当前位置: 仪器信息网 > 行业主题 > >

野油菜黄单孢菌

仪器信息网野油菜黄单孢菌专题为您提供2024年最新野油菜黄单孢菌价格报价、厂家品牌的相关信息, 包括野油菜黄单孢菌参数、型号等,不管是国产,还是进口品牌的野油菜黄单孢菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合野油菜黄单孢菌相关的耗材配件、试剂标物,还有野油菜黄单孢菌相关的最新资讯、资料,以及野油菜黄单孢菌相关的解决方案。

野油菜黄单孢菌相关的资讯

  • 福建检验检疫局首次截获油菜茎基溃疡病菌
    本报讯 日前,记者从福建检验检疫局获悉,该局近日从进口加拿大的油菜子中,首次截获我国进境植物检疫性有害生物——油菜茎基溃疡病菌。该批加拿大进口油菜子共6.1万吨,货值3600万美元。   据介绍,油菜茎基溃疡病菌是油菜上最严重的真菌病害之一,主要危害油菜、白菜、甘蓝、芥菜等30余种十字花科植物,致病力极强,能引起植物茎基溃疡、植株倒伏和死亡。目前,该有害生物主要分布在澳大利亚、加拿大、美国、欧洲等油菜主产国,我国尚无分布信息。该病菌一旦传入我国,仅长江流域每年油菜子产量损失将超过200多万吨,经济损失将超过120亿元人民币。   目前,福建局根据规定,对该批油菜子的定点加工企业整个加工过程实施严格监管,严格下脚料处理和除害处理,严防疫情传播扩散。
  • 中纺农业登转基因菜油作假名单:油菜籽托市政策亟待调整
    实施4年多的油菜籽托市收购政策走进了窄胡同。   10月28日,中储粮披露,2家委托收储企业利用进口转基因菜油冒充托市收购菜油,但是未公布企业具体名单。10月29日,本报从湖北省粮食局了解到,湖北被调查出违规的企业为中纺农业湖北有限公司,当地粮食局对中纺农业处罚15万元,取消2013年委托收储资格,并收回委托收购资金。   中储粮官方告诉本报记者:目前,国家粮食局、财政部驻各省专员办在牵头调查,中储粮在配合,现在还在核实企业的具体问题,相关企业名单需要由官方来公布,中储粮公布不合适。而对于如果出现直属企业人员与相关企业串通作假,中储粮会追究相关人员责任。   也有不少企业人士对调查结果不太满意,认为造假已经是普遍现象,此次调查仅查出2家企业造假,存在大事化小之嫌。   本报之前实地调查也了解,委托收储企业利用进口转基因菜油冲顶国产菜油赚取巨大差价并不是个案,各省委托企业几乎都存在,只不过未被揭露出来。此次检查暴露出冰山一角,也让实行了4年多的托市收购政策亟待调整。   东方艾格大宗农产品分析师马文峰表示,托市政策前两年还可以,国内油脂价格低于国外,现在国内价格远高于国外,托市结果补贴了国外油菜籽,应该将托市改为直接对农民补贴。   中纺农业被指造假   10月28日,中储粮称,通过调查,在湖北、湖南、四川三省共发现3个方面问题,涉及企业16家。其中,违反收购政策,将进口油菜籽掺入临储库存的企业2家,湖北一家企业掺入994吨进口菜籽油,湖南一家企业掺入483吨,两家企业均为委托收储企业。目前,上述两家企业涉及临储油菜籽已全部退出临储库存,地方粮食行政管理部门也对其进行了处罚。中储粮总公司也将严肃追究相关直属企业的监管责任。   10月29日,湖北省粮食局宣传部门告诉记者,湖北造假企业为中纺农业湖北有限公司。   中纺农业官网简介显示,中纺农业系国务院国资委直属企业中纺集团公司全资子公司,2009年5月在荆州注册成立,注册资本1亿元,是荆州市政府重点招商引资项目。主要从事油菜籽、棉籽、大豆收购加工、贸易等,拥有油罐容量达37500吨,原料库容4万吨。   目前进口转基因菜籽油到岸后的成本价在7928元/吨,今年国家托市收购的菜籽折油价格在10400元/吨以上,二者价差2400多元,该企业掺入994吨进口菜籽油,至少可赚238.56万元价差。   本报从湖北当地企业了解到,中纺农业2013年获得的委托收储菜籽量为1.8万吨,2012年的收储量在2万吨左右。   事实上,本报记者在湖南、四川等地调查时,当地一些企业就明确告诉记者,委托收储企业利用进口菜油冒充现象比较普遍。本报记者以合作的名义采访多家企业也都向记者毫不讳言自己到港口采购菜油或者到外地采购菜饼的行为。   事实上,不少油脂行业人士告诉记者,调查委托收储企业是否存在用转基因菜油顶包很简单:一是检查委托企业的收储手续,包括卖菜籽农民的身份证复印件、专用增值税发票等 二是调查受委托企业相应时间段内的菜油、菜粕进出情况,相应的财务账单和业务往来明细单 三是查验企业的加工开机情况。加工一吨油菜籽,需消耗大约0.6kg溶剂,42kg煤,0.1吨水,30度电 四是查验入库菜籽油的芥酸水平,进口菜油芥酸水平很低,大概只有1~2ppm,而国产菜油的芥酸大概为4个ppm。   托市收购待调整   粮油行业人士告诉记者,托市收购过程中出现种种作假问题,说明目前政策实施和执行上存在两个问题:一是政策执行企业道德操守存在问题,目前的法律对其威慑不大 二是收储体制存在漏洞,垄断,封闭,不公平,造成了极大的寻租空间。   现在已经到了亟待调整的重要关口,需要以市场为导向,重塑国内油脂行业保护机制。   事实上,油菜籽托市收购不仅没补贴国内农民,导致国内油菜籽产业下滑,反而补贴了国外的农场主。   国家粮油信息中心的数据显示,国内种植面积和产量逐年下降。2009年油菜籽产量1366万吨、2010年度产量1308万吨、2011年度产量1250万吨、2012-2013年度1250万吨。  有企业给记者提供的数据为2012年1150万吨、2013年为900多万吨。   而同期,中国进口菜籽和菜油的主要地区加拿大的油菜种植面积和产量逐年攀升。近4年,加拿大菜籽种植面积分别为1500多万公顷、1600万公顷、1700多万公顷和近2000万公顷。近三年,加拿大菜籽价格上涨了40%,而国内只上涨不到20%。   本报拿到一份研究数据显示,2009~2012年间,因为托市收购,国外菜籽和菜油价格不断攀升,初步估算4年间国内额外支出了50亿元人民币。   马文峰建议,对包括油脂行业在内的粮油行业,用直补政策代替国家托市收购,对油脂行业直接补贴或者目标价格补贴,国家对农业实施直接补贴政策已经实施了较长时间,对于油脂行业是可以借鉴的。   中国粮油协会一负责人表示:目前多个部门都在讨论研究如何调整,但是调整涉及多方面,比较难找到一个妥善的办法,如果改成直补,按照面积补贴,可能会发生虚报面积 如果按照产量补贴,可能会存在虚报产量等问题。
  • 1636万!崖州湾国家实验室大型仪器设备和单细胞测序、油菜基因组三代测序及分析服务采购项目
    一、项目基本情况1.项目编号:HXJC2024HG/047项目名称:崖州湾国家实验室大型仪器设备采购项目2(第一部分)预算金额:896.000000 万元(人民币)采购需求:本次招标采购共分为2个包,每包遴选出1家符合要求的供应商,为采购人提供仪器设备的供货服务。具体分包情况如下表:包号设备名称单位数量是否可采购进口产品(是/否)是否需要授权函(是/否)核心产品(是/否)最高投标限价(万元)1步入式植物培养室套2是是是4662小麦小区收割机台2是是是430 注:符合条件的供应商可以投1包或多包,并分包编制投标文件。合同履行期限:第1包:合同签订后7个月内供货并安装完毕。第2包:合同签订后10个月内供货并安装完毕。本项目( 不接受 )联合体投标。2.项目编号:HXJC2024FG/041项目名称:崖州湾国家实验室油菜基因组三代测序及分析服务采购项目预算金额:400.000000 万元(人民币)采购需求:本次招标拟择优选择1家合格的供应商,根据采购人要求,为采购人提供油菜基因组三代测序及分析服务,具体服务内容如下:(1)Survey建库测序分析项目序号项目类型单价最高限价子项目1Survey提取建库100元/样子项目2Survey测序1100元/样子项目3Survey信息分析700元/样 (2)油菜样本的PacBio HiFi测序组装项目序号项目类型单价最高限价子项目1三代提取和建库1800元/库子项目2PacBio Revio测序12000元/样子项目3基因组组装和挂载8000元/样 (3)基因组注释及泛基因组构建项目序号项目类型单价最高限价子项目1基因组注释4000元/样子项目2泛基因组构建2000元/样 合同履行期限:自合同签订后两年。本项目( 不接受 )联合体投标。3.项目编号:HXJC2024FG/042项目名称:崖州湾国家实验室单细胞测序服务采购项目预算金额:340.000000 万元(人民币)采购需求:本次招标拟择优选择1家合格的供应商,根据采购人要求,为采购人提供单细胞测序分析技术服务。合同履行期限:自合同签订后360日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年06月13日 至 2024年06月20日,每天上午9:00至11:30,下午13:30至16:00。(北京时间,法定节假日除外)地点:中招联合招标采购平台(http://www.365trade.com.cn)。方式:线上购买电子版招标文件,详见“特别告知”。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:崖州湾国家实验室     地址:三亚市崖州区还金路8号        联系方式:余老师 13301296867      2.采购代理机构信息名 称:北京华夏京诚咨询有限公司            地 址:北京市海淀区西直门北大街甲43号金运大厦B座802室            联系方式:王建保、刘雅萌、高宏鹏、马建军010-82582703-805/816/809            3.项目联系方式项目联系人:王建保、刘雅萌、高宏鹏、马建军电 话:  010-82582703-805/816/809
  • 中储粮:目前无能力区分检测转基因和国产油菜籽
    近日,中储粮总公司连续在其官方网站回应“国储库流入大量转基因菜籽油”的媒体报道,引发舆论强烈关注。   中储粮称,检查发现违反收购政策将进口油菜籽掺入临储库存的企业有两家,这两家企业均为委托收储企业。不存在进口转基因菜籽油污染国家临储菜籽油库存的问题。   不少网民及公众表示,仍有疑问尚待解答。   一问:违规企业具体是哪两家?   中储粮尚未作出回应   中储粮官网28日称:8月末以来,中储粮总公司通过临储菜籽油验收检查、专项检查,以及财政专员办等有关部门的检查,对临储菜籽油收购的政策执行情况进行了全面核查。此次检查在湖北、湖南、四川三省共发现3个方面问题,涉及企业16家。其中,违反收购政策,将进口油菜籽掺入临储库存的企业两家,湖北一家企业掺入994吨进口菜籽油,湖南一家企业掺入483吨,两家企业均为委托收储企业。   质疑:有网民表示,“既然连混入数字都查得如此清楚,为何不能公布这两家违反收购政策的企业名称?”“应该曝光!让公众都知道它们的名字是对它们最严厉的惩罚!”   最新:中储粮尚未作出回应。   二问:进口菜籽油为何能混入临储库存?   回应:还无能力检测是否转基因   中储粮官网29日称:由于总公司自身没有菜籽油加工能力,所以临储菜籽油收购全部采取委托地方粮油加工企业收购、加工的办法。中储粮总公司作为临储菜籽油收购的监管主体,将继续接受国家有关监管部门的监督检查,配合有关部门严厉查处违反临储收购政策、损害国家利益的行为。   据介绍,国产菜籽油和进口的菜籽油相比,每吨贵1000元左右,高利润使得有些企业冒风险违规掺入进口菜籽油。   质疑:不少受访者表示,只有查清监管漏洞才能防止此类事件再次发生。   最新:中储粮购销计划部部长周毅接受采访时表示,我们向每个企业派出驻库监管员,职责是对收购、加工、储存进行全过程监管。但加工是24小时不间断的,我们没有这个力量(全天候监管),而且加工企业还有自己的油在加工。“我们的监管重点是在收购多少数量,你要拿多少油给我。”周毅表示,还无法通过感官区分进口转基因油菜籽和国产油菜籽,收购交过来的时候没有检测是否是转基因的技术手段,加工企业也不具备这个能力,这个就是企业要自律的问题。   三问:1477吨进口菜油中是否含有转基因菜籽油?   回应:进口菜籽油基本上是转基因的   此前中储粮称,进口转基因菜籽油污染国家临储菜籽油库存的问题目前不存在。对于已出现的混入问题,已经整罐全部退出临储库存。   质疑:网民表示,从中储粮给出的回应中,无法判断这些掺入临储库存的进口菜籽油是不是转基因的,这是公众最为关切的焦点。   最新:中储粮总公司综合部研究室申雷海表示,目前国内进口的菜籽油基本上是转基因的。   申雷海表示:“目前,总公司通过全面排查,只要发现委托企业进口转基因菜籽油充顶临储收购菜籽油,就坚决将该企业收购的油全部退出库存,并且取消其今后参与临储收购的资格。总公司将加大监管力度,严防进口转基因菜籽油混入行为,确保国家临储菜籽油全部是国产的非转基因菜籽油。”   四问:退出临储库存的进口菜籽油如何处理?   回应:标注成分后仍可在市场上流通   此前,中储粮称,“对于已经出现的混入问题,已经采取整罐全部退出临储库存”。   质疑:有网民追问“这些菜籽油将何去何从?是否会流入市场?”   最新:对此,申雷海表示,进口转基因菜籽油在商业经营中是允许的。   “它不像是问题奶粉需要销毁,只是不符合我们政策储备的规定,但是可以在市场上流通、经营。当然,作为转基因产品,在下游的加工、分包和零售环节上必须遵守有关规定,在标签中注明,包括我们出品的油,如果有转基因成分也会在包装上标注。”
  • 油菜籽收购高峰 聚光近红外分析仪再创佳绩
    2014年6月1日起国家仍将继续执行油菜籽临时收储政策,湖北省2014年新季油菜籽也即将开镰上市。作为全国最大的油菜籽生产省份,2014年湖北省油菜籽预计播面1849万亩,比上年增加10万亩左右。预计总产达到266万吨,比上年增加约16万吨。  聚光科技自主研发生产的SupNIR-2720型近红外分析仪目前在粮油行业已有非常成熟的应用,特别是油菜籽行业的菜籽、菜粕、菜饼等模型已经日趋完善。  就在这个油菜籽收购的高峰期,聚光科技在湖北省粮油行业的总经销商仅6月份一个月就已在湖北省油菜籽行业创下10套近红外分析仪的销售佳绩,占据了湖北省油菜籽行业近红外市场的一半以上!  近红外分析仪在油菜籽行业的重要性日渐突出,越来越多的油菜籽收购商、榨油企业以及饲料企业需要利用近红外技术严格控制对原料采购定价、生产过程控制、成品品质控制、副产品开发等多个环节。快速、准确、无损、无耗的特点,使得近红外分析今年在在粮油行业迅猛发展。  菜籽油生产工艺流程(冷榨-浸出法)及近红外应用点:  除了湖北省,在四川、云南、广东等油菜大省,都出现对近红外分析仪需求的爆发性增长,聚光科技协同合作伙伴,将努力为粮油用户提供稳定可靠的产品,成熟完善的模型,快速周到的服务!  关于近红外的更多应用请点击专题了解:http://www.fpi-inc.com/jgzt/welcome.php?7
  • 欧盟批准3种转基因油菜用于添加剂
    2013年6月27日,欧盟发布2013/327/EU号委员会实施决定,依据(EC)No 1829/2003号条例批准含有转基因油菜Ms8、Rf3和Ms8×Rf3的食品或饲料在市场上销售。决定自通告之日起10年内有效。   更多详情参见:   http://www.euissuetracker.com/en/eu-legislation/9349/gmo-authorisation-oilsed-rape-(ms8-rf3-and-ms8-x-rf3)   2013年7月2日欧盟发布(EU) No 636/2013号条例,批准蛋氨酸螯合锌(zinc chelate of methionine (1:2))作为饲料添加剂,可用于所有的动物。该条例自发布20天起生效。   更多详情参见:   http://www.euissuetracker.com/en/eu-legislation/10305/fed-additives-zinc-chelate-of-methionine   【原标题】欧盟批准3种转基因油菜用于食品与饲料,蛋氨酸螯合锌作为饲料添加剂
  • 2015胡润医药富豪榜出炉 前50位平均拥有财富129亿元
    p span style=" font-size: 16px "   继《2015胡润百富榜》(Hurun Rich List 2015)10月15日在上海发布之后,近日,胡润研究院发布胡润百富榜子榜之一——《2015胡润医药富豪榜》(以下简称医药富豪榜),这是胡润研究院连续第九次发布“胡润医药富豪榜”前50名。 /span br/ /p p   与胡润百富榜总榜不同的是,医药富豪榜只计算企业家在医药领域的财富。上榜富豪财富计算的截止日期为2015年8月14日,与去年一致。 /p p   上海莱士董事长郑跃文、天狮集团董事长李金元、康美药业的马兴田家族分居医药榜前3名。其中,郑跃文以拥有医药财富430亿元而成为中国医药首富。 /p p   医药富豪榜显示,在宏观经济步入新常态的背景下,医药行业增长依旧迅速,前50名平均拥有财富达到129亿元,增长61%。业内人士认为,资本市场助力极大。此外,创新也逐步成为财富积累的重要手段。 /p p   “我一直看好中国医药行业的发展,相信未来会有更多富豪从中产生。”胡润百富创始人兼首席调研员胡润向记者表示。 /p p    strong 医药财富增长迅速 /strong /p p   根据胡润研究院的统计,在今年百富榜上榜行业统计中,医药占6.8%,与去年的6.9%基本持平。但医药行业门槛有较大提升,财富增长较快,上榜人数增长近3成。 /p p   就医药富豪榜而言,前50名医药富豪上榜门槛比去年提高82%,达到60亿元 总财富达到6558亿元,平均财富比去年增长61%,达到129亿元 平均年龄为55岁,比去年大2岁,比百富榜平均年龄大1岁。 /p p   其中,前10名医药富豪平均拥有财富242亿元,是去年的1.7倍。有6位新进入前10名:以科瑞集团投资上海莱士的郑跃文,康弘药业的柯尊洪家族,尔康制药的帅放文、曹再云夫妇,贵州百灵的姜伟家族,爱尔眼科的陈邦和华兰生物的安康家族。去年排在前10的徐镜人,李锂、李坦夫妇,曹龙祥家族,谢炳、郑翔玲夫妇,赵步长、赵涛父子,车冯升和闫希军家族今年跌出前10名。 /p p   53岁的郑跃文是今年的“医药黑马”,财富增长3倍多,以430亿元超过去年医药首富李金元,成为第三位中国医药首富。郑跃文是上海莱士实际控股人,用15年时间布局血液制品,去年凭借两起并购使上海莱士跃居中国最大的血液制品企业。目前,上海莱士的采浆能力达900吨,位列中国第一。规模扩大后的整合效应让上海莱士的业绩开始爆发,去年实现营业收入13亿元,同比增长166% 净利润增长255%。上海莱士的股价在今年8月达到历史最高位。 /p p   近9年来当过7年医药首富的57岁的天狮集团董事长李金元今年位列第二。2010年李金元曾被海普瑞的李锂家族超越。 /p p   广东仍然是医药富豪设立企业总部最多的地区,有11位医药富豪上榜 北京有7位医药富豪上榜,排名第二 江苏和浙江各有4位,排名第三。但从城市来看,医药富豪们更愿意将总部设在北京,其次是深圳(6位)。 /p p   从企业家出生地来看,粤商医药富豪最多,有9位,比去年增加4位 浙商其次,有5位,比去年增加2位。 /p p   “这与珠三角、长三角以及环渤海地带本身就是我国三大经济圈且有较好的经济环境密切相关。”有业内人士指出。 /p p   随着行业的发展,尤其是并购重组,药品生产经营也呈现出多元化态势。 /p p   但纵观整个医药富豪榜,以中药和民族药经营为主的富豪表现突出,占比超过40%。其中,以藏药经营为主的阙文彬和雷菊芳分别以拥有118亿元、115亿元财富位列24名和26名。马兴田家族是中药和化学药制剂领域的首富 尔康制药的帅放文、曹再云夫妇是原料药(含药用辅料)领域的首富。 /p p   较之胡润2015IT富豪榜中马云及其家族的1350亿元首富资产、81亿元的上榜门槛,医药富豪榜略嫌逊色。但胡润认为,作为传统制造业,医药行业财富增长速度虽然不能与IT相比,但已经有了相当大的进步。 /p p   在2007年首次公布的医药富豪榜中,首富李金元的财富为150亿元,上榜门槛为13亿元,上榜人数仅为31人,总财富为1037亿元,平均拥有财富33亿元。 /p p    strong 资本实力两翼推动 /strong /p p   不可否认的是,医药富豪榜财富的迅速增加以及排位的变化,跟资本的造富功能以及中国股市此前的大牛市有着密切的关系。 /p p   在上榜的富豪中,除了李金元、徐镜人、赵步长和赵涛父子外,其他富豪全部拥有上市医药公司。今年8月,上海莱士的股票飙升近百元,郑跃文由此一跃成为第三位中国医药首富 柯尊洪家族、刘淑芹家族和邹炳德也均因企业成功上市而跻身医药富豪榜。 /p p   今年6月,康弘药业在深交所成功上市,柯尊洪与其儿子柯潇和妻子钟建荣共持有该公司63%的股份。柯尊洪及其家族被视为黑马,首次进入前10,位列第六 今年4月,美康生物在深交所上市,共募集资金7.796亿元(约合1.27亿美元),邹炳德持股达61%。今年6月,赛升药业在创业板上市。大量持股赛升药业的刘淑芹家族和邹炳德医药财富均一跃为85亿元,在医药富豪榜上并列第33名。 /p p   在医药富豪榜中,还有几位在投资圈内更为有名。首富郑跃文,通过科瑞集团投资上海莱士,成为上海莱士董事长 胡凯军以远大华创进行投资,持有华东医药35.5%的股份,且其旗下远大集团还拥有庞大的医药板块 刘悉承则通过南方同正投资有限公司成为海南海药董事长,以67亿元的医药财富位列医药富豪榜第44名。至于总财富500亿元、位列2015百富榜的郭广昌,由于复星医药的良好表现,也以75亿元的医药财富位列医药富豪榜第41名。 /p p   除了资本的助力外,企业本身也具有不可小觑的实力,即产品或者技术有一定的市场垄断性。 /p p   以连续多年排名在前10位的几位富豪为例:李锂家族的海普瑞公司生产的肝素钠原料药全部出口 叶澄海家族的信立泰是国内心脑血管领域自主创新龙头企业 孙飘扬领导的恒瑞医药,则被视为国内研发标杆企业,其创新药和国际化业务保持快速发展 马兴田家族的康美药业不仅是我国中药饮片销售的佼佼者,其大规模开展的药房托管在得到资本市场强烈关注的同时,更是引发了业内一波又一波的热议。 /p p   此外,刘革新执掌的科伦药业是我国知名的大输液生产基地 刘殿波的绿叶制药,有专利保护的产品占公司总收入的80%以上,近日美国FDA确认其研发的利培酮微球注射剂不需再进行任何临床试验就可在美提交新药申请(NDA) 方同华的珍宝岛药业的血塞通注射液、舒血宁注射液等产品也占据着细分市场的龙头地位。 /p p   再看企业并未上市但依旧占据医药榜的几位企业家。今年71岁的徐镜人以拥有155亿元的医药财富排名医药富豪榜第11名,他倾力打造的扬子江药业集团,凭借着可靠的产品质量、完善的产品群线以及良好的客情关系,主营收入一直位居我国医药工业前列,工信部2014年医药工业快报显示,扬子江药业集团利润总额在医药行业排名第二。 /p p   赵步长、赵涛父子以拥有总财富135亿元排名第16名。因为长期在基层市场精耕细作,步长集团具有极强的营销能力,丹红注射液已经成为中国医药市场上的重磅炸弹级产品。 /p p    strong 创新永远是动力 /strong /p p   “分析一下从2007年到现在的榜单,我们就会发现很多有意思的现象,如保健品的逐步退出、生物制药的来势汹汹。”胡润对记者表示,在今年的医药富豪榜中,有10余位企业家的主营是生物制药,生物制药占比已达20%。 /p p   有分析人士指出,创新药、制剂出口、生物制药领域是我国医药企业发展的重要阵地。 /p p   资料显示,生物技术药物是指利用基因工程、克隆抗体工程或细胞工程技术生产的源自生物体内的天然物质,用于体内诊断、治疗或预防的药物,主要指基因重组的蛋白质分子类药物,如激素和酶、疫苗、单克隆抗体等药物。 /p p   专家表示,相对于传统医药,生物技术药物有着突出的疗效和社会效益。在临床治疗方面,对于严重威胁人类健康的重大疾病的治疗,如遗传性疾病、癌症、糖尿病等,生物技术药物的作用举足轻重,甚至不可替代。 /p p   而在目前,生物制药不仅获得国家多项政策支持,也成为研发能力较强的医药企业关注的重点。胡润认为,假以时日,等到生物科技人才脱颖而出,医药富豪榜可能会有较大的变动。“我相信阳光下的科技财富力量强大。”胡润说。 /p p   在采访过程中,有业内人士还指出,随着医药分开预期的实现,医疗服务和医药电商中或将产生富豪。“所谓创新,一方面是产品创新、技术创新,另一方面还包含模式创新。”上述人士称,前者如创新药物 后者则是顺政策大势而为,通过占据天时地利,最终实现人和。不少上榜医药富豪,正是抓住了时机,顺应了政策大势,如医药分开的预期、社会资本办医等,实现财富增长。表面上看,后者最典型的莫过于爱尔眼科,但事实上,郭广昌、阙文彬等众多医药富豪们已逐步将触角伸向了医疗服务。至于前者,因为看好医药电子商务,胡季强不仅果断控股B2B网站珍诚在线,还作价3.2亿元投资医药电商平台“可得网” 而仁和药业的杨文龙,则全面布局号称28分钟送药到家的“叮当快药”,意图领跑医药O2O。上述举措无不得到资本的追捧。 /p p   众所周知,我国医药电商正处于风口,无论是网上药店还是移动医疗,均有项目获得巨额投资。 /p p   “医药行业财富迅速增长,缘于整个行业的厚积薄发。我相信中国的价值,也看好中国医药行业。”胡润向记者表示。 /p p   strong  2015胡润医药富豪榜 /strong /p p /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/49a6a185-9c95-41af-b2af-2ba98854505a.jpg" style=" float:none " title=" 未标题-1.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/b313f9e1-9330-42e4-8634-b9606502cc15.jpg" style=" float:none " title=" 未标题-2.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/ef75eadf-153b-41a0-9a78-0b641483b851.jpg" style=" float:none " title=" 未标题-3.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/e1c56d2b-2c32-4569-a5da-e26ad1c1332d.jpg" style=" float:none " title=" 未标题-4.jpg" / /p p span style=" font-size: 16px "   说明: /span br/ /p p   ●医药富豪榜只计算上榜企业家在医药行业的财富。 /p p   ●上榜富豪财富计算的截止日期为2015年8月14日。对于有上市公司的,采用2015年8月14日的收盘价,美元与人民币的兑换比例按照1∶6.4计算。 /p p   ●胡润研究院收集了候选人的所有公开信息并进行反复交叉核对,使用市场价值来评估企业家拥有的财富。信息来源于4个渠道:所有重要的中、外媒体报道 股市公告,包括国内和香港主板、创业板,以及新加坡、纳斯达克、纽约、多伦多、伦敦和悉尼证券市场 实地采访,相关团队走遍全国各地,采访企业家、记者和当地政府机关,并参加相关研讨会 依托近10年来建立起的遍布全国的有效信息网络和数据库。 /p p   ●榜单中的“中国企业家”,是指出生在中国大陆并在中国大陆长大者,而不考虑其现在的国籍。 /p p br/ /p
  • 2019默克财报:实现所有财务目标并取得重大战略进展
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 默克公司(Merck& nbsp KGaA)官网发布的2019年度财报显示,默克公司实现了所有财务目标,在2019财年实现了盈利增长。同时,默克在执行其战略议程方面也取得了重大进展。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2019财年,默克公司的净销售额为161.52亿欧元,同比增长8.9%(2018年148.36亿欧元),有机增长5.3%,这一增长主要得益于汇率的积极影响以及收购相关的增长。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " “我们兑现了承诺,实现了所有关键业绩指标的增长,即净销售额、息税折旧摊销前利润和每股收益。我们坚定地执行我们的战略,加强我们在所有三个业务部门的创新驱动业务。此外,我们正集中精力按计划降低债务。”默克执行董事会主席兼首席执行官Stefan Oschmann表示:“我们还打算在2020年实现盈利增长。” /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2019财年医疗保健业务部门、生命科学及高性能材料部门的营收分别为67.14亿欧元、68.64亿欧元和25.74亿欧元,保健业务部门和生命科学分别实现了6.2%、9.0%的有机销售增长;而性能材料部门则是6.5%的下降。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 237px " src=" https://img1.17img.cn/17img/images/202005/uepic/8fce447c-a986-4582-92e0-adde8c6096ed.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 550" height=" 237" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 2019年3个业务部门的销售额占比 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong 其他数据: /strong /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 息税折旧摊销前利润增长15.4%,达到44亿欧元(2018年:38亿欧元); /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 每股收益增长至5.56欧元(2018年:5.10欧元); /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 企业自由现金流增加至27亿欧元(2018年:25亿欧元); /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 与收购相关的金融债务净额增加至124亿欧元(2018年12月31日:67亿欧元)。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 战略议程取得重大进展-2019年 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 默克集团的战略完全集中在以科学和技术为重点的业务领域。此外,就销售额和利润增长而言,默克公司的目标是成为同业中的顶级公司。& nbsp /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2019年,默克在执行其战略议程方面取得了明显进展。医疗保健业务部门在美国、欧洲和日本获得了监管机构的批准,将免疫肿瘤药Bavencio与Inlyta& reg 联合用于治疗晚期肾细胞癌患者。此外,医疗保健集团与葛兰素史克(GSK)建立了战略联盟,实现由内部实验室研究开发的癌症免疫疗法bintrafusp alfa的商业化。默克还在管线项目tepotinib(肿瘤学)和evobrutinib(免疫学和神经病学)方面取得了实质性进展。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 生命科学业务部门,2019年CRISPR基因编辑技术获得了更多专利,目前在这一领域中共拥有22项专利。此外,生命科学业务部还在其BioContinuum平台推出了更多产品,以更高效、连续地生产生物药品。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 通过收购Versum Materials和Intermolecular,高性能材料业务部门在实现电子材料市场领先地位的过程中取得了重要的里程碑。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 未来战略规划-2022年 /strong /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 到2022年,默克公司的目标是以科技创新为重点的业务部门,与同行相比,在销售和利润增长方面希望成为顶级公司,持续为客户提供高质量服务。 span style=" text-indent: 2em " 默克集团现在正处于战略的增长和扩张阶段,并且走在正轨上。 /span span style=" text-indent: 2em " 2020年,预计三个业务部门都将推动盈利增长,并支持公司整体战略的增长和扩张阶段。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 2em " 在医疗保健方面,将充分利用各大渠道的潜力。Mavenclad& reg 和Bavencio& reg 新产品发布,对收益的贡献越来越大。核心业务与既定产品至少保持有机联系中期稳定。到2022年,默克公司的目标是用新药实现至少20亿欧元的额外年销售额。 /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 生命科学的增长是由默克公司强大的产品组合及电子商务平台所推动,该平台产生了超过15亿欧元的销售额。商业部门计划每年实现5%至8%的增长,而实际已经超过市场增长,这一高增长过程中,解决方案业务部门和电子商务平台预计仍将是这一增长的重要驱动力。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 2018年开始的性能材料业务在实施改造计划方面取同样得了重大进展,随着Versum Materials和Intermolecular的成功收购,默克公司已踏上成为电子材料市场领先者的转型之旅。 /p
  • 镁伽科技创始人黄瑜清荣登《财富》“中国40位40岁以下商界精英”榜单
    6月22日,全球最具影响力的商业杂志之一《财富》(中文版)发布了2022年“中国40位40岁以下的商界精英”榜单,镁伽科技创始人兼首席执行官黄瑜清入选,一同入选榜单的还有字节跳动创始人张一鸣等企业精英。(完整榜单请点击:《2022年中国40位40岁以下的商界精英》)《财富》杂志在对黄瑜清的评价中写道:“在生命科学领域使用自动化与智能化手段' 解放科学家' 是黄瑜清于2016年创立镁伽科技时给自己设定的目标。之后的六年时间里,镁伽鲲鹏实验室让他离这一目标越来越近。”就2022年度榜单评选,《财富》评论指出:“2022年挑战不断,外部环境依旧复杂:新冠疫情并未平息、新的商业秩序正在重建、全球经济亟待复苏。但这些并不能影响中国年轻的商业领袖们对创新的渴望,他们正在依靠智慧与勇气应对这前所未有的时代大变局。”据悉,《财富》从2011年开始推出“中国40位40岁以下的商界精英”榜单,旨在挖掘中国年轻的杰出创新者、价值缔造者和变革者,被称为“商业巨星摇篮”,马化腾、丁磊、王兴等人都曾入选该榜单。
  • TMstandard真菌毒素液标新品上线
    TMstandard真菌毒素液标清单1、T-2毒素( c24h34o9 cas:21259-20-1 国标方法《gb5009.118—2016》)第一法 免疫亲和层析净化液相色谱法适用于粮食及粮食制品,酒类,酱油、醋、酱及酱制品中t-2毒素含量的测定。第二法 间接 elisa 法第三法 直接 elisa 法适用于粮食及粮食制品中 t-2毒素的测定。注:发射波长:470nm。 t-2毒素标准物质的液相色谱图2、脱氧雪腐镰刀菌烯醇( don,c15 h20 oo6 cas 号: 51481-10-8 国标方法《gb5009.111—2016》)第一法 同位素稀释液相色谱 - 串联质谱法适用于谷物及其制品、酒类、酱油、醋、酱及酱制品中脱氧雪腐镰刀菌烯醇、3- 乙酰脱氧雪腐镰刀菌烯醇和 15- 乙酰脱氧雪腐镰刀菌烯醇的测定。第二法 免疫亲和层析净化高效液相色谱法适用于谷物及其制品、酒类、酱油、醋、酱及酱制品中脱氧雪腐镰刀菌烯醇的测定。第三法 薄层色谱测定法第四法 酶联免疫吸附筛查法适用于谷物及其制品中脱氧雪腐镰刀菌烯醇的测定。质谱图脱氧雪腐镰刀菌烯醇(esi-)离子扫描图脱氧雪腐镰刀菌烯醇(esi+ )离子扫描图脱氧雪腐镰刀菌烯醇标准溶液高效液相色谱图3、食品中黄曲霉毒素 b 族和 g 族的测定aftb 1 标准品( c17h12o6 cas : 1162-65-8 )aftb 2 标准品( c17h14o6 cas : 7220-81-7 )aftg 1 标准品( c17h12o7 cas : 1165-39-5 )aftg 2 标准品( c17h14o7 cas : 7241-98-7 )国标方法《gb5009.22—2016》第一法 同位素稀释液相色谱 - 串联质谱法适用于谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品中 aftb1 、 aftb 2 、 aftg 1 和 aftg 2的测定。第二法 高效液相色谱 - 柱前衍生法适用于谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品中 aftb1 、 aftb 2 、 aft g 1 和 aft g 2 的测定。第三法 高效液相色谱 - 柱后衍生法适用于谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品中 aftb1 、 aftb 2 、 aft g 1 和 aft g 2 的测定。第四法 酶联免疫吸附筛查法适用于谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品中 aftb1 的测定。第五法 薄层色谱法适用于谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品中 aftb1 的测定。串联质谱法图谱黄曲霉毒素b1离子扫描图黄曲霉毒素b2离子扫描图黄曲霉毒素 g1离子扫描图黄曲霉毒素 g2离子扫描图液相色谱图四种黄曲霉毒素tfa柱前衍生液相色谱图四种黄曲霉毒素大流通池检测色谱图(双波长检测)四种黄曲霉毒素柱后光化学衍生法色谱图四种黄曲霉毒素柱后碘衍生色谱图四种黄曲霉毒素柱后溴衍生色谱图四种黄曲霉毒素柱后电化学衍生色谱图4、玉米赤霉烯酮(c18h22o5 cas 号:17924-92-4国标方法gb5009.209—2016)第一法 液相色谱法适用于粮食和粮食制品,酒类,酱油、醋、酱及酱制品,大豆、油菜籽、食用植物油中玉米赤霉烯酮的测定。第二法 荧光光度法适用于大豆、油菜籽、食用植物油中玉米赤霉烯酮的测定。第三法 液相色谱 - 质谱法适用于牛肉、猪肉、牛肝、牛奶、鸡蛋中玉米赤霉烯酮的测定。色谱图玉米赤霉烯酮标准的色谱图 5、微囊藻毒素-lr(mc-lr,c49h74n10o12 cas号 101043-37-2 国标方法《gb5009.273—2016》)水产品中微囊藻毒素(环状七肽)的液相色谱 - 串联质谱和间接竞争酶联免疫吸附的测定方法本标准适用于鱼、虾、河蚌等水产品中微囊藻毒素的测定。色谱图微囊藻毒素标准溶液的多反应监测色谱图
  • 聚焦3.15,海能在行动:鸡蛋中斑蝥黄的检测解决方案
    消费者权益日3.15黑名单之夜刚刚过去,消费安全不容忽视。无论你来自何方,从事什么样的职业,我们都有一个共同的名字——消费者。今年央视3.15晚会的主题是:“信用让消费更放心”。消费领域一些失信和侵犯消费者权益的情况在很大程度上影响着消费者的满意度和消费信心,制约着消费潜力的进一步扩大。从晚会曝光的情况来看,各类食品安全问题依旧层出不穷:生产车间“辣眼睛”的辣条、“化妆”出来的“土鸡蛋”……针对以上问题,海能实验室迅速做出反应,为各位消费者总结了最新解决方案,希望对大家有所帮助。晚会曝出部分养殖笼养鸡的厂商宣称可以使用“添加剂”斑蝥黄来让蛋黄颜色变深,从而将笼养鸡蛋“化妆”成土鸡蛋。而且他们并不担心被市场监管部门发现,因为国家目前根本没有土鸡蛋、柴鸡蛋等相关标准。抛开虚假宣传、以次充好的问题不说,这种方法“化妆”出来的土鸡蛋安全吗?首先我们需要来认识一下这种不太熟悉的添加剂。斑蝥黄又叫角黄素(Canthaxanthin),分子式:C40H52O2,化学名称:β-胡萝卜素-4,4’-二酮。是一种在自然界广泛分布的类胡萝卜素,具有抗氧化、消除自由基的作用,但其在生物体内的含量甚微。随着人工合成斑蝥黄的工业化,其在饲料、食品、化工、医药等行业得到了广泛的应用。鸡鸭等家禽喂养斑蝥黄可以使其蛋类表皮变黄,蛋黄变成人们喜爱的橙红色。为了保障人民的身体健康,利于政府对食品安全的监管,我国于2016年提出了饲料中斑蝥黄的检测方法:NY_T 2896-2016 饲料中斑蝥黄的测定 高效液相色谱法。当当当当~海能实验室高效液相色谱法测定斑蝥黄含量试剂及材料正己烷、二氯甲烷、无水乙醇、丙酮、甲苯;正己烷-丙酮溶液(93+7):正己烷和丙酮按体积比93:7混合均匀。斑蝥黄标准品:CAS 514-78-3,纯度>90%,4℃避光贮存;斑蝥黄标准储备液:称取20mg斑蝥黄标准品于100mL棕色容量瓶中,先加入20mL甲苯,室温条件下放入超声波清洗仪中辅助溶解15min,再用正己烷定容至刻度,得到浓度200μg/mL的斑蝥黄标准储备液;斑蝥黄标准工作液:准确移取斑蝥黄标准储备液,用正己烷准确稀释成浓度5μg/mL的标准工作液,即配即用。实验方法1、试样的采集与制备按GB/T 14699.1采集有代表性的样品,用四分法缩减取样。按GB/T 20195进行制备样品。粉碎后过0.45mm孔径的试验筛,混合均匀,装入密闭容器中,低温保存备用。2、试样溶液的制备称取5g左右试样,精确到0.0001g,置于锥形瓶中。加入40mL无水乙醇,摇匀,加入40mL二氯甲烷,放在50℃超声波水浴锅上处理30min,然后用快速定量滤纸过滤至100mL容量瓶中,于避光处用二氯甲烷定容。移取5.0mL滤液于10mL试管中,并在50℃下氮气吹干。残余物用2.0mL正己烷-丙酮溶液进行溶解,后用0.45μm微孔滤膜进行过滤,制的试样溶液。以上操作均在避光通风柜内进行。3、色谱参考条件检测器:紫外检测器;色谱柱:正相硅胶柱,长250mm,内径4mm,粒度5.0μm;流动相:正己烷-丙酮溶液(93+7);流速:1.5mL/min 进样量:20μL;检测波长:466nm;柱温:25℃。4、测定分别取20μL斑蝥黄标准工作液和试样溶液,在高效液相色谱仪上测定斑蝥黄的峰面积,根据峰面积计算滤液中斑蝥黄的浓度。实验数据斑蝥黄标准品高效液相色谱图
  • 单细胞拉曼光谱揭示氮循环功能菌研究获新进展
    p   氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,微生物种类和功能丰富多样,超过99%的环境菌目前无法实现纯培养,因而对环境中固氮菌功能和活性的认识仍非常不足。环境微生物的不可纯培养性,带来了方法学上的挑战。从单细胞水平上研究环境微生物可克服纯培养或富集培养的限制,实现在环境介质下的原位研究。拉曼光谱(包括SERS、常规和共振拉曼)可在单细胞水平上对微生物进行无损检测,并提供微生物组成的指纹图谱。拉曼光谱与稳定同位素标记结合(Stable isotope probing, SIP),利用微生物同化SIP标记底物引起蛋白、脂类、色素的特征拉曼谱峰偏移,已实现从单细胞水平上检测环境功能菌。 /p p   中国科学院城市环境研究所城市土壤与生物地球化学研究组(朱永官团队),在发展单细胞拉曼-15N2SIP技术用于固氮功能菌的研究上做了开拓性工作。针对土壤中的固氮菌,首次建立单细胞共振拉曼与15N2标记联用技术,发掘出15N2相关的指示固氮菌的特征偏移谱峰,即细胞色素c共振拉曼峰的偏移。利用此指示峰,实现在单细胞水平上检测复杂土壤环境中的固氮菌,并利用指示峰的偏移程度,在单细胞水平上,比较了土壤固氮菌的固氮活性。此外,研究组与牛津大学教授Wei Huang合作,针对包括固氮菌在内的多种氮循环(N2、NH4、NO3)功能菌,率先发展表面增强拉曼光谱(SERS)-15N SIP联用技术,利用SERS对微生物中含氮生物分子腺嘌呤的选择性增强,获得不同15N标记氮源引起的细菌腺嘌呤谱峰的显著线性偏移,并利用SERS-15N SIP研究厦门杏林湾水体中细菌对15N2、15NH4Cl、15NO3不同氮源的选择性代谢。上述工作促进了对大量未知环境菌群的深入认识,尤其是氮循环功能菌及其活性的深入解析。 /p p   相关研究成果分别以Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with15N2Labeling为题,发表在Anal. Chem.上;以Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level为题,发表在Anal. Chem.上。研究工作得到了国家重点研发计划和国家自然科学基金等的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95e9fe92-ccc2-4ded-8e88-bac97919cf0d.jpg" title=" W020180807542181390530.jpg" / /p p style=" text-align: center " 城市环境所在发展单细胞拉曼光谱揭示氮循环功能菌研究中取得进展 /p
  • 宝藏姜黄——看看步琦如何来挖宝!
