当前位置: 仪器信息网 > 行业主题 > >

三乙酰半乳糖烯

仪器信息网三乙酰半乳糖烯专题为您提供2024年最新三乙酰半乳糖烯价格报价、厂家品牌的相关信息, 包括三乙酰半乳糖烯参数、型号等,不管是国产,还是进口品牌的三乙酰半乳糖烯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三乙酰半乳糖烯相关的耗材配件、试剂标物,还有三乙酰半乳糖烯相关的最新资讯、资料,以及三乙酰半乳糖烯相关的解决方案。

三乙酰半乳糖烯相关的资讯

  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 上海通微为蒙牛提供乳糖检测设备
    2011年的金秋十月,上海通微分析技术有限公司蒸发光散射检测器在经历了5年多的发展之后,终于迎来了丰硕的成果。蒸发光散射检测器UM 3000已顺利通过蒙牛乳业集团验收,并将继续在其各地分公司采购UM 3000蒸发光散射检测器作为乳糖检测设备。 从最初的饮片厂,到现在的食品公司,制药企业和省级质监所,上海通微正在一步一个脚印的前行。上海通微UM 3000蒸发光散射检测器的各项性能指标均达到国际水平,尤其在信噪比方面我们更是处于国际领先水平。2011年,我们在UM 3000的基础上推出了新一代蒸发光散射检测器UM 5000,新机性能更高,体积也更小巧。 通微(美国)技术有限公司是微分析领域国际领先的仪器制造商,其加压毛细管电色谱,激光诱导荧光检测器是微分析领域中的佼佼者。上海通微分析技术有限公司作为其子公司,业务覆盖更多液相色谱领域,包括高效液相色谱仪,制备液相色谱仪,蒸发光散射检测器,加压毛细管电色谱和激光诱导荧光等。
  • 鞠熀先教授团队发展细胞表面聚糖原位检测新方法
    p   糖基化是普遍存在的翻译后修饰,蛋白质的糖基化模式决定了其结构、功能以及细胞识别和信号传导等过程,与细胞生理状态的动态响应、疾病的进程和状态密切相关。因此,对活细胞表面特定蛋白糖型的原位检测有助于加深对糖基化机制和蛋白功能的理解,也可为疾病特别是癌症的诊断和治疗提供靶标。 /p p   南京大学生命分析化学国家重点实验室的鞠熀先教授研究组自2007年以来,针对这一挑战性课题,先后在国家自然科学基金和973项目资助下,通过设计两表面一分子竞争识别策略和聚糖电化学检测芯片,提出细胞表面糖基原位检测的奠基性工作(J. Am. Chem. Soc., 2008, 130, 7224 Angew. Chem. Int. Ed., 2009, 48, 6465等),曾获2013年教育部自然科学一等奖。同时,他们通过组装P-糖蛋白抗体功能化仿生界面,提出电极界面上细胞检测的新方法 并引入“化学选择性聚糖识别”,提出细胞表面多种聚糖的同时定量和聚糖密度的分析策略,该工作是2016年江苏省科学技术一等奖的主要内容。2015年以来,该研究组在细胞表面特定蛋白糖型的成像方法学研究方面取得重要的进展,发展了特定蛋白质上的糖基与多种糖型原位检测的系列方法(Chem. Sci., 2015, 6, 3769 Chem. Sci., 2016, 7, 569 Anal. Chem., 2016, 88, 2923 Angew. Chem. Int. Ed., 2016, 55, 5220)。近日,他们用核酸适配体(Apt)标记半乳糖氧化酶(GO),利用Apt识别细胞表面的特定蛋白质和GO的活性“开关”,构建了一种局域聚糖化学重构策略,实现了活细胞表面特定蛋白的糖型成像。相关工作发表在Angew. Chem. Int. Ed. 上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/fc3bb757-60dd-4e71-aa95-f9b4658441cc.jpg" title=" 176385_201706191504311.jpg" / /p p style=" text-align: center " 图1. 局域聚糖化学重构策略的原理示意图 /p p   该局域聚糖化学重构工作的第一作者是2014级硕士研究生惠晶晶,丁霖副教授和鞠熀先教授为通讯作者。他们以MUC1黏蛋白为研究模型,首先利用Apt与MUC1的特异性识别将亚铁氰化钾抑制的GO定位至MUC1上。然后用铁氰化钾激活GO,催化氧化细胞表面MUC1的末端半乳糖/N-乙酰半乳糖胺(Gal/GalNAc)生成醛基,通过醛基-生物素酰肼的快速反应将FITC标记在目标Gal/GalNAc上,用化学反应活性作为信号报告系统实现了活细胞表面特定蛋白糖型的原位检测。与通常的糖代谢标记技术相比,局域聚糖化学重构策略操作简单,仅对目标蛋白上的聚糖进行标记,标记过程与细胞自身功能无关,避免了“代谢效率”的异质性问题,为不同细胞系特定蛋白上糖型表达的研究提供了重要的工具和方法模型。这是该课题组在细胞功能分子原位检测方法学研究领域的又一项重要进展。 /p
  • 菲罗门 ACE色谱柱 乳糖的含量测定
    乳糖的含量测定方法:chp2015 二部色谱柱:ace excel nh2 5μm 150×4.6mm(货号:exl-1214-1546u) 流动相:乙腈-水(70:30)流速:1.0 ml/min 进样体积:10μl 柱温:35℃检测:ri@35℃样品:5 mg/ml,溶于流动相中 附:ace nh2 用于糖分析时,每次使用前的冲洗方案保存好的 ace nh2 柱,每次拿出来用于分析还原糖之前,应按下列步骤进行操作,以便在开始分析之前获得最佳的色谱柱性能。1. 乙腈/水(7:3),冲洗 20 倍柱体积;2. 乙腈/水(7:3),加 0.1% v/v 氨水溶液(氨水溶液浓度约 32%),冲洗 50 倍柱体积;3. 乙腈/水(7:3),冲洗 20 倍柱体积; ace nh2 柱长期保存条件:为了最大程度上延长色谱柱使用寿命,先用乙腈/水(1:1)冲洗 20 倍柱体积,再用100%异丙醇冲洗 20 倍柱体积,然后取下柱子塞紧柱堵头放置。
  • 糖类物质分析利器—离子色谱值得拥有!
    糖类物质分析利器—离子色谱值得拥有!关注我们,更多干货和惊喜好礼高立红 韩春霞 郑洪国糖类是自然界中广泛分布的一类重要的有机化合物,在生命活动过程中起着重要作用。由于其具有改善肠道菌群,以及抗肿瘤、抗氧化、抗衰老、降血糖降血脂等作用,广泛应用于食品和医药领域。因此,糖类物质的分析检测在食品和药物质量控制方面具有重要作用。 糖类分析难点:1. 极性强并且同分异构体较多,常规色谱柱对其保留和分离效果欠佳;2. 无紫外吸收或较弱,一般检测器无法直接检测, 需要衍生后进行测定,操作复杂并且某些热不稳定的糖回收率差。基于糖类物质的化学特征,以及常规分析检测难点,采用离子色谱法(IC)进行检测具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪 快来围观离子色谱在糖分析中的优异表现吧! 单双糖分析分离度和灵敏度齐飞——赛默飞ICS-6000高压离子色谱仪,配置特有的单双糖分析色谱柱,脉冲安培检测器,使离子色谱轻松应对半乳糖、葡萄糖、木糖、果糖、蔗糖、乳糖、麦芽糖等常见单双糖的测定。仅需5~25 μL小体积进样即可检测ng/L~mg/L级别单双糖,无需衍生化,灵敏度高,选择性好。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖(点击查看大图) 脱水糖和糖醇分析 对PM2.5大气颗粒物中糖类物质进行监测可以有效帮助识别大气颗粒污染物的成因和来源。采用ICS-6000离子色谱仪脉冲安培法测定大气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖,无需衍生可直接测定,操作简单重复性好;并且与颗粒物中阿拉伯糖醇和海藻糖等干扰物质具有有效分离;当样品提取液为10 mL,左旋葡聚糖、甘露聚糖和半乳聚糖的检出限可达到0.02 μg,灵敏度高。IC-PAD测定大气颗粒物中脱水糖和糖醇(点击查看大图) 低聚糖和多糖分析 1. 国家标准方法依从2016年出台的三项食品安全国家标准:《GB5009.245-2016食品中聚葡萄糖的测定》、《GB5009.255-2016食品中果聚糖的测定》、《GB5009.258-2016食品中棉子糖的测定》均采用赛默飞离子色谱条件进行测定。赛默飞ICS-6000高压离子色谱仪,配置四元梯度泵和脉冲安培检测器,四电位波形测定,灵敏度高,重复性好,助您轻松应对标准法规。 2. 乳粉中的低聚半乳糖低聚半乳糖(GOS)是一种具有天然属性的功能性低聚糖,婴幼儿奶粉中都添加了低聚半乳糖的营养成分,因此是奶粉中的必检项目。赛默飞自主研发建立使用低聚半乳糖原料为对照品直接测定低聚半乳糖的方法。利用不受奶粉本底干扰的色谱峰来定性定量,不受样品中高含量乳糖的干扰,可准确测定婴幼儿奶粉中的低聚半乳糖。此方法无需酶解,降低成本,但对色谱柱分离能力和检测器灵敏度要求较高,赛默飞ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA20色谱柱,可完全满足高灵敏度和分离度的要求。IC-PAD测定不同厂家的低聚半乳糖谱图(点击查看大图) 3. 淀粉多糖的分析对于聚糖分析,即使聚合度大于100的淀粉,离子色谱法也仍有很好的分离度和灵敏度,可分离出多达132个峰!其他检测方法望尘莫及!IC-PAD测定玉米淀粉谱图(点击查看大图) 糖型结构分析 由于赛默飞离子色谱无需衍生、灵敏度高以及专用糖色谱柱you秀的保留分离能力,其在注射液糖类分析、多糖疫苗/多糖蛋白结合疫苗和糖基化蛋白药物分析等方面亦有you秀表现。 糖基化对蛋白药物的疗效,稳定性,免疫原性具有重要的影响。糖基化蛋白经酶切后,N-糖链无需衍生即可直接离子色谱进样分析,避免了衍生过程中唾液酸的降解,减少样品前处理步骤和时间。2020版中国药典新增单抗N糖谱分析,采用ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA200色谱柱进行测定。此外,赛默飞独有的IC-Q Exactive高分辨质谱联用技术,可鉴定出更多的糖型,适用于复杂唾液酸修饰的糖型,可极大的完善和推动糖蛋白类药物N-糖链的质控分析。单克隆抗体N-糖链 (a) LC-MS/MS完整分析流程, (b) IC-MS分析流程(点击查看大图)滑动查看更多IC-PAD和IC-QE检测N-糖型结果(点击查看大图) zui后为大家总结了离子色谱法测定糖类物质的标准方法和推荐色谱柱,诚意满满!!!离子色谱法测定糖类物质标准方法和推荐色谱柱(点击查看大图)高品质明星耗材,助力检测事半功倍!5月6日起,离子色谱耗材官网全线7折,购抑制器+任意耗材低至6.8折!更有热点应用方案免费下载,尽请期待!? 下单即赠: 摩飞果汁机/蕉下太阳伞/幻响蓝牙耳机? 促销代码:IC0501如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • ATAGO(爱拓)乳制品行业应用检测方案
