当前位置: 仪器信息网 > 行业主题 > >

双二苯基膦戊烷

仪器信息网双二苯基膦戊烷专题为您提供2024年最新双二苯基膦戊烷价格报价、厂家品牌的相关信息, 包括双二苯基膦戊烷参数、型号等,不管是国产,还是进口品牌的双二苯基膦戊烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双二苯基膦戊烷相关的耗材配件、试剂标物,还有双二苯基膦戊烷相关的最新资讯、资料,以及双二苯基膦戊烷相关的解决方案。

双二苯基膦戊烷相关的论坛

  • YC T 334-2010 中的正戊烷(溶剂)被甲苯污染后能重新净化再用吗?

    按照Y《C T 334-2010 烟用水基胶 苯、甲苯、二甲苯》,使用正戊烷为溶剂进行测定。但由于实验室同时用很多其他溶剂,其中一种就是待测物甲苯。正戊烷与甲苯放在同一个实验室,即使分别封口,也发现正戊烷受到甲苯的严重污染。请问有什么办法可以将被甲苯污染的正戊烷重新净化再用吗?不然多浪费正戊烷呀!附上一些物理数据:Solventpolaritybpn-pentane(正戊烷)036CompoundMole weight g mole-1Boiling point °CVapor pressure mmHgBenzene7880.176Toluene92110.822o-Xylene106144.45m-Xylene1061396p-Xylene106138.46.5Ethylbenzene106136.27

  • 【求助】2-甲基-1,3-二氧环戊烷分解产物?

    谁帮下忙。。2-甲基-1,3-二氧环戊烷分解后可以产生乙醛和什么??这种物质子在我的填充柱色谱中在乙二醇后面很临近。我猜的环氧乙烷肯定不在这个位置,丙二醇的话化学式好像写不出平衡~!谁能帮我分析下。。。非常感谢

  • 【实战宝典】如何对含有三苯基磷和三苯基氧膦的样品进行定性检测?

    [b][font=宋体]问题描述:用液相色谱检测三苯基磷和三苯基氧膦,流动相是水:甲醇([/font][i]V/V[/i][font=宋体])[/font]=1:4[font=宋体],流速[/font]1.5mL/min[font=宋体],[/font]C[sub]18[/sub][font=宋体]柱子,含有三苯基磷的样品在[/font]12min[font=宋体]左右出了一个峰,含有三苯基氧膦的样品在[/font]2min[font=宋体]左右出了一个峰。改梯度洗脱,含有三苯基磷的样品在[/font]32min[font=宋体]左右出了一个峰,含有三苯基氧膦的样品在[/font]2min[font=宋体]左右出了一个峰,如何确定[/font]2min[font=宋体]左右的峰是不是三苯基氧膦?[/font][font=宋体]解答:[/font][/b][font=宋体]([/font]1[font=宋体])三苯基膦和三苯基氧膦都有纯度很高的标准品,在进行检测的时候需要购置,而不是只检测含有这两种物质的样品,因不同仪器、不同色谱柱,不同流速等条件制约,并不能准确判断是否是这两个物质。[/font][font=宋体]([/font]2[font=宋体])三苯基膦和三苯基氧膦多用于石油化工领域,常用的检测方法有滴定法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法等,液相色谱多采用正相色谱,如果用反相液相色谱进行检测,因三苯基膦和三苯基氧膦在水中溶解度都不大,所以流动相的水相比例最好在[/font]30[font=宋体]以下(也可在溶解样品的时候加入几滴二氯甲烷)。流动相用水[/font]+[font=宋体]甲醇(或乙腈)即可,[/font]C[sub]18[/sub][font=宋体]色谱柱,流速根据目标物出峰时间进行调整,大概控制在[/font]0.8~1.5mL/min[font=宋体]。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 气相环戊烷检测

    我们现在要按照国标检测环戊烷的含量。方法中说用面积归一化法计算环戊烷的含量。那我直接取1微升的工业用环戊烷试样进行分析就可以了吗?不用对样品做前处理吗?对环戊烷进行定量不用买标准品吗?标准中没有注明具体的程序升温过程,只有气化室、检测室、柱箱温度等,那我应该怎样设置程序升温过程?请指导一下,谢谢! 测工业用环戊烷中的正己烷和苯的含量,我应该买苯标准品、正己烷的标准品和质量分数大于95%的环戊烷,对吗? 还有我们现在只有一个10微升的进样器,可以用来取1微升吗?请指导一下,谢谢!

