当前位置: 仪器信息网 > 行业主题 > >

双甲氧基乙基苯

仪器信息网双甲氧基乙基苯专题为您提供2024年最新双甲氧基乙基苯价格报价、厂家品牌的相关信息, 包括双甲氧基乙基苯参数、型号等,不管是国产,还是进口品牌的双甲氧基乙基苯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双甲氧基乙基苯相关的耗材配件、试剂标物,还有双甲氧基乙基苯相关的最新资讯、资料,以及双甲氧基乙基苯相关的解决方案。

双甲氧基乙基苯相关的资讯

  • 中国轻工业联合会发布《香柠檬、柠檬、苦橙和白柠檬精油(已全部除去或部分降低5-甲氧基补骨脂素)中5-甲氧基补骨脂素含量的测定 高效液相色谱法》征求意见稿
    国家标准计划《香柠檬、柠檬、苦橙和白柠檬精油(已全部除去或部分降低5-甲氧基补骨脂素)中5-甲氧基补骨脂素含量的测定 高效液相色谱法》由 TC257(全国香料香精化妆品标准化技术委员会)归口,TC257SC1(全国香料香精化妆品标准化技术委员会香料香精分会)执行 ,主管部门为中国轻工业联合会。主要起草单位 上海香料研究所有限公司等 。附件:征求意见稿编制说明
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 百灵威“增塑剂检测”专用标样
    2011年5月24日,台湾地区有关方面向g家质检总局通报,发现台湾&ldquo 昱伸香料有限公司&rdquo 制售的食品添加剂&ldquo 起云剂&rdquo 以邻苯二甲酸二(2-乙基己基)酯(DEHP),代替昂贵的棕榄油。据调查该企业作为台湾z大的起云剂供应商,其产品被使用于果汁、果酱、运动饮料和益生菌等数十个系列,近两百种品p。 邻苯二甲酸酯(DEHP)是y种增塑剂,属于强致癌物,长期接触会影响生殖系统健康。 对于食品中邻苯二甲酸酯的检测,主要使用方法g标GB/T21911-2008《食品中邻苯二甲酸酯的测定》。此标准适用于食品中16种邻苯二甲酸酯类物质,含油脂样品中各邻苯二甲酸酯化合物的检出限为1.5 mg/kg,不含油脂样品中各邻苯二甲酸酯化合物的检出限为0.05 mg/kg。 邻苯二甲酸酯类化合物标准物质的气相色谱-质谱选择离子色谱图 百灵威作为中g分析l域行业引l者,拥有全球化大型标样库。所有化学对照物质都达到或c过了美g化学会z新的&ldquo 分析试剂规格&rdquo ,符合ACS 规格、NIST/NVLAP、ISO9001认证的要求,可满足所有的z高质量控制标准。百灵威依据GB/T 21911-2008,特精选符合标准相关产品,包括标样、色谱柱、样品前处理、试剂、小型仪器等,并备有g内现货。 ■ 纯品单标 产品编号 产品名称 CAS 包装 目录价 ALR-111N Dimethyl phthalate (DMP) 邻苯二甲酸二甲酯 131-11-3 100 mg ¥169 ALR-110NDiethyl phthalate (DEP) 邻苯二甲酸二乙酯 84-66-2 100 mg ¥169 C 16173500 Phthalic acid, bis-iso-butyl ester (DIBP) 邻苯二甲酸二异丁酯 84-69-5 0.25 g ¥540 ALR-104N Di-n-butyl phthalate(DBP) 邻苯二甲酸二丁酯 84-74-2 100 mg ¥169 C 16174400 Phthalic acid, bis-methylglycol ester (DMEP) 邻苯二甲酸双(2-甲氧基乙)酯 117-82-8 0.25 g ¥396 C 16174700 Phthalic acid, bis-4-methyl-2-pentyl ester (BMPP) 邻苯二甲酸双-4-甲基-2-戊酯 146-50-9 0.1 g ¥540 C 16171900 bis-2-ethoxyethyl ester (DEEP) 邻苯二甲酸双-2-乙氧基乙酯 605-54-9 0.1 g ¥540 ALR-098N Diamyl phthalate (DPP) 邻苯二甲酸二戊酯 131-18-0 100 mg ¥337ALR-100N Dihexyl phthalate (DNHP) 邻苯二甲酸二正己酯 84-75-3 100 mg ¥337 ALR-082N Benzyl butyl phthalate (BBP) 邻苯二甲酸丁苄酯 85-68-7 100 mg ¥169 C 16170500 Phthalic acid,bis-butoxyethyl ester (DBEP) 邻苯二甲酸二丁氧基乙酯 117-83-9 0.1 g ¥540 ALR-099N Dicyclohexyl phthalate (DCHP) 邻苯二甲酸二环己酯 84-61-7 100 mg ¥450 ALR-097N Di(2-ethyl hexyl) phthalate (DEHP) 邻苯二甲酸二异辛酯 117-81-7 100 mg ¥169 J-013 Diphenyl phthalate 邻苯二甲酸二苯酯 84-62-8 100 mg ¥169 ALR-105N Di-n-octyl phthalate (DNOP) 邻苯二甲酸二正辛酯 117-84-0 100 mg ¥169 C 16174800 Phthalic acid, bis-nonyl ester (DNP) 邻苯二甲酸二壬酯 84-76-4 0.25 g ¥432 ★ 所有产品均有液标现货,详情请致电400-666-7788! ■ 15种混合标样 货号:M-8061-R1 浓度:1000 µ g/mL in Hexane 规格:1mL 目录价:¥843 Component CAS Units: µ g/mL Benzyl butyl phthalate 85-68-7 1000 bis(2-Ethoxyethyl)phthalate 605-54-91000 bis(2-Ethylhexyl)phthalate 117-81-7 1000 bis(2-Methoxyethyl)phthalate 117-82-8 1000 bis(2-n-Butoxyethyl)phthalate 117-83-9 1000 bis(4-Methyl-2-pentyl)phthalate 146-50-9 1000 Di-n-octyl phthalate 117-84-0 1000Dibutyl phthalate 84-74-2 1000 Dicyclohexyl phthalate 84-61-7 1000 Diethyl phthalate 84-66-2 1000 Dihexyl phthalate 84-75-3 1000 Diisobutyl phthalate 84-69-5 1000 Dimethyl phthalate 131-11-3 1000 Dinonyl phthalate 84-76-4 1000 Dipentyl phthalate 131-18-0 1000 ■ 其他配套产品 产品编号 产品名称 CAS 包装 目录价 S011525-3002 AB-5MS, 30 m × 0.25 mm × 0.25 &mu m 气相毛细管色谱柱 N/A 1 pk ¥4,510 974090 瓶口分液器(2.5-25.0mL) N/A 1台 询价 XP204 分析天平 可读性:0.1mg;z大量程:220g N/A 1 台 询价 N/A 5430 / 5430 R 小型高速离心机 N/A 1 台 询价 106290 n-Hexane, 95% 正己烷 110-54-3 4 L ¥528 281664 Ethyl acetate, 99.8% 乙酸乙酯 141-78-6 4 L ¥578 220132 Cyclohexane, 99.7% 环己烷 110-82-7 4 L ¥650 12-O-2252 (DG) Petroleum ether (BP range 30-60C) 石油醚 8032-32-4 5 g 询价 ★ 使用提示:实验室背景中的邻苯二甲酸酯类化合物主要来源于塑料里面,因此试验过程中请不要使用塑料类制品,如:塑料管、SPE柱管等避免带来背景干扰。
  • 欧盟拟放宽洋蓟中氟氯氰菊酯的最大残留限量
    5月13日,欧盟食品安全局就修订菠菜和甜菜叶中氟氯氰菊酯的最大残留限量发表科学意见。此前,西班牙作为评估成员国接受一份申请,建议根据西班牙氟氯氰菊酯的使用情况,放宽洋蓟中的氟氯氰菊酯的最大残留限量。欧盟专家小组经评估后建议将洋蓟中氟氯氰菊酯的最大残留限量由现行的0.02mg/kg放宽至0.2mg/kg,欧盟专家小组认为提高该限量不会对公众健康产生不良影响。
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
  • 陕西省食品科学技术学会关于《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见函
    各有关单位及专家:陕西省食品科学技术学会团体标准《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》已形成征求意见稿。为保证标准的科学性、严谨性和适用性,现向社会各界公开征求意见。请各有关单位及专家审阅标准全文并提出宝贵建议和意见,于2023年4月5日前以电子邮件或信函的形式将《征求意见反馈表》反馈给食品标准化管理专业委员会,逾期未反馈意见视为无异议。联系人:吴晓霞联系电话:18091384746电子邮箱:xiaoxiaw@snnu.edu.cn陕西省食品科学技术学会食品标准化管理专业委员会2023年3月6日附件下载通知原件:陕西省食品科学技术学会关于 《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见函。pdf附件1:《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准征求意见稿.pdf附件2:《植物油中邻苯二甲酸二(2-乙基)己酯的快速测定-纸基比色智能手机读卡法》团体标准编制说明.pdf附件3:征求意见反馈表.docx
  • 用于锂金属电池的双功能添加剂——科学家使用四种不同的光束线来揭示锂金属电池在电解质添加剂存在下的行为全貌
    &bull Inara Aguiar美国能源部 (DOE) 布鲁克海文国家实验室的研究人员采用电解质添加剂来改善高能量密度锂金属电池的功能。通过在分隔电池阳极和阴极的电解液中添加硝酸铯,锂金属电池的充电速率显着提高,同时保持较长的循环寿命。锂金属电池具有锂金属阳极,而不是锂离子电池中存在的石墨阳极。“锂金属电池很有吸引力,因为它可以提供两倍于石墨阳极电池的能量密度,”布鲁克海文电化学储能小组的研究助理、最近发表在《自然通讯》上的论文的第一作者穆罕默德莫米努尔拉赫曼(Muhammad Mominur Rahman)解释说。“但还有很多挑战需要解决。”从左到右:布鲁克海文光束线科学家 Sanjit Ghose 与化学家 Enyuan Hu 和 Muhammad Mominur Rahman 在国家同步加速器光源 II X 射线粉末衍射光束线处。(图片来源:Jessica Rotkiewicz/布鲁克海文国家实验室)这些挑战之一是寻找能够形成有效界面的电解质。这种保护层可防止电池电极退化,是制造可与当今最先进的电池一样频繁充电和放电的锂金属电池的关键。“我们希望提高当前最先进的锂金属电池的充电速率,”拉赫曼解释道。“但我们还希望通过更具保护性的界面来稳定电池,以便它们的使用寿命更长。”电化学储能组首席研究员胡恩元和他的团队是 Battery500 联盟的成员,该联盟是多个国家实验室和大学的合作项目。该联盟的主要目标之一是制造能量密度为每公斤500瓦时的电池,这是当前锂离子电池能量密度的两倍多。通常,能够实现电池快速充电的电解质也可能与锂金属阳极发生反应。如果这些化学反应不受控制地进行,电解质就会分解并缩短电池的循环寿命。为了防止这种情况发生,布鲁克海文的科学家决定设计界面。先前的研究表明,铯添加剂可以稳定锂金属阳极。但为了提高充电速率同时保持电池循环寿命,阳极和阴极必须同时稳定。研究人员相信硝酸铯可以用于锂金属电池的这一目的。正如他们所假设的,正铯离子积聚在电池带负电的锂金属阳极侧,而负硝酸根离子则积聚在带正电的阴极上。四个光束线揭示电池行为为了更好地了解硝酸铯添加剂如何影响电解质组成和电池性能,科学家们在布鲁克海文实验室的美国能源部科学办公室用户设施国家同步加速器光源II(NSLS-II)使用了四条不同的光束线。先前的研究表明,铯添加剂可以稳定锂金属阳极。