    宝藏姜黄——看看步琦如何来挖宝!姜黄也被称为郁金,是有很多功效的植物。姜黄能活血行气,具有降血脂,抗肿瘤等作用。姜黄中主要的成分姜黄素是一种天然化合物,姜黄素是从姜科、天南星科中的一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素 3%~6%,姜黄素为橙黄色结晶粉末,味稍苦,不溶于水,在食品生产中也能用于肠类制品、罐头、酱卤制品等产品的着色。姜黄素具有降血脂、抗肿瘤、抗炎、利胆、抗氧化等作用,另外,也有科学家发现姜黄素有助治疗耐药结核病。在本文中利用全频固液萃取仪 E-800 热萃取法提取的,采用紫外/可见分光光度法测定姜黄素总含量。1仪器BUCHI 全频固液萃取仪 E-800分析天平(精度 ± 0.1 mg)紫外/可见分光光度计BUCHI 旋转蒸发仪 R-1002试剂与样品95%乙醇合成姜黄素为了安全处理,请遵循相应MSDS!示例:有机姜黄素粉,标记姜黄素含量:3.7%,样品是粉末,因此不需要额外的均质。3姜黄素含量的测定包括以下步骤标准溶液的制备姜黄粉直接提取紫外/可见分光光度法测定姜黄素含量3.1 标准溶液的制备将 25mg 姜黄素倒入 100mL 的量瓶中,溶解并稀释至乙醇。注意准确的重量!将 0.5 mL, 1 mL 和 2mL 原液转移到三个不同的 100mL 容量烧瓶中,用乙醇定量。对于0.5 mL、1 mL和2 mL转移的原液,这些标准溶液分别含有 1.25、2.5 和 5 mg/L 的姜黄素(根据确切重量而定)。将萃取纸滤筒放入萃取腔支架中。称 0.1 克均匀样品到萃取纸滤筒中。注意准确的重量。用棉絮覆盖在萃取纸滤筒内的样品。将含有样品的纤维素顶针放入提取室,并将液位传感器调整到样品的高度。将溶剂倒入烧杯中,放在相应的加热板上。关闭防护罩,降下萃取架,激活萃取位置,打开冷却水水龙头或接通连接的冷水机。根据表 1 中列出的参数启动热提取。表1:全频固液萃取仪 E-800 热萃取参数步骤_加热等级萃取方法热萃取_溶剂乙醇上萃取腔 9下加热 18萃取2.5h/3h热萃取淋洗10min18干燥AP11溶剂体积(mL)120_提取液转移到 100mL 容量瓶中。烧杯中的残留成分用额外的乙醇冲洗,然后定容到 100 毫升。注意:回收的溶剂应单独收集。再次使用前,通过测定吸光度来检查溶剂中姜黄素的杂质,并将其与纯溶剂进行比较。如果有杂质,必须使用纯溶剂开始清洗方法(例如淋洗30分钟)来清洗索氏腔。回收的溶剂可以通过蒸馏收集和纯化,例如使用旋转蒸发器 R-100。3.2 UV / Vis 分光光度法样品溶液:将 2.0mL 的提取溶液转移到 25mL 的量瓶中,用乙醇定容。测定样品溶液的吸光度,并与乙醇在 425nm处的吸光度进行了比较。3.3 姜黄素的浓度与吸光度之间的关系可由以下方程得到其中:A:姜黄素类化合物在 425 nm 处的吸收率an:标准溶液 n 在 425 nm 处的吸光度d:光路长度 (1 cm)cn:标准溶液浓度 n,单位为 mg/L3.4 姜黄素百分含量按下式计算其中:% Curcuminoids:样品中姜黄素含量的百分比mSample:样品重量 [g]cs:样品溶液的浓度为 mg/L4结果用紫外/可见分光光度计对标准溶液进行分析。用线性回归法确定了浓度与吸光度的相关性,该方法仅适用于标准溶液所涵盖的范围。对于姜黄素的测定,姜黄样品在 2.5h (150分钟) 和 3 h(180分钟) 提取时间内进行三次分析。结果如表2所示。表2:姜黄粉中姜黄素含量测定结果姜黄素含量测定值为 3.7%,与标记值吻合较好。当提取时间从 2.5 小时增加到 3 小时时,姜黄素含量并没有增加,说明 2.5 小时后提取完全。用全频固液萃取仪 E-800 测定姜黄粉中姜黄素含量,结果可靠,重复性好。6 位可同时进行萃取,提高效率,每个位置独立运行。
  • 十五周年庆典:采访网友农业部农业环境质检中心黄宝勇
    仪器信息网讯 2014年12月19日,科学仪器行业门户仪器信息网在京隆重举办了&ldquo 感恩十五载,点亮新未来-仪器信息网十五周年庆典暨北京信立方成功登陆新三板庆祝活动&rdquo 。来自业界各位领导、专家、用户、仪器厂商及仪器信息网全体员工等300余人欢聚一堂,庆贺仪器信息网十五周岁生日的同时,共叙未来,共望发展。   活动期间,部分企业负责人、业内资深专家和热心网友接受了仪器信息网编辑的采访,畅谈了近年来科学仪器行业的发展情况和对仪器行业年轻人的期望。   接受采访时,网友黄宝勇表示,现在基层检测中心发展很迅速,但是人员的素质还有待提高,基层人员得不到专业的指导,希望网站能把有能力的单位和人员与有需求的基层检测部门对接,提高基层人员的专业素质。   网友农业部农业环境质检中心黄宝勇在仪器信息网十五周年庆典年会上接受了视频采访。
  • 《分析化学》出版黄本立院士90华诞专辑
    p    /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/old/uploadfile/20107/2010727105215645.jpg" width=" 600" height=" 400" / /p p style=" text-align: center " 祝贺黄本立先生90华诞 /p p   黄本立先生1925年9月21日出生于香港,祖籍广东新会。先生1945-1949在广州岭南大学物理系学习,1950-1986年任职于中国科学院长春应用化学研究所,1986年调厦门大学任教至今,是我国著名的光谱化学家。先生1993年当选中国科学院院士,1998年获 “全国优秀教师”称号,2002-2003年获“福建省优秀专家”和“福建省先进工作者”称号,2005年获“全国先进工作者”称号,2010年获“原子光谱分析终身成就奖”称号,2011年被授予“日本分析化学会荣誉会员”,2013年获“第八届全国健康老人”称号,2015年获厦门大学“南强杰出贡献奖”。培养了多名原子光谱/质谱博士和博士后。曾任中国化学会理事长、分析化学学科委员会主任委员、《光谱学与光谱分析》主编,《分析化学》、《分析科学学报》等十多种国内期刊编委或顾问,Spectrochimica Acta Part B (1985-1995)、Analytical Sciences(2000-)等多种国际期刊顾问编委等。 /p p   黄本立先生年幼时,父母早逝,家道中落,又碰上旧中国受日本帝国主义者侵略,虽生活颠沛流离,却毫不气馁,辗转广东、香港、广西、广东奋发求学,最后考入岭南大学,靠半工半读,克服困难,完成学业。在岭南大学他不但学业成绩优异,获得助学金、奖学金,得到了众多老师、同窗好友的帮助,而且得到冯秉铨先生和高兆兰先生的亲身指导。临近广州解放时,岭南大学有些老师跑到香港或设法出国去了,冯秉铨先生和高兆兰先生说:“We will stay here to do our job and do it well.”老师的教导重锤般地敲击着黄本立年轻的心灵,让他深受感动并牢记心头。强烈的爱国热忱使黄本立等不及毕业,毅然放弃了赴美留学的机会,和几位同学一起踏上了北上“革命”的道路,来到急需理工科人才的东北重工业基地,融入到新中国建设的洪流中。 /p p   1950年3月初,黄本立到了长春东北科学研究所(中国科学院长春应用化学研究所前身)。当时东北的钢铁、冶炼、地质勘探等产业部门急需快速、准确的原子光谱分析技术,而这种技术在刚建立的新中国基本上是空白。黄本立毅然地投身到急需的原子光谱分析技术研究中去。起初,在实验条件十分缺乏的情况下,黄本立修复、调整废旧小型摄谱仪,并使用过期很久的感光板,配合研究所建立了电解锌、电炭刷石墨等的光谱分析法。1952年起,黄本立先后研究建立了球墨铸铁、黄铜等的定量分析方法,把光谱分析推广到工厂去。他为抚顺钢厂试制了一台电花激发光源,这可能是我国第一台自制光谱分析用的电花光源。1955年,黄本立转向了矿石矿物分析,发展并改善了国外常用的一种半定量方法—“数阶法”,提出“数阶法”半定量分析中的“接线法”和“内标法”,这在当时国内主要用照相摄谱法的情况下具有较大的学术意义和应用价值。1957年,黄本立创立了一种可测定粉末样品中包括卤素在内的微量易挥发元素的双电弧光谱分析光源,被国外专家誉为“最完善的双电弧光源”。 /p p   1954年,长春应用化学研究所根据当时国内光谱分析研发、推广和专业人员培训等方面急迫需求,邀集国内高校、科研单位、产业部门的相关人员一起“学习”光谱分析的原理、仪器装置、技术和方法,即光谱学习会。黄本立当时负责编写照相(感光)材料测光部分教材。没想到光谱学习会与会代表竟达60余人,其中不少人已是副教授、高等技师、系主任、化验室主任,收到了很好的效果,好比是我国光谱分析事业的火种,对其后的发展起了巨大的作用。1960-1963年黄本立又参与了中国科学院开办的光谱物理训练班的教学,为全国培养了一大批光谱分析科研、教学、应用等方面的重要骨干。 /p p   正一头扎进光谱分析研究之中的黄本立,遇上了“文革”清理阶级队伍,他也没能逃过一劫。黄本立被怀疑是“九国特务”而被隔离审查达9个月之久。在审查期间,他饱受各种肉体的折磨和精神的痛苦,熬不过时也曾想一死了之,但是一转念又想这样如何能证明自己的清白。即使在这种情况下,他仍不忘思考光谱分析。每当“看管人员”看见时而在冥思苦想、时而挥笔疾书时,都以为黄本立是在想问题、写交代 而实际上,他是在琢磨光栅公式、考虑“光量计”用的双金属温度补偿的设计。他算出了一个有三位数的三角函数表,用这个表把所需要的数据计算出来。这些数据的一部分被用到后来出版的《发射光谱分析》一书中。 /p p   虽历经磨难,但却矢志不渝。黄本立从“牛棚”出来,在“靠边站”时期,研制成了国内第一台钽舟无焰原子吸收装置。他还密切关注当时国际上刚刚上市的电感耦合等离子体(ICP)新型光源,努力积极收集研究资料,为后来ICP新型光源的大发展提前做好了充分的准备。1975年起黄本立从事ICP新型光源光谱分析研究,承担了多项国家“六五”科技攻关项目和中科院重点科研项目,从事环境分析方法研究和我国第一批固体环境标准参考物质的ICP-AES定值分析工作,以及松花江水系环境背景值及环境保护的研究。所研制的新型雾化–氢化物发生装置,使用样品量和一般的雾化器一样、但可同时测定氢化物元素和非氢化物元素,并使氢化物元素的测定灵敏度提高了20倍。 /p p   上世纪 80年代中期,黄本立先生一家响应中科院关于支援特区建设的号召,应厦门大学时任校长田昭武院士和吴存亚教授之邀调到了厦门大学。在厦门大学要从零开始,凭着对光谱事业的执着和惊人的毅力,黄本立团结着一切可以团结的力量。科研人员不足,他利用刚批准成立的厦门大学分析专业博士点招收博士生,并争取了多名留学博士回国做博士后 没有仪器,黄本立向自己熟悉的仪器厂商要了一台人家退货的ICP原子荧光仪,修好给研究生做实验,同时争取到价值数十万美元的大中型光谱仪和一些其他仪器的捐赠,为在厦门大学开展光谱分析研究工作打开了一个崭新的局面。他领导的研究小组齐心协力,克服重重困难,在较短的时间建立了一个比较有规模的等离子体原子光谱实验室,并与分析化学教研室的其它实验室一起联合发展成为“厦门大学现代分析科学教育部重点实验室”,这对厦门大学现代分析科学的学科建设和发展起到重要作用。 /p p   上世纪80年代末,黄本立和他的学生们建立了流动注射电化学氢化物发生法,使氢化物发生法可以不必使用硼氢化物并便于实施自动化。该项成果于1991年在国际光谱会议上发表后,引起国内外同行们的诸多关注和追踪研究。时光荏苒,到了上世纪90年代,黄本立指导学生开展强电流微秒级脉冲(HCMP)供电的空心阴极灯原子/离子荧光光谱分析研究,使普通的商品空心阴极灯(HCL)的离子谱线发射强度比常规脉冲供电时提高了几个数量级,而原子线的强度也有所提高。后来又将这一技术改进后用到短脉冲辉光放电离子源-质谱仪器上,获得了很大成功。此项工作发表论文二十余篇,在国内外学术会议上数次作特邀报告,受到国内外同行的广泛重视 文章发表后,被国际上许多科学家采用,并有国际知名教授Harrison教授、Hieftje教授等先后专程到实验室参观与访问。 /p p   2003年,年近80岁的黄本立先生代表我国化学、物理和光谱三个学会在西班牙申办第35届国际光谱会议(CSI),为我国第一次赢得了CSI的举办权。2007年,CSI XXXV在厦门成功举办,为国内同行创造良好的交流合作机会,使得他们有机会不出国门就能参加高水平的国际会议,同时推动我国谱学领域的研究与应用,促进相关学科的发展和科技进步。 /p p   当下,耄耋之年的黄本立先生身体健康状况依然良好,思维敏捷,他还在为光谱分析默默地奉献着。他仍然每天坚持上班,阅读大量文献,还会把看到的有价值的信息发给后辈。他也常常和课题组老师讨论学术问题,应邀出席学术会议并做报告或给学生做专题性讲座。近四年来,他每年给参加全国青少年高校科学营活动的营员做讲座,一次又一次鼓励青年学生要“踏踏实实做人,认认真真做事,勇于挑战权威,勇于追求真理”。(厦门大学王秋泉、林峻越 供稿) /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 仪器信息网曾于2010年采访了黄本立院士,黄院士回顾与展望了我国原子光谱分析技术及仪器的发展。 /span    /p p    a href=" http://www.instrument.com.cn/news/20100727/045574.shtml" target=" _blank" title=" " style=" color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai text-decoration: underline " span style=" color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai " strong 黄本立院士深度评析我国原子光谱分析——访厦门大学黄本立院士 /strong /span /a /p p br/ /p
  • 国储库油被曝已不纯:转基因油脂冒充菜油上交
    手工制作的小磨油脂一度在国内消费者中颇受推崇,而且被冠以“小磨香油”、“小磨菜油”等。但现实中,由于大量进口转基因油脂的涌入,这些非转基因菜油要保持纯净已经不易。   因目前进口转基因菜籽油价格与国产托市菜油存在每吨1000元左右的差价,大量进口转基因菜籽油涌入国内,企业蜂拥采购,包括众多油菜籽托市收购委托企业。   本报记者在四川、湖南调查发现,不少菜籽托市收购企业行走在法律法规的边缘地带,大量使用进口菜油冒充国产菜油流入国储库。而转基因菜籽油大量流入国储,会造成出库的国储菜籽油被转基因菜油“污染”,企业从国储库购买菜油而生产出的小包装菜籽油就难以再标称非转基因菜油。   另一方面,部分企业既代储国储油脂,自身也加工食用油。进口转基因菜油所带来的巨大利润回报,必然让一些企业铤而走险,用混入转基因菜油的国产菜油生产所谓的“非转基因”小包装菜籽油牟利。   而众多消费者并不具备辨别和检测的条件,无法确定所购买的、标称非转基因小包装菜油的真伪。   价差诱惑   本报曾报道,四川、湖南、湖北等地部分油菜籽油托市收购委托企业,利用进口的低价菜油冒充国产菜油,抵充托市收购任务后,中储粮派出3个调查组到上述三地调查。至今已有2个多月,却仍无任何消息。   2013年,国家启动油菜籽托市收购政策,油菜籽收购量为500万吨,折合菜籽油166.7万吨左右。但湖北、湖南、四川等地的企业向本报反映,由于每吨进口转基因菜籽和菜油要比国产非转基因菜籽、菜油分别便宜500元和1000元以上,不少被赋予托市收购资格的委托企业,利用进口的便宜菜油冒充国产菜油上交国储库,从中赚取差价。   东方艾格油脂行业分析师常桂先告诉记者,目前,国产大宗菜籽油市场价约为8820元/吨,进口转基因菜籽油到岸后的成本价在7928元/吨,二者市场价差在900元左右。而今年国家托市收购的菜籽折油价格在10400元/吨,与进口菜油价差2400多元,这对企业来说诱惑实在很大。   据相关部门调查,委托加工企业拿到托市指标后,直接进口菜籽和菜油,或者到市场上购买进口菜油来顶替托市收购菜籽折油量,数量大体占到托市菜籽量的一半以上。   本报记者调查了解,在湖南、四川、湖北等地,这样的作假已经成为油菜籽行业的“公开秘密”。曾有未获委托托市收购资格的企业放出风来,要举报这类作假。   大量进口的转基因菜油,一部分流入正规企业用来生产小包装食用油或者其他油脂,另一部分流入国储库,混入国产非转基因菜籽油中形成“污染”。   事实上,本报调查时发现,获得委托托市收购资格的企业,大部分也获得国家临时储备菜油的资格,一般都会有3-4个大型油脂存储罐。大企业的存储量有3万-4万吨,小一点也有2万吨规模。在代储国家临储菜籽油的同时,这些企业也在商业化经营菜籽油,并加工小包装食用油。如何加强监督、确保代储国储油脂没有被非法掺杂,是一个难题。   相关监管部门告诉本报记者,即使明知道企业作假、前往调查,但企业可能手续完备 除非对菜籽油进行转基因检测,否则往往查不出漏洞和破绽。   转基因菜油如何流入餐桌?   2002年以前,菜籽油在我国植物油消费总量中曾位居第一,后随着大豆、豆油进口量的增加,菜籽油消费退居次席 自2006年起,由于我国进口棕榈油数量的增加,菜籽油成为国内消费的第三大油种。   尤其长江流域省份,包括云南、贵州等地的消费者比较喜欢菜籽油,不仅味道香浓,从健康角度而言还比大豆油富含不饱和脂肪酸。   东方艾格油脂行业分析师常桂先告诉记者,2012年国内消费菜籽油有500万吨,其中进口转基因菜籽油有150万吨,今年进口量还会有增加。   菜籽油的用途与进口大豆油一样,一是作为小包装食用调和油的基质油种,其在小包装调和油中的占比仅次于进口大豆油 二是经过精炼作为单一油种单独出售。   目前国内食用调和油所使用的菜籽油大部分是进口菜籽油,价格便宜是主要的原因。上小包装菜籽油则多以国产菜油为主,主打“非转基因”概念,以示与转基因菜油的区别。另外,长江领域也有不少企业生产小包装转基因菜籽油,价格要比非转基因菜籽油便宜很多。   中储粮生产的一款金鼎小包装食用调和油率先公布配料比例,其中进口菜籽油占41.40%,即一桶5升的调和油中,进口菜籽油的含量为2.07升。事实上,在大多数品牌调和油中,作为基质油种的菜籽油的含量都超过40%,这是转基因菜油进入餐桌的一个重要途径。  另一个途径就是掺杂进国产菜油中,冒充100%非转基因菜籽油出售。   不过,有业内人士表示,由于国家强制要求企业生产转基因食用油标示油脂成分,食用油企业一般不可能冒险加入转基因菜油。但是,部分上游托市收购企业,则有可能将进口菜油混入国产菜油,消费者食用了这种“不纯粹”的非转基因菜油,这就涉及商业欺诈。   记者发现,目前北京市场上,川、湘等地企业生产的小包装非转基因菜籽油售价在75元/5L,要比大部分食用调和油一级大豆油贵10元左右。如何让真正的国产菜籽油赢得消费者信赖,需要相关部门从上游源头监控。   行业人士告诉记者,无论是国储入库,还是企业生产的菜籽油质量把控,最可行的是检测菜油的芥酸水平。进口菜油的芥酸水平很低,大概只有1~2ppm,而国产菜油的芥酸含量大概为4个ppm。如果芥酸水平太低,油的来源就值得怀疑。
  • 欧盟修订“日落黄作为食品添加剂的最大允许水平的暴露评估”
    根据欧盟委员会的要求,欧洲食品安全局(EFSA)根据欧盟委员会提出的已修订的建议使用水平,修订了日落黄(E110)作为食品添加剂时对儿童的暴露评估。   在调味饮料中的最大允许使用水平的四种情况:分别为10、15、18和20 mg/L。修订的暴露评估应用同样的方法进行了2级计算,食品添加剂和食品添加物中营养来源(ANS)小组在修订的使用水平结合儿童食品消费数据的基础上,根据食品颜色用该方法重新评估。假定所有授权使用的食品添加剂在最大允许水平使用,这些暴露评估可以看做是保守的水平。在欧洲儿童(1-14岁)中,日落黄的平均期望食物暴露范围为0.02-0.4 mg/kg bw/day,估计最高水平范围为0.08-1.2 mg/kg bw/day。日落黄总的预期暴露量主要来源于非酒精调味饮料和甜点包括调味奶制品。对于所有的4种情况,根据提出修订的最大允许水平进行计算的针对儿童的最高暴露评估水平(最大值0.8 mg/kg bw/day)低于全欧洲国家认可的暂定ADI值1 mg/kg bw/day,而第3种和第4种最大允许使用水平情况下,英国对学前儿童的暴露量要求可以稍微超过该ADI值,分别为1.1和1.2 mg/kg bw/day。   修订后的最大允许水平中有18种食物规定为0。   表1 修订后的在食物中的应用和最大允许水平(MPL) 食品种类 MPL(mg/L或mg/kg) 限制/例外 调味发酵乳制品包括热加工产品 5 其他奶油类产品 5 只是调味奶油 生奶酪,不包括类别16中的产品ttom: windowtext 1pt solid border-left: #ece9d8 padding-bottom: 0cm background-color: transparent padding-left: 5.4pt width: 73.8pt padding-right: 5.4pt border-top: #ece9d8 border-right: windowtext 1pt solid padding-top: 0cm mso-border-alt: solid windowtext .5pt mso-border-left-alt: solid windowtext .5pt mso-border-top-alt: solid windowtext .5pt" valign="top" width="98" 0 只是调味生奶酪 可食用的干酪皮 0 加工奶酪 0 只是调味加工奶酪 奶酪制品(不包括类别16中的产品) 0 只是调味生奶酪 食用冰 0 水果和蔬菜制剂不包括蜜饯类 35 只是芥末、水果类 2001/113/EEC指令中定义的果酱、果胶和marmalades和甜板栗泥 0 除去栗子茸 其他相似的水果和蔬菜类 0 除去crème de pruneaux 其他糖果包括充气提神的微小糖果 35 只是糖制水果蔬菜 其他糖果包括充气提神的微小糖果 10 除去糖制水果蔬菜 口香糖 10 装饰品、涂层和馅料,除去水果馅料 35 糊状物 35 只是糊状物涂层 精致烘焙产品 0 只是糊状物涂层 非热加工肉制品 15 只是sobrasad 肉制品的包装、涂层和装饰 35 只是装饰和涂层除去pasturmas可食性外部涂层 肉制品的包装、涂层和装饰 0 只是可食性包装 加工的鱼和鱼制品包括软体动物和甲壳类 0 只是鱼肉酱和类似产品以及鲑鱼替代品 加工的鱼和鱼制品包括软体动物和甲壳类 0 只是鱼和甲壳类动物的膏状制品或糊状制品 加工的鱼和鱼制品包括软体动物和甲壳类 0 只是预煮制甲壳类动物 加工的鱼和鱼制品包括软体动物和甲壳类 0 只是烟熏鱼 鱼子 100 除去鲟鱼卵(鱼子酱) 调味料和调味品 0 只是调味料,例如咖喱粉,坦肚喱 芥末 50 汤羹类和肉汤 0 调味酱 0 包括咸菜、开胃小菜、酸辣酱和辣酱;不包括番茄酱 蛋白类产品 20 只是植物蛋白制成的肉和鱼制品 1999/21/EC指令中规定的具有特殊药物作用的食物 10 具有控制体重作用的饮食代替总的日常食物摄入或某一餐食物(总的日常饮食的全部或部分) 10 调味饮料 10/15/18/20 苹果酒和梨酒 1 不包括cidre bouché 果酒和酿造酒 1 调香酒 50 只是烈性红酒 以酒为基础的调香饮料 50 只是烈性苏打水 其他酒精饮料包括少于15%酒精的烈性酒和与非酒精饮料混合的酒精饮料 100 只是酒精少于15%的酒精饮料 马铃薯类、谷物类、面粉类和淀粉类零食 0 不包括挤压或膨化咸辣零食类食品 加工坚果 0 只是咸辣涂层坚果 甜点 5 固体食物补充剂包括胶囊、片剂和相似形式产品 10 液态食物补充剂 10 糖浆或咀嚼片形式的食物补充剂 10 只是固体食物补充剂
