全性毒理学评价标准》的规定,苯甲酸和苯甲酸钠属于实际无毒类。其ADI值(WHO规定的每日人体每千克体质量允许摄入的毫克数为0.2 ~ lgkg[/size][/font][font='宋体'][size=13px]-1[/size][/font][font='宋体'][size=13px])[/size][/font][font='宋体'][size=13px]。在食品药品中按照规定用量添加苯甲酸和苯甲酸钠,对人体并无毒害。多年来的毒性试验表明,少量的苯甲酸类没有蓄积性、致癌、致畸和致突变等作用[/size][/font][font='宋体'][size=13px]。[/size][/font]4. [font='arial'][size=16px]毒理学研究[/size][/font]4.1 [font='arial'][size=16px]人群风险评估[/size][/font][font='宋体'][size=13px]苯甲酸钠是常用的防腐剂, 但是随着其广泛应用, 毒副作用也日渐突出。我国 GB2760-1996食品添加剂使用卫生标准规定:在肉制品中, 食品防腐剂苯甲酸和苯甲酸钠不得检出。但是, 因苯甲酸钠价廉易得, 在药品、食品、化妆品中广泛应用。苯甲酸钠是苯甲酸的钠盐 ,在酸性食品中能部分地转为有活性的苯甲酸, 防腐机理和苯甲酸类似。苯甲酸在酸性条件下溶解度较低,如果搅拌不均匀, 会出现苯甲酸结晶, 导致局部产品添加剂超标。但由于苯甲酸钠比苯甲酸更易溶于水, 且在空气中稳定, 抑制酵母菌和细菌的作用都比较强, 因此比苯甲酸更常用。[/size][/font]食品和药品中添加少量苯甲酸对人体健康并无损害,少量添加的苯甲酸钠并没有蓄积性、致癌、致畸和致突变等作用。虽然肾脏有排毒功能, 一般 1 ~ 2 天内可将安全剂量的防腐剂排出体外,但如果长期且同时食用多种含有同类防腐剂的食物,也会对人体产生多种毒害作用。根据FAO/WHO联合食品标准委员会 (CAC) 推行的国际食品标准规定,人体每日苯甲酸允许摄入量 (ADI) 值为0 mg/kg~5 mg/kg。欧洲和澳大利亚,苯甲酸可以用于肉类防腐,但不推荐儿童消费;加拿大,苯甲酸和苯甲酸钠可以用于带包装的鱼肉和肉制品中;印度,苯甲酸和苯甲酸钠被认为广泛存在于自然界中,接近天然添加剂,可以在肉制品中作为食品防腐剂使用;芬兰的研究表明,水果、果汁、软饮料、腌制的鱼类是该国苯甲酸摄入的主要来源,40 mg/d,占ADI的13%;台湾1岁~2岁男童的每日苯甲酸摄入量占ADI的54.1%。一项对奥地利人的研究结果显示,学龄前儿童、男性人群、女性人群的日均苯甲酸摄入量分别占每日允许摄入量的32%、31%和36%,苯甲酸摄入的最主要来源是鱼类和鱼类制品,包括鱼沙拉酱。一项针对香港中学生从无酒精类饮料 (包括果汁、软饮料、豆浆、茶和咖啡) 摄入苯甲酸的研究显示,苯甲酸的平均摄入量和第95百分位摄入量分别为0.31 mg/(kgbw) 和0.97 mg/(kgbw),占每日允许摄入量的6.1%和19.3%,与其他研究结果类似,软饮料是苯甲酸摄入的最大的膳食暴露来源。对巴西的研究结果显示,苯甲酸的膳食摄入低于每日允许摄入量,摄入量为0.3 mg/(kgbw)~0.9 mg/(kgbw),其最大膳食来源也是软饮料,其贡献率大于80%。[font='arial'][size=16px]4.2 [/size][/font][font='arial'][size=16px]毒理学及动物实验研究[/size][/font]动物喂食实验表明,苯甲酸可以迅速入血,并穿过血脑屏障,进入多个组织。用含有2.39%苯甲酸的肉喂猫,28只猫中有17只出现神经过敏、兴奋、失去平衡和视力损失等症状;吕娜等苯甲酸钠对小鼠的实验显示,苯甲酸钠有致染色体畸变作用,且以染色体断裂为主要类型;Tsay等发现苯甲酸钠对斑马鱼胚胎有神经毒性和前肾毒性。但我们同时也应注意到,苯甲酸钠在动物饲料中的适量添加科研起到一定的正面效果。在仔猪饲料中添加5 000 mg/kg苯甲酸的实验显示,苯甲酸的加入可提高仔猪血清总蛋白含量、血钙含量、血磷及血三碘甲状腺原氨酸含量,同时可降低血中甘油三酯含量,提高了其生长性能、养分消化率和空肠食糜消化酶的活性。整体来看,苯甲酸虽然在动物实验和体外试验中证实存在一定的毒性作用,但上文的人群风险评估结果显示,总体来说,通过各类食物摄入苯甲酸而导致人体中毒的可能性较小。