    随着乳制品的需求量日益增加,乳制品的包装成为人们关心的问题之一,无菌包装技术正顺应了时代发展的要求,成为包装业的后起之秀,在乳制品行业有着更为广阔的发展空间。 进入新世纪,我国乳品行业迅猛发展。据世界粮农组织(FAO)的统计,自2000年以来,我国是世界乳业发展最迅速的地区之一,乳品产量居世界第三,仅次于印度和美国。与此同时,乳品质量控制的重要性日渐凸显。随着近几年曝光的一系列乳品质量安全问题,让生产企业和消费者倍都加重视乳品的质量问题。 可溶性固形物含量和折光率是乳品(这里主要指纯牛奶、酸奶和乳饮料,下同)质量检测中的两个重要指标。 乳制品行业的应用: 折光率检测(在线折光仪):原料收购、初加工阶段----正常的牛乳在20℃时的折光指数是1.3428&mdash 1.3458,掺水乳的折光指数降低。 含水量检测(牛奶浓度计):防掺水,防假冒----牛奶的含水量与Brix值之间存在某种关系,测量BriX值可以通过查表得到含水量。 浓度测定(乳糖浓度计)---原料、加工环节通过对浓度(Brix值)的控制确保产品品质的均一性。 旋光测量(自动旋光仪)----含量检测--乳糖具有旋光性,用旋光仪区分总糖中的乳糖 DR-A1-plus乳制品专用数显阿贝折光仪 特为乳制品及牛奶行业研发设计,用于乳制品浓度、折射率的测定及含水量判定等 NAR-1T Liquid 阿贝折光仪 用于乳制品浓度、折射率的测定及含水量判定等 RX-5000a全自动台式数显折光仪 专利的MODE-S检测技术,用于乳制品浓度、折射率的测定及含水量判定 AP-300全自动旋光仪 用于乳糖含量的测定及其他食品添加 剂和食品香料的旋光测量 [lactose]是二糖的一种,是在哺乳动物乳汁中的双糖,因此而得名。它的分子结构是由一分子葡萄糖和一分子半乳糖缩合形成。味微甜,   工业中从乳清中提取,用于制造婴儿食品、糖果、人造牛奶等。医学上常用作矫味剂。本品为4-O-&beta -D- 吡喃半乳糖基-D- 葡萄糖一水合物。 乳糖是糖类中的一种,糖类的化学构成可分为单糖、双糖和多糖。乳糖是双糖,乳糖在人体内被双糖酶分解成一分子的葡萄糖和一分子的半乳糖而被人体吸收利用,葡萄糖是血液中唯一合适的糖,血液把葡萄糖送到人体全身的每一个细胞,细胞把葡萄糖转化为二氧化碳及水,并释放出热能。 人乳、牛奶、山羊奶中的乳糖含量是不同的,人乳含乳糖7%,牛奶中含乳糖4.2%,山羊奶含乳糖4.6%,牛、羊奶中的乳糖含量都比人乳低。乳糖没有甘蔗糖甜,它的甜度是甘蔗糖的六分之一。 PAL-S数显牛奶专用浓度计 用于乳制品及乳饮料的浓度控制与检测 Master-a手持糖度计 用于乳制品及乳饮料的糖度控制与检测 DPH-2便携式酸度计 用于乳制品的PH值控制与检测 在乳品企业中成功被应用单位举例: 伊利乳业、完达山乳业、达能乳业(北京)有限公司 结束语 随着国民经济的发展和居民生活水平的提高,乳制品成为居民日常营养食品,乳制品行业的工业总产值不断增加,在国民经济中的比重不断提高,同时,乳品质量安全直接关系到公众健康,对乳品的检测水平,可靠性要求越来越高。作为乳品质量检测仪器的提供者,ATAGO(爱拓)PAL系列迷你数显折射计、阿贝折光仪、RX系列台式折光仪广泛应用于我国乳品行业。多种类、多型号的丰富产品满足了从原料奶检测、生产线内控到实验室检测等各环节全面需要。通过以上分析,ATAGO(爱拓)折光仪为保障乳品质量安全,降低公众健康隐患发挥着重要作用。 本文来之:广州市爱宕科学仪器有限公司 访问ATAGO(爱拓)中文网站,您将获得更多信息 &hellip 查看详细仪器价格、技术资料并订购,请访问ATAGO(爱拓)中国官网或者致电联系我们: http://www.atago-china.com
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • “三新食品”与食药物质常见问题解析
    三新食品共性问题汇总  01“三新食品”是什么,我国如何管理?  “三新食品”指的是《食品安全法》第三十七条所列的“新食品原料”“食品添加剂新品种”和“食品相关产品新品种”。根据《食品安全法》及其实施条例、《新食品原料安全性审査管理办法》、《食品添加剂新品种管理办法》和《食品相关产品新品种行政许可管理规定》等,我国对于“三新食品”实行行政许可制度,即利用新食品原料生产食品,或者生产食品添加剂新品种、食品相关产品新品种,应当向国务院卫生行政部门提交安全性评估材料。国务院卫生行政部门应当自收到申请之日起六十日内组织审查;对符合食品安全要求的,准予许可并公布;对不符合食品安全要求的,不予许可并书面说明理由。目前,国家卫生健康委负责“三新食品”行政许可工作,指定国家食品安全风险评估中心负责组织“三新食品”的技术评审等工作。  02 “三新食品”公告与食品安全标准的关系是什么?  对于通过安全性评估、符合食品安全要求的“三新食品”,国家卫生健康委以公告的形式公布。对于公告已经批准的“三新食品”,国家卫生健康委按照食品安全国家标准管理的有关规定制定或修订食品安全国家标准,相应的食品安全国家标准发布实施后,原公告自动废止。  03 新食品原料和食药物质如何界定和管理?  按照《新食品原料安全性审查管理办法》规定,新食品原料是指在我国无传统食用习惯的以下物品:动物、植物和微生物;从动物、植物和微生物中分离的成分;原有结构发生改变的食品成分;其他新研制的食品原料。属于上述情形之一的物品,应当按照《新食品原料安全性审音管理办法》的规定申报批准,已批准作为新食品原料的微生物列入《可用于食品的菌种》和《可用于婴幼儿食品的菌种》名单。按照《按照传统既是食品又是中药材的物质目录管理规定》,按照传统既是食品又是中药材的物质(简称“食药物质”)是指传统作为食品,且列入《中华人民共和国药典》的物质。对于符合《按照传统既是食品又是中药材的物质目录管理规定》的物质,由国家卫生健康委会同国家市场监督管理总局予以公布。公布的物质可按照规定用于相关食品的生产经营。  04 食品提取物能否作为食品原料使用?  食品原料成分复杂,食品提取工艺多样,对食品提取物的管理方式原则按照个案处理进行具体分析。食药物质目录中的物质可在食品生产加工过程中作简单水提处理(未改变物质基础)。由该水提液经物理过程(如冷冻干燥、喷雾干燥、真空干燥、热风干燥等)制备得到的浓缩液、浸育或粉体可作为原料用于普通食品生产,在终产品中的量经折算后应与原物质的传统使用量一致。新食品原料使用应按照公告执行。有关问题,可以参考《国家卫生计生委政务公开办关于新食品原料、普通食品和保健食品有关问题的说明》。  05 已经批准的新食品原料公告中的产品“性状”是否需要严格遵守?  新食品原料的生产和使用应与公告内容一致。目前,针对新食品原料不同性状的申请,在进行安全性审查中增加对其不同性状的包容性审查,在保障安全的前提下,尽量在公告中予以全面描述。对于此前个别公告中的性状要求,例如玛咖粉等,经切片、干燥、粉碎等简单物理加工的同源加工品,未改变物质基础,安全性可以保证,也认为属于公告范畴。  06 新食品原料能否用于特殊膳食用食品(包括运动营养食品)?  根据《食品安全国家标准 预包装特殊膳食用食品标签》(GB 13432-2013)特殊膳食用食品是指为满足特殊的身体或生理状况和(或)满足疾病、紊乱等状态下的特殊膳食需求,专门加工或配方的食品,主要食品类别包括婴幼儿配方食品、婴幼儿辅助食品、特殊医学用途配方食品以及其他特殊膳食用食品(包括运动营养食品)。  公告中使用范围包括特殊膳食用食品的新食品原料,可作为特殊膳食用食品的原料来源,其使用应符合相关标准和公告规定。公告中未明确标示使用范围包括特殊膳食用食品的新食品原料,应按照特殊膳食用食品相关标准等的规定和要求执行。食品生产经营应严格按相关法律、法规、标准及公告执行。  07 新食品原料推荐食用量及最大使用量是否应该强制性遵守?  “三新食品”公告中新食品原料的推荐食用量以及使用范围和最大使用量的设定是基于现有可获得的人群食用情况、毒理学研究资料、营养和生理作用研究等资料,以及参考国际组织等批准应用情况,经安全性评估和技术评审后确定,在该推荐食用量以及使用范围和最大使用量规定下,可充分保障人群健康。  对于公告中明确规定推荐食用量以及使用范围和最大使用量的新食品原料,企业应严格按照公告要求生产,相关部门按照规定进行监管。对于消费者,建议按照公告中的推荐食用量进行食用。  08 新食品原料在固体饮料、浓缩饮料、乳及乳制品中添加量的问题。  已批准可用于饮料的新食品原料,其在浓缩饮料中的推荐最大使用量可按照液体体积折算。例如,国家卫生健康委2021年第5弓公告批准二氢槲皮素在饮料中的最大使用量为20 mg儿。若将二氢槲皮素用于固体饮料,应按照冲中调后液体体积折算。  已批准可用于乳及乳制品的新食品原料,如添加在乳粉中,应将乳粉以1:8(w:w)折算为液体乳计算每日食用量。例如,国家卫生健康委2020年第9号公告批准透明质酸钠为新食品原料,可用于乳及乳制品等食品类别中,其在乳及乳制品中的最大使用量为02 g/kg。乳粉可以1:8(w:w)折算为液体乳。  09 新食品原料公告中推荐食用量应该如何换算?  对于推荐食用量的折算问题,主要存在两种情形:  情形一:无特定成分,推荐食用量无需折算。新食品原料含有多种成分或混合物,无明确特征成分,则推荐食用量为批准产品的量,无需根据成分进行浓度折算,如番茄籽油、元宝枫籽油、牡丹籽油、翅果油、蛋白核小球藻等。  情形二:有特定成分,推荐食用量需要折算,具体分为两种:一是公告中明确推荐食用量以某一特定成分计。该推荐食用量为该特定成分的食用量,当使用符合公告质量规格要求的新食品原料时,其推荐食用量应当按照该特定成分的实际浓度折算。例如:DHA藻油公告中规定推荐食用量为≤300毫克/天(以纯DHA计),质量规格要求DHA含量235%,则DHA含量为35 g/100g的DHA藻油食用量应为300室克/天+35%:857室克/天,DHA含量为60%的DHA藻油食用量应为300室克/天+60%=500室克/天。二是公告中未明确推荐食用量以某一特定成分计。公告产品的中文名称为某一特定成分或依据某一特定成分命名,质量规格规定该成分含量要求,但推荐食用量未指出以该特定成分计,则公告的推荐食用量为符合质量要求最低值的食用量,高出该值的应当按照该特定成分的实际含量折算,如茶叶茶氨酸公告中规定推荐食用量为0.4克/天,质量规格要求茶氨酸含量220%,则茶氨酸含量为40%的茶叶茶氨酸食用量应为0.4克/天x20%+40%=0.2克。