  • 三苯基磷和三苯基氧磷的色谱检测条件

    [color=#444444][color=#444444]各位大牛,最近用液相色谱检测三苯基磷和三苯基氧膦,流动相是水和甲醇1:4,流量1.5ml/min,C18柱子,含有三苯基磷的样品在12min左右出了一个峰,含有三苯基氧膦的样品在2min左右出了一个峰,改成梯度测试,三苯基磷在32min左右出了一个峰,三苯基氧磷在2min左右出了一个峰,我不能确定2min左右的峰是不是三苯基氧膦,有没有做过的,给个判断,或者给个液相条件,不甚感激![/color][/color]

  • [求助]关于苯基代邻氨基苯甲酸指示剂

    我按gb17378.5《海洋监测规范:沉积物》中测有机碳的方法,配制苯基代邻氨基苯甲酸指示剂,将0.5克苯基代邻氨基苯甲酸溶于2g/L的碳酸钠溶液中。但是苯基代邻氨基苯甲酸只溶解了一点点,加热也不行。做过相关实验的同行,请指点一二。

  • 【原创大赛】(官人按)电感耦合等离子体原子发射光谱法测定双二苯基膦二茂铁二氯化钯中的微量杂质元素

    【原创大赛】(官人按)电感耦合等离子体原子发射光谱法测定双二苯基膦二茂铁二氯化钯中的微量杂质元素

    [align=center][b]电感耦合等离子体原子发射光谱法测定双二苯基膦二茂铁二氯化钯中的微量杂质元素[/b][/align][align=center]郁丰善[/align][align=center]江西省汉氏贵金属有限公司[/align][b]摘要:[/b]将双二苯基膦二茂铁二氯化钯用硝酸、高氯酸消解,以混合酸溶解样品,用电感耦合等离子体原子发射光谱仪(ICP-AES)法测定双二苯基膦二茂铁二氯化钯中的微量铅、镍、铜、镉、铬、铁、铂、金、铑杂质元素含量。选择合适波长消除光谱干扰,用背景点扣除的方式消除钯对杂质元素的基体干扰。各杂质元素的检测范围为0.001%~0.018%,加标回收率为92.15%~101.1%,精密度(RSD)为0.68%~8.57%。与直流电弧发射光谱分析方法相比,准确度和精密度均得到提高,操作简化。[b]关键词:[/b]分析化学;双二苯基膦二茂铁二氯化钯;杂质元素;ICP-AES[align=center][b]Determination of impurities inbis(diphenylphosphino)ferrocenedichloropalladium(II)[/b][/align][align=center][b] by inductivelycoupled plasma atomic emission spectrometry [/b][/align][align=center](Yu Fengshan)[/align][align=center](JiangxiProvince Han's Precious Metals Co.,Ltd. Jiangxi Province 335500)[/align][align=center] [/align][b]Abstract: [/b]A method for the determination of Pb, Ni, Cu, Cd, Cr, Fe,Pt, Au, Rh in bis(diphenylphosphino)ferrocenedichloropalladium(II) by ICP-AES was developed. The samples were digestionby HNO[sub]3 [/sub]and HClO[sub]4[/sub], then dissolved with HCl+HNO[sub]3[/sub].The matrix effects come from Pd to Fe, Pb, Pt, Zn were eliminated by backgroundpoint correction. The determination range is 0.001% ~0.018%. The recoveries and RSD were 92.15%~101.1% and 0.68%~8.57%,respectively. Comparing with DC arc emission spectrometry, the method is moreaccurate and precise, easy to operate.[b]Keywords: [/b]Analytical chemistry;bis(diphenylphosphino)ferrocenedichloropalladium(II) Impurities;ICP-AES.[b]前言[/b]双二苯基膦二茂铁二氯化钯是重要的贵金属催化剂,作为催化剂主要用于催化交叉偶联反应。与其它的Pd(II)和Ni(II)配合物类似,而且能有效催化卤代烯烃、卤代芳烃或三氟甲基磺酸基芳烃与格氏试剂间的交叉偶联反应,实现碳-碳键的形成。该产品系为一种二膦配体,也用于羰基化反应,铃木反应,能催化碘-锌交换反应。目前为止,国内各产品标准中推荐的分析方法需要时间长,容易污染,为了能够快速、准确检测双二苯基膦二茂铁二氯化钯中的杂质含量,判断产品是否合格,制订双二苯基膦二茂铁二氯化钯中杂质分析的行业标准是非常必要的。电感耦合等离子体发射光谱法已广泛应用于钯化合物中杂质元素测定,稳定性好,准确度高,已取代火花直读发射光谱法。为保证分析结果的准确和分析方法的标准化,制订电感耦合等离子体发射光谱法测定双二苯基膦二茂铁二氯化钯化合物中杂质元素是可行而必要的。本文主要介绍了试样用硝酸和高氯酸溶解,在稀酸介质中,在电感耦合等离子体原子发射光谱仪选定的条件下,测定试液中铅、镍、铜、镉、铬、铁、铂、金和铑的质量浓度,计算试料中铅、镍、铜、镉、铬、铁、铂、金和铑的量。方法的回收率为92.15%~101.1%,方法的相对标准偏差(RSD)为0.68%~8.57%,同时测定9种杂质元素,能够满足产品的分析要求。[b]1 实验部分1.1 试剂[/b]除非另有说明,在分析中仅使用确认为优级纯或更高纯度的试剂和二次蒸馏水(电阻率≧18.2MΩ/cm)或相当纯度的水。1.1.1盐酸(ρ1.19 g/mL)。1.1.2 硝酸(ρ1.42 g/mL)。1.1.3高氯酸(质量分数70%~72%)。1.1.4盐酸(1+1)。1.1.5硝酸(1+1)。1.1.6盐酸(1+9)。