当前位置: 仪器信息网 > 行业主题 > >

乙酰酪氨酸乙酯

仪器信息网乙酰酪氨酸乙酯专题为您提供2024年最新乙酰酪氨酸乙酯价格报价、厂家品牌的相关信息, 包括乙酰酪氨酸乙酯参数、型号等,不管是国产,还是进口品牌的乙酰酪氨酸乙酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰酪氨酸乙酯相关的耗材配件、试剂标物,还有乙酰酪氨酸乙酯相关的最新资讯、资料,以及乙酰酪氨酸乙酯相关的解决方案。

乙酰酪氨酸乙酯相关的资讯

  • Science重磅 | meteorin-like因子通过内皮KIT受体酪氨酸激酶促进心脏修复
    “世界心脏日今天9月29日是世界心脏日(World Heart Day),是由世界心脏联盟确定,旨在世界范围内宣传有关心脏健康的知识,并让公众认识到生命需要健康的心脏。在全世界范围内,心血管疾病是威胁人类健康的高危病种,其危害无年龄、身份、地域之分。在中国,每年大约有260万人死于心脑血管疾病,死亡人数位列世界第二。《中国心血管健康与疾病报告2021》指出,每5例死亡中就有2例死于心血管病。急性心肌梗死(MI)是一种常见的由突发冠状动脉血栓形成和闭塞引起的心脏急症。急性心肌梗死期间持续的缺血组织损伤导致疤痕形成,进而可能心力衰竭。心肌梗死后形成的新血管可减轻疤痕和心功能恶化。然而心肌梗塞后形成血管生成和功能适应的细胞间的相互作用仍不完全清楚。下面跟随小编来看一下德国汉诺威医学院的研究人员今年发表在《Science》上的“心脏知识”。德国汉诺威医学院Kai C. Wollert研究团队发表题为Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase的研究。通过对急性心肌梗死的小鼠进行生物信息学分泌组分析,发现细胞因子METRNL(Meteorin-like) 在梗死边界区内皮细胞高度表达,促进心肌梗死后的血管生成、组织修复和功能适应。使用化学交联质谱法发现,KIT(受体酪氨酸激酶)是内皮细胞中METRNL细胞表面受体。为了评估METRNL是否与KIT的细胞外结构域结合,通过微量热泳动(MST)技术,检测到KIT-ECD-Fc可结合METRNL和SCF(KIT已知配体),并且亲和力很高(Kd分别是87nM和175nM),而不与血管内皮生长因子A(VEGFA)结合。Pull Down实验获得相同的结果。图注:MST技术和Pull Down检测KIT的胞外结构域与METRNL,SCF和VEGFA结合随后,作者检测时发现METRNL的治疗会增强心肌梗死区域边缘的毛细血管化,限制瘢痕的形成并对心脏功能具有持续有益的影响。研究结果: 作者定义了一种基于METRNL的髓系细胞和内皮细胞之间的交叉信号,METRNL通过KIT依赖的信号通路介导内皮细胞的血管生成作用促进心肌梗死后组织修复,为急性心肌梗死的治疗提供了新的药物靶点。心脏是人体最重要的器官之一,无论工作或者科研再忙碌,一定要注意休息。马上就要国庆节了,让我们一起为劳苦功高的心脏放个假吧!文献参考:Reboll, Marc R., et al. "Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase." Science 376.6599 (2022): 1343-1347.*文内部分图片来源自百度,侵则删。
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • Cell:无丝氨酸饮食,也许是对抗最致命胰腺癌的法宝
    一项研究发现,胰腺癌细胞通过向神经发出信号来避免饥饿,信号传递给神经,就会分泌营养,促进肿瘤生长。这是一项针对癌细胞,小鼠和人体组织样品进行的实验结果,相关论文发表在11月2日的Cell杂志上。胰腺导管腺癌(PDAC),也就是最致命的胰腺癌,五年生存率低于10%。此类肿瘤会促进压迫血管的致密组织的生长,从而减少诸如丝氨酸之类的血源性营养物质的供应。这种氨基酸是蛋白质的基本组成部分,也是癌细胞增殖所必需的。纽约大学格罗斯曼医学院等处的研究人员发现,饥饿的胰腺癌细胞会分泌一种叫做神经生长因子的蛋白质,该蛋白质向神经细胞发送信号,指导它们进入肿瘤,进一步发现这些轴突能分泌丝氨酸,帮助胰腺癌细胞避免,饥饿并恢复其生长。文章通讯作者,纽约大学Alec Kimmelman博士说,“神经将营养从血液中转移到胰腺肿瘤微环境中,这是一种一种令人着迷的适应能力,也许可以通过干扰这种特性来研发治疗方法。”研究发现,饥饿的丝氨酸胰腺癌细胞利用了将mRNA链(DNA指令的副本)翻译成蛋白质的过程。密码子将mRNA分子链的骨架解码为氨基酸,核糖体会读取每个密码子,让它们以正确的顺序将氨基酸连接在一起,但是如果缺少可用的氨基酸,核糖体就会失速。出乎意料的是,研究小组发现,丝氨酸饥饿的胰腺癌细胞显著降低了六个丝氨酸密码子中的两个(TCC和TCT)被翻译成氨基酸链的速度。在丝氨酸饥饿的情况下,这种变异性使癌细胞将某些蛋白质的产生减至最少(以保持饥饿时的能量储存),但继续建立诸如神经生长因子(NGF)之类的压力适应性蛋白质,而这种蛋白质恰好由少数TCC编码和TCT密码子。之前的研究NGF和其他因素会刺激神经生长成胰腺肿瘤,促进肿瘤生长。而最新研究是第一个表明轴突,即传递信号的神经元细胞的延伸,能通过在营养缺乏的区域分泌丝氨酸来为癌细胞提供代谢支持。一项2016年的研究表明,此类细胞向附近的星状细胞发送信号,导致它们将自己的细胞部分分解为可被肿瘤利用的构件。然后2019年12月进行的一项研究发现,胰腺癌细胞还劫持了一个称为巨胞饮作用的过程,正常细胞利用该过程通过其外膜吸收营养。有趣的是,这项新研究发现星状细胞和巨胞饮作用不能为这些癌细胞提供足够的丝氨酸生长,还是需要轴突递送。这项研究指出,喂食无丝氨酸饮食的PDAC肿瘤小鼠的肿瘤生长速度降低了50%。为了超越单纯饮食所能达到的效果,研究人员还使用美国FDA已经批准的一种名为LOXO-101的药物来阻止轴突进入PDAC肿瘤。该药物阻断与神经生长因子(也称为TRK-A)相互作用的神经元表面受体蛋白的活化,从而抑制神经元将其轴突送入肿瘤的能力。这组作者说,仅使用这种药物并不能减慢小鼠中PDAC肿瘤的生长,但是与单独使用饮食相比,与无丝氨酸饮食结合时,它可以使PDAC的生长速度进一步降低50%。研究人员说,这表明神经对于支持丝氨酸剥夺的肿瘤区域中的PDAC细胞生长是必要的。文章一作Robert Banh说:“由于TRK抑制剂已被批准用于某些癌症的治疗,因此在手术后大约40%不能产生丝氨酸的PDAC肿瘤患者中,它们可能与低丝氨酸饮食联合,这种方法是否可以通过限制营养供应来减少肿瘤复发,还需要在临床试验中证实。”
  • FDA批准艾伯维突破性抗癌药Imbruvica一线治疗慢性淋巴细胞白血病(CLL)
    FDA批准艾伯维突破性抗癌药Imbruvica一线治疗慢性淋巴细胞白血病(CLL)美国生物技术巨头艾伯维(AbbVie)抗癌管线近日在美国监管方面传来特大喜讯,FDA已批准突破性抗癌药Imbruvica(ibrutinib)用于慢性淋巴细胞白血病(CLL)患者的一线治疗。此次批准,首次为CLL群体提供了一种无化疗(chemotherapy-free)的一线治疗选择,同时也使得Imbruvica在美国的治疗适应症达到了5个之多。此前,Imbruvica已获FDA批准用于:复发性或难治性套细胞淋巴瘤(MCL)、经治慢性淋巴细胞白血病(CLL)、携带17p删除突变的CLL、Waldenstrom巨球蛋白血症(WM)。在美国,大约有11.5万例慢性淋巴细胞白血病(CLL)患者,每年新增约1.5万例。CLL患者多为老年患者,平均诊断年龄为71岁。此次批准,标志着CLL临床治疗的一个重大飞跃,将为CLL群体提供除传统化疗之外的一种新的一线治疗选择。Imbruvica最初由美国医药巨头强生(JNJ)与Pharmacyclics公司共同开发,之后,强生在去年3月计划以超过170亿美元收购Pharmacyclics,但却被艾伯维以210亿美元成功抢婚。通过此次收购,艾伯维获得了这款“钱”途无量且与自身肿瘤学管线完美互补的突破性抗癌药Imbruvica在美国市场的销售权,该药在美国监管方面先后获得了突破性药物资格、优先审查资格、加速批准及孤儿药地位。去年,Imbruvica在美国已获批的4个适应症,为艾伯维带来了近10亿美元的收入。业界对Imbruvica的前景也十分看好,预计该药的年销售峰值将突破50亿美元。此次,Imbruvica一线治疗CLL新适应症的获批,是基于一项随机、多中心、开放标签III期RESONATE-2(PCYC-115)临床研究的数据,该研究在269例初治(既往未接受治疗)慢性淋巴细胞白血病(CLL)或小淋巴细胞淋巴瘤(SLL)老年患者(年龄≥65岁)中开展,调查了Imbruvica相对于苯丁酸氮芥(chlorambucil)的疗效和安全性。根据独立审查委员会(IRC)的评估结果,与苯丁酸氮芥相比,Imbruvica显著延长了无进展生存期(中位PFS:未达到 vs 18.9个月),疾病进展或死亡风险显著降低84%,达到了研究的主要终点。此外,与苯丁酸氮芥相比,Imbruvica也与显著更高的IRC评估的总体缓解率相关(ORR:完全缓解+部分缓解,82.4% vs 35.3%,p<0.0001)。Imbruvica治疗组有5例(占3.7%)实现完全缓解,苯丁酸氮芥治疗组有2例(占1.5%)实现完全缓解。Imbruvica(ibrutinib)是一种首创的口服布鲁顿酪氨酸激酶(BTK)抑制剂,通过抑制肿瘤细胞复制和转移所需的BTK发挥抗癌作用。Imbruvica能够阻断介导恶性B细胞不可控地增殖和扩散的信号通路,帮助杀死并降低癌细胞数量,延缓癌症的恶化。在临床试验中,Imbruvica单药及组合疗法针对广泛类型的血液系统恶性肿瘤展现出了强大的疗效,包括慢性淋巴细胞白血病(CLL)、套细胞淋巴瘤(MCL)、Waldenstrom巨球蛋白血症(WM)、弥漫性大B细胞淋巴癌(CLBCL)、滤泡性淋巴瘤(FL)、多发性骨髓瘤(MM)及边缘区淋巴瘤(MZL)等。
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • ​抗体-抗原相互作用研究进展:利用焦碳酸二乙酯共价标记-质谱法进行表位定位
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry,该文章的通讯作者是美国马萨诸塞大学的Richard W. Vachet1。基于单克隆抗体 (mAb) 的疗法之所以成功,是因为抗体与其抗原之间的高特异性和亲和力。表位识别涉及确定 mAb 识别的抗原残基,对于了解结合机制和帮助设计未来的治疗方法至关重要。识别抗原中的结合残基和特异性结合所必需的抗原高阶结构 (HOS) 的特征对于理解结合机制至关重要。在研究完整的抗体-抗原复合物时,质谱 (MS) 已成为一种很有前途的表位定位工具;MS仅需要低样本量,不受分子量的限制,并且比核磁共振或X晶体衍射提供更高的分辨率。目前已经开发了各种用于抗原-抗体相互作用的 MS 工具,其中,共价标记质谱(CL/MS) 已成为一种有前途的补充技术,可以提供残留水平的分辨率并且具有相对较高的通量,通常不会像 HDX-MS 那样遭受标记损失,并且根据试剂的不同,样品制备很简单,不需要专门的设备。焦碳酸二乙酯(DEPC)是一种很有前途的CL试剂,它可以标记许多亲核残基,包括赖氨酸、组氨酸、丝氨酸、苏氨酸、酪氨酸和 N 端,可以标记平均蛋白质中约 30% 的残基。组氨酸和赖氨酸残基的标记程度与其溶剂可及表面积(SASA)相关,而丝氨酸、苏氨酸和酪氨酸的标记对其微环境敏感,特别是附近疏水残基的存在。此外,DEPC 标记在很大程度上不受毫秒时间尺度上发生的蛋白质动力学的影响。本文为了评估 DEPC-CL/MS 用于研究抗体-抗原相互作用,选择肿瘤坏死因子-α(TNFα)作为模型系统,研究了三种具有不同的表位并在不同程度上稳定TNFα的mAb——阿达木单抗、英夫利昔单抗和戈利木单抗结合TNFα的相互作用。至于具体试剂制备、DEPC-蛋白质反应、蛋白质消化条件、LC-MS 和 MS/MS 参数以及数据分析等详细信息请点击“阅读原文”进一步了解。1、抗体-抗原复合物的 DEPC-CL/MS考虑因素TNFα 是一种含有157个残基的蛋白质,具有35个DEPC可修饰残基。单独标记TNFα 表明其中34个残基可以被修饰,从而提供足够的结构覆盖信息。DEPC-CL/MS 实验通常比较游离蛋白与复合蛋白的标记,以确定结合位点。然而,对于抗体-抗原系统,直接比较游离TNFα与TNFα/mAb复合物较困难,因为抗体增加了过多的可标记残基数量,所以需要含有非结合mAb利妥昔单抗的溶液中的 TNFα 进行对照,从而提供了一种校正由抗体存在而引起的任何标记变化的方法。该对照试验表明,在利妥昔单抗存在时,TNFα中标记的残基较少(34),这表明当存在额外的蛋白质时,某些残基的标记水平降至检测限以下。用利妥昔单抗(即对照)结合TNFα与用另外三种mAb结合TNFα的比较揭示了标记残基的可能发生的三种不同变化(图1)。第一种,有些残留物的标记程度没有显着变化,表明它们的微环境或 DEPC 可及性没有变化。第二种,由于溶剂可及性的增加,引起特别是组氨酸和赖氨酸残基标记的增加;或微环境的变化,引起特别是丝氨酸、苏氨酸和酪氨酸残基标记的增加(由于DEPC局部浓度增加,可接近的丝氨酸、苏氨酸和酪氨酸残基周围的疏⽔性更强的微环境导致这些弱亲核残基反应性更⼴泛)。第三种,由于溶剂暴露的损失或疏⽔性更低的微环境,引起残基标记减少。图1. TNFα与mAb复合后标记程度可能的变化情况。TNFα三聚体以灰色表示;抗体以黄色表示;标记用绿色星号表示,星号的大小与标记程度成正比。分别显示了(A)标记程度没有变化、(B)标记程度增加和(C)标记程度减小的结果。2、与阿达⽊单抗复合的TNFα的DEPC-CL/MS阿达⽊单抗在所研究的mAb中具有最⼤的表位,该表位由TNFα同源三聚体的两个亚基组成(图2A、B)。该表位包含11个可修饰残基,其中8个在对照或存在阿达⽊单抗的情况下被标记。其余三个,His78、His73和Lys65,在利妥昔单抗或阿达⽊单抗条件下均未标记,因为它们埋在TNFα三聚体中。图2. 与阿达木单抗复合的TNFα的结构和DEPC标记结果。(A) 阿达木单抗与TNFα三聚体的复合物,阿达木单抗在三聚体凹槽中与TNFα三聚体的两个单体结合。(B)与TNFα 三聚体复合的阿达木单抗Fab的表面结构表示(PDB ID: 3WD5)。(C)使用和不使用阿达木单抗的TNFα中表位残基的DEPC标记程度。(D)使用和不使用阿达木单抗的TNFα中非表位残基的DEPC标记程度。(E)在阿达木单抗结合后标记减少(蓝色)的表位残基映射到TNFα 三聚体上。阿达木单抗以黄色显示,TNFα三聚体以灰色显示。(F)与阿达木单抗结合后标记增加(红色)的表位残基映射到TNFα三聚体上。在比较利妥昔单抗对照和阿达木单抗时,八个表位残基的标记程度发生了变化(图2C)。八个残基中有五个标记减少,包括Tyr141、Lys112、Lys90、Thr72和Ser71,因为在阿达木单抗结合后被埋藏(图2 E);其中大多数这些残基的标记是完全被阻止的。剩余三个表位残基(Thr77、Ser81和Ser147)在阿达木单抗结合时被标记,但在对照中它们没有被标记(图2F)。Thr77标记的增加可能是由于阿达木单抗重链上靠近Trp53的疏水性微环境增加所致(图3A)。虽然 Ser81 不与阿达木单抗接触,但它被认为是表位的一部分,因为它靠近与mAb结合的Lys90和Glu135(图3B)。Ser147也被标记,可能是由于结合时更加疏水的环境(图3C)。总体而言,TNFα 表位中所有可修饰残基都会发生 DEPC 标记变化,但表位边缘的Thr和Ser残基实际上会增加标记,这些违反直觉的变化反映了 DEPC 标记对这些弱亲核残基的疏水微环境的独特敏感性。图3.阿达木单抗结合时TNFα残基的代表性结构变化。(A)Thr77的微环境由于其靠近阿达木单抗中的Trp53而增加疏水性。(B)Ser81被表位残基Lys90和Glu135掩埋,但在阿达木单抗结合时部分暴露,导致其DEPC反应性增加。(C)在未结合的TNFα中,Ser147完全暴露于溶剂中,然而在阿达木单抗的存在下,Ser147位于更疏水的微环境中。(D)Ser86的微环境在结合状态(灰色)下变得不那么疏水,因为它与Tyr87的接近度降低。(E)Thr89和Thr105由于靠近阿达木单抗而增加标记。(F)Ser9、Tyr151、Tyr119、Tyr56 和 Ser99 的标记范围都有所增加,这些残基十分靠近三聚体界面。在表位之外,标记了21个残基,其中大部分 (11/21) 的标记程度没有变化,表明它们在SASA或微环境中没有发生显着变化。残基Ser86标记程度降低(图2D),是因为其在阿达木单抗结合后重新定位,周围的疏水口袋很可能发生变化(图3D),导致标记减少。表位外的九个残基增加了标记程度。这些残基中的大多数 (7/9) 是丝氨酸、苏氨酸或酪氨酸,其 DEPC 反应性对微环境变化非常敏感。其余两个残基 Thr89 和 Thr105 在利妥昔单抗对照中未标记,但在阿达木单抗结合后,它们的微环境变得更加疏水,可能是由于它们与表位非常接近,所以它们的标记程度增加(图3E )。Ser9、Tyr56、Tyr119 和 Tyr151 的标记增加可能是因为它们面向 TNFα 中的三聚体界面(图3F),在阿达木单抗结合时发生的三聚体的稳定化可能会改变这些残基的微环境,从而增加它们的标记程度。其中两个残基Tyr56、Tyr151在利妥昔单抗对照中完全未标记,并在复合物中被标记,使其行为类似于表位边缘的Ser和Thr残基。标记程度增加的另外两个非表位残基是His15和Lys128,然而,阿达木单抗与TNFα三聚体的Fab的晶体结构并未表明His15或Lys128的SASA变大;阿达木单抗/TNFα 在实验浓度下形成的大于3:1的高阶复合物的复杂变化可能可以解释标记的增加。此外,作者还对英夫利昔单抗复合物中TNFα和与戈利木单抗复合的TNFα进行了DEPC-CL/MS分析。综上所述,本实验使用结合TNFα的三种治疗性mAb,证明 DEPC-CL/MS 可以揭示有关表位的准确信息以及远离表位的细微结构变化。为了获得可靠的结果,需要涉及非结合mAb的对照实验来解释由mAb中存在大量可修饰残基引起的额外标记变化。研究结果表明,表位中的组氨酸和赖氨酸残基在标记中显着减少,而在表位内或表位边缘的弱亲核性丝氨酸、苏氨酸和酪氨酸残基由于附近疏水微环境的产生而发生标记程度的增加。大多数远离表位的残基在标记程度上不会发生任何显着变化;确实发生变化的残留物主要分为三类:第一类包括不属于表位但与表位非常接近的残基,因此由于部分掩埋而导致标记程度发生变化;第二类,TNFα三聚体界面上的残基会发生标记变化,这些变化反映了抗体结合后三聚体稳定化引起的结构变化;第三类主要包括弱亲核性残基由于抗体结合时发生的 HOS 变化而在微环境中发生标记增加或减少,并反映在这些残基周围产生或多或少的疏水环境,这是 结构变化或形成具有大mAb/TNFα化学计量的复合物的结果。总而言之,DEPC 标记可以提供有关抗体-抗原表位的信息,并且具有很好的表位定位潜力,也可用于快速筛选潜在的治疗性抗体或生物等效性研究。参考文献:1、Tremblay CY, Kirsch ZJ, Vachet RW. Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1052-1059.阅读原文:https://pubs.acs.org/doi/10.1021/acs.analchem.1c04038