既往公告的叶黄素酯、y-氨基丁酸、蚌肉多糖等均按此方法进行折算。  10 新食品原料不适宜人群中婴幼儿和儿童的定义问题。  新食品原料公告中关于婴幼儿和儿童的表述有婴幼儿、儿童、少年儿童、14周岁以下儿童。其中婴幼儿是指0-36个月(包含:6个月)人群。儿童、少年儿童和14周岁以下儿童为同一人群的不同表述方式,一般是指3-14周岁(不包含3周岁,包含14周岁)人群。  11 新食品原料使用范围规定中“婴幼儿食品”的定义与范围,以及不能用于“婴幼儿食品”是否等同于婴幼儿不宜食用等。  “三新食品”指的是《食品安全法》第三十七条所列的“新食品原料”“食品添加剂新品种”和“食品相关产品新品种”。根据《食品安全法》及其实施条例、《新食品原料安全性审査管理办法》、《食品添加剂新品种管理办法》和《食品相关产品新品种行政许可管理规定》等,我国对于“三新食品”实行行政许可制度,即利用新食品原料生产食品,或者生产食品添加剂新品种、食品相关产品新品种,应当向国务院卫生行政部门提交安全性评估材料。国务院卫生行政部门应当自收到申请之日起六十日内组织审查;对符合食品安全要求的,准予许可并公布;对不符合食品安全要求的,不予许可并书面说明理由。目前,国家卫生健康委负责“三新食品”行政许可工作,指定国家食品安全风险评估中心负责组织“三新食品”的技术评审等工作。  12 关于菌株一致性的判定问题。  目前国内外相关机构均未制订针对菌株一致性鉴定的标准方法和判定标准。菌株水平的鉴定需依据其表型、基因等鉴定结果以及菌株来源等资料进行综合判定。基因的鉴定方法有多种,如基于全基因组测序技术的平均核苷酸一致性、单核苷酸多态性、核心基因多位点序列分型等获得学术界广泛认可的技术可用于菌株水平的鉴定。  13《可用于食品的菌种名单》与《可用于婴幼儿食品的菌种名单》的使用范围是如何规定的?  国家卫生健康委2022年第4号公告已对《可用于食品的菌种名单》、《可用于婴幼儿食品的菌种名单》进行了更新。其中《可用于食品的菌种名单》中的菌种一般可用于除婴幼儿食品以外的普通食品,原公告中规定使用范围的,按照公告执行,且标签及说明书中应当标注使用范围:《可用于婴幼儿食品的菌种名单》中的菌种,除另有注释外,可用于婴幼儿食品。  14《可用于食品的菌种名单》与《可用于婴幼儿食品的菌种名单》更名后过渡期是如何规定的?  国家卫生健康委2022年第4号公告已对《可用于食品的菌种名单》、《可用于婴幼儿食品的菌种名单》进行了更新。对名单中涉及菌种分类和命名调整的,设置2年过渡期。过渡期内新旧菌种名称均可以使用,过渡期满后均需使用更新后的菌种名单。过渡期内生产的使用旧菌种名称的产品可在产品保质期内继续销售。  三新食品特定问题汇总  01蛋白质酶解物能否作为食品原料使用?   原国家卫生计生委2013年第3号公告规定,“以可食用的动物或植物蛋白质为原料,经《食品添加剂使用标准》(GB2760)规定允许使用的食品用酶制剂酶解制成的物质作为普通食品管理”。可食用的动物或植物是指作为普通食品管理的动物或植物,如果是新食品原料来源的蛋白质通过允许使用的食品用酶制剂制成的物质,其不适宜人群应与该新食品原料保持一致,推荐食用量由生产企业按照该新食品原料的蛋白质含量折算,不适宜人群及推荐食用量应按照原公告要求进行标注。  如水解蛋黄粉(原卫生部2008年第20号公告)、玉米低聚肽粉(原卫生部2010年第15号公告)、小麦低聚肽(原卫生部2012年第16号公告),均以可食用的动物或植物蛋白质为原料,经GB2760规定允许使用的食品用酶制剂酶解制成,适合2013年第3号公告的规定,可作为普通食品管理。  02 红参是否可作为食品原料使用?  原卫生部2012年第17号公告批准人参(5年及5年以下人工种植)为新资源食品(现称新食品原料),并对其拉丁名称、基本信息、食用量及不适宜人群等进行了明确说明。根据《中华人民共和国药典》(2020版),红参是以人参为原料,经蒸制干燥后的同源加工品。以符合上述公告要求的人参为原料加工制成的红参,可以作为食品原料使用,其食用量和不适宜人群等要求,亦应参照人参的公告执行。食品生产经营应严格按照相关法律、法规、标准及公告执行。  03 文冠果种仁制备的文冠果油是否需要标示不适宜人群?  国家卫生健康委2023年第5号公告《关于文冠果种仁等8种“三新食品”的公告》对文冠果种仁的不适宜人群等要求进行了明确规定。食品生产经营应严格按相关法律法规、标准、公告执行。鉴于文冠果油具有长期人群食用历史,目国家粮食和物质储备后已发布标准《文冠果油》(LS/T3265-2019),因此文冠果油已终止审查,按普通食品管理。  04 低聚半乳糖的使用范围和使用量是如何规定的?  原国家卫生部2008年第20号公告批准低聚半乳糖为新资源食品(现称新食品原料),并对其基本信息、生产工艺、使用范围、食用量、质量要求进行了明确规定。《食品安全国家标准 食品营养强化剂》(GB14880)已对低聚半乳糖作为食品营养强化剂的使用范围与使用量进行了明确规定。国家卫生健康委2017年第8号公告批准低聚半乳糖(乳清滤出液来源)为食品营养强化剂,其使用范围、使用量与GB 14880中低聚半乳糖(乳糖来源)相同。国家卫生健康委2019年第4号公告批准低聚半乳糖(乳清滤出液来源)作为食品营养强化剂用于调制乳粉(仅限儿童用乳粉),使用量不超过64.5 g/kg。  低聚半乳糖作为食品营养强化剂使用时,应当符合GB 14880的有关要求,低聚半乳糖作为新食品原料时,应符合新食品原料原公告相关规定。食品生产经营应严格按相关法律、法规、标准及公告执行。  食药物质问题汇总  01 已公告批准的食药物质目录包括哪些物质?  现行的食药物质目录,包括《关于进一步规范保健食品原料管理的通知》(卫法监发〔2002〕51号)中的附件1、《关于当归等6种新增按照传统既是食品又是中药材的物质公告》(2019年第8号)和《关于党参等9种新增按照传统既是食品又是中药材的物质公告》(2023年第9号)。  02 藕节、冬瓜皮是否可以作为普通食品原料?  藕、冬瓜是我国长期且广泛食用的普通食品,已在食品安全标准管理范围内。因食用习惯和喜好等,藕节、冬瓜皮亦作为藕、冬瓜的一部分使用,目前未发现这两种物质引起食品安全问题的资料。  03 灵芝孢子、灵芝孢子粉、破壁灵芝孢子粉能否作为食品原料使用?  国家卫生健康委会同国家市场监督管理总局印发《关于党参等9种新增按照传统既是食品又是中药材的物质公告》(2023年第9号)将党参、肉苁蓉(荒漠)、铁皮石斛、西洋参、黄芪、灵芝、山茱萸、天麻、杜仲叶等9种物质纳入按照传统既是食品又是中药材的物质目录。公告中明确规定灵芝为多孔菌科真菌赤芝(Ganoderma lucidum(Leyss.ex Fr.)Karst.)或紫芝(Ganoderma sinense Zhao, Xu et Zhang)的干燥子实体。灵芝孢子为灵芝的种子,与公告中的物质不一致。该公告不适用灵芝孢子。  《国家卫生计生委办公厅关于破壁灵芝孢子粉有关问题的复函》(国卫办食品函〔2014〕390号)明确灵芝孢子粉缺乏长期食用历史且已作为药物使用,作为普通食品原料使用尚无足够的科学依据。  04 食药物质目录中鲜白茅根如何定义?是否可以在产品标签中直接标注白茅根?  原卫生部《关于进一步规范保健食品原料管理的通知》(卫法监发〔2002〕51号),将“鲜白茅根”作为食药物质管理。简单晾晒、烘干等是很多食品原料常用的一般加工工艺,不影响其作为食品原料使用。根据《食品安全国家标准 预包装食品标签通则》(GB7781-2011)规定,预包装食品的标签上应标示配料表,配料表中各种配料的具体名称应能清晰地反映食品的真实属性,且以不使消费者误解或混淆食品的真实属性、物理状态或制作方法为原则……  低聚半乳糖作为食品营养强化剂使用时,应当符合GB 14880的有关要求,低聚半乳糖作为新食品原料时,应符合新食品原料原公告相关规定。食品生产经营应严格按相关法律、法规、标准及公告执行。  05 干芦根是否可以作为食药物?  《中华人民共和国药典》(2020版)收录了芦根,为禾本科植物芦苇Phragmites communis Trin.的新鲜或干燥根茎。原卫生部《关于进一步规范保健食品原料管理的通知》(卫法监发〔2002〕51号)将“鲜芦根”列入“既是食品又是药品的物品名单”。干芦根与鲜芦根使用部位一致,是鲜芦根物理脱水后的一种保存方式。根据《按照传统既是食品又是中药材的物质目录管理规定》,芦根(鲜或干)均可作为食药物质。  06 黑枣和桔红是否可以作为食药物质?  《中华人民共和国药典》(2020版)中收录了橘红(芸香科植物橘Citrus reticulata Blanco及其栽培变种的干燥外层果皮)、陈皮(芸香科植物橘Citrus reticulata Blanco及其栽培变种的干燥成熟果皮)以及大枣(鼠李科植物枣Ziziphus jujuba Mill.的干燥成熟果实)和广枣(漆树科植物南酸枣Choerospondias axillaris (Roxb.) Burtt et Hill的干燥成熟果实),分别与《关于进一步规范保健食品原料管理的通知》(卫法监发〔2002〕51号)附件一“既是食品又是药品的物品名单”中列入的桔红(橘红)、橘皮、枣(大枣、酸枣、黑枣)是一致的物质。  07 牡蛎壳是否为食药物质?  《中华人民共和国药典》(2020版)中收录了牡蛎(牡蛎科动物长牡蛎Ostrea gigas Thunberg、大连湾牡蛎Ostrea talienwhanensis Crosse或近江牡蛎Ostrea rivularis Gould的贝壳)。卫生部《关于进一步规范保健食品原料管理的通知》(卫法监发〔2002〕51号)将牡蛎列入“既是食品又是药品的物品名单”,此名单中列入的牡蛎为《中华人民共和国药典》收录,使用部位为牡蛎贝壳。因此,《中华人民共和国药典》收录的3种牡蛎品种的贝壳为食药物质。
  • 日本开发出感光仪器检测糖尿病
    日本一个研究小组最新报告说,他们开发出一种数分钟内检测血液中与糖尿病发病有关的多种糖化蛋白质的新方法,这有助于轻松评估糖尿病患病风险。   羟甲赖氨酸等糖化蛋白质随年龄增加而积累,被称为晚期糖基化终末产物(AGEs),AGEs在体内积累可引发糖尿病的各种并发症,因此可以作为糖尿病的指标。利用现有技术虽然能够检测出某一种糖化蛋白质在血液中的浓度,但是却无法同时检测多种糖化蛋白质。人体内AGEs的浓度在短时间内难以变动,更适宜作为健康诊断的指标使用。   日本东洋大学副教授宫西伸光等发明一种新型检测方法,利用半乳糖凝集素易与AGEs结合的特性,设计一种感光仪器,观测AGEs与半乳糖凝集素结合前后的光学变化,从而计算出AGEs的浓度。