1.1.7 混合酸:以1体积硝酸(1.1.2)、3体积盐酸(1.1.1)和4体积水混合均匀。1.1.8金标准贮存溶液:称取0.1000g金属金(质量分数≥99.99%)于100mL烧杯中,加入20mL盐酸(1.1.1),6mL硝酸(1.1.2),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg金。1.1.9铂标准溶液:称取0.1000g高纯铂(质量分数≥99.99%)于100mL烧杯中,加入20mL混合酸(1.1.7),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg铂。1.1.10铑标准贮存溶液:称取0.3593g氯铑酸铵(光谱纯,分子式:(NH[sub]4[/sub])[sub]3[/sub]RhCl[sub]3[/sub])于100mL烧杯中,加入20mL盐酸溶液(1.1.6),盖上表面皿,低温加热溶解,冷却至室温,移入100mL容量瓶中,用盐酸溶液(1.1.7))稀释至刻度,混匀。此溶液1mL含1000 μg铑。1.1.11铅标准贮存溶液:称取0.1000g金属铅(质量分数≥99.99%)于100mL烧杯中,加入20mL硝酸溶液(1.1.5),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg铅。1.1.12铜标准贮存溶液:称取0.1000g金属铜(质量分数≥99.99%)于100mL烧杯中,加入20mL硝酸溶液(1.1.5),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg铜。1.1.13镍标准贮存溶液:称取0.1000g金属镍(质量分数≥99.99%)于100mL烧杯中,加入20mL硝酸溶液(1.1.5),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg镍。1.1.14铱标准贮存溶液:称取0.2294g氯铱酸铵(光谱纯)于100mL烧杯中,加入20mL盐酸溶液(1.1.4),盖上表面皿,低温加热溶解,冷却至室温,移入100mL容量瓶中,用盐酸溶液(1.1.4)稀释至刻度,混匀。此溶液1mL含1000 μg铱。1.1.15铬标准贮存溶液:称取0.2829g重铬酸钾(基准试剂,于100℃~105℃烘1h),置于100mL烧杯中,加入20mL盐酸溶液(1.1.4),低温加热溶解,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg铬。1.1.16 镉标准贮存溶液:称取0.1000g金属镉(质量分数≥99.99%)于100mL烧杯中,加入20mL硝酸溶液(1.1.5),盖上表面皿,低温加热溶解,挥发氮的氧化物,冷却至室温,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000 μg镉。1.1.17金、铂、铑、铅、铜、镍、铱、铬、镉混合标准溶液:分别移取5.00mL金、铂、铑、铅、铜、镍、铁、铬、镉标准贮存溶液(1.1.8~1.1.16)于100mL容量瓶中,加入盐酸溶液(1.1.4)稀释至刻度,混匀。此溶液1mL含金、铂、铑、铅、铜、镍、铱、铬、镉各50μg。1.1.18 氩气(质量分数≥99.99%)。[b]1.2 仪器[/b] Optima8000型电感耦合等离子体原子发射光谱仪。在仪器最佳工作条件下,凡能达到下列指标者均可使用。1.2.1光源:氩气等离子体光源,发生器最大输出功率不小于1.3kW。1.2.2分辨率:200nm时的光学分辨率优于0.010nm;400nm时的光学分辨率优于0.020nm。1.2.3仪器精密度及稳定性:精密度(RSD)≤0.5%;仪器4h内稳定性(RSD)≤2.0%。[b]1.3 试样[/b] 样品储存于密闭容器内,用时现称。[b]2 分析步骤2.1 试料[/b] 称取0.50g试样,精确至0.0001 g。[b]2.2 测定次数[/b] 独立地进行两次测定,取其平均值。[b]2.3 试样溶液的制备[/b]2.3.1 将试料(2.4.1)置于200mL烧杯中,加入15mL盐酸(1.1.1)和5mL硝酸(1.1.2),低温加热溶解,加入6mL高氯酸(1.1.3),挥发氮的氧化物,待烧杯底部冒大量白烟时取下烧杯,冷却至室温,加入5mL盐酸(1.1.1),煮沸,冷却至室温。2.3.2转入100mL容量瓶中,以水稀释至刻度,混匀。随同试料做空白试验。[b]2.3.3 铅、镍、铜、镉、铬、铱、铂、金、铑标准溶液的制备[/b] 分别移取0.00 mL、1.00 mL、2.00mL、4.00mL、10.00mL标准溶液(1.1.17)置于100mL的容量瓶中,加入5mL盐酸(1.1.1),以水稀释至刻度,混匀。[b]2.4 测定[/b]2.4.1将制备的试料溶液和标准溶液于电感耦合等离子体原子发射光谱仪最佳工作条件下进行测定,各元素的检测波长如表1所示;[align=center]2.4.2根据各杂质元素标准溶液的质量浓度(横坐标)和相对应的发射峰强度(纵坐标)由计算机处理得到工作曲线方程。曲线方程的相关系数不小于0.999。[/align][align=center]表1 元素谱线[/align] [table][tr][td] [align=center]元素[/align] [/td][td] [align=center]检测波长/nm[/align] [/td][td] [align=center]元素[/align] [/td][td] [align=center]检测波长/nm[/align] [/td][/tr][tr][td] [align=center]Pt[/align] [/td][td] [align=center]265.945[/align] [/td][td] [align=center]Cu[/align] [/td][td] [align=center]327.393[/align] [/td][/tr][tr][td] [align=center]Rh[/align] [/td][td] [align=center]343.489[/align] [/td][td] [align=center]Cr[/align] [/td][td] [align=center]357.869[/align] [/td][/tr][tr][td] [align=