  • 南方医科大学研究团队成果:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖
    南方医科大学研究团队发表相关论文,英文题目:GinsenosideRg1 mitigates morphine dependence via regulation of gut microbiota,tryptophan metabolism, and serotonergic system function。中文题目:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖研究背景吗啡依赖是一种毁灭性的神经精神疾病,可能与肠道菌群失调密切相关。人参皂苷Rg1(Rg1)是从人参根中提取的活性成分,对神经系统具有潜在的保健作用。然而,它在物质使用障碍中的作用仍不清楚。该文探索了Rg1在对抗吗啡依赖中的潜在调节作用。研究结果1.人参皂甙 Rg1 抑制吗啡诱导的小鼠的条件位置偏好(CPP)调理训练后各组小鼠体重略有增加,但是未观察到显著差异(图1C)。使用Smart3.0软件在15分钟内跟踪小鼠头部并记录它们的轨迹和停留时间。对照组和其他组之间的轨迹或CPP分数没有显着差异。在吗啡注射后在白室中花费的时间与基线相比以及在盐水处理后在白室中花费的时间显着增加(图1C,D),表明吗啡成功诱导CPP在实验小鼠中。MRH和MRL组与模型组相比,MRL和MRH小鼠在药物配对隔室的停留时间和轨迹显着减少。然而,在单独用人参皂甙Rg1治疗的小鼠中,没有观察到CPP评分和活动途径的变化。2.人参皂甙Rg1改善CPP小鼠肠道菌群失调阿片类药物成瘾通常与肠道菌群失调有关。为了进一步探索Rg1介导的抗成瘾机制,对粪便进行了16S rRNA 基因扩增子测序,以评估有或没有Rg1处理的CPP小鼠肠道微生物群的组成。维恩图显示了对照组和其他组小鼠共有476个OTU(图2A)。然而,对照组有1108个OTU,M组有1304个,MM组有19个,MRL组有548个,MRH组有1702个,CR组有195个。这些数据暗示了吗啡治疗诱导的肠道微生物群紊乱和人参皂苷Rg1给药后的部分恢复。值得注意的是,使用Chao1指数进行的α多样性分析显示,Rg1阻止了吗啡引起的细菌丰富度下降(图2B);然而,各组之间的香农指数没有差异(图2C)。通过Bray-Curtis主坐标分析(PCoA)研究肠道菌群的整体结构表明,吗啡组的细菌组成发生了变化,与对照组不同,表明肠道菌群失调吗啡处理诱导了微生物群(图2D)。然而,MRL、MRH、MM和CR组显示了四种不同的细菌组成簇。值得注意的是,MRL中的微生物群与MRH组中的微生物群更紧密地聚集在一起。我们在门水平上进一步分析了每组的肠道细菌组成。人参皂甙Rg1显着增加吗啡诱导的拟杆菌门和厚壁菌门相对丰度的降低(图2E),并显着降低吗啡诱导的蓝藻和变形杆菌的相对丰度增加。在家族水平上的进一步分析显示,吗啡处理导致随着叶绿体和线粒体的增加,拟杆菌属、Sutterellaceae和Tannerellaceae的相对丰度急剧下降。在MRL和MRH组中,吗啡诱导的丰度变化不同程度地逆转(图2F,G)。此外,Kruskal-WallisH检验用于评估指定组之间在物种水平上的差异的显着性,并观察到15个优势物种(图2H)。考虑到报告显示吗啡依赖模型中拟杆菌属的丰度低于对照,我们专注于拟杆菌属物种B.vulgatus、B.xylanisolvens和B.acidifaciens。吗啡显着降低了B.acidifaciens、B.vulgatus和B.xylanisolvens 的丰度。值得注意的是,B.vulgatus的相对丰度在Rg1给药后显着增加(图2I)。除了16SrRNA 测序外,我们还用B.vulgatus特异性引物进行了定量PCR,证实吗啡显着降低了丰度,人参皂苷Rg1处理后丰度显着增加(图2J)。图片图片图23.人参皂甙 Rg1抑制肠道微生物群衍生的水平和CPP小鼠血清色氨酸代谢物在药物依赖期间,肠道代谢谱发生变化,宿主代谢途径可能发生改变。我们假设人参皂苷Rg1可能通过肠道微生物发酵过程中产生的代谢物影响CPP。基于这一理论,我们使用非靶向代谢组学来识别可能在小鼠血清和肠道中改变的关键代谢物和代谢途径。MRL组和MRH组对吗啡诱导的CPP的疗效没有观察到统计学差异;然而,行为分析数据显示,MRH组的疗效优于MRL组。因此,我们选择MRH组作为非靶向代谢组学分析的代表性药物干预组。在血清和粪便中分别鉴定出1955和559种代谢物。偏最小二乘判别分析(PLS-DA)模型分别在血清和粪便中的CONTROL、MODEL和MRH组中显示出显着的聚类分离(图3A、G)。热图分析显示,CPP导致代谢物发生显着变化,小鼠粪便和血清中共有177种代谢物(96种上调和81种下调)和69种代谢物(44种上调和25种下调)分别显着改变(图3D和J)。此外,对代谢物途径的分析表明,与对照组相比,CPP小鼠的以下途径发生了显着变化:色氨酸、α-亚麻酸、甘油磷脂、精氨酸和脯氨酸、苯丙氨酸、酪氨酸和色氨酸代谢。值得注意的是,色氨酸代谢受到粪便和血清中吗啡的显着影响(图3B和H)。将MRH与MODEL组进行比较,在人参皂苷Rg1处理后,粪便和血清中的195种代谢物(94种上调和101种下调)和115种代谢物(60种上调和55种下调)分别显着改变(图3E和K)。代谢组学图显示色氨酸代谢受到Rg1补充的显着影响(图3C和I)。色氨酸代谢在微生物组-肠-脑轴中起关键作用。在这种情况下,我们专注于色氨酸代谢相关的代谢物。具体而言,色氨酸代谢相关代谢物的热图分析表明,参与色氨酸代谢的四种主要中间代谢物L-色氨酸、吲哚、N' -甲酰基犬尿氨酸和血清素是对吗啡的反应最显着增加的代谢物,它们的水平在Rg1处理后,粪便或血清中的含量降低。具体来说,我们发现与模型组相比,Rg1处理的肠道色氨酸和血浆血清素水平下调(图3F和L)。4.人参皂甙 Rg1 改善 CPP 小鼠海马 5-羟色胺能系统的变化血清色氨酸浓度会影响大脑的血清素系统。我们推测宿主色氨酸代谢物的变化可能与CPP小鼠的海马血清素能系统和其他神经递质有关。为了验证这一假设,使用酶联免疫吸附法检测海马和外周血清中谷氨酸、多巴胺、γ-GABA和5-HT的表达水平。在海马中,相对于对照组,CPP小鼠表现出显着升高的多巴胺水平和降低的γ-GABA水平(图4C)。然而,组间谷氨酸和血清素的浓度没有差异(图4A)。与M组相比,MRH组海马中GABA含量增加。此外,在MRL和MRH小鼠中观察到多巴胺水平显着下降。注射吗啡后血清中血清素和多巴胺水平升高,γ-GABA水平降低。所有CPP诱导的变化都被Rg1处理逆转(图4B、D、S2B)。为了进一步探索Rg1介导的抗成瘾机制,我们使用qPCR检测了小鼠海马中奖赏相关基因mRNA的相对转录水平,包括脑源性神经营养因子(BDNF)、神经营养酪氨酸激酶受体2型(TrkB)和血清素受体。与Rg1治疗组的转录水平相比,吗啡组中5-羟色胺受体(5-HTR1B和5-HTR2A)、BDNF和TrkB的转录水平因人参皂苷Rg1给药而下调(图4E、F)。这些数据表明人参皂甙Rg1可能通过抑制血清素系统来改善吗啡依赖。5.肠道微生物组的调控影响人参皂甙 Rg1 对吗啡诱导的小鼠 CPP 的抑制作用为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们在进行吗啡依赖性CPP训练之前,给BALB/cSPF 小鼠施用了不可吸收的抗菌剂或无菌水的混合物7天,然后进行CPP测试(图5A)。ATM治疗后各组小鼠体重下降,调理训练后略有增加;然而,各组之间没有观察到差异(图5B)。ABX与对照组相比,同时给予多种抗生素后,所有抗生素治疗小鼠在药箱中的停留时间均增加。此外,与ABX组相比,AM组在药物配对隔室中的停留时间明显增加。令人惊讶的是,小鼠在AMRL、AMRH和AMM组的药物配对隔室中的停留时间与AM组没有显着差异(图5D)。我们在鼠标头部轨迹中观察到相同的现象(图5C)。为了评估抗生素暴露后小鼠肠道微生物群发生的变化,通过16SrRNA 基因测序测定了粪便细菌组成。抗生素治疗极大地改变了微生物组并减少了细菌负荷(图5E)。为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们使用了维恩图显示了对照组和其他抗生素治疗小鼠共享的476个OTU;然而,1606个OTU是对照组独有的,48-68个OTU是其他六个抗生素治疗组独有的。随后用抗生素混合物治疗导致肠道微生物群显着消耗,细菌多样性显着降低。PCoA显示抗生素治疗的小鼠与对照小鼠相比具有显着不同的微生物群落(图5F)。但ABX、AM、AMRL、AMRH、AMM和AR组的细菌多样性没有显着变化,说明抗生素治疗根除大部分共生菌,吗啡和人参皂苷Rg1治疗后没有显着变化.我们在ABX小鼠的粪便中发现了几种细菌门,这些细菌门相对于对照组的粪便发生了改变(图5G)。优势门不同,伴随着Proteobacteria的丰度显着增加,而Verrucomicrobiota、Cyanobacteria、Firmicutes和Deferribacterota的丰度在抗生素处理后下降。然而,用抗生素治疗小鼠并没有改变拟杆菌的相对丰度,尽管抗生素治疗耗尽了肠道微生物组成。最后,我们用B.vulgatus特异性引物进行了定量PCR,并证实与对照组相比,抗生素治疗组的细菌显着减少了数百至数千倍(图5H)。此外,吗啡和人参皂甙Rg1并没有改变B.vulgatus对抗生素的反应。6.肠道微生物组的消耗影响色氨酸代谢并抑制 Rg1 诱导的基因表达接下来检测了抗生素混合物治疗对吗啡诱导的CPP小鼠代谢物和代谢途径的影响。偏最小二乘判别分析(PLS-DA)模型显示,在粪便中的代谢物方面,对照组和ABX组之间的簇显着分离(图6A)。值得注意的是,抗生素治疗后ABX、AM和AMRH组之间没有明显的代谢物聚集。我们专注于色氨酸代谢途径,并观察到参与色氨酸代谢的代谢物被ATM显着改变。然而,在ABX、AM和AMRH中未观察到显着变化。因此,这些数据表明抗生素治疗强烈降低了粪便中色氨酸代谢物的水平(图6C),并且由吗啡和Rg1引起的代谢改变被消除。此外,在血清中,PLS-DA结果显示四组(对照组、ABX、AM和AMRH)的代谢物谱不同(图6B)。ATM显着改变了色氨酸代谢物。值得注意的是,与 ABX小鼠相比,注射吗啡的小鼠的代谢物发生了相当大的变化。具体而言,与 AM组相比,色氨酸代谢物在Rg1处理后没有显示出显着变化(图6D)。我们发现 Rg1治疗组和模型组在ABX治疗后肠道色氨酸和血浆血清素水平没有差异(图6E和F)。随后,我们发现微生物组消耗抵消了 Rg1在CPP小鼠海马体中诱导的变化(图6G-L)。Rg1治疗未能逆转5-HT、多巴胺、5-HTR1B/5-HTR2A 和BDNF-TrkB信号通路。7.B.vulgatus 协同增强人参皂苷 Rg1 抑制吗啡诱导的小鼠 CPP因为肠道B.vulgatus 减少和增加与吗啡诱导的CPP增加和Rg1降低CPP一致,并且在抗生素处理的小鼠中消除了人参皂苷Rg1对CPP的改善,我们探讨了B.vulgatus 是否在吗啡中起作用依赖。作为典型的拟杆菌属物种,普通拟杆菌是小鼠肠道中的主要细菌物种,我们试图确定普通拟杆菌是否会影响CPP进展。我们首先使用抗生素治疗来消耗肠道微生物群,然后再用B.vulgatus 定植。在吗啡诱导的CPP小鼠模型中检查B.vulgatus 对吗啡成瘾的影响(图7A)。抗生素治疗或B.vulgatus 移植没有显着改变体重(图7B)。单独使用B.vulgatus (AMBV) 进行灌胃显着降低了白框中的停留时间和轨迹百分比,而吗啡则增加了该百分比(图7C、7D)。值得注意的是,与B.vulgatus 和人参皂苷Rg1(AMBVR)共同治疗的小鼠在药物配对隔室中的停留时间和轨迹百分比显着降低。这些数据清楚地表明AMBVR在抑制CPP方面比AMBV取得了更好的功效。值得注意的是,在我们的研究中,用“吗啡”微生物组(AMF)进行肠道再定殖并没有诱导CPP行为。8.B.vulgatus 可以改变肠道微生物组成小鼠粪便样本的16SrRNA 基因测序揭示了用活的B.vulgatus灌胃肠道微生物群组成的变化。拟杆菌门的相对丰度从AM组的不到20%增加到AMBV组的40%和AMBVR组的60%(图7E)。定量PCR证实,与对照组相比,AMBV和AMBVR组灌胃后肠道中的细菌显着过度生长数百至数万倍(图7F)。这些数据表明,人参皂甙Rg1提高了CPP小鼠中普通双歧杆菌的丰度。9.B.vulgatus 改变了肠道微生物群衍生和宿主色氨酸代谢物对小鼠的粪便和血清进行了代谢组学分析。偏最小二乘判别分析(PLS-DA)显示AM、AMBV和AMBVR组之间完全分离(图8A和D)。热图分析显示,仅用B.vulgatus灌胃导致CPP小鼠代谢物发生显着变化,粪便中有332种代谢物(211种上调和121种下调),血清中有82种代谢物(58种上调和24种下调)。我们对具有已知KEGGID 的332和82种显着不同的代谢物进行了KEGG途径富集分析,并分别鉴定了14和11种富含色氨酸代谢的代谢物。同时,将AMBVR与AM组进行比较,粪便中的313种代谢物(237种上调和76种下调)和血清中的82种代谢物(44种上调和38种下调)在与普通芽孢杆菌和人参皂甙Rg1共同处理后显着改变。在粪便中发现了13种代谢物,血清中发现了11种代谢物富集到色氨酸代谢,AMBV和AMBVR都改变了肠道微生物群衍生和宿主色氨酸代谢。我们随后检查了粪便和血清中由AMBV和AMBVR改变的色氨酸代谢物的相对丰度(图8B,C)。用B.vulgatus 灌胃下调色氨酸和血清素水平(图8E-I和9B)。10.B.vulgatus 协同增强人参皂甙-Rg1 诱导的吗啡诱导的海马 5-羟色胺能变化的抑制作用最后,为了证实人参皂甙Rg1通过影响肠道微生物群衍生的色氨酸代谢-血清素途径来减轻吗啡依赖,我们测定了海马和血清中5-HT、多巴胺和GABA的水平。CPP小鼠中血清素和多巴胺的血浆浓度较低,而GABA的血浆浓度高于单独用普通双歧杆菌灌胃或与Rg1共同治疗的小鼠(图9A-D)。值得注意的是,AMBVR小鼠的海马5-HT浓度显着低于AM小鼠。qPCR进一步证实了血清素受体和BDNF-TrkB的mRNA水平升高。我们观察到5-HTR1B、5-HTR2A和BDNF-TrkB的表达被B.vulgatus 定植和Rg1处理有效抑制(图9E、F)。研究结论该研究表明人参皂苷Rg1对吗啡依赖的改善作用与肠道微生物群有关。此外,我们发现微生物组的消耗和拟杆菌的补充可以影响吗啡依赖性并影响Rg1的功效,伴随着色氨酸代谢和5-羟色胺的变化。该研究结果提供了一个新的框架来理解中药通过肠道微生物群-色氨酸代谢和血清素能系统拮抗吗啡成瘾的机制,可能会带来新的诊断和治疗策略。
  • 生物物理所基于光致电子转移扩展荧光蛋白的传感性质
    9月11日,美国化学会杂志JACS 在线发表了中国科学院生物物理研究所王江云研究组的最新研究成果&mdash &mdash 《基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质》。该研究利用基因密码子扩展技术,实现了在活细胞中编码一系列卤代酪氨酸(3-氯代酪氨酸(ClY)、3,5-二氯代酪氨酸(Cl2Y)、3,5-二氟代酪氨酸(F2Y)、2,3,5-三氟代酪氨酸(F3Y)、2,3,5,6-四氟代酪氨酸(F4Y)),在荧光蛋白中实现了大分子中的光致电子转移现象,基于光致电子转移原理发展了对pH及Mn(III)敏感的荧光传感器。   基因编码和荧光蛋白传感器是生物学研究中的重要技术手段。在过去的几十年中,人们已经开发出多种荧光蛋白传感器,用于监测金属离子,pH值,第二信使和翻译后修饰,这对于解析它们在体内信号转导网络中的作用是至关重要的。这些荧光蛋白传感器通常依赖于荧光共振能量转移或者绿色荧光蛋白GFP荧光团酚基的质子化/去质子化来发挥作用。尽管它们现在已被广泛应用,但是在分析物结合前后,这些荧光蛋白传感器的荧光强度变化通常都在两倍以内。相比之下,光致电子转移(photo-induced electron transfer,简称PET)机制开始越来越广泛地被引用到荧光传感器设计中来,最重要的原因在于分析物结合前后,荧光蛋白传感器可以展现出显著的荧光强度变化(通常可以增强10至100倍)。PET同时也是光合作用中的主要反应,PET过程广泛存在于生物系统中,如细胞色素c氧化酶、核苷酸还原酶、DNA光解酶等,其对磁感应等生物过程也具有非常重要的意义。   该研究将一系列卤族元素取代的酪氨酸通过基因密码子扩展的手段定点插入到荧光蛋白(iLov2)中,发现在非天然氨基酸与荧光蛋白发光中心FMN之间的发生了快速的光致电子转移,并测量到电子转移发生在0.2 纳秒。通过荧光检测科研人员得到了一系列对pH具有不同响应能力的荧光蛋白突变体,利用该传感器他们检测了细胞质的酸化过程,该传感器将适用于研究活细胞中的pH值变化过程。同时科研人员首次得到了可以基因编码的对Mn(III)敏感的荧光蛋白,这将有利于检测与生物和环境相关的Mn(III)的浓度,为筛选高效的锰过氧化物酶提供了平台,为实现高效的木质素降解及生物质转化提供了研究工具。该研究为蛋白动态构象变化研究提供了新的研究手段,为利用合成生物学手段生产可再生能源提供了新的研究思路,为蛋白设计提供了新的工具。   该研究得到科技部国家重点基础研究&ldquo 973&rdquo 计划、国家自然科学基金委员会的资助。    图示:基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质
  • 科学家发现癌基因STAT3竟也可抑癌?!