[font='calibri'][size=18px]3、 [/size][/font][font='calibri'][size=18px]苯甲酸钠限量[/size][/font][align=left]基于以上的毒性机理研究,有必要对苯甲酸钠的使用进行严格的限量。根据国家标准GB2760-2014的规定,苯甲酸及其钠盐限量如下:[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548160398_6514_1608728_3.png[/img][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548160683_5426_1608728_3.png[/img][/align][align=center]表1 苯甲酸及其钠盐限量范围[/align][font='calibri'][size=18px]4、 [/size][/font][font='calibri'][size=18px]苯甲酸钠鉴别与检验[/size][/font]根据国家标准GB 1886.184-2016,苯甲酸钠的定性与定量检验方法如下:1. [font='arial'][size=16px]定性鉴别方法[/size][/font][font='黑体']试剂和材料[/font]:盐酸溶液:1+2。三氯化铁溶液:100g/L。[font='calibri'][size=16px]1.1[/size][/font][font='calibri'][size=16px]鉴别苯甲酸根[/size][/font]在试样溶液(100g/L)中加1滴三氯化铁溶液,生成赭色沉淀,再加盐酸溶液酸化,析出白色沉淀,即说明存在苯甲酸根。[font='calibri'][size=16px]1.2[/size][/font][font='calibri'][size=16px]鉴别钠离子[/size][/font]称取约0.2g试样,溶于10mL水中,用铂丝蘸取盐酸溶液在无色火焰上燃烧至无色,再蘸取试验溶液少许,在无色火焰上燃烧,火焰应呈鲜黄色。[font='arial'][size=16px]2.[/size][/font][font='arial'][size=16px]定量检验方法[/size][/font][font='calibri'][size=13px]盐酸与苯甲酸钠起中和反应[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]用乙醚萃取反应生成的苯甲酸[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]根据盐酸标准滴定溶液的用量计算苯甲酸钠的含量。[/size][/font][font='arial']([/font][font='arial']1[/font][font='arial'])试剂和材料:[/font]乙醚。盐酸标准滴定溶液:c(HCl)=0.5mol/L。溴酚蓝指示液:0.4g/L。[font='calibri'][size=13px](2) [/size][/font][font='calibri'][size=13px]分析步骤[/size][/font][font='calibri'][size=13px]称取[/size][/font][font='calibri'][size=13px]1.5g[/size][/font][font='calibri'][size=13px]干燥物[/size][/font][font='calibri'][size=13px] A[/size][/font][font='calibri'][size=13px],精确至[/size][/font][font='calibri'][size=13px]0.0001g,[/size][/font][font='calibri'][size=13px]置于[/size][/font][font='calibri'][size=13px]250mL[/size][/font][font='calibri'][size=13px]锥形瓶中[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]加[/size][/font][font='calibri'][size=13px]25mL [/size][/font][font='calibri'][size=13px]水溶解[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]再加[/size][/font][font='calibri'][size=13px] 50mL[/size][/font][font='calibri'][size=13px]乙醚和[/size][/font][font='calibri'][size=13px]10[/size][/font][font='calibri'][size=13px]滴溴酚蓝指示液[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]用盐酸标准滴定溶液滴定[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]边滴边将水层和乙醚层充分摇匀[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px]当水层显示淡绿色时为终点。[/size][/font][font='calibri'][size=13px](3) [/size][/font][font='calibri'][size=13px]结果计算[/size][/font][font='calibri'][size=13px]结果计算苯甲酸钠[/size][/font][font='calibri'][size=13px]([/size][/font][font='calibri'][size=13px]以干基计[/size][/font][font='calibri'][size=13px])[/size][/font][font='calibri'][size=13px]的质量分数[/size][/font][font='calibri'][size=13px]w1,[/size][/font][font='calibri'][size=13px]按下式计算[/size][/font][font='calibri'][size=13px]:[/size][/font][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081548163757_4781_1608728_3.png[/img][/align]式中,V :试样消耗盐酸标准滴定溶液(A.3.2.2)的体积,单位为毫升(mL) c :盐酸标准滴定溶液的浓度,单位为摩尔每升(mol/L) M:苯甲酸钠的摩尔质量,单位为克每摩尔(g/mol)[M(C[font='calibri'][size=13px]7[/size][/font]H[font='calibri'][size=13px]5[/size][/font]O[font='calibri'][size=13px]2[/size][/font]Na)=144.1] m:干燥物 A 的质量,单位为克(g)。取两次平行测定结果的算术平均值为报告结果。两次平行测定结果的绝对差值不大于0.2%。[font='calibri'][size=18px]5、 [/size][/font][font='calibri'][size=18px]总结与讨论[/size][/font]总体而言,苯甲酸钠是很常见的食品、药品防腐剂,有防止变质发酸、延长保质期的效果,在酸性环境下防腐效果较好,在世界各国均被广泛使用。生活中的苯甲酸来源众多,天然存在于多种食物中,也是多种食物的食品添加剂,其外源性来源很多。毒理学和人群研究表示,苯甲酸钠没有慢性毒性,在动物体内会很快降解,摄入苯甲酸而导致人体中毒的可能性很小。但也应注意到,当与其它化学防腐剂、天然防腐剂相比较时,苯甲酸钠具有较高的可取代性和劣势。与山梨酸钾相比,山梨酸和山梨酸钾的毒性比苯甲酸小,防腐效果比苯甲酸钠好,更加安全。苯甲酸和苯甲酸钠的优势是在空气中比较稳定,成本较低。但在密封状态下,山梨酸和山梨酸钾也很稳定,山梨酸钾的热稳定性比较好,分解温度高达270℃。由于食品添加剂的添加量很小,并不会明显增加肉制品产品成本。因此,许多国家已经开始逐渐采用山梨酸和山梨酸钾替代苯甲酸和苯甲酸钠。此外,苯甲酸在酸性条件下溶解度较低,如果搅拌不均匀,会出现局部有苯甲酸结晶析出,导致局部产品添加剂超标。