center]Au[/align] [/td][td] [align=center]267.595[/align] [/td][td] [align=center]Ni[/align] [/td][td] [align=center]221.648[/align] [/td][/tr][tr][td] [align=center]Cd[/align] [/td][td] [align=center]228.802[/align] [/td][td] [align=center]Pb[/align] [/td][td] [align=center]283.306[/align] [/td][/tr][tr][td] [align=center]Ir[/align] [/td][td] [align=center]224.268[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][/table][align=center] [/align][align=center]表2 仪器工作参数[/align] [table][tr][td] [align=center]观测方式[/align] [/td][td] [align=center]发射器功率(kW)[/align] [/td][td] [align=center]等离子体(L/min)[/align] [/td][td] [align=center]雾化气流量(L/min)[/align] [/td][td] [align=center]辅助气流量(L/min)[/align] [/td][/tr][tr][td] [align=center]轴向[/align] [/td][td] [align=center]1.30[/align] [/td][td] [align=center]12.0[/align] [/td][td] [align=center]0.60[/align] [/td][td] [align=center]0.30[/align] [/td][/tr][/table][img=,609,358]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051513_01_2984502_3.jpg[/img][b]3 结果与讨论3.1 酸度的影响[/b] 由于双二苯基膦二茂铁二氯化钯中的杂质元素含量很低,酸的加入量对部分元素的测定有影响,因此溶解试料时需定量加入,同时做样品空白。[b]3.2 测量参数的优化[/b] 采用配制好的混合标准溶液,进行了射频发生器功率、观测方式、载气流量、雾化气流量、辅助气流量的优化试验。实验表明,低功率时,各元素的强度均降低很多,但稳定性较好,随着功率的增大,谱线强度增大,但背景也随之增高;为提高元素灵敏度,选择较高的功率。雾化器流量减少,各元素强度普遍增加,但过低后,稳定性变差;由于试样中所含杂质含量比较低,所以采用轴向的观测方法进行测定,因为轴向的观测方式灵敏度高;载气流量过大,会影响元素的激发,就会降低灵敏度;辅助气流量对测量影响不大。在综合考虑灵敏度和稳定性最佳匹配时,仪器测量条件见表2。[b]3.3 分析谱线的选择[/b]由于双二苯基膦二茂铁二氯化钯基体的谱线比较复杂,所以选择了各杂质元素没有受到干扰且灵敏度相对较高的谱线。各元素的分析谱线见表1。[b]3.4 基体干扰试验3.4.1钯基体的干扰[/b]由于钯的谱线非常丰富,测量环境中存在的大量钯所辐射的强度会覆盖待测元素的谱线强度,因而对待测元素的测定造成干扰。配制浓度分别为4mg/mL、2mg/mL、0.5mg/mL钯标准基体并含待测元素浓度为1.00μg/mL的混合溶液,测定各元素的浓度,结果见表3。[align=right]表3 钯基体对杂质元素测定的影响 (μg/mL)[/align] [table][tr][td] [align=center]元素[/align] [/td][td] [align=center]0.5mg/mL[/align] [/td][td] [align=center]2mg/mL[/align] [/td][td] [align=center]4mg/mL[/align] [/td][/tr][tr][td] [align=center]Pb[/align] [/td][td] [align=center]0.9801[/align] [/td][td] [align=center]0.9356[/align] [/td][td] [align=center]0.8632[/align] [/td][/tr][tr][td] [align=center]Ni[/align] [/td][td] [align=center]0.9642[/align] [/td][td] [align=center]0.9038[/align] [/td][td] [align=center]0.8453[/align] [/td][/tr][tr][td] [align=center]Cu[/align] [/td][td] [align=center]1.076[/align] [/td][td] [align=center]1.018[/align] [/td][td] [align=center]0.9558[/align] [/td][/tr][tr][td] [align=center]Cd[/align] [/td][td] [align=center]1.006[/align] [/td][td] [align=center]0.9485[/align] [/td][td] [align=center]0.8784[/align] [/td][/tr][tr][td] [align=center]Cr[/align] [/td][td] [align=center]0.9634[/align] [/td][td] [align=center]0.9101[/align] [/td][td] [align=center]0.8512[/align] [/td][/tr][tr][td] [align=center]Pt[/align] [/td][td] [align=center]0.9783[/align] [/td][td] [align=center]0.9484