当前位置: 仪器信息网 > 行业主题 > >

埃氏慢生根瘤菌

仪器信息网埃氏慢生根瘤菌专题为您提供2024年最新埃氏慢生根瘤菌价格报价、厂家品牌的相关信息, 包括埃氏慢生根瘤菌参数、型号等,不管是国产,还是进口品牌的埃氏慢生根瘤菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合埃氏慢生根瘤菌相关的耗材配件、试剂标物,还有埃氏慢生根瘤菌相关的最新资讯、资料,以及埃氏慢生根瘤菌相关的解决方案。

埃氏慢生根瘤菌相关的资讯

  • Science | 细菌中Gasdermins蛋白揭开细胞死亡的进化起源
    Gasdermin蛋白是人类细胞中在细胞膜上打孔,释放免疫因子并诱导细胞死亡的关键因子。Gasdermin打孔的机制是由caspase介导的,在炎性小体信号传导过程中触发,对防御病原体和癌症至关重要【1】。人类中Gasdermins家族由六个成员组成,GSDMA–GSDME以及pejvakin。但是各种各样的Gasdermin蛋白在进化上的起源以及生物学作用仍然不甚清楚。为此,美国哈佛大学医学院Philip J. Kranzusch研究组与以色列魏茨曼研究所Rotem Sorek研究组合作在Science发文题为Bacterial gasdermins reveal an ancient mechanism of cell death,揭开了细胞焦亡作为细菌以及动物中共有的一种古老的、调节细胞程序性死亡的方式。通过序列分析,作者们发现与哺乳动物Gasdermin蛋白相似不同50个细菌来源的蛋白,其中作者们测定了来自慢生根瘤菌嗜热菌(Bradyrhizobium tropiciagri)和Vitiosangium sp的bGSDMs的晶体结构,结果显示bGSDMs的总体结构都是共享的,与哺乳动物Gasdermin N末端结构具有显著的同源性(图1)。晶体结构分析同时也显示在哺乳动物Gasdermin蛋白中C末端结构,会维持该蛋白处于一种自我抑制的状态;虽然bGSDMs中没有与哺乳动物中Gasdermin蛋白C末端结构相似结构,但是仍然具有自我抑制结构特征(图1)。图1 对细菌来源的Gasdermin蛋白进化保守型以及结构分析随后,作者们想知道bGSDMs在细菌系统中是否有抗噬菌体的功能,作者们发现bGSDMs对大肠杆菌噬菌体具有显著的抵抗性。因此,bGSDMs是细菌“防御工事”中的关键组分。另外,作者们发现bGSDM的激活会诱导细菌细胞膜的破坏,而且在其激活过程中需要蛋白酶的参与,因为引入蛋白酶靶向位点的突变会废除bGSDM的细胞毒性(图2)。图2 蛋白酶参与bGSDM的激活进一步的,作者们对bGSDM的切割过程进行探究。作者们发现bGSDM的切割需要蛋白酶的催化,但是并不需要棕榈酰化修饰。另外,通过质谱分析作者们鉴定到了古字状菌属的Runella中bGSDM的具体切割位点以及处于自我抑制状态的结构生物学基础。通过构建绿色荧光蛋白的融合蛋白,作者们对bGSDM激活的动态过程进行的监测。作者们发现在激活过程中会由弥散分布的形式变成与膜结构存在联系的点状结构,通过透射电镜的检测可以观测到bGSDM切割后会导致细胞膜完整性的破坏,并导致细胞内容物的快速释放。图3 工作模型总的来说,该工作的建立了细菌与哺乳动物中Gasdermin蛋白打孔从而导致的细胞程序性死亡的具体模型(图3),证明了细菌中bGSDM系统可以发挥防御作用,并且该作用依赖于蛋白酶的参与,该工作将有助于深入了解细胞焦亡的具体作用机制以及在进化上的起源。原文链接:https://www.science.org/doi/10.1126/science.abj8432
  • 2021“中国高等学校十大科技进展”揭晓
    近日,由教育部科技委组织评选的2021年度“中国高等学校十大科技进展”结果揭晓。据不完全统计,截至目前,至少有7所高校官宣入选消息。1、哈尔滨工业大学:天问一号火星探测器形状记忆智能展开结构技术冷劲松院士团队自主设计并研制的中国国旗锁紧展开结构,历经202天地火转移轨道飞行和93天环绕探测,飞行4.75亿公里后,于2021年5月15日在天问一号着陆器上成功完成了中国国旗可控动态展开,为中国探测器在火星上打上“中国标识”,使我国成为世界上首个将形状记忆聚合物复合材料智能结构应用于深空探测工程中的国家。“着巡合影”图,红框处为形状记忆锁紧展开结构可控展开的国旗中国国旗锁紧展开结构释放国旗展开,左图为锁紧状态,右图为展开状态  未来,形状记忆智能结构技术有望应用于空间站、探月工程、载人登月、深空探测等航天领域,在航空、机器人、智能制造、生物医疗及汽车等领域也具有广泛的应用前景。2、中国地质大学(北京):白垩纪松辽盆地国际大陆科学钻探白垩纪(距今约1亿4500万年前至6600万年前)是地质历史中典型温室气候时期,研究白垩纪气候—环境变化的规律、机制及其对生物圈的影响,可为科学预测未来全球变化提供参照。在科技部、国际大陆科学钻探计划和中国地质调查局等部门的资助下,王成善院士领导的科研团队经过十余年的科学研究与技术攻关,成功完成“白垩纪松辽盆地国际大陆科学钻探”项目,在白垩纪陆地温室气候、环境演变等研究领域达到国际先进水平。白垩纪松辽盆地国际大陆科学钻探获取了国际上最连续、最完整,总长度达8187米的白垩纪陆相地质记录,打破了国际大陆科学钻探四项工程纪录;建立了陆相白垩系高分辨率年代地层框架并成为陆相白垩系年代格架对比标准;揭示了白垩纪恐龙时代陆地气候演变规律,对认识地球温室气候历史和当前全球气候变化具有重要的科学价值。从2006年至2021年,项目实现了“三井四孔、八千米取心、钻穿松辽盆地、获取连续陆相白垩系”的目标。成果在国内外产生重大影响,入选中国共产党历史展览馆、国家博物馆、伟大的变革—庆祝改革开放40周年大型展览;被国际大陆科学钻探计划誉为“灯塔”工程,并被Nature和Science杂志长篇幅报道。王成善院士(中)在松科二井现场3、福州大学:柔性高分辨X射线成像技术研究医学影像设备元器件与光刻机、芯片等被列为“卡住中国脖子的35项技术”之一。其中,X射线成像设备在医学、安检、国防等领域均有广泛且重要的应用。柔性X射线成像设备具有质薄、柔软、可弯曲和易携带等优势,具有更多的应用场景和灵活性。然而,制造大面积、柔性的薄膜晶体管阵列、非晶硅光电转换层以及闪烁体层仍存在巨大的技术挑战,柔性X射线成像设备的开发还未取得突破。针对柔性X射线成像技术存在的关键科学技术难题,该研究开发了长寿命X射线发光的新型稀土纳米晶闪烁体,实现了超过30天的X射线光子记忆。该研究还发现了高能量X射线光子与氟原子晶格的光电效应现象,提出了Frenkel缺陷态发光的X射线能量转换机制,发明了X射线发光扩展成像(Xr-LEI)的新原理,成功地开发了柔性高分辨X射线成像新技术和新仪器。该研究是继福州大学杨黄浩团队在低剂量、高分辨X射线平板成像技术(Nature 2018, 561, 88)之后取得的又一项标志性成果(Nature 2021, 590, 410),成功地突破了传统X射线成像技术的固有限制,在国际上率先研发出柔性高分辨X射线成像技术,抢占柔性X射线成像产业的制高点,将有力地推进高端X射线影像装备的国产化。我国高端X射线影像设备及关键零部件依赖进口的局面有望改观。柔性高分辨X射线成像技术课题组4、河南大学:光诱导的信号调控大豆共生结瘤机制共生固氮是自然界生物可用氮的最大天然来源,影响着农业和自然生态系统中的初级生产和碳汇,在绿色农业发展中占有重要地位。豆科植物进化出根瘤来容纳根瘤菌在其中进行共生固氮,这是一个高耗能的过程,光被认为是驱动自然生态系统中共生固氮的主要因素。但光合产物和光信号如何调控豆科植物根瘤固氮的机制,一直是豆科植物共生固氮领域的未解之谜。王学路教授研究团队发现光合产物和光信号在调控共生结瘤过程中的不同作用,揭示了CCaMK-STF-FT模块整合地上光信号和地下共生固氮信号,调控根瘤形成的机制。研究结果2021年10月1日以Article形式在《Science》正式发表,提出了植物地上-地下协同发育的新机制,为设计在弱光条件下也可以共生固氮的新型植物提供了关键技术手段,为优化农业中碳-氮平衡提供了新思路。王学路教授团队长期从事植物遗传学、植物激素信号转导及其与逆境互作,调控植物生长发育的机制研究。在我校省部共建作物逆境适应与改良国家重点实验室组建了“生物固氮和豆科生物学”团队,以豆科作物为主要研究对象,研究菌植互作的遗传、发育、分子和进化机制,并开展豆科作物品种分子设计改良。近期,该团队在大豆共生固氮领域取得了一系列研究成果。2020年12月21日,在Molecular Plant上发表研究论文,揭示大豆GSK3蛋白激酶磷酸化共生关键转录因子NSP1,介导盐胁迫抑制豆科植物-根瘤菌共生的分子机制。该研究加深了我们对盐胁迫调控结瘤固氮的分子机制的了解,为改善大豆和其他豆类在环境胁迫条件下的共生固氮能力提供了可供改造和利用的目标基因。