苯甲酸还与氯化钙有拮抗作用,与氯化钠、异丁酸、葡萄糖酸、半胱氨酸盐等也有类似作用。苯甲酸添加后还会使食品产生涩味,甚至会破坏肉制品的风味。因此并不提倡肉制品加工中使用苯甲酸和苯甲酸钠作为防腐剂添加。事实上,添加苯甲酸和苯甲酸钠并不是肉制品唯一的防腐方法。使用天然防腐剂,如采用Nisin、壳聚糖、香辛料提取物等,也能够达到抑菌保鲜作用,也是肉制品工业的一个发展方向。还可以通过改善加工条件,改进食品包装,对产品热处理或辐照杀菌、进行低温储藏等等来实现肉制品的防腐保鲜目的。归根到底,最为重要的还是加强卫生管理,从源头减少污染。[align=left][font='黑体'][size=20px]参考文献[/size][/font][/align][font='宋体'][1] 罗傲霜,淳泽,罗傲雪,范益军,葛绍荣.食品防腐剂的概况与发展[J].中国食品添加剂,2005(04):55-58+76.[/font][font='宋体'][2] 曾正渝.苯甲酸及其钠盐在食品和药品中的应用[J].中国药业,2007,16( 6) : 64[/font][font='宋体'][3] 李菊,刘淑君,黄雪琳.苯甲酸和苯甲酸钠安全性与检测方法研究进展[J].粮食与油脂,2012,25( 9) : 49 - 51.[/font][font='宋体'][4] 张长旻昊.“谈虎色变”的食品防腐剂—苯甲酸[J].食品安全导刊,2015,9( 26) : 28 - 29.[/font][font='宋体'][5] 陈德梅.苯甲酸钠对阿莫西林的助溶作用[叮.广东药学院学报,2004,20(6): 646.[/font][font='宋体'][6] 陆奇志,苯甲酸钠和二甲基亚讽对呋喃西林溶液增溶作用的研究[J].广西中医学院学报,2003,6(3):55-57.[/font][font='宋体'][7] 张建勇,朱新安,温浩,等.苯甲酸钠对大鼠肝脏缺血再灌注损伤保护作用的形态观察[J].新疆医学,2002,32(4): 1-3.[/font][font='宋体'][8] 黄进,杨国宇,李宏基,等.化学发光法检测苯甲酸钠对DNA损伤的保护作用[J.动物医学进展,2005,26(3): 75-77.[/font][font='宋体'][9] 张培培.人绒毛膜促性腺激素(HCG)粗品新工艺研究[J.中国生化药物杂志,1995,16(1): 26-27.[/font][font='宋体'][10] 侯振建.食品添加剂及应用技术[M].北京:化学工业出版社,2004.[5]凌关庭.食品添加剂手册[M].北京:化学工业出版社,2003.[/font][font='宋体'][11] 王妤.不同浓度的苯甲酸钠对微生物限度检查的影响[J.中国热带医学,2007,7(9):1664.[/font][font='宋体'][12] 陈文秋,王贵华,李田,等.银黄口服液中苯甲酸钠和羟苯乙质的定量分析[J].中国药业,2005,14(9):56-57.[/font][font='宋体'][13] 牟悦. 苯甲酸钠毒性作用的分子水平研究[D]. 济南: 山东大学, 2012.[/font][font='宋体'][14] 黄艳娥, 刘海波. 食品防腐剂对人体健康的影响及发展趋势[J]. 化工中间体, 2005, 5 (7): 1–6.[/font][font='宋体'][15] 翁江来, 马长伟. 苯甲酸和苯甲酸钠在肉制品中应用的探讨[J]. 肉类研究, 2005, 19 (5): 48–50.[/font][font='宋体'][16] 凌关庭.食品添加剂手册[M].北京:化学工业出版社,2003.[/font][font='宋体'][17] 吕娜.食品防腐剂苯甲酸钠的急性毒性及致畸性试验[J].毒理学杂志,2006 20(5):326-327.[/font][font='宋体'][18] 陈毓芳, 李宪华. 出口食品中苯甲酸等添加剂含量的监测报告[J]. 中国公共卫生, 2002, 18 (3): 349–350.[/font][font='宋体'][19] Mischek D, Krapfenbauer-Cermak C. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria[J]. Food Addit Contam, 2012, 29(3): 371–382.