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 福斯发布福斯多功能乳品分析仪MilkoScan FT3新品
    MilkoScan™ FT3乳成分分析仪,是丹麦福斯分析仪器基于乳品行业超过40年行业经验,为乳制品分析提供了一全新的智能方法,具有更广泛的适用性及高度稳定性。从初级原料奶,到最终产品,帮您完成产品标准化生产,满足每个生产节点的质量控制。可用于:-原料奶分级,按质论价,掺假筛查-生产过程中的质量标准化与优化控制-集团化质量管理与控制-成品质量监测 采用傅立叶变换红外光谱技术(FTIR)符合AOAC分析化学家协会IDF国际乳品联合会标准认证。 -广泛的适用性。无需样品前处理,粘稠酸奶直接检测独特的智能流路系统能够处理各种形态的样品,根据每个样品的特性进行自动适应调整。几乎可直接检测市面上所有乳制品,粘稠样品无需前处理,直接检测。 -优异的稳定性与传递性。极低的台间差,降低80%定标调整工作基于专利技术的自动标准化功能,消除仪器漂移和变化,保证定标稳定,使产品质量始终如一。极高的稳定性保障了每台机器间的性能高度一致,实现定标在不同MilkoScan™ FT3间准确传递。只需调整中央主机定标,将调整定标传递到网络中其他MilkoScan™ FT3即可,大大降低工作量和运营成本。 -质量稳定可靠,全机仅3个保养零备件相比上一代乳品分析仪,MilkoScan™ FT3全机仅有3个保养零备件,更易维护。独一无二的智能自诊断系统,持续监控仪器状态,实现超长寿命。 技术参数样品类型:液态、粘稠液态、半固态乳制品(如原奶、纯奶、花色奶、酸奶、乳饮料、奶油、冰淇淋配料、豆奶、植物蛋白饮料、乳清、炼乳及浓酸乳清蛋白等分析参数:脂肪, 蛋白, 乳糖, 总固形物, 非脂乳固体, 冰点, 滴定酸度, 密度, 游离脂肪酸, 柠檬酸, 酪蛋白, 尿素, 蔗糖, 葡萄糖,果糖,半乳糖检测速度:30秒相对准确度(牛奶): 1.0% CV(脂肪、蛋白、乳糖、总固形物) 4.0 m°C (冰点)相对精确度(牛奶): 0.25% CV(脂肪、蛋白、乳糖) 0.20% CV(总固形物) 1 m°C (冰点)样品量: 8.0ml流路系统:全自动清洗和调零。清洗根据样品形状进行自动适应调整湿度控制:自动干燥系统网络功能:LIMIS, FossManager™ 重量和体积:43kg \ 750x450x408mm创新点:-广泛的适用性。无需样品前处理,粘稠酸奶直接检测 独特的智能流路系统能够处理各种形态的样品,根据每个样品的特性进行自动适应调整。几乎可直接检测市面上所有乳制品,粘稠样品无需前处理,直接检测。 -优异的稳定性与传递性。极低的台间差,降低80%定标调整工作 基于专利技术的自动标准化功能,消除仪器漂移和变化,保证定标稳定,使产品质量始终如一。极高的稳定性保障了每台机器间的性能高度一致,实现定标在不同MilkoScan™ FT3间准确传递。只需调整中央主机定标,将调整定标传递到网络中其他MilkoScan™ FT3即可,大大降低工作量和运营成本。 -质量稳定可靠,全机仅3个保养零备件 相比上一代乳品分析仪,MilkoScan™ FT3全机仅有3个保养零备件,更易维护。独一无二的智能自诊断系统,持续监控仪器状态,实现超长寿命。 福斯多功能乳品分析仪MilkoScan FT3
  • 进展|糖型解析层面的抗体middle-down质谱分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry。本文的通讯作者是罗氏集团的Tilman Schlothauer和Feng Yang。  治疗性单克隆抗体(mAb)分析中翻译后修饰(PTMs)的表征是一个主要的挑战,单个PTM通常采用bottom-up的方法进行分析,但PTM之间的关联性信息丢失 middle-down方法提供了分辨率、位点特异性和蛋白型异质性的良好平衡,其表征工作流程主要依赖于末端片段离子。内部片段离子的纳入提高了序列覆盖率和PTM分辨率,使其成为一种有前途的方法。先前,糖工程单克隆抗体的研究表明,一组有限的高甘露糖、乙酰氨基葡萄糖和糖基化蛋白型不同程度地影响了PTMs的敏感性质,如脱酰胺和氧化。Asn 325的脱酰胺是一种功能相关PTM,在传统bottom-up方法中由于其较短的肽段和较高的亲水性而经常被忽略,目前没有研究调查Asn 297糖型对Asn 325脱酰胺敏感性的影响。在这篇文章中,作者提出了一种纳入内部片段的middle-down工作流程,在糖型解析层面上评估mAb上Asn 325脱酰胺修饰。  图1. 糖型解析的Asn 325脱酰胺的middle-down分析流程。(A) IdeS酶切后的Fc/2序列,及相关的糖基化(Asn 297)和脱酰胺(Asn 325)位点。(B)工作流程示意图,包括样品制备、RP-LC亚基分离、MS1电荷态选择、四极杆糖型分离、MS2内部片段搜索,以及基于提取的单同位素质量离子色谱(未修饰与修饰)的定量策略。  图2. Asn 325脱酰胺鉴定中内部片段SNKAL的定性评价。未修饰(对照)、热应力样品(8w, 40°C)、HC Asn 325 Asp序列突变体的代表性MS2谱图叠加,以及修饰的内部片段离子SDKAL的模拟单同位素质量。*表示未修饰的SNKAL的+1同位素对修饰的SDKAL的单同位素具有足够的分辨率。  本研究使用标准IgG1单抗(G1m17, Km3)和突变体(HC Asn 325 Asp)。对于热应激,标准单抗在40°C的配方缓冲液中孵育2、4和8周。在IdeS酶切之前,将10%的突变单抗插入标准单抗中,生成加标样品。抗体经IdeS酶切、还原后,用标准RPLC流程分析(图1B) 针对Asn 325脱酰胺位点周围的内部片段离子的覆盖率,作者对HCD碰撞能量和捕获气体参数进行了优化。共分配了覆盖Asn 325的7个内部片段离子,根据片段强度和定量精度,与bottom-up分析确定的目标脱酰胺值相比,选择SNKAL作为Asn 325的代表性特征离子。SNKAL对无应力对照组的特异性通过包含Asp 325的序列突变体(N325D)得到证实,该突变体在未修饰的Asn 325的单同位素质量处没有片段离子(图2)。因此,排除了其他片段离子的中性丢失引起的歧义或重叠。Asn 325对照、Asp 325突变体和分离的糖型(G0F、G1F、G2F)的MS2具有高度可比性。修饰后的单同位素质量和未修饰的Asn 325的第一个同位素之间获得了足够的分辨率(图2)。  使用middle-down MS对所有糖型的相对脱酰胺评估与bottom-up分析确定的水平一致(图3)。与热应力持续时间无关,单个糖型(G0F、G1F和G2F)的middle-down脱酰胺评估没有显著差异(图4)。Asp 325突变体的插入实验证实了middle-down策略评估单个糖型脱酰胺水平差异的能力。由于未修饰的Asn 325单抗和Asp 325单抗之间的糖型相对丰度的差异,与总加标量(10%)相比,蛋白型(糖型% ×脱酰胺%)混合的比例不同。因此,在加标样品中,G0F的脱酰胺率低于10%,而由G1F和G2F的脱酰胺率高于10%(图4)。Middle-down脱酰胺评估的精度取决于糖型丰度和脱酰胺水平,单个样本的相对标准偏差范围为2.8%至16.4% (n = 9),样本间中位相对标准偏差为7.4% (n = 16)。总蛋白型丰度和相对标准偏差显示出明显的相关性,并证明了middle-down方法的敏感性,允许在0.2%的相对丰度下评估蛋白型。  图3. middle-down工作流程对Asn 325脱酰胺定量分析的能力评估。在2w、4w和8w热应力(40°C)下,应力样品bottom-up和middle-down(所有糖型)分析的相关性。数据点表示middle-down分析的技术重复的中位数(n = 9, 3天内重复3次)。误差条显示95%置信区间。CTRL显示n = 3时无应力样品的背景水平。  图4. Asn 325脱酰胺的糖型解析水平的middle-down分析。从2w, 4w和8w热应力样品和10% Asp 325加标样品中提取所有糖型和分离糖型(G0F, G1F, G2F)的相对脱酰胺结果。技术重复的中位数和95%置信区间为n = 9时[G2F在2w (n = 4)和4w (n = 8)时除外]。ns =不显著。*表示假定值范围(* 0.05, ** 0.01, **** 0.0001)。  本文引入了一种新的middle-down策略,通过利用HCD碎片的内部碎片离子来分析单克隆抗体Fc中的PTM动力学,将复杂性降低到Fc/2亚基水平,并保留了相关的蛋白质形态完整性,同时获得了bottom-up方法的分辨率和位点特异性,并成功地证明了IgG1抗体的Fc半乳糖基化变体不会影响热应激下Asn 325脱酰胺的程度。  撰稿:夏淑君  编辑:李惠琳  文章引用:Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍   糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。   二、检验标准的探讨   现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。   (一)样品的前处理   食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。   (二)还原糖测定和结果计算   GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。   直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):   X=   其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。   (三)计算公式的正确表达   1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。   2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:   X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。   (四)还原糖滴定法的注意事项   1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。   2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。   食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 枣中糖类的测定 | 磷酸-苯肼柱后衍生法