[/align] [/td][td] [align=center]0.9003[/align] [/td][/tr][tr][td] [align=center]Au[/align] [/td][td] [align=center]1.027[/align] [/td][td] [align=center]0.9886[/align] [/td][td] [align=center]0.9357[/align] [/td][/tr][tr][td] [align=center]Rh[/align] [/td][td] [align=center]1.011[/align] [/td][td] [align=center]0.9879[/align] [/td][td] [align=center]0.9865[/align] [/td][/tr][tr][td] [align=center]Ir[/align] [/td][td] [align=center]0.9846[/align] [/td][td] [align=center]0.9624[/align] [/td][td] [align=center]0.9474[/align] [/td][/tr][/table]测定结果表明:对这9个杂质元素的测定均有不同程度的干扰,但随着钯的浓度增加,其谱线的强度逐渐增强,其谱线对杂质元素的影响也逐渐增强。所以在实验中应尽量降低基体的浓度,但是取样量应该具有代表性,综合考虑钯的浓度选择2mg/mL是较为合适的。[b]3.4.2 铁基体的干扰[/b]配制浓度分别为5.0mg/mL、3.0mg/mL、1.0mg/mL钯标准基体并含待测元素浓度为1.00μg/mL的混合溶液,测定各元素的浓度,结果见表4。[align=right] 表4 铁基体对杂质元素测定的影响 (μg/mL)[/align] [table][tr][td] [align=center]元素[/align] [/td][td] [align=center]1.0mg/mL[/align] [/td][td] [align=center]3.0mg/mL[/align] [/td][td] [align=center]5.0mg/mL[/align] [/td][/tr][tr][td] [align=center]Pb[/align] [/td][td] [align=center]0.9765[/align] [/td][td] [align=center]0.9210[/align] [/td][td] [align=center]0.8603[/align] [/td][/tr][tr][td] [align=center]Ni[/align] [/td][td] [align=center]0.9534[/align] [/td][td] [align=center]0.9067[/align] [/td][td] [align=center]0.8413[/align] [/td][/tr][tr][td] [align=center]Cu[/align] [/td][td] [align=center]1.001[/align] [/td][td] [align=center]0.9976[/align] [/td][td] [align=center]0.9512[/align] [/td][/tr][tr][td] [align=center]Cd[/align] [/td][td] [align=center]0.9987[/align] [/td][td] [align=center]0.9523[/align] [/td][td] [align=center]0.8673[/align] [/td][/tr][tr][td] [align=center]Cr[/align] [/td][td] [align=center]0.9611[/align] [/td][td] [align=center]0.9201[/align] [/td][td] [align=center]0.8504[/align] [/td][/tr][tr][td] [align=center]Pt[/align] [/td][td] [align=center]0.9689[/align] [/td][td] [align=center]0.9367[/align] [/td][td] [align=center]0.8996[/align] [/td][/tr][tr][td] [align=center]Au[/align] [/td][td] [align=center]1.003[/align] [/td][td] [align=center]0.9895[/align] [/td][td] [align=center]0.9310[/align] [/td][/tr][tr][td] [align=center]Rh[/align] [/td][td] [align=center]0.9988[/align] [/td][td] [align=center]0.9878[/align] [/td][td] [align=center]0.9766[/align] [/td][/tr][tr][td] [align=center]Ir[/align] [/td][td] [align=center]0.9810[/align] [/td][td] [align=center]0.9624[/align] [/td][td] [align=center]0.9372[/align] [/td][/tr][/table]测定结果表明:对这9个杂质元素的测定均有不同程度的干扰,但随着铁的浓度增加,其谱线的强度逐渐增强,其谱线对杂质元素的影响也逐渐增强。所以在实验中应尽量降低基体的浓度,但是取样量应该具有代表性,综合考虑铁的浓度选择3mg/mL是较为合适的。[b]3.5 方法的检出限[/b]按表1和表2的仪器参数,用空白溶液连续测定11次,其结果的3倍标准偏差所对应的浓度值即为检出限。本方法测的检出限如表5。