    近日,来自奥地利维也纳医科大学的研究人员发现,通常在癌症中发挥癌基因作用的IL-6和STAT3信号途径在前列腺癌中发挥着不同的作用。相关研究结果发表在国际学术期刊nature communication上。 IL-6是一种重要的细胞因子,它在调控细胞存活和肿瘤生长方面发挥着重要作用。高活性的IL-6会促进肿瘤生长,而STAT3是其下游一个重要的效应因子,在许多类型的癌症中扮演着癌基因的作用。目前已经有许多靶向抑制IL-6和STAT3的治疗方法用于癌症治疗。 但根据这项研究的结果来看,IL-6和STAT3在前列腺癌中发挥的作用与人们以往的认识有些不同,研究人员发现,在前列腺癌细胞中,激活的STAT3能够激活ARF基因,阻断细胞分裂进而抑制细胞生长。 在这项研究中,研究人员在Pten缺失的前列腺癌小鼠模型中,在基因水平抑制了STAT3或IL-6信号途径,结果发现该信号途径失活可以加速癌症进展并导致癌转移。他们发现p19ARF是STAT3的一个直接靶向目标,STAT3信号途径缺失会扰乱ARF-Mdm2-p53这条肿瘤抑制因子轴,但不会影响细胞衰老。除此之外,研究人员还在人类前列腺癌细胞中发现了STAT3和CDKN2A突变,并且STAT3和CDKN2A缺失突变在转移性前列腺癌细胞中共发生频率非常高。 研究人员还发现,STAT3和p14ARF在病人前列腺肿瘤中缺失与前列腺癌复发和转移风险增加存在显著相关性。因此STAT3和ARF表达水平或可用作区分前列腺癌发生风险高低的诊断标记。 总的来说,这项研究发现在其它类型的癌症中发挥癌基因作用的STAT3在前列腺癌中发挥抑癌作用,并且这种抑癌作用是通过调节ARF的表达影响ARF-Mdm2-p53肿瘤抑制因子轴的作用实现的。STAT3以及ARF的表达水平或可用于预测前列腺癌风险,可以得到进一步开发应用yb-7640R XKR1膜转运蛋白XK抗体yb-5590R phospho-YWHAE(Thr232)磷酸化14-3-3E蛋白抗体yb-2340R 14-3-3 epsilon14-3-3E蛋白抗体yb-12358R CHI3L2软骨细胞蛋白39抗体yb-6754R YY1AP1肝癌相关蛋白2抗体(转录因子YY1结合蛋白1抗体)yb-5921R YBX-1核酸敏感元件结合蛋白1yb-1943R YB1y-盒结合蛋白1抗体yb-3605R YAP1原癌基因Yes相关蛋白1抗体yb-3477R Phospho-YB1(Ser102)磷酸化DNA结合蛋白B抗体yb-3476R Phospho-YAP1(Tyr407)磷酸化原癌基因Yes相关蛋白1抗体yb-1415R YY1核转录调节因子YY1抗体yb-3475R Phospho-YAP1(Ser127)磷酸化原癌基因Yes相关蛋白1抗体yb-4166R YES1原癌基因酪氨酸蛋白激酶Yes1抗体yb-5591R phospho-YES1 (Tyr426)磷酸化原癌基因酪氨酸蛋白激酶Yes1抗体yb-5592R phospho-YES1(Tyr537)磷酸化原癌基因酪氨酸蛋白激酶Yes1抗体yb-3478R Phospho-ZAP70 (Tyr315 + Tyr319)磷酸化zeta相关蛋白70抗体yb-3479R Phospho-ZAP70 (Tyr493)磷酸化zeta相关蛋白70抗体yb-3620R Phospho-Zyxin (Ser142+Ser143)磷酸化斑联蛋白抗体yb-13576R ZBTB41锌指蛋白924抗体yb-11608R ZIC3内脏异位相关蛋白/锌指蛋白203抗体yb-13564R zbtb11锌指蛋白913抗体yb-13557R ZBT24锌指蛋白450抗体yb-13560R ZA20D3锌指蛋白20D3抗体yb-13553R ZBED3锌指蛋白BED3抗体yb-13572R ZBTB38锌指蛋白ZBTB38抗体yb-13562R ZADH2锌结合乙醇脱氢酶结构域蛋白2抗体yb-13567R ZBTB3锌指蛋白ZBTB3抗体yb-13551R ZBBX锌指蛋白ZBBX抗体yb-12253R ZFP219锌指蛋白219抗体yb-12254R ZFP36L1EGF应答因子1抗体抗体yb-12255R phospho-ZFP36L1(Ser334)磷酸化锌指蛋白36抗体yb-12240R ZNF347锌指蛋白347抗体yb-13555R ZBED5锌指蛋白BED5抗体yb-12241R ZNF704锌指蛋白704抗体yb-13586R ZNF434宫颈癌抑癌蛋白5/锌指蛋白434抗体yb-0354R ZCWCC1ZCWCC1抗体yb-0628R ZNF300锌指蛋白300抗体yb-13573R ZBTB39锌指蛋白ZBTB39抗体yb-11609R Zic1锌指蛋白201抗体yb-11610R Zic2锌指蛋白Zic2抗体yb-8641R ZDHHC-18锌指蛋白Zdhhc18抗体yb-6958R ZDHHC-12锌指蛋白Zdhhc12抗体yb-7852R ZWINT着丝粒ZW10相互作用蛋白1抗体yb-9139R ZNRF1锌指/环指蛋白1抗体yb-9140R ZNRF2锌指/环指蛋白2抗体
  • 文献速递ㅣ动物活体成像系统在白血病耐药机制研究中的应用
    慢性髓系白血病(Chronic myeloid leukemia, CML)是一种由造血干细胞染色体t(9;22)(q34;q11)易位引起,并在分子水平上形成Bcr-Abl融合基因的骨髓增生性疾病。使用酪氨酸激酶抑制剂(Tyrosine kinase inhibitors, TKIs)可以缓解疾病,但TKIs耐药性是治疗失败或诱发急性白血病的主要问题。根据Abl激酶结构域点突变的不同,TKIs的耐药机制主要包括Bcr-Abl依赖型和非Bcr-Abl依赖型。Bcr-Abl依赖型的耐药性最常见,它会干扰小分子酪氨酸激酶抑制剂伊马替尼(Imtatinib, IM)结合和随后的激酶抑制。然而,超过50%的耐药CML患者中并没有Bcr-Abl突变。▲ 慢性髓系白血病蛋白激酶C(Protein kinases C, PKCs)在细胞周期调节、增殖、凋亡和造血干细胞分化等多种细胞过程中发挥作用,并和Bcr-Abl协调参与对恶性细胞转化至关重要的几种信号通路。实验和临床证据表明,使用PKC抑制剂可以有效地治疗CML。最近,不同的PKC亚型也被报道参与CML细胞的耐药,但是,PKC信号在CML TKIs耐药中的作用并不清楚。▲ 蛋白激酶C的晶体结构近日,贵州医科大学王季石教授课题组根据先前的研究结果:一种泛PKCs抑制剂星孢菌素(Stauroporine)在低浓度下可以有效地逆转K562R细胞(没有任何突变)的IM耐药,因此推测Bcr-Abl非依赖型IM耐药可能是由PKC亚型介导。在此基础上,鉴于白血病干细胞(Leukemia stem cells)在CML TKIs耐药中起基础性作用,研究首次在Bcr-Abl非依赖型TKI耐药的CML患者CD34+细胞中检测到9种PKCs亚型的表达。对PKC亚型异常表达所介导的机制进行深入研究时,使用博鹭腾AniView100多模式动物活体成像系统拍摄的活体成像实验结果,从体内进一步证明PKC-β的过表达与肿瘤耐药密切相关,表明靶向PKC-β过表达可能是克服CML耐药的一种新的治疗机制。相关成果已发表在期刊《Journal of Cellular Physiology》。▲抑制PKC-β可增强IM对CML细胞的体内杀伤作用(a) 博鹭腾AniView100拍摄的不同药物处理的CML小鼠模型中白血病细胞的活体示踪成像图。LY333531: PKCβ 抑制剂。(b) 流式细胞仪检测各组小鼠CD33+和CD45+细胞。(c) 直方图显示流式细胞仪检测的各组小鼠CML细胞的差异。(d) 各组小鼠的生存曲线。(e、f) 比较各组小鼠脾脏体积和重量。(g、h) Wright‘s染色检测各组小鼠外周血中CML的进展情况。统计学处理采用t检验。**表示p0.01,*表示p0.05。参考文献1、Ma D, et al. PKC‐β/Alox5 axis activation promotes Bcr‐Abl‐independent TKI‐resistance in chronic myeloid leukemia[J]. Journal of Cellular Physiology, 2021.2、Zubair M S, et al. Cembranoid Diterpenes as Antitumor: Molecular Docking Study to Several Protein Receptor Targets[C]// International Conference on Computation for Science & Technology. 2015.