    入秋了,又到了吃枣的季节。枣果不仅是滋补佳品,也是一味传统的中药,并且枣中含有多种糖类。糖类是自然界中广泛分布的一类重要的有机化合物,是一切生命体维持生命活动所需能量的主要来源。在高效液相色谱仪(HPLC)测试中,糖类的分子通常采用通用型检测器检测,如示差折光检测器(RI)进行检测。但采用RI检测器有两个明显的缺点:灵敏度低、不能梯度洗脱。采用磷酸-苯肼柱后衍生法测定糖类,可以克服RI检测器的以上两个缺点。下面我们使用日立Chromaster高效液相色谱仪,利用磷酸-苯肼柱后衍生法进行糖类的分析。色谱柱将糖类分离,再与磷酸-苯肼溶液在高温下反应,使用有选择性,高灵敏度的荧光检测器进行检测,梯度洗脱可以多种糖成分同时分析。此方法克服了示差折光检测器的灵敏度低和不能梯度洗脱的缺点。■ 流路图 仪器配置: Chromaster 5110 泵,5210 自动进样器,5310 柱温箱,5410 UV检测器,5510反应单元■ 标准品测定例■ 系统适用性(100 mg/L 糖标准混合液)聚合物基质色谱柱硅胶基质色谱柱分别对硅胶基质和聚合物基质色谱柱的系统适用性进行评价,理论塔板数按蔗糖峰计算,分离度以葡萄糖和半乳糖的分离度计算,结果得到色谱柱的理论塔板数和分离度如上表所示。聚合物基质色谱柱的测定,理论塔板数较低,但色谱柱的寿命较长;硅胶基质色谱柱的测定,色谱峰的峰形尖锐,分离度改善很多。后续实验均采用硅胶基质色谱柱。■线性以半乳糖和蔗糖为例,各种糖成分在10 ~ 500 mg/L标准混合液的浓度范围内,R2 ≥ 0.9995,线性关系良好。■ 重现性■ 枣样品的分析结果对大枣样品进行了糖成分的分析,结果在枣中检测到果糖、葡萄糖和蔗糖成分,并且均得到很好的分离效果。
  • ACQUIT Y UPLC-ELSD测定奶粉和牛奶中八种糖的含量
    ACQUIT Y UPLC-ELSD测定奶粉和牛奶中八种糖的含量 赵淑军 沃特世公司,上海,中国 关键词: 超高效液相色谱 奶粉 牛奶 Fructose(果糖)Sorbose(山梨糖) Glucose(葡萄糖)Sucrose(蔗糖)Maltose(麦芽糖)Lactose(乳糖) Maltotriose(麦芽三糖) Maltotetraose(麦芽四糖) 实验方法 材料、试剂和仪器 乙腈为色谱纯,三乙胺为优级纯,实验用水为超纯水 (18M&Omega ,TOC3ppb),ACQUITY UPLC® 超高效液相色谱系统,Acquity ELSD检测器,(FILTER MIXER (425&mu l,P/N 205000403),可不用)。 色谱条件 液相系统: Waters ACQUITY UPLC® 配ACQUITY ELSD 蒸发光散射检测器 色谱柱: AACQUITY UPLC BEH Amide 2.1mm x 100mm, 1.7 &mu m, P/N:186004801 柱温: 35˚ C 分析时间 : 18 min 进样量: 5ul(样品进样2ul) 流动相: A:水 B:0.2%TEA乙腈溶液 梯度洗脱 弱洗溶剂: 乙腈/水=90/10,800&mu l 强洗溶剂: 乙腈/水=10/90,500&mu l 进样方式: 不充满定量环(使用针溢出) ELSD条件: 增益: 500 数据率: 10pps 喷雾器模式: 冷却 漂移管温度: 55˚ C 气体压力: 30psi 实验室试验温度: 20˚ C 实验室试验湿度: 45% 工作电源: 220V稳定电源 梯度方法见下表: 时间/(min) 流量/(ml/min) A% B% 曲线 0 0.15 15 85 初始 2 0.15 22 78 6 11 0.15 50 50 4 18 0.15 15 85 1 数据处理系统 Empower 2 前处理方法 称取2.0 g奶粉样品或5ml液态奶样品,加入20mL(对于液态奶添加15ml)1/1的乙腈水溶液溶解,手摇震荡混匀,然后涡旋混匀2分钟,室温下8000r/min离心15分钟,取上清液过0.2&mu m滤膜;对于某些样品由于糖含量很高,所以过滤后的样品可能需要用乙腈/水=70/30的溶液稀释一定倍数后,进样检测。 结果与讨论 标准配制 八种糖标准分别称取10mg,用1/1的乙腈水定容至1ml,然后用乙腈/水=70/30的溶液稀释配制各个浓度的标准品,进行实验。 八种糖UPLC分离检测色谱图及数据 图 1. 八种糖UPLC分离检测色谱图 图1是八种糖50ppm混合标准品用UPLC(ACQUITY UPLC BEH Amide色谱柱)分离,ELSD检测的色谱图,按照保留时间顺序分别是:Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Sucrose(蔗糖)、Maltose(麦芽糖)、Lactose(乳糖)、Maltotriose(麦芽三糖)、Maltotetraose(麦芽四糖);包括5种单糖和3种多糖。有关数据见下表。 其中较难分离的Fructose(果糖)和Sorbose(山梨糖)、Maltose(麦芽糖)和Lactose(乳糖)均分别达到1.6、1.5的分离度。 方法的检出限 如图2所示,为5ppm的混标色谱图,此浓度下按保留时间顺序八种糖的信噪比分别达到3、5、5、24、6、12、5和3,(进样量10ul): 可见,八种糖中Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Maltose(麦芽糖)、Maltotriose(麦芽三糖)和Maltotetraose(麦芽四糖)的检测限为5ppm;此浓度下Lactose(乳糖)可达到定量限,而Sucrose(蔗糖)的定量限可以到达2ppm。 方法的线性相关性 浓度分别为5.000、10.000、20.000、50.000、100.000、150.000mg/L的八种糖标准品依次进样,进样量均为5&mu L,外标法定量。以峰面积A的lg值为纵坐标,浓度C的lg值为横坐标进行线性回归,得到8种糖的线性方程、复相关系数和线性曲线图如图3-图10所示,在5.000-150.000 mg/L范围8种糖均具有良好的lg-lg线性关系。 实际样品检测结果 从市场取某一奶粉样品,进行实际提取实验,进样检测,色谱图及结果数据见图11所示,可以看出此样品中含有蔗糖、乳糖、麦芽三糖和麦芽四糖四种糖成分,同时发现蔗糖和乳糖的含量相当高,已经超出检测器的响应范围;因此将此样品稀释100倍后再次进样检测,结果数据见图12。 由图11和12的数据可以知道此奶粉中含有蔗糖16.8mg/g、乳糖140.1 mg/g、麦芽三糖和麦芽四糖的含量分别只有1.9 mg/g、1.3mg/g。某液态奶提取后,稀释100倍检测结果见图13。 重现性 首先用50ppm混合标准6次连续重复进样,考察标准品在本方法下的稳定性,见图14所示重叠色谱图,重复数据见表3、表4。 提取奶粉实际样品,由于乳糖含量较高,将其稀释了100倍,然后在不同天次连续3天进样检测,考察本方法对于实际样品日间的重现性情况,如图15所示是该实际样品3天内3次进样的重叠色谱图,由图可见该方法对实际样品在日间具有较好的重现性。 结论 本方法建立了用Waters UPLC-ELSD系统检测奶粉和牛奶实际样品中Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Sucrose(蔗糖)、Maltose(麦芽糖)、Lactose(乳糖)、Maltotriose(麦芽三糖)、Maltotetraose(麦芽四糖)8种常见糖的的定量分析方法。方法的检出限:有6种糖达到5&mu g/g,另外两种糖Sucrose和Lactose在5&mu g/g下的信噪比可达到24和12。使用ACQUITY UPLC BEH Amide色谱柱和三乙胺流动相体系,8种糖均实现基线分离,可以用于奶粉和牛奶中常见这8种糖的含量测定。 参考文献: Waters ACQUITY UPLC BEH Amide Columns Care & Use,P/N:715001371
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 婴幼儿配方奶粉新国标亮相,中小乳企成本提高淘汰赛加速
    p   婴配粉配方注册制还未完成,新一轮政策调整已经在路上。 /p p   近日,国家卫生健康委员会(下称“卫健委”)公布了婴配粉新的国家标准并公开征求意见,在业内看来,国家对奶粉品类调控态度坚决,新标准提高了婴配粉产品的门槛,中小乳企成本将面临提升,奶粉淘汰赛进程不断加速。 /p p   记者对比卫健委公布的新国标征求意见稿和2010年的老国标发现,变化主要集中在2个方面,一方面新国标增加了对部分营养素的规定,将胆碱等营养素从可选项改为必选项,增加了乳清蛋白和乳糖的比例要求 另一方面,新国标对于维生素、烟酸、叶酸,以及钠、钾、铜等营养素的用量的上下限,进行了严格规定。 /p p   其中最明显的改动,是对过去行业中诟病较多的,以价格较低的蔗糖和果糖代替乳糖的问题进行了明确规定。在过去的旧标准中,只有1段奶粉的标准中对碳水化合物有明确的规定,而新国标中,1、2段婴儿配方奶粉应首选乳糖,同时乳糖要占碳水化合物总量的90%及以上,不应使用果糖和蔗糖。而在三段奶粉上,对于乳基幼儿配方食品(无乳糖和低乳糖产品除外),乳糖占碳水化合物总量应大于或等于50%。 /p p   三元股份总经理助理吴松航告诉第一财经记者,此前行业里添加白砂糖,有成本也有口感的考虑,添加白砂糖的奶粉口感更甜更容易被孩子接受,但使用白砂糖容易诱发龋齿,如果改成乳糖,每吨奶粉会增加1000元的成本。 /p p   江西美庐乳业总裁周晓法也表示,新标准中,麦芽糊精的应用也会受到限制,因为其也属于碳水化合物,相比之下乳糖可以分解成半乳糖和葡萄糖,为婴儿成长提供营养,而麦芽糊精只是提供能量,但一般中小企业会考虑成本问题而添加麦芽糊精。 /p p   在上述人士看来,假如新国标落地,调整的项目虽多,但对大型奶粉企业的成本影响并不是很大,因为本身国内外大型企业的主力产品大多都使用乳糖,而且微量元素调整产生的成本变化有限,但对中小品牌的成本带来压力。 /p p   在业内看来,新国标标准的变化本身就是意在进一步提高婴幼儿配方奶粉标准,抬高行业门槛推动优胜劣汰。 /p p   独立乳业分析师宋亮告诉记者,如果按照新公布的标准,国内的婴幼儿配方奶粉国标将比欧美标准更加严格,欧美标准中有那么多规定项目,而且用量标准大多只有下限没有上限,新国标征求意见稿显然更苛刻。 /p p   此外,由于从2018年1月1日起,国内生产和销售的婴幼儿配方奶粉需要经过配方注册,截至8月公布的最新一批,国内共有1177个配方通过注册,尚有数百个品牌等待审批,而新国标一旦执行,奶粉企业将面临修改配方的问题。 /p p   在业内看来,未来的配方修改将是系统性的调整,而非简单的增减营养素,这对于在配方注册中买到配方或注册资格,而侥幸过关的中小企业来说无疑是个难题。比如根据新国标征求意见稿,乳糖要占到碳水化合物的90%及以上,就要减少麦芽糊精的用量,以前中小企业利用麦芽糊精提升奶粉的溶解性,一旦减少就需要对配方进行整体调整。 /p p   值得注意的是,尚未通过配方注册的奶粉品牌也面临尴尬。 /p p   宋亮告诉第一财经记者,从目前情况来看,新国标最终确定生效时间可能会在年底,因此对于已经获得配方注册的产品有更多的时间进行调整,但目前还没有获得注册的品牌可能要根据新的标准重新修订再做准备,影响会更大一些。 /p p   从年初奶粉新政落地之后,随着库存耗尽,大量的中小品牌和贴牌产品被迫出局,奶粉行业整体出现了强者恒强,集中度提升的趋势,今年上半年奶粉市场主要国内外品牌,包括惠氏、达能、雅培、健合集团、伊利、蒙牛、澳优等大型的奶粉业务都出现了较大幅度的增长。中小品牌则在渠道竞争和不断适应政策变化中举步维艰。 /p p   中牧集团旗下纽瑞滋CEO刘宁告诉第一财经记者,目前新国标的征求意见稿更多还是在技术层面的征询,到真正实施还会有一个过渡期,但不难看出国家有关部门对于婴幼儿奶粉品类的要求愈加严格,看的出国家监管的决心的趋势。行业发展趋势来看,具备技术和研发能力和全产业链,从源头到配方都掌握在自己手里的大品牌和大企业则更有竞争力。 /p p /p
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 不同极性色谱柱检测三乙胺的差异
    三乙胺作为常规溶剂应用于不同领域,对其残留的检测也有相关规定,药典规定如下:胺类物质在检测时比较容易出现拖尾的现象,今天就给大家看一下不同极性的色谱柱中相同浓度的三乙胺的测试情况:色谱条件谱图和数据结论月旭科技胺改性柱WM 5-Amine 30m*0.32mm*1.0μm 检测三乙胺有很好的峰形和柱效。由于这一类物质在系统中也可能有残留,故仪器各部件也进行对应的清洗更换。
  • 德祥:YSI 生化分析仪年底*促销
    美国YSI公司因其高灵敏度的探头和快速可靠的检测结果在生化分析领域享有盛名。您可以在遍布全球的研究机构、医院、医疗机构、运动训练研究、生物制药领域看到YSI的足迹。YSI在生物过程监测领域、运动医学、制药、食品饮料领域是值得信赖的代名词。YSI生命科学产品提供给我们的科学家、研究人员、医学专家、临床医生精确和可以信赖的研究数据。 YSI生化分析仪可以检测以下多种参数:葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢、铵、钾、CO2、O2等。 为了感谢新老用户对YSI的大力支持,此次YSI生化分析仪促销有众多机型选择,YSI2300D,YSI2700系列,YSI7100&hellip &hellip 而且都是现货促销,具体促销机型请参考下表: 型号 应用 参数 2300D 临床诊断 & 研究, 血糖仪的研发和生产 葡萄糖、乳糖 2700S 食品饮料,生物工艺学 , 生物燃料 葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢 2700D 食品饮料,生物工艺学 , 生物燃料 葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢 2700M 生物发酵 葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢 5300A 细胞生理学 O2 7100-06A 生物工艺学 & 生物加工过程, 生物燃料 葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢、铵、钾 7100-04A 生物工艺学 & 生物加工过程, 生物燃料 葡萄糖、乳糖、半乳糖、木糖、乳酸盐、蔗糖、谷氨酸盐、谷氨酸、胆碱、甲醇/乙醇、过氧化氢、铵、钾 &rsquo 8500-5 生物工艺学 & 生物加工过程 CO2 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 联系我们(直接用户) 联系我们(经销商) 邮箱:info@tegent.com.cn
  • 西安交通大学张留洋课题组《Optics Letters》:3D打印的基于环偶极子的高性能太赫兹传感器
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。相关成果以“Highly sensitive terahertz sensing with 3D-printed metasurfaces empowered by a toroidal dipole”为题发表在光学期刊《Optics Letters》上。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PµSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。 图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 上海发布母乳低聚糖团体标准乳粉再掀新风口?
    近日,上海市食品化妆品质量安全管理协会正式发布《婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的测定》(以下简称“标准”),母乳低聚糖(HMOs)是母乳中第三大固体成分,这是国内首个使用液相色谱法同时检测婴配粉及调制乳粉中7种HMOs的团体标准,大大增加了HMOs的推广可能性。  去年10月,HMOs正式被批准在奶粉中添加,公告一出就掀起了热潮。蒙牛、伊利、君乐宝等纷纷推出国内首款HMOs奶粉,HMOs已然成为奶粉品牌科研力、创新力、产品力等竞争最热门的领域之一。  业内分析人士指出,HMOs的应用对行业的母乳化研究起着至关重要的作用,为行业生产、检测、监管等环节提供了明确的技术指导,助力提升行业的整体技术水平,保证产品的质量和安全,为消费者提供更加优质、健康的产品。  上海发布团体标准  3月4日,上海市食品化妆品质量安全管理协会正式发布HMOs团体标准,该标准由上海市质量监督检验技术研究院、雅士利、宜品乳业、美赞臣营养品、蓝河营养品、上海花冠营养乳品、安捷伦科技等单位共同起草。  母乳低聚糖是母乳中第三丰富的固体成分,具有调节免疫系统、抗炎症、降低呼吸道感染的发病率、促进双歧杆菌的生长、有益于肠道健康、促进大脑发育等功能,对于婴幼儿的健康成长起到重大帮助作用。乳粉中母乳低聚糖的添加,能够实现对母乳结构更深入的模拟,因此其在生产加工中的应用日益广泛。  此前上海市食品化妆品质量安全管理协会发布的征求意见稿中指出,母乳低聚糖的主要添加形式为7种:2'-FL、3-FL、3'-SL、6'-SL、LNT、LNnT、DFL,但目前国内获批允许添加的仅为2'-FL和LNnT。为保证母乳低聚糖添加型产品的安全生产和质量水平,也为此类新产品的后续研发推波助澜,此次标准中建立了婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的检测方法。  目前国际上没有关于母乳低聚糖检测的相关标准,国内也尚未出台国家标准或行业标准,仅有2个团体标准,分别为天津市奶业科技创新协会的团标方法T/TDSTIA 032-2023《婴幼儿配方乳粉中7种母乳低聚糖含量的测定液相色谱-质谱法》和中国食品科学技术协会的团标方法T/CIFS 007-2022《食品中2'-岩藻糖基乳糖的测定离子色谱法》。上海市食品化妆品质量安全管理协会表示,质谱仪器价格相对昂贵,实验成本较高,离子色谱法所检测的单一原料,无法满足同时添加了多种母乳低聚糖产品的检测需求。  此次上海发布的团体标准在现有检测方法的诸多问题上做了突破性改变,较好地解决了基质干扰影响较大、无法同时检测婴配粉及调制乳粉中7种HMOs等最大难点。采用本标准的方法,母乳低聚糖的标准溶液与峰面积响应值之间存在着良好的线性关系,相关系数R2≥0.99。添加标准物质,对婴幼儿配方奶粉和调制乳粉等样品进行母乳低聚糖精密度和准确度的测定,能够符合GB/T 27404-2008中的相关规定。  乳业分析师宋亮表示,“因为HMOs的形成不一样,所以检测的方法不一样,可能会有一些偏差。但既然公布了,说明上海的检测方法和之前两个检测方法不会有任何冲突,在检测的精准度上也都会达标”。  国内乳企抢滩布局  2023年10月7日,国家卫健委官网公布2种母乳低聚糖(HMOs)原料——2'-岩藻糖基乳糖(2FL)、乳糖-N-新四糖(LNnT),正式获批用于国内奶粉产品。国产奶粉正式进入HMOs时代,蒙牛、伊利、君乐宝、宜品等奶粉品牌纷纷抢滩布局。  在众多HMOs 原料获批的生产企业中,蒙牛是首批获批企业中唯一的中国本土企业。早在2023年6月份,蒙牛自研HMOs就获得美国SELF-GRAS市场准入许可,正式进军国际市场,突破了长久上游原料“卡脖子”的困境。  蒙牛瑞埔恩研发人员向北京商报记者介绍,“我们花了一年多的时间,比较了液相色谱-串联质谱仪、离子色谱仪以及液相色谱仪三种检测设备,选择了国内外各种奶粉基质产品,做了上千次的试验,最终确定选择液相色谱仪配荧光检测器进行HMOs的检测方法推广性强”。  母乳低聚糖在国内并不陌生,在国内政策和应用落地前,已在全球100多个国家和地区批准上市,雀巢、惠氏、美赞臣、菲仕兰、雅培等外资巨头已利用跨境购渠道将这类奶粉卖到中国市场。  据了解,惠氏营养品早在30三十多年前就开展母乳低聚糖(HMOs)相关研究,发表了70多篇文献,拥有100多项专利成果。目前,惠氏及雀巢集团已在70多个国家推出HMOs相关产品,年销售高达13亿瑞郎,获得全球市场广泛认可。在中国市场,惠氏自2017年便开始了对HMOs产品的布局,在中国香港市场推出了首款启赋HMOs产品,并通过跨境渠道登陆中国大陆市场。此外,美国婴幼儿奶粉巨头雅培也较早布局了该品类。  目前,蒙牛推出了首款自主研发HMOs奶粉瑞哺恩,伊利旗下伊利金领冠推出“珍护铂萃”儿童成长配方奶粉,飞鹤推出了HMOs奶粉星飞帆卓睿4段,君乐宝推出了添加HMOs成分的小小鲁班“诠维爱未来”奶粉,国内掀起了一波HMOs奶粉上市潮。  