2021年1月15日,在Nature Plants上发表研究论文,揭示大豆与根瘤菌共进化过程中,根瘤菌由裂隙侵染向根毛侵染方式转化的遗传、分子和进化机制,这种侵染方式的转变对于增强大豆共生固氮能力和提高大豆产量起到了重要作用。该研究不仅揭示了在大豆与根瘤菌互作过程中宿主与寄主匹配性的遗传和分子机制,而且阐释了根瘤菌与大豆共进化过程中,根瘤菌由裂缝侵染演化成高效的根毛侵染过程的重大分子事件,也为大豆高效固氮的分子设计育种提供了重要理论依据和目标基因。2022年2月17日,在New Phytologist发表研究成果,揭示了根瘤菌侵染触发大豆共生根瘤细胞核内复制的机制。该研究不仅为深入研究根瘤菌和共生固氮领域的诸多问题提供了重要的启示,而且也为研究核内复制在植物发育过程中的作用提供了一个范式。5、南京工业大学:高效稳定钙钛矿光伏器件研究基于全球能源结构的转变,日益突出的气候变化问题加速了世界经济向低碳化方向发展。以“光伏”为代表的可再生资源能源发展逐渐开始成为“双碳”战略的主力军。钙钛矿光伏具有性能优异、成本低廉等突出特点。与传统的硅基和无机薄膜光伏相比,最大的优势在于溶液可加工性和巨大的商业价值。是光伏领域发展的重要方向之一。受到学术界和工业界的高度关注。提出了作为一种用质子通过离子进行液体溶剂可以替代中国传统不同极性非质子溶剂制备钙钛矿薄膜的新方法,实现了在空气中制备提供高质量钙钛矿薄膜;探索研究离子液体前驱体溶液以及化学结构调控新策略,稳定一个二维层状钙钛矿骨架,制备相纯二维层状钙钛矿薄膜,实现对于二维层状钙钛矿稳定性的突破;开发了学生一种利用离子液体体系构建“离子主要通道”反应的新方法,降低了企业反应势垒消除,在室温和高湿度下形成了社会稳定的甲脒基钙钛矿薄膜,从而产生了更加高效发展稳定的钙钛矿光伏电池。这一系列突破性成果将有助于推动钙钛矿光伏电池产业化进程,在清洁能源自主可控、高效利用和可持续发展方面具有重要意义。6、中国科学技术大学:稀土离子实现多模式量子中继及1小时光存储量子不可克隆定律基于物理学原理赋予量子通信安全性。这一规律也决定了传统放大器无法克服光子传输损耗,使得长距离量子通信成为当今量子信息科学的核心问题之一。在量子中继方面,现有的国际实验进行研究方法主要通过集中在发射存储器的架构上,不能同时可以满足确定性发光和多模复用这两个关键信息技术企业要求。中国科学技术大学郭光灿院士团队李传锋、周宗权研讨团队研发出基于稀土离子掺杂晶体的高性能固态量子存储器,并在上述两条技术路线上取得重要进展,实现了 基于多设备吸收的存储器。模式量子中继,并成功将光存储时间提高到1小时。7、广州医科大学:新型冠状病毒感染的防控、临床诊治及机制研究2020年1月20日,钟南山院士与央视连线表示新冠病毒存在“人传人”。面对突发的新冠疫情,钟南山院士作为我国呼吸疾病领域领军人物,组建多学科协作攻关团队,在新冠肺炎机制研究、防控策略与临床诊治等多方面取得重大创新性突破,为疫情阻击战及常态化防控提供了关键性理论依据及技术支持。经过广医一院医护团队的精心救治,全球使用体外膜肺氧合(ECMO)时间最长的新冠肺炎患者康复出院。图为钟南山院士等专家在ICU探望该患者。团队专家除了支撑本地病人的救治,还为国内外提供支援,在ICU承担危重症、重症病人的救治任务。图为支援武汉协和西院ICU医疗队与钟南山院士等专家远程视频会诊。团队系统阐明新冠病毒的传播特点及进化变异规律;率先揭示Delta变异株在国内的传播特征和动力学特点,创新提出大规模核酸检测及重点人群追踪的关键策略。构建了全球首个非转基因COVID-19小鼠模型,系统阐释免疫机制在COVID-19的作用。在临床防治上,创新研发新冠病毒快速采样和检测技术,建立大规模战时检测平台;提出系列创新性治疗方法。率先构建基于大数据和人工智能、多学科交叉的预测预警平台,有效提高防控精准性。团队牵头参与制定我国新冠肺炎诊疗方案及系列行业相关诊疗指引,为疫情防控和临床救治提供指导;钟南山院士担任世界卫生组织“大流行防范和应对独立小组”成员,参与制定评估全球应对新冠疫情的工作报告。团队对新冠病毒开展科研攻关
  • 来因科技新品|根系分析仪参数介绍
    一、 根系分析仪用途:IN-GX02根系分析系统是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。来因科技根系分析仪产品链接→https://www.instrument.com.cn/show/C363158.html二、 根系分析仪原理:IN-GX02根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。本软根系分析软件可以读取TIFF,JPEG标准格式的图像。针对获取的图像,利用插入加密狗解密的软件,对扫描获得的高质量根系图像进行分析。采用非统计学方法测量计算出交叉重叠部分根系长度、直径、面积、体积、根尖等基本的形态学参数。从而满足研究者针对植物根系不同类别和层次的研究。三、根系分析仪技术指标:1、配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。根系反射稿幅面为355.6mm×215.9mm,透扫幅面为320.0mm×203.2mm,最小像素尺寸0.005mm×0.0026 mm。2、可分析测量:(1)根总长;(2)分支频率;(3)根平均直径;(4)根直径中值;(5)最大直径;(6)根总面积;(7)总投影面积;(8)根总体积;(9)根尖计数;(10)分叉计数;(11)交叠计数;(12)根直径等级分布参数;(13)可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积 等,及其分布参数。(14)能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。(15)能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度、面积、体积等,可单独显示标记根系的任意直径段相应各参数(可不等间距地自定义)。(16)能用盒维数法自动测根系分形维数。可分析根瘤菌体积在根系中的占比,以客观确定根瘤菌体贡献量。(17)大批量的全自动根系分析,对各分析结果图可编辑修正。(18)能做根系生物量分布的大批量自动化估算。(19)向地角分析、水平角分析、主根提取分析特性。(20)各分析图像、分布图、结果数据可保存,并输出至Excel表,可输出分析标记图。(21)仪器有云平台支持,可将分析数据保存到云端随时随地查看。四、根系分析仪图像扑捉系统参数扫描元件: 6线交替微透镜CCD最大幅面: A4接口类型: USB2.0光学分辨率(dpi): 6400x9600dpi最大分辨率12800×12800dpi最小像素尺寸≥0.005mm×0.0026 mm扫描光源白色冷阴极荧光灯CCFL、色彩位数48位扫描范围216×297mm扫描速度反射稿、A4、300dpi:单色11秒,彩色14秒胶片扫描、35mm,2400dpi:正片:47秒,负片:44秒五、根系分析仪标准配置1、植物根系分析系统软件U盘及软件锁1套2、光学分辨率4800×9600、A4加长的双光源彩色扫描仪1台3、根系成像盘3个六、根系分析仪其他1、本产品需使用电脑,推荐选配:品牌电脑(酷睿i5九代以上CPU / 16G内存/ 21.5”彩显/无线网卡,4个以上USB2.0口,运行环境Windows 10完整专业版或旗舰版)。2、可选配A3幅面双光源彩色扫描仪。反射稿扫描幅面305mm × 431.8mm,根系透扫幅面304.8mm × 406.4 mm。
  • 第十一届全国土壤微生物学术讨论会在长沙举行
    记者从10月19日在长沙举行的第十一届全国土壤微生物学术讨论会上获悉,目前中国农业微生物领域在农用微生物资源、重要农用微生物功能基因组研究和微生物修复三方面的研究已取得突破性进展。   据中国微生物学会秘书长肖昌松介绍,目前中国微生物各类种资源建设已跨上一个新台阶。中国收集、保藏、鉴定的菌种库藏资源达15000余株以上,位列世界第三。其中根瘤菌资源库库藏资源数量和农药残留微生物降解菌种资源库为世界最大。   重要农用微生物功能基因组研究也揭开序幕。目前世界上大约有40多株固氮微生物完成了全基因组分析,其中2008年中国农科院等单位已经将施氏假单胞菌全基因组分析,这是国际上第一例联合固氮微生物基因组序列分析。华中农业大学等单位也已完成对绿僵菌和白僵菌的全基因组测序。   土壤微生物修复方面也取得显著进展。南京农业大学分离鉴定了多株高效降解菌株,建立了目前国内最大的农药残留微生物降解菌种资源库。筛选出农药残留微生物降解菌500余株,其中高效微生物降解菌40余株。   据悉,本次会议以农业土壤微生物“学科创新与产业发展”为主题,研究十二五期间农业微生物学科发展和推进以微生物肥料为核心的农业微生物产业的创新。
  • 2016年度技术不是CRISPR,竟然是它!