  • 我国首个第三代EGFR抑制剂马来酸艾维替尼进入优先审评
    p    span style=" color: rgb(255, 192, 0) " strong 2018年8月9日消息,根据国家食品药品监督管理总局药品审评中心(CDE)发布的公告,杭州艾森医药研究有限公司自主研发的马来酸艾维替尼被纳入新药上市优先审评程序。 /strong /span /p p style=" text-align: center " span style=" color: rgb(255, 192, 0) " strong img width=" 600" height=" 444" title=" 2018.8.10 1-1.jpg" style=" width: 434px height: 257px " src=" http://img1.17img.cn/17img/images/201808/insimg/39d0bc55-65f5-45da-8c78-b87fe592863d.jpg" / /strong /span /p p style=" text-align: center "    span style=" font-size: 14px " 马来酸艾维替尼进入优先审评,图来自CDE官方网站 /span /p p   艾维替尼是我国首个原创的第三代EGFR靶向抑制剂,主要用于治疗具有EGFR T790M突变阳性的非小细胞肺癌,是十二五国家“重大新药创制”科技重大专项的重要成果之一。 /p p   2014年9月,艾维替尼同时获中国CFDA和美国FDA临床试验批准,其新药上市申请于2018年6月22日获CDE承办。此次,艾维替尼作为十三五国家“重大新药创制”科技重大专项,被CDE纳入第三十一批优先审评程序。 /p p    span style=" color: rgb(255, 192, 0) " strong 国家癌症中心今年发布的最新报告显示,我国肺癌每年新发病例约78.1万,发病率和死亡率均高居榜首。非小细胞肺癌(NSCLC)占比约80%-85%。EGFR-TKI(表皮生长因子受体酪氨酸激酶抑制剂)是一线治疗EGFR基因突变NSCLC的标准方法,已经在肺癌治疗领域广泛使用,但也因此有大量治疗后出现T790M耐药突变的病人,迫切需要新一代的临床治疗。 /strong /span /p p   三年来,通过对大量晚期耐药肺癌病人的疗效和安全性评估,艾维替尼对EGFR T790M耐药突变的晚期肺癌病人具有显著疗效及安全性。与此同时,艾维替尼部分临床数据已先后在中国临床肿瘤学会(CSCO)、欧洲临床肿瘤大会(ESMO)、世界肺癌大会(WCLC)上做大会报告,国际反响热烈。目前,艾维替尼在美国7家癌症中心及法国、西班牙等国开展国际临床研究。 /p p   作为国内首个原创的第三代EGFR抗肺癌新药,艾维替尼如能尽快获批上市,将为广大患者提供新的治疗选择,解决我国目前最大的肿瘤临床急需,缓解患者沉重的医疗负担。 /p p /p
  • 金域检测持续关注神经免疫专科,以科技转化助其高质量发展
    7月20日,《柳叶刀-区域健康(西太平洋)》这一国际知名医学期刊发布了全球首个重症肌无力抗体诊断I级方法学推荐证据,证实了基于细胞的抗体检测新技术CBA在诊断可靠性方面优于放射免疫等传统诊断技术。这一突破性成果源自于“SCREAM”研究(NCT05219097),这项全国多中心、前瞻性和双盲试验由京津神免中心领导完成,得到金域医学和天海新域的诊断平台和试剂支持,为指导临床医生选择重症肌无力等神经免疫病的临床诊断提供了重要参考。重症肌无力(MG)是一种由自身抗体介导的神经免疫疾病,早期明确诊断对于患者的治疗和病情控制至关重要。MG患者血清中存在多种相关自身抗体,包括乙酰胆碱受体(AChR)抗体、肌肉特异性受体酪氨酸激酶(MuSK)抗体、连接素(titin)抗体、兰尼碱受体(RyR)抗体等,其中AChR和MuSK抗体是国内外MG诊治指南推荐的首选实验室诊断指标。MG自身抗体的检测方法包括放射免疫沉淀法(RIPA)、酶联免疫吸附测定法(ELISA)和细胞免疫荧光法(CBA)等多种,然而这些方法的特异度和敏感度存在差异,选择不同的检测技术可能会影响自身抗体检测结果的准确性。目前缺乏针对不同检测技术敏感性和特异性的大样本多中心研究证据,无法满足神经免疫病的诊治、患者转诊抗体检测结果互认以及全球药物临床试验认可的技术需求。为解决这一难题,由天津医科大学总医院/北京天坛医院施教授团队领导,全国多家神经免疫中心共同发起了“SCREAM”研究,得到了金域医学和天海新域的CBA诊断平台和试剂支持,完成了这项前瞻性双盲研究(The Specificity, Sensitivity and Clinical Correlation of CBA, RIPA and ELISA Assay in Detecting AChR and MuSK-IgG, NCT05219097 “SCREAM”研究),为AChR和MuSK抗体检测方法学选择提供了指导性建议,将进一步推动MG自身抗体诊断的规范化。“SCREAM”研究是迄今纳入样本量最多的MG抗体诊断方法学大型队列研究,也是首个前瞻性、双盲研究。由此产生的循证医学证据达到I级推荐标准,为临床医生选择最佳实验室诊断方法提供了关键依据,同时对其他神经免疫病抗体检测及临床试验也具有重要参考价值。神经免疫疾病是全球青壮年致残的首要原因,包括多发性硬化、视神经脊髓炎和重症肌无力等。目前,金域医学联合京津神免中心、天海新域建立了神经免疫病诊断技术的创新研发、产品标准化和应用的联动体系。CBA+TBA诊断体系涵盖常见的重症肌无力、中枢神经系统炎性脱髓鞘、自身免疫性脑炎等疾病近百个抗体检测项目。同时,金域医学与天海新域共同参与神经免疫病大样本数据研究,为“重症肌无力及中枢神经免疫病抗体检测专家共识2022”、诊断方法学I级推荐证据研究等提供支持。从金域医学此次新动态可知,双方还为临床医生提供诊疗决策支持工具,帮助实现患者管理、减缓免疫损伤和疾病进展,助力提升神经免疫专业临床医生诊治水平,为我国神经免疫专科的高质量发展贡献力量。
  • Nature | 内质网蛋白调控细胞器分布的分子机制
    胞内细胞器实时发生快速的结构和分布变化,这些改变受到细胞内部环境的调控,反过来作为调控手段去影响细胞内环境,进而执行复杂的细胞功能。细胞器分布的调节对细胞健康至关重要。细胞器通过motor和adaptor蛋白沿着微管双向移动,进而建立和维持其适当的分布和功能【1】。微管通过可逆的翻译后修饰(包括乙酰化、去酪氨酸化和谷氨酰化)获得调节特异性,这些修饰共同构成了微管蛋白密码(tubulin code)的关键元素【2】。研究表明,tubulin code参与微管cargo选择以及细胞器定向运动【2】,但细胞如何破译这些tubulin code以选择性地调节细胞器定位尚不清楚。内质网(Endoplasmic reticulum, ER)是一个由不同形态组成的相互连接的网络,在整个细胞质中混杂延伸,与其他细胞器形成丰富的接触。内质网形态失调与神经系统疾病和癌症密切相关。2021年12月15日,来自美国国立卫生研究院的Craig Blackstone团队在Nature杂志上在线发表了题为ER proteins decipher the tubulin code to regulate organelle distribution的研究论文,阐释了内质网蛋白调控细胞器分布的具体机制。研究人员证明了三种膜结合的内质网蛋白优先与不同的微管群体相互作用:CLIMP63结合中心体微管,KTN1结合核周多聚谷氨酰化微管,p180结合单谷氨酰化微管。这些内质网蛋白质的敲除或微管群的操纵和谷氨酰化状态改变均会导致内质网定位的显著变化,进而引起其他细胞器在胞内的重新分布。大多数关于ER shaping和细胞器接触的研究都集中在外周管状ER,而更致密的核周ER是如何形成和不对称分布的目前还不清楚。三种ER膜结合蛋白— CLIMP63,p180和KTN1—主要定位于核周ER,被认为是内质网片状形成(sheet-forming)蛋白【3】。作者首先探究了这三个蛋白在调控内质网形态和分布中的功能。如图1所示,在CLIMP63和KTN1单敲除细胞的外周ER中的致密基质或片状结构数量增加,该现象定义为“分散(dispersed)”表型;而p180敲除细胞中的ER则表现出一种相反的“聚集(clustered)”表型——其外周网络保持管状,但核周 ER 在核的一侧不对称地塌陷成较小的区域;CLIMP63-KTN1双敲导致更明显的“dispersed”ER,而CLIMP63-p180双敲细胞中的ER与野生型中的类似;值得注意的是,p180-KTN1双敲造成比p180单敲更多的ER聚集;在CLIMP63-p180-KTN1三敲的细胞中,高密度的ER基质或片状结构在核周区域富集。为了更好地定量评估ER形态和分布的变化,作者开创了互补算法(complementary algorithms),利用基于概率密度估计的统计方法来分析荧光标记的ER和其他细胞器的空间分布,使用实验得出的空间概率质量函数来量化图像上的荧光变化,以计算细胞器的径向分布和细胞不对称程度。数据显示,CLIMP63 和 KTN1 单敲除或双敲除增加了 ER 平均分布半径 (Mean distribution radius, MDR),说明ER 的外周分布更广;相反,p180敲除或p180-KTN1双敲增加了ER不对称性。其中微管MDR和不对称性仅略有变化。图1. CLIMP63、p180 和 KTN1 差异性调节 ER 形态及分布随后,作者通过co-sedimentation实验评估了多种ER蛋白与微管的结合能力。与预期的结果一致,CLIMP63、p180和KTN1均可以结合大量微管。作者发现,只有能够进行微管结合的野生型蛋白质或突变体才能恢复相应敲除细胞系中的ER形态。例如,CLIMP63错义突变体R7A,K10A和R70A不能结合微管或抑制CLIMP63敲除细胞中的ER分布缺陷,而结合微管的CLIMP63(H69A)可以拯救表型;对于KTN1,只有结合微管的缺失突变体可以抑制异常的ER表型;缺乏kinesin-1结合结构域的p180s仍然可以抑制p180-敲除细胞中的ER聚集表型。这些数据表明CLIMP63-、p180-和KTN1-敲除细胞中ER形态的改变可能都与微管结合改变相关。因此,作者推测这些蛋白质可以结合不同的微管群体,并采用邻近连接测定(proximity ligation assay, PLA)来可视化它们在细胞中的微管结合情况。作者使用centrinone B耗尽中心体微管,并通过敲除AKAP450去除高尔基源性微管。结果显示CLIMP63-microtubule association对中心体耗竭敏感,但高尔基体微管耗竭不敏感;KTN1-microtubule association对两者都敏感;p180-microtubule association对中心体或高尔基微管的消耗都不敏感。进一步分析证明,CLIMP63优先结合中心体微管,KTN1优先结合来自中心体或高尔基体的核周微管,p180优先结合更多的外周微管。为了获得调节特异性,微管经历可逆的翻译后修饰,包括乙酰化、去酪氨酸化和谷氨酰化【2】。虽然 CLIMP63、p180 或 KTN1 敲除不影响这些修饰的总体水平,但微管蛋白多聚谷氨酰化在中心体或高尔基体微管耗尽的细胞中降低。因此,作者纯化了含有微管结合域的p180、KTN1和CLIMP63片段,并在体外探究它们与谷氨酰化微管的结合。与KTN1相比,p180与单谷氨酰化微管表现出更高的体外结合,而p180和KTN1与多聚谷氨酰化微管结合能力相似。同时,KTN1更倾向于结合具有多聚谷氨酸链的微管,而不是具有多位点单谷氨酸链的微管。与p180和KTN1相反,CLIMP63对微管谷氨酰化的反应较差,不同的微管蛋白修饰或相互作用可能介导了CLIMP63与中心体微管的优先结合。总的来说,如图2所示,CLIMP63,p180和KTN1分别优先结合中心体、多聚谷氨酰化和谷氨酰化微管,进而协同调节ER分布。图2. CLIMP63结合中心体微管,KTN1结合多聚谷氨酰化微管,p180结合谷氨酰化微管。接下来,作者对其他细胞器的分布进行了分析。通过同时对六个细胞器的活体成像显示,大多数细胞器的分布与ER相似,提示 ER 可能广泛调节细胞器分布。值得注意的是,在CLIP63-,p180-和KTN1-敲除细胞中,所有细胞器都表现出与ER相似的分布变化:在CLIMP63-或KTN1-敲除细胞中更分散,在p180-敲除细胞中更不对称。此外,分散ER的CCP1过表达也增加了野生型细胞中溶酶体,线粒体和过氧化物酶体的MDR。最后,作者探究了在自噬过程中ER和溶酶体的迁移活动。核周溶酶体聚集是早期自噬的标志性事件,对于适当的自噬通量很重要【4-5】。与溶酶体类似,ER 在早期自噬期间迁移至核周,随后重新分布到外周。CLIMP63蛋白水平在早期自噬期间显着增加,CLIMP63敲除可以阻止ER向核周区域移动,并抑制自噬体-溶酶体融合和自噬降解,但并不影响溶酶体活性。p180和KTN1蛋白水平在早期自噬期间保持不变,KTN1-microtubule association不变,但p180-microtubule association增加,进而重新分布ER和溶酶体。p180-敲除细胞中的ER和溶酶体始终留在核周。作者还阐释了p180与微管结合的生理学意义,如图3所示,p180L的核糖体结合区(主要的异构体)包含41个带正电荷的十肽重复,该区域在正常细胞条件下(Normal)被核糖体占据,但在饥饿条件下(Starved),与核糖体发生解离,暴露出这些带正电的区域,随后结合微管。图3. (e) p180结构域组成;(f) p180在正常和饥饿条件下与微管结合。总的来说,该研究证明了CLIP63,p180和KTN1优先结合微管的不同子集以维持核周ER的特征性分布,从而解释了它们缺失的差异效应。微管在细胞器分布中起着关键作用,它们选择性分配细胞器的能力依赖于“tubulin code”。该研究表明:(1)ER分布是通过特定的膜结合蛋白介导的,与不同水平和类型的微管谷氨酰化有差异结合,广泛影响大多数其他细胞器的分布;(2)细胞不是通过赋予每个细胞器自己的感知和响应机制,而是通过将ER作为一线传感器和响应器来实现组织效率。作者认为可能还有其他ER蛋白也可以破译tubulin code,对ER在健康和疾病中的功能具有重要意义。原文链接:https://doi.org/10.1038/s41586-021-04204-9制版人:十一
  • 跨国药企2021年上半年业绩:诺华营收254亿美元,强生全年破900亿可期
    当地时间7月21日,国际制药巨头诺华及强生先后公布了2021上半年财报及第二季度财报。作为此次最早公布财报的企业,两家公司的营收情况备受瞩目。  根据官网信息,诺华上半年产品销售净额为254 亿美元,同比增长7% 其中创新药净销售额为 207 亿美元,同比增长9% Sandoz(山德士)营收同比增长为0,维持47亿美元。第二季度净销售额为 130 亿美元,同比增长14% 其中创新药净销售额为 106 亿美元,同比增长15%。  2021上半年,强生销售净额为456.33 亿美元,同比增长16.9% 其中创新药贡献247.98亿美元,同比增幅为13.3% 大健康板块贡献了72.78亿美元,同比增幅为5.2% 医疗器械业务半年总营收为135.57亿美元,增幅达32.7%。第二季度,强生销售净额为233亿美元,同比净增27.1% 其中创新药贡献了126亿美元,同比增长17.2%。图片源自强生财报诺华  在诺华创新药业务下,设有两大业务单元——制药BU和肿瘤BU。其中,制药BU销售额增幅达6%,主要受益于风湿免疫科重磅炸弹Cosentyx(22.28亿美元),心衰新药Entresto(16.75亿美元)以及基因疗法Zolgensma(6.34亿美元) 肿瘤BU增幅达4%,主要得益于重度再生障碍性贫血一线药物Promacta/Revolade(9.76亿美元)、口服乳腺癌 CDK4 / 6 抑制剂Kisqali(4.2亿美元)、血癌药物口服JAK1和JAK2酪氨酸激酶抑制剂Jakavi(7.61亿美元)、FDA批准的首个CAR-T疗法Kymriah以及抗癌组合疗法Tafinlar+Mekinist(8.18亿美元)。图片源自诺华财报  值得注意的是,基因疗法Zolgensma2021上半年销售额同比增长近70%,根据诺华2020财报预测,预计到2022年将会有15个国家/地区将Zolgensma纳入报销范畴。按照当前的势头来看,Zolgensma发展为诺华的又一款“重磅炸弹”级药物指日可待。  在新兴市场方面,中国成为诺华最关注的地区之一。在2020年的财报中,诺华在中国市场的总销售达到25.73亿美元,增幅为16%,而在2021上半年,中国区已为诺华带来了累计15.55亿美元的营收。目前,Entresto已在中国纳入医保目录,根据当前诺华在中国的发展势头来看,2021中国区全年销售额有望突破30亿美元。强生  在制药业务方面,强生重磅抗炎药Stelara、靶向CD38的抗艾药Darzalex、BTK抑制剂Imbruvica、银屑病药物Tremfya、前列腺癌药物Erleada等产品为增长推动力。图片源自强生财报  具体而言,Stelara为强生重磅产品,上半年总销售额以44.22亿美元领先。Darzalex在上半年销售额贡献中排名第二,为27.98亿美元 随后是Imbruvica,为22.41亿美元。而Tremfya为8.97亿美元、Erleada为5.63亿美元。  2020年,强生全年销售额为825.84亿美元,此前该公司曾预计2021年销售额在905亿-917亿美元之间,以当前的势头来看,2021年强生销售额破900亿美元应是早晚的事情。
  • 1.1类乳腺癌新药吡咯替尼获批,凭借2期研究获SDA优先审批上市
    p   今日,业内传来重磅新药上市消息,江苏恒瑞医药宣布,其自主研发的1.1类新药吡咯替尼(商品名:艾瑞妮& reg )凭借2期临床研究获国家药品监督管理局(下称“SDA”)优先审批上市,目前状态为审批完成,待制证。吡咯替尼是一种泛-ErbB受体酪氨酸激酶抑制剂,用于人表皮生长因子受体 2(HER2)阳性晚期乳腺癌的靶向治疗。值得注意的是,该药物凭借1期研究结果登上全球顶级期刊《JCO》,又凭借2期临床获得SDA的优先审评上市,回顾整个过程可谓是中国自主研发创新药物优先审批的典范之一。 /p p style=" text-align: center " img width=" 276" height=" 184" title=" 2018.8.14 2-1.jpg" style=" width: 329px height: 152px " src=" http://img1.17img.cn/17img/images/201808/insimg/e6cc6de8-0bf7-44f9-a99f-9a447161c25c.jpg" / /p p   吡咯替尼是获得国家“重大新药创制科技重大专项”资助,作为泛-ErbB受体酪氨酸激酶抑制剂,可同时靶向作用于人表皮生长因子受体2(HER2)、表皮生长因子受体(EGFR)和人表皮生长因子受体4(HER4),其疗效显著优于多个小分子抗HER2药物。 /p p   · 2017年5月,《JCO》杂志首次全文发表了吡咯替尼的1期研究结果,中国自主研发抗肿瘤药物仅凭1期研究就登上全球知名期刊十分难得。 /p p   · 2017年8月,吡咯替尼凭借2期研究结果中极为出色的疗效被国家食品药品监督管理局药品审评中心(下称:CDE)列为优先审评创新药物。同年12月,2期临床研究结果在美国圣安东尼奥乳腺癌大会上报道,并被列入2017年乳腺癌重大事件年度回顾。 /p p   · 2018年8月, SDA正式批准吡咯替尼用于HER2阳性晚期乳腺癌治疗。吡咯替尼凭借2期临床研究的结果即获得优先审批,且从递交临床数据报告及上市申请到正式获得上市批准仅历时10个月。 /p p   吡咯替尼是一款不可逆的泛-ErbB受体酪氨酸激酶抑制剂,靶点包括HER2、EGFR和HER4。吡咯替尼与EGFR、HER2和HER4的胞内激酶区ATP结合位点共价结合,阻止同/异源二聚体形成,不可逆的抑制自身磷酸化,阻断下游信号通路的激活,抑制肿瘤细胞生长。 /p p   据了解,吡咯替尼单药治疗晚期乳腺癌1b期临床研究旨在确定最大耐受剂量,评估药代动力学和初步疗效。研究结果显示出其极为出色的抗肿瘤疗效及较好的安全性。值得一提的是,1b期研究结果全文发表在全球顶级期刊《JCO》,中国自主研发抗肿瘤药物仅仅凭借I期研究就登上全球知名期刊十分难得。同期,另一肿瘤领域顶级期刊《Lancet Oncology》杂志也对吡咯替尼的1b期研究发表点评,对该新药出色疗效和较好的安全性做出了高度评价。 /p p   基于1b期研究的疗效和安全性,恒瑞迅速开展了2期临床研究,评估吡咯替尼联合卡培他滨方案对比拉帕替尼联合卡培他滨方案治疗HER2阳性转移性乳腺癌的有效性和安全性。研究结果表明,其临床获益,且较现有治疗手段具有明显优势,这一结果首次在2017年美国圣安东尼奥乳腺癌大会上报告。 /p p   由于研究结果与现有治疗相比存在重大突破,吡咯替尼仅凭2期临床研究结果即被CDE列入优先审评。由于其临床获益且较现有治疗手段具有明显优势,符合国家对临床急需药品(指对用于治疗严重危及生命且尚无有效治疗手段的疾病的创新药)有条件批准上市的相关要求。 /p p style=" text-align: center " img width=" 600" height=" 416" title=" 2018.8.14 2-2.jpg" style=" width: 445px height: 238px " src=" http://img1.17img.cn/17img/images/201808/insimg/074fb1a4-8553-4941-950d-0fd1e9f386aa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  恒瑞吡咯替尼获批状态 /span /p p   2018年8月,吡咯替尼已经进入审批完毕,待制证状态。这是自1998年抗HER2治疗开始以来,中国首个自主研发的抗HER2靶向药物。 /p p & nbsp /p
  • 吸烟对消化道的影响
    对消化道的影响 吸烟可引起胃酸分泌增加,一般比不吸烟者增加91.5%,并能抑制胰腺分泌碳酸氢钠,致使十二指肠酸负荷增加,诱发溃疡。烟草中烟碱可使幽门括约肌张力降低,使胆汁易于返流,从而削弱胃、十二指肠粘膜的防御因子,促使慢性炎症及溃疡发生,并使原有溃疡延迟愈合。此外,吸烟可降低食管下括约肌的张力,易造成返流性食管炎。ELISA试剂盒 吸烟对妇女的危害更甚于男性,吸烟妇女可引起月经紊乱、受孕困难、宫外孕、雌激素低下、骨质疏松以及更年期提前。孕妇吸烟易引起自发性流产、胎儿发育迟缓和新生儿低体重。其他如早产、死产、胎盘早期剥离、前置胎盘等均可能与吸烟有关。妊娠期吸烟可增加胎儿出生前后的死亡率和先天性心脏病的发生率。以上这些危害是由于烟雾中的一氧化碳等有害物质进入胎儿血液,形成碳氧血红蛋白,造成缺氧;同时尼古丁又使血管收缩,减少了胎儿的血供及营养供应,从而影响胎儿的正常生长发育。女性90%的肺癌、75%的COPD和25%的冠心病都与吸烟有关。吸烟妇女死于乳腺癌的比率比不吸烟妇女高25%。已经证明,尼古丁有降低性激素分泌和杀伤精子的作用,使精子数量减少,形态异常和活力下降,以致受孕机会减少。吸烟还可造成睾丸功能的损伤、男子性功能减退和性功能障碍,导致男性不育症。吸烟可引起烟草性弱视,老年人吸烟可引起黄斑变性,这可能是由于动脉硬化和血小板聚集率增加,促使局部缺氧所致。最近,美国一项研究发现,在强烈噪声中吸烟,会造成永久性听力衰退,甚至耳聋。ELISA试剂盒英文名称 Homo sapiens (Human) 膜联蛋白A10(ANXA10)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 膜联蛋白A1(ANXA1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Mus musculus (Mouse) 膜联蛋白A1(ANXA1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 膜辅蛋白(MCP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫抑制酸性蛋白(IAP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫缺陷伴血小板减少综合征蛋白家族成员2(WASF2)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96TELISA试剂盒英文名称 Homo sapiens (Human) 免疫缺陷伴血小板减少综合征蛋白(WASP)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫球蛋白重链(IGH)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Homo sapiens (Human) 免疫球蛋白样EGF样域酪氨酸激酶1(Tie1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T英文名称 Rattus norvegicus (Rat) 免疫球蛋白样EGF样域酪氨酸激酶1(Tie1)检测试剂盒(酶联免疫吸附试验法) 规格: 48T/96T
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 涨知识:皮肤癌探测竟然可以用香蕉皮?