但为了提高充电速率同时保持电池循环寿命,阳极和阴极必须同时稳定。研究人员相信硝酸铯可以用于锂金属电池的这一目的。正如他们所假设的,正铯离子积聚在电池带负电的锂金属阳极侧,而负硝酸根离子则积聚在带正电的阴极上。 使用X射线粉末衍射(XPD)光束线的结果表明,硝酸铯添加剂增加了已知组分的存在,使界面更具保护性。值得注意的是,除了典型的晶体成分外,还鉴定出一种名为双(氟磺酰基)酰亚胺铯的化合物。拉赫曼强调:“这种间期成分以前从未被报道过。”。“但这不仅仅是我们的发现,”胡补充道。“这也是中间相所缺失的。”研究电池的科学家普遍认为氟化锂是良好界面的必要组成部分。令人惊讶的是,它不在那里。“我们不知道为什么它不在那里,”胡说。“但事实上,这种不含氟化锂的中间相能够实现长循环寿命和快速充电,这一事实激励我们重新审视目前对中间相的理解。”他们使用亚微米分辨率 X 射线光谱 (SRX) 光束线,定量分析了循环后电池电极及其各自界面上收集的化学元素。扫描 XRF 图像证实阳极界面相中存在的铯多于阴极界面相中的铯。硝酸铯添加剂还可以防止构成阴极的过渡金属的分解,有助于阴极和锂金属电池的整体稳定性。研究中还使用了快速 X 射线吸收和散射 (QAS) 以及原位和操作软 X 射线光谱 (IOS) 光束线,并对各个电极上存在的原子的化学和电子状态进行了详细分析。此外,在功能纳米材料中心(CFN)的材料合成和表征设施中进行的扫描电子显微镜实验表明,当将硝酸铯添加到电解质中时,电化学反应形成的锂均匀沉积,有助于电极的稳定。通过将两个用户设施的各种技术相结合,科学家们可以全面了解锂金属电池在硝酸铯添加剂的作用下的表现。拉赫曼说:“锂金属电池已经取得了长足的进步,但仍有很长的路要走。相间在仍需取得的进展中发挥着关键作用。”。“我们的工作为相间工程创造了新的机会,我希望这将激励其他人以不同的方式看待相间,从而加快锂金属电池的开发。”原始出版物Rahman, M.M., et al.: An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries. Nat Commun (2023) DOI: 10.1038/s41467-023-44282-z 作者简介 Inara Aguiar 是科学编辑和作家,拥有无机化学博士学位。在获得计算化学博士后,她开始担任化学、工程、生物工程和生物化学领域的科学编辑。她一直在多家科学出版商担任技术作家/编辑,最近作为自由职业者内容创作者加入 Wiley Analytical Science。文章来源:A dual-functional additive for fast charging and long cycle life of lithium metal batteries,Microscopy Electron and Ion Microscopy Light Microscopy ,WILEY, Analytical Science,9 February 2024供稿:符 斌
  • 聚焦塑化剂——新型SPE法检测邻苯二甲酸酯
    台湾因塑化剂引起的食品、保健品安全风波持续蔓延。最新调查数字显示,台湾受塑化剂污染的产品已增加到945种,涉及运动饮料、果汁饮料、茶饮料、果酱、果浆或果冻、方便面胶囊锭状粉状食品、保健食品、添加剂等类型。   面对日益严重的塑化剂事件,迪马科技技术中心快速做出反应开发出适合油脂性样品分析的SPE前处理方法以及HPLC分析检测方法。该方法采用ProElut PSA玻璃固相萃取小柱进行样品前处理净化,反相高效液相色谱法分离油脂性样品(食用油、方便面、方便面酱包等)中邻苯二甲酸酯。   惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染,高质量的ProElut吸附剂和PTFE材质筛板更加保证了结果的稳定型和重复性。SPE方法克服了国标方法使用凝胶色谱柱需要仪器(GPC)配套,消耗溶剂多,操作繁琐等缺点。此方法操作简单,快速,为您检测食品中邻苯二甲酸酯工作带来便利。   欲了解详细检测方法,欢迎来电咨询。迪马科技北京:400-608-7719 上海:021-6126 3966 广州:020-8559 3520 沈阳:024-2294 3513 成都:028-8661 2625 青岛:0532-8372 5230更多办事机构联系方式请见:http://www.dikma.com.cn/Catalog/index/cid/35 以下是检测油脂性样品中邻苯二甲酸酯配的色谱耗材,包括邻苯二甲酸酯标准品、HPLC级溶剂、玻璃SPE小柱、色谱柱等。大部分有现货,欢迎您来电咨询。 相关产品订货信息 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 99603 Diamonsil C18(2) HPLC柱 Dikma 250×4.6mm,5μm 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22μm 100/pk 50115 正己烷HPLC级 DikmaPure 4L 50106 丙酮HPLC级 DikmaPure 4L 50102 甲醇HPLC级 DikmaPure 4L 50101 乙腈HPLC级 DikmaPure 4L 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml,1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml,1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL,1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 1.邻苯二甲酸二甲酯(DMP) Chemservice 1g 12-F70 2.邻苯二甲酸二乙酯(DEP) Chemservice 1g 12-F2264 3.邻苯二甲酸二异丁酯(DIBP) Chemservice 5g 12-F68 4.邻苯二甲酸二丁酯(DBP) Chemservice 1g 12-F2268 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP) Chemservice 500mg 12-F2309 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP) Chemservice 5g 12-F2312 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP) Chemservice 500mg 12-F2263 8.邻苯二甲酸二戊酯(DPP) Chemservice 500mg 12-F2314 9.邻苯二甲酸二己酯(DHXP) Chemservice 5g 12-F67 10.邻苯二甲酸丁基苄基酯(BBP) Chemservice 1g 12-F2315 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP) Chemservice 1g 12-F2262 (DCHP) 12.邻苯二甲酸二环己酯 Chemservice 5g 12-F66 13.邻苯二甲酸二(2-乙基己)酯(DEHP) Chemservice 1g 12-F1091 14.邻苯二甲酸二苯酯 Chemservice 5g 12-F69 15.邻苯二甲酸正二辛酯(DNOP) Chemservice 1g 12-F2317 16.邻苯二甲酸二壬酯(DNP) Chemservice 5g 更多邻苯二甲酸酯单标,请来电咨询。 GB/T 21911-2008方法中相关的耗材: 货号 名称 品牌 规格 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk 5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L 50103 环己烷HPLC级 Dikma Pure 4L 50106 丙酮HPLC级 Dikma Pure 4L 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 省钱省时绿色快速测“邻苯”——Sigma-Aldrich Supelco 很给力
    省钱省时绿色快速测&ldquo 邻苯&rdquo &mdash &mdash Sigma-Aldrich Supelco 很给力 Sigma-Aldrich 公司的 Supelco 固相微萃取(SPME)摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。不仅仅是在实验室,如此便捷同样可以拓展延伸到户外,便携的采样装置,就是这么简单。(SPME + GCMS 快速、灵敏检测邻苯二甲酸酯) 按照美国环境总署US EPA 8061A, 506和606方法,Supelco的气相色谱柱Equity-1701(cat no. 28372-U)的出色表现邻令人艳羡(请见谱图)。 Sigma-Aldrich 黄金品质的混合标准品,同样一如既往的支持您严谨客观的分析检测工作。即便您有苛刻特殊的要求,我们同样可以为您订制您需要的标品。从前处理到分析耗材,在Sigma-Aldrich都能找到您所需要的。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 图1. Equity-1701分析17种邻苯二甲酸酯 更多相关详细信息请点击以下连接,或至Sigma-Aldrich官方网站。 http://www.instrument.com.cn/netshow/SH101420/download.asp 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318 适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 Equity-1701,30 m× 0.25 mm I.D × df 0.25 &mu m 28372-U PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 482236种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 客服/订购热线:800-819-3336 400-620-3333 客服/订购Email: OrderCN@sial.com
  • 实现“双碳”目标急需高层次人才培养专项实施