    在2016年的最后一个工作日,Nature Methods赶着发布了2017年的新刊,并在其中公布了2016年度技术,你们肯定会猜年度技术就是CRISPR系统,然并卵,对于前瞻性的每年盘点的年度技术来说,一个并不常见的名词:Epitranscriptome analysis(表观转录组学分析)才是正解。  2006年,Andrew Fire和Craig Mello因发现RNA干扰而荣获诺贝尔生理学和医学奖。他们的发现引发了针对非编码RNA功能的狂潮,而这一直持续到今天。关于RNA分子本身是如何调节的一个新出现的问题就是:具体来说,在所有RNA种类中发现的转录后修饰的功能是什么?  近年来主要由基于测序的方法引发的技术突破成就了表观转录组学分析,即在全基因组范围内分析这种RNA修饰,并且已经指出了表观转录组的一些重要功能作用。  Epitranscriptome analysis名称是由希腊语“epi”作为前缀,指的就是除开已知功能或遗传性,任何添加到核苷酸上的修饰。几十年来,科学家们几乎都没有注意到RNA修饰,因为早在上个世纪60年代和70年代RNA上的标记就被发现了,但是大家只关注于tRNA和rRNA,以及DNA上的表观遗传修饰。  但随着科学家们发现了出现在所有RNA种类中的化学标记,动态添加或者去除这些标记的“写手”和“橡皮擦”,重新点燃了对RNA修饰的兴趣。例如,从腺嘌呤上去除一个甲基基团的酶,与阿尔茨海默症患病风险之间的关联,表明了这种修饰在神经健康方面扮演了重要调节作用。  RNA修饰和癌症之间的联系促使NIH批准了一项研究资助:利用新的工具和技术评估癌症生物学中表观转录组的作用。其中之一就是利用CRISPR系统靶向RNA标记修饰(详情)。  总体来说,这些功分析研究还处于起步阶段,而且为了了解这些标记做了什么,首先必须确定它们的丰度和位置。  有上百个已知RNA修饰,我们可以通过,这是一种列出所有已知修改的数据库。但是这一领域仍处于不断完善阶段,需要开发新方法来发现和编撰这些修饰。同期Nature Methods中,一些研究人员介绍了检测常见修饰的最新方法,例如,假尿苷和肌苷。  当然还需要更进一步的研究,专家们也对如何解决目前的瓶颈持不同的意见。许多方法依赖于以抗体为基础的样品富集,但是这会出现非特异性困扰。因此,一些研究人员转向新的测序技术,如纳米孔或PacBio的单分子测序技术,从而获得修饰的直接测序结果。  对于其它标记,例如假尿苷(pseudouridine),可以采用更好的化学标记方法进行富集,得到更全面的特性图像。研究人员发现在cDNA合成期间,如果遇到核苷酸上的某些化学基团,逆转录酶就会失活,并通常会停止下来,这样得到的独特读长标记可以用于分析,而且采用恰当的软件就能同时分析出多种类型的修饰。此外,对于像是适当的计算方法分析密码子变化。不可能有匹配各种修饰的方法,多种方法齐头并进看起来最能有效分析RNA上的整体化学修饰。还有更大问题——遗传性,也将得到逐步的解决。  尽管还存在许多缺口,但是RNA研究显然已经取得令人印象深刻的研究成果,而且目前国内也有一些公司推出了相应的技术产品,如上文说到的PacBio第三代测序技术,近期生物学预印网站BioRxiv公布了一项斯坦福大学的最新成果,研究人员在PacBio Sequel系统上进行了全基因组测序,精确检测出二代测序无法判断的缺失断裂点(详情)。还有Frontiers in microbiology上的研究指出,利用PacBio SMRT测序技术可以能够直接检测碱基修饰:对根瘤菌进行了完整组装,并且一共发现5个甲基化motif,包含43,061个甲基化位点。  新年相信还会有更多的技术上和研究上的进展,让我们一起期待。
  • 解读《关于β-1,3/α-1,3-葡聚糖等6种“三新食品”的公告》
    一、新食品原料(一)β-1,3/α-1,3-葡聚糖β-1,3/α-1,3-葡聚糖是以蔗糖为主要原料,经普沙根瘤菌(Rhizobium pusense)发酵、醇沉、过滤、分离、干燥、粉碎等工艺制成。β-1,3/α-1,3-葡聚糖是由7个β-1,3-D-葡萄糖和2个α-1,3-葡萄糖相互连接而成的9个D-葡萄糖为重复单元构成的直链多糖。本产品中β-1,3/α-1,3-葡聚糖含量为≥90 g/100g。由酵母、燕麦、大麦等来源的β-葡聚糖目前作为食品原料或食品添加剂已在美国、澳大利亚、日本等多个国家被批准使用。我国于2006年批准以β-1,3-葡聚糖为主要成分的可得然胶作为食品添加剂,2010年和2014年分别批准酵母β-葡聚糖和燕麦β-葡聚糖为新食品原料。β-1,3/α-1,3-葡聚糖的推荐食用量为≤3克/天。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,审评机构依照法定程序,组织专家对β-1,3/α-1,3-葡聚糖的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于β-1,3/α-1,3-葡聚糖在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)二氢槲皮素二氢槲皮素(Dihydroquercetin)是多种植物中存在的一种二氢黄酮醇类化合物。本产品是以人工种植的长白落叶松的根部为原料,经去皮、撕裂处理,进行提取、浓缩、醇沉、上清液浓缩、萃取、再浓缩、结晶、离心分离、冷冻真空干燥、粉碎过筛等工艺制成。欧盟已批准落叶松来源的二氢槲皮素为新食品原料,俄罗斯已批准二氢槲皮素作为食品原料和食品添加剂使用。本产品推荐食用量为≤100毫克/天(即含量为90%的二氢槲皮素推荐食用量为100毫克/天,超过该含量的按照实际含量折算)。使用范围和最大使用量:饮料(20mg/L),发酵乳和风味发酵乳(20mg/kg),可可制品、巧克力和巧克力制品(70mg/kg)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对二氢槲皮素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。二氢槲皮素在婴幼儿、儿童(14岁及以下)、孕妇、哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)鼠李糖乳杆菌MP108鼠李糖乳杆菌MP108(Lactobacillus rhamnosus MP108)从健康幼儿肠道分离得到,菌粉性状为白色至微棕色粉末。含有该菌株的产品已在澳大利亚生产并上市,可用于婴幼儿食品。国内外开展的多项婴幼儿临床研究证明,该菌株具有较好的食用安全性。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对鼠李糖乳杆菌MP108的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌株原料的食品安全指标应符合我国相关标准。(四)拟微球藻(Nannochloropsis gaditana)拟微球藻(Nannochloropsis gaditana)属于单胞藻科拟微球藻属,藻体微小,通常为绿色或黄绿色。含有该藻的食品在美国、智利、加拿大等国家有销售。该藻含有蛋白质、二十碳五烯酸(EPA)等营养成分,其推荐食用量为≤2克/天(以干品计)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对拟微球藻(Nannochloropsis gaditana)的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于拟微球藻(Nannochloropsis gaditana)在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照我国现行食品安全国家标准中食用藻类的规定执行。二、食品添加剂新品种(一)蛋白酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的蛋白酶申请作为食品工业用酶制剂新品种。法国食品安全局、美国食品药品管理局、丹麦兽医和食品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,水解蛋白。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。(二)磷酸肌醇磷脂酶C1.背景资料。荧光假单胞菌(Pseudomonas fluorescens)来源的磷酸肌醇磷脂酶C申请作为食品工业用酶制剂新品种。美国食品药品管理局和巴西国家卫生监督局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,用于食用植物油脂的脱胶。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。