    据探索杂志报道,目前,科学家最新研究表示,成熟香蕉皮上的黑斑点可用于快速便捷地诊断人类皮肤癌,从而提高皮肤癌患者的幸存率。究竟是如何实现的呢?  当香蕉成熟时,香蕉皮上将覆盖着黑色小圆点,是由于酪氨酸酶所导致的。据悉,酪氨酸酶也存在于人类皮肤,如果人体酪氨酸酶指数过高,将出现黑色素瘤,这是一种潜在的皮肤癌形式。  一支科学家小组基于观测香蕉皮酪氨酸酶与人体皮肤癌的共性,研制一种癌症扫描仪,之后他们进一步提炼和测试香蕉皮,计划最终有效地检测人体皮肤组织。首先,瑞士物理和电化学分析实验室研究人员推断称,酪氨酸酶是黑色素瘤形成的可靠标记。  在皮肤癌形成第一阶段,酪氨酸酶并不是非常明显 第二阶段,酪氨酸酶将变得广泛均匀分布 第三阶段,酪氨酸酶开始不均匀分布,癌细胞开始扩散至身体其它部分。这意味着较早地探测到皮肤癌,将显著提高患者幸存概率。  美国癌症学会表示,如果在皮肤癌第一阶段探测到酪氨酸酶并进行及时治疗,那么患者幸存概率达到95%,但是在皮肤癌第三阶段中期探测到酪氨酸酶,患者幸存概率将下降至43%。  研究小组研制一种扫描仪,并用于测试香蕉皮斑点,这些香蕉皮斑点大小与人类皮肤黑色素瘤斑点相近。研究小组负责人休伯特-吉劳特(Hubert Girault)说:“通过研究香蕉皮,我们能够研制一种诊断方法,未来进一步技术完善,最终用于人体活组织检查分析。”  该扫描仪具有8个弹性微型电极,分布结构类似于梳齿,扫描皮肤从而测量酪氨酸酶的分布和数量。研究小组称,这种扫描仪将避免使用活体组织检查等侵入式诊断。  吉劳特认为,这种扫描仪未来能够摧毁肿瘤,有望实现有效检查,避免不必要的化学疗法。我们最初的实验室测试表明,该设备可用于摧毁这些癌细胞。目前,这项研究报告发表在近期出版的《应用化学杂志》上。
  • “莱伯泰科云直播”第一期:DMA-80直接测汞仪让化妆品中的汞无处可藏
    据化妆品检测专家介绍,近年来化妆品汞含量超标屡见不鲜。由于汞的某些化合物具有增白效果,一些不法商人为了吸引女性,故意将之用于祛斑美白的化妆品中,完全不顾使用者的身体健康。汞是有毒重金属,FAO/WHO将汞定为优先研究的有害金属之一。化妆品中本身不应添加汞,即使是原料中本身含有微量汞,也应该符合一定的指标,如超标数千倍、数万倍,则肯定对皮肤有明显伤害。使用汞含量高的化妆品后,短期内皮肤会变白,但长期大量使用,会引发色素沉着,甚至造成多器官中毒,严重的还会导致急性死亡。近年来,我国加大了对汞超标化妆品的打击力度。化妆品中汞含量超标主要是由于汞的某些化合物具有增白效果,汞可以在短时间内增白,是由于汞离子置换酪氨酸酶的阴离子使该酶失去活性,黑色素暂时不能生成,所以达到了快速美白祛斑的效果,不法商贩就在化妆品中人为添加汞的化合物。但久用则效果相反,因为汞离子与硫基结合后,可以解除酪氨酸酶的抑制,引起黑色素快速增多。因此长期用含有铅、汞化妆品而中毒的人,会皮肤灰暗、角质增多,长灰黑色斑点、深层暗疮;当有害物质累积到一定程度就会给全身带来损害,特别是肝、肾以及血管、神经系统。汞中毒者性格会改变,还会出现高血压、贫血、烦躁、牙龈发炎,神经衰弱等症状。长期大量使用,会引发色素沉着,甚至造成多器官中毒,严重的还会导致急性死亡。因此我们要严格禁止汞的人为添加,对于生产过程及原料引入的汞要严格限制。 我国化妆品检测标准,由卫生部印刷,国家食品药品监督管理总局修订的《化妆品安全技术规范》(2015年版)。已经从2016年12月1日起施行。标准中规定汞及汞化合物不可作为化妆品的原料成分。由化妆品原料杂质及其他原因引入的微量汞不得超过1ppm;作为防腐剂的硫柳汞和苯基汞盐(仅限在眼部化妆品中使用),其含量按汞计不得超过0.007%。对于化妆品中的重金属检测前处理过程相当麻烦,还需要消耗大量的时间,因此本次修订的新方法中引入了全新的化妆品中汞含量的检测方法,即无需前处理直接测汞的“汞分析仪法”,该方法采用意大利Milestone公司DMA-80直接测汞仪制定,经广大专家和用户认证和认可,是化妆品中汞分析检测的可靠方法。Milestone DMA-80 测汞仪是美国EPA7473方法点名制定仪器!是HJ923-2017、GB5009.17-2021、化妆品安全技术规范2015版等众多国内外标准方法的制定仪器。它的最大的特点在于可测定固体、液体、气体中的汞含量而不需要进行任何样品前处理过程。每一个样品分析时间可在2-5分钟内完成,大大提高了分析过程中的工作效率,将化妆品汞含量的检测研究带进了一个快速而精确的时代,将不合格的化妆品拒之门外!“莱伯泰科云直播”第一期:DMA-80直接测汞仪让化妆品中的汞无处可藏将于2021年11月17日下午2:00准时开播,我们直播间不见不散!
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 前沿进展 | 吉非替尼诱导胶质母细胞瘤细胞中EGFR和α 5β 1整合素共内吞作用
    “ 内吞作用是EGFR功能的一个重要调节因子,在胶质瘤细胞中经常发生失调,并与治疗耐药性有关。然而,在GBM细胞中从未检测过TKIs对EGFR内吞作用的影响。超分辨率dSTORM成像显示,在吉非替尼处理的细胞内膜室中,β1整合素和EGFR非常接近,表明它们潜在的相互作用。有趣的是,整合素的消耗延迟了吉非替尼介导的EGFR内吞作用。EGFR和β1整合素的共内吞作用可能会改变胶质瘤细胞对吉非替尼的反应。利用球状体胶质瘤细胞扩散的体外模型,我们发现α5整合素缺失的细胞比表达α5的细胞对TKIs更敏感。这项工作首次为EGFR TKIs可以触发大量EGFR和α5β1整合素共内吞作用提供了证据,这可能在治疗过程中调节胶质瘤细胞的侵袭性。”01—研究结果1、吉非替尼可引起EGFR的内吞作用胶质母细胞瘤(GBM)是融合星形细胞和少突胶质细胞肿瘤的一个亚群,是最常和比较具有侵袭性的脑肿瘤。GBM的特征是肿瘤间和肿瘤内的异质性和高度侵袭性的表型。表皮生长因子受体(EGFR、HER1、ErbB1)的过表达或突变是GBM中反复发生的分子改变,与不良预后相关。EGFR是一种跨膜受体酪氨酸激酶,属于ERBB家族,负责胶质瘤细胞的增殖、存活、侵袭性和干性调节。尽管EGFR在GBM中是一个有吸引力的治疗靶点,但使用EGFR-酪氨酸激酶抑制剂(TKIs)的靶向治疗未能改善患者的护理。EGFR的过表达驱动胶质母细胞瘤(GBM)细胞的侵袭,但这些肿瘤仍然对EGFR靶向治疗,如酪氨酸激酶抑制剂(TKIs)产生耐药性。在本研究中,作者发现吉非替尼和其他酪氨酸激酶抑制剂诱导EGFR在早期核内体中积累,从而导致内吞作用增加。此外,TKIs触发另一种膜受体的早期核内蛋白受体重新定位,即纤维连接蛋白受体-β1整合素,这是GBM中一个很有前途的治疗靶点,调节癌细胞的生理EGFR内吞和再循环。EGFR阻断调节失调参与了GBM的进展和侵袭性。然而,TKIs在EGFR迁移中的意义和作用尚不清楚。为了解决这个问题,作者用吉非替尼处理U87GBM细胞,并通过共聚焦显微镜检测了EGFR的定位,考虑到胶质母细胞瘤的异质性,作者分析了吉非替尼在其他3个具有不同水平EGFR表达的细胞系中对EGFR分布的影响。发现吉非替尼增加了T98G和LN443细胞中EEA1/EGFR的共定位,以及LN443、T98和LNZ308细胞中EGF的内吞作用。这些实验表明,吉非替尼在体外导致GBM细胞大量EGFR内吞。图1. 吉非替尼诱导U87细胞的EGFR内吞作用。用DMSO(对照细胞)或吉非替尼(20µM)处理4小时后,免疫检测肌动蛋白(绿)、EGFR(红)和内吞体标记物EEA1(青)。2、整合素和EGFR通过吉非替尼治疗而被共同招募到早期核内体中作者之前的实验清楚地表明,吉非替尼显著增加了EGFR的内吞率。整合素α5β1促进EGFR循环,全基因组基因筛选发现α5β1整合素是EGFR内吞作用的强启动子。因此,作者假设α5β1整合素,作为GBM中潜在的治疗靶点,可能会影响吉非替尼介导的EGFR内吞作用。作者接下来研究了EGFR和整合素是否被运输到相同的核内体。在未处理的细胞中,α5β1整合素和EGFR在质膜上或作为点状细胞内染色,令人惊讶的是,在短期吉非替尼治疗后,α5β1整合素明显被重新分配到大的EGFR阳性核内体中。吉非替尼治疗增加了核周区域整合素/EGFR的共定位,表明这两种受体在同一核内体中募集。图2. 吉非替尼引起EGFR和α5β1整合素的共内吞作用。用载体(对照)或吉非替尼处理的U87细胞的共聚焦图像。EGFR和β1的免疫检测接下来,作者对瞬时表达α5-GFP或Rab5-YFP的U87细胞进行了免疫标记和共聚焦分析。在吉非替尼治疗后,整合素β1和EGFR均定位于rab5阳性的早期核内体同样,EGFR和α5-GFP均在eea1阳性的早期核内体中被发现图3. 表达Rab5-YFP或α5-eGFP的U87细胞经吉非替尼处理后的共聚焦图像。在核周区域的插入物的高倍放大图像。箭头突出了标记有EGFR、整合素和早期核内体标记的囊泡接下来,作者使用2色dSTORM超分辨率显微镜来整合早期核内体中整合素和EGFR之间的潜在相互作用。在吉非替尼处理的细胞中,显示EGFR和整合素β1标记在核内体样结构中存在强覆盖,但不是在细胞外周处,这表明这两种受体更可能在核内体中相互作用,而不是在质膜上相互作用。此外,作者也在另外三个GBM细胞系中观察到内吞体整合素/EGFR共标记。图4. 吉非替尼处理的细胞的双色dSTORM图像显示细胞外周和核内体上的EGFR/β1整合素复合体02—研究总结 综上所述,这些数据表明EGFRTKIs增加了GBM细胞早期内吞体中EGFR的内吞作用和α5β1整合素的共积累。EGFR/α5β1整合素内吞作用和膜破坏。由于这些受体在癌细胞的侵袭和传播中发挥着关键作用,未来的挑战将评估TKIs对整合素生物学功能的影响,以及整合素/EGFR如何改变TKIs处理的细胞的内吞作用可能有助于GBM细胞逃避。并且,最近的一份报告强调了靶向治疗的靶标细胞毒性被低估的重要性。这项工作强调了需要更好地了解药物机制,以确定适当的生物标志物来预测药物的疗效。因此,描述吉非替尼等药物对内体转运的影响并揭示参与这些机制的分子将是很重要的。这可能为新的治疗方案提供理论基础,并改进脑肿瘤的精确医学方法。在本研究中,研究者主要借助STORM技术在更深一层次了解整合素之间的位置关系。这项2014年诺贝尔化学奖的发现已在国内实现产业化。宁波力显智能科技有限公司(INVIEW)现已发布超高分辨率显微系统iSTORM,采用3D随机光学重构技术、高精度细胞实时锁定技术、多通道同时成像技术等,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:1. Blandin, Anne-Florence, et al. "Gefitinib induces EGFR and α5β1 integrin co-endocytosis in glioblastoma cells." Cellular and Molecular Life Sciences 78.6 (2021): 2949-2962.