    有关省、直辖市教育厅(教委)、发展改革委、能源局,北京市城市管理委,有关部门(单位)教育司(局),部属有关高等学校,有关企业:为贯彻习近平总书记关于“四个革命、一个合作”能源安全新战略和我国“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”的重要讲话精神,落实中央人才工作会议精神和《加快推进急需高层次人才培养行动方案(2021—2025年)》有关要求,充分发挥研究生教育对储能技术急需高层次人才培养的支撑作用,加快培养卓越工程师,经研究,决定选取部分研究生培养单位(名单见附件1)会同有关企业(名单见附件2)实施储能技术国家急需高层次人才培养专项。现将有关事项通知如下。一、重要意义储能行业是高科技战略产业,是国家构建新型电力系统、达成“双碳”战略目标的重要技术保障,对于确保能源安全、实现绿色转型、推进创新发展具有不可替代的作用。近年来,国际科技和人才竞争加剧,我国经济社会发展的外部环境发生重大变化,对我国储能领域关键核心技术突破提出严重挑战。研究生教育要深入贯彻习近平总书记重要指示精神,落实关于加快培养国家急需的高层次人才的决策部署,服务党和国家事业发展迫切需要,不忘初心,勇担使命,加快培养一批支撑储能领域核心技术突破和产业发展的高层次紧缺人才,为提升国家储能领域自主创新能力和战略核心科技作出更大贡献。二、工作目标聚焦我国对储能领域核心技术领军人才的迫切需求,创新产学研协同人才培养模式,为我国储能领域核心技术突破培养和储备一批创新能力强、具备国际视野和引领产业快速发展的领军人才,形成储能领域高层次人才辈出新格局,为实现我国储能领域高水平科技自立自强和关键核心技术自主可控的战略目标奠定基础。三、工作方式实施本专项的高校根据企业需求,以电气工程、动力工程及工程热物理、化学工程与技术、材料科学与工程等相关一级学科和专业学位类别的拟录取博士新生和在读博士生为对象,每个高校每年选拔20名左右优秀博士生进入专项,实行学科交叉、产教融合培养,加强培养过程管理,实行校企双导师(导师组)指导,确保培养质量。专项实施周期为4年(2022—2025年),由研究生培养单位会同有关企业(可不局限于附件2),按照工作指南(附件3)要求,从工作基础、专项设计、培养目标、重点举措、联合培养等方面制定专项实施方案(样表见附件4)。项目双方要签订完善的合作协议,明晰各方权责。四、支持保障(一)专项实施单位成立由校领导任组长的专项实施领导小组,统筹推进专项实施工作,积极配置资源,加大条件保障,确保专项高质量实施。(二)教育部将承担专项任务高校纳入国家关键领域急需高层次人才培养专项招生计划支持范围,根据培养能力、实施情况等实际予以专门支持。承担任务高校也要通过增量倾斜和存量调整予以配套安排。(三)能源局在试点示范、实证实训基地建设中,组织有关企业探索创新机制,加强与专项任务高校对接,为高校成果转化验证和高层次人才培养提供配套支撑。(四)中央财政将中央部门所属高校纳入专项的学生人数作为各校专项资金分配因素安排经费予以支持。(五)联合培养企业要设置面向专项博士生的科研课题,并提供科研条件和科研经费。(六)鼓励有关企业设置专项奖学金,支持专项人才培养。(七)专项人才培养质量作为“双一流”建设高校和建设学科成效评价的重要指标,以及动态调整专项引导资金支持力度的重要依据。五、其他事项(一)请相关研究生培养单位高度重视专项实施工作,将专项实施方案于2022年9月20日前、校企联合培养协议于2022年11月20日前报教育部(学位管理与研究生教育司)。(二)教育部学位管理与研究生教育司将会同国家发展改革委社会发展司、国家能源局能源节约和科技装备司加强对各单位专项遴选、培养工作的指导和支持。联系人及联系方式:教育部学位管理与研究生教育司,刘冬,010-66097848,xwbpyc@moe.edu.cn,北京市西城区西单大木仓胡同37号;国家发展改革委社会发展司,王达,010-68502468,wangda@ndrc.gov.cn,北京市西城区月坛南街38号;国家能源局能源节约和科技装备司,张倩,010-81929226,nengxiaochuneng@nea.gov.cn,北京市西城区三里河路46号。教育部办公厅 国家发展改革委办公厅 国家能源局综合司
  • 皖仪全球首推IC6000系列双极膜离子色谱系统
    安徽皖仪科技股份有限公司推出的双极膜离子色谱系统(免试剂,不除气RGFICTM)9月8日在&ldquo 第十三届全国离子色谱学术会议&rdquo 上首次公开推出,双极膜离子色谱系统是双极膜技术在离子色谱领域的首次应用,此项技术打破了国外厂家在&ldquo 淋洗液自动发生&rdquo 领域的独家技术垄断,同时在理论上解决了传统&ldquo 电解水&rdquo 淋洗液自动发生技术需要增加除气设备的缺点。从而使中国的离子色谱理论重新领先于世界。传统的淋洗液发生技术使用&ldquo 电解水&rdquo 产生的氢离子和氢氧根离子,方程式为:阳极:2H2O &mdash 4H+ + O2 阴极:2H2O &mdash 2OH- + H2 由于产生气体,需要除气设备。 双极膜离子色谱技术使用双极膜&ldquo 解离水&rdquo 产生氢离子和氢氧根离子,方程式为: H2O -- H+ + OH- 不产生气体。&ldquo 免试剂,不除气&rdquo (RGFIC TM Regent-Gas-Free Ionchromatography)的离子色谱系统理论,得到了与会人员的强烈反响。 离子色谱是当今世界上公认的分析阴离子的&ldquo 黄金分析手段&rdquo ,广泛应用于&ldquo 食品安全,环境保护,国防反恐,核工业,电力电子,半导体,军工,石油化工,地质探矿,生命科学,农业植保等诸多领域,而在阳离子分析方面,也具有重要的地位,尤其是在无机阳离子价态分析领域,具有不可替代的用途。 目前,在离子色谱领域,国外某离子色谱知名品牌凭借其全球独有专利技术&mdash &mdash &ldquo 淋洗液自动生成技术 (RFIC Regent Free Ion chromatography),使其产品在全球占有绝对的市场份额,在中国更是牢牢的控制了离子色谱的高端市场,而国内厂家由于缺乏理论创新,以及研发力量相对薄弱,一直处于略势。 据皖仪技术研究院张晨光博士介绍,由于传统淋洗液自动生成技术通过向系统中引入超纯水,利用&ldquo 电解水&rdquo 原理,产生离子色谱系统工作所必须的&ldquo 淋洗液&rdquo ,从而提高了仪器的使用性能。但是&ldquo 电解水&rdquo 理论在生成&ldquo 淋洗液&rdquo 时会产生气体进入&ldquo 淋洗液&rdquo 中,气体对&ldquo 淋洗液&rdquo 的品质造成了严重影响,为了消除影响,需要采用复杂的脱气装置去除气体,而脱气装置又无法绝对去除高压淋洗液中的气体,因此,减小气体对&ldquo 淋洗液&rdquo 的品质恶化一直是离子色谱领域追求的目标,双极膜技术是近年来推出的新技术,皖仪公司巧妙的利用双极膜&ldquo 水解离&rdquo 的功能,结合合理的结构设计,完全避免了&ldquo 淋洗液&rdquo 生成过程中气体的产生,因此省去了复杂的脱气系统,提高了系统的可靠性。 据了解,采用双极膜技术的皖仪IC6000系列双极膜离子色谱系统,是针对于国内外对高端产品的需求而研发的,由于采用了双极膜技术,不但可以完成现有自动淋洗液发生设备的全部功能,而且还节省了脱气设备,使系统可靠性大大增强,降低了运行成本。除此之外,皖仪IC6000系列还完全兼容现有的&ldquo 电解水&rdquo 免试剂离子色谱系统的耗材,其核心指标完全达到国际先进水平。 评论: 多年来,中国国内的离子色谱学术活动一直非常活跃,在理论发展上与国外也无明显差距,但由于我国产业化方面薄弱,所以在国际竞争上损失不小。如厦门大学的田昭武院士等人1983年提出的膜抑制技术就大大早于1992年美国戴安公司提出的膜抑制技术,但是由于国内科研成果转化方面的落后,以及当时知识产权保护意识的落后,使得戴安公司在全球范围内独家拥有此项产品。 此次双极膜离子色谱系统的推出,又一次使国内的离子色谱在学术领域方面达到了国际先进水平,为国产仪器早日走向世界迈出了重要的一步。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 沃特世隆重推出CORTECS C8以及苯基1.6和2.7 μm色谱柱
    这两款实心颗粒色谱柱产品系列的新成员将为突破分离效率和分析通量极限带来新的可能 美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8和CORTECS苯基填料有两种粒径可选(1.6和2.7 μm),可提供总共50种不同的色谱柱配置。 “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。” CORTECS C8色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。 基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。 CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7 μm两种粒径之间实现无缝的方法转换。 CORTECS UPLC 1.6 μm颗粒色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。 CORTECS 2.7 μm颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。 这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。 关于沃特世实心颗粒技术CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μm颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。 更多信息:www.waters.com/cortecs 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 解决“电解水“产气问题,皖仪推出IC6000系列双极膜离子色谱系统
    离子色谱是当今世界上公认的分析阴离子的&ldquo 黄金分析手段&rdquo ,广泛应用于&ldquo 食品安全,环境保护,国防反恐,核工业,电力电子,半导体,军工,石油化工,地质探矿,生命科学,农业植保等诸多领域,而在阳离子分析方面,也具有重要的地位,尤其是在无机阳离子价态分析领域,具有不可替代的用途。 传统电解水淋洗液自动发生技术 由于传统淋洗液自动生成技术通过向系统中引入超纯水,利用&ldquo 电解水&rdquo 原理,产生离子色谱系统工作所必须的&ldquo 淋洗液&rdquo ,从而提高了仪器的使用性能。但是&ldquo 电解水&rdquo 理论在生成&ldquo 淋洗液&rdquo 时会产生气体进入&ldquo 淋洗液&rdquo 中,气体对&ldquo 淋洗液&rdquo 的品质造成了严重影响,为了消除影响,需要采用复杂的脱气装置去除气体。 传统的淋洗液发生技术使用&ldquo 电解水&rdquo 产生的氢离子和氢氧根离子,方程式为:阳极:2H2O &mdash 4H+ + O2 阴极:2H2O &mdash 2OH- + H2。 双极膜解离水淋洗液自动发生技术 双极膜技术是近年来推出的新技术,皖仪公司巧妙的利用双极膜&ldquo 水解离&rdquo 的功能,结合合理的结构设计,完全避免了&ldquo 淋洗液&rdquo 生成过程中气体的产生,因此省去了复杂的脱气系统,提高了系统的可靠性。 双极膜离子色谱技术使用双极膜&ldquo 解离水&rdquo 产生氢离子和氢氧根离子,方程式为: H2O -- H+ + OH- 不产生气体。&ldquo 免试剂,不除气&rdquo (RGFIC TM Regent-Gas-Free Ion chromatography)的双极膜离子色谱系统理论在根源上解决了&ldquo 电解水&rdquo 理论气体产生所带来的问题。 皖仪IC6000系列双极膜离子色谱系统 2010年9月8日~10日,&ldquo 第十三届全国离子色谱学术会议&rdquo 在美丽的海滨城市青岛隆重召开,安徽皖仪科技股份有限公司首次展示全球第一台IC6000系列双极膜离子色谱系统,引起业内强烈关注。 皖仪IC6000系列双极膜离子色谱系统 采用双极膜技术的皖仪IC6000系列双极膜离子色谱系统,是针对于国内外对高端产品的需求而研发的,由于采用了双极膜技术,不但可以完成现有自动淋洗液发生设备的全部功能,而且还节省了脱气设备,使系统可靠性大大增强,降低了运行成本。除此之外,皖仪IC6000系列还完全兼容现有的&ldquo 电解水&rdquo 免试剂离子色谱系统的耗材,可以使用传统的淋洗液配置方式来工作,并且完全可以使用国外和国内厂家的&ldquo 模抑制器&rdquo 以及&ldquo 色谱柱&rdquo ,方便用户进行各个厂家仪器性能比对,其核心指标完全达到国际先进水平。
  • 一场科技与“双碳”的双向奔赴