  • 韩春雨团队研发新款RNA示踪工具,能更清晰地看到RNA
    近日,河北科技大学生物科学与工程学院教授韩春雨,研发出一款 RNA 示踪工具,借此能更清晰地看到 RNA。图 | 韩春雨(来源:韩春雨)1 月 21 日,相关论文以《基于 Cas 6 的荧光激活模式 RNA 跟踪平台》(A Cas6-based RNA tracking platform functioning in a fluorescence-activation mode)为题,发表在 Nucleic Acids Research 上( IF 值 16.97)[1]。图 | 相关论文(来源:Nucleic Acids Research)“如果补充一些应用实验,应该能发在更好的期刊上”据悉,韩春雨实验室一直关注基因编辑相关的蛋白,包括 Cas 家族和 NgAgo。基于对蛋白的研究和认识,他打算把 Cas6 开发成一种示踪工具。在该研究中,韩春雨发现了一个分子开关,由此他推测 Cas6 结合 CBS(Cas6 binding site)可以发生构型变化。利用这一新现象,他解决了 RNA 示踪的相关问题。(来源:Nucleic Acids Research)目前,活细胞 RNA 追踪技术分为两类:荧光富集型和荧光激活型。在富集型技术中,MS2-MCP 系统被广泛采用,其中最新的富集型则又分为 Cas9 和 Cas13a。但是,所有富集型分子都有高背景荧光,因为其自身就是全活性的荧光分子,因此,这些分子在不结合靶标 RNA 的时候也会发光,故会产生较高的背景噪声。激活型分子在不结合 RNA 时不会产生荧光,这是基于双分子荧光互补的原因。而基于 MS2 系统的双荧光、或三荧光互补系统,需要非常长的标签才能激发荧光。该研究的最大亮点在于利用一个单位的标签即一个 CBS,即可实现荧光激发。而且它非常小,只有 29nt(碱基)。该技术的优点在于,在使用最少标签的同时,不会影响靶 RNA 的活性,同时 Cas6 本身也很小,是非常好的 RNA 示踪工具。(来源:Nucleic Acids Research)关于该论文,韩春雨最初在 bioRxiv 上发表过,当时还只是比较初级的结果。预印本发表后,该团队又对该论文作了更新。期间,韩春雨也尝试过连接片段的设计、以及 Cas 家族的其它分子,效果甚至比 Cas6 都要好。对于该成果的潜在应用,韩春雨表示有很多。他说,本次研究可以认为是基因编辑工具的一个分支,通过他对该领域的理解,可以把其做成一个好用的工具。(来源:Nucleic Acids Research)就新冠病毒来说,它其实就是一个 RNA 病毒。如果想针对这种病毒开发药物或疫苗,或者针对 RNA 病毒做技术上的其它应用,首先就得深入研究 RNA 病毒的特征包括生物活性等。而此次研发的 RNA 示踪工具,相当于可直接看到 RNA。(来源:Nucleic Acids Research)他坦言,之前自己团队研发的 Cas9 和 Cas13,体积非常大,并且属于荧光富集型分子,虽然论文发表在影响力更大的期刊上,但是应用受到了限制。不过,他认为其实验室的特点,在于对基因编辑工具和相关内容的认识程度比较深。同时,他表示实验室目前规模比较小,人力物力都还不够,所以只能把精力先放在重要的事上。“像这篇论文基本讲得都是干货,原理性的东西比较多。如果补充一些应用实验,比如示踪外泌体中 RNA 的,环形 RNA,或者某种 RNA 病毒,比如 COVID-19 或许能发在影响因子更高的期刊上,但是实际上我们没有精力做这个。”韩春雨表示。后续,他也会针对 Cas6FC 做进一步的改进。要知道,现在所有的 FA 型分子都存在工作温度的限制,Cas6FC 也不例外,要求接近工作温度不低于 30℃;温度太高也不行,打个比方,这类似于鸡蛋煮熟的话肯定没有活性,而被冷冻得过度时也会失去活性。对于 Cas6FC 来说,现在的工作温度和以往的 FA 型没有太大区别。所以,韩春雨打算继续拓宽工作温度,争取可以到 25℃或者更低。只有这样,才能让研究植物、微生物和真菌的学者,更好地应用该工具。Cas6FC 的论文早在 2019 年 7 月就已发布预印本,直到 2022 年才发表,提及此,韩春雨表示其实验室主要做和基因编辑相关的工具开发,分子开关占一大块,NgAgo 的相关工具则是另一大块。但是,有一段时间实验室甚至没有招生,直到最近才招了一两届硕士生,课题组一共有六七个人。再加上同时负责几个课题,所以进度就比较慢。他说:“人少、经费也有限,本次研究的支撑资金只有河北省的 50 万元。实验设备跟一些特别好的实验室依旧没法比。因此这次能发到一个高影响因子的期刊上也很不容易。”几年前首提 NgAgo,如今再出新成果NgAgo,是最早由韩春雨提出的新型基因编辑技术。最近,他也做了一些 NgAgo 相关的工作,目前论文预印本已发表在 bioRxiv 上[2],同时也正在申请专利。图 | 相关论文(来源:bioRxiv)Argonaute 蛋白的特点,在于可以结合 guide DNA/RNA(引导 DNA 或者引导 RNA,通常为 20nt 左右的单链寡核苷酸)形成 Ago-guide 复合体,高效高保真的结合与 guide 同源的目标核酸。利用 Ago 蛋白这一特性,韩春雨团队利用百脉根(Lotus japonicus)中慢生 根瘤菌来源的 Ago 蛋白(MejAgo)设计了 MejAgo-PCR 平台。该平台的 PCR 引物(primer)同时扮演 guide DNA 的角色,与 Ago 结合形成复合体后,被高效高保真的引导结合在模板 DNA(靶DNA)上;引物或者 guideDNA 暴露的 3’端则继续引发 DNA 的聚合反应(PCR)。(来源:bioRxiv)据悉,Mejago-PCR 平台的每个反应周期都包括一个变性步骤和一个聚合酶介导的延伸步骤,省略了传统 PCR 所需的退火步骤。更重要的是,MejAgo-PCR显著提高了 PCR 的灵敏度:文章显示,Ago-PCR 比传统的 PCR 在灵敏度上提高了两个数量级(100倍),达到了单分子级别。因此,Ago-PCR 具有更高的灵敏度和效率。在实验室的后续整体方向上,韩春雨打算继续完善示踪工具,即希望在低温下也能正常工作。从现在哺乳动物细胞的实验来看,只要注意温度,Cas6 效果是非常好的。在此次发表的正式论文中,该团队做了原位杂交的对照实验,结果发现原位杂交可以做到单分子。而 Cas6FC 的荧光强度跟原位杂交基本相同,甚至可以把它开发成单分子工具,前提是让它克服低温挑战。(来源:bioRxiv)另一方面,他仍将专注于 NgAgo 工具的开发。“很多人不是非常理解我为什么做工具,就好比说手机芯片非常重要,而生产手机芯片的工具是光刻机。所以如果你想研究光刻机,需要掌握知识更多。同样的,为了做成 NgAgo 工具,并且让工具好用,对于相关技术和知识的了解也需要更深入。以 Cas6FC 为例,别人看就是一个分子,但它背后有着复杂的理论支持。”韩春雨分析称。参考:1、Gao, F., Zheng, K., Li, Y. B., Jiang, F., & Han, C. Y. (2022). A Cas6-based RNA tracking platform functioning in a fluorescence-activation mode. Nucleic Acids Research.2、Gao, F., Han, B., Chen, Y., Sun, F., Yang, J., & Han, C. Y. (2022). Introducing an argonaute-facilitated PCR platform. bioRxiv.