  • 2019 英国皇家化学会『Top 1% 高被引中国作者』全榜单
    为彰显中国作者对国际化学研究领域的突出贡献,英国皇家化学会对旗下四十多本期刊发表论文的引用情况进行统计,按照综合化学类、材料类、物理化学类、能源与可持续类、无机化学类、有机与药物化学类、环境科学类、分分析、生物与化学交叉等大类进行划分,在每个大类中按照论文的被引次数进行排序。将 2017、2018 年发表的论文在 2019 年的被引频次在全球排名前 1% 的名单进行筛选,整理出了通讯作者来自于中国高校和科研院所的论文,后根据通讯作者的信息整理出“Top 1% 高被引中国作者”列表。  近日,2019年榜单已陆续发布,仪器信息网将各类榜单进行了汇总,共有415位中国作者入选2019年英国皇家学会“TOP 1%高被引中国作者”列表。(以下名单无前后顺序)  Top 1% 高被引中国作者:综合化学类 白若鹏重庆大学步文博华东师范大学曹荣中科院福建物质结构研究所陈少永四川大学陈浩铭台湾大学陈大钦杭州电子科技大学陈烽西安交通大学陈涛中科院宁波材料技术与工程研究所陈令新中科院烟台海岸带研究所陈冠英哈尔滨工业大学陈雨中科院上海硅酸盐研究所陈长伦中科院等离子物理研究所陈人杰北京理工大学成会明清华大学-伯克利深圳学院池振国中山大学丁松园厦门大学范壮军哈尔滨工程大学冯玮复旦大学傅强中科院大连化学物理研究所官建国武汉理工大学郭新闻大连理工大学沈国震中科院半导体研究所何纯挺中山大学洪学传武汉大学胡文平天津大学黄飞鹤浙江大学黄鹏深圳大学吉岩清华大学姜波江苏师范大学江海龙中国科学技术大学蓝宇重庆大学雷廷平华侨大学李兴伟中科院大连化学物理研究所李富友复旦大学李先锋中科院大连化学物理研究所李剑锋厦门大学李祥龙国家纳米科学中心梁叔全中南大学林伟英济南大学林静深圳大学刘刚国家纳米科学中心刘鸣华国家纳米科学中心刘凤玉大连理工大学刘进轩大连理工大学刘碧录清华大学-伯克利深圳学院鲁统部天津理工大学马凤才辽宁大学潘国庆江苏大学钱国栋浙江大学渠凤丽曲阜师范大学沈明武东华大学石枫江苏师范大学施剑林中科院上海硅酸盐研究所史向阳东华大学宋术岩中科院长春应用化学研究所宋春山大连理工大学/宾州州立大学孙旭平电子科技大学孙耀华中师范大学孙世国西北农林科技大学孙萌涛北京科技大学谭必恩华中科技大学谭平恒中科院半导体研究所唐本忠香港科技大学童明良中山大学化学学院屠树江江苏师范大学王心晨福州大学王博北京理工大学王成亮华中科技大学王祥科华北电力大学王飞中科院福建物质结构研究所危岩清华大学闻利平中科院理化技术研究所吴季怀华侨大学吴宇平复旦大学夏吾炯哈尔滨工业大学谢劲南京大学邢华斌浙江大学邢明阳华东理工大学熊宇杰中国科学技术大学徐艺军福州大学许建斌香港中文大学徐建铁华南理工大学严锋苏州大学杨青西安交通大学余孝其四川大学俞书宏中国科学技术大学于振涛南京大学喻国灿浙江大学(现美国国立卫生研究院)于法标中科院烟台海岸带研究所俞寿云南京大学曾海波南京理工大学张兵天津大学张志明天津理工大学张洪杰中科院长春应用化学研究所张亚杰中科院宁波材料技术与工程研究所张华民中科院大连化学物理研究所张锦北京大学张书圣临沂大学张强清华大学张泽会中南民族大学张健中科院福建物质结构研究所张袁健东南大学张晓兵湖南大学张金龙华东理工大学张新波中科院长春应用化学研究所赵娟中山大学赵勇河南大学郑炎松华中科技大学智林杰国家纳米科学中心周江中南大学朱宏伟清华大学朱成建南京大学邹志刚南京大学Top 1% 高被引中国作者:材料类包西昌中科院青岛生物能源与过程研究所蔡孟秋湖南大学曹茂盛北京理工大学陈光明中科院化学研究所陈玉金哈尔滨工程大学陈海宁北京航空航天大学成中军哈尔滨工业大学池振国中山大学丁辉中国矿业大学董显林中科院上海硅酸盐研究所董晓臣南京工业大学杜淼郑州轻工业学院杜亚平南开大学段炼清华大学段吉安中南大学房晓勇燕山大学顾宏伟苏州大学顾晓重庆大学郭志光中科院兰州化学物理研究所韩奎华山东大学何农跃东南大学何军中南大学贺艳兵清华大学深圳研究生院胡陈果重庆大学姬广斌南京航空航天大学赖跃坤苏州大学李立宏中科院化学研究所李东升三峡大学李建丰兰州交通大学李春电子科技大学李越中科院固体物理研究所李春燕哈尔滨工程大学李卫平北京航空航天大学李兴华西北大学梁瑞虹中科院上海硅酸盐研究所刘春森郑州轻工业学院刘生忠中科院大连化学物理研究所刘献明洛阳师范学院卢英杰郑州大学马录芳洛阳师范学院马建中陕西科技大学马忠雷陕西科技大学木士春武汉理工大学彭争春深圳大学渠凤丽曲阜师范大学单崇新郑州大学邵路哈尔滨工业大学邵光杰燕山大学邵进军南京工业大学宋延林中科院化学研究所宋宏伟吉林大学孙旭平电子科技大学汤龙程杭州师范大学陶凯宁波大学王志飞东南大学汪宏西安交通大学王鸿静浙江工业大学王丽熙南京工业大学王海宇吉林大学王静中山大学王祥科华北电力大学危岩清华大学魏志义中科院物理研究所吴竹莲西南大学吴明娒中山大学吴伟武汉大学吴兴隆东北师范大学吴昊四川大学谢志刚中科院长春应用化学研究所邢宏龙安徽理工大学闫培光深圳大学杨会静唐山师范学院杨志涌中山大学杨栋陕西师范大学易院平中科院化学研究所殷小伟西北工业大学余家国武汉理工大学袁杰中央民族大学张小勇南昌大学张楷亮天津理工大学张晗深圳大学张浩力兰州大学张华新加坡赵乃勤天津大学郑敏长春工业大学周子渊中国农业大学周迪西安交通大学朱春玲哈尔滨工程大学朱满洲安徽大学Top1%高被引中国作者:物理化学类张德元中山大学附属第一医院陈建荣浙江师范大学陈祥树江西师范大学陈红征浙江大学陈建中山东交通学院陈宝玖大连海事大学陈全中科院长春应用化学研究所戴洪兴北京工业大学董红军江苏大学董锦明南京大学高鹏中科院上海高等研究院高国华华东师范大学郭强辽宁大学绿源能源与环境科学研究院郭三栋西安邮电大学侯廷军浙江大学胡斌中科院兰州化学物理研究所胡文平天津大学黄慧苏州大学黄敏中科院武汉物理与数学研究所靳治良北方民族大学康振辉苏州大学李鑫华南农业大学李学兵中科院青岛生物能源与过程研究所李朝晖福州大学李妍北京科技大学李庆忠烟台大学李永庆辽宁大学李先锋中科院大连化学物理研究所李学锋湖北工业大学刘温霞齐鲁工业大学刘阳苏州大学刘中民中科院大连化学物理研究所刘治田武汉工程大学卢章辉江西师范大学马宁哈尔滨工程大学牟天成中国人民大学牛晓宇黑龙江大学牛承岗湖南大学潘勇西南石油大学萨百晟福州大学施敏敏浙江大学宋爽浙江工业大学孙志梅北京航空航天大学孙予罕中科院上海高等研究院孙振宇北京化工大学孙明磊东南大学汤文成东南大学田宝柱华东理工大学王风云南京理工大学王忠中科院青岛生物能源与过程研究所王剑波北京大学王进安中科院上海药物研究所(现堪萨斯大学)汪萨克金陵科技学院魏迎旭中科院大连化学物理研究所吴波福州大学吴西林浙江师范大学吴再生福州大学徐安武中国科学技术大学许运华天津大学徐赛大连海事大学严凯中山大学杨宗献河南师范大学叶青北京工业大学于雪莲中国地质大学袁忠勇南开大学曾光明湖南大学曾大文华中科技大学张金龙华东理工大学张泽会中南民族大学张锐郑州航空工业管理学院张小涛天津大学张华民中科院大连化学物理研究所赵彪郑州航空工业管理学院赵景祥哈尔滨师范大学朱宇君黑龙江大学Top1%高被引中国作者:能源与可持续类包信和中科院大连化学物理研究所曹少文武汉理工大学陈军南开大学陈立泉中科院物理研究所陈煜陕西师范大学党锋山东大学董崇礼淡江大学杜红亮空军工程大学何良年南开大学何卫民湖南科技学院黄飞华南理工大学黄福志武汉理工大学黄洪伟中国地质大学康振辉苏州大学雷永鹏中南大学李福军南京大学李阳光东北师范大学李宝华清华大学深圳研究生院李亚飞南京师范大学李昌治浙江大学梁叔全中南大学刘生忠中科院大连化学物理研究所刘兆清广州大学吕伟清华大学深圳研究生院马紫峰上海交通大学马华空军工程大学南策文
  • 农业部审批通过193项农业标准
    中华人民共和国农业部公告第1642号   《丝瓜等级规格》等193项标准业经专家审定通过,我部审查批准,现发布为中华人民共和国农业行业标准,自2011年12月1日起实施。   特此公告。   二〇一一年九月二日 序号 标准号 标准名称 代替标准号 1 NY/T 1982-2011 丝瓜等级规格   2 NY/T 1983-2011 胡萝卜等级规格   3 NY/T 1984-2011 叶用莴苣等级规格   4 NY/T 1985-2011 菠菜等级规格   5 NY/T 1986-2011 冷藏葡萄   6 NY/T 1987-2011鲜切蔬菜   7 NY/T 1988-2011 叶脉干花   8 NY/T 1989-2011 油棕 种苗   9 NY/T 1990-2011 高芥酸油菜籽   10 NY/T 1991-2011 油料作物与产品 名词术语   11 NY/T 1992-2011 农业植物保护专业统计规范   12 NY/T 1993-2011 农产品质量安全追溯操作规程 蔬菜   13 NY/T 1994-2011 农产品质量安全追溯操作规程 小麦粉及面条   14 NY/T 1995-2011 仁果类水果良好农业规范   15 NY/T 1996-2011 双低油菜良好农业规范   16 NY/T 1997-2011 除草剂安全使用技术规范 通则   17 NY/T 1998-2011 水果套袋技术规程 鲜食葡萄   18 NY/T 1999-2011 茶叶包装、运输和贮藏 通则   19 NY/T 2000-2011 水果气调库贮藏 通则   20 NY/T 2001-2011 菠萝贮藏技术规范   21 NY/T 2002-2011 菜籽油中芥酸的测定   22 NY/T 2003-2011 菜籽油氧化稳定性的测定 加速氧化试验   23 NY/T 2004-2011 大豆及制品中磷脂组分和含量的测定 高效液相色谱法   24 NY/T 2005-2011 动植物油脂中反式脂肪酸含量的测定 气相色谱法   25 NY/T 2006-2011 谷物及其制品中β-葡聚糖含量的测定   26 NY/T 2007-2011 谷类、豆类粗蛋白质含量的测定 杜马斯燃烧法   27 NY/T 2008-2011 万寿菊及其制品中叶黄素的测定 高效液相色谱法   28 NY/T 2009-2011 水果硬度的测定   29 NY/T 2010-2011 柑桔类水果及制品中总黄酮含量的测定   30 NY/T 2011-2011 柑桔类水果及制品中柠碱含量的测定   31 NY/T 2012-2011 水果及制品中游离酚酸含量的测定   32 NY/T 2013-2011 柑桔类水果及制品中香精油含量的测定   33 NY/T 2014-2011 柑桔类水果及制品中橙皮苷、柚皮苷含量的测定   34 NY/T 2015-2011 柑桔果汁中离心果肉浆含量的测定   35 NY/T 2016-2011 水果及其制品中果胶含量的测定 分光光度法   36 NY/T 2017-2011 植物中氮、磷、钾的测定   37 NY/T 2018-2011 鲍鱼菇生产技术规程   38 NY/T 2019-2011 茶树短穗扦插技术规程   39 NY/T 2020-2011 农作物优异种质资源评价规范 草莓   40 NY/T 2021-2011 农作物优异种质资源评价规范 枇杷   41 NY/T 2022-2011 农作物优异种质资源评价规范 龙眼   42 NY/T 2023-2011 农作物优异种质资源评价规范 葡萄   43 NY/T 2024-2011 农作物优异种质资源评价规范 柿   44 NY/T 2025-2011 农作物优异种质资源评价规范 香蕉   45 NY/T 2026-2011 农作物优异种质资源评价规范 桃   46 NY/T 2027-2011 农作物优异种质资源评价规范 李   47 NY/T 2028-2011 农作物优异种质资源评价规范 杏   48 NY/T 2029-2011 农作物优异种质资源评价规范 苹果   49 NY/T 2030-2011 农作物优异种质资源评价规范 柑橘   50 NY/T 2031-2011 农作物优异种质资源评价规范 茶树   51 NY/T 2032-2011 农作物优异种质资源评价规范 梨   52 NY/T 2033-2011 热带观赏植物种质资源描述规范 红掌   53 NY/T 2034-2011 热带观赏植物种质资源描述规范 非洲菊   54 NY/T 2035-2011 热带花卉种质资源描述规范 鹤蕉   55 NY/T 2036-2011 热带块根茎作物品种资源抗逆性鉴定技术规范 木薯   56 NY/T 2037-2011 橡胶园化学除草技术规范   57 NY/T 2038-2011 油菜菌核病测报技术规范   58 NY/T 2039-2011 梨小食心虫测报技术规范   59 NY/T 2040-2011 小麦黄花叶病测报技术规范   60 NY/T 2041-2011 稻瘿蚊测报技术规范   61 NY/T 2042-2011 苎麻主要病虫害防治技术规范   62 NY/T 2043-2011 芝麻茎点枯病防治技术规范   63 NY/T 2044-2011 柑桔主要病虫害防治技术规范   64 NY/T 2045-2011 番石榴病虫害防治技术规范   65 NY/T 2046-2011 木薯主要病虫害防治技术规范   66 NY/T 2047-2011 腰果病虫害防治技术规范   67 NY/T 2048-2011 香草兰病虫害防治技术规范   68 NY/T 2049-2011 香蕉、番石榴、胡椒、菠萝线虫防治技术规范   69 NY/T 2050-2011 玉米霜霉病菌检疫检测与鉴定方法   70 NY/T 2051-2011 桔小实蝇检疫检测与鉴定方法  71 NY/T 2052-2011 菜豆象检疫检测与鉴定方法   72 NY/T 2053-2011 蜜柑大实蝇检疫检测与鉴定方法   73 NY/T 2054-2011 番荔枝抗病性鉴定技术规程   74 NY/T 2055-2011 水稻品种抗条纹叶枯病鉴定技术规范   75 NY/T 2056-2011 地中海实蝇监测规范   76 NY/T 2057-2011 美国白蛾监测规范   77 NY/T 2058-2011 水稻二化螟抗药性监测技术规程 毛细管点滴法   78 NY/T 2059-2011 灰飞虱携带水稻条纹病毒检测技术 免疫斑点法   79 NY/T 2060.1-2011 辣椒抗病性鉴定技术规程 第1部分:辣椒抗疫病鉴定技术规程   80 NY/T 2060.2-2011 辣椒抗病性鉴定技术规程 第2部分:辣椒抗青枯病鉴定技术规程   81 NY/T 2060.3-2011 辣椒抗病性鉴定技术规程 第3部分:辣椒抗烟草花叶病毒病鉴定技术规程   82 NY/T 2060.4-2011 辣椒抗病性鉴定技术规程 第4部分:辣椒抗黄瓜花叶病毒病鉴定技术规程   83 NY/T 2060.5-2011 辣椒抗病性鉴定技术规程 第5部分:辣椒抗南方根结线虫病鉴定技术规程   84 NY/T 1464.37-2011 农药田间药效试验准则 第37部分:杀虫剂防治蘑菇菌蛆和害螨   85 NY/T 1464.38-2011 农药田间药效试验准则 第38部分:杀菌剂防治黄瓜黑星病   86 NY/T 1464.39-2011 农药田间药效试验准则 第39部分:杀菌剂防治莴苣霜霉病   87 NY/T 1464.40-2011 农药田间药效试验准则 第40部分:除草剂防治免耕小麦田杂草   88 NY/T 1464.41-2011 农药田间药效试验准则 第41部分:除草剂防治免耕油菜田杂草   89 NY/T 1155.10-2011 农药室内生物测定试验准则 除草剂 第10部分:光合抑制型除草剂活性测定试验 小球藻法   90 NY/T 1155.11-2011 农药室内生物测定试验准则 除草剂 第11部分:除草剂对水绵活性测定试验方法   91 NY/T 2061.1-2011 农药室内生物测定试验准则 植物生长调节剂 第1部分:促进/抑制种子萌发试验 浸种法   92 NY/T 2061.2-2011 农药室内生物测定试验准则 植物生长调节剂 第2部分:促进/抑制植株生长试验 茎叶喷雾法   93 NY/T 2062.1-2011 天敌防治靶标生物田间药效试验准则 第1部分:赤眼蜂防治玉米田玉米螟   94 NY/T 2063.1-2011 天敌昆虫室内饲养方法准则 第1部分:赤眼蜂室内饲养方法   95 NY/T 2064-2011 秸秆栽培食用菌霉菌污染综合防控技术规范   96 NY/T 2065-2011 沼肥施用技术规范   97 NY/T 2066-2011 微生物肥料生产菌株的鉴别 聚合酶链反应(PCR)法   98 NY/T 2067-2011 土壤中13种磺酰脲类除草剂残留量的测定 液相色谱串联质谱法   99 NY/T 2068-2011 蛋与蛋制品中ω-3多不饱和脂肪酸的测定 气相色谱法   100 NY/T 2069-2011 牛乳中孕酮含量的测定 高效液相色谱-质谱法   101 NY/T 2070-2011 牛初乳及其制品中免疫球蛋白IgG的测定 分光光度法   102 NY/T 2071-2011 饲料中黄曲霉毒素、玉米赤霉烯酮和T-2毒素的测定 液相色谱-串联质谱法   103 NY/T 2072-2011 乌鳢配合饲料   104 NY/T 2073-2011 调理肉制品加工技术规范   105 NY/T 2074-2011 无规定动物疫病区 高致病性禽流感监测技术规范   106 NY/T 2075-2011 无规定动物疫病区 口蹄疫监测技术规范   107 NY/T 2076-2011 生猪屠宰加工场(厂)动物卫生条件   108 NY/T 2077-2011 种公猪站建设技术规范   109 NY/T 2078-2011 标准化养猪小区项目建设规范   110 NY/T 2079-2011 标准化奶牛养殖小区项目建设规范   111 NY/T 2080-2011 旱作节水农业工程项目建设规范   112 NY/T 2081-2011 农业工程项目建设标准编制规范   113 NY/T 2082-2011 农业机械试验鉴定 术语   114 NY/T 2083-2011 农业机械事故现场图形符号   115 NY/T 2084-2011 农业机械 质量调查技术规范   116 NY/T 2085-2011 小麦机械化保护性耕作技术规范   117 NY/T 2086-2011 残地膜回收机操作技术规程                                                                                                                                                                                                             118 NY/T 2087-2011 小麦免耕施肥播种机 修理质量   119 NY/T 2088-2011 玉米青贮收获机 作业质量   120 NY/T 2089-2011 油菜直播机 质量评价技术规范   121 NY/T 2090-2011 谷物联合收割机 质量评价技术规范   122 NY 2091-2011 木薯淀粉初加工机械安全技术要求   123 NY/T 2092-2011 天然橡胶初加工机械 螺杆破碎机   124 NY/T 2093-2011 农村环保工   125 NY/T 2094-2011装载机操作工   126 NY/T 2095-2011 玉米联合收获机操作工   127 NY/T 2096-2011 兽用化学药品制剂工   128 NY/T 2097-2011 兽用生物制品检验员   129 NY/T 2098-2011 兽用生物制品制造工   130 NY/T 2099-2011 土地流转经纪人   131 NY/T 2100-2011 渔网具装配操作工   132 NY/T 2101-2011 渔业船舶玻璃钢糊制工   133 NY/T 2102-2011 茶叶抽样技术规范 NY/T 5344.5-2006 134 NY/T 2103-2011 蔬菜抽样技术规范 NY/T 5344.3-2006 135 NY 525-2011 有机肥料 NY 525-2002 136 NY/T 667-2011 沼气工程规模分类 NY/T 667-2003 137 NY/T 373-2011 风筛式种子清选机 质量评价技术规范 NY/T 373-1999 138 NY/T 459-2011 天然生胶 子午线轮胎橡胶 NY/T 459-2001 139 NY/T 232-2011 