    最近,中国科学院大连化学物理研究所(以下简称大连化物所)所长刘中民团队频繁往返大连与陕西榆林之间,因为在即将到来的9月,由刘中民团队历时十年科技攻关的50万吨/年煤基乙醇工业装置将正式投料试车。 投料试车成功后,这将成为全球规模最大的煤基乙醇项目,标志着乙醇生产迈入大规模工业化时代,对保障我国能源安全、粮食安全及实现“双碳”目标具有重要战略意义。 “这一项目我们直接从10万吨/年的规模,跨越到50万吨/规模,做这一决定时很多人认为风险很大,但我们有信心、有动力,因为大连化物所科学家们的研究值得充分信任,技术也是企业甚至是煤化工产业高端化、多元化、低碳化发展紧迫需要的。”陕西延长石油(集团)(以下简称延长石油集团)科技部部长王军峰告诉《中国科学报》。 实现碳达峰、碳中和,是中国向世界作出的庄严承诺。中科院作为国家战略科技力量主力军,通过顶层设计,发挥多学科建制化优势,启动实施了“中国科学院科技支撑碳达峰碳中和战略行动计划”(以下简称行动计划),为实现碳中和战略目标提供科学基础、关键技术和系统解决方案。在陕西榆林,来自大连化物所的技术与示范得到了验证。应用:工程转化为国为民 走进榆林市榆神清水工业园区,高塔林立、罐炉硕大、管廊纵横,占地1365亩的50万吨/年煤基乙醇工业装置犹如钢铁巨侠般巍然鹤立。 乙醇是世界上公认的环保清洁燃料,全球66%的乙醇被作为燃料添加至汽油中。曾经,我们希望在全国范围内推广使用乙醇汽油,但却没能实现。 “关键问题在于需求大,而乙醇量根本不够。”刘中民告诉《中国科学报》,过去,乙醇主要生产原料为粮食和糖类作物,“这就会造成与人争粮、与粮争地的问题,而粮食安全是国家头等大事、不可动摇。” 多年来,煤基乙醇技术这条“赛道”上聚集了全球诸多国家的竞争者,但由于技术难度大、经济性不高,始终处在开发阶段,未能实现工业化。2010年10月,刘中民带领团队开启了煤制乙醇关键技术攻关,把刚回国并入职大连化物所的朱文良拉入队伍作为负责人。 竞争、赛跑,暗潮下激流涌动给团队每个人都带来不小的压力。 朱文良习惯把团队4位成员称为“兄弟”。“说实话,做得很辛苦,最后取得突破确实离不开兄弟们的共同努力。”朱文良告诉《中国科学报》,将近2年时间里,他们没有放过假,即使周末也会到实验室,但始终没有取得突破,他们也曾气馁过。 经过反复试验研究和研究,他们最终成功突破核心催化剂活性低、稳定性差等难题,开发出具有高活性和高稳定性的分子筛羰基化催化剂,为煤基乙醇技术的工业化奠定了坚实 的基础。 “我们的最终目标是应用,若用不上,对社会的实际贡献是虚的。”刘中民说。团队来不及庆祝,便马不停蹄地投入到工业放大研究中。 团队与延长石油集团合作,2013年,完成实验室中试研究;2017年,具有我国自主知识产权技术的全球首套10万吨/年煤基乙醇工业示范项目打通全流程,生产出合格无水乙醇。 回想那6年“风风火火”的日子,刘中民坦承,速度非常快!基于扎实的基础研究和丰富的工业化经验,他们得以说服企业,从实验室中试研究的100克催化剂规模,直接放大到单个反应器装填30吨催化剂的10万吨/年的工业示范装置。而常规的工业化过程中间至少还需要催化剂吨级规模的工业中试。 在刘中民看来,更重要的还在于科研团队、工程和设计团队,以及企业之间多方的协作支持,总结经验、规避风险,才使得大家对50万吨/年乙醇项目成功更有信心。 如今,刘中民“科技为国为民”的梦想正在实现。截至目前,煤基乙醇技术许可合同10项,累计产能达295万吨/年。十四五期间,乙醇技术的许可合同累计产能预计可达400万吨/年,预计产值达250亿元。 此外,刘中民团队另一项应用研究——以煤炭为原料的甲醇制烯烃系列技术已经签订了31套装置的技术实施许可合同,包含出口1套,烯烃产能达2025万吨/年,预计拉动投资超4000亿元。已投产的16套工业装置,烯烃产能超过900万吨/年,新增产值超过900亿元/年。 煤基乙醇和甲醇制烯烃技术,是刘中民基于我国能源现状所开发技术。 “实现碳中和需要低碳化转型,这是相对长期的过程。”刘中民说,当前,我们依然处在化石能源社会,我国“富煤、少气、贫油”的资源禀赋将长期存在,探索化石能源清洁高效利用的变革性技术是助推煤化工产业转型升级、保障能源安全、实现“双碳”目标的重要途径。基础:突破难题创新引领 2019年9月13日,中秋,一轮皎洁圆月悬挂天空,将工业园区照的通明。 延长石油集团科技部部长王军峰一直记得这个日子,那是基于大连化物所包信和院士和潘秀莲研究员团队原创性成果“合成气直接转化制低碳烯烃”技术,而建的全球首套煤经合成气制低碳烯烃的千吨级全流程工业试验装置投料试车的关键阶段。 “那天晚上,包老师就吃了个馒头,他和潘老师认真严谨的把控着每个细节,和开车团队一起值守到深夜。”王军峰指着手机上照片拍摄时间告诉记者“1点56分”。 这项“合成气直接转化制低碳烯烃”技术是我国完全自主从原创基础研究突破出发,实现过程放大和工业示范的创新成果。 这是一条历经近10年的研发之路。早在2007年,研究团队就提出了采用双功能耦合催化剂体系,探索合成气直接转化制烯烃的构想。这是一个让人激动万分的科学构想,如果能实现,将对传统的工艺路线是一个颠覆性变革,对我国能源安全战略也具有深远意义。 团队充满希望的前行,却充满各种挑战和艰辛。起初,他们从催化剂的基本原理入手,设计了“核壳”催化剂,希望催化活性中心处在催化剂“球体”的中心位置,四周包裹多孔分子筛,让合成气在核层的活性中心上被活化,生成中间体,并在壳层分子筛孔道中产生目标产物。然而,实验结果总是达不到预期效果,一次一次失败,一次一次优化改进,历经了两届博士生都未能产生理想结果。 “明明原理上可行,为什么就行不通呢?”潘秀莲和团队成员反复问自己。他们决定重新上阵,这次他们另辟蹊径,转变实现方式——让金属氧化物活性中心与分子筛分开,让它们各司其职,将控制反应活性和产物选择性的两类催化活性中心分开到一定距离,从而形成了一种复合的双功能催化剂体系。 经过反复实验不断优化,预期实现,结果令人振奋!2016年3月4日,美国《科学》杂志刊登了这一研究成果,并同期刊发了以“令人惊奇的选择性”为题的专家评述文章,专家认为该过程未来在工业上将具有巨大的竞争力。 这项合成气催化转化研究,团队摒弃了延续90多年费托合成路线,开创了一条低耗水、低耗能的煤基合成气转化制烯烃的新途径,将对更好地服务国家能源安全和经济社会建设具有重要意义。 “十年磨一剑”,这期间,团队除了申报专利,未曾公开发表过一篇相关研究的文章。德国一位专家在得知这一成果后,沮丧地说:“这个点子为什么不是我们先想到的?”包信和回答道:“你们想到的点子已经很多了,也该轮到我们了。” 回想过去,尽管艰辛,但潘秀莲多次提到包信和的一句话:“只要方向对,不怕路途远,只要坚持,再冷的板凳也能给坐热。” 基础研究取得突破后,包信和和潘秀莲领导的基础研究团队和刘中民院士领导的应用研究团队合作,组建技术攻关小组,并与延长石油集团合作,迅速推动科技成果从实验室快速走向应用开发。合成气制烯烃千吨级工业试验装置建设时,包信和提出了“科教报国、创新引领、产研融合、高端发展”16字,并高高悬挂于装置上,这是团队的坚定信念和真实写照。 科研团队进一步对催化剂各项指标和性能持续不断进行优化,同时工艺设计和工程开发团队对工艺流程和分离系统进行优化设计,全力推进工程化转化和工业示范,力争早日实现技术产业化。”潘秀莲说。示范:科技“双碳”双向奔赴 无论是工程转化还是基础研究,中科院几代科技工作者聚焦“双碳”战略需求,“数十年如一日”深耕“双碳”领域,接续前行、赓续奋斗,站在突破关键核心技术和工程建设难点的第一线。 “碳中和目标提出之后,涌现了各种各样的技术路径和解决方案,它们之中甚至有些事矛盾的,我们必须要顶层设计,发挥科技创新的引领作用,找到未来合理的双碳发展路径,这是当务之急。”在刘中民看来,实现“双碳”目标是一项复杂的系统工程,不只需要发展单项技术,更需要各能源分系统耦合互补,各自发挥所长、规避短板,跨部门、跨行业、跨领域联动。 2018年,中科院批准依托大连化物所组织实施“洁净能源关键技术与示范”战略性先导科技专项,专项提出了以化石资源清洁高效利用与耦合替代、清洁能源多能互补与规模应用、低碳化多能战略融合为三条主线的多能融合互补的清洁能源发展策略,以期实现化石能源、可再生能源、核能的融合发展,构建多能融合的新型能源体系,加快推进能源革命。 为更快更好验证技术方案和示范,2019年12月9日,陕西省政府和中科院共创“榆林国家级能源革命创新示范区”,并在榆林建设了榆林中科洁净能源创新研究院,积极支持中科院“行动计划”和实施方案。 “榆林有中国‘科威特’之称,甚至比它更有优势,这是因为这里汇集了煤、气、油、盐,以及风光电水等多种资源,是多能融合和集中示范的最佳之地。”榆林中科洁净能源创新研究院执行院长任晓光告诉《中国科学报》,榆林有产业转型需求、有发展动力,我们与榆林一拍即合。 在榆林示范区,中科院将负责能源产业顶层设计和战略规划,提供技术和人才支持,陕西省及榆林市将整合财政资金、能源资源和产业基金,加大投入力度,双方共同打造大型多能融合集成示范基地,以期形成集前沿技术开发、人才集聚培育、科技创新服务、优势产业资本等于一体的能源革命创新示范区,为构建“清洁低碳、安全高效”的国家能源体系先行先试。 未来,不只是在陕西榆林,中科院在“行动计划”整体布局下,发挥全院“一盘棋”,统筹资源和优势力量,以解决关键核心科技问题为抓手,促进构建绿色低碳循环发展的经济体系和清洁低碳、安全高效的能源体系,推进产业优化升级,加快绿色低碳科技革命,积极支撑中国参与和引领全球气候治理,为国家实现碳达峰碳中和战略目标提供强有力的科技支撑。50万吨/年煤基乙醇工业装置(图/王晓亮)
  • 德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站
    德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站精彩回顾2018年6月29 日,德国美嘉特电子顺磁共振波谱仪MS5000 EPR样机培训在同济大学环境学院举办。上午,德国美嘉特中国独家代理-锘海生物科学仪器的工程师,就MS5000 EPR的原理、配件、耗材、软件操作及前沿应用案列等内容进行详细讲解。下午,工程师成海丽进行样机的实际操作培训,以此让每一位老师和同学都能够学会使用MS5000 EPR。 德国美嘉特电子顺磁共振波谱仪介绍电子顺磁(自旋)共振波谱仪(EPR/ESR)是唯一可以直接检测自由基的设备,其灵敏度远高于NMR(核磁共振)或光学化学分析技术,应用范围包括环境、化学、材料、生命科学、地质、辐照剂量学、食品及石油化工等领域,可用于研究自由基、过渡金属离子氧化态、配位化合物结构、化学反应动力学、催化反应机理、大气颗粒物(PM2.5)、污水处理中自由基、固体废弃物中持久性自由基EPFRs、材料缺陷、掺杂、酶活性、酶和蛋白质结构、辐射剂量、地质测年等。德国美嘉特电子顺磁共振波谱仪在实验过程中无需对样品进行复杂处理,即可进行快速准确测试。通过对EPR谱图的分析,从而得到物质的分子结构和状态等信息,可用于自由基的定性及定量分析。德国美嘉特电子顺磁共振波谱仪产品特点锘海生物代理的德国美嘉特电子自旋(顺磁)共振波谱仪EPR/ESR,型号有MS5000、MS5000X,是性价比最高的便携式台式波谱仪。来自德国美嘉特的桌上型波谱仪,具备新一代波谱仪简便易用的特点,无需特殊的知识背景即可熟练操作。该仪器外形小巧,性能可媲美大型ESR,在专业性和易用性上做了最完美的权衡。 EPR在环境领域的应用污水处理流通在线检测系统电子顺磁共振波谱仪EPR搭载流通池,可进行原位自由基检测,实时监控污水处理过程中自由基的产生及猝灭情况。EPR在环境领域的应用案例自由基反应机理;高级氧化还原反应的机理研究;TiO2光催化产生的电子空穴检测;放电等离子体处理污水过程中产生的自由基检测;芬顿反应;化学反应动力学监控;大气颗粒物(PM2.5)反应机制;环境中持久性自由基(EPFRs)等。 EPR应用于光催化机理研究 EPR应用于电化学高级氧化工艺 Photocatalytic water-splitting using TiO2 Electrochemical advanced oxidation processes (EAOPs) EPR应用于环境中持久性自由基EPFRs 检测 EPR应用于芬顿反应中产生的羟基自由基检测Environmentally persistent free radicals (EPFRs) Hydroxyl radicals (OH) in Fenton reaction
  • 落实‘双碳’行动,共建美丽家园 二氧化碳排放控制取得积极成效