[align=center]表5 方法的检出限[/align] [table][tr][td] [align=center]元素[/align] [/td][td] [align=center]波长/nm[/align] [/td][td] [align=center]检出限[/align] [align=center]μg/mL[/align] [/td][td] [align=center]元素[/align] [/td][td] [align=center]波长/nm[/align] [/td][td] [align=center]检出限[/align] [align=center]μg/mL[/align] [/td][/tr][tr][td] [align=center]Pt[/align] [/td][td] [align=center]265.945[/align] [/td][td] [align=center]0.0030[/align] [/td][td] [align=center]Cu[/align] [/td][td] [align=center]327.393[/align] [/td][td] [align=center]0.0012[/align] [/td][/tr][tr][td] [align=center]Rh[/align] [/td][td] [align=center]343.489[/align] [/td][td] [align=center]0.0016[/align] [/td][td] [align=center]Pb[/align] [/td][td] [align=center]283.306[/align] [/td][td] [align=center]0.0029[/align] [/td][/tr][tr][td] [align=center]Au[/align] [/td][td] [align=center]267.595[/align] [/td][td] [align=center]0.0017[/align] [/td][td] [align=center]Ni[/align] [/td][td] [align=center]221.648[/align] [/td][td] [align=center]0.0014[/align] [/td][/tr][tr][td] [align=center]Cr[/align] [/td][td] [align=center]205.560[/align] [/td][td] [align=center]0.0013[/align] [/td][td] [align=center]Cd[/align] [/td][td] [align=center]357.869[/align] [/td][td] [align=center]0.0011[/align] [/td][/tr][tr][td] [align=center]Ir[/align] [/td][td] [align=center]224.268[/align] [/td][td] [align=center]0.0026[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][/table][b]3.6 加标回收率[/b]为了防止样品元素的互相干扰,分三组进行回收率试验。每组分别称取0.8 g 双二苯基膦二茂铁二氯化钯于250mL烧杯中,按照(2.3.3)处理,然后加入下表所示量的杂质元素溶液,同时作空白溶液。求出方法的回收率见下表6。[align=center]表6 各元素回收率的测定结果[/align] [table][tr][td=1,2] [align=center]元素[/align] [/td][td=3,1] [align=center]低量μg/mL[/align] [/td][td=3,1] [align=center]中量μg/mL[/align] [/td][td=3,1] [align=center]高量μg/mL[/align] [/td][/tr][tr][td] [align=center]加入值[/align] [/td][td] [align=center]测定值[/align] [/td][td] [align=center]回收率(%)[/align] [/td][td] [align=center]加入值[/align] [/td][td] [align=center]测定值[/align] [/td][td] [align=center]回收率(%)[/align] [/td][td] [align=center]加入值[/align] [/td][td] [align=center]测定值[/align] [/td][td] [align=center]回收率(%)[/align] [/td][/tr][tr][td] [align=center]Pb[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1978[/align] [/td][td] [align=center]98.65[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.897[/align] [/td][td] [align=center]94.82[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.842[/align] [/td][td] [align=center]96.03[/align] [/td][/tr][tr][td] [align=center]Ni[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.2007[/align] [/td][td] [align=center]100.3[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.956[/align] [/td][td] [align=center]97.79[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.693[/align] [/td][td] [align=center]92.32[/align] [/td][/tr][tr][td] [align=center]Cu[