  • 深圳先进院发展出可容错编码的序贯荧光原位杂交技术
    3月17日,中国科学院深圳先进技术研究院合成微生物组学研究中心、深圳合成生物学创新研究院戴磊课题组,在《自然-通讯》(Nature Communications)上,发表了基于成像的空间微生物组最新研究成果(Spatial profiling of microbial communities by sequential FISH with error-robust encoding)。   该团队发展了一种可容错编码的序贯荧光原位杂交(SEER-FISH)技术,用于解析复杂微生物群落的空间结构。该方法可识别复杂群落中的不同微生物物种,在单细胞尺度上原位解析微生物物种之间以及微生物-宿主之间的相互作用,是探究微生物群落的生态和功能的重要工具。   自然界中的微生物群落具有丰富的物种多样性。各种微生物独特的生存方式和相互作用关系构成了群落特定的空间结构。尽管现有的高通量测序技术能够描绘微生物群落的物种组成及丰度,但缺乏解析群落空间结构的有力工具。由于传统荧光显微成像技术可分辨的物种数量受限于荧光基团的颜色种类,绘制高物种分辨率的复杂微生物群落的空间结构颇具挑战性。   基于此,研究发展了新的SEER-FISH成像技术并将其用于复杂微生物群落,在微米尺度上绘制了拟南芥根系定植的微生物群落的空间分布,观测到不同物种在根表上的空间异质性定植以及在受到宿主代谢物扰动后的空间分布变化和物种空间关联改变。SEER-FISH技术可以精准解析复杂微生物群落的空间结构,为探讨植物根际、人体肠道等宿主共生微生物组的生态规律和生理功能提供了有力工具。   SEER-FISH通过序贯荧光原位杂交的方式实现微生物群落空间结构的解析。它的工作原理是为每种微生物分配特定的多色编码,每轮使用带有相应颜色荧光基团的寡核苷酸探针来标记对应的微生物,再通过多轮荧光原位杂交成像获取每个细胞的多色编码,从而确定其对应的物种(图1a-c)。该团队进一步对编码进行优化,使用不同汉明距离(HD,hamming distance)的纠错编码可以提高物种准确识别率,且具有高度的可扩展性(图1d)。   研究在不同微生物群落的体外成像实验中对SEER-FISH技术进行系统评估。实验验证了该方法对群落组成识别的准确性和可重复性,能够准确量化群落物种组成的变化(图2a-c),使用不同的编码方案所得到的群落组成高度一致(图2d-f)。   植物根际定植着高度多样的微生物群落。它们既受到植物宿主的调控又影响植物的生理健康。然而,科学家对于根际微生物群落的空间结构却鲜有研究。研究将SEER-FISH应用于根表微生物的空间成像,勾勒了不同生理分区分布定植的微生物群落组成 (图3a-c)。   研究发现,定植在根表的微生物群落并非随机分布,而是倾向于形成聚集体。这些微生物聚集体的尺度在几十到几百微米,并存在多个物种(图3d-f)。微生物聚集体的形成的具体原因有多种假说,包括偏好性定植、提高在根际环境下的适应性等。此外,研究通过对群落中的微生物进行邻近关系分析,发现了显著的菌-菌空间关联(图3g)。   通过外源添加拟南芥根际分泌的代谢产物植保素(camalexin)和香豆素(fraxetin),研究发现根际微生物的组成和空间分布均发生了显著变化(图4a-c)。例如,中华根瘤菌主要定植于靠近根尖的位置,而这种偏好性的定植在加入植保素和香豆素后发生改变(图4d)。农杆菌本身在根上的定植没有偏好性,但在受到香豆素扰动后表现出更多的定植于根成熟区(图4e)。根际微生物空间分布的高度异质性和物种之间的差异,与环境异质性、微生物本身的特性均有关。   研究进一步对定植微生物的空间关联进行分析,发现植保素和香豆素均不同程度地影响改变了物种之间的空间关联(图4f)。微米尺度下的空间关联暗示了微生物群落中不同物种之间广泛存在的短程相互作用(如营养竞争与互养、接触抑制、群体感应等),对于进一步的机制研究有重要的指导意义。   研究工作得到国家重点研发计划、国家自然科学基金、广东省自然科学基金及深圳合成生物创新研究院的支持。
  • 河南大学科研团队揭示光信号调控根瘤形成的机制
    10月1日,国际著名期刊《Science》长文刊登河南大学王学路团队的最新研究成果。该项成果是由我省科研团队主导并发表在《Science》上的第一篇研究论文,是该领域在国际上的重大突破。2019年10月,在河南大学生物学一流学科支撑下,省部共建作物逆境适应与改良国家重点实验室获批成立。同年12月,王学路教授加盟河南大学。“河南省在国家现代农业发展中的突出地位以及河南大学国家重点实验室良好的平台和环境是我们团队选择河南大学的重要原因”,王学路说。在谈到对科学研究,原始创新的感受时,他说:“随着我研究工作的深入,越来越深刻地认识到许多‘卡脖子’问题要从根儿上解决,必须从基础研究着手。基础研究并非是‘不食人间烟火’,它解决的其实是社会未来20年或30年后我们可能会遇到的重要问题,做的是提前谋划和战略布局,所以,广大科研工作者要有前瞻的眼光,不仅要解决当下的问题,更要预测和精准把脉我们社会未来发展可能遇到的瓶颈问题,要围绕攻克关键核心技术,加大基础研究力度,努力实现前瞻性、引领性基础研究,原始创新重大突破,这也是楼阳生书记提出的发展要前瞻30年在科学研究上的体现。”王学路说:“我们将瞄准国际学术前沿,围绕国家和黄淮海地区现代农业发展重大战略需求,以一流课题为牵引,吸引汇聚优秀人才,建成一支在生物固氮和豆科生物学领域,创新活力旺盛、引领学术前沿、奋力拼搏、满足地方需求的卓越创新团队,为建设国家创新高地、服务地方经济社会发展做出应有贡献。”
  • 基金委与英国皇家学会合作交流项目初审结果公布
    经过公开征集,国家自然科学基金委员会(NSFC)共收到与英国皇家学会(RS)合作交流项目191项,经初步审查并与英方核对清单,确定有效申请118项,现将通过初审的项目公布如下: 序号 学科代码 项目名称 中方申请人 中方申请人单位 英方申请人 英方合作单位 1 A011201 安全约束最优潮流的样本平均近似方法 童小娇 衡阳师范学院 Huifu Xu 南安普敦大学 2 A030101 微波背景辐射数据分析与研究 李惕碚 清华大学 Tom Shanks 杜伦大学 3 A040403 香蕉形液晶的新型光折变效应 项颖 广东工业大学 Helen Gleeson 英国曼彻斯特大学 4 A050702 短波长超短脉冲辐射自由电子激光研究 邓海啸 中国科学院上海应用物理研究所 Brian McNeil 英国斯特拉思克莱德大学物理系 5 A050202 夸克味物理的格点QCD研究 刘朝峰 中国科学院高能物理研究所 Matthew Wingate 英国剑桥大学应用数学与理论物理系 6 A040409 金属纳米线阵列的亚波长等离子体孤子的形成 叶芳伟 上海交通大学 Nicolae Panoiu 伦敦大学学院 7 A01 交互作用分枝系统与排队网络的随机建模 李俊平 中南大学 Anyue Chen 英国利物浦大学 8 A010103 主动脉夹层的分析方法和并行FEM模拟技术 聂玉峰 西北工业大学 Nicholas Hill 格拉斯哥大学数学与统计学院 9 A020311 沙质斜坡切向水流-渗流共同作用下的环境水动力研究 谢立全 同济大学 Ya-kun Guo 阿伯丁大学工学院 10 A0108 非线性守恒律及相关问题的分析 张永前 复旦大学 Gui-Qiang Chen 英国牛津大学 11 A050401 多束离子同时辐照/注入和原位表征 郭立平 武汉大学 Nianhua