    生态环境部坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,深入学习贯彻习近平生态文明思想,按照党中央、国务院决策部署,深入推进应对气候变化和污染防治相关工作,推动减污降碳协同增效取得积极进展。  一、二氧化碳排放控制取得积极成效  推动落实全国碳排放强度下降目标,将控制温室气体排放目标责任考核相关内容纳入污染防治攻坚战成效考核。研究制定“十四五”碳强度降低目标和向各省(区、市)分解方案。通过综合采取调整产业结构、优化能源结构、节能提高能效、推进碳市场建设、增加森林碳汇等一系列措施,我国2020年单位国内生产总值二氧化碳排放相比2015年下降18.7%,超额完成“十三五”下降18%的目标任务,较2005年下降48.4%,超额完成40%-45%的控制温室气体排放目标,基本扭转了二氧化碳排放快速增长的局面。据初步核算,2021年全国碳排放强度比2020年降低3.8%,为完成“十四五”碳强度下降18%的目标任务奠定良好基础。 二、全国碳市场第一个履约周期顺利收官  2021年7月16日,全国碳排放权交易市场(以下简称全国碳市场)正式启动交易。全国碳市场第一个履约周期纳入发电行业重点排放单位2162家,年覆盖碳排放量约45亿吨,是目前全球覆盖温室气体排放量规模最大的碳市场。2021年12月31日,全国碳市场第一个履约周期顺利收官,碳排放配额累计成交量1.79亿吨,累计成交额76.61亿元,成交均价42.85元/吨,履约完成率99.5%(按履约量计),市场运行平稳有序,交易价格稳中有升,促进企业减排温室气体和加快绿色低碳转型的作用初步显现,有效发挥了碳定价功能。 三、低碳试点示范工作深入推进  自2010年以来,我国陆续在6个省和81个城市开展了低碳试点,涉及31个省(区、市),涵盖全部5个计划单列市。鼓励地方探索开展近零碳排放区示范工程相关研究。“十三五”以来,低碳试点工作不断深化。试点省市在完善体制机制、产业结构调整、能源结构优化、节能提高能效、提高公众意识等方面开展了大量工作,探索符合本地实际的低碳发展路径。试点省市碳强度下降总体快于全国。  四、气候投融资工作加快展开  气候投融资工作在顶层设计、人才队伍建设等方面取得积极进展。2019年8月,生态环境部会同有关部门推动成立了中国环境科学学会气候投融资专业委员会,为气候投融资领域信息交流、产融对接和国际合作搭建了良好平台。2020年10月,会同国家发展改革委、人民银行、银保监会、证监会联合印发《关于促进应对气候变化投融资的指导意见》,对气候投融资工作进行了系统部署。2021年12月,生态环境部会同发展改革委等八部门联合印发《关于开展气候投融资试点工作的通知》,正式启动气候投融资试点工作。  五、全社会应对气候变化意识不断提升  2013至2021年,全国低碳日活动已成功举办9届,成为宣扬绿色低碳发展理念,培育全社会简约适度、绿色低碳生活方式的重要平台。2022年“全国低碳日”主题为“落实‘双碳’行动,共建美丽家园”,主场活动将以线上线下相结合的形式开展。每年组织编写《中国应对气候变化的政策与行动年度报告》,并在国新办举办新闻发布会。2021年,国务院新闻办公室发表《中国应对气候变化的政策与行动》白皮书,有力宣介了中国应对气候变化、推动全球气候治理的倡议主张。同时,在每年联合国气候大会期间,组织设计各部门、NGO组织等多方参与的“中国角”主题边会活动,宣传中国应对气候变化举措和成效。做好应对气候变化常态化宣传。通过积极开展形式多样、丰富多彩的宣传活动,国内应对气候变化和低碳意识不断提升,绿色低碳生活新风尚初步形成,应对气候变化的“中国故事”在国际舞台上更加深入人心。  六、产业结构绿色转型升级步伐加快  持续推动化解过剩产能。全国累计淘汰和化解钢铁产能3亿吨左右、水泥产能近4亿吨、平板玻璃1.5亿重量箱。稳步推进钢铁行业实施高质量超低排放改造。截至2021年底,全国共23家钢铁企业约1.45亿吨粗钢产能已完成全流程超低排放改造,225家企业约5.36亿吨左右粗钢产能正在实施超低排放改造。已完成和正在实施改造的钢铁产能占全国粗钢产能的65%左右。加强“散乱污”企业及集群综合治理。对不符合产业政策、产业布局规划,以及土地、环保、质量、安全、能效等要求的“散乱污”企业及集群开展综合整治,京津冀及周边地区分类整治涉气“散乱污”企业及集群6.2万余家,全国累计超过10万家,重点区域实现“散乱污”企业动态清零。开展分级差异化环保管理。依据企业装备水平、生产工艺、污染治理措施、环境管理水平、运输方式等对重点行业企业进行绩效分级,将分级结果应用于差异化环保管理,实施精准治污,促进了钢铁、建材、有色金属冶炼、石化化工等重点行业装备水平和产业集中度大幅提升,推动独立热轧和独立焦化企业与钢铁企业联合重组、升级改造、有序退出,实现源头节能减污降碳。推动重点领域节能降碳改造。配合发展改革委、工业和信息化部、国家能源局联合印发《高耗能行业重点领域节能降碳改造升级实施指南(2022年版)》,针对钢铁、焦化、铁合金等十七个行业,制定了节能降碳改造升级实施指南,引导行业改造升级、加强技术攻关、促进集聚发展、加快淘汰落后。 七、煤炭清洁高效利用加快推进  以京津冀及周边地区、汾渭平原等区域为重点,因地制宜推动散煤治理,截至2021年底,完成该区域散煤治理2700万户左右,减少散煤消费量6000多万吨,平原地区冬季取暖散煤基本清零。通过推进热电联产集中供热替代、上大压小、清洁能源替代等措施淘汰能耗高、排放大的燃煤小锅炉,截至2020年底,京津冀及周边地区、汾渭平原、长三角地区每小时35蒸吨以下燃煤锅炉基本清零,全国县级及以上城市建成区内每小时10蒸吨以下燃煤锅炉基本清零。持续推进煤炭清洁高效集中利用,10.3亿千瓦煤电机组完成超低排放改造,占煤电总装机容量的93%,建成世界最大的清洁煤电体系。
  • 【CEM】儿童玩具中双酚A和邻苯二甲酸酯的样品制备、提取和分析
    一、引言美国已开始限制某些邻苯二甲酸酯在儿童产品中的使用,包括DEHP、DBP、BBP、DINP、DIDP和DIOP。消费品安全委员会(CPSC)已发布了这些受监管的邻苯二甲酸酯的测试方法。双酚A(BPA)的监管仍在讨论中。本研究检查了从当地折扣店或“一元”类型商店购买的26件儿童玩具中的邻苯二甲酸酯和BPA含量。 创建并优化了微波提取方法,与Spex CertiPrep认证的固体参考材料进行对比,以比较玩具中发现的邻苯二甲酸酯和BPA水平。样品使用GC/MS进行检查。大多数PVC玩具中检测到高水平的邻苯二甲酸酯和BPA。在许多样品中,邻苯二甲酸酯的浓度远远超过了CPSC设定的限制。二、材料与方法样品制备26件玩具按照材质类型和颜色进行了分类。复合玩具被进一步拆分成不同的部分和材料。这26件玩具被分成了超过58个样品。油漆未从涂漆表面移除,但在进一步处理之前,表面的贴纸已被移除。 图1. 原始玩具,细分部分和最终研磨成粉。 玩具被切割成5毫米的小块,并使用Spex SamplePrep 冷冻/研磨机® 配合多试管适配器和6571试管研磨成细粉。两到三克的玩具材料通过以下低温程序进行研磨:二十分钟的预冷,然后是五个循环的研磨,每个循环2分钟。每个循环后都会有2分钟的冷却时间。研磨的冲击率是每秒16次冲击。 在没有红外系统的情况下,通过密度和化学测试来识别塑料玩具。58个样品被识别如下:22个低密度聚乙烯(LDPE)样品,18个聚氯乙烯(PVC)样品,7个聚碳酸酯(PC)样品,6个高密度聚乙烯(HDPE)样品,2个聚丙烯(PP)样品,1个布料纺织品样品和1个硅胶样品。大多数儿童玩具和产品由聚乙烯(28个样品)和聚氯乙烯(18个样品)组成。样品提取为了确定提取效率,采用了两种不同的提取方法来对应相应的塑料标准。第一种方法是CPSC方法中概述的溶解/沉淀法:CPSC-CH-C1001-09.03。 将0.05克的PVC样品溶解于5毫升THF中,然后用10毫升己烷沉淀。使用这种方法提取了PVC和HDPE玩具样品,并使用了含有邻苯二甲酸酯的PE和PVC认证参考材料(分别为CRM-PE001和CRM-PVC001)。对于这种方法,恢复数据显示PE基质的提取效率为50%,而PVC基质的提取效率为83-94%。 PVC基质的效率高于PE基质,但随后GC/MS的相对标准偏差(RSD)范围为35-60%,显示出溶液中的聚合物可能对GC/MS系统造成污染问题。 为了蕞大化从每种塑料基质中回收邻苯二甲酸酯,开发了使用微波消化从聚乙烯和聚氯乙烯中提取邻苯二甲酸酯的方法。使用CEM Mars微波系统和XPress容器提取了0.2克样品。聚乙烯提取方法:&bull 10毫升环己烷:丙酮(30:70)&bull 升温&bull 10分钟至140°C&bull 保持10分钟&bull 搅拌:开启 聚氯乙烯提取方法:&bull 10 mL Cyclohexane:IPA (50:50)&bull 升温至130°C&bull 保持10分钟&bull 搅拌:开启 CPSC湿法和优化微波提取法的比较显示,恢复率增加且%RSD结果减少。通过使用优化的微波提取法,PVC的恢复率从85-94%增加到 95%。微波方法的%RSD对所有目标邻苯二甲酸酯均小于2.5%。 表1. CPSC湿法与优化微波法提取PVC中邻苯二甲酸酯的%RSD比较。 分析条件仪器:使用扫描模式的GC/MS,配备EIC (35-450 m/z)色谱柱:CA-5毛细管柱 (30 m x 0.25 mm x 0.25 μm)程序运行:l初始温度55°C,持续1分钟;以20°C/分钟的速率升温至200°C,保持1分钟;再以30°C/分钟的速率升温至310°C,保持3分钟。l检测器和进样口温度:检测器温度为280°C,进样口温度为150°CMS离子监测:在六个邻苯二甲酸酯中,四个的主要监测离子为149 m/z。由于DINP和DIDP部分共流出,因此使用293 m/z(DINP)和307 m/z(DIDP)作为次级离子进行监测。双酚A的定量测定使用213 m/z。所有样品中均添加了内标(Spex CertiPrep CLPS-I90),并与配置在多个浓度水平的外标邻苯二甲酸酯混合标准品(SS-CRM-PVC001)进行比较,以获得校准曲线。同时,也在多个浓度水平下测定了BPA标准品(S-509),以构建BPA的校准曲线。图2. 双酚A和邻苯二甲酸酯的分析色谱图。三、结果高密度聚乙烯玩具在此处讨论的两种塑料玩具中,PVC和HDPE,HDPE玩具显示出蕞低的邻苯二甲酸酯含量。在6个HDPE玩具中的5个检测到了低水平的DNOP,含量低于130微克/克。这个水平远低于CPSC对DNOP的0.1%的限制。在这些HDPE玩具中未检测到双酚A。聚氯乙烯玩具PVC玩具含有高水平的几种不同的邻苯二甲酸酯。这些玩具中主要的邻苯二甲酸酯是DEHP。十七个PVC玩具中有十五个含有DEHP。十二个玩具超过了CPSC的0.1%的限制。最高的DEHP含量在一个橡皮鸭玩具中检测到,含有28,000微克/克的DEHP。十一个玩具含有超过10,000微克/克的DEHP。 在PVC玩具中发现了其他三种邻苯二甲酸酯:DIDP、DINP和DNOP。玩具中DNOP的平均含量约为100微克/克。DIDP和DINP主要在一个驴型玩具中检测到,其中检测到了最高的总体邻苯二甲酸酯水平,DINP的含量为100毫克/克。 在四个玩具中检测到了双酚A。双酚A的蕞高水平是在时装玩偶的头部检测到的1,200微克/克,以及在橡皮鸭玩具中检测到的700微克/克。四、结论在所有经过测试的塑料类型中,PVC玩具含有蕞高水平的邻苯二甲酸酯和双酚A。PVC主要含有DEHP,其含量超过了当前CPSC的0.1%限制。在四个PVC玩具中发现了BPA,其中两个的含量接近或超过1,000微克/克。 确保从不同塑料聚合物中准确回收邻苯二甲酸酯的关键是正确的样品制备和提取。每种聚合物类型都需要不同的方法来实现优化的回收率。未能认识到一种提取方法(主要是CPSC PVC方法)不适用于不同类型的聚合物,可能会改变这些受限制的邻苯二甲酸酯的回收率和分析结果。引用文献1. Consumer Product Safety Commision, Test Method: CPSC-CH-C1001-09.3. Standard Operating Procedure for Determination of Phthalates2.CEM Corporation, Application Note for Solvent Extraction: HDPE3.CEM Corporation, Application Note for Solvent Extraction: PVC4. Spex SamplePrep, Application Note SP007, GrindingPolymers for Qualitative and Quantitative Analysis
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 沈阳科仪首台国产12吋PECVD样机出厂测试