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1998[/align] [/td][td] [align=center]99.55[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]2.013[/align] [/td][td] [align=center]100.6[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]4.045[/align] [/td][td] [align=center]101.1[/align] [/td][/tr][tr][td] [align=center]Cd[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1889[/align] [/td][td] [align=center]94.15[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.923[/align] [/td][td] [align=center]96.12[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.880[/align] [/td][td] [align=center]96.98[/align] [/td][/tr][tr][td] [align=center]Cr[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1848[/align] [/td][td] [align=center]92.15[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.863[/align] [/td][td] [align=center]93.12[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.713[/align] [/td][td] [align=center]92.81[/align] [/td][/tr][tr][td] [align=center]Pt[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1949[/align] [/td][td] [align=center]95.70[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.971[/align] [/td][td] [align=center]98.30[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.939[/align] [/td][td] [align=center]98.46[/align] [/td][/tr][tr][td] [align=center]Au[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1959[/align] [/td][td] [align=center]97.90[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.889[/align] [/td][td] [align=center]94.44[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.967[/align] [/td][td] [align=center]99.16[/align] [/td][/tr][tr][td] [align=center]Rh[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1979[/align] [/td][td] [align=center]98.80[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.993[/align] [/td][td] [align=center]99.63[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]3.805[/align] [/td][td] [align=center]95.11[/align] [/td][/tr][tr][td] [align=center]Ir[/align] [/td][td] [align=center]0.20[/align] [/td][td] [align=center]0.1938[/align] [/td][td] [align=center]96.70[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]1.921[/align] [/td][td] [align=center]96.03[/align] [/td][td] [align=center]4.00[/align] [/td][td] [align=center]4.011[/align] [/td][td] [align=center]100.3[/align] [/td][/tr][/table][b]3.7 精密度[/b] 由于杂质元素含量很低,部分元素低于方法的检出限,因此对元素做了加标,进行精密度试验。称取0.8g 双二苯基膦二茂铁二氯化钯于250mL烧杯中,按照试料溶解方法处理,转移至50mL容量瓶中,然后分别加入适量Pt、Rh、Au、Cu、Ir 、Pb、Ni、Cd、Cr标准溶液,测定结果见表7。[b]4 结论[/b] 本文用试料经硝酸和高氯酸溶解,在稀酸介质中,在电感耦合等离子体原子发射光谱仪选定的条件下,测定试液中铅、镍、铜、镉、铬、铁、铂、金和铑的质量浓度,计算试料中铅、镍、铜、镉、铬、铁、铂、金和铑的量。方法的回收率为92.15%~101.1%,方法的相对标准偏差(RSD)为0.68%~8.57%,同时测定9种杂质元素,通过试验证明本方法的准确性,方法简便、有效、准确度较高,适用于双二苯基膦二茂铁二氯化钯中的杂质元素含量的检测,本方法目前已经申报了国家行业标准,得到验证。