天然橡胶初加工机械 基础件 NY/T 232.1~ 232.3-1994 140 NY/T 606-2011 小粒种咖啡初加工技术规范 NY/T 606-2002 141 NY/T 243-2011 剑麻纤维及制品回潮率的测定 NY/T 243-1995,NY/T 244-1995 142 NY/T 712-2011 剑麻布 NY/T 712-2003 143 NY/T 340-2011 天然橡胶初加工机械 洗涤机 NY/T 340-1998 144 NY/T 260-2011 剑麻加工机械 制股机 NY/T 260-1994 145 NY/T 451-2011 菠萝 种苗 NY/T 451-2001 146 NY/T 2104-2011 绿色食品 配制酒   147 NY/T 2105-2011 绿色食品 汤类罐头   148 NY/T 2106-2011 绿色食品 谷物类罐头   149 NY/T 2107-2011 绿色食品 食品馅料   150 NY/T 2108-2011 绿色食品 熟粉及熟米制糕点   151 NY/T 2109-2011 绿色食品 鱼类休闲食品   152 NY/T 2110-2011 绿色食品 淀粉糖和糖浆   153 NY/T 2111-2011 绿色食品 调味油   154 NY/T 2112-2011 绿色食品 渔业饲料及饲料添加剂使用准则   155 NY/T 750-2011 绿色食品 热带、亚热带水果 NY/T 750-2003 156 NY/T 751-2011 绿色食品 食用植物油 NY/T 751-2007 157 NY/T 754-2011 绿色食品 蛋与蛋制品 NY/T 754-2003 158 NY/T 901-2011 绿色食品 香辛料及其制品 NY/T 901-2004 159 NY/T 1709-2011 绿色食品 藻类及其制品 NY/T 1709-2009 160 SC/T 1108-2011 鳖类性状测定   161 SC/T 1109-2011 淡水无核珍珠养殖技术规程   162 SC/T 1110-2011罗非鱼养殖质量安全管理技术规范   163 SC/T 2008-2011 半滑舌鳎   164 SC/T 2040-2011 日本对虾 亲虾   165 SC/T 2041-2011 日本对虾 苗种   166 SC/T 2042-2011 文蛤 亲贝和苗种   167 SC/T 4024-2011 浮绳式网箱   168 SC/T 6048-2011 淡水养殖池塘设施要求   169 SC/T 6049-2011 水产养殖网箱名词术语  170 SC/T 6050-2011 水产养殖电器设备安全要求   171 SC/T 6051-2011 溶氧装置性能试验方法   172 SC/T 6070-2011 渔业船舶船载北斗卫星导航系统终端技术要求   173 SC/T 7015-2011 染疫水生动物无害化处理规程   174 SC/T 7210-2011 鱼类简单异尖线虫幼虫检测方法 175 SC/T 7211-2011 传染性脾肾坏死病毒检测方法   , 176 SC/T 7212.1-2011 鲤疱疹病毒检测方法 第1部分:锦鲤疱疹病毒  , 177 SC/T 7213-2011 鮰嗜麦芽寡养单胞菌检测方法   178 SC/T 7214.1-2011 鱼类爱德华氏菌检测方法 第1部分:迟缓爱德华氏菌   179 SC/T 8138-2011 190系列渔业船舶柴油机修理技术要求   180 SC/T 8140-2011 渔业船舶燃气安全使用技术条件   181 SC/T 8145-2011 渔业船舶自动识别系统B类船载设备技术要求   182 SC/T 9104-2011 渔业水域中甲胺磷、克百威的测定 气相色谱法   183 SC/T 3108-2011 鲜活青鱼、草鱼、鲢、鳙、鲤 SC/T 3108-1986 184 SC/T 3905-2011 鲟鱼籽酱 SC/T 3905-1989 185 SC/T 5007-2011 聚乙烯网线 SC/T 5007-1985 186 SC/T 6001.1-2011 渔业机械基本术语 第1部分:捕捞机械 SC/T 6001.1-2001 187 SC/T 6001.2-2011 渔业机械基本术语 第2部分:养殖机械 SC/T 6001.2-2001 188 SC/T 6001.3-2011 渔业机械基本术语 第3部分:水产品加工机械 SC/T 6001.3-2001 189 SC/T 6001.4-2011 渔业机械基本术语 第4部分:绳网机械 SC/T 6001.4-2001 190 SC/T 6023-2011 投饲机 SC/T 6023-2002 191 SC/T 8001-2011 海洋渔业船舶柴油机油耗SC/T 8001-1988 192 SC/T 8006-2011 渔业船舶柴油机选型技术要求 SC/T 8006-1997 193 SC/T 8012-2011 渔业船舶无线电通信、航行及信号设备配备要求 SC/T 8012-1997
  • 166项!2023年度湖北省农业农村领域科技计划拟立项项目公示
    4月7日,湖北省科技厅公示了2023年度农业农村领域科技计划拟立项项目,其中包含食品、农产品、畜牧养殖等多个领域。 根据《中共中央办公厅 国务院办公厅关于深化项目评审、人才评价、机构评估改革的意见》《湖北省科技计划管理改革实施方案》《2023年省级科技计划组织工作方案》要求,现将2023年度农业农村领域科技计划拟立项项目名称和承担单位向社会公示。 2023年度农业农村领域科技计划拟立项项目名单序号 项目名称 申报单位1淡水水产高效养殖技术研究与集成示范湖北洪山实验室2ARC生物菌剂提质固氮耦合技术研发及产业化中国农业科学院油料作物研究所3面向重金属污染农田修复的功能生物炭制备关键技术及应用示范中环循环境技术有限责任公司4优质香型长粒粳稻新品种的培育湖北中香农业科技股份有限公司5魔芋葡甘聚糖基气凝胶中试生产关键技术研究武汉力诚生物科技有限公司6神农架林区特色红缨子高粱酿造关键技术研究及产业化应用劲牌有限公司7藤茶中DMY的硒化修饰、靶向功能及产品高值利用研究施恩(恩施)生物医药开发有限公司8杂柑抗早衰关键技术研究与示范湖北农科农乐现代农业产业有限公司9微流水条件下池塘设施化健康养殖关键技术研究与示范当阳市钰源水产品养殖专业合作社10双莲鸡配套系选育技术的研究湖北民大农牧发展有限公司11防控猪蓝耳病药物泰万菌素的原料及制剂生产技术迭代开发及临床推广武汉回盛生物科技股份有限公司12发酵蔬菜加工关键技术研究及应用湖北聚汇农业开发有限公司13全流程一体化智能采收机器人武汉禾大科技有限公司14高产抗病太空玉米诱变育种湖北金广农业科技有限公司15茄果类蔬菜智能化全人工光立体育苗关键技术研发艾欧创想智能科技(武汉)有限公司16木本油料智能压榨关键技术与装备研究应用东方红集团(湖北)粮食机械股份有限公司17有机羊肚菌工厂化高效种植关键技术研发湖北飘扬食品科技有限公司18农田污染物绿色治理的功能菌剂研制与开发武汉合缘绿色生物股份有限公司19有机茶优质高效栽培关键技术的研究湖北芊茶汇农业科技股份有限公司20原粮整理与入仓智能装备技术研发及产业化湖北飞来钟粮油设备有限公司21低盐、低化学添加剂、无亚硝酸盐发酵泡菜研发湖北红日子农业科技有限公司22低GI功能水稻高产高效绿色保优栽培技术研究与示范竹溪三元米业有限公司23郧巴良种肉牛高效繁育关键技术研发竹山恒坤牧业有限公司24良种西门塔尔肉牛双胎关键技术研发及配套技术集成示范房县牵亿肉牛养殖专业合作社25甲酸衍生型饲料酸化剂关键技术研发武汉有机实业有限公司26生物活性小肽新型替抗动物饲料添加剂的研发湖北泓肽生物科技有限公司27富含谷胱甘肽和类胡萝卜素酵母培养物的创制与产业化示范湖北绿科乐华生物科技有限公司28风味土豆面加工工艺开发及产业化武汉新五心食品科技有限公司29绿色“米饭型全谷黑米”基因组育种与新品种应用湖北洪山实验室30短生育期油菜迟播稳产关键技术研发与新品种选育华中农业大学31新型动物专用抗菌增效剂艾迪普林原料与制剂开发华中农业大学32耐密植超高产油菜品种高通量智能化选育中国农业科学院油料作物研究所33新资源水稻核不育系XS的研究与应用湖北省农业科学院粮食作物研究所34人造雪花猪肉高效培育关键技术研究湖北省农业科学院畜牧兽医研究所35瓜类蔬菜智能嫁接机及配套嫁接育苗技术研发武汉市农业科学院36家禽主要呼吸道病毒病二联耐热活疫苗创制湖北省农业科学院畜牧兽医研究所37鄂西山区马铃薯特征风味品质形成机制解析与优质特色新品种选育华中农业大学38传统蛋制品全周期综合品质在线无损检测技术及智能装备研制华中农业大学39水稻高温热害鉴定及防减技术研发华中农业大学40淡水鱼智能保鲜加工技术与装备创制华中农业大学41潜渍型中低产稻田降渍增氧与产能提升关键技术研发及应用湖北省农业科学院植保土肥研究所42基于脂质代谢靶标的仔猪病原性肠道损伤营养调控剂的发现武汉轻工大学43草莓设施立体栽培技术装备及模式应用研究与示范武汉市农业科学院44小龙虾品质无损快速检测技术及装备武汉轻工大学45优质多抗茶树新品种选育及配套轻简栽培技术研究湖北省农业科学院果树茶叶研究所46功能辣椒新品种培育及产业化应用湖北省农业科学院经济作物研究所47微生物富硒恩施黑猪新类群培育及健康、标准养殖关键技术研发长江大学48稻谷加工智能工厂及其工业互联网分布式系统研究与应用武汉轻工大学49基于理想脂肪酸模式的猪功能性脂类产品研发武汉轻工大学50营养型花生饼粕基植物乳绿色制备关键技术创新与应用中国农业科学院油料作物研究所51湖北省坡耕地减障提质技术模式构建与应用华中农业大学52适合机采的棉花优质耐高温新品种选育与应用湖北省农业科学院经济作物研究所53两个国审鲌鲂品种的品质提升关键技术及调控机制研究中国水产科学研究院长江水产研究所54特早熟优质甘薯新品种选育与“一年两收”配套栽培技术体系的研发及示范湖北省农业科学院粮食作物研究所55创制植物疫苗促进水稻油菜抗病增产试验示范湖北洪山实验室56基因突变体介导的鱼类人工多倍体创制技术研发华中农业大学57湖北省猕猴桃野生资源调查及地方特色新品种培育中国科学院武汉植物园58大豆蛋白“人造肉”蛋白基料制备关键技术研发华中农业大学59智能化陆基循环水养殖技术研发与示范华中农业大学60湖北高产、快繁、优质荷斯坦母牛本土化选育关键技术攻关武汉市农业科学院61预制菜品质提升与智能制造关键技术集成与示范华中农业大学62水产养殖要素高精度监测与实时预警系统研发湖北大学63木本饲料专用复合酶产品创制关键技术湖北大学64马铃薯商品薯智能化分级技术及装备研究与示范华中农业大学65靶向植物病毒关键蛋白TMV-CP的药物发掘及应用湖北省生物农药工程研究中心66猕猴桃集约化高效育苗关键技术创新及应用武汉市农业科学院67经济作物富硒栽培关键技术研究与应用长江大学68阻控藜蒿吸收富集重金属的技术研究与应用武汉市农业科学院69湖北省大宗水产品中典型新污染物的筛查与健康风险评估江汉大学70湖北特色食品低糖化关键技术开发武汉轻工大学71生猪重要细菌性疫病炎症风暴的发生机制与药物新靶标的挖掘武汉轻工大学72丰产优质再生稻品种桃优77中试与示范中垦锦绣华农武汉科技有限公司73国审优质高产强再生杂交水稻“箴两优荃晶丝苗”中试与示范湖北荃银高科种业有限公司74绿色高产高档优质香型水稻新品种培育与应用湖北省种子集团有限公司75新型实蝇诱杀剂的研发及应用湖北谷瑞特生物技术有限公司76湖北省冬小麦超高产营养调控关键技术研究与应用湖北格林凯尔农业科技有限公司77夏秋茶资源砖茶加工技术中试与示范宜昌清溪沟贡茶有限公司78核桃新品种高效生态栽培关键技术中试与示范湖北聚芳林业科技开发有限公司79秸秆高值化利用与优质肉牛节能减排技术中试湖北庚源惠科技有限责任公司80一种高纯度4,6-二甲氧基-2-((苯氧基羰基)氨基)-嘧啶(DPAP)的绿色工艺开发湖北汇达科技发展有限公司81葡萄新品种“阳光玫瑰”中试与示范黄冈市黄州区嘉裕葡萄种植专业合作社82特色茄果蔬菜品种及优质高效技术转化应用郧西县民辉蔬菜专业合作社83油菜根肿病防治专用生物有机肥中试生产与示范湖北新保得生物科技有限公司84优质条形绿茶加工技术中试转化与示范郧西县槐树茶叶专业合作社85大球盖菇精深化加工技术熟化及示范神农架天润生物科技有限责任公司86中国樱桃新品种“八里旺”优质高效生产中试 与示范湖北房陵红家庭农场有限公司87郧西县冷水稻新品种E两优88及配套技术集成示范郧西县楚有香自然生态种植专业合作社88三种药食同源植物品质提升及硒多糖提取关键技术研究恩施硒谷科技股份有限公司89茶花粉多糖及多酚类物质关键技术研究湖北神农蜂语生物产业有限公司90猕猴桃健康种苗工厂化生产关键技术集成应用与示范赤壁神山兴农科技有限公司91聚合硅酸钙新型土壤调理剂生产之关键技术研发湖北富贵象农业科技有限公司92一种基于提质增效的绿色功能型有机肥关键技术研究荆门法麦克斯农业科技有限公司93地源性饲料资源高效养殖马头山羊关键技术集成与示范湖北鑫农生态科技有限责任公司94新型微生物菌剂防控中药材土传病害应用与示范郧西县远宏中药材种植专业合作社95优质宜机采茶树新品种“鄂茶201”中试与示范孝昌县管氏茶业有限责任公司96基于生猪精细化养殖的智能饲喂机研究与产业化武汉中畜智联科技有限公司97基于品质保障的淡水鱼养殖环境智慧管控关键技术研发与示范武汉百瑞生物技术有限公司98农田减灾的一体化排涝闸站调度技术武汉睿山智水科技发展有限公司99工厂自动化鳗鱼饲养关键技术研发武汉市科洋生物工程有限公司100一种莲种苗快速繁殖的新技术应用与产业化湖北秀湖植物园有限公司101新型非常规饲料原料在猪饲料中的多元化应用研究武汉家家乐饲料股份有限公司102MBBR及微纳米曝气技术在畜禽养殖废水处理领域研究与应用武汉市鄂正农科技发展有限公司103具有改善和修复猪肠道损伤的创新饲料添加剂研发武汉诺见生物技术有限公司104高温蒸煮双效能浓缩香菇汁的研发与应用湖北万和食品有限公司105山茶油精深加工产业化湖北省施福春农业有限公司106莼菜营养健康功能产品创制关键技术研发与示范恩施硒马农业发展有限公司107表面活性剂协同动态逆流超声提取香菇多糖技术研发与应用竹山县绿谷食用菌有限公司108抗油菜菌核病药肥一体纳米级钼酸盐绿色制剂创制及产业示范湖北中澳纳米材料技术有限公司109玉米白斑病抗性位点挖掘及抗性种质创制和应用襄阳正大种业股份有限公司110个性化富硒粞食品增材制造与智能化加工装备研制湖北天和机械有限公司111欣华鸡高贮精能力新品系选育湖北欣华生态畜禽开发有限公司112欧标(有机)茶大面积生产主要病虫害微生态防控技术研发与应用宣恩县伍台昌臣茶业有限公司113蛋清中卵转铁蛋白制备关键技术研究及产业化湖北神地生物科技有限公司114优质青贮大麦新品种选育及冬闲田应用关键技术研发湖北腾龙种业有限公司115基于营养精准调控重组米制品加工关键技术研发与示范湖北心辉粮油股份有限公司116耐高温抗倒伏水稻新品种选育与应用湖北智荆高新种业科技有限公司117即热预制淡水鱼加工关键技术研发与示范洪湖市万农水产食品有限公司118方便鲜湿面加工关键技术研发与示范湖北金银丰食品有限公司119繁殖性状全基因组育种技术研发及高繁大白猪新品系选育湖北三湖畜牧有限公司120博落回替抗酶解技术湖北博瑞生物科技股份有限公司121基因编辑技术创制适用机械化制种 的番茄雄性不育系的研发湖北伯远合成生物科技有限公司122恩施富硒藤茶活性成分高效提取及其功能性食品研发湖北仙芝堂生物科技有限公司123皮蛋保健型功能饮品的关键技术开发与中试示范湖北神丹健康食品有限公司124基于进化演算灰箱模型的多智能体稻谷加工控制系统湖北永祥粮食机械股份有限公司125黄鳝预包装即食食品加工及质量控制关键技术研发与示范湖北省仙桃黄鳝产业技术研究院有限公司126DHA营养强化蛋黄粉深加工关键技术集成与应用湖北康利农生物科技有限公司127少球悬铃木‘华农青龙’的繁育及叶片少毛材料的发掘襄阳三叶花开园林生态有限公司128萝卜耐裂根分子标记开发及其新品种培育与应用湖北领尚生态农业有限公司129淡水鱼智能化预处理加工装备与关键技术荆州市集创机电科技股份有限公司130基于智慧农业技术的循环经济、立体种养模式研究恩道格农业发展鄂州有限公司131水杨酰胺一步胺化合成工艺的研究荆州市凯文生物科技有限公司132新兽药氟雷拉纳的研制湖北美天生物科技股份有限公司133特色水果品质无损检测及智能分选装备创制与应用湖北国炬农业机械科技股份有限公司134庆大霉素菌种高产低杂定向改造和代谢过程关键技术研究及应用宜昌三峡制药有限公司135预制调理小龙虾工厂化加工关键技术研发湖北大自然农业实业有限公司136大口黑鲈大规格苗种高效培育技术研究与示范荆州市渔都特种水产养殖有限公司137监利猪种质资源创新利用与优质配套系培育湖北天牧畜禽有限公司138畜禽粪污堆肥固氮减排关键技术创新及应用来凤民福生态肥业有限公司139香料凤菊绿色高效栽培技术与精深加工产品研发湖北来凤腾升香料化工有限公司140薯玉豆复合种植绿色高效模式研究与推广恩施市盛元食品有限责任公司141不同作物效应生物合成信号蛋白肥料增效剂产品研发及推广应用湖北微生元生物科技有限公司142优质、高产高抗小麦品种选育与推广湖北扶轮农业科技开发有限公司143砂梨主要病虫害绿色防控关键技术研发与应用湖北满园果生态农业有限公司144鸡卵黄抗体的绿色高效制备与肠道靶向释放包埋集成技术研究湖北双港农业科技贸易股份有限公司145低温乳酸菌的筛选、高密度发酵及其创新应用湖北华扬科技发展有限公司146大别山黑山羊精准选育与智慧养殖关键技术研发湖北名羊农业科技发展有限公司147草莓种苗低繁高扦技术研究与示范当阳市弘杨种苗有限责任公司148浓香菜籽油质量安全生产技术湖北巴山食品有限责任公司149富硒水稻种质及其绿色优质高效种植关键技术研发利川市一里香米业有限责任公司150武当名贵珍稀中药材金果榄品种提纯与高效繁育技术研发湖北金水源农业开发有限公司151传统蛋白凝胶食品工业化生产技术开发与产业化荆州市依顺食品有限公司152香菇重金属控制多维评价技术及控糖营养功能性食品研发钟祥兴利食品股份有限公司153百合鳞茎工厂化快繁及冬闲田商品种球繁育技术湖北春之染农业科技有限公司154鄂西北茶区纳米硒免疫激活茶树提质增效技术研究与示范湖北龙王垭茶业有限公司155地方源猪用发酵饲料标准化与健康养殖关键技术研发十堰武当农夫牧业有限公司156武当骞林茶种质资源利用及新产品研发湖北丹鼎茶业有限公司157禽肉酱卤制品真空低温卤制关键技术研发湖北小胡鸭酱卤食品研究院有限公司158味源植物中呈味功能物质高效提取关键技术研发与示范宝得瑞(湖北)健康产业有限公司159富硒茭白资源高值化加工技术研发恩施思清农业有限公司160富硒蒸谷米加工关键技术及装备创制湖北碧山机械股份有限公司161绿色缓控释肥料研制及应用示范新洋丰农业科技股份有限公司162英山生态茶园系统构建及关键技术研究与示范湖北志顺茶业股份有限公司164优质高效梨新品种选育及轻简栽培模式创新与应用鄂州市樟嘉裕民生态农业专业合作社165设施稻瓜菜轮作模式创新及绿色高效生产技术研究与应用石首市天字号瓜蔬土地股份专业合作社166基于智慧农业的茅苍术连作障碍绿色消减技术研发湖北卫尔康现代中药有限公司
  • 好丽友蛋黄派等食品检出含铬 暂无判断标准