Peng 萨里大学离子束中心 12 A040409 高激光损伤阈值的中红外非线性光学晶体计算机辅助设计 林哲帅 中国科学院理化技术研究所 Paul Bristowe 英国剑桥大学材料系 13 A020314 使用反问题分析方法、波长扫描干涉和磁共振技术研究主动脉根部的性质 周延周 广东工业大学 Ricky Wildman 英国,拉夫堡大学 14 B061201 具有抗生物垢性能的新型纳米氧化镁复合材料制备及评价研究 宁桂玲 大连理工大学 Qi Zhao 邓迪大学 15 B0306 传感和催化中的多界面过程研究 龙亿涛 华东理工大学 Frank Marken 巴斯大学 16 B040308 新型碱性阴离子交换膜的制备及其在燃料电池中的应用 徐铜文 中国科学技术大学 John Robert Varcoe 萨里大学 17 B060306 磷酸促进型掺锆二氧化硅纳米管/聚偏氟乙烯杂化膜的研究 张裕卿 天津大学 Xianfeng Fan 爱丁堡大学 18 B05 新型纳米药物输运的方法学研究 朱俊杰 南京大学 yiming CHAO 英国东英吉利大学 19 B0103 卤化多孔超分子有机框架材料:存储与分离 吕健 中国科学院福建物质结构研究所 Martin Schrö der 诺丁汉大学 20 B070302 超声/非均相氧化体系降解有机污染物的研究 张晖 武汉大学 David Bremner 阿伯泰邓迪大学 21 B030301 类沸石多级有序骨架结构材料的合成与性能 唐颐 复旦大学 Yongde Xia 英国埃克塞特大学工程,数学和物理科学学院功能材料组 22 B060306 金属有机骨架中空纤维膜的制备及其手性分子识别和选择性分离研究 金万勤 南京工业大学 Kang Li 帝国理工学院 23 B070302 处理老龄渗滤液的垃圾生物反应器脱氮研究 谢冰 华东师范大学 Jan Dofing 纽卡斯尔大学 24 B040502 仿绿色体树枝状色素分子的光学性能机理 贾欣茹 北京大学 Yanyan Huang 剑桥大学化工与生物工程系 25 B0405 自组装形成用于靶向药物传输和可控释放纳米粒子的研究 杜建忠 同济大学 Caglar Remzi Becer 华威大学 26 B070403 镉胁迫下植物绕过DNA损伤检验点的研究 刘宛 中国科学院沈阳应用生态研究所 Dennis Francis 英国卡地夫大学 27 B020104 新型活性分子骨架的催化合成及其抗白血病活性研究 邓卫平 华东理工大学 John Fossey 伯明翰大学 28 C010201 Streptomyces jamaicensis的天然产物的化学与生物合成多样性研究虞沂 武汉大学 Hai Deng 阿伯丁大学 29 C1803 猪口蹄疫病毒CTL表位的设计和筛选 高凤山 大连大学 Yanmin Li 英国动物健康研究所Pirbright实验室 30 C040501 中国蚜小蜂科生物系统分类、DNA 条形码和生物防治的研究 黄建 福建农林大学 Andrew Polaszek 英国自然历史博物馆 31 C060502 根瘤菌比较基因组与进化 陈文新 中国农业大学 Peter Young 约克大学 32 C0606 群体感应在Serratia plymuthica与植物寄主跨界信号交流中的作用 曹军 江苏大学 Miguel Cámara 英国诺丁汉大学 33 C0402 黑暗中的演化——洞穴鱼类平行辐射的系统演化基因组学分析 赵亚辉 中国科学院动物研究所 Bernd Hä nfling 赫尔大学 34 C010702 欧亚大陆两栖动物壶菌的比较种群基因组学 李义明 中国科学院动物研究所 Matthew Fisher 倫敦帝国学院 35 C170202 基于 RNA 测序的植物耐旱性比较研究 王锁民 兰州大学 Anna Amtmann 格拉斯哥大学 36 C180503 胸膜肺炎放线杆菌ApxIVA基因调节子与疫苗研究 雷连成 吉林大学 PAUL LANGFORD 伦敦帝国理工学院 医学院儿科系分子传染病组 37 C090105 对不公正行为惩罚中的情绪效应 朱莉琪 中国科学院心理研究所 Michaela Gummerum 英国普利茅斯大学心理学院 38 C200103 动物性食品中化学污染物代谢研究新技术平台构建 陈刚 中国农业科学院农业质量标准与检测技术研究所 Olena Doran 西英格兰大学 39 C120112 人类胚胎干细胞中纺锤体形成检查点的功能研究 那洁 清华大学 Peter Andrews 英国谢菲尔德大学干细胞中心 40 C1704 华北地区熊蜂鉴定导航系统的构建 安建东 中国农业科学院蜜蜂研究所 Paul Hugh Williams 英国自然历史博物馆,昆虫系 41 C031201 生物多样性热点地区的植物分化与物种共存 黄双全 武汉大学 William Armbruster 英国 普茨茅斯大学 生物科学院 42 C020502 种子发育过程中控制胚乳细胞凋亡基因的鉴定 杨素欣 山东师范大学 Justin Goodrich 爱丁堡大学植物分子科学研究所 43 C040203 青藏高原沙蜥的物种形成 金园庭 中国计量学院 Richard Brown 利物浦约翰摩尔斯大学 44 C090101 阅读中的字母/汉字位置编码:一项关于汉语和英语的跨语言研究 李兴珊 中国科学院心理研究所 Simon Liversedge 英国南安普顿大学心理学院 45 C080105 利用尿细胞和 VHL 基因编辑建立肾癌体外细胞模型 MA Esteban 中国科学院广州生物医药与健康研究院 Patrick Maxwell 伦敦帝国学院医学部肾脏实验室 46 D0207 江南-雪峰隆起北缘成藏流体活动定年 沈传波 中国地质大学(武汉) David Selby 英国杜伦大学地球科学系 47 D0205 岩浆铜镍硫化物矿床热液流体作用与铂族元素活动性比较研究 王焰 中国科学院广州地球化学研究所 Hazel Prichard 卡地夫大学地球和海洋学院48 D010507 锌镉污染土壤伴矿景天-水稻轮作下的土-植微界面过程研究 吴龙华 中国科学院南京土壤研究所 Hao Zhang 兰卡斯特大学 49 E020803 双层结构超疏水植物叶片上的毛细爬行行为 郭志光 湖北大学 Haifei Zhang 英国利物浦大学化学系 50 E070501 高压电磁装备磁化建模的改进理论与方法研究 李庆民 山东大学 Wah Hoon Siew 斯特拉斯克莱德大学 51 E010901 热电磁对流对纯Ni及Cu-Ni二元合金过冷熔体中枝晶生长动力学的影响 高建荣 东北大学 Koulis Pericleous 英国格林威治大学数值模拟与过程分析中心 52 E050501 摩擦磨损精密测试技术及设备 杨学锋 济南大学 Mao Ken 英国华威大学 53 E0508 齿轮精密轧制成形理论及工艺研究 王宝雨 北京科技大学 Jianguo LIN 帝国理工大学 54 E0107 热变形对氮化物强化低活化马氏体耐热钢中氮化物析出行为的影响 严伟 中国科学院金属研究所 wei sha 贝尔法斯特女王大学 55 E060408 高层建筑火灾中外壁面开口火焰溢出行为研究 胡隆华 中国科学技术大学 Michael Delichatsios 英国阿尔斯特大学火灾安全工程与技术研究中心 56 E050301 基于数学形态谱的人体功能状态评估方法研究 阳建宏 北京科技大学 Xianghong Ma 英国艾斯顿大学 57 E060407 固体废物热解碳吸附烟气中单质汞 沈伯雄 南开大学 Williams Paul T. 