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgGFc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 【文献速递】Nature子刊:胶质母细胞瘤靶向治疗新策略-联合抑制PDGFRA和EPHA2
    近日,重庆陆军军医大学西南医院病理科&西南癌症中心研究所卞修武院士和王岩教授研究团队在胶质母细胞瘤(Glioblastoma,GBM)的治疗策略方面取得了新的进展,相关研究成果已发表在Nature子刊“Signal Transduction and Targeted Therapy”(IF= 18.005,JCR1)。△ 图1Nature子刊《Signal Transduction and Targeted Therapy》(IF:18.187,JCR 1区)胶质瘤是最常见的脑肿瘤,2016年世界卫生组织(World Health Organization,WHO)将其分为四级(I-IV)。数字越大,恶性程度越高,预后越差,其中,GBM属于IV级。GBM恶性程度高、侵袭性强,患者的平均生存期约为15个月,5年生存率不到5%,因此,探究GBM的发生、发展机制,寻找复发相关的分子标志物,针对相关靶点进行转化研究,具有重要的意义。在临床上,大多数GBM患者(约90%)被诊断为野生型IDH1/2,定义为原发或新发的GBM;大约10%的GBM患者携带IDH1/2突变,定义为继发性GBM。根据癌症基因组图谱计划(The Cancer Genome Atlas,TCGA)中脑胶质瘤基因转录组,可以将GBM分为4种亚型:前神经元型、神经元型、经典型、间质型。经典型以EGFR基因扩增/突变为特征,前神经元型主要表现为PDGFRA(Platelet-derived growth factor receptor α)突变或IDH1/2 突变,间质型主要存在神经纤维蛋白1(Neurofibromatosis type 1,NF1 )突变。血小板衍生生长因子受体α(PDGFRA) 和受体β(PDGFRB) 属于受体酪氨酸激酶(Receptor tyrosine kinase,RTK)家族,并作为血小板衍生生长因子(Platelet-derived growth factor,PDGF)的受体发挥作用。哺乳动物中的四种 PDGF 基因(PDGFA、PDGFB、PDGFC 和 PDGFD)分别编码四种肽(PDGFA、PDGFB、PDGFC 和 PDGFD),它们形成五种功能同源或异源二聚体:PDGF-AA、PDGF- AB、PDGF-BB、PDGF-CC 和 PDGF-DD。研究发现PDGFA 和 PDGFRA 在胶质瘤发生和进展中起关键作用。实验也表明,PDGFA 和 PDGFRA 的过表达成功地诱导了小鼠模型中GBM的发育,这些结果表明PDGFRA 在GBM中的关键作用,并将 PDGFA/PDGFRA 轴确定为 GBM 的潜在治疗靶点。虽然已经开发出几种针对 PDGFRA 的抗肿瘤药物,体外和体内的数据也支持靶向PDGFRA对GBM细胞的有效抑制作用,然而,单一PDGFRA抑制剂的临床试验均未显示出抗肿瘤作用。基于上述背景,研究人员对GBM 中 PDGFA 和 PDGFRA 的调控机制进行了详细研究。首先开展的实验数据表明,PDGFRA 的活性或表达缺陷并没有有效地阻断PDGFA活性,所以推测PDGFRA 可能不是 PDGFA 功能所必需的。为了分析参与 PDGFA 功能的蛋白质,研究人员进行了免疫共沉淀 (Co-IP) 和质谱 (MS)实验,并首次描绘了 PDGFA 相关蛋白网络。令人惊讶的是,实验结果表明,即使没有激活 PDGFRA 和 AKT,EPHA2 也可以被 PDGFA 暂时激活。此外,MS、Co-IP、体外结合热力学(In vitro binding thermodynamics)和邻近连接实验(Proximity ligation assay)都一致地证明了EPHA2与PDGFA的相互作用,EPHA2的高表达导致 TCGA-GBM 数据库和临床 GBM 样本中 PDGF 信号靶标的上调。由于 PDGFA 诱导的 EPHA2 活化,通过抑制剂阻断 PDGFRA 不能有效抑制 GBM细胞的增殖,但同时抑制 EPHA2 和 PDGFRA后,在体外和体内的实验结果都显示出对GBM 细胞的协同抑制作用。因此,靶向PDGFRA 和 EHA2的双重抑制剂有望作为未来GBM的治疗新策略。△ 图2 PDGFRA和EPHA2联合抑制对GBM细胞的协同抑制作用。a、MTT实验测量过表达EPHA2(左)或敲低EPHA2(右)的LN18细胞的IC50。b、抗体阵列分析载体、EPHA2抑制剂(ALW)和PDGFRA抑制剂(IMA)处理的LN18细胞,显著变化的蛋白质用框架标记并单独列出。c、MTT实验评价联合药物在四种GBM细胞株的作用。d、载体、IMA、ALW 或 IMA + ALW 处理过的 U251 细胞原位生长的代表性图像(使用博鹭腾AniView100多模式动物活体成像系统拍摄)。e、生物发光信号强度绘制的肿瘤大小统计图。f、载体、IMA、ALW或IMA+ALW治疗的小鼠原位GBM肿瘤组织切片上Ki67的代表性免疫组织化学图像。论文链接https://www.nature.com/articles/s41392-021-00855-2广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了活体成像、分子影像、蛋白凝胶预制及印迹处理系统、发光检测四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • iCMS2017第八届质谱网络会议——生物医学及生命科学
    p    strong 仪器信息网讯 /strong & nbsp 仪器信息网与中国化学会质谱分析专业委员会合作举办的第八届质谱网络会议(iConference on Mass Spectrometry,iCMS2017) 于2017年11月21日正式开幕。本届质谱网络会议为期四天(11月21日-24日),共设质谱新技术、生物医学及生命科学、食品分析、环境分析、药物分析共五个专场。 /p p   生物医学及生命科学专场在11月22日举行,普渡大学教授陶纬国、安捷伦资深应用工程师 宋越、德克萨斯大学奥斯汀分校研究助理张佳玲、沃特世高级应用工程师陈熙、复旦大学副教授申华莉、中国科学院水生生物研究所高级实验师杨明坤、SCIEX高级市场发展专员刘宏伟、中国农业大学副教授李溱、中南大学教授詹显全在线上给大家分享了精彩的报告。 /p p    span style=" font-size: 20px " strong 生物医学及生命科学 (上) /strong /span /p p style=" text-align: center " span style=" font-size: 20px " /span & nbsp img title=" Andy Tao.png" src=" http://img1.17img.cn/17img/images/201711/insimg/a0e9ef8b-ba00-4a01-bb1b-57715ea120cd.jpg" / /p p style=" text-align: center " strong 报告人:普渡大学教授 陶纬国 /strong /p p style=" text-align: center " strong 报告题目:血液中囊泡内磷酸化蛋白分析在癌症检测中的应用 /strong /p p   目前肿瘤诊断的主要方式是组织活检,那么有没有一种更好的替代诊断方式,是否可以用液体活检替代组织活检?陶纬国跟大家分享了他进行的研究成果。生物体内,蛋白的磷酸化与癌症发生有着密切联系。而肝脏分泌的磷酸酶,会将血液中的这些蛋白去磷酸化,同时还存在其他蛋白的干扰,想从血液中找到这些磷酸化蛋白极为困难。陶纬国发现胞外囊泡的存在却使这一想法成为了可能,微囊泡和外泌体中有稳定存在的磷酸蛋白。通过质谱技术对乳腺癌患者血浆内的磷酸蛋白进行鉴定研究,他发现用胞外囊泡中的磷酸蛋白进行疾病诊断是可行的,可以替代组织活检,这是一种识别疾病生物标志物的新方法。接下来,他还会就相关方向进行更加精准的乳腺癌研究、前列腺癌动物模型研究等。 /p p style=" text-align: center " img title=" Song Yue.png" src=" http://img1.17img.cn/17img/images/201711/insimg/ed1f2c94-eb42-484a-a054-c775c4eafdc8.jpg" / /p p style=" text-align: center " strong 报告人:安捷伦资深应用工程师 宋越 /strong /p p style=" text-align: center " strong 报告题目:基于高分辨质谱技术的定性代谢流分析 /strong /p p   宋越介绍了安捷伦蛋白质组学研究平台以及基于高分辨质谱技术的定性代谢流分析的完整解决方案。代谢流机理研究的方法为稳定同位素标记法,即通过监测同位素异数体的变化来研究机理。代谢流研究已经从低分辨走向高分辨率质谱,数据采集完之后进行处理,因为 sup span style=" font-size: 12px " 13 /span /sup C天然同位素的存在会干扰计算,所以耗费较长时间,而安捷伦的Profinder软件可以直接扣除本底背景干扰,节省分析时间。另外,VistaFlux是安捷伦的独家解决方案,在创建目标代谢物列表采集数据后,可快速提取特征,同时通路可视化,可以将整个数据分析过程降低至数分钟。宋越以治疗白血病药物的代谢流分析、天冬氨酸代谢通路研究为案列,说到安捷伦可以为代谢组学研究提供稳定可靠的软硬件平台。 /p p style=" text-align: center " img title=" Zhang Jialing.png" src=" http://img1.17img.cn/17img/images/201711/insimg/152abcc1-46cd-457b-a41d-30f1cbe41c3d.jpg" / /p p style=" text-align: center " strong 报告人:德克萨斯大学奥斯汀分校研究助理 张佳玲 /strong /p p style=" text-align: center " strong 报告题目:新型手持式质谱笔在癌症研究中的应用 /strong /p p   传统的组织学检测方法通常耗时耗力,并且癌症组织复杂的组织结构和细胞形态,使得该方法具有明显的局限性。张佳玲的报告讲的是新型手持式质谱笔在癌症研究中的应用,即一种自动化并且生物兼容的手持式质谱装置用于对人体癌症的快速且无损的分析。该装置称为质谱笔,通过对水滴的自动控制在所要分析的组织表面进行萃取,以获得生物分子信息来进行分析和诊断。张佳玲研究团队分析了20张人体的组织切片以及253个人体组织样品,包括甲状腺,肺,乳腺,以及卵巢的正常和癌症样品。在不同的人体样品中,研究人员可以检测到丰富的分子信息包括低分子量的代谢物分子,脂类以及蛋白分子。通过统计学方法对所获得质谱数据进行分析,结果显示对正常组组织和癌症组织的区分,灵敏度和专一性分别可达到96.4%和96.2,准确率为96.3%。最后,他们还对活体小鼠进行分析,实验结果显示分析过程不会对小鼠造成任何明显的损伤。 /p p style=" text-align: center " img title=" Chen Xi.png" src=" http://img1.17img.cn/17img/images/201711/insimg/949b061e-f84a-4c67-93b1-0a4295df080e.jpg" / /p p style=" text-align: center " strong 报告人:沃特世高级应用工程师 陈熙 /strong /p p style=" text-align: center " strong 报告题目:使用新型质谱技术(离子淌度、非变性质谱、氢氘交换质谱)进行蛋白高级结构表征 /strong /p p   针对蛋白质高级结构表征研究,陈熙介绍了多种新型质谱技术,包括离子淌度高分辨质谱、非变性质谱、氢氘交换质谱技术。通过应用案例分析,她详细介绍了这些技术在生物药分析上的最新应用进展,非变性质谱通过搭配不同选择范围的四级杆可以实现大分子量蛋白的测定,使复杂糖基化蛋白的完整分子量测定成为可能 离子淌度分离技术根据化合物漂移的时间差异为常规高分辨质谱增加了更多一个维度的分离能力,有助于蛋白质药物常规结构表征如二硫键错配 氢-氘交换质谱技术在蛋白质药物高级结构、动态变化、小分子结合位点研究上发挥着重要作用。 /p p style=" text-align: center " img title=" Shen Huali.png" src=" http://img1.17img.cn/17img/images/201711/insimg/87407340-322c-4c4c-b957-3617f697b219.jpg" / /p p style=" text-align: center " strong 报告人:复旦大学副教授 申华莉 /strong /p p style=" text-align: center " strong 报告题目:N-糖蛋白质组富集,鉴定和定量新方法的发展和应用 /strong /p p   蛋白质糖基化修饰具有重要的生物学功能,机体功能的实现主要依赖蛋白不同修饰,但糖修饰蛋白的特异识别/富集、位点/糖链结构、糖肽/糖链定量的分析方法一直滞后,是目前国际研究的热点和难点。申华莉课题组发展了一系列N-糖基化位点的富集,鉴定和定量新方法:包括N-糖基化修饰的富集新方法,N-糖基化肽段富集方法的整体优化,实现了高灵敏的N-糖基化肽段富集 发展了完整糖肽鉴定的质谱流程和搜库软件pGlyco 2.0,实现了大规模,自动化和高准确度的one-step N糖肽质谱鉴定,并获得迄今为止最大的N-糖肽数据集。她以凝集素芯片揭示阿尔兹海默病鼠脑蛋白糖链模式变化的实际案例介绍了这一流程及其在疾病研究中的应用。 /p p span style=" font-size: 20px " strong   生物医学及生命科学 (下) /strong /span /p p style=" text-align: center " span style=" font-size: 20px " img title=" Ge Feng.png" src=" http://img1.17img.cn/17img/images/201711/insimg/3c1bd4af-a9aa-45e4-ba30-bc12f328d163.jpg" / /span /p p style=" text-align: center " strong 报告人:中国科学院水生生物研究所研究员 葛峰( /strong strong 杨明坤代讲 /strong strong ) /strong /p p style=" text-align: center " strong 报告题目:蛋白基因组学(Proteogenomics)及其分析软件的开发和应用 /strong /p p   蛋白基因组学(Proteogenomics) 是基于高精度的串联质谱数据对基因组进行注释,不仅能在蛋白质水平上验证基因表达和模式,还能提供蛋白质组层面特有的信息,如翻译后修饰、信号肽等,目前已成为功能基因组学研究不可或缺的重要工具。然而,对海量质谱数据实现全面和精准的解读仍是当前蛋白基因组学研究的瓶颈,目前仍缺乏专业、高效的蛋白基因组学分析方法与软件,限制了其在生命和健康领域的应用。 /p p & nbsp & nbsp & nbsp 杨明坤讲到,课题组在前期完成的模式蓝藻的蛋白基因组学分析工作的基础上,基于水生所的超级计算平台,开发了开源的针对原核生物的蛋白基因组学专业分析软件GAPP。该软件整合了多组学数据库搜索、类别错误率评估以及非限制性翻译后修饰鉴定等多种方法,可实现针对海量质谱数据的快速、精准分析。利用该软件对已发表的幽门杆菌(Helicobacter pylori)蛋白质组学数据进行了测试,重新注释了幽门杆菌的基因组,鉴定到84.9%的已注释编码基因并发现了20个新基因,同时,利用该软件还实现了幽门杆菌的蛋白质翻译后修饰的全局系统发现,为幽门杆菌基因组的深入解读及其功能分析奠定了基础,也为深入研究幽门杆菌致病的分子机制提供了新的研究方向。该软件实现了“一键式”的原核生物蛋白质基因组学快速、精准分析,使用者只需具备简单的生物信息学知识,按照软件的指令,可在24小时内完成原核生物的蛋白质基因组的精准鉴定和功能分析,该软件有望成为解读原核生物基因组及其功能分析的有力工具。 /p p style=" text-align: center " img title=" Liu Hongwei.png" src=" http://img1.17img.cn/17img/images/201711/insimg/360ad919-ebd9-4006-a9a4-99d59a90f6f5.jpg" / /p p style=" text-align: center " strong 报告人:SCIEX高级市场发展专员 刘宏伟 /strong /p p style=" text-align: center " strong 报告题目:SCIEX在精准医学中的全面解决方案 /strong /p p   刘宏伟给大家带来了SCIEX在精准医学中的全面解决方案的报告。关于精准医学,她讲到,精准应该是对正确的病人,在正确的时间,给正确的治疗。相对于无差别治疗,更应该根据个人情况进行个性化治疗。从科研到临床,SCIEX提供一整套解决方案,用于蛋白、代谢、脂质水平的分析,从高分辨质谱到三重四极杆质谱,从生物标志物发现到验证,SCIEX提供了完整的癌症标志物研究路线。接着,她重点介绍了SWATH技术,该技术被广泛应用于差异表达分析、蛋白质相互作用、翻译后修饰、大规模临床样品定量分析。然后,刘宏伟以先天性肾上腺皮质增生症、儿茶酚胺检测两个实际案列介绍了SCIEX质谱在临床方面应用。最后,她就下一代代谢组学做了展望,并就工业代谢组学、脂质组学等做了相关介绍。 /p p style=" text-align: center " img title=" Li Zhen.png" src=" http://img1.17img.cn/17img/images/201711/insimg/9fc9cc4c-48d8-442a-b3fa-b81e4c7e6ee0.jpg" / /p p style=" text-align: center " strong 报告人:中国农业大学副教授 李溱 /strong /p p style=" text-align: center " strong 报告题目:基于高分辨质谱的植物代谢组学研究 /strong /p p   植物代谢组学研究生物胁迫和非生物胁对植物代谢的影响以及植物产生的免疫应答反应。对不同基因型、不同生长时期的植株或植物不同部位的代谢物进行全面的定性与定量分析,发掘和鉴定未知代谢物,构建代谢途径和代谢调控网络。 /p p   李溱的报告以拟南芥为模式植物,使用高分辨质谱技术研究了植物在内源茉莉酸缺失和外源茉莉酸处理下代谢物的变化情况,分析了拟南芥野生型,茉莉酸合成功能缺失突变体(opr3)和经过外源茉莉酸处理不同时间的opr3的代谢组。他对检测到的超过一万个特征离子信号进行统计分析和鉴定,共鉴定到109个差异化合物。