  • 【求助】:纯戊烷中的微量二氧化碳分析

    我想用镍转化炉加FID检测器分析纯戊烷中的微量二氧化碳(50PPM),工作曲线怎么做啊?我原来的工作曲线是做纯氢气中的二氧化碳用的,是六通阀进样,戊烷是用液体进样的。

  • 【求助】如何检测到双环环戊二烯?

    大家好。我现在做的是裂解汽油加氢制苯。现在想要知道在一段加氢出料里面如何能用色谱检测到双环环戊二烯。环戊二烯和双环环戊二烯存在相互转化的动态平衡。在140度时,双环环戊二烯大量分解成环戊二烯。但是它170度才气化。在140度以下的气化温度就是测不出来。请指点我在在140度以下的气化温度测出它来。 我们测了三次,只在一段进料(原料)中测到了双环环戊二烯,在一段出料和二段出料里面没有测得。只测得双环环戊烷环戊烯。现在郁闷中,难道一段加氢后双环环戊二烯真全被加氢了?(一段加氢主要是把双烯加为单烯。)色谱检测条件如下 柱温50° 以2°/min 到100°,立即15°/min到250°,停留10min 汽化温度250° 检测300°

  • 2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分-第一法(高效液相色谱-二极管阵列检测器法)

    2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分-第一法(高效液相色谱-二极管阵列检测器法)

    [align=center][b]2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分[/b][/align][align=center][b]第一法(高效液相色谱-二极管阵列检测器法)[/b][/align]本次实验按照2015版《化妆品安全技术规范》中防晒剂检验方法的第一法(高效液相色谱-二极管阵列检测器法),对苯基苯并咪唑磺酸等15种防晒剂进行同时分析。15种防晒剂标准品按照《化妆品安全技术规范》配制成混合标准溶液,分别使用CAPCELL PAK C18 MG S5 4.6 mm i.d. × 250 mm,CAPCELL PAK C18 MGII S5 4.6 mm i.d. × 250 mm,CAPCELL PAK ADME S5 4.6 mm i.d. ×250 mm,CAPCELL PAK C18 AQ S5 4.6 mm i.d. × 250 mm以及SUPERIOREX ODS S5 4.6 mm i.d. × 250 mm五款色谱柱对混合标准溶液进行分析。其中,MG和MGII色谱柱得到相对较好结果,但两款色谱柱原流动相条件下,个别峰未实现基线分离。结果如图1、图2。[img=,690,460]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_01_2222981_3.png[/img][img=,690,432]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_02_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,304]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_03_2222981_3.png[/img]为得到更好的分离效果,使用1支更新的MGII色谱柱,在原流动相条件基础上,对梯度进行调整,结果如图3所示。各峰分离度得到明显改善,但峰11和峰12分离度为1.43,仍未达到基线分离。[img=,690,425]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170933_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,292]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170933_02_2222981_3.png[/img]继续调整梯度条件,分析结果如4所示。在此条件下,各峰实现基线分离,得到良好分析结果。[img=,690,421]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170935_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,307]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170937_01_2222981_3.png[/img]接下来将色谱柱更换为MG色谱柱,在调整后的梯度条件下进行分析,结果如图5所示,同样可得到良好的分析结果。[img=,690,419]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170938_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,291]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170940_01_2222981_3.png[/img]

  • 异戊烷中二氧化碳含量的分析

    工作需要 异戊烷中二氧化碳含量的分析 含量 50-1000ppm, 比较头疼 气化进样不现实 即使做了也不准,原因是异戊烷的沸点问题, 液体进样比较麻烦 有无其他方法实现

  • 正戊烷与异戊烷

    在用色谱柱SE-30,60m,0.32mm,0.25um和SE-30,50m,0.32mm,0.25um测试正戊烷和异戊烷含量时,无论调整柱前压力和柱箱温度都无法完全分离,正戊烷会在异戊烷的拖尾部分出峰,请问大家有没有做过这个样品,用什么色谱柱可以很好地分离。

  • 【求助】面积归一法测环戊烷的纯度

    我现在用GC-2014C FID测定环戊烷,我买了环戊烷标准品先进样,对环戊烷定性,然后我取了一点环戊烷样品测了一下,在方法中选了面积归一化法,结果显示为98%。请问一下,在做面积归一化法测含量的时候是不是用不到标准品的,我买的标准品只是起到定性的作用,定量上面是不是用不到的呀?谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制