利兹大学 58 E080701 能源与环境目标下的交通网络设计优化研究 陈群 中南大学 Haibo Chen 利兹大学交通研究所 59 E0605 气力输送中颗粒荷电特性及静电传感器信号失准研究 周宾 东南大学 Jianyong Zhang 蒂赛德大学 60 E051102 金刚石砂轮地貌的精密测量和表征 崔长彩 华侨大学 Xiangqian Jiang 赫德斯菲尔德 61 E050202 浮力摆式波浪能发电装置关键技术深入研究 林勇刚 浙江大学 Xiandong Ma 英国兰卡斯特大学 62 E090102 流域汇流模型尺度变化的规律研究 李致家 河海大学 YI HE 丁铎尔气候变化研究中心,英国东英吉利大学 63 E080506 非一致地震激励作用下近海超长沉管隧道的破坏机理研究 陈之毅 同济大学 Nicholas Alexander 布里斯托尔大学 64 E060502 基于高效纳米光催化材料的新型直接太阳能制氢系统的构建 郭烈锦 西安交通大学 Junwang Tang 伦敦大学学院 65 E010503 负泊松比金属橡胶材料形变机理和力学性能试验研究 马艳红 北京航空航天大学 Fabrizio Luciano Scarpa 布里斯托尔大学航空航天工程学院 66 E060203 涡轮叶顶泄露流中三维涡流结构与激波的互动效应 张强 上海交通大学 Li He 牛津大学 67 E080704 High speed railwayoptimal room layout selection based on environmental noise analysis 吴小萍 中南大学 Benjaming Heydecker 伦敦大学学院 68 E041606 腐蚀与磨损自敏减摩涂层的研究 李文生 兰州理工大学 Shuncai Wang 南安普敦大学, 国家先进摩擦学中心 69 E0503 用‘超模型’定位有限元模型的误差 臧朝平 南京航空航天大学 Michael Friswell 斯旺西大学 70 E060605 缸内直喷汽油机喷雾及燃烧可视化技术交流与合作研究 王建昕 清华大学 Hongming Xu 英国伯明翰大学 71 E060304 仿生表面微纳米尺度流动与相变传热 徐进良 华北电力大学 Yuying Yan 诺丁汉大学 72 E091001 深海顶张力立管参激—涡激耦合振动研究 唐友刚 天津大学 Nigel Barltrop 英国格拉斯哥市斯特拉斯克莱德大学 73 E0509 精密系统表面形貌测量与建模 金鑫 北京理工大学 Paul Scott 哈德斯菲尔德大学 74 E080805 高温下钢-混凝土组合节点动态抗冲击性能研究 霍静思 湖南大学 Feng Fu 布拉德福德大学 75 E050601 面向创新设计的知识融合与协作通信的联合研究 胡洁 上海交通大学 Xiaohong Peng 阿斯顿大学 76 E080601 高速列车荷载作用下轨道路基的全比尺试验和DEM模拟 边学成 浙江大学 Jian-Fei Chen 英国爱丁堡大学 77 E051102 用于航空燃油密度检测的乐甫波器件 陈智军 南京航空航天大学 McHale Glen 诺丁汉特伦特大学 78 E050902 效率20%以上晶硅太阳电池用纳米硅墨低成本制备基础研究 汪炜 南京航空航天大学 Qi Zhang 克兰菲尔德大学 79 E090303 鱼类行为对水力特征的响应 石小涛 三峡大学 Paul Kemp 南安普敦大学 80 E080510 地震损伤对砖石古塔动力特性的影响 李胜才 扬州大学 Dina D'Ayala 英国巴斯大学 81 F020508 图像分类中的局部泛化误差SVM 优化方法 吴永贤 华南理工大学 Daming Shi 英国米德萨克斯大学 82 F010705 声表面波驱动碳纳米管生物传感器的构筑及应用研究 胡平安 哈尔滨工业大学 Richard Fu 西苏格兰大学 83 F040306 有机-无机杂化太阳电池异质结的光电性能调控研究 孙宝全 苏州大学 Henning Sirringhaus 剑桥大学卡文迪许实验室 84 F010406 基于计算智能技术的集成生物标记识别研究 朱泽轩 深圳大学 Shan He 伯明翰大学 计算机科学学院 85 F010104 物联网环境中基于情景感知与规则推理技术的自动监护系统的设计与实现研究 胥正川 复旦大学 Kenneth Turner 斯特灵大学 86 F020502 超窄基线双目图像高精度亚像元匹配研究 刘怡光 四川大学 Jianguo Liu 帝国理工大学 87 F030603 面向野外场景的空中-地面多机器人协作环境探索 庄严 大连理工大学 Huosheng Hu 计算机科学与电子工程学院, 艾塞克斯大学 88 F020202 Measurement-based Approaches to Managing Inconsistency in Software Requirements 牟克典 北京大学 Weiru Liu 贝尔法斯特女王大学 89 F030120 分布式环境下多学科CAE异构系统的协同机制及其实现技术 张和明 清华大学 Hongwei Wang 英国朴茨茅斯大学机械与设计工程系 90 F02 基于隐函数的血管几何建模 田捷 中国科学院自动化研究所 Qingde Li 赫尔大学 91 F010202 逼近理论性能增益的无线网络编码实现方案和先进技术 彭木根 北京邮电大学 zhiguo ding 纽卡斯尔大学 92 F010703 低温下药片的超高分辨率太赫兹时域成像 金飚兵 南京大学 YaoChun Shen 英国利物浦大学 93 F030212 基于智能计算的大规模随机多级库存优化策略研究 宋士吉 清华大学 Kang Li 贝尔法斯特女王大学电子电气工程与计算机科学学院 94 F020701 混沌系统在数字域的动力学退化 李澄清 湘潭大学 Shujun Li 萨里大学 95 F030117 GPS/SINS超紧耦合导航系统完好性监测 王新龙 北京航空航天大学 Shaojun Feng 英国帝国理工大学 96 F030406 基于稀疏图嵌入的图像特征提取方法研究 钟德星 西安交通大学 Edwin Hancock 约克大学 97 F010306 集成学习中个体学习器的互补性研究 曾晓勤 河海大学 Shengli Wu 阿尔斯特大学 98 F040403 低比导通电阻的SOI功率MOSFET及其集成技术 罗小蓉 电子科技大学 Florin Udrea 剑桥大学 99 F040302 电泵浦有机半导体激光 赖文勇 南京邮电大学 Ruidong Xia 英国伦敦帝国学院 100 F020809 用于无线传感器网络实时支撑的博弈市场模型研究 李欢 北京航空航天大学 Xiaotie Deng 英国利物浦大学 101 F020106 面向对象程序的模块化验证:理论和技术 裘宗燕 北京大学 Shengchao Qin 英国,提赛得大学,计算学院 102 F010402 基于手背静脉识别的安全认证 王一丁 北方工业大学 Lik-Kwan Shark 英国中兰开夏大学 103 F030511 基于人-机器人协作的智能共享控制 马宏宾 北京理工大学 Phil Culverhouse 英国普利茅斯大学机器人及神经系统中心 104 F010102 算术码码谱及其应用研究 方勇 西北农林科技大学 Xingang Wang 考文垂大学 105 F020208 大规模分布式系统的可信保障技术研究 李建欣 北京航空航天大学 Lu Liu 英国德比大学 106 