这些化合物参与硫代葡萄糖苷代谢,色氨酸/吲哚乙酸代谢,氨基酸和多肽代谢,脂质代谢等代谢通路,揭示了内源茉莉酸在植物中的重要调控功能,实验结果进一步通过定量PCR等技术进行了验证。代谢组学还可以与基因组学研究相结合,开展基于代谢组学的数量性状位点(mQTL)分析和全基因组关联分析(GWAS)。报告使用mQTL技术研究玉米的驯化过程,分析了玉米和玉米的祖先大刍草的代谢物差异,及其在驯化过程中的变化。对调控丁布类代谢物的性状位点进行了定位和功能分析。研究为筛选作物优良形状,作物育种提供指导方向。 /p p style=" text-align: center " img title=" Zhan Xianquan.png" src=" http://img1.17img.cn/17img/images/201711/insimg/82a8f876-1bf5-47f2-92d0-a5fb49f3e512.jpg" / /p p style=" text-align: center " strong 报告人:中南大学教授 詹显全 /strong /p p style=" text-align: center " strong 报告题目:质谱技术在肿瘤酪氨酸硝基化蛋白质组学中的应用 /strong /p p   蛋白质酪氨酸硝基化是一种化学性质稳定的氧化损害的标志物,该修饰主要由体内亚硝酸盐途径产生。硝基化产生于生理条件下、富集于病理条件下、参与氧化还原系统,并且该修饰可通过酶和非酶机制而逆转。蛋白质酪氨酸残基的硝基化就是在苯环上加了一个硝基基团,使酪氨酸残基苯环上的电子密度降低,影响酪氨酸残基的化学特性。 /p p & nbsp & nbsp & nbsp 詹显全通过研究发现蛋白质酪氨酸硝基化可发生在重要的蛋白质结构域或基序部位,如发生在受体-配体及酶-底物间的相互作用区域则影响其相互作用强度,如发生在二聚化区域则影响蛋白质的二聚化,如发生在酪氨酸激酶磷酸化基序则与磷酸化竞争同一个酪氨酸位点来影响蛋白质的磷酸化调节;而且,在组织和细胞内存在脱硝基化酶来逆转硝基化过程。这样,蛋白质酪氨酸硝基化不仅是氧化应激的生物标志物,而且也通过调节和改变蛋白质的功能参与多种疾病如肿瘤的病理生理过程。质谱是探测、鉴定和定量酪氨酸硝基化蛋白质及其修饰位点的关键技术,是阐明蛋白质酪氨酸硝基化在肿瘤中作用的必须环节。此演讲将讨论蛋白质酪氨酸硝基化与肿瘤的关系,酪氨酸硝基化蛋白质组学的策略、特点及其在肿瘤研究中的应用,肿瘤硝基化蛋白质组学的现状、未来发展趋势及其质谱在其中扮演的关键作用。 /p p iCMS2017第八届质谱网络会议开幕 质谱新技术专场强势首发 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171121/233975.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171121/233975.shtml /span /a /p p iCMS2017第八届质谱网络会议——食品、环境、药物分析 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171124/234313.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171124/234313.shtml /span /a /p p & nbsp /p p & nbsp /p p & nbsp /p
  • 科学仪器六月沙龙:常见肿瘤临床诊断及治疗
    p & nbsp strong 仪器信息网讯 /strong 2017年6月19日下午,由首都科技条件平台检测与认证领域中心、慕尼黑展览(上海)有限公司主办,首都科技条件平台生物医药领域中心、首都科技条件平台北京大学研发实验服务基地协办的“常见肿瘤临床诊断及治疗”主题沙龙活动在北京UCoffee悠咖啡成功举办。来自主办方、科研院校、仪器厂商及检测机构等20余名代表参加了本次沙龙。仪器信息网作为支持媒体也积极参加了本次活动。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/6409ac95-7a7a-46f8-93c8-7eb31861bc70.jpg" / /p p style=" text-align: center " strong 活动现场 /strong /p p   本次沙龙活动由北京科学仪器装备协作服务中心协作部部长苏立清主持,她谈到,肿瘤是一种高死亡率且发病率逐年升高的疾病,严重威胁人类的健康。近年来,随着医学影像学及体外诊断试剂技术的迅速发展,临床医学在肿瘤的早期诊断、疗效评估以及预后转归等方面均取得可喜的研究进展。为使肿瘤诊疗临床方面医务工作者、医疗影像医疗仪器研发工作者、体外诊断领域工作者深入了解肿瘤的诊疗全过程,本次沙龙特别邀请北京大学肿瘤医院放射科主任徐刚教授、中国人民解放军火箭军总医院放疗科赵志强教授作精彩报告并与大家座谈交流。 br/ /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/53f6d437-eacd-4b0b-a10e-041d640fad1b.jpg" / /p p style=" text-align: center " strong 北京科学仪器装备协作服务中心协作部部长 苏立清 /strong /p p   北京大学肿瘤医院放射科主任徐刚教授主讲了题为《癌症的早期诊断》的精彩报告,从癌症早期症状、望闻问切视触叩听、早期诊断新技术三个部分讲解了癌症早期诊断的全过程。癌细胞虽然能无限增殖化,但其修复能力差。因此,越早发现,越早治疗,癌症越有可能被治愈。徐教授谈吐风趣幽默,深入浅出地讲解了直肠癌、胃癌、食管癌、肺癌、胰腺癌、膀胱癌、皮肤癌、口腔癌、乳腺癌等多种癌症的早期症状。这些早期症状包括疼痛、大小便习惯改变、消瘦、发热、出血和分泌物、溃疡、结节肿块等,只要留心这些早期异常信号,及时治疗,就能将癌症消灭在萌芽阶段。徐刚特别介绍了一种肿瘤标记物——血清甲胎蛋白(AFP),可通过检测该标记物来诊断肝细胞癌、生殖细胞癌、胚胎细胞癌、卵巢畸胎瘤、胃癌、胆道癌、胰腺癌等癌症。但是当患有肝炎、肝硬化、肠炎以及遗传性酪氨酸血症等良性病时,AFP也会升高,因此,在诊断时需要注意这一情况。 br/ /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/be1cd266-728c-4c59-b01b-a2755553d879.jpg" / /p p style=" text-align: center " strong 北京大学肿瘤医院放射科主任 徐刚教授 /strong /p p   中国人民解放军火箭军总医院放疗科赵志强教授在题为《常见肿瘤临床诊断及治疗概述》的报告中给大家介绍了肿瘤的综合治疗。综合治疗是指根据病人的身心情况,肿瘤的具体部位病理类型、侵犯范围和发展趋向,结合细胞分子生物学的改变,有计划地、合理地使用现有的多学科各种有效治疗手段,以最适当的费用取得最好的效果,同时最大限度的改善病人的生活质量。肿瘤综合治疗应遵循局部与全身、分期治疗、个体化治疗、生存率与生存质量并重、成本与效率并重、中西医并重的多项原则。之后,赵志强教授着重讲解了肿瘤的发生部位及诊治特点。发生在头部的常见肿瘤有脑胶质瘤、脑膜瘤、脑垂体瘤等,临床上多表现为头晕、头痛,脑胶质瘤还能引起为癫痫,治疗多以手术、伽马刀治疗为主。胸部常见肿瘤有食管癌、肺癌、乳腺癌等,食管癌多表现为进食哽咽感、吞咽困难等,治疗上多视具体情况以手术、放疗、化疗及靶向治疗相结合的疗法。腹部常见肿瘤有肝癌、胰腺癌、直肠癌等,肝癌、胰腺癌临床上多表现为腹胀、腹痛,直肠癌多表现为便秘、便血,治疗上多采用手术、放疗,对于肝癌有时也会采取介入、射频疗法。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/f27bf2a8-3e53-4ff4-a37e-5cbb459b6771.jpg" / /p p style=" text-align: center " strong 中国人民解放军火箭军总医院放疗科 赵志强教授 /strong /p p   本次沙龙活动现场气氛热烈,专家同与会人员面对面交流,为提问者当面答疑,成果显著。 br/ /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/ee84bb88-1c29-430f-941c-4b5a4c2de412.jpg" / /p p style=" text-align: center " strong 现场提问互动环节 /strong /p p   让我们共同期待下次科仪沙龙快些到来吧! /p
  • 文献解读 | 使用无标记TSA方法评估CRISPR-Cas9 RNP复合物形成的最佳条件
    01前言Thermal shift assay(TSA),也被称为差示扫描荧光法(DSF)是表征蛋白热稳定性的常用方法之一,广泛应用于蛋白配体互作表征,突变体、缓冲液、去垢剂筛选等领域。但DSF的实验操作较繁琐,需要根据蛋白的特性及去垢剂兼容性选择合适的染料,优化蛋白和染料的比例,在配制样品时还要考虑染料自带的有机溶剂对蛋白的影响。替代性技术:nanoDSF技术时下被行业深度认可的无标记的TSA验证方法-也称nanoDSF技术,可解决DSF技术的局限性,样品无需加染料就可以直接上机检测了。下面我们一起通过用户的文献案例来进一步了解。02NanoTemper用户应用案例解读检测样品:Cas9,gRNA使用仪器:PR系列蛋白稳定性分析仪涉及技术:nanoDSF技术https://doi.org/10.1016/j.isci.2023.106399CRISPER - Cas9介导的基因编辑能够帮助人们在动物和细胞模型中实现广泛的靶向敲除(KO)或敲入(KI),例如单点或多点KO、点突变、报告基因KO或KI等。然而,CRISPR-Cas9的切割效果和准确性仍是基因编辑面临的主要挑战,它们特别受到核糖核蛋白复合物 (RNP)的组装配比的影响。2023年3月,法国南特大学的研究人员近期发表了研究成果:Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions,作者借助PR系列蛋白稳定性分析仪搭载的nanoDSF技术,一种无需标记和固定化的方法,证明了Cas9和gRNA的等摩尔比是形成RNP复合物的最佳条件。研究结果作者通过CRISPR/Cas9 KI将双等位纯合子GFP hiPSCs转化为BFP表达细胞,通过细胞表型分析证明在Cas9的最佳浓度为0.4 mM时,增加ssODN浓度有助于降低KO率,提高KI率,而增加dgRNA对KO和KI没有影响。0.4 mM的Cas9、等摩尔Cas9/gRNA比例和2 mM的ssODN是在hiPSC中实现高效GFP到BFP转换的最佳选择。 在此之前,有一些研究曾表明过量的gRNA对于靶向切割有帮助,而本文作者的实验结果则与之产生了矛盾。于是作者使用NanoTemper公司的nanoDSF技术建立了一套体外实验方法学,用来评估RNP复合物的形成效率,从而佐证他们的结论。通过nanoDSF这种无标记技术,可在升温过程中检测蛋白中的色氨酸和酪氨酸的自发荧光。随着升温,仪器同步采集在350 nm和330 nm处的最大发射光位移,并自动拟合出蛋白的热展开曲线。NanoDSF能够检测蛋白的构象变化导致的热稳定性差异,并由熔解温度(Tm)来表征蛋白的热稳定性。由于Cas9是一种含有色氨酸和酪氨酸残基的变构酶, 因此利用nanoDSF技术可以简单、直观地检测导致Cas9重排的RNP复合物的形成。 为了确定hiPSC中使用的dgRNA靶向GFP位点(dgRNA GFP)形成RNP复合物的有效性,作者使用恒定浓度的Cas9 (0.75 mM)与一定浓度范围内的dgRNA, 通过nanoDSF检测,作出升温诱导的蛋白变性曲线检测 (图1A)。根据一阶导数,可以确定Cas9单独的Tm(TmCas9 = 43.2C),以及Cas9/dgRNA摩尔比为1/1至1/5 的Tm:1/1 时TmRNP = 49.6 C、1/2 时TmRNP = 50.0 C、1/3时 TmRNP = 49.9C、1/5 时TmRNP = 49.8 C (图1B)。相比只有Cas9时, Cas9/dgRNA摩尔比为1/1至1/5 时的Tm都有明显增加,但Cas9/dgRNA不同摩尔比之间的Tm并没有显著差异(图1C)。这反映了RNP复合物的形成情况。另外,当Cas9/dgRNA为等摩尔比时,是检测不到游离Cas9的。因此,可以认为Cas9/dgRNA等摩尔比是形成RNP复合物的最优条件。图1作者在大鼠胚胎上使用点突变模型来验证等摩尔Cas9/dgRNA是否能得到最佳的KI率,以及过量的dgRNA是否会影响KI效率。 他们先使用nanoDSF检测大鼠胚胎中Cas9过量、等摩尔Cas9/dgRNA或dgRNA过量这几种情况下,RNP复合物的形成情况(图2A)。在所有条件下,添加dgRNA靶向的环氧化物水解酶2基因(dgRNA rEphx2),与单独Cas9相比,Tm都显著增加,表明RNP复合物的形成 (图2B)。 在Cas9/dgRNA摩尔比为 5/1和2/1时,可以看到变性曲线中包含了两个热变性峰,分别可表示为TmCas9和TmRNP。与单独Cas9相比(TmCas9 = 43.2℃), TmCas9对这两种RNP的比例差异不显著(TmCas9 RNP 5/1 = 43.0℃ TmCas9 RNP 2/1 = 43.3℃, p分别= 0.4809和0.9353),而TmRNP为(TmRNP RNP 5/1 = 48.0℃ TmRNP RNP 2/1 = 48.9℃, p 都= 0.029)。这些结果表明,在两个条件下,RNP复合物已经形成,而游离Cas9仍然存在。当等摩尔比(RNP 1/1)或dgRNA rEphx2过量(RNP 1/2, 1/3和1/5)时,只观察到一个热变性峰(TmRNP RNP 1/1 = 49.7℃ TmRNP RNP 1/2 = 49.9℃ TmRNP RNP 1/3 = 49.8℃ TmRNP RNP 1/5 = 49.7℃),这些Tm之间差异不显著。此外,与dgRNA rEphx2相比,RNP 1/1比例的TmRNP与RNP 2/1比例的TmRNP显著不同(TmRNP RNP 2/1 = 48.9℃ TmRNP RNP 1/1 = 49.7℃, p = 0.0206),与单独Cas9也显著不同 (TmCas9 Cas9 = 43.2℃ TmRNP RNP 1/1 = 49.7C, p03关于PR系列蛋白稳定性分析仪德国NanoTemper公司自2014年推出PR系列蛋白稳定性分析仪,以nanoDSF技术为核心,通过检测蛋白内源荧光,无需标记即可检测蛋白Tm值,快速精确评估蛋白在不同条件下的热稳定性变化。2020年NanoTemper推出新一代PR Panta仪器,并于2022年整合四大技术模块nanoDSF/Backreflection/DLS/SLS,可实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息,为科研人员在蛋白质量控制、复合物分析、化合物筛选、制剂优化等方面提供强大助力。今年年初,公司凭借自身不断创新的科学技术,推出新品型号:PR Panta + 机械臂自动上样器,这款新品拥有独立且包罗万象的系统,包含机械臂、外框架、计算机和监视器。可装载多达4个384微孔板,用于检测所有蛋白质候选分子热变性、胶体稳定性和化学变性的全自动操作。可针对高通量或配方筛选实验场景,无需手动即可完成多达1536个样品的检测。PR系列产品
  • 我国科学家拓展了光学探针与活体荧光成像新应用
    性能优良的光学探针是构建高灵敏度、高时空分辨能力的光学传感与活体成像分析方法的物质基础,其发展一直受到人们的关注。中国科学院化学研究所活体分析化学实验室马会民课题组长期从事该方面的研究,并取得了一系列的成果 (Angew. Chem. Int. Ed., 2012, 51, 6432 Anal. Chem., 2014, 86, 6115 Angew. Chem. Int. Ed., 2014, 53, 10916 Chem. Sci., 2016, 7, 788 Chem. Sci., 2016, 7, 4694)。近年,该课题组还应邀系统总结并评述了光学探针的各种设计方法(Chem. Rev., 2014, 114, 590-659 Chem. Sci., 2016, 7, 6309-6315)。  酪氨酸酶是黑色素癌的重要标志物,并与白化病、帕金森等疾病密切相关。因此,发展酪氨酸酶的光学传感与成像分析方法对相关疾病的诊断研究具有重要的意义。传统的检测酪氨酸酶荧光探针均包含4-羟基苯单元,在用于细胞等生物体系成像分析时受到活性氧物种的干扰,从而严重影响检测结果的准确性。最近,在国家自然科学基金委、科技部和中科院的大力支持下,该课题组提出了新的酪氨酸酶识别单元(3-羟基苄基),并结合稳定的半菁母体,发展出了适用于细胞及活体斑马鱼成像的近红外光学探针(如图),有效解决了现有荧光探针受活性氧物种的干扰问题。相关结果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 14728-14732)上。
  • 哈佛仪器网络讲堂第一期-现代超微量核酸蛋白分析技术进展
    哈佛仪器网络讲堂第一期-现代超微量核酸蛋白分析技术进展,将于2014年6月26日14:00开课。报名网址:http://webinar.b.bioon.com.cn/live-info/webinar_biochrom1.html,欢迎参与研讨! 本期简介: 随着常规分子生物学研究的深入,越来越多的生物实验室日常需要测量的核酸、蛋白样品量也在不断地加大。核酸(包括DNA或RNA)中的嘌呤碱和嘧啶碱均具有共轭双键,使碱基、核苷、核苷酸和核酸在240-290nm的紫外波段有一个强烈的吸收峰,最大吸收值在260nm附近。蛋白质在280nm的紫外光吸收可以达最大值,绝大部分是由色氨酸和酪氨酸所引起的。利用这一特性可以使用分光光度法鉴别蛋白质、核酸的含量和纯度。 在实验中分光光度法一直是进行光度分析的最简单方法之一。核酸和蛋白质的强吸收意味着传统的比色皿不进行耗时的稀释就不适于测量高浓度水平的样品。同时,由于核酸样品的体积较小,即使使用昂贵的微量石英比色杯(容积数十微升左右),也往往需要对原始样品进行稀释,从而带来可能的操作偏差。为了应对这些问题,近年来,一类新的用于测量超微量核酸蛋白的分析技术已应运而生。
  • 《环球科学》2011年十大科学新闻评选