[/font][font='宋体'][22] Ma KM, Chan CM, Chung SWC, et al. Dietary exposure of secondary school students in Hong Kong to benzoic acid in prepackaged non-alcoholic beverages[J]. Food Addit Contam, 2009, 26(1): 12–16. doi: 10.1080/02652030802256341[/font][font='宋体'][21] Tfouni SAV, Toledo MCF. Estimates of the mean per capita daily intake of benzoic and sorbic acids in Brazil[J]. Food Addit Contam, 2002, 19(7): 647–654. doi: 10.1080/02652030210125119[/font][font='宋体'][22] 邹志飞, 吴赤蓬, 郑立新, 等. 苯甲酸钠的毒物兴奋效应及其所致损害[J]. 毒理学杂志, 2010, 24 (4): 300–303.[/font][font='宋体'][23] 刁慧, 郑萍, 余冰, 等. 苯甲酸对断奶仔猪生长性能、血清生化指标、养分消化率和空肠食糜消化酶活性的影响[J]. 动物营养学报, 2013, 25 (4): 768–777.[/font][font='宋体'][24] GB 2760-2014, 食品安全国家标准 食品添加剂使用标准[s].[/s][/font][font='宋体'][25] GB 1886.184-2016, 食品安全国家标准 食品添加剂 苯甲酸钠[s].[/s][/font]

  • 【分享】乳业再掀“苯甲酸风波”奶粉将设苯甲酸限量值

    酸奶制品由于其发酵过程中,可能会自动生成苯甲酸,故按规定,酸奶制品可以允许检出苯甲酸,但纯酸牛乳、调味酸牛乳不得超过30毫克/千克,果料酸牛乳不得超过230毫克/千克。而其他乳制品按规定则不得检出苯甲酸。牛乳中天然存在苯甲酸,这是无法避免的。 “不得添加”并不意味“不得检出”,只有摸清乳品中苯甲酸的含量范围,才可以正确判断哪些是不良厂商“非法添加”,哪些是本身具有的。[B][color=#DC143C]苯甲酸限量值多少才是合理的?[/color][/B]

  • 【转帖】苯甲酸牛奶真相

    戚平始料未及的是,自己的一篇学术文章竟然会在近来颇为敏感的中国乳品安全问题上引起轩然大波。戚平是广州市食品工业卫生检测所的研究人员。英国专业杂志《食品管理》近日发表了他和同事们的论文《中国液态奶中的苯甲酸水平评估》(Assessment of benzoic acid levels in milk in China)。   2月18日,一篇题为《中国奶制品大多被检出苯甲酸》的文章称,根据戚平的论文,“2006年10月至2007年1月期间,研究人员从广州商店和超市购买了142份乳制品,其中包括巴氏消毒奶、超高温灭菌奶、普通奶粉和婴幼儿配方奶粉。142份乳制品样本中,有109份检出苯甲酸,含量从0.51毫克/千克到110毫克/千克不等。”“普通奶粉和婴幼儿配方奶粉的检出率,分别高达87.1%和85.7%。”文章称,戚平指出,“苯甲酸对婴幼儿等特殊人群的长期健康影响值得关注。”  报道迅速传开,甚至被国内的新闻网站刊载于显著的位置上,激起了网友们对中国乳品安全性的又一轮热议。  2月19日晚间,记者联系了两天未果的戚平主动向本报发来声明。戚平说,报道是断章取义地从论文里攫取了一些观点。“我的文章在2008年4月已经投稿,纯粹是一篇学术论文,其发表的时间不是我所能左右的。由于目前中国乳制品深受各种事件困扰,文章刚好在这个敏感时期被发表。”  苯甲酸本身广泛存在于自然界,是食品工业中常见的一种防腐剂。戚平说,各国对苯甲酸的使用范围和添加量都有规定。根据我国《食品添加剂使用卫生标准》(GB2760-2007),在冰棍类、风味(果味、乳味等)饮料、果蔬汁中,允许的苯甲酸最大使用量是1000mg/kg。另外,GB2746-1999《酸牛奶》标准也针对苯甲酸的限量做出过规定,纯酸牛奶为30 mg/kg,风味酸牛奶为230 mg/kg。  “苯甲酸是不能添加在乳制品中的。因此,人们往往认为乳制品中不得检出苯甲酸。