    10月21日,“国家02重大科技专项首台国产12吋PECVD样机出厂仪式”在中国科学院沈阳科学仪器研制中心有限公司子公司——沈阳拓荆科技有限公司举行,沈阳市人大常委会主任赵长义、副市长王玲、杨亚洲,国家02重大专项专家组责任专家张卫,中芯国际资深经理康劲,以及辽宁省科技厅、发改委、外专局、沈阳市科技局、发改委、经信委、外专局、浑南新区的相关领导出席仪式。沈阳科仪、沈阳拓荆科技董事长雷震霖出席并致辞。   沈阳科仪于2007年引入半导体设备制造行业资深技术专家姜谦博士,并成立PECVD(等离子体增强化学气相沉积)事业部,以6吋PECVD国产化为切入点,攻关PECVD技术及装备。2008年,以沈阳科仪为项目责任单位的“90-65nm等离子体增强化学气相沉积设备研制与应用”项目被列为国家02重大科技专项首批启动的项目之一,也是目前为止辽宁省最大的02专项项目。为落实该项目《任务合同书》中明确的“改革机制体制,建立专业化企业进行产品与市场运作”任务,2010年4月,以原PECVD事业部为基础的“沈阳拓荆科技有限公司”注册成立,并开始独立运作、实施该项目。   目前,沈阳拓荆科技PECVD产品从4-6吋全自动已经拓展到8吋全自动、2-8吋手动、12吋全自动全系列,除应用在传统的集成电路制造领域外,还成功拓展到光波导制造领域。首台国产12吋PECVD样机已完成3000片工艺测试和10000片可靠性测试,各项指标已经达到设计要求,即将进入国内最大的芯片代工企业——中芯国际进行在线测试。   进入在线测试,是进一步完善样机的有效途径,是产品走向市场的必由之路。这不仅是拓荆公司发展的重要里程碑,也是辽沈地区乃至我国大半导体产业发展的重要见证。产品推向市场后,将改变我国相关高端设备依赖进口的局面 培养并带动产业链共同发展 对调整传统产业结构、创造新的经济增长点、推动大半导体产业发展具有重要的意义。
  • 卫生部关于再次公开征求撤销食品添加剂过氧化苯甲酰和过氧化钙意见的函
    各有关单位:   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究并商相关部门,拟撤销食品添加剂过氧化苯甲酰和过氧化钙。现再次公开征求意见,请于2010年12月30日前按以下方式反馈意见:传真010-68792408或电子信箱gb2760@gmail.com.   附件:   1.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的公告   2.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   二〇一〇年十二月十四日   附件1   公 告   (征求意见稿)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究,决定撤销食品添加剂过氧化苯甲酰和过氧化钙。现公告如下:   一、自2011年12月1日起,禁止在面粉生产中使用过氧化苯甲酰和过氧化钙。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至产品保质期结束。   二、各级食品安全监管部门要加大执法力度,切实做好过氧化苯甲酰和过氧化钙监督管理,加强面粉生产经营和餐饮服务单位的食品安全监督检查。对面粉中违法使用过氧化苯甲酰和过氧化钙的,要依法予以查处。   特此公告。   二〇一〇年十二月日   附件2   关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   一、关于过氧化苯甲酰   过氧化苯甲酰,化学式[C6H5C(O)O]2,是一种有机过氧化物,白色至微黄色斜方结晶或结晶粉末,常用作乙烯系、丙烯酸系等单体的聚合引发剂、硅树脂及不饱和聚酯的固化剂、食品添加剂等。   二、国内外食品添加剂过氧化苯甲酰的使用规定   国际食品法典委员会(CAC)和美国、加拿大、日本等国家和我国台湾、香港地区允许在面粉加工中使用过氧化苯甲酰。欧盟等地区未允许使用过氧化苯甲酰。国际食品法典委员会规定的面粉中过氧化苯甲酰最大使用限量为75mg/kg.   1986年,根据粮食部门的申请,经全国食品添加剂标准化技术委员会(以下简称标委会)安全评审通过,将过氧化苯甲酰列入《食品添加剂使用卫生标准》(GB2760),允许作为面粉处理剂、漂白剂在小麦粉加工中使用,最大使用限量为60mg/kg.   三、关于食品添加剂过氧化苯甲酰的安全性   据联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)评估,过氧化苯甲酰在面粉中75mg/kg、在乳清粉中100mg/kg的使用限量,不会对人体健康造成危害。   四、我国面粉加工工艺已不再需要使用过氧化苯甲酰   随着我国小麦品种改良和面粉加工工艺水平的提高,现有的加工工艺能够满足面粉白度的需要,很多面粉加工企业已不再使用过氧化苯甲酰。我国粮食主管部门经过调查研究,提出我国面粉加工业已无使用过氧化苯甲酰的必要性,且消费者普遍要求小麦粉能保持其原有的色、香、味和营养成分,追求自然健康,尽量减少化学物质的摄入,普遍不接受含有过氧化苯甲酰的小麦粉。同时,在现有国家标准规定的添加限量下,现有加工工艺很难将其添加均匀,容易造成含量超标,带来质量安全隐患。   根据《食品安全法》第四十五条规定,食品添加剂的使用必须同时符合两个条件,一是技术上确有必要,二是安全可靠。尽管过氧化苯甲酰按规定使用未发现安全性问题,但由于面粉加工行业已无使用过氧化苯甲酰的技术必要性,因此,建议撤销食品添加剂过氧化苯甲酰。   五、撤销食品添加剂过氧化苯甲酰后,加强面粉食品安全监管的措施   为防范撤销过氧化苯甲酰后可能出现的继续添加,甚至添加其他非食用物质或滥用添加剂的情况,我部已向社会公布了四批可能违法添加的非食用物质和易被滥用的食品添加剂“黑名单”,要求各级食品安全监管部门加大对面粉及其制品的食品安全监管,严厉打击违法犯罪行为。相关部门也制定了面粉中钛白粉、吊白块、滑石粉、过氧化苯甲酰等漂白物质的配套检测方法,并且正在研究其他违法添加物质的检验方法,为食品安全监管工作提供技术支持。   六、撤销过程将设置过渡期限   为尽可能降低撤销过氧化苯甲酰对产业影响,我们将设置1年左右的政策调整实施时间,主要考虑面粉生产、销售以及进口周期等情况,同时允许在政策调整日期前生产的、添加了过氧化苯甲酰的食品继续在保质期内销售。   七、关于过氧化钙   过氧化钙,化学式CaO2,是一种白色无气味结晶性粉末,常用作杀菌剂、解酸剂、氧化物阴极材料、食品添加剂、化妆品等。过氧化钙与过氧化苯甲酰作用相似,我国现行GB2760允许其作为面粉处理剂、漂白剂在小麦粉中使用,最大使用限量为500mg/kg.鉴于已无使用的技术必要性,拟在撤销过氧化苯甲酰的同时一并撤销过氧化钙。
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • GB 5009.271邻苯混标全新上市
    GB 5009.271-2016 邻苯混标 《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》,于2017年6月23号开始实施。迪马科技根据此标准,推出了多种邻苯二甲酸酯混标:1、依据此标准第一法:邻苯二甲酸酯混标(16种化合物);2、依据此标准第二法:邻苯二甲酸酯混标(17+1:17种邻苯二甲酸酯混标 + DINP单标);邻苯二甲酸酯混标(18种化合物)。邻苯二甲酸酯混标(16种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第一法,1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 46883序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-8邻苯二甲酸酯混标(1种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。10,000μg/mL在正已烷中, 1 mL/安瓿,Cat. No.: 4688510,000μg/mL在乙腈中, 1 mL/安瓿,Cat. No.: 46901序号中文名称英文名称CAS1邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-0邻苯二甲酸酯混标(17种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468841000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46900序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-817邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9邻苯二甲酸酯混标(18种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468821000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46902序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-017邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-818邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9
  • 黄本立院士深度评析我国原子光谱分析——访厦门大学黄本立院士
    黄本立院士,1925年9月生于香港。60多年来,一直从事原子光谱分析研究,是国内外著名的原子光谱分析领域的学者,在其科研生涯中多项闪亮的“第一”一定程度上反映了我国原子光谱分析的发展历程:   1957年第一个创立一种可测定包括卤素在内的微量易挥发元素的新型双电弧光源,被国外学者誉为“最完善的”双电弧光源;   1960年在我国建立第一套原子吸收光谱装置并开展研究工作,发表了国内首批原子吸收论文;   1984年成为我国第一位以原子光谱分析为研究方向的博士生导师;   1988-1989年在国内首次以该研究方向招收一批从国外回来的博士后研究人员,中国一大批光谱分析的骨干师从于他;   1991年其小组建立了流动注射电化学氢化物发生法;   1993年成为我国第一位以原子光谱分析为研究方向的院士;   2000年发表了不用一氧化碳的镍蒸气发生法;   ……   黄本立院士主持、参加过多项国家、中科院、省市等重大研究项目,如,1985年主持“光谱感光板测光自动化”课题、1993年主持“ICP进样方法及其过程的研究”、1995年主持“流动注射在原子光谱分析中应用的技术、新方法” ……   黄本立院士多次荣获国家、省级先进工作者、优秀专家等称号。 黄本立院士   2010年6月22日,仪器信息网编辑来到厦门大学采访了黄本立院士,请黄本立院士回顾与展望了我国原子光谱分析技术及仪器的发展。 原子光谱分析:如何挑战发展“瓶颈”?   近年来,生命科学、分子生物学等领域的研究发展快速,基因组学、蛋白质组学等成为研究热点,于是,在分析界就有不少人转到这些热点上去。像原子光谱这样一些“传统”的技术似乎被冷落了,出现了“Atomic Spectroscopy:A dying horse?”、“原子吸收技术已经没什么可发展的了”、“原子荧光在国外很少人用”等诸如此类的论调。   生命科学离不开原子光谱分析   黄本立院士谈到,“其实,人体含有或摄取周期表上的大多数金属、非金属和气体元素,而这些元素对生命有何影响和如何实现这些影响却还远没有被完全了解,因而最近在生命科学‘omics’圈子里出现了‘金属组学’(metallomics)这个新成员。再如蛋白组学,大约30%的蛋白质含有金属,也要知道哪些蛋白质含有哪些金属、含有多少等。”   “而众所周知,原子光谱分析(广义的,包括光学光谱、X射线谱和质谱)则是检测几乎所有这些元素的最佳方法之一。因而我们今天还大谈原子光谱分析,并不是在这生命科学‘王国’的疆土里‘水土不服’、‘拉肚子’而说‘胡话’,而是原子光谱分析在这里大有用武之地。”   加强“联用技术”、“自身建设”   黄本立院士谈到如何突破原子光谱分析发展的“瓶颈”时说到,“由于进行原子光谱分析是要把样品气化、原子化、激发或离子化,然后令产生的辐射或离子进入仪器,才能进行检测;这样,除了能耐高温的简单分子如CN、NO、OH等之外,要获得较大分子的信息是很难的。这个问题对于只要测定元素成分和含量的分析如冶炼工业里的炉前分析、测定矿石中一些元素的含量等是算不了什么的,但是对大分子特别是生物分子的研究却是一个‘瓶颈’,甚至对元素的化合形态分析也是这样。”   “要克服这个‘瓶颈’,就要与其他分离方法如色谱、电泳等结合起来,这就是‘联用技术’。由于一般都把不同的方法用连字号(hyphen) 连接起来,所以它的英语名称就称为‘hyphenated technique’,例如HPLC-ICPAES、CE-AAS等。当然,原子光谱本身也要进行‘自身建设’。” 原子吸收:怎样突破技术“局限”?   