    “十大科学新闻”评选是《环球科学》(《科学美国人》杂志中文版)每年一度的重头戏,也是本年度全球各大科学领域的重大事件进行的一次全面盘点。经过专业编辑和专家团队的商讨,《环球科学》初步挑选出了30条候选新闻,接受网友的点评和投票。   1、超光速粒子挑战爱因斯坦相对论   9月23日,欧洲核子研究中心公布了一份研究结果,科研人员在让中微子进行近光速运动时,其到达时间比预计的早了60纳秒(1纳秒等于十亿分之一秒),对此,研究者认为,这可能意味着这些中微子是以比光速快60纳秒的速度运行。   这项研究名叫OPERA(Oscillation Project with Emulsion-tRacking Apparatus),是由欧洲核子研究所的超级质子同步加速器产生高强度、高能量的μ子中微子束,向730千米外的意大利格兰萨索国家实验室(LNGS)传送,以便检测检测中微子振荡现象。研究者让粒子束以近光速运行,并通过最后的运行时间和距离来判断中微子的速度。中微子束在两地之间的地下管道中穿梭。   根据爱因斯坦狭义相对论,光速是宇宙速度的极限,没有任何物质可以超越光速。如果此次研究结果被验证为真,意味着奠定了现代物理学的基础将遭到严重挑战。   不过,欧洲核子研究中心随后在一份声明中表示,这个结果的潜在影响巨大,急需其他实验的独立测量进行重复实验,接受更广泛、更严谨的考验,这才能最终验证或反驳是否真的存在超光速粒子。   11月17日,格兰• 萨索国家实验室的研究人员发布了新的实验数据,确认了9月23日公布的结果。该实验的参与者、德国汉堡大学的卡伦• 哈格纳表示,实验的精确性得到了改进,统计分析更为可靠了,并且由OPERA里的不同小组进行了重复。   然而,OPERA之外的科学家仍然表示怀疑。他们寄希望于由一个独立的实验来进行重复。其中最受期待的是美国费米实验室“主注入器中微子振荡搜寻”(简称MINOS)实验。针对OPERA的最新结果,费米实验室发表声明说,该实验室正在升级有关系统,2012年初应该可以获得相关结果。   2、世界人口超过70亿   10月31日,根据联合国人口基金的预测,世界人口在这一天达到了70亿。在全球70亿人口中,有18亿是10岁到24岁的年轻人。如果目前的生育率保持不变,本世纪中期世界人口将突破90亿,此后人口增速将会放缓,到本世纪末超过100亿。   联合国人口基金的统计显示,世界人口从10亿增长到20亿用了一个多世纪,从20亿增长到30亿用了32年,而从1987年开始,每12年就增长10亿。   由于文化普及和妇女社会地位的提高,全球育龄妇女的平均生育率到21世纪已显著下降,但庞大的人口基数仍会使人口数量迅速上升。   人口激增意味着人类对自然资源的需求激增,粮食、水资源、宜居土地的供给将承受更大的压力,这些需求又将向生态环境传递更大压力 人口激增也意味着人类对社会资源的需求激增,教育、医疗、就业、养老等问题,将考验着每一个国家。   3、“苹果”创始人乔布斯去世   美国时间10月5日,苹果董事会主席、联合创始人史蒂夫• 乔布斯逝世,享年56岁。苹果公司网站发布的消息说:“苹果失去了一位富有远见和创造力的天才,世界失去了一个不可思议之人。” 1975年,乔布斯与斯蒂夫• 沃兹尼亚克组装了世界上第一台个人电脑,这台个人电脑后来被称为苹果Ⅰ号机。1976年,乔布斯与沃兹等人成立了苹果公司,并在1977年4月推出了苹果Ⅱ号机,它以小巧、操作简便等特点抓住了用户的心。乔布斯先后领导缔造了麦金塔计算机、ipad、iPod、iTunes Store、iPhone等诸多知名数字产品。   乔布斯的生涯极大地影响了硅谷风险创业的传奇,他将美学至上的设计理念在全世界推广开来。他对简约及便利设计的推崇为他赢得了许多忠实追随者。乔布斯与沃兹尼亚克共同使个人计算机在70年代末至八十年代初流行开来,他也是第一个看到鼠标的商业潜力的人。在将近40年的职业生涯里,他引进了几种范式转移的发明,并在此过程中重塑了整个行业。   无论是在科技界还是商业界,乔布斯都是无可争议的领袖人物,他的去世,引起了全球的强烈关注。   4、首款石墨烯集成电路诞生   美国IBM公司的科学家研制出了首款由石墨烯圆片制成的集成电路,向开发石墨烯计算机芯片前进了一步。科学家们认为,这项突破可能预示着,未来可用石墨烯圆片来替代硅晶片。研究成果发表在6月10《科学》杂志上。   IBM公司托马斯• 沃森研究中心科学家林育明领导的团队制造的这块集成电路建立在一块碳化硅上,并且由一些石墨烯场效应晶体管组成。这种生产过程也可用于其他类型的石墨烯材料,包括将化学气相淀积(CVD)石墨烯膜合成在金属膜之上,也可用于光学光刻以改善成本和产能。最新的石墨烯集成电路混频最多可达10G赫兹,而且其可以承受125摄氏度的高温。该研究团队认为,这块集成电路还可以运行得更快,届时,由这类集成电路制成的芯片可以改进手机和无线电收发两用机的信号,未来,手机或许能在一般认为无法接收信号的地方工作。   5、德国爆发肠出血性大肠杆菌疫情   5月中旬,一种被称为EHEC(肠出血性大肠杆菌)耐抗生素细菌导致的疫情在德国北部集中暴发。一周之内,德国16个州中的15个州中发现了超过1000例EHEC确诊或疑似病例。据称,“当前的疫情超过了任何一次历史上的状况,EHEC从没有在德国如此集中暴发。”   疫情很快蔓延到欧洲许多国家和美国。根据世卫组织的6月3日公布的报告,截至到6月2日,疫情共造成1823人染病,18人死亡。全世界已经有12个国家(除德国外,还包括奥地利、丹麦、法国、荷兰、挪威、西班牙、瑞典、瑞士、英国、捷克和美国)出现了肠出血性大肠杆菌病例。更令人担心的是,此次流行的EHEC亚型是经过变异的耐抗生素细菌,疑似超级细菌。   最初该病菌被认为来源于西班牙产黄瓜,后经严密调查,德国国家疾病控制中心罗伯特-科赫研究所等多家机构6月10日在柏林表示,他们已确认造成此次肠出血性大肠杆菌(EHEC)疫情的源头是下萨克森一家工厂生产的豆芽。   7月26日,罗伯特-考赫研究所宣布,感染肠出血性大肠杆菌的最后一位病人出现在三周前,计入病情潜伏期、诊断期以及病源调查所需时间之后,可以肯定地认为该病菌已不再具备传染性,表明这场在德国持续了月余的疫情已经结束。这场疫情最终导致德国范围内50人死亡。   6、中国发射“天宫一号”   2011年9月29日,中国首个目标飞行器天宫一号(Tiangong-1或Heavenly Palace 1)在酒泉卫星发射中心发射,由长征二号FT1火箭运载。   天宫一号设计在轨寿命两年。由于天宫一号是空间交会对接试验中的被动目标,所以叫“目标飞行器”(Target spacecraft,天宫一号的主要任务之一,即为实施空间交会对接试验提供目标飞行器)。而之后发射的神舟系列飞船,将称作“追踪飞行器”,入轨后主动接近目标飞行器。   天宫一号的发射标志着中国迈入中国航天“三步走”战略的第二步阶段(即掌握空间交会对接技术及建立空间实验室),同时也是中国空间站的起点,标志着我国已经拥有建立初步空间站,即短期无人照料的空间站的能力。天宫一号在寿命末期,将主动离轨,陨落南太平洋。   2011年11月1日,中国再次发射“神舟八号”无人飞行器,飞行器升空后,在太空中与“天宫一号”成功完成两次对接,标志着中国成为了世界第三个掌握空间对接技术的国家。   7 日本大地震引发核危机   3月11日,本东北部海域发生里氏9.0级地震并引发海啸,地震和海啸造成15500余人遇难,5300余人失踪。另外,地震和海啸造成日本福岛第一核电站1~4号机组接连发生核泄漏事故,大量放射性物质泄漏到外部,日本各地均监测到超出本地标准值的辐射量。   日本原子能安全委员会根据测定值推算的结果显示,从3月12日上午6时至24日零时止,福岛第一核电站外泄放射性碘的总量约为3万万亿~11万万亿贝克勒尔,这个数值已经相当于国际评价机制的6级“重大事故”水平。而部分地区的土壤核污染水平,已与1986年的切尔诺贝利事故相当(被定性为最高等级7级的“特大事故”)。2011年4月12日,日本原子能安全保安院根据国际核事件分级表将福岛核事故定为最高级7级。是国际核事件分级表(International Nuclear Event Scale)中第二个被评为第七级事件的事故。   8 NIF成功模拟出核聚变反应的实验条件   美国物理学家组织网3月16日(北京时间)报道,美国国家点火装置(NIF)项目的科学家最近攻克了核聚变反应点火装置中的两个关键难题:类似太阳的极端高温以及均匀、使标靶不会失形的压力。   NIF的目标是实现聚变反应,最终用来生产可持续的清洁能源。目前的商业核电站都是用核裂变来发电,核聚变迄今还无法用于大规模商业核电站中。与核裂变相比,聚变反应能产生同样巨大的能量但核废料却更少。NIF科学家们正在研究的是一种惯性约束聚变(ICF),即在高能激光热量和压力条件下的聚变。在最近的实验中,NIF科学家用一种直径2毫米的塑料小球将192束激光聚集在含氦元素的塑料球上,所产生的巨大热量中近90%转换为X射线,使温度达到360万摄氏度。在这一温度下,2毫米直径的塑料球各向均匀收缩为只有1/10毫米。研究结果发表在《物理评论快报》上。   NIF副主管爱德华• 莫斯表示,新实验已经模拟出聚变反应发生的实验条件,比以前更加切实可行,并有望在明年上半年进行真正的演示。   9原子间单量子能量交换首次实现   美国国家标准研究院物理学家首次在两个分隔的带电原子(离子)之间建立了直接运动耦合,实现了原子之间的单量子能量交换。实验利用了一种单层离子势阱,并将其浸在液氦浴中冷却到零下269℃。离子之间相隔40微米,漂浮在势阱表面。势阱表面装有微小电极,让两个离子靠得更近,以便产生更强的耦合作用。超低温度可以抑制热量,避免扰乱离子行为。研究人员在势阱上放了震荡脉冲来检测铍离子频率。研究人员还用激光制冷减弱两个离子的运动,再用两束反向紫外激光束将一个离子进一步冷却到静止状态,调节势阱电极间的电压,就开启了耦合作用。经测量,离子的能量交换每155微妙仅有几个量子,而达到单个量子交换时频率更低,间隔为218微秒。从理论上讲,离子之间这种能量交换过程能一直持续,直到被热量打断。   在未来的量子计算机中,上述技术可用于解决量子系统的复杂问题,破解当今使用最广的数据加密编码。不同位置的离子直接耦合可以简化逻辑运算,有助于校正运算过程错误。该技术还可能用于量子模拟,以解释复杂量子系统如高温超导现象的原理机制。   10屠呦呦获拉斯克临床医学奖   9月12日,2011年度拉斯克奖的获奖名单揭晓,中国科学家屠呦呦获得临床医学奖,获奖理由是“因为发现青蒿素——一种用于治疗疟疾的药物,挽救了全球特别是发展中国家的数百万人的生命”。这也是至今为止,中国生物医学界获得的世界级最高大奖,离诺奖仅一步之遥。   上世纪60年代初,全球疟疾疫情难以控制。1967年,中国正处于文革时期,毛主席和周总理下令,联合研发抗疟新药。1967年5月23日在北京召开“全国疟疾防治研究协作会议”,“5• 23”就成了当时研究防治疟疾新药项目的代号。1969年,39岁的屠呦呦加入“5• 23”。她从整理历代医籍开始,四处走访老中医,编辑了以640方中药为主的《抗疟单验方集》,继而组织鼠疟筛选抗疟药物。经过200多种中药的380多个提取物筛选,最后将焦点锁定在青蒿上。屠呦呦认为,很有可能在高温的情况下,青蒿的有效成分就被破坏掉了。她改用乙醚制取青蒿提取物。1971年10月4日,经历了190多次的失败之后,在实验室里,屠呦呦终于从中药正品青蒿的菊科植物的成株叶子的中性提取部分,获得对鼠疟、猴疟疟原虫100%的抑制率。   11 “引力探测器B”证实广义相对论两项关键预测   5月4日,美国航天局发布消息称,该局2004年发射的“引力探测器B”(Gravity Probe B)的测量结果已经证实了爱因斯坦广义相对论的两项关键预测:地球的自转会牵引并扭曲地球周围的时空,出现短程线效应(geodetic effect)和惯性系拖曳效应(frame dragging)。   广义相对论认为,引力是因质量的存在而引起的时空弯曲,引力场的存在会改变时空几何学规则。这一理论有两项重要预测,即时间和空间不仅会因地球等大质量物体的存在而弯曲,大质量物体的旋转还会拖动周围时空结构发生扭曲,这就是“短程线效应”和“惯性系拖曳效应”。   “引力探测器B”的主要装备是4个超高精度的回转仪。当“引力探测器B”在距离地球约640千米的极地轨道上开始运转时,4个回转仪自转轴同时对准遥远恒星——IM Pegasi。如果地球引力不影响时间和空间,那么回转仪自转轴将一直指向初始方向。实际观测结果是,受地球引力拖曳,回转仪自转轴方向发生了可测量的细微偏移,从而证实了爱因斯坦的理论。这项研究成果发表在《物理评论快报》上。   美国航天局天体物理学家威廉• 丹奇说:“这项成果对理论物理学具有长期影响,将来要想挑战爱因斯坦的广义相对论,就必须获得比‘引力探测器B’观测结果更精确的数据。”   12 3-D结构晶体管首次问世   5月4日,英特尔公司宣布在晶体管发展上取得了革命性的重大突破——3-D结构的晶体管首次问世,三栅极(Tri-Gate)3-D晶体管设计成功实现了22纳米制程技术的突破。   在三栅极3-D晶体管中,传统的2-D平面栅极被从硅基体垂直竖起的3-D硅鳍状物所代替。鳍状物的每一面都安装了一个栅极,而不是像2-D平面晶体管那样,只在顶部有一个栅极。更多的控制可以使晶体管在“开”的状态下让尽可能多的电流通过,而在“关”的状态下尽可能让电流接近零,同时还能在两种状态之间迅速切换。据悉,与之前的32纳米平面晶体管相比,22纳米三栅极3-D晶体管在低电压下可将性能提高37%,在相同性能的情况下电量消耗将减少50%,而其造价仅提高2%~3%。这一惊人的改进意味着它们将是小型手持设备的理想选择。   对于这项成果,英特尔创始人之一、摩尔定律的提出者戈登• 摩尔的评价是:“在多年的探索中,我们已经看到晶体管尺寸缩小所面临的极限。今天这种在基本结构层面上的改变,是一种真正革命性的突破,它能够让摩尔定律以及创新的历史步伐继续保持活力。”   13超级杂交水稻亩产首次突破900公斤   9月18日,农业部专家组在湖南省隆回县验收超级稻大面积亩产的初步结果发布,“杂交水稻之父”袁隆平院士指导的超级稻第三期目标亩产900公斤高产攻关获得成功,创造了杂交稻世界新纪录。   中国超级稻育种计划分三期实施。第一期是大面积示范亩产700公斤,已在2000年实现 第二期亩产800公斤,于2004年提前一年实现 目前,袁隆平和他的团队攻关的900公斤是第三期目标。由袁隆平研制的“Y两优2号”,在湖南省邵阳市隆回县羊古坳乡雷峰村18块试验田(共107.9亩)试种,百亩试验田收割验收结果表明,亩产达到926.6公斤。   袁隆平并不满足于此,他为自己提出了第四期超级稻计划:到2020年实现超级稻大面积示范亩产1000公斤。“1000公斤是奋斗目标,从理论上讲超级稻的产量远不止于此。”   14 中国科学家提出生物进化动力新假说   在5月20日的《科学》杂志上,复旦大学生命科学学院的苏志熙等提出生物进化动力新假说,认为“偏向性突变是导致后生动物进化过程中酪氨酸丢失以及复杂酪氨酸激酶调控网络形成的主要原因”,这一假说修正了目前生命科学领域的权威观点——“后生动物进化过程中酪氨酸丢失是自然选择作用的结果”。   后生动物是相对于原生动物而言的,原生动物是动物界中最低等的一类真核单细胞动物,一切由多细胞构成的动物都称为后生动物。研究发现,“酪氨酸激酶调控网络”对后生动物进化有重大作用。在生命起源中,“酪氨酸激酶调控”只在“多细胞动物”中进行,绝大部分单细胞生物中没有“酪氨酸激酶调控网络”,而随着多细胞动物复杂性的不断增加,酪氨酸激酶调控网络的演化越来越复杂,因此,酪氨酸激酶网络调控已被科学界公认是导致多细胞动物复杂性演化的重要机制。2009年《科学》杂志刊文提出的假说认为,在后生动物进化过程中,生物体受到自然选择作用,选择性地丢失蛋白质中的酪氨酸, “通过去除潜在的有害磷酸化位点这一机制来适应酪氨酸激酶信号通路的复杂性进化,从而促进了多细胞动物本身的复杂性的进化,如演化出各种不同的细胞类型,组织,器官等”。   苏志熙等经过严谨的实验研究后提出的新假说认为,后生动物进化过程中,基因组DNA“组成成分”向高GC(鸟嘌呤和胞嘧啶)含量的偏向性突变是导致酪氨酸丢失的主要原因,而这种非选择性的酪氨酸丢失过程才是促使酪氨酸激酶信号通路以及相应的后生动物机体复杂性进化的原始动力。   据介绍,这个成果解释了多细胞进化过程中绝大部分的蛋白质氨基酸的变化规律,同时可能会帮助科学家更好地探究致癌的原因以及抗癌的方法。   15、长达两千年气候纪录出炉 热带或经历严重水短缺   美国物理学家组织网6月9日报道,美国研究人员对取自秘鲁安第斯山脉Laguna Pumacocha湖泊底部一份长约1.8米的沉积物钻核进行了分析,整理出了一份长达2300年的气候记录。在这份沉积物钻核中,保存着许多迄今未知的地化信息和热带地区气候变化的详情。为获得沉积钻核中的气候记录,研究小组分析了其中每年层中的氧同位素(氧-18)的比例,这一比例在湿润季节水平低而在干旱季节水平高。   根据该记录建立的模型显示,南美洲夏季季风期间的降水量自1900年以后急剧下降,在公元前300年左右降雨量变化最大,此时北半球温度逐渐变暖。目前,随着北半球气温上升,夏季的季风变得更干燥,地球上人口稠密的热带地区将可能经历严重的水短缺 而且,南美赤道地区的降水已经到了两千多年来的最低点。该报告发表在《美国国家科学院院刊》上。   16、IP地址用尽 IPv6开始试用   由于互联网用户持续攀升和全球手机上网者不断增多,造成现有的IP地址即将“瓜分完毕”。据悉,负责管理IP地址分配的顶级机构——互联网编号分配机构(IANA)于2月3日对外分配完最后一批IPv4系列地址,最后5个IPv4地址“大礼包”将被分配出去。现在, 既有IP地址将被完全耗尽的消息,迫使各大网站开始在研究增加地址数量的新技术应对挑战。今后互联网服务商可能要为注册用户提供IPv6地址。虽然这款全新的系统目前尚未普及,但是包括谷歌和Facebook在内的热门网站都对此表示支持。其他规模较小的网站也将开始部署IPv6地址系统。对于只支持IPv4地址的网站而言,未来将面临重大挑战。   17、世界首个三维等离子标尺研制成功   6月10《科学》杂志报道,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。   该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。   18、合成生物学取得多项进展   自从美国科学家文特尔在去年4月份创造了首个“人造生命”(参见《环球科学》2010年第7期《人造生命背后》),合成生物学的发展开始加速,生物学家也开始朝着更高的目标迈进。今年,该领域的科学家就取得了多项重要进展。   今年9月,美国约翰斯• 霍普金斯大学医学院的生物学家杰夫• 博伊科领导的科研团队从头设计,人工合成出两个染色体片断,并将它们插入一个活酵母菌体内,而接受了合成染色体的酵母菌仍能正常存活。文特尔的“人造生命”是细菌,属于原核生物,而酵母属于更高级的真核生物。博伊科的研究是世界上首次成功合成真核生物的部分基因组,标志人工合成生物基因组的研究又迈出了重要步伐。博伊科还计划,在接下来的5年内,用人造基因组取代酵母菌的所有基因组,让其进化出新菌株。   几乎同一时间,英国格拉斯哥大学的李• 克罗宁用含有金属的巨型分子,成功地制造出了类似于细胞的气泡,并赋予它们一些类似生命的特征。研究人员希望诱使这些气泡演变成完全无机的能自我复制的实体,以此证明存在着完全基于金属(无机物)的生命。   如果克罗宁的研究得到证实,那么存在外星生命的可能性将大大提高。日本东京大学基础科学系的牟中原说:“很可能存在着一些并不基于碳的外星生命。比如,水星上的物质就和地球上的物质大相径庭,可能存在由无机成分形成的生物。尽管克罗宁暂时还无法证明这一点,但他指出了一个新方向。”   也是在9月,美国索尔克生物研究所的的助理教授王磊(音译)利用基因技术,修改了一种细菌的遗传序列,成功地将非天然氨基酸(20种天然氨基酸之外的人造氨基酸)整合到细菌蛋白质的多处,制造出了新的人造细菌菌株。   这些合成出来的细菌在药物研发领域拥有巨大的潜力,据此研制出的药物拥有的生物学功能将远超只包含天然氨基酸的蛋白质。这些分子或许也能作为基础元件,制造从工业溶剂到生物燃料在内的任何产品,帮助解决与石油生产和运输有关的经济和环境问题。   “这是我们首次制造出一个可用的、拥有多处包含非天然氨基酸的蛋白质的细菌菌株。”王磊说,“尽管这项技术还有改进空间,但这使科学家们在生物
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制