新风口下面临挑战  近年来,在出生率持续下降、产业减能、市场萎缩的背景下,国内奶粉市场竞争愈发激烈。面对HMOs风口,乳企纷纷升级迭代新品,也引发了消费者对奶粉涨价的担忧。  2024年开年,北京商报记者从母婴渠道了解到,已有包括皇家美素佳儿、澳洲a2在内的多个奶粉品牌调价,佳贝艾特、飞鹤星飞帆等发出调价通知。  对此,宋亮表示,“添加了HMOs和奶粉涨价没有必然关系,只是给消费者多了一种选择。调价不是涨价,奶粉行业经过四年的价格战,近期价格向上浮动是正常的,价盘会逐步恢复到2020、2021年的水平”。  不过,受到原料成本、生产成本等因素影响,在国内市场竞争激烈的背景下,国内奶粉品牌确实面临挑战。2021年,国产奶粉的市场占有率一度超过60%。但据菲仕兰、达能等外资奶粉品牌近期发布的2023年财报显示,包含婴幼儿配方奶粉业务板块在中国市场的业绩却不降反增。  宋亮认为,外资乳企市场份额逐步增长有迹可循,主要是过去四五年国内乳企在打价格战,外资乳企始终控货稳价,这也正是国产奶粉面临的困境。  根据尼尔森IQ数据,2023年中国婴幼儿配方奶粉全渠道销售额下滑了13.9%,市场大盘将进一步萎缩。这对于以婴幼儿配方奶粉为主业的乳制品企业来说,无疑加剧了存量市场的竞争态势。  知名战略定位专家、福建华策品牌定位咨询创始人詹军豪向北京商报记者表示,“外资品牌在品牌知名度、产品质量、市场营销等方面具有较强的竞争力,在国内市场占据一定优势。在消费者心中,外资品牌往往代表着高品质,因此容易获得消费者的青睐。国内乳企在面临市场竞争压力的同时,还需要加大研发投入,提升产品质量和品牌形象。在国内市场竞争激烈的背景下,部分企业可能会通过涨价来提升产品形象和利润空间”。  不过,新标准的发布,对加强对婴幼儿奶粉质量的监管,确保产品安全、可靠提供了新的方法。对乳企来说,要不断优化生产工艺和产品配方,以适应市场需求。
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
  • 离子色谱出击药用辅料中糖类物质检测
    原料是药物的核心,是制剂中的有效成分,而药用辅料作为“配角”也是药品中必不可少的一部分。药用辅料作为药物制剂基础材料和重要的组成部分,绝大多数占药品百分之九十以上的比例,除了赋形、充当载体、提高稳定性外,还具有增溶、助溶、缓控释等重要功能,同时也是会影响到药品的质量、安全性和有效性的重要成分。2020版中国药典四部药用辅料收载 335种,其中新增65种、修订212种。重点增加制剂生产常用药用辅料标准的收载,完善药用辅料自身安全性和功能性指标, 逐步健全药用辅料国家标准体系, 促进药用辅料质量提升, 进一步保证制剂质量。在药用辅料中,常常使用亲水性较强的水溶性辅料作为保湿剂、填充剂和黏合剂等,例如山梨醇、木糖醇、麦芽糖醇、乳糖、果糖、木糖、海藻糖、蔗糖、麦芽糖、壳聚糖、聚葡萄糖、阿拉伯半乳聚糖、淀粉等糖类物质。这些糖类物质药用辅料的测定可采用液相色谱示差折光检测和离子色谱脉冲安培检测。其中,离子色谱脉冲安培检测法(IC-PAD),在糖类物质药用辅料的检测中具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪实际案例分析以舒血宁注射液中山梨醇的测定为例,围观离子色谱在糖类物质辅料检测中的优异表现吧! 舒血宁注射液由银杏叶或银杏叶提取物经加工制成的灭菌水溶液。辅料由山梨醇、95%乙醇、甲硫氨酸组成,具有扩张血管,改善微循环的作用,该产品用于缺血性心脑血管疾病,冠心病,心绞痛,脑栓塞,脑血管痉挛等。ICS-6000赛默飞ICS-6000多功能高压离子色谱仪,配置特有的CarboPac MA1糖醇分析色谱柱,脉冲安培检测器,氢氧化钠(NaOH)溶液等度淋洗,仅需0.4 μL小体积进样即可检测mg/L级别山梨醇,无需衍生化,灵敏度高,分离度和重复性好。 山梨醇在25~1250 mg/L范围内具有you秀的线性,相关系数R2>0.999。25 mg/L山梨醇标准溶液连续进样6针,保留时间重复性为0.03%,峰面积重复性为0.6%。样品前处理简单,舒血宁注射液经纯水稀释,过OnGuard II RP柱后即可直接进样分析。25 mg/L 山梨醇标准溶液谱图25 mg/L 山梨醇标准溶液连续6针进样重复性CarboPac MA1色谱柱分离常见糖醇和单双糖 滑动查看更多除糖醇外,离子色谱脉冲安培检测法(IC-PAD)还可以测定单双糖和聚糖等药用辅料,同样具有无需衍生化,灵敏度高,重复性好的特点。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖IC-PAD测定乳糖玉米淀粉共处理物有关物质 滑动查看更多此外,赛默飞ICS-6000多功能高压离子色谱仪,双系统配置电导检测器和脉冲安培检测器,即可实现糖类物质辅料含量和有关物质,以及氯化物、硫酸盐、亚硝酸盐、氯乙酸等常见离子的同时测定,节省时间和仪器成本,一举多得! zui后为大家总结了中国药典中离子色谱相关标准方法和推荐色谱柱,实用干货!!!向下滑动查看更多
  • 农业农村部:《食用菌中粗多糖的测定 分光光度法》等74项农业行业标准发布
    《畜禽品种(配套系) 澳洲白羊种羊》等74项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2023年8月1日起实施。标准编号和名称见附件。该批标准文本由中国农业出版社出版,可于发布之日起2个月后在中国农产品质量安全网(http://www.aqsc.org)查阅。特此公告。附件:《畜禽品种(配套系) 澳洲白羊种羊》等74项农业行业标准目录农业农村部2023年4月11日相关标准如下:序号标准编号及标准名称代替标准号1NY/T 129-2023 饲料原料 棉籽饼NY/T 129-19892NY/T 1676-2023 食用菌中粗多糖的测定 分光光度法NY/T 1676-20083NY/T 2316-2023 苹果品质评价技术规范NY/T 2316-20134NY/T 4326-2023 畜禽品种(配套系)澳洲白羊种羊5NY/T 4327-2023 茭白生产全程质量控制技术规范6NY/T 4328-2023 牛蛙生产全程质量控制技术规范7NY/T 4329-2023 叶酸生物营养强化鸡蛋生产技术规程8NY/T 4330-2023 辣椒制品分类及术语9NY/T 4331-2023 加工用辣椒原料通用要求10NY/T 4332-2023 木薯粉加工技术规范11NY/T 4333-2023 脱水黄花菜加工技术规范12NY/T 4334-2023 速冻西兰花加工技术规程13NY/T 4335-2023 根茎类蔬菜加工预处理技术规范14NY/T 4336-2023 脱水双孢蘑菇产品分级与检验规程15NY/T 4337-2023 果蔬汁(浆)及其饮料超高压加工技术规范16NY/T 4338-2023 苜蓿干草调制技术规范17NY/T 4339-2023 铁生物营养强化小麦18NY/T 4340-2023 锌生物营养强化小麦19NY/T 4341-2023 叶酸生物营养强化玉米20NY/T 4342-2023 叶酸生物营养强化鸡蛋21NY/T 4343-2023 黑果枸杞等级规格22NY/T 4344-2023 羊肚菌等级规格23NY/T 4345-2023 猴头菇干品等级规格24NY/T 4346-2023 榆黄蘑等级规格25NY/T 4347-2023 饲料添加剂 丁酸梭菌26NY/T 4348-2023 混合型饲料添加剂 抗氧化剂通用要求27NY/T 4349-2023 耕地投入品安全性监测评价通则28NY/T 4350-2023 大米中2-乙酰基-1-吡咯啉的测定气相色谱-串联质谱法29NY/T 4351-2023 大蒜及其制品中水溶性有机硫化合物的测定 液相色谱-串联质谱法30NY/T 4352-2023 浆果类水果中花青苷的测定 高效液相色谱法31NY/T 4353-2023 蔬菜中甲基硒代半胱氨酸、硒代蛋氨酸和硒代半胱氨酸的测定 液相色谱-串联质谱法32NY/T 4354-2023 禽蛋中卵磷脂的测定 高效液相色谱法33NY/T 4355-2023 农产品及其制品中嘌呤的测定 高效液相色谱法34NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法35NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法36NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法37NY/T 4359-2023 饲料中16种多环芳烃的测定 气相色谱-质谱法38NY/T 4360-2023 饲料中链霉素、双氢链霉素和卡那霉素的测定 液相色谱-串联质谱法39NY/T 4361-2023 饲料添加剂 α-半乳糖苷酶活力的测定 分光光度法40NY/T 4362-2023 饲料添加剂 角蛋白酶活力的测定 分光光度法41NY/T 4363-2023 畜禽固体粪污中铜、锌、砷、铬、镉、铅汞的测定 电感耦合等离子体质谱法42NY/T 4364-2023 畜禽固体粪污中139种药物残留的测定 液相色谱-高分辨质谱法43NY/T 4365-2023 蓖麻收获机 作业质量44NY/T 4366-2023 撒肥机 作业质量45NY/T 4367-2023 自走式植保机械 封闭驾驶室 质量评价技术规范46NY/T 4368-2023 设施种植园区 水肥一体化灌溉系统设计规范47NY/T 4369-2023 水肥一体机性能测试方法48NY/T 4370-2023 农业遥感术语 种植业49NY/T 4371-2023 大豆供需平衡表编制规范50NY/T 4372-2023 食用油籽和食用植物油供需平衡表编制规范51NY/T 4373-2023 面向主粮作物农情遥感监测田间植株样品采集与测量52NY/T 4374-2023 农业机械远程服务与管理平台技术要求53NY/T 4375-2023 一体化土壤水分自动监测仪技术要求54NY/T 4376-2023 农业农村遥感监测数据库规范55NY/T 4377-2023 农业遥感调查通用技术 农作物雹灾监测技术规范56NY/T 4378-2023 农业遥感调查通用技术 农作物干旱监测技术规范57NY/T 4379-2023 农业遥感调查通用技术 农作物倒伏监测技术规范58NY/T 4380.1-2023 农业遥感调查通用技术 农作物估产监测技术规范 第1部分:马铃薯59SC/T 1135.8-2023 稻渔综合种养技术规范 第8部分:稻鲤:(平原型)60SC/T 1168-2023 鳊61SC/T 1169-2023 西太公鱼62SC/T 1170-2023 梭鲈63SC/T 1171-2023 斑鳜64SC/T 1172-2023 黑脊倒刺鲃65SC/T 1174-2023 乌鳢人工繁育技术规范66SC/T 2001-2023 卤虫卵SC/T 2001-200667SC/T 3058-2023 金枪鱼冷藏、冻藏操作规程68SC/T 3059-2023 海捕虾船上冷藏、冻藏操作规程69SC/T 3060-2023 鳕鱼品种的鉴定 实时荧光PCR法70SC/T 3061-2023 冻虾加工技术规程71SC/T 4018-2023 海水养殖围栏术语、分类与标记72SC/T 6106-2023 鱼类养殖精准投饲系统通用技术要求73SC/T 9443-2023 放流鱼类物理标记技术规程74SC/T 9444-2023 水产养殖水体中氨氮的测定 气相分子吸收光谱法