黄本立院士介绍原子吸收发展历史时说到,“虽然原子吸收(AAS)的历史可以追溯到1814年Fraunhofer 研究太阳光谱中的多根暗线时,但是作为一种‘down to earth’的地球上使用的分析技术,它一般还是从20世纪50年代中Sir Alan Walsh发表的相关文章开始算。在这里必须指出,Wollaston在1802年就已经发现了太阳光谱中有几根暗带,他以为那是几种颜色的分界线。而Fraunhofer用的自制光谱仪比Wollaston所用的分辨率高很多,他发现了570多根暗线,并把它们用拉丁字母标示出来。而现代最先进的光谱仪可观察到数以千计的暗线。可见仪器对科学发展的重要性是怎么强调也不为过的。”   原子吸收:国产光谱仪器的“大佬”   “在AAS分析方面中国‘跟’得不算太慢,1966年我们科研小组在物理学报上发表了国内第一篇AAS研究论文,所用的仪器是自己在实验室里组装的。不久就出现了国内生产的火焰AAS仪器,包括国产空心阴极灯。从此在国内不少实验室中都可以看到国产AAS仪器的倩影。国产AAS仪器所占的国产光谱仪器市场份额,如果以台数算,很可能是‘大哥大’。”   “因为AAS仪器的价格相对便宜,并且完全能够满足一般行业的需求,适合中国国情,所以,中国用AAS仪器的人很多,并且国产原子吸收光谱仪器不但在国内有市场,还可以出口到第三世界国家。”   原子吸收“大有可为”   火焰原子吸收技术本身确有其局限性,例如,耐热(难熔)元素(refractory elements)形成氧化物或氢氧化物后,很难离解成原子,需要更高温度,一般要用国人不大愿意用的一氧化二氮–乙炔火焰,国内瑞利公司推出掺氧的空气-乙炔焰,这将是个突破性进展。所以,黄本立院士指出,原子吸收在突破其局限性方面仍“大有可为”:   1、“血铅仪”等专用仪器市场前景看好   原子吸收可针对环境、食品等样品中As、Cd、Pb等有害元素分析而设计成专用、现场、便携仪器。例如,2009年屡屡爆发的血铅超标事件,严重威胁着儿童的健康。政府非常重视环境重金属污染问题,对环保监测部门在硬件和软件方面提出更高的要求,相应的促进了对现场、快速检测仪器的需求,而原子吸收在这方面有独特的优势,所以原子吸收专用仪器的发展面临着巨大的市场机会。   2、“石墨炉”是目前原子吸收技术研究热点   “可以如此认为,我国火焰原子吸收光谱仪目前的技术水平已达到国外同类仪器的水平;但石墨炉原子吸收光谱仪的技术水平还与国际先进水平有一定差距。”   石墨炉原子吸收速度略慢、价格也相对较贵,但其检出限可与ICP/MS相媲美,而价格则相差一个数量级,所以,未来研究热点可能集中在降低石墨炉电源功率、研发新型石墨材料和新型石墨管以及背景扣除技术等方面。   3、“联用技术”是目前原子吸收应用热点   原子吸收光谱将所有的“东西”变成原子状态,这是其主要的特色,也是其局限性所在,需要与其它方法,如色谱、电泳、质谱等结合起来,即联用技术,原子吸收作为最后的检测技术。 我国ICP光谱:还有哪块“石头”没搬开?   虽然我国生产或正在研发ICP光谱仪的厂家很多,但可以说,我国ICP光谱仪技术水平与国外先进水平还有一定的差距,也存在产品质量不过关,对于造成此现象的原因,黄本立院士有何看法?对国产ICP光谱仪生产厂家又有何建议呢?   大型光栅,几乎都是进口的,使我国在这方面有所“欠缺”   光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术等于一身。上世纪50年代后期,长春光机所就已经在王大珩先生倡导和领导下开始光栅刻划的研究工作,当时中国是世界上少有的进行光栅刻划研究的几个国家之一。说到这里,黄本立院士谈到,“这是我国光谱技术发展史上具有里程碑纪念意义的技术,是令人兴奋的事。可惜的是,目前,如中阶梯光栅等大型光栅以及全息光栅,我们自己没有,几乎都是进口的,使我国在这方面有所‘欠缺’。”   谈到ICP光谱仪的关键技术,黄本立院士还提到,我国新一代激发光源和离子化源研究工作有待加强,例如,辉光放电、强电流短脉冲等光源都可以进一步研发。   软件做不好,仪器做的再好,它的“亮点”也显现不出来   黄本立院士还着重强调,“我国光谱仪器的软件跟不上国际先进水平,尤其不能满足高级研发用户的需求。我国熟悉仪器技术、分析方法、甚至使用过这个仪器的软件开发的人才非常少。另外,部分中国用户也存在不是很成熟的问题,提出的要求不‘精确’也影响了我国分析仪器的研制。可以说,软件做不好,仪器做的再好,它的亮点也显现不出来。分析仪器软件开发需要继续下大功夫。”   样机是“雕刻”出来的、不是“制造”出来的   “仪器制造商‘搭建’的样机质量好,但大批量生产的商品机性能不稳定。”黄本立院士将其生动的形容为,“样机是‘雕刻’出来的、不是‘制造’出来的,大批量生产则行不通。因为‘搭建’样机,无论是材料还是各种部件,厂商都会采用最好的。   “而批量生产时,中国的工业制造水平、机械加工能力与国际先进水平还有一定差距,导致制造出来的商品机性能不够稳定。并且,发射光谱仪器的分辨率、通光本领等性能与原子吸收仪器相比,要高出很多。而质谱仪的性能就更不用说了。” 原子荧光:其“中国现象”可否复制?   中国开始原子荧光光谱法(AFS)的研究最早可以追溯到上世纪七十年代末,经过近三十年的艰苦奋斗,AFS已成为我国少数具有自主知识产权、技术水平超过进口的分析仪器。目前,在中国每年销售的原子荧光仪器总量大致在1500~2000台,其中,国产仪器所占市场份额超过90%。但也存在如何进一步发展等问题。我国原子荧光发展的经验及其对其它国产分析仪器的发展有何借鉴意义?   极具“中国特色”的原子荧光光谱仪   黄本立院士一直关注我国AFS的发展,据其介绍,在2006年国际分析科学大会(ICAS 2006,莫斯科)上,就曾做过题为“原子荧光的中国现象”的报告。在分析仪器市场当中,原子荧光光谱仪可以说是一款极具中国特色的分析仪器。   第一,国产AFS仪器具有完全的自主知识产权,与AFS技术相关的专利大部分为中国人所掌握;   第二,尤其在As、Hg、Se、Sb等元素的检测方面,AFS在仪器价格和使用成本上都大大优于ICP-MS等仪器,适合中国经济发展情况;   第三,中国有一批认真钻研、发展快速的AFS仪器生产企业,如,吉天、海光、瑞利等,他们不断进行技术创新,提高仪器的稳定性和可靠性;   第四,中国在AFS技术应用领域拓展方面做了大量有序的工作,已经建立了40多项相关的国家和行业标准,使得原子荧光在地质、冶金、食品、环境、电子产品等领域中得到了广泛应用。   而其他国家,例如美国环保总署只有一个与AFS相关的测汞标准,可以说,标准与分析仪器发展密切相关。例如,英国PSA公司也做AFS仪器,但其测定元素范围没有中国AFS仪器测定的多。   关于推进原子荧光国际化的两点建议   目前,我国AFS发展也存在着一个大问题,国内用的多,国外用的少,也就是说AFS仪器国际化发展还面临很多困难。对此,黄本立院士对我国AFS仪器厂商的国际化发展提出了两点建议:   1、发展原子荧光专用仪器   首先要想办法让国外的分析界同行接受AFS,AFS在某些元素检测方面具有操作简单、快速以及测定结果准确等特点,因此可专注发展原子荧光专用仪器。例如,可根据欧盟RoHS指令要求测定的几个元素,发展专门测定某一种元素(例如汞)的AFS仪器。食品、电子产品、玩具等产品都需要此类仪器,相信此类仪器一定可以销售的好。   2、不要抱着氢化物发生、氢火焰“不放”   黄本立院士认为,目前我国的AFS仪器差不多全是基于氢化物发生和氢火焰上的,能测定的元素也就只能局限在“氢化物元素”(hydride forming elements)范围内。这是一个很大的局限性。是否可以考虑其它的原子化器和进样方式?黄本立院士以其所做的研究为例说到,他们用ICP为原子化器,以强流短脉冲为普通空心阴极灯供电为光源,测量铕的离子荧光,其灵敏度竟超过以激光为光源的灵敏度;这里虽然需要ICP原子化器,成本会升高,但我们可以想办法进行简化,例如降低功率等。 仪器人的“呼声”: 如何推进我国科学仪器自主研发?   年龄对一位科学家来说,意味的不是衰老,而是经验的丰富和资历的深厚。黄本立院士虽然已是85岁的高龄了,但他一直关心着我国科学仪器自主研发、科学仪器研制后备人才培养等问题。   仪器研制需专门投入,政府导向加大国产仪器支持力度   目前,发展科学仪器已经是国家战略发展的一种需要,国家对科学仪器越来越重视。在科学仪器自主研发的战略目标和资金投入方面,迫切需要国家与有关部门给予政策引导与具体支持,应该在不同部门设立不同层次、不同数量的科学仪器研发专项经费,大力支持一些重点项目。   近来,我国中西部地区药检、疾控部门大宗科学仪器招标的新闻不断,由此,黄本立院士指出,“招标中仪器的性能参数、指标等是否有必要列的那么高?国产仪器是否能满足需求?这种政府导向也是对国产仪器支持的一方面。”   奖励或提升体系、评价方法或机制,应按不同的学科设置不同的标准   “以分析化学为研究方向,发文章的顶级期刊的影响因子也不超过10,而其中进行分析仪器研发,因其所做的是实用性研究工作,更不易发表文章。这影响了中国进行分析化学、尤其是仪器研发人才的发展。”   “科研院校里奖励或提升体系、评价方法或机制,应该按照不同的学科设置不同的标准。”   科学仪器后备人才培养迫在眉睫:用仪器的人多,做仪器的人少,培养周期长   “在厦门大学召开的第27届化学会学术年会上,所做的与分析仪器研发有关的报告,都是一些熟悉的面孔,已经很久没有‘新人’出现了。” 黄本立院士谈到。   科学仪器研发所需的人才,既要求扎实的基础知识,又要求有跨学科的、较广泛的专业知识,必须专门培养。但这些年由于对科学仪器事业发展重视不够,有些高校把已经办了十几年的分析仪器专业撤销,或并入别的专业,我国已经多年没有系统的培养科学仪器研制人才了。   要发展我国独立自主的科学仪器事业,就需要合理规划学科布局,加强专业适用人才的培养。所培养的人才必须留得住。只有在全国形成振兴科学仪器事业的良好氛围,才能真正形成培养、留住人才和吸引国外人才的优势。 采访现场   黄本立院士兴致勃勃的与采访编辑畅谈了2个多小时,对于原子光谱仪器,如AAS、ICP、AFS,我国国产仪器技术与国际先进水平的差距以及未来研究热点、国产仪器厂商发展等进行了深刻评析,使编辑获益良多。  后记   60多年来,黄本立院士一如既往,一直奉献于原子光谱分析的研究,在原子发射、原子吸收、原子荧光和激光光谱分析的理论、方法、应用和仪器装置等方面为我国的原子光谱事业的开创、发展以及多层次人才的培养做出了重大的成绩和贡献。  85岁高龄的黄本立院士,仍然思维敏捷、精神矍铄,交谈过程中,爽朗的笑声一直不断,其温和、执着、严谨的态度,给编者留下了深刻印象。   对于毕生钟爱的原子光谱分析事业,黄本立院士最为关心的是我国原子光谱仪器的自主研发和未来发展前景,“不能总是‘小来小去’,要做大型的原子光谱,如ICP、ICP/MS等。但也不能全面铺开、大范围的撒钱,要有重点的支持几个项目。”   编辑:刘丰秋   附录:黄本立院士简介   黄本立,1925年9月生于香港,1945—1949年就学于广州岭南大学物理系。1950年在长春东北科学研究所(后为中国科学院长春应用化学研究所)参加工作,1984年获批为博士研究生导师,是我国以原子光谱为研究方向的第一位博士生导师。1986年调厦门大学任化学系教授至今,1993年当选为中国科学院院士。历任中科院长春分院及长春应用化学研究所学术委员会委员,东北大学、五邑大学名誉教授,吉林大学、浙江大学等兼职教授;中国化学会25届理事长,分析化学学科委员会主任;中国光谱学会副理事长,《光谱学与光谱分析》主编;《分析化学》、《化学进展》、《分析科学学报》等11种国内期刊顾问或编委,Spectrochimica Acta Part B等6种国际期刊顾问或编委;国家自然科学基金委分析与环境化学学科评审组成员,何梁何利基金科学奖学科(专业)组评审委员,中国人民政治协商会议福建省委员会常务委员。   60年来一直从事原子光谱分析研究,1957年提出的新型双电弧光源多次为国内外专著及论文所引用和一些实验室所采用,上世纪60年代初在我国首次建立原子吸收光谱装置并发表了国内首批原子吸收论文;所主持的“光谱感光板测光自动化”课题1985年获中科院重大科技成果二等奖,1975年起从事感耦等离子体(ICP)光谱分析研究,参加过多项获奖工作(中科院重大科技成果二等奖2次,国家科委及中科院科技进步二等奖一次,三等奖2次,吉林省重大科技成果二等奖一次),所研制的新型雾化-氢化物发生装置获中国专利。所主持的“ICP进样方法及其过程的研究”1993年获中科院长春分院自然科学奖三等奖,“流动注射在原子光谱分析中应用的技术、新方法”研究1995年获国家教委科技进步三等奖。1991年获厦门大学第七届“南强奖”个人一等奖。主持研究的强电流微秒脉冲供电(HCMP)空心阴极灯激发原子/离子荧光分析,改善了包括一些稀土元素在内的多种元素的检出限;HCMP技术获专利,并获福建省2001年科技进步一等奖。黄先生在国内外刊物上发表学术论文逾二百篇,主持或参与编著科技专著有“An Atlas of High Resolution Spectra of Rare Earth Elements for ICP-AES” (RSC, 2000) 等近十部。应邀作过国际会议大会报告9篇,特邀报告20篇。曾以学习会、培训班等方式为我国培养了大批光谱分析骨干和教学科研人才;培养研究生22名,指导博士后9名。1998年获“全国优秀教师”称号,2002年获“福建省优秀专家”称号,2003年获“福建省先进工作者”称号。2005年被授予“全国先进工作者”称号。