    记者调查发现,明胶在食品领域应用非常广泛,软糖、蛋黄派、速冻汤圆均用到明胶。几乎所有需要增稠的食品,都会看到它的身影。尽管食用明胶本身没有违规之处,但一些消费者总是难免有“心理障碍”。   近日,记者在南京市场上随机选择了三种食品,好丽友蛋黄派(注心蛋黄派)、龙凤汤圆(鲜肉)和徐福记熊博士橡皮糖(莓果口味),委托江苏省理化测试中心进行铬含量的检测。在拿到了检测结果之后,记者却犯了难,在食品安全专家的帮助下,对照了目前国家对《食品中污染物限量》标准,发现无法找到铬是否超标的答案。   探访   乳类制品常用到明胶   走进南京的一些大型超市,各种预包装食品中,“明胶”是很常见的食品添加剂。比如各种酸奶、调制乳、乳酸饮料都会用到明胶。但乳类制品的增稠剂并不仅限于明胶这一种,果胶、卡拉胶、黄原胶、海藻酸钠都是常见的增稠剂,起着和明胶类似的作用。   调查中记者还发现,除了乳类制品会用到明胶,还有很多甜点、饮料也会用到明胶等增稠剂。几乎每种软糖的配料表里都有明胶,在一些蛋黄派、巧克力派中也有含明胶。在速冻产品区,一些汤圆、雪糕的外包装的产品配料说明中,明胶也赫然在列。   4月20日,记者在市场上购买了好丽友蛋黄派(注心蛋黄派)、龙凤汤圆(鲜肉)和徐福记熊博士橡皮糖(莓果口味),送到第三方检测机构、省科技厅下属的江苏省理化测试中心,对这些产品中的明胶进行检测。   实验   检测铬,能间接证明明胶质量   购买好三种食品后,记者带着它们来到江苏省理化测试中心,受理大厅的工作人员首先在计算机上清晰地记录着样品的来历:送检厂家,生产批号,送检日期……随后,样品被送进实验室,正式进入实验流程。   为证明这些食品中添加的明胶是否安全,江苏省理化测试中心从检测食品“体内”的铬开始。   为什么要检测铬?江苏省理化测试中心的专家介绍,工业明胶和食用明胶的差别从外观是难以看出来的。由于明胶是水溶性蛋白质的混合物,它没有固定唯一成分,目前国内尚无标准方法检测确认工业明胶,在卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》上,工业明胶的检测方法一栏显示“无”。   工业明胶和食用明胶一旦进入到食品中,如果再想从实验检测“倒推”出两者之间的区别非常难。专家介绍,原因是工业明胶和食用明胶的本质区别,在于皮革在工业加工鞣制时使用含铬的鞣制剂,会导致铬残留,使用这种“蓝矾皮”加工的工业明胶,重金属铬的含量一般都会超标。目前只能通过检测明胶产品或使用明胶的食品中铬含量及重金属含量是否符合标准要求。   橡皮糖检测须“上刀山下火海”   来到实验室,实验人员依据《食品中铬的测定》要对样品进行处理。以橡皮糖为例,首先要在高精度的天平上称重,为了保证数据准确,同样一批样品,要分别检测两次。   接下来的时间里,橡皮糖的日子可不好过,要经历“上刀山下火海”的考验。首先要让橡皮糖在热水中溶解成液体。溶解后,橡皮糖进入到第二个环节,让铬离子从溶液中“跑”出来。   实验人员将橡皮糖液体放入消解罐,倒入一定量的硝酸,泡上一段时间后,橡皮糖溶液连同硝酸会被转送到高温设备室,那里摆放着微波消解炉。通过微波的作用,消解罐中的温度会升高、压力也会增大,橡皮糖中的铬离子就会“游离”出来,进入到硝酸溶液中。   在微波消解炉中消解后,消解罐中的液体变得纯清透明,橡皮糖中的铬离子都“跑”到硝酸溶液中。工作人员打开消解罐的盖子,放在加热台上,用120℃的恒定温度“烤”着小罐子,使罐内的硝酸挥发出去,只留下铬离子。   实验人员向消解罐中再次加入溶液,并准确定容到一定体积。留在罐中的铬离子立刻溶入其中。随后,这份溶液被倒进上样杯,放到原子吸收光谱仪上。   这也是本实验中最关键的一个环节,光谱仪一端是电脑,一端是自动检测机器。一根探针伸入到上样杯中,抽出液体,将溶液点入石墨管中。光谱仪在短时间内内将石墨管加热到2700℃。   “铬的沸点超过2600℃,在2700℃的环境中,铬离子已经变成了铬蒸汽。”这时电脑屏幕上已经自动显示出此次检测的数值。   为了保证数据准确,一个上样杯中的液体要抽取三次,分别检测后取平均数值。整个过程需要5、6个小时。   样品名称 样品编号 产品批号 铬含量   龙凤汤圆(鲜肉) 1204107 20111215f02Z 0.07mg/kg   徐福记熊博士橡皮糖(莓果口味) 1204106 20110930B692 0.47mg/kg   好丽友蛋黄派(注心蛋黄派) 1204108 20120207B2 0.13mg/kg   结论   送检的三种样品中均含铬   然而,拿到了检测报告,记者在对照国家标准时发现,《GB2762-2005食品中污染物限量》中,没有对汤圆、橡皮糖和蛋黄派的中铬含量进行规定。   在标准中,根据食品中铬的限量指标,只规定了粮食、豆类、薯类、蔬菜、水果、肉类(包括肝、肾)、鱼贝类、蛋类、鲜乳、乳粉这十大类。其中鲜乳类的限量值最低,为0.3mg/kg,鱼贝类的限量值最高,为2.0mg/kg。而将汤圆、橡皮糖和蛋黄派“套入”这十大类的任何一类都不合适。   南京市质检院食品检验部副主任胡飞杰表示,目前,《GB2762-2005食品中污染物限量》规定了一部分食品(主要是农副产品)中的铬的限量,对于大部分加工食品国家没有关于铬限量的统一规定。仅有个别产品、个别质量标准中有铬的限量规定,如农业部标准《NY/T433-2000绿色食品 植物蛋白饮料》、《NY/T754-2011 绿色食品 蛋与蛋制品》 提到铬限量但以上两个是推荐性标准。   只能参照初级农产品标准   江苏省理化测试中心的专家告诉记者,从好丽友蛋黄派(注心蛋黄派)、龙凤汤圆(鲜肉)和徐福记熊博士橡皮糖这三个样品中的铬含量来看,量值是比较低的。只能判定所使用的明胶质量不差。   江苏省食品质量安全监控中心的一位工程师说,现行的《食品中污染物限量标准》是2005年制定的,现在来看有些食品分类不够细化,都是针对初级农产品进行简单的分类,有些污染物的标准也需要调整。这位工程师也针对快报实验的三个样品分别查询了速冻汤圆、糖果和糕点的三种行业卫生质量标准,都没有对于铬限量的规定。   “其实国家目前正在修订有关标准,新的标准很快会出来。”这位工程师说,如果一定要判定好丽友蛋黄派(注心蛋黄派)、龙凤汤圆(鲜肉)和徐福记熊博士橡皮糖的铬含量是否超标,只能对照目前标准中的十类范围,进行初步的判断,也就是说这三个样品不能超过初级农产品的限量值。从实验结果看,好丽友蛋黄派(注心蛋黄派)、龙凤汤圆(鲜肉)和徐福记熊博士橡皮糖铬含量都没超过目前国家规定的初级农产品中的限量值。
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 我国汽车材料界的“拓荒牛”——马鸣图教授
    马鸣图教授1942年生于河南兰考,1964年上海交大毕业后分配到机械工业部汽车研究所工作;1978年作为文革之后的首届研究生,入北京钢铁研究总院学习、攻读硕士博士学位;1985年已取得博士学位,重回汽车研究所(现中国汽车工程研究院)工作至今。  三年前,笔者在一次供给侧结构性改革论坛会上与七十七岁的老科学工作者马鸣图教授邂逅。论坛上,身高一米八五、体魄健硕、思维缜密马鸣图教授,对轻量化进行深入浅出的系统论述,同时也道出他的心声:以习近平总书记为核心的党中央“全面深化供给侧结构性改革”的英明决策再次点燃了他绽放科技成果之花的激情。这次谋面我们一见如故,携手踏上了打造我国“钢铁与制造业有效供给新经济体系”的示范之路。并肩战斗的岁月中感触到在马老勤奋拼搏的身后有着一颗情操崇高的心灵,更清楚地看到他在我国汽车材料从无到有、从弱到强再到高质量发展的历程中默默拓荒的身影和留下的一个个勤奋与智慧的丰碑。2021年5月24日马鸣图教授给专家组汇报科研成果 初出茅庐第一功,发明了我国首代军车关键零件用钢1965年,响应党中央号召,支援三线建设;马鸣图随汽车研究所组织部分人员内迁到重庆,主要承担以“法国贝利埃汽车公司”引进的军用越野车为依托,实现我国第一代军用车国产化的开发和生产基地建设。法国贝利埃汽车公司生产的重型越野汽车为北大西洋集团公约专用车,被誉为“沙漠里的羚羊”,车型的越野性能好,功能强,结构较复杂,并且具有自救能力,运行可靠;该车用钢系列为镍铬钼系列,强韧性匹配较好。其前桥内外半轴用钢为30NCD16,相当于30Cr2Ni4Mo,合金含量高,性能要求高:在抗拉强度1000MPa下冲击韧性大于150 J /Cm2,这种性能指标对于当时的调质结构钢是十分高的指标,该钢种曾被誉为法国的“王牌结构钢”,还用于飞机的起落架。我国当时缺镍少铬,就必须开发国内富有的合金元素钢种替代镍铬钢,而且性能又必须满足军用车的需要。为加快军用汽车生产的进度,曾有一个方案是仿制法国的30NCD16,但钢材交到綦江锻造厂进行零件锻造时发生大量的开裂,难以做出合格的锻坯,这条技术路线难以走通。最后,经过无数次的开发 、实验试制终于于1976年成功开发了我国富有合金元素的30Mn2MoW,合金量大幅度降低,成本下降,强度和韧性均达到30NCD16的要求,同时工艺性能优于30NCD16,拥有良好的锻造性能。该钢种是我国独创,这一钢种的研发成功,支持了我国首代军用车的生产和国防建设,并用于我国首代导弹运输车,该成果于1990年获得“国家发明奖”。《双相钢--物理和力学冶金》---我国先进高强度钢发展的奠基石1978年,马鸣图教授以对双相钢的产生、双相钢特性和应用前景的研究成果以及对双相钢深刻认识为基础,率先提出了“汽车轻量化”的概念。同时,对双相钢的强化特性的研究,提出和建立了全新的“计算双相钢强度的混合物定律和表征方程”,用导出的不连续纤维增强的复合材料混合物定律,代替当时大量应用的连续纤维复合材料混合物定律。该方程可根据双相钢的显微组织、合金成分计算和预测双相钢强度,大大提高了计算的精度和预测的准确性。这一成果不仅丰富了双相钢的强化理论,同时,也为双相钢强度的改进和提升提供了方法和依据。有关研究论文发表于在瑞典举行的“第四届国际材料力学性能会议”会刊上。基于对双相钢流变特性的C-J分析的曲线,提出了描述双相钢流变特性的综合变形模型,即双相钢变形的第一阶段用晶体强化的Ashby M.F 微观力学模型来描述双相钢的初始屈服和加工硬化特性;在C-J分析曲线的拐点之后,用Mileiko S.J理论来描述双相钢的均匀变形和组织之间的关系,这一综合模型较好的描述了双相钢的初始加工硬化和均匀变形阶段的流变特性,为双相钢性能的改进和提升提供了理论依据。80年代初,马鸣图教授关于双相钢的研究成果得到美国麻省理工学院W.S.Owen教授认可,之后,W.S.Owen教授发表在“金属工艺技术”上的文章:“一个简单的热处理能够挽救底特律(指美国汽车工业)吗?”,深刻阐明了双相钢对美国汽车四大工业支柱之一的“汽车工业”的重要性和对我国未来汽车工业的重要性。1986年,马鸣图教授和日本茨城大学教授友田阳联合主办了“双相钢微观力学研讨会”,根据近4年的关于双相钢的研究成果以及所发表的文章并综合国内外相关研究结果,撰写了国内外关于双相钢的首部学术专著《双相钢-物理和力学冶金》,该书于1988年01月由冶金工业出版社发行,于2009年01月由冶金工业出版社再版。《双相钢--物理和力学冶金》是冶金企业、机械制造企业、特别是汽车制造企业从事金属材料、热处理和力学性能的科研或工艺开发的技术人员及高等院校材料专业的师生、研究生重要的参考资料。为我国先进高强度钢的发展奠定了重要理论基础,实现我国双相钢总产量已超过千万吨。该著作对我国双相钢的发展起到了重要指导作用,并取得了重大经济和社会效益,极大促进了我国先进高强度钢的发展和在我国汽车轻量化中的应用,被誉为我国先进高强度钢发展的经典著作。双相钢包辛铬效应的开创性研究成果填补了国际空白80年代,马鸣图教授在双相钢的包辛格效应的研究中,采用力学和磁物理参量相结合的研究方法,发现了磁软化现象,得出了许多有意义的新的试验结果,取得了具有开拓性的研究进展,使在这一领域的研究成果处于世界前沿。法国雷诺汽车公司实验室主任法国科学院院士Haik在评价该成果时,认为“该研究结果开创了包辛格效应研究的新的方法和途径:通过力学参量和磁物理参量的对比研究分析,深刻阐明了这一重要的经典效应(包辛格效应)和重要的表征参量背应力的物理本质及其与相间应力的关系与消除背应力的方法,为高强度材料的成形回弹控制奠定了理论基础”。他针对该成果发表了一系列论著,其中,“Bauschinger effect and back stress in a dual phase steel”在“Trans.ISIJ”创刊号上发表。马鸣图教授1990年访问日本茨城大学时,曾被友田阳教授以日本人最高礼遇邀请到家里居住做客,对许多关于双相钢的学术问题进行了深度交流。回国后,马鸣图教授、中科院力学所段祝平教授、日本茨城大学教授日本钢铁学会主席友田阳(Yo Tomota)教授联合撰写了《金属合金中的包辛格效应及其在工业中的应用》学术专著,该书于1994年5月由机械工业出版社出版发行,并被列为我国高校研究生力学性能教学中的重要参考书。振臂疾呼“用高新技术改造和提升传统材料和传统产业”在上世纪90年代,美国为了误导其他国家经济的发展,在全世界大谈发展“知识经济、信息经济”;当时中国的经济发展也深受其影响,不少制造业被迫开始了“关、停、并、转”。对此,马鸣图教授振臂疾呼:制造业是一个国家根本,只有发展制造业国家才能强盛,人民才有就业的机会,才可能有强大的国防。针对在材料行业刮起的大力发展纳米材料的狂热之风,各行业大肆炒作纳米的概念,从食品、日常用品、洗涤用品到各种新型材料都是纳米化。马鸣图教授又提出:用高技术改造传统材料,并在中国上海举行的“首届国际工程师大会”上发表题为《用高新技术改造传统材料》的文章,强调了用高新技术改造传统材料才是材料行业正确的发展方向,该文后来刊登在“中国机械工程”杂志上。文章引用美国材料协会主席Thomas.W.Eagar的“传统材料由于高新技术的溶入,正在发生一场‘平静的革命’”为导语,表述了这场革命的主要表现是传统材料生产率的增长、性能的改善和价格成本的下降,强调了传统材料发生这种变革的基础是严格、科学地对材料制造工艺和零件制造工艺的要求的深刻理解,描绘了这种变革的连续性、进步性。实践证实了马鸣图教授的预言:传统材料行业由于高新技术的不断融入实现了传统材料功能的不断提升、零部件价格的下降,由此所产生的商业价值远远超出新材料所创造的商业价值。开创“材料性能和零件功能关系”的哲学理念在倡导发展基础材料实现制造业高质量发展同时,马鸣图教授针对材料性能和零件功能之间关系,论述了两个概念的差异与共同点,从哲学理论的高度为高功能零件的开发和材料潜力的充分发挥提供了依据和方法。他认为,材料是用于制造有用物件的物资,在人类的历史上曾把当时使用的材料作为历史发展的里程碑,如石器时代、青铜器时代。上世纪六十年代,人们又将材料称为建设当代文明的支柱之一。这些足见材料在发展经济和国防建设中的重要地位。任何一个材料要取得更快更协调一致的商用价值和成果,所要求的不仅是材料的制造工艺、价格、物理性能,更应该强调的是由材料取得的相应制品的几何形状和制品功能的工艺过程;同时还应强调在保持材料经济价格的前提下,将这些材料快速进入市场的能力。实际上,一个新材料商品化的时间可能是该材料研发成败的关键。在这些方面,传统材料比新材料更有优势。他总结出材料的研发包含的四个方面:首先是研发化学成分组织工艺和性能之间的关系;第二是筛选出合理的成分后,进行材料的冶金工艺性能研究,并进行材料的试制;第三是试制的材料要能够用经济、方便、快捷的方式转化为有用的物件,即材料应具有良好的应用工艺性能;其四是试制的零件应具有良好的使用性能,零件具有高的功能并且具有合理的性价比。长期以来,我国许多材料的研发停留在完成第一、第二方面,对后期材料的应用研究缺乏认识和实践重视不足,导致了不少新材料技术的开发半途而废,因此,在重视材料研发的同时更要重视材料的应用研究。提出弹簧钢松弛抗力的产生机理,发明表征参量和测试方法在高强韧性弹簧钢的研究中,提出了弹簧钢松弛抗力产生的机理,表征参量和测试方法;在美国汽车工程学会年会上发表了相关的研究成果,得到了国际同行业的广泛认可,指导了高性能弹簧钢的合金设计和产品开发。这一研究成果所撰写的论文于1991年被录用为《国际汽车工程学会年会宣读论文》,该会议在美国亚里桑那州的凤凰城举行。论文已经被收录于美国“SAE PaPEr”。同时,美国汽车工程学会要编写当年SAE会刊(即Trans.SAE),SAE会刊编委会对该论文给予高度评价,称该文章具有以下三个特点:文章内容有创新;文章内容具有长期的保留和参考价值;文章撰写文笔流畅。率先倡导发展燃气汽车,开拓汽车燃料新科技之路1992年,马鸣图教授当选为重庆市人大代表、市人大常委以后,率先建言提出“要在重庆市发展天然气汽车”,并得到了重庆市政府的大力支持,市科委也拨出专款对该项目予以推动。1995年,马鸣图教授带领的科技攻关团队历时三年,圆满完成了“燃气汽车关键零件开发和产业化”的科研任务,成功开发出了高可靠性的65升钢内衬复合材料环向增强的轻量化气瓶、燃气汽车发动机的ECU控制单元。并对重庆市的出租车实施了全面改装,既降低了排放,又实现了出租车在汽油高价位时低价低成本运行。这些科研成果有效支持了重庆燃气汽车业的健康发展,特别是保证了重庆出租车行业的优质发展,同时,该科研成果陆续在其他省市和国际上得到了较好地推广应用。2002年,“燃气汽车气瓶可靠性的研究”成果获中国汽车工业科技进步二等奖,2005年,“燃气汽车关键零件开发和产业化”科研项目被列入国家863计划,2008年“燃气汽车关键零件开发和产业化”科技成果获中国汽车工业科技进步一等奖。引入EVI模式并成功转化,材料的新成果应用又添利器 EVI是英文Early Vendor Involvement的简称,原意为材料供应商对用户开发新产品的先期介入模式,它来源于对材料生产企业的质量服务体系和对客户应用的支持系统,在马鸣图教授的推动下,现已发展成为通过技术合作支持用户新车型的开发,逐步形成了EVI的工作流程和模式。2008年10月,马鸣图教授应韩国POSCO的邀请参加在首尔举行的“POSCO EVI Global Forum 2008”大会,特邀做《中国汽车工业的发展轻量化和高强度钢的应用》报告,并与韩国浦项钢铁公司总裁交流了EVI的概念和内涵。回国后,根据我国材料行业的发展现状和应用中存在的问题,在韩国EVI模式的基础上进行了完善和深化,并将这一成果发展成为我国在新车开发过程新材料应用的一整套的集成解决方案。马鸣图教授引进和完善的EVI的活动包括四个阶段:第一阶段是开发用户需要的产品;第二阶段是在汽车企业零件制造中如何对用户进行帮助,对产品的开发先期介入,开发出具有高的性价比零件;第三阶段是“钢铁企业如何使用户快速的应用新的钢铁产品”,即钢铁生产和汽车产品的开发有机的融合在一起,双方达到EVI的深度合作和发展共赢;第四阶段是材料的供应商转变为解决用户问题的合作伙伴,包括对用户的硬件、软件、商业支持等。EVI的活动可以有效的促进新材料的开发和应用。但是材料宫颈部门要进行EVI活动应该具备有满足用户需要的相关材料和完整的数据库;具有材料研发和应用方面的技术人才及物质实力;对材料研发全过程有充分的认识和理解,特别是认识应用研究的重要性;以及对材料应用企业和零件生产企业有深刻的认识和理解,牢固树立起用户第一的思想。从2008年到2018年,韩国POSCO公司每两年都有召开一次EVI的国际论坛,共召开了7次,马鸣图都作为嘉宾参会,通过各类展品和报告对EVI的内涵和重要性有十分深刻的理解,为扩大这一理念的应用,从2017年起到2019年已召开两届EVI及高强钢氢致延迟断裂国际会议。本人和中信金属公司郭爱民先生共同作为会议主席主持会议的召开,并编辑出版会议论文集。今年将召开第三届这一国际会议,马鸣图教授在这一领域的研究成果和会议的交流成果得到与会者的广泛认可,并给予高度评价,取得诸多进展和一些处于国际先进水平的研究成果。2016年和韩国POSCO首席专家在国际会议上合影发明新型热成形钢,为汽车轻量化和安全性助力护航针对热冲压成形用钢的强韧性不足及氢致延迟抗力的不足,马鸣图教授在早期已经形成和提出的复合微合金化理论基础上开发了高强韧性和高氢致延迟断裂抗力的热冲压成形用钢,改变了国际上应用的三十年一贯制的热成形用钢22MnB5,目前,这类性能优良的热成形钢已形成了1500-1800MPa钢种系列,有效的提升了我国热成形用钢的强韧化水平以及氢致延迟断裂抗力;从而提升了热成形构件的轻量化水平与安全性和可靠性。现在,又将复合微合金化研发的成果拓展应用到非调质钢中,开发出了高强韧性的非调质钢,并在工程机械、农用机械及特种装备领域得到了广泛应用。自2010年以来,马鸣图教授对热冲压成形技术和材料进行了大量研究,取得了国内外有影响的成果,助力国内建成180余条热成形生产线,平抑了热冲压成形构件的价格,为我国汽车轻量化和安全性的提升提供了有力支撑。从2014年开始到2020年和英国皇家工程院院士林建国教授共同作为大会主席已组织召开了五届热冲压成形国际会议,提升了我国热成形技术在国际上的影响力。现在又创新性地将热冲压成形技术拓展到商用车上应用,解决了长10米,宽2米,厚3-10毫米的大型热成形构件生产的相关装备、工艺、板坯传输和水冷模具的诸多关键问题。已生产U型底板的城市渣土运输翻斗车,将翻斗的重量从4.35吨减到2吨,轻量化率超过50%,为世界领先水平的成果。该项成果将在建筑、国防工业、高速公路护栏、船舶等领域拓展应用,为我国预期碳达峰和碳中和作出新的贡献。和英国皇家工程院院士林建国等在国际会议上合影谦恭学习开拓创新,享誉国内外同行马鸣图教授从上世纪80年代开始,和美国MTS公司合作,共同改进MTS809拉扭复合加载实验系统的机架刚度;通过增加机架的立柱直径,加厚机架横梁尺寸,使改进的机架刚度比原机架提高十倍,成为这一产品系列的定型产品。MTS公司通过提供拉扭复合加载引伸计和相关附件,给这一工作的成功表示肯定和奖励。80年代末,和日本茨城大学友田阳教授开展国际合作进行拉扭复合载荷下材料响应效应的研究和包辛格效应研究,提升了我国在这一领域的研发水平。90年代,和英国贝尔法斯特女皇大学开展建筑防火钢的研究,这是我国最早在该领域内进行的研究,并取得成果;双方共同编写了“材料科学和工程研究进展第一集”,系统介绍了英国和国际上结构材料的最新研究进展。和日本千叶大学开展复合材料研究和交流,共同编写了“材料科学和工程研究进展第二集—复合材料的研究进展”,系统介绍了金属基和树脂基复合材料的研究进展和应用,促进了我国在该领域内的新的发展。本世纪初,和国际上知名企业韩国POSCO开展先进高强度钢的研发、应用和性能检测评价方面的研究和合作,前后承担有近十个项目,促进了我国汽车用先进高强度钢研究和应用;马鸣图教授还是高强度钢热冲压成形国际会议的会议主席,来自国外的代表一致认为该会议是国际上高学术水平和实用性相融合的国际会议,连续五届的国际会议和由世界科学出版社出版的会议论文集极大地促进了我国热成形产业的发展,提升了我国在这一领域的国际上的影响,从而提升了我国汽车轻量化和安全性的水平,也使我国从热成形生产线装备的进口国到出口国。马鸣图教授和台湾金属研究中心及台湾中钢开展热成形工艺技术和用钢方面的合作,促进了两岸企业的交流与合作,中汽院和台湾中钢已经在重庆建设了关于LFT以及热成形的合资企业,目前运作正常。和日本神户制钢的合作交流促进了我国汽车用高强度变形铝合金板材的发展和应用。马鸣图教授和国际上诸多有影响的科学家及专家建立了友好关系;如:美国南卡罗里奥大学焊接专家赵玉津合作制定点焊试样的标准,并发表文章;和英国皇家工程院院士林建国共同作为会议主席主办国际热冲压成形会议;和日本钢铁协会主席友田阳、韩国金属学会主席权伍俊等或合作研究,或学术交流,或双方互访,或共同著书,或联合发表文章,或交流研究生,扩大了中国学术研究成果的国际影响,也增加了对外交流和学习国外先进技术的机会。和英国林建国院士共同主持国际会议56科研硕果累累,耄耋之年奋斗不止马鸣图教授56年的科研生涯,先后承担国家863、973、重点研发计划、自然科学基金重点项目等20余项。形成了独具特色的复合微合金化、强韧性合理匹配,以及以零件功能为目标的选材原理和方法。获国家省部级科技奖励36项,国家发明奖三等1项,省部级奖一等3项、二等16项,三等16项;出版学术专著5部,主编10部;论文300余篇;发明专利10余项。从2016-2018年,和有关单位合作得到三项国家自然科学重点基金项目的支持;十二五期间,还承担铝合金汽车板的国家重点研发计划;2019-2020年,两年间共获省部级科技奖励4项(2项一等奖,2项二等奖)。马鸣图教授先后被国家科委、人事部授予“中青年有突出贡献专家”,国家教委授予“做出突出贡献的中国博士学位获得者”,享受国务院颁发的政府特殊津贴,中国科协授予“西部大开发突出贡献奖”。被誉为汽车材料领域的大师泰斗,为我国汽车材料工业的快速发展做出了突出贡献。马鸣图教授一直是我学习的榜样,我们共同探索的“深化供给侧结构性改革、建设钢铁制造业有效供给经济体系,实现高质量发展”之路理念,已得到新富集团李靖伟董事长的首肯和支持。新富集团依托其自身商用车全产业链的优势与实力,主动承担了“超高强、高延迟断裂抗力汽车用钢与热成形关键技术及产业化”科研项目成果转化的任务,并形成了“创新链产业链融合”实现高质量发展的企业模式。马鸣图教授作为新团队的首席科学家,他时刻以“老骥自知夕阳晚,不需扬鞭自奋蹄”自勉,他对知识的追求如饥似渴,废寝忘食,对科研的热情仍不减当年,对党的事业忠贞不渝。他的精神也将永远激励我们,为夺取新时代中国特色社会主义伟大胜利而努力奋斗!