但这是一个错误的观念,‘不得添加’并不意味‘不得检出’。”戚平说,乳制品中一般都含有苯甲酸,因为牛乳的成分非常复杂,特别是一些微量成分会随着季节、饲料、饮水及原料乳中微生物变化而变化,乳制品中往往自身就含有苯甲酸。世界卫生组织(WHO)对苯甲酸和苯甲酸钠的风险评估为“自然界中许多动植物本身含有苯甲酸,因此可以认为苯甲酸是食品(包括牛奶)中的一种天然成分”。  戚平说,早在十多年前,国外就对发酵的乳制品做过苯甲酸的调查,但是关于液态奶中苯甲酸的含量似乎是一个空白。因此,他萌生了研究液态奶中苯甲酸含量的念头,“如果了解到一袋液态奶在正常情况下,自身能产生的苯甲酸的含量范围,那么就可以正确判断哪些是不良厂商‘非法添加’的,哪些是本身具有的。”  《中国奶制品大多被检出苯甲酸》一文说,“此前,国外也有研究在液态奶中检测出苯甲酸。与之相比,中国液态奶的苯甲酸水平要高一些。”对此,戚平解释,1989年一份关于对乳制品的调查研究数据表明,牛奶中苯甲酸的含量为 “6 mg/kg”。而在研究中他发现,7%仅5个样品中苯甲酸含量高于6 mg/kg。“这是研究数据与已有数据的对比,是时间上的对比,而非中国液态奶和国外液态奶的对比,样品中也包含国外品牌。”  苯甲酸的产生与人类活动有很大关系。WHO在“简明国际化学品评估文件26”中介绍,目前,木材产品、铸造废水、市政焚毁炉灰、汽车尾气,甚至香烟中都监测到了苯甲酸。另外,苯甲酸酯类香料在光催化下也会分解产生苯甲酸。通常来说,在各种环境介质中,包括空气、雨水、雪、地表水、土壤中都存在着游离和非游离态的苯甲酸和苯甲酸钠。“与30年前相比,由于人类的作用,环境中苯甲酸的含量肯定会增高。因此,即使乳制品本身的苯甲酸的含量升高也可以理解。”戚平说。  戚平强调,自己在文章中并没有说“对包括婴幼儿在内的一些特殊人群而言,长期摄入苯甲酸也可能带来哮喘、荨麻疹、代谢性酸中毒等不良反应”。“论文原文是‘对敏感人群,低剂量的苯甲酸会引起过敏反应’,‘高剂量地摄入苯甲酸也可能带来哮喘、荨麻疹、代谢性酸中毒等不良反应’。这也是WHO在‘简明国际化学品评估文件26’中的论述,而敏感人群是指类似于花粉过敏等体质敏感的人群,并不是指婴幼儿。”目前乳制品中的苯甲酸含量,只要正常食用,其摄入量远低于权威组织规定的安全值,因此是安全的。  “目前,人们对物质本身所产生的衍生物的检测还很缺乏。”中国农业大学教授姜微波说,不仅是中国,世界各地在这方面都存在空白。理论上,衍生物在很多情况下都会存在,它的危害性不那么强,而实际操作中要检测它们却非常困难,“因为要找到这种衍生物究竟会在哪种食品中产生,就要将这种衍生物与所有的食品进行试验。”  中国农业大学教授何计国将这场虚惊归因于我国对食品行业的管理比较混乱、不够专业,消费者很难放心自己喝的是安全乳品。“在国外,食品行业会有一个介于政府和个人企业的第三方组织定期到社会取样、调查,并且由单一的部门管理,一旦出了事就能责任明晰。但在中国,不同的食品企业很可能由不同的部门主管,而一个技术监督局同时负责监管化肥、食品等十几种行业。”他建议从标准更新、立法准确入手,对食品生产和原料经营做好监督。来源:北京科技报

  • [求助]关于苯基代邻氨基苯甲酸指示剂

    我按gb17378.5《海洋监测规范:沉积物》中测有机碳的方法,配制苯基代邻氨基苯甲酸指示剂,将0.5克苯基代邻氨基苯甲酸溶于2g/L的碳酸钠溶液中。但是苯基代邻氨基苯甲酸只溶解了一点点,加热也不行。做过相关实验的同行,请指点一二。

  • 苯甲酸会氧化成过氧苯甲酸吗

    [color=#444444]各位大神,麻烦问下,苯甲酸能在过硫酸钾的情况下回氧化成过氧苯甲酸吗?我的反应除了苯甲酸之外没有任何有机底物,氢谱显示正确,但是质谱显示多了一个16的分子量,按道理来说分子量是414.2,现在是430.2。除了多一个氧之外,实在是想不出别的原子可以凑16了,麻烦有了解这方面的大神帮忙看一下哈。[/color][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/biggrin.gif[/img]

  • 苯甲酸标液配制

    液相色谱测定苯甲酸时,配制苯甲酸标液,标准品是苯甲酸固体,可是苯甲酸在水中几乎不溶解,要怎么配制苯甲酸标液,又能不产生误差?求解决。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制