  • 美国必能信超声波清洗机展会样机促销
    产品型号:B-5510E-MT,数量:3台,售完为止。促销原因:因机器属于展会样品,存放时间较长。 上海恒奇仪器仪表有限公司促销价:¥8340.00所有机器均是展会样机,在参展运输过程中外包装有所破损,机器可正常使用,促销套装包括:主机、盖。 B-5510E-MT超声波清洗机产品的规格参数:本型号属于机械定时、无加热功能。清洗槽容积9.46 L频率40KHz清洗槽尺寸(mm)292×241×152外形尺寸(mm)406×394×368重量6.4kg快速排水接口有产品图片:美国Branson公司简介: 美国必能信(BRANSON)是美国艾默生电气集团所属子公司,创立于1946年,至今有60多年历史。公司主要生产各类超声波清洗设备、超声波焊接设备、超声波金属焊接设备和超声波细胞粉碎设备等超声波仪器设备。公司在全球范围内拥有70多个销售网点和近2000名员工,并在美国、加拿大、墨西哥、德国、斯洛伐克、中国、中国香港、日本以及韩国设立有研发和生产基地。上海恒奇仪器仪表有限公司简介:上海恒奇仪器仪表有限公司是一家实验室产品集成商,专业从事进口实验室仪器,试剂,耗材和环保水质测试仪器销售服务。作为美国Branson超声波清洗机和细胞破碎仪的华东区总代理,恒奇公司连续多年成为Branson公司销售额最大的合作商。联系方式冯惠然 13916314945上海恒奇仪器仪表有限公司上海市长宁区金钟路658弄1号楼甲4层TEL:021-51693889FAX:021-61304216
  • 养鸡速成不足忧 滥用抗生素或是最大隐患
    “速成”存误解 抗生素滥用是更大“危鸡”   近日,媒体曝出肯德基的供应商——山西粟海集团养鸡“速成”,只用45天即被屠宰,同时养殖中大量使用药物,饲料曾毒死周围的苍蝇。消息一出,粟海集团连带肯德基的产品安全遭到舆论的强烈质疑。   食品安全早已经成为群众最关心的话题,专家指出,养鸡“速成”本身并不构成安全问题,其背后的抗生素滥用才真正令人担忧。   “速成”说和“激素”说有误解   由于与人们一般认识有较大出入,事件中鸡的生长周期成为公众关注的焦点。但肯德基所属百胜集团一位公关人士表示,此前报道中指出的“速成说”不值一提,因为白羽鸡45天的生长周期在专业上根本不属于速成。她表示,整个肯德基的采购非常严格,而且都会依照国家标准进行。   对于45天是否速成,北京六角体科技发展有限公司总经理贾东芬表示,无论是全聚德还是北京专门向国外出口肉鸡的华都集团,禽类的养殖周期都差不多是这个时间,45天不能算是问题。   对此,农业部家禽品质检测中心常务副主任高玉时给予肯定。他表示,对于养鸡来说,并非想让它速成就能速成,因为不同品种的鸡生长周期不一样。一般的草鸡,45天才能长到一公斤左右,再用技术手段,比如灯光照明、添加剂也没有用。而现在养殖场用的白羽鸡属于肉鸡,都是从国外比如美国引进的,是用科学技术通过筛选挑出来的鸡种,这种鸡不仅长得快,而且胸脯肉多,因为国外消费者就喜欢吃肉,不像中国人还吃鸡爪和内脏。   在正常情况下,白羽鸡42天能长到2.6公斤。对这种肉鸡,国外的舆论争议之处往往在于它只长肉、不运动,站着甚至都能骨折,因此吃这种鸡不健康。“国外认为养鸡过于密集,鸡缺少活动的空间,生下来就为了被吃,因此有动物生存权利的问题,还有鸡种基因退化的问题。”高玉时解释。   中国农业科学院家禽研究所饲料营养研究室主任卜柱表示,现在的肉鸡一般生长周期42天~49天,最多56天就必须出售。   “还有一种舆论说现在的鸡都吃激素,这是一种误导。”高玉时表示,养鸡产业不可能用激素,因为肉鸡已经生长很快了,根本不需要用激素。“激素会使鸡心脏活动更快,会加速肉鸡死亡率。”专业人士指出,一般情况下,像猪、牛、羊这样生产周期长的大型动物会使用到激素。   抗生素滥用是隐忧   专业人士指出,对于养鸡产业来说,抗生素使用过量是一个主要问题。   卜柱介绍,肉鸡根据生长周期不同,其饲料使用分三个阶段。第一阶段是出生到3周,属“肉小期”,第二阶段是3周到5周,属“肉中期”,第三阶段是5周以后,叫“肉大期”,各个阶段为了满足其生长发育的需要,要添加不同的饲料。   “在第一第二阶段,养殖企业可能会大量使用抗生素,因为害怕密集养殖的鸡得传染病死亡,但是到第三阶段,抗生素的使用就停止了,因为根据规定,一些抗生素指标要检测,而抗生素经过一周左右就可以排泄出去,这样就可以保证合格。”卜柱说。   但是,如果在前两个周期抗生素使用过多,也会残留到第三个周期,同时如果加得太多,鸡也会死亡。据专家介绍,目前国内允许可以给家禽使用的抗生素数目有限,大概有十几种。“产蛋鸡是明令不许使用抗生素的。”卜柱补充。   关于抗生素的相关标准,农业部2003年发布了《绿色食品-禽肉NY/T 753-2003》以及2005年发布了《无公害食品-禽肉及禽副产品 NY 5034-2005》,其中规定土霉素、金霉素、磺胺类以及环丙沙星每公斤的含量均应少于0.10mg,克球酚少于每公斤0.05mg。   即便有这些规定,中国在家禽养殖中滥用抗生素的现象仍很严重。中国是抗生素生产大国,也是使用大国,有数据统计,中国年产抗生素原料大约21万吨,出口3万吨,其余自用,其中一半用于动物,人均年消费量138克左右,而美国仅人均年消费13克(相关数据见本版配发资料)。   贾东芬说,“一般来说,企业至少应有两道保证,一道是驻场监督,抗生素中乳呋喃类、金霉素、土霉素都会检查,另外一道是肉类加工企业的检测。不过有些餐饮企业抗生素超标的情况应该是不罕见的。”   欧美发达国家对于抗生素在畜禽养殖中有更严格的限制,世界卫生组织已成立了慎用抗生素联盟,其成员包括90多个国家和地区,各国采取严厉的手段限制甚至禁止使用抗生素。瑞典1986年成为首个在动物饲料中部分禁用AGP(抗生素生长促进剂)的国家。自2006年1月1日起,欧盟全面执行此项禁用。美国、日本都出台了相似的法律法规,限制或者禁止抗生素在饲料中的使用。   “我们现在的研究也在考虑抗生素的替代品,用于家禽养殖,比如微生态制剂、抑生素,以及中草药。”卜柱最后表示。   相关报道 粟海:已将鸡肉样品送至检疫部门   对于位于山西的粟海集团来说,负面报道似乎并没有影响到企业的正常经营。根据该公司网站的介绍,山西粟海集团成立于1997年,2000年改组为股份制企业,是国内整个中西部地区最大的鸡肉养殖基地,目前总资产40亿元,职工4000余人,年加工肉鸡1.2亿只,加工各种预混料和全价颗粒饲料73万吨,孵化雏鸡1.2亿羽。肉鸡养殖辐射山西、陕西、河南的运城、临汾、渭南、三门峡三省四市等56个县市、80多个乡镇、10000余农户,曾被评为“全国肉类食品行业50强”、“中国白羽肉鸡企业20强”。   “速成鸡”事件发生后,《中国经营报》记者拨打该公司董事长朱苏海、总经理徐麦管的电话,均无人接听,该公司办公室一位姓陈的女士表示,说公司饲料等毒死苍蝇的说法并不属实,“我们添加的药物都是在法律法规允许的范围内,没有超出限度。”   陈女士表示,肉鸡养殖业务是公司最主要的业务,养殖分两种形式,一种是通过自己的养殖场,另外一种通过农户散养后收购。但是,即便农户散养,粟海也有技术员定期指导和监督,质量上不会有问题。   对于媒体的报道,陈女士表示公司首先要核实,因此已经将鸡肉样品送至山西饲料兽药监察所、山西出入境检验检疫局检测,该公司属民营企业,作为中西部地区最大的肉鸡养殖企业,公司的养殖环节可以公开,媒体随时可以来监督。   记者随后致电山西饲料兽药检查所询问检测结果,不过,该所负责人在得知媒体来意后并没有回答,而是挂断了电话。   虽然百胜集团和肯德基的网站没有对此事作出回应,但是在官方微博——“中国肯德基”上表示,山西粟海集团在肯德基鸡肉原料供应体系中属于较小的区域性供应商,仅占鸡肉采购量的1%左右,该集团以往食品安全记录均正常。根据媒体报道内容,肯德基将进行调查,加强检验,并根据调查情况做相应处理。   资料 国内养殖业滥用抗生素实况   使用数据   国家食品药品监督管理局的统计数据显示,中国年人均使用抗生素138克,是美国的10倍。但兽用抗生素远比人用更多。   由中国科协主导的一项重大政策性课题研究,“抗生素类药物滥用的公共安全问题研究”的调查结果显示:国内生产抗生素21万吨,其中9.7万吨用于动物养殖,3万吨用于出口,剩下的为人类所用。   危害   动物滥用抗生素后,有两种途径造成超级细菌出现和繁殖。一种是通过药物残留进入人体,使人体感染的病菌具有抗药性,另外一种情况是,动物虽然不被人食用,但是其本身的药物残留滋生超级细菌,并通过食物链和环境传播,比如通过排泄物、活动方式传播到人体内,造成人类因感染超级细菌而致死。   检测   国内的肉产品抗生素的检测却几近于无。检测最大的品种比如氯霉素、土霉素、四环素、链霉素、磺胺等等加到一起,全国试剂检测市场也不超过6000万元。检测市场需求主要还是来自于出口的企业。因为国外在进口肉类产品中抗生素检测严格,一旦含量过不了关,就要在当地销毁。 相关专题:聚焦“速成鸡”事件——饲料中抗生素检测
  • 坛墨质检多个质控样荣获国家一级标物编号
    p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 仪器信息网讯 /span /strong span style=" font-family: 宋体, SimSun " & nbsp 国内食品行业问题频出,为了保障食品质量安全,食品标准物质在产品检验和质量控制中不可或缺。由于食品基质复杂,使得许多食品单纯采用纯品标准品已难以满足校准检测体系要求,需结合基体标准物质& nbsp 进行校准。与纯品标准物质相比,基体标准物质为目标化合物和基体结合,与真实检测样品更一致,可以保障测试结果的准确性和质量控制的有效性。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 近日,坛墨质检31个基体质控样产品,荣获国家一级标物编号及证书。据了解,一级标准物质,一般都可以用绝对测量法或者是两种以上不同原理的方法对其他物品进行准确可靠的定值。一级标准物质的准确度通常都具有国内的最高水平的,它的均匀性也会很好的保持在准确度范围之内。此外,一级标准物质其稳定性需要保持在一年以上,要求及其严苛。 /span /p p br/ /p
  • 卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)
    卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用范围的规定,经审查,食品添加剂过氧化苯甲酰、过氧化钙已无技术上的必要性,现决定予以撤销并公告如下:   一、自2011年5月1日起,禁止在面粉生产中添加过氧化苯甲酰、过氧化钙,食品添加剂生产企业不得生产、销售食品添加剂过氧化苯甲酰、过氧化钙 有关面粉(小麦粉)中允许添加过氧化苯甲酰、过氧化钙的食品标准内容自行废止。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至保质期结束。   二、面粉生产企业和食品添加剂生产企业要按照本公告要求依法组织生产经营,做好自查自纠工作。相关行业协会要加强行业管理和行业自律,引导企业不断规范面粉和食品添加剂生产经营活动。   三、各级食品安全监管部门要加大监督执法力度,加强食品安全监督检查,依法查处将过氧化苯甲酰、过氧化钙作为食品添加剂进行生产、销售和使用的违法行为。   特此公告。   卫生部   工业和信息化部   商务部   国家工商总局   国家质检总局   国家粮食局   国家食品药品监管局   二○一一年二月十一日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制