  • 纪念黄昆百年诞辰——CNCLS20物理材料仪器分会场报告
    p style=" text-align: justify text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 仪器信息网讯& nbsp /span /strong span style=" text-align: justify text-indent: 2em " 2019年11月2日,由中国物理学会光散射专业委员会主办,苏州大学、厦门大学承办的第二十届全国光散射学术会议(CNCLS20)在苏州同里湖大饭店隆重召开。 /span /p p style=" text-align: justify text-indent: 2em " 本次大会邀请了国内外知名专家学者就光散射和相关光谱原理和技术等领域的前沿热点问题进行交流。本次大会设置了物理材料仪器、SERS、分析医药其他三个分会场,11月3日下午的物理材料仪器分会场安排了6场邀请报告和3场口头报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fa38d2c1-cf94-4e61-b87d-162c7dccbe54.jpg" title=" 9-4现场.jpg" alt=" 9-4现场.jpg" / /p p style=" text-align: center text-indent: 0em " strong 物理材料仪器分会场现场 /strong /p p style=" text-align: justify text-indent: 2em " 特别值得一提的是,2019年是黄昆先生的百年诞辰,11月3日下午,主办方将物理材料仪器分会场的上半场主题设定为“黄昆百年诞辰报告专场”。由中国物理学会光散射专业委员会主任委员、中科院半导体所谭平恒研究员主持。 /p p style=" text-align: justify text-indent: 2em " 有一类散射,叫“黄散射”;有一组方程,叫“黄方程”;有一种理论,叫“黄—里斯理论”;有一部著作,叫《晶格动力学》;有一个模型,叫“黄-朱模型”;有一支队伍,叫“拉曼光谱学工作者”。黄昆先生是中国半导体技术奠基人,声子物理第一人,同时也是第一届光散射专业委员会主任委员,他曾提出了稀固溶体的X-光漫散射理论和晶体光学振动的唯象方程,并预见了晶体光学声子和电磁场的耦合振动模式,被称为“黄散射”和“黄方程”;他还提出了有效解决半导体超晶格光学振动模型,并阐明其光学振动模式的要点,被称为“黄一朱模型”,同时,黄昆先生与玻恩合著的《晶格动力学理论》成为该学科领域的第一部权威专著和标准参考文献。 /p p style=" text-align: justify text-indent: 2em " 黄昆百年诞辰报告专场中,北京大学张树霖教授、北京大学葛惟昆教授、香港理工大学柴扬教授、中科院半导体研究所林妙玲博士分别带来了精彩的邀请报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/97afc9da-e5e9-472f-8dee-354fcdf6dbab.jpg" title=" 谭平恒.jpg" alt=" 谭平恒.jpg" / /p p style=" text-align: center text-indent: 0em " strong 中国物理学会光散射专业委员会主任委员、中科院半导体所谭平恒研究员主持 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/9f26fa66-0ed8-489d-9135-7396622b8787.jpg" title=" 张树霖.jpg" alt=" 张树霖.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:北京大学张树霖教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:为人高尚的榜样和中国拉曼光谱学发展的大功臣 /strong /p p style=" text-align: justify text-indent: 2em " 黄昆先生在科学研究上的历史性贡献已为世界公认,他是中国拉曼光谱学发展史中的大功臣,而他为人方面的高尚品格依然值得我们学习。作为黄昆先生的学生,张树霖教授用自己的亲身经历,为我们讲述了黄昆先生令人钦佩的生平事迹,并介绍了黄昆先生投身中国拉曼光谱学的研究经历。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7c6df7a5-3878-43b0-964b-d1c7418b92a1.jpg" title=" 葛惟昆.jpg" alt=" 葛惟昆.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:北京大学葛惟昆教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:局域声子的拉曼散射和红外光谱 /strong /p p style=" text-align: justify text-indent: 2em " 今年适逢声子物理第一人黄昆先生诞辰100周年。对于光谱物理而言,声子表现在拉曼散射、红外吸收和反射中相应的谱线,以及发光光谱中的声子伴线。葛惟昆教授回忆了黄昆先生研究声子物理的经历,随后介绍了O在GaAs中和C在GaN中局域声子的拉曼和红外光谱研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/c273f84d-9826-4c1e-8378-2cf6d6fe70ab.jpg" title=" 柴扬.jpg" alt=" 柴扬.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:香港理工大学柴扬教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:Discovering the forbidden Raman modes at the edges of layered materials /strong /p p style=" text-align: justify text-indent: 2em " 拉曼光谱是表征二维材料的主要手段之一,二维材料边缘的特性与主体完全不同。在报告中,柴扬教授讲述了他对各种二维材料(MoS sub 2 /sub ,WS sub 2 /sub ,WSe sub 2 /sub ,PtS sub 2 /sub 等)边缘进行的系统拉曼研究,并表示Forbidden Raman modes对二维材料边缘的检测效果取决于二维材料的边缘类型以及入射光和散射光的偏振方向。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/a5dbe36c-f4b2-4bbd-8bb7-6ac3537b3e36.jpg" title=" 林妙玲.jpg" alt=" 林妙玲.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中科院半导体研究所林妙玲博士 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:范德华异质结中的电声耦合 /strong /p p style=" text-align: justify text-indent: 2em " 电声耦合作为基础物理前沿科学的研究之一,隐藏着许多新奇的物理现象。林妙玲博士通过超低频拉曼光谱研究了六角氮化硼(hBN)/二硫化钨(WS sub 2 /sub )范德华异质结中的电声耦合,发现了局域在少层WS2的二维电子态和波函数延展到上百层范德华异质结的三维层间呼吸(LB)模声子态之间的跨维度耦合,提出了以界面耦合为媒介的微观模型和范德华异质结界面键极化率模型,并计算了电声耦合的强度,对hBN/WS sub 2 /sub 异质结中各LB模的相对强度进行了解释。 /p p style=" text-align: justify text-indent: 2em " 11月3日物理材料仪器的下半场报告由吉林大学徐蔚青教授主持,天津大学仇巍教授、重庆大学张洁教授分别进行了邀请报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/c776c4e4-6e21-48c2-9107-7dae476c86ae.jpg" title=" 徐蔚青.jpg" alt=" 徐蔚青.jpg" / /p p style=" text-align: center text-indent: 0em " strong 吉林大学徐蔚青教授主持 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/07d546ea-3c13-43c9-a888-c80c227fe19e.jpg" title=" 仇魏.jpg" alt=" 仇魏.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:天津大学仇巍教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:角分辨拉曼方法及其在实验力学中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 显微拉曼光谱是研究实验力学的有效工具。仇巍教授在报告中提出了角分辨拉曼方法,并自行研制了斜向背散射角度分辨拉曼仪,提出了C-Si平面应力状态解耦的理论模型。然后,他将该方法应用于{100}c-Si的非等双轴的应力状态分析、单层石墨烯应变传感器、磷烯的晶向识别等研究中。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/cd6ff579-2952-4268-a5a6-3aed2b39e6b0.jpg" title=" 张洁.jpg" alt=" 张洁.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:重庆大学张洁教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:新型光谱检测技术及仪器 /strong /p p style=" text-align: justify text-indent: 2em " 张洁教授在报告中结合食品安全中的主成分和痕量毒害物质检测需求,介绍了用于主成分检测的新型近红外光谱技术,以及用于痕量分子检测的表面增强拉曼散射光谱技术。具体包括:①提出“碳纳米管/石墨烯/金属纳米粒子复合体系SERS基底”新结构;②提出“光MEMS调制器阵列和单点探测器”替代传统昂贵InGaSn阵列的光谱检测新思路;③进一步拓展了光谱检测技术。 /p p style=" text-align: justify text-indent: 2em " 随后,郑州大学任霄、中山大学朱嘉森、中智科仪(北京)科技有限公司任文贞分别进行了精彩的口头报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/ef33a54f-0f01-4701-976b-c29137c19ee0.jpg" title=" 任霄.jpg" alt=" 任霄.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:郑州大学任霄 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:用拉曼散射研究钛基超导母体材料BaTi sub 2 /sub As sub 2 /sub O中结构相变起因问题 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/fefe4237-ce15-4c3f-a2ba-8fc54deea096.jpg" title=" 朱嘉森.jpg" alt=" 朱嘉森.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中山大学朱嘉森 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:析氢反应中高指数晶面控制中间体吸附过程的原位拉曼研究 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2f516051-0b9b-4a30-9a47-2ade6686e673.jpg" title=" 任文贞.jpg" alt=" 任文贞.jpg" / /p p style=" text-align: center text-indent: 0em " strong 报告人:中智科仪(北京)科技有限公司任文贞 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于门控单光子相机的远程拉曼探测 /strong /p
  • 农业农村部公示多位质量安全与营养品质评价岗位科学家候选人名单
    关于公示现代农业产业技术体系首席科学家和岗位科学家候选人名单的通知为进一步加强现代农业产业技术体系(以下简称“体系”)建设,农业农村部科学技术司根据《现代农业产业技术体系建设专项管理办法》有关规定,对体系进行了优化。经公开申报、初审、网评、会评等程序,现将2024年度遴选的19位首席科学家和73名岗位科学家候选人名单予以公示。公示截止日期为2024年9月17日。如有异议,请实名反映,并署单位和联系电话,提供佐证材料。逾期或不按要求提出的异议,原则上不予受理。传真010-59193082,电子邮箱nykjghc@163.com。一、首席科学家序号体系名称候选人姓名工作单位1谷子高粱贾冠清中国农业科学院作物科学研究所2燕麦荞麦郭来春吉林省白城市农业科学院3马铃薯徐建飞中国农业科学院蔬菜花卉研究所4木薯张振文中国热带农业科学院热带作物品种资源研究所5特色油料苗红梅河南省农业科学院6茶叶王新超中国农业科学院茶叶研究所7食用菌黄晨阳中国农业科学院农业资源与农业区划研究所8苹果张东西北农林科技大学9葡萄王海波中国农业科学院果树研究所10荔枝龙眼胡桂兵华南农业大学11天然橡胶李积华中国热带农业科学院橡胶研究所12生猪谯仕彦中国农业大学13肉牛牦牛李俊雅中国农业科学院北京畜牧兽医研究所14肉羊刘永斌内蒙古大学15蛋鸡张军民中国农业科学院北京畜牧兽医研究所16肉鸡赵桂苹中国农业科学院北京畜牧兽医研究所17大宗淡水鱼朱健中国水产科学研究院淡水渔业研究中心18海水鱼陈松林中国水产科学研究院黄海水产研究所19虾蟹曹煜成中国水产科学研究院南海水产研究所二、岗位科学家序号体系名称岗位名称候选人姓名工作单位1水稻种质资源评价与鉴定欧阳亦聃华中农业大学2螟虫防控罗光华江苏省农业科学院3草害防控潘浪湖南农业大学4生物防治与综合防控张彤华南农业大学5玉米优质绿色种质改良与创新李春辉中国农业科学院作物科学研究所6干燥储藏与产品加工技术张浩吉林农业大学7小麦小麦耐热育种孙其信中国农业大学8水分生理与节水栽培马守田中国农业科学院农田灌溉研究所9根茎部病害防控李伟江苏省农业科学院10大豆黄淮海南部品种改良王大刚安徽省农业科学院11线虫防控尤佳黑龙江省农业科学院12谷子高粱糯型糜子育种降彦苗河北省农林科学院13谷子糜子栽培生理曹晓宁山西农业大学14养分管理黄晓磊山西农业大学15虫害防控刘佳河北省农林科学院16燕麦荞麦饲草燕麦育种张志芬内蒙古自治区农牧业科学院17食用豆草害防控王昶甘肃省农业科学院18马铃薯种质资源鉴定与新种质创制贺苗苗青海省农林科学院19虫害防控杨鑫中国农业科学院蔬菜花卉研究所20甘薯细胞遗传与倍性育种技术孙健江苏师范大学21种植制度周全卢南充市农业科学院22油菜育种技术与方法曲存民西南大学23栽培生理钱论文湖南农业大学24黄淮区域高产栽培蔡东芳河南省农业科学院25花生早熟品种改良鲁清广东省农业科学院26特色油料向日葵抗逆育种王文军黑龙江省农业科学院27芝麻病虫害防控倪云霞河南省农业科学院28棉花土壤管理林涛新疆农业科学院29枯黄萎病防控赵卫松河北省农林科学院30棉籽加工与质量安全彭军中国农业科学院棉花研究所31糖料甜菜高产高糖品种改良白晓山新疆农业科学院32甘蔗真菌性病害防控单红丽云南省农业科学院33丘陵坡地甘蔗机械化应用郭家文云南省农业科学院34茶叶乌龙茶加工郝志龙福建农林大学35食用菌南方栽培种质资源收集与野生菌驯化时晓菲中国科学院昆明植物研究所36绿肥豆科绿肥育种施海帆南京农业大学37大宗蔬菜茄子品种改良杨洋重庆市农业科学院38特色蔬菜综合防控王然北京市农林科学院39西甜瓜病毒病害防控季英华江苏省农业科学院40柑橘养分管理与化肥减施增效武松伟华中农业大学41质量安全与营养品质评价何悦西南大学42苹果水分管理与节水栽培徐明岗山西农业大学43枝叶病害防控练森青岛农业大学44葡萄鲜食葡萄栽培郑焕南京农业大学45采后贮运保鲜陈存坤天津市农业科学院46桃砧木评价与改良李勇中国农业科学院郑州果树研究所47花果管理张斌斌江苏省农业科学院48果园生产机械化翟长远北京市农林科学院49天然橡胶育种技术与方法晁金泉中国热带农业科学院橡胶研究所50牧草耐逆牧草育种曹晓风中国科学院遗传与发育生物学研究所51播种机械化黄玉祥西北农林科技大学52生猪种公猪营养与管理魏宏逵华中农业大学53病毒病防控白娟南京农业大学54动物福利与健康养殖唐湘方中国农业科学院北京畜牧兽医研究所55奶牛奶牛环境营养调控李纯锦吉林大学56肉牛牦牛饲料资源开发利用何阳中国农业大学57细菌病防控郝智慧中国农业大学58肉羊副产物综合利用郭玉杰中国农业科学院农产品加工研究所59绒毛用羊病毒病防控何继军中国农业科学院兰州兽医研究所60蛋鸡免疫抑制病防控王永强中国农业大学61肉鸡质量安全与营养品质评价张跟喜扬州大学62水禽鹅饲料营养价值评价与利用杨芷扬州大学63加工与副产物综合利用孙杨赢宁波大学64大宗淡水鱼细菌病防控张德锋中国水产科学研究院珠江水产研究所65池塘养殖张辉中国水产科学研究院长江水产研究所66副产物综合利用沙小梅江西师范大学67质量安全与营养品质评价洪惠中国农业大学68特色淡水鱼鮰黄颡鱼营养需求与饲料开发韩冬中国科学院水生生物研究所69大水面养殖李学梅中国水产科学研究院长江水产研究所70海水鱼河鲀品种改良姜晨大连海洋大学71养殖水环境调控崔正国中国水产科学研究院黄海水产研究所72贝类副产物综合利用李克成中国科学院海洋研究所73藻类有害藻类综合防控王旭雷中国科学院海洋研究所
  • 三全水饺被曝细菌超标
    上海家乐福超市紧急下架问题批次产品   “思念”未了 三全“水饺”也被曝细菌超标   “思念”水饺被检出金黄色葡萄球菌事件余波未了,三全水饺却也跟着传来“不安全”的信息。日前,三全水饺被广州市工商局查出细菌超标,有意思的是这种细菌和“思念”如出一辙,也是金黄色葡萄球菌。虽然三全方面表示已经追溯召回问题产品,但部分超市采购人员表示并没接到企业通知。上海家乐福表示第一时间已要求对问题批次产品撤柜。   不久前,北京市工商局在对思念牌一批次水饺的抽检中,检测出了金黄色葡萄球菌 而根据现行的国家标准规定,速冻水饺“不得检出”该菌种。这批水饺也立即被下架召回。思念方面在接受记者采访时则表示,查出细菌的原因主要是天气较热,在物流环节出了问题导致这一批次产品不合格,并对此表示道歉,上海方面家乐福等超市第一时间对问题批次产品予以下架。   想不到,该事件余波未了,三全水饺日前也被广州市工商局查出含有金黄色葡萄球菌,这两款问题产品分别是“三全灌汤水饺(猪肉玉米蔬菜)”、“三全灌汤水饺(三鲜)”。同时,被查出细菌超标的还有“海霸王经典包心鱼丸”。消息一出,三全食品方面回应称,问题产品系今年8月工商局一次例行超市抽检的样品,三全食品获悉抽检结果的当天就将该批次产品全部下架、封存,随即启动产品回溯机制,并将同批次全部产品统一追回并销毁。对方在表达歉意的同时,也强调公司自从8月开始就进一步加强了质量管控力度,尤其在原料采购、制作工序等重要环节大幅增加抽检频次和抽样数量。   虽然三全方面表示已经及时追溯召回这些问题产品,但沪上部分超市采购人员表示并未接到相关的通知。前次对思念问题水饺第一时间采取下架措施的上海家乐福昨天告诉记者,三全的相关召回通知是否送达收悉还需进一步确认。不过,根据此次监测结果,家乐福方面已于第一时间发布全国撤架通知,要求所有相关门店将涉及品牌的问题批次下架,包括三全,海霸王等产品。   这么多知名品牌连续被曝所生产的食品含有金黄色葡萄球菌,无疑让消费者担心不已。对此,有关专家指出,无需对“金黄色葡萄球菌”过度恐慌,只要在70℃以上温度的水里煮熟,即可将其杀死,所以对于生制的速冻食品,买回后应按照包装上的说明进行保存和蒸煮,因此市民不必过度担心。
  • 英国皇家化学会“Top 1% 高被引中国作者”完整榜单
    p   为彰显中国作者对国际化学研究领域的突出贡献,英国皇家化学会对旗下四十多本期刊发表论文的引用情况进行统计,将 2014、2015 年发表的文章在 2016 年的被引次数在所属领域全球排名前 1% 的名单进行筛选,整理出通讯作者第一单位是中国机构的作者名单。 /p p   作者名单排名不分先后,以英文名为准,中文名供参考。 /p p strong   综合化学 /strong /p p    strong Dr Ben Zhong Tang /strong /p p   Hong Kong University of Science & amp Technology /p p   唐本忠,香港科技大学 /p p   strong  Dr Carol Lin /strong /p p   City University of Hong Kong /p p   连思琪,香港城市大学 /p p    strong Dr Cheng-Yong Su /strong /p p   Sun Yat-sen University /p p   苏成勇,中山大学 /p p    strong Dr Chen-Sheng Yeh /strong /p p   National Cheng Kung University /p p   叶晨圣,成功大学 /p p    strong Dr Chuluo Yang /strong /p p   Wuhan University /p p   杨楚罗,武汉大学 /p p    strong Dr Chun-Hua Yan /strong /p p   Peking University /p p   严纯华,北京大学 /p p    strong Dr Dongyuan Zhao /strong /p p   Fudan University /p p   赵东元,复旦大学 /p p    strong Dr Feihe Huang /strong /p p   Zhejiang University /p p   黄飞鹤,浙江大学 /p p    strong Dr Feng Li /strong /p p   Beijing University of Chemical Technology /p p   李峰,北京化工大学 /p p    strong Dr Feng Wang /strong /p p   City University of Hong Kong /p p   王锋,香港城市大学 /p p    strong Dr Fuyou Li /strong /p p   Fudan University /p p   李富友,复旦大学 /p p    strong Dr Guo Zhiguang /strong /p p   Hubei University /p p   郭志光,湖北大学 /p p    strong Dr Guo-Xin Jin /strong /p p   Fudan University /p p   金国新,复旦大学 /p p    strong Dr Guozhen Shen /strong /p p   Institute of Semiconductor, CAS /p p   沈国震,中科院半导体所 /p p    strong Dr Hong-Yuan Chen /strong /p p   Nanjing University /p p   陈洪渊,南京大学 /p p    strong Dr Huanfeng Jiang /strong /p p   South China University of Technology /p p   江焕峰,华南理工大学 /p p    strong Dr Jun Lin /strong /p p   Changchun Institute of Applied Chemistry, CAS /p p   林君,中科院长春应化所 /p p    strong Dr Jianhui Sun /strong /p p   Henan Normal University /p p   孙剑辉,河南师范大学 /p p   strong  Dr Jiexiang Xia /strong /p p   Jiangsu University /p p   夏杰祥,江苏大学 /p p   strong  Dr Jinkui Tang /strong /p p   Changchun Institute of Applied Chemistry, CAS /p p   唐金魁,中科院长春应化所 /p p    strong Dr Jun Chen /strong /p p   Nankai University /p p   陈军,南开大学 /p p   strong  Dr Junliang Zhang /strong /p p   East China Normal University /p p   张俊良,华东师范大学 /p p    strong Dr Lei Hou /strong /p p   Northwest University /p p   侯磊,西北大学 /p p   strong  Dr Ma Dik-Lung /strong /p p   Hong Kong Baptist University /p p   马迪龙,香港浸会大学 /p p   strong  Dr Dan Wang /strong /p p   Institute of Process Engineering, CAS /p p   王丹,中科院过程所 /p p    strong Dr Qing-Zheng Yang /strong /p p   Beijing Normal University /p p   杨清正,北京师范大学 /p p   strong  Dr Rong Cao /strong /p p   Fujian Institute of Research on the Structure of Matter, CAS /p p   曹荣,中科院福建物构所 /p p    strong Dr Shi Lun Qiu /strong /p p   Jilin University /p p   裘式纶,吉林大学 /p p    strong Dr Suojiang Zhang /strong /p p   Institute of Process Engineering, CAS /p p   张锁江,中科院过程所 /p p   strong  Dr Wai-Yeung (Raymond) Wong /strong /p p   Hong Kong Baptist University /p p   黄维扬,香港浸会大学 /p p   strong  Dr Wanqin Jin /strong /p p   Nanjing Tech University /p p   金万勤,南京工业大学 /p p    strong Dr Wenjie Shen /strong /p p   Dalian Institute of Chemical Physics, CAS /p p   申文杰,中科院大连化物所 /p p    strong Dr Xiaojun Peng /strong /p p   Dalian University of Technology /p p   彭孝军,大连理工大学 /p p   strong  Dr Xiao-Ming Chen /strong /p p   Sun Yat-Sen University /p p   陈小明,中山大学 /p p    strong Dr Xueyuan Chen /strong /p p   Fujian Institute of Research on the Structure of Matter, CAS /p p   陈学元,中科院福建物构所 /p p    strong Dr Yanguang Li /strong /p p   Soochow University /p p   李彦光,苏州大学 /p p strong   Dr Yen-Ju Cheng /strong /p p   National Chiao Tung University /p p   鄭彥如,台湾交通大学 /p p   strong  Dr Yi Xie /strong /p p   University of Science and Technology of China /p p   谢毅,中国科学技术大学 /p p    strong Dr Yongshu Xie /strong /p p   East China University of Science and Technology /p p   解永树,华东理工大学 /p p    strong Dr Yu Zhang /strong /p p   Beihang University /p p   张瑜,北京航空航天大学 /p p   strong  Dr Yujie Xiong /strong /p p   University of Science and Technology of China /p p   熊宇杰,中国科学技术大学 /p p   strong  Dr Yuliang Li /strong /p p   Institute of Chemistry, CAS /p p   李玉良,中科院化学所 /p p    strong Dr Zhaohui Wang /strong /p p   Institute of Chemistry, CAS /p p   王朝晖,中科院化学所 /p p    strong Dr Zhen Li /strong /p p   Wuhan University /p p   李振,武汉大学 /p p    strong Dr Zhen Shen /strong /p p   Nanjing University /p p   沈珍,南京大学 /p p   strong  Dr Zhengkun Yu /strong /p p   Dalian Institute of Chemical Physics, CAS /p p   余正坤,中科院大连化物所 /p p    strong Dr Zhong-Min Su /strong /p p   Northeast Normal University /p p   苏忠民,东北师范大学 /p p   strong  Dr Zidong Wei /strong /p p   Chongqing University /p p   魏子栋,重庆大学 /p p   strong  Dr Zongping Shao /strong /p p   Nanjing Tech University /p p   邵宗平,南京工业大学 /p p   strong  Dr Zujin Zhao /strong /p p   South China University of Technology /p p   赵祖金,华南理工大学 /p p    strong Professor Bai Yang /strong /p p   Jilin University /p p   杨柏,吉林大学 /p p    strong Professor Bin Zhang /strong /p p   Tianjin University /p p   张兵,天津大学 /p p strong   Professor Changle Chen /strong /p p   University of Science and Technology of China /p p   陈昶乐,中国科学技术大学 /p p   strong  Professor Changzheng Wu /strong /p p   University of Science and Technology of China /p p   吴长征,中国科学技术大学 /p p   strong  Professor Chengjian Zhu /strong /p p   Nanjing University /p p   朱成建,南京大学 /p p    strong Professor Fengzhi Zhang /strong /p p   Zhejiang University of Technology /p p   张逢质,浙江工业大学 /p p    strong Professor Jinlong Gong /strong /p p   Tianjin University /p p   巩金龙,天津大学 /p p    strong Professor Lingxin Chen /strong /p p   Yantai Institute of Coastal Zone Research, CAS /p p   陈令新,中科院烟台海岸带所 /p p   strong  Professor Shuangyin Wang /strong /p p   Hunan University /p p   王双印,湖南大学 /p p   strong  Professor Shutao Wang /strong /p p   Institute of Chemistry, CAS /p p   王树涛,中科院化学所 /p p   strong  Professor Xiaoming Sun /strong /p p   Beijing University of Chemical Technology /p p   孙晓明,北京化工大学 /p p    strong Professor Xuebo Zhao /strong /p p   Qingdao Institute of Bioenergy and Bioprocess Technology, CAS /p p   赵学波,中科院青岛能源所 /p p   strong  Professor Yong Mei Chen /strong /p p   Xi& #39 an Jiaotong University /p p   陈咏梅,西安交通大学 /p p   strong  Professor Chao Gao /strong /p p   Zhejiang University /p p   高超,浙江大学 /p p    strong Professor Dongfeng Xue /strong /p p   Changchun Institute of Applied Chemistry, CAS /p p   薛冬峰,中科院长春应化所 /p p   strong  Professor Francis Verpoort /strong /p p   Wuhan University of Technology /p p   Francis Verpoort,武汉理工大学 /p p    strong Professor Guobao Xu /strong /p p   Changchun Institute of Applied Chemistry, CAS /p p   徐国宝,中科院长春应化所 /p p   strong  Professor Pingheng Tan /strong /p p   Institute of Semiconductors, CAS /p p   谭平恒,中科院半导体所 /p p   strong  Professor Weihong Zhu /strong /p p   East China University of Science and Technology /p p   朱为宏,华东理工大学 /p p strong   材料科学 /strong /p p   strong  Dr Baoquan Sun /strong /p p   Soochow University /p p   孙宝全,苏州大学 /p p   strong  Dr Cai-Ling Xu /strong /p p   Lanzhou University /p p   徐彩玲,兰州大学 /p p    strong Dr Chang-Sheng Zhao /strong /p p   Sichuan University /p p   赵长生,四川大学 /p p    strong Dr Cheng Zhi Huang /strong /p p   Southwest University /p p   黄承志,西南大学 /p p   strong  Dr Dechun Zou /strong /p p   Peking University /p p   邹德春,北京大学 /p p   strong  Dr Fan Dong /strong /p p   Chongqing Technology and Business University /p p   董帆,重庆工商大学 /p p   strong  Dr Guijiang Zhou /strong /p p   Xi& #39 an Jiaotong University /p p   周桂江,西安交通大学 /p p strong   Dr Heyou Han /strong /p p   Huazhong Agricultural University /p p   韩鹤友,华中农业大学 /p p strong   Dr Hongjing Wu /strong /p p   Northwestern Polytechnical University /p p   吴宏景,西北工业大学 /p p   strong  Dr Hu Lin /strong /p p   Hefei Institutes of Physical Sciences, CAS /p p   胡林,中科院合肥物质所 /p p strong   Dr Huaming Li /strong /p p   Jiangsu University /p p   李华明,江苏大学 /p p strong   Dr Huanghao Yang /strong /p p   Fuzhou University /p p   杨黄浩,福州大学 /p p   strong  Dr Huan-Ming Xiong /strong /p p   Fudan University /p p   熊焕明,复旦大学 /p p strong   Dr Hui Xu /strong /p p   Jiangsu University /p p   许晖,江苏大学 /p p strong   Dr Ji-Jun Zou /strong /p p   Tianjin University /p p   邹吉军,天津大学 /p p strong   Dr Jinying Yuan /strong /p p   Tsinghua University /p p   袁金颖,清华大学 /p p strong   Dr Jwo-Huei Jou /strong /p p   National Tsing Hua University /p p   周卓煇,清华大学(台湾) /p p strong   Dr Lizhi Zhang /strong /p p   Central China Normal University /p p   张礼知,华中师范大学 /p p strong   Dr Ying Huang /strong /p p   Northwestern Polytechnical University /p p   黄英,西北工业大学 /p p strong   Dr Mao-Sheng Cao /strong /p p   Beijing Institute of Technology /p p   曹茂盛,北京理工大学 /p p strong   Dr Peng Miao /strong /p p   Suzhou Institute of Biomedical Engineering and Technology, CAS /p p   缪鹏,中科院苏州医工所 /p p strong   Dr Pengfei Wang /strong /p p   Technical Institute of Physics and Chemistry, CAS /p p   汪鹏飞,中科院理化所 /p p    strong Dr Quan-Hong Yang /strong /p p   Tsinghua University /p p   杨全红,清华大学 /p p strong   Dr Shenglin Xiong /strong /p p   Shandong University /p p   熊胜林,山东大学 /p p strong   Dr Shenmin Zhu /strong /p p   Shanghai Jiao Tong University /p p   朱申敏,上海交通大学 /p p strong   Dr Tianxi Liu /strong /p p   Fudan University /p p   刘天西,复旦大学 /p p strong   Dr A L Roy Vellaisamy /strong /p p   City University of Hong Kong /p p   華禮生,香港城市大学 /p p strong   Dr Wei Huang, Dr Yanwen Ma /strong /p p   Nanjing University of Posts & amp Telecommunications /p p   黄维、马延文,南京邮电大学 /p p strong   Dr Wenguang Liu /strong /p p   Tianjin University /p p   刘文广,天津大学 /p p strong   Dr Xiaowei Zhan /strong /p p   Peking University /p p   占肖卫,北京大学 /p p strong   Dr Xiaoyong Zhang /strong /p p   Nanchang University /p p   张小勇,南昌大学 /p p strong   Dr Xike Gao /strong /p p   Shanghai Institute of Organic Chemistry, CAS /p p   高希珂,中科院上海有机所 /p p strong   Dr Yan Yu /strong /p p   University of Science and Technology of China /p p   余彦,中国科学技术大学 /p p strong   Dr Yuanzhi Chen /strong /p p   Xiamen University /p p   陈远志,厦门大学 /p p strong   Dr Zhi Yang /strong /p p   Shanghai Jiao Tong University /p p   杨志,上海交通大学 /p p    strong Professor Aiguo Hu /strong /p p   East China University of Science and Technology /p p   胡爱国,华东理工大学 /p p strong   Professor Baibiao Huang /strong /p p   Shandong University /p p   黄柏标,山东大学 /p p strong   Professor Maochun Hong /strong /p p   Fujian Institute of Research on the Structure of Matter, CAS /p p   洪茂椿,中科院福建物构所 /p p strong   Professor Shujiang Ding /strong /p p   Xi& #39 an Jiaotong University /p p   丁书江,西安交通大学 /p p   strong  Professor Tian-Ling Ren /strong /p p   Tsinghua University /p p   任天令,清华大学 /p p strong   Professor Wei Jiang /strong /p p   Nanjing University of Science and Technology /p p   姜炜,南京理工大学 /p p strong   Professor Xiandeng Hou /strong /p p   Sichuan University /p p   侯贤灯,四川大学 /p p strong   Professor Xiang-Ke Wang /strong /p p   Soochow University /p p   王祥科,苏州大学 /p p strong   Professor Xiangmin Meng /strong /p p   Technical Institute of Physics and Chemistry, CAS /p p   孟祥敏,中科院理化所 /p p strong   Professor Xiao-Chen Dong /strong /p p   Nanjing Tech University /p p   董晓臣,南京工业大学 /p p strong   Professor Xuping Sun /strong /p p   Sichuan University* /p p   孙旭平,四川大学(现工作单位)* /p p strong   Professor Xutang Tao /strong /p p   Shandong University /p p   陶绪堂,山东大学 /p p strong   Professor Yihua Zhu /strong /p p   East China University of Science and Technology /p p   朱以华,华东理工大学 /p p strong   Professor Yong Wang /strong /p p   Shanghai University /p p   王勇,上海大学 /p p    strong Professor Yuan-Hsiang Yu /strong /p p   Fu Jen Catholic University /p p   游源祥,輔仁大學 /p p strong   Professor Yunhui Huang /strong /p p   Huazhong University of Science and Technology /p p   黄云辉,华中科技大学 /p p   strong  Professor Zhiyong Tang /strong /p p   The National Center for Nanoscience and Technology /p p   唐智勇,国家纳米科学中心 /p p strong   Professor Zhuang Liu /strong /p p   Soochow University /p p   刘庄,苏州大学 /p p strong   Professor Guang Hua Cui /strong /p p   Hebei United University /p p   崔广华,河北联合大学 /p p strong   分析化学 /strong /p p strong   Dr Dan Du /strong /p p   Central China Normal University /p p   杜丹,华中师范大学 /p p strong   Dr Hui Feng /strong /p p   Zhejiang Normal University /p p   丰慧,浙江师范大学 /p p strong   Dr Xinhua Zhong /strong /p p   East China University of Science and Technology /p p   钟新华,华东理工大学 /p p strong   Mrs Guiqiu Chen /strong /p p   Hunan University /p p   陈桂秋,湖南大学 /p p strong   生物化学 /strong /p p strong   Dr Guowei Le /strong /p p   Jiangnan University /p p   乐国伟,江南大学 /p p strong   Dr Shao Li /strong /p p   Tsinghua University /p p   李梢,清华大学 /p p strong   Dr Yu-Dong Cai /strong /p p   Shanghai University /p p   蔡煜东,上海大学 /p p strong   Professor Bin Liu /strong /p p   Harbin Institute of Technology(ShenZhen) /p p   刘滨,哈尔滨工业大学(深圳) /p p strong   能源与可持续 /strong /p p strong   Dr Baohong Liu /strong /p p   Fudan University /p p   刘宝红,复旦大学 /p p strong   Dr Dapeng Cao /strong /p p   Beijing University of Chemical Technology /p p   曹达鹏,北京化工大学 /p p strong   Dr Feng Yan /strong /p p   Soochow University /p p   严锋,苏州大学 /p p strong   Dr Hui-Ming Cheng /strong /p p   Institute of Metal Research, CAS /p p   成会明,中科院金属所 /p p strong   Dr Jiaguo Yu /strong /p p   Wuhan University of Technology /p p   余家国,武汉理工大学 /p p strong   Dr Jian-Rong Jeff Li /strong /p p   Beijing University of Technology /p p   李建荣,北京工业大学 /p p strong   Dr Liduo Wang /strong /p p   Tsinghua University /p p   王立铎,清华大学 /p p strong   Dr Dan Wang /strong /p p   Institute of Process Engineering, CAS /p p   王丹,中科院过程所 /p p strong   Dr Qiang Wang /strong /p p   Beijing Forestry University /p p   王强,北京林业大学 /p p strong   Professor Chia-Wen (Kevin) Wu /strong /p p   National Taiwan University /p p   吳嘉文,台湾大学 /p p   strong  Dr Shihe Yang /strong /p p   Hong Kong University of Science and Technology /p p   杨世和,香港科技大学 /p p strong   Dr Xinhe Bao /strong /p p   Dalian Institute of Chemical Physics, CAS /p p   包信和,中科院大连化物所 /p p strong   Dr Yongfang Li /strong /p p   Institute of Chemistry, CAS /p p   李永舫,中科院化学所 /p p strong   Dr Yuliang Cao /strong /p p   Wuhan University /p p   曹余良,武汉大学 /p p strong   Professor Lin Feng /strong /p p   Tsinghua University /p p   冯琳,清华大学 /p p strong   Professor Xinchen Wang /strong /p p   Fuzhou University /p p   王心晨,福州大学 /p p strong   无机化学 /strong /p p strong   Dr Xinguo Zhang /strong /p p   Guangxi University /p p   张信果,广西大学 /p p strong   有机化学与药物化学 /strong /p p strong   Dr Feng-Ling Qing /strong /p p   Shanghai Institute of Organic Chemistry, CAS /p p   卿凤翎,中科院上海有机所 /p p strong   Dr Guoqiang Feng /strong /p p   Central China Normal University /p p   冯国强,华中师范大学 /p p strong   Dr Jie Wu /strong /p p   Fudan University /p p   吴劼,复旦大学 /p p strong   Dr Long Yi /strong /p p   Beijing University of Chemical Technology /p p   易龙,北京化工大学 /p p strong   Dr Renhua Fan /strong /p p   Fudan University /p p   范仁华,复旦大学 /p p    strong Dr Weiping Su /strong /p p   Fujian Institute of Research on the Structure of Matter, CAS /p p   苏伟平,中科院福建物构所 /p p strong   Dr Wing Yiu Yu /strong /p p   Hong Kong Polytechnic University /p p   余永耀,香港理工大学 /p p    strong Dr Xiaoming Feng /strong /p p   Sichuan University /p p   冯小明,四川大学 /p p strong   Dr Yuhong Zhang /strong /p p   Zhejiang University /p p   张玉红,浙江大学 /p p strong   Dr Zhen Yang /strong /p p   Peking University /p p   杨震,北京大学 /p p strong   Dr Zhiping Li /strong /p p   Renmin University of China /p p   李志平,中国人民大学 /p p strong   Mr Cai Zhang /strong /p p   Chongqing Vocational Insitute of Safety & amp Technology /p p   张财,重庆安全技术职业学院 /p p strong   Professor Qilong Shen /strong /p p   Shanghai Institute of Organic Chemistry, CAS /p p   沈其龙,中科院上海有机所 /p p strong   Professor You Huang /strong /p p   Nankai University /p p   黄有,南开大学 /p p strong   物理化学 /strong /p p   strong  Dr Dengsong Zhang /strong /p p   Shanghai University /p p   张登松,上海大学 /p p strong   Dr Dennis Y.C. Leung /strong /p p   The University of Hong Kong /p p   梁耀彰,香港大学 /p p strong   Dr Deyue Yan /strong /p p   Shanghai Jiao Tong University /p p   颜德岳,上海交通大学 /p p strong   Dr Jian Li /strong /p p   Northwest Normal University /p p   李健,西北师范大学 /p p strong   Dr Jianmin Sun /strong /p p   Harbin Institute of Technology /p p   孙建敏,哈尔滨工业大学 /p p   strong  Dr Liang-Nian He /strong /p p   Nankai University /p p   何良年,南开大学 /p p strong   Dr Minghua Liu /strong /p p   Chinese Academy of Sciences /p p   刘鸣华,中科院化学所 /p p strong   Dr Ping Liu /strong /p p   Fuzhou University /p p   刘平,福州大学 /p p    strong Dr Tingjun Hou /strong /p p   Soochow University /p p   侯廷军,苏州大学 /p p   strong  Dr Wen-Bin Cai /strong /p p   Fudan University /p p   蔡文斌,复旦大学 /p p    strong Professor Zhenghua Wang /strong /p p   Anhui Normal University /p p   王正华,安徽师范大学 /p p    strong Professor Caiting Li /strong /p p   Hunan University /p p   李彩亭,湖南大学 /p p strong   Professor Gang Su /strong /p p   University of Chinese Academy of Sciences /p p   苏刚,中国科学院大学 /p p strong   Professor Jianchen Li /strong /p p   Jilin University /p p   李建忱,吉林大学 /p p   strong  Professor Rui Zhang /strong /p p   Zhengzhou University /p p   张锐,郑州大学 /p p    strong Professor Yi-Jun Xu /strong /p p   Fuzhou University /p p   徐艺军,福州大学 /p
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 黄泽建:为了中国质谱业的明天
    为了中国质谱业的明天 《小型质谱仪关键技术创新及整机研制》项目自主研制侧记   “中国仪器的发展离不开质谱仪,如果中国的质谱业能在我们的带动下发展起来,如果我们研制生产的质谱仪能够摆在中国的实验室里被使用,那我们就算做了一件有意义的事情,这些年的付出就没有白费。”“让中国的实验室用上自主研制生产的质谱仪”,这不仅是中国计量科学研究院质谱技术研究实验室助理研究员黄泽建的心愿,也是所有《小型质谱仪关键技术创新及整机研制》项目组成员共同的心愿。当由中国计量科学研究院与清华大学联合完成的该项目荣获2010年度国家科学技术进步二等奖的喜讯传来时,黄泽建他们知道,属于中国质谱仪的春天就要来了!   质谱仪到底有多重要   质谱仪是一类将物质粒子(原子、分子)电离成离子,通过适当电场或磁场将它们分离,并检测其强度从而进行定性、定量分析的仪器。由于质谱仪具有直接测量的本质特征,以及高分辨、高灵敏、大通量和高准确度的特性,在生命科学、材料科学、食品安全、环境监测、医疗卫生、国家安全及国际反恐等领域具有不可替代的作用和举足轻重的地位。特别是在物质量、物质结构的准确测量方面尤为重要,是现代化学分析、生物分析领域应用最广泛的测量技术手段,同位素稀释质谱法则是化学和生物计量中适用性最强、测量准确性最高的手段和基准方法之一。   蛋白质组学泰斗的John Yates教授曾做出了这样的评价:“质谱方法在蛋白质组学研究中绝对关键,正因为有了质谱技术,才能有蛋白质组学的存在。”   黄泽建提供的美国市场研究和调查公司(SDI)市场分析报告数据显示,自2002年以来,每年以超过8%——9%的幅度增加。全球市场2005年销售量为15亿美元,2007年达30.8亿美元,2012年预计将达45亿美元。   无论从市场份额、市场增长率还是从技术更新速度,质谱仪在分析仪器领域都拥有了绝对的霸主地位,质谱仪的应用水平甚至在一定程度上反映了一个国家的分析技术水平,而质谱仪的产业状况也在一定程度上反映了一个国家科学仪器,尤其是分析仪器的产业发展状况和该国的创新能力。   中国质谱业面临窘境   SDI的数据显示,我国进口质谱仪数量上升更快,2003年进口了300多台,而2007年就达到了1700台,2008年上半年已达1100台,每台的价格为10万至80万美元。乳制品中三聚氰胺重大食品安全事件发生之后,中国对于质谱仪的需求急剧增加。国内专家估计,今后五年中国质谱市场年增长率会达到25%——30%。   “然而,当你走进分布在全国各地的各大型专业分析实验室,看到的却几乎全是由国外生产的质谱仪,这些进口质谱仪少则几十万,多则几百万。”让人遗憾的是,我国的质谱仪市场100%全部被国外公司垄断,他们正在迅速吞噬本来就不大的民族企业的有限市场空间。   “但这还不是最可怕的。”黄泽建说。在世界各国重要贸易技术壁垒——食品安全检测中,质谱仪是不可或缺的技术手段,而且随着技术贸易壁垒的升级,对质谱仪及质谱分析技术的要求越来越高。黄泽建充满忧虑地说:“由于质谱仪器受制于人,我国在食品安全、环境保护、产品质量安全等许多领域的标准、技术方面受制于人 而且,真正的核心技术是买不到的,代表源头创新的最先进质谱仪是不对我国出口的。质谱仪核心技术的‘空心化’,使得我国相关分析检测能力难以实现整体提升和跨越式发展,这也限制了我国相关领域的原始创新,导致我国在生命科学、新药研制等前沿基础科学领域缺少原始创新。”   一面是对质谱技术和仪器的严重依赖,另一面却是被进口装备和技术的完全垄断,我国质谱技术自主研发迫在眉睫。   我国广大科技专家从未放弃对质谱技术自主研发的努力。多次尝试技术引进与整机组装,但由于核心、关键技术的缺乏,未能如愿取得突破。“十五”期间,科技部在老一辈质谱技术专家的建议下,提出了“突破关键技术,主攻小型质谱仪自主研制”的质谱仪发展路线。   从“零”开始   2002年,学科带头人方向研究员,作为项目负责人,率领项目组朝着小型质谱仪的方向开始了长达八年的攻关。   “我们几乎是在‘零’的基础上开始摸索研究的。”黄泽建回忆起项目最初开始时的情景。没有相关的理论基础知识,项目组成员只能老老实实从最基本的理论开始学起 国内没有配套设备生产,项目组只能自己找加工厂加工。一个导线接口,找了好几个厂加工,前前后后做了几千个,但能用的只有不到十个 国内机械加工能力的落后也制约了研究的进行。质谱仪很多零部件对精度的要求非常高,有的甚至要求误差控制在1微米之内。普通的机械加工厂根本做不到,为了加工出符合要求的高精度零件,项目组辗转于国内大大小小的加工厂,寻求最好的合作伙伴。   在科研探索的道路上,谁也无法预测前面将会遇到怎样的困难。用坚韧不拔的毅力和勇气不断克服这些永远未知的困难,这或许正是科研的乐趣。在这过程中,既有灵感的突然闪现带来的惊喜,又有百思不得其解的烦恼 既需要集体智慧的相互碰撞,又需要每个成员脚踏实地的动手操作。在中国质谱仪诞生的过程中,也不缺乏这样的例子。   一个困扰项目组整整半年、投入了大批资金、科研人员花费大量时间精力却一直无法解决的难题,竟被偶然发现原来是由于设备接触不好而导致。在稍加调整后,设备从此运转正常   为了找寻到最适合制造核心部件——离子阱的材质,项目组依次尝试了多种不同材料,并设计研制出了各种不同结构和形状的离子阱,最终在六代离子阱中选择了性能最优的一款   为了不断地调试设备,每名研究人员反反复复拆装一台质谱仪的次数都要以“千”来计算……   核心领域取得突破   多年的努力,项目组从理论和技术上解决了一系列质谱仪自主研制的技术难题,不仅对关键技术有原始创新,对质谱仪整机的研制也具有集成创新。   针对质谱领域发展的大趋势,项目组在其关键的两个核心领域,即质量分析器和离子源方面提出了3项重要的发明,占领了国际质谱研究的一席之地、奠定了可持续发展的基础。在多电极离子阱和离子光学方面,他们在国际上首次提出了“用电场分布平衡机械误差带来的高阶场”的新思路 在叠型场离子阱质量分析器方面,他们又首次提出“用机械形状近似来提供更多完美电场”的新思路。这两种新的发明为离子阱、线性离子阱的发展开辟了新的、更广阔的道路。项目组还首次提出介质阻挡放电离子源的实现方法,介质阻挡放电离子源和自主研制的便携式质谱仪首次成功结合,将为国民经济生活水平的提高贡献重要力量。   项目组还建立了一系列自主有特色的专利技术。例如:阱内光电离技术使得复杂挥发性有机气体的定性和定量分析变得简单 离子阱阵列可以对一个或者多个样品进行同时分析,大大提高了质谱分析的效率,同时,信号累加的方式还可以使得在进行痕量分析的时候,获得更高的灵敏度 便携式质谱仪研制的成功使得我国成为国际上少数几个质谱小型化发展的国家之一,最新研制的便携式质谱仪使得现场快速检测、在线和原位检测成为可能,为应对各种突发性事件、公共安全事件等提供了很好的解决方案……   现在,项目组已成功研制出车载质谱、生物质谱、小型便携式质谱,它们将在我国生命科学、生物安全、航天科技等领域发挥支撑作用。   更可贵的是,项目组把产业化作为成果应用推广的首要任务,在带动我国质谱仪产业跨越式发展方面做出了突出贡献。黄泽建介绍,由他们自主研制的3种型号质谱联用仪工艺样机,已进入产品工艺化阶段。他们已与普析通用公司通过签署技术开发服务的模式,成功实现了四极杆质谱仪的产业化。到2010年底,该产品已销售数十台,实现上千万的销售额。一个让人欣喜万分的中国质谱产业发展的雏形正在形成。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制