  • Cell Metabolism | 徐铭团队报道二型糖尿病治疗新策略
    辐射、氧化应激、端粒缩短等多种应激环境诱导细胞呈现不可逆的细胞周期停滞状态,并伴随p16和p21基因高表达,即为衰老细胞(Senescent cells)【1】。衰老细胞的累积和衰老相关分泌表型 (SASP) 是机体衰老的标志,也是衰老及其相关多种慢性疾病发生的重要机制。2021年10月,美国康涅狄格大学徐铭课题组报道了一种用于追踪以及调控体内p21high衰老细胞的新型p21-Cre转基因小鼠模型,并以此发现老年小鼠多种器官存在p21high衰老细胞,且特异性清除该衰老细胞可有效延缓机体衰老(详见BioArt报道:Nature Aging | 徐铭团队建立p21-Cre小鼠模型,揭示p21high细胞在衰老中的作用)。此外,该团队在高脂喂养的肥胖小鼠体内还检测到明显的p21high细胞聚集【2】。胰岛素抵抗是二型糖尿病的主要特征之一,而肥胖是造成胰岛素抵抗及二型糖尿病的关键诱因。关于p21high衰老细胞是否参与肥胖相关胰岛素抵抗的发生,以及是否可以通过药物靶向清除p21high衰老细胞来改善胰岛素抵抗及糖尿病,这两个问题还有待解答。2021年11月22日,徐铭团队在Cell Metabolism再发长文Targeting p21Cip1-highly-expressing cells in adipose tissue alleviates insulin resistance in obesity ,揭示了肥胖伴随的脂肪组织中p21high衰老细胞聚集是其造成胰岛素抵抗的重要发生机制,而应用达沙替尼和槲皮素的药物组合可有效清除人体脂肪组织中的p21high细胞并改善脂肪移植小鼠的代谢功能。该研究为以 p21high 细胞作为减轻胰岛素抵抗的新型治疗靶点提供了重要依据。研究者首先利用单细胞转录组测序,发现高脂喂养两个月的肥胖小鼠脂肪组织中具有较高水平的p21high细胞,且主要集中于脂肪前体细胞、内皮细胞和巨噬细胞;与此同时,未检测到明显的p16high细胞。他们利用前期构建的 p21-Cre 转基因小鼠模型,结合流式细胞术进一步证实了p21high衰老细胞在肥胖小鼠脂肪组织中的分布。p21high衰老细胞和p16high衰老细胞是两种常见的衰老细胞类群。研究者随后分别在基因和蛋白水平验证了单细胞测序结果,即短期高脂喂养的肥胖小鼠脂肪组织中主要存在p21high衰老细胞的聚集,而非p16high衰老细胞。肥胖引起脂肪组织扩增和功能紊乱,最终造成胰岛素抵抗和二型糖尿病。为了探究p21high衰老细胞是否参与调控肥胖相关的胰岛素抵抗,研究者将p21-Cre小鼠与floxed DTA(白喉毒素A片段)小鼠杂交,以特异性清除体内p21high衰老细胞。随着这些细胞的清除,肥胖小鼠的葡萄糖耐受和胰岛素敏感性均能获得显著改善。此外,清除p21high衰老细胞后的肥胖小鼠脂肪组织中衰老相关β-半乳糖苷酶活性和端粒DNA损伤均明显减弱,细胞增殖能力得到有效恢复,SASP表达也有明显降低。然而,小鼠体重、体脂率、日均食物摄取量和活动量等都未明显改变,表明清除p21high衰老细胞主要通过减少组织衰老程度而非小鼠饮食活动发挥作用。为了确认造成肥胖小鼠胰岛素抵抗的p21high衰老细胞的组织来源,研究者首先利用免疫荧光和生物发光成像技术对肥胖小鼠不同组织进行观测,他们发现p21high衰老细胞主要分布于内脏脂肪组织,而肝脏、胰腺、肌肉等组织均不明显。接下来研究者将肥胖小鼠的内脏脂肪移植至正常小鼠,结果显示该脂肪移植可引起受体小鼠的胰岛素抵抗现象;而清除供体内脏脂肪的p21high衰老细胞则可以显著改善脂肪移植造成的受体小鼠胰岛素抵抗的危害。以上研究提示内脏脂肪组织中p21high衰老细胞导肥胖小鼠胰岛素抵抗发生的重要机制。为了阐明p21high衰老细胞参与调控胰岛素抵抗发生的潜在机制,研究者在p21high衰老细胞中特异性抑制NF-κB通路。结果显示抑制NF-κB不会引起p21high衰老细胞比例改变,但脂肪组织SASP表达显著减少,并且能显著改善肥胖小鼠的代谢紊乱。应用Senolytics(一类具有选择性诱导衰老细胞凋亡的药物)清除累积的衰老细胞或抑制SASP是目前被认为极具前景的抗衰老策略【3】。为了探究是否可以通过该类药物靶向p21high衰老细胞来减轻其对机体代谢功能的危害,研究者选取了目前广泛应用的senolytic药物达沙替尼(dasatinib, D)和槲皮素(quercetin, Q),分别对肥胖小鼠和人体脂肪进行干预。结果显示D+Q组合均能显著降低肥胖小鼠和人体脂肪组织中p21high衰老细胞比例。值得一提的是,研究者将来自肥胖人群的脂肪组织移植到免疫缺陷的小鼠体内以此建立异种移植模型,并利用该模型评价了D+Q对受体小鼠代谢功能的调控作用。他们发现,肥胖人体脂肪组织会导致受体小鼠出现胰岛素抵抗现象,而脂肪组织经 D+Q给药处理后,受体小鼠的胰岛素抵抗现象几乎消除。该结果阐明了靶向p21high衰老细胞在改善代谢紊乱中的巨大临床应用前景。文章通讯作者徐铭教授认为该人体脂肪组织移植实验结果令人印象深刻,为日后D+Q临床试验奠定了基础。徐教授强调,关于D+Q对二型糖尿病患者治疗效果的临床测试目前已在筹划进行中。在D+Q的有效性和安全性被大规模临床试验验证之前,该药物还不能马上在临床上用于治疗糖尿病。该文是继调控自然衰老之后,该团队对p21high衰老细胞生物学功能的再次探索。以往衰老研究领域较多关注p16high衰老细胞,而本文揭示了肥胖小鼠组织中p21high衰老细胞和p16high衰老细胞为两种不同的细胞类群,二者在肥胖小鼠体内的组织分布、聚集时间以及对代谢方面的调控作用均存在差异;相较于p16high衰老细胞,p21high衰老细胞更多更早地参与调控脂肪组织功能障碍,从而造成胰岛素抵抗。该研究也为进一步挖掘p21high衰老细胞的特质及其在自然衰老过程中其他各种衰老相关疾病可能发挥的致病作用提供了依据。原文链接:https://doi.org/10.1016/j.cmet.2021.11.002
  • 3D打印的基于环偶极子的高性能太赫兹传感器及其应用
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。 近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。 此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。 此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • FOSS邀请函 | 这些“新鲜花样”都离不开福斯质量分析方案
    GUIDEFBIF创新食品展2023年FBIF展览面积扩大到62,000平方米,超700家参展商,包括乳品、酒、零食与烘焙食品、方便食品、饮料、植物基、调味品与预制菜、等195家品牌方+290家食品配料&代工类+130家包装&设备类及+80家营销&设计等共计520+食品行业相关供应商。福斯在:6月14-16日,深圳国际会展中心17号馆C45GUIDE170亿市场创新食品的消费热潮正袭来根据2021年尼尔森市场监测报告,每年中国快消市场上会涌现超过20,000款新品,这些新品所占的市场份额达到了170亿元人民币。随着年轻人成为消费主力,传统食品开始无法满足更年轻的追求,不仅要求食物提供营养的补给,还要享受舌尖上的愉悦和更健康的新诉求。精准营养、功能食品、跨界混搭、植物基肉和饮品、代餐等新食概念紧跟需求,创造出一个个新的消费热潮。正大食品MEAT ZERO植物肉;伊利乳业植选豆奶;元气森林无糖汽水;钟薛高马爹利联名雪糕;星巴克生咖饮;海底捞自热锅;梅见青梅酒等。除了传统食品巨头加快加入创新食品的领域,新消费品牌也在如雨后春笋般涌现,迅速扩大这些新食品的市场份额。GUIDE福斯食品生产质量分析方案用科技助力食品创新研发福斯一直专注食品生产质量分析解决方案,为食品创新研发提供分析方案和数据支持。除了FOSS ANN全球分析数据库,同时支持用户开发新定标模型。DS3 F近红外品质分析仪广泛应用于粮食、食品领域,包括各种谷物、豆类、饼干面包、面皮面条、巧克力、乳粉、植物蛋白粉、油脂、调味品酱料等成熟近红外技术,850-2500nm全光谱扫描一分钟快速检测多项营养参数,包括蛋白、脂肪、纤维、淀粉、各类脂肪酸、各类氨基酸、蔗糖、还原糖、酸度、含油等福斯全球ANN定标即插即用支持开发新定标模型MilkoScan&trade FT3乳品/调味品分析仪牛奶、酸奶、花色奶、乳饮料、豆浆、椰汁、植物蛋白饮、酱油、醋、调味品等一分钟快速检测:蛋白质、脂肪、乳糖、总固、非脂肪固体、冰点、酸度、密度、游离脂肪酸、柠檬酸、尿素、蔗糖、葡萄糖、果糖、半乳糖目标性和非目标性掺杂物筛查全球专利自动标准化技术,180天定标不漂移酱油、醋全氮、氨基氮、还原糖、密度、酒精、总固、pH、盐分、总酸、不挥发酸等FoodScan&trade 2近红外肉类分析仪畜禽肉、鱼肉、奶酪、奶油、植物蛋白肉、植物奶油25秒立刻获得多项参数,ANN全球定标即插即用包含脂肪、蛋白、水分、胶原蛋白、盐、灰分。另可选定标包括饱和脂肪、碳水化合物、能量、钠、水分活度颜色模块的引入为肉类分析增加了一个全新的分析维度WineScan&trade 酒类分析仪葡萄酒、起泡酒、果酒、中国白酒傅里叶变换红外技术(FTIR)一分钟快速检测葡萄汁、发酵汁、葡萄成品酒中如柠檬酸、二氧化碳、密度、葡萄糖等多达数十种参数(详细请咨询福斯),另可选配二氧化硫参数无需对发酵中的葡萄汁或起泡酒进行脱气处理中国白酒基酒和成品酒中的总酸、总酯、酒度、己酸乙酯、乙酸乙酯、乳酸乙酯、乙醛、甲醇等
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制