F030116 基于强化学习的风力发电机组浆距角优化控制 秦斌 湖南工业大学 Zi-Qiang Lang 英国谢菲尔德大学 107 F020501 基于不确定性可视分析的流体动画参数控制 杨旭波 上海交通大学 Feng Dong 英国贝德福德大学 108 F030406 复杂场景下的多模态生物特征识别 孙哲南 中国科学院自动化研究所 Norman Poh 英国萨里大学 109 F010404 视频异常排序 姚远 北京大学 Tao Xiang 英国伦敦大学玛丽皇后学院 110 G0312 基于生命周期评价的产业生态系统关键产业温室气体排放研究 耿涌 中国科学院沈阳应用生态研究所 Dabo Guan 英国利兹大学 111 G0110 不确定环境下双边装配线平衡方法研究 胡小锋 上海交通大学 Wenjuan Zhang 华威大学商学院 112 H0507 醛固酮的非基因组作用: 通过ATP自分泌/旁分泌调控肾上皮钠通道活性 张彦军 国家纳米技术与工程研究院 Yuri Korchev 伦敦帝国理工学院 113 H1618 低氧诱导因子1α和线粒体在脑胶质瘤干细胞中抗凋亡作用的研究赵宁辉 昆明医学院 Qian An 朴茨茅斯大学 114 H2708 中药对糖尿病大鼠肠道菌群的影响研究 谭周进 湖南中医药大学 Niall Logan 英国Glasgow Caledonian大学健康与生命科学学院 115 H2201 间充质干细胞对放射性脊髓损伤髓鞘再生作用研究 游华 中国人民解放军军事医学科学院 Chao Zhao 剑桥大学 116H1606 Protease Nexin-1在肿瘤微环境中的作用机制研究. 徐丹梅 华中科技大学 Ruth Muschel 牛津大学 117 H1204 基因治疗新策略对视网膜神经变性疾病有效性的活体实时评估研究 吴继红 复旦大学 LI Guo 英国伦敦大学学院眼科研究所 118 H2819 一种用于从药用植物中获取先导化合物的色谱联用方法研究 张敏 华东理工大学 Svetlana Ignatova 布鲁内尔大学生物工程研究所   联系人:国际合作局西欧处 李文聪 范英杰   电 话:010 6232 7014, 010 6232 5309   传 真:010 6232 7004   Email:liwc@nsfc.gov.cn, fanyj@nsfc.gov.cn
  • 华唯计量深入解读解读重金属汞的危害及治理
    1、引言汞是一种有毒性的金属,广泛分布在岩石、土壤、大气、水和生物之中,因此各种物质均有一定的汞含量,称为自然含汞量。随着社会的发展,人类活动释放出大量的汞,这些汞进入生态系统,造成生态系统的汞污染。城市区域人口密集,人类活动集中,物质和能量流动强度大,因此面临着汞污染带来的种种环境与生态问题。目前国内外有关环境汞污染的研究主要是针对氯碱生产、金矿开采、燃煤电厂等汞污染源开展的,实际上,汞污染源类型很多,特别是一些潜在的汞污染源在我国还鲜为人知。而且汞污染尚未进入被充分认识和掌控的范畴,甚至完全处于大众视野之外。汞对环境与生态系统的持续性、严重性危害已引起全球性的关注。我国汞污染研究基本处于刚刚起步阶段,严重滞后于国际环境形势发展需要,今后除应加强基础研究工作,还要对重要汞污染地区的污染状况、机制、环境效应开展研究,以全面掌握我国汞污染的来源、汞污染源分布以及环境汞污染现状。2、重金属汞的概述2.1重金属汞的元素特性汞是在正常大气压力的常温下唯一以液态存在的 金属。熔点-38.87℃,沸点356.6℃,密度13.59g /cm 3 。银白色液体金属。内聚力很强,在空气中稳定。蒸气有剧毒。溶于硝酸和热浓硫酸,但与稀硫酸、盐酸、碱都不起作用。能溶解许多金属。化合价为+1和+ 2。汞的7种同位素的混合物,具有强烈的亲硫性和亲铜性,即在常态下,很容易与硫和铜的单质化合并生成稳定化合物,因此在实验室通常会用硫单质去处理撒漏的水银。在自然界中汞常以辰砂的形式存在,有时候也以游离态存在。汞是一种毒性极强的污染元素,在诸多环境污染物指标中,被列为第一类污染物。2.2重金属汞的元素来源自然界中主要有辰砂矿(Hg S),也有少量的自然汞。常用辰沙矿加少许碳在空气中加热而制得。2.3重金属汞的元素用途常用于制造科学测量仪器(如气压计、温度计等) 、药物、催化剂、汞蒸气灯、电极、雷汞等。汞的用途较广,在总的用量中,金属汞占30%, 化合物状态的汞约占70%。冶金工业常用汞齐法( 汞能溶解其它金属形成汞齐)提取金、银和铊等金属。化学工业用汞作阴极以电解食盐溶液制取烧碱和氯气。汞是制造汞弧整流器、水银真空泵等的材料,它是由酒精、浓硝酸溶液混合加热制成的。汞的一些化合物在医药上有消毒、利尿和镇痛作用,汞银合金是良好的牙科材料。在中医学上,汞用作治疗恶疮、疥癣药物的原料。汞可用作精密铸造的铸模和原子反应堆的冷却剂以及镉基轴承合金的组元等。汞在自然界中分布量最小,被认为是稀有金属,但是人们很早就发现了水银。天然的硫化汞又称为朱砂,由于具有鲜红的色泽,因而很早就被人们用作红色颜料。根据殷虚出土的甲骨文上涂有丹砂,可以证明我国在有史以前就使用了天然的硫化汞。汞的无机化合物如硝酸汞(Hg(NO3)2) 、升汞(HgCl2)、甘汞(HgCl)、溴化汞(HgBr2)、砷酸汞(HgAsO4)、硫化汞(HgS)、硫酸汞(HgSO4)、氧化汞(HgO)、氰化汞(Hg(CN)2) 等,用于汞化合物的合成,或作为催化剂、颜料、涂料等 有的还作为药物,口服、过量吸入其粉尘及皮肤涂布时均可引起中毒。此外,雷汞用于制造雷管等。3、汞污染来源环境本底含有一定浓度值,这对判断环境污染程度 很有意义。但它极少构成污染, 除了生态程度很有意义,除了生态环境改变引起迁移外,汞的污染主要是人 的污染所致。汞污染主要来自使用和产汞或汞的化合物的工厂排出的含汞废水、废气和废渣。氯碱工业、塑料工业、电子工业、混汞炼金和雷汞生产排放的废水是水体中汞的主要污染来源 施用含汞农药和含汞污泥肥料是土壤中汞污染的主要来源 含汞金属的冶炼废气是大气汞污染的主要来源。此外,煤和石油在燃烧过程中也会排出含汞废气和颗粒态汞尘,这是很大的污染来源,这些来源随风飘移,不断落入大地,再经降雨径流,最终转移到水体。有关金属汞的生产很多,例如汞矿的开采与汞的冶炼,尤其是土法火式炼汞,空气、土壤、水质都有污染 制造、校验和维修汞温度计、血压计。流量仪、液面计、控制仪、气压表、汞整流器等,尤其用热汞法生产危害更大 制造荧光灯、紫外光灯、电影放映灯、X线球管等 化学工业中作为生产汞化合物的原料,或作为催化剂如食盐电解用汞阴极制造氯气、烧碱等 以汞齐方式提取金银等贵金属以及镀金、馏金等 口腔科以银汞齐填补龋 齿 钚反应堆的冷却剂等。4、汞的形态及生物有效性土壤中汞的存在形态各种各样。归结起来,主要分 为三大类:金属汞、无机化合态汞和有机化合态汞。4.1金属汞土壤中常常存在一部分元素汞,往往只占土壤总汞 的1%以下, 但是它对生物体是高度有效的。它不仅能被叶片吸收,植物根系也能直接吸收并且利用这种形态 的汞。可见,在正常的土壤和范围内,汞能以零价状态存在并且对植物高度有效性是土壤中汞的重要特点。4.2无机化合态汞土壤中存在的无机化合态汞有HgS、HgCl2、 HgCl42- 、HgCO3、HgHCO3-、HgNO3+、HgSO4、HgO、HgHPO4等, 它们因土壤类型不同而各有差异。在各种无机化合态汞中,并不是所有赋存形态对生物体都是 有效的。HgCl2和HgCl42-是植物容易吸收利用的两种汞化合物,而HgS则是一种难以被植物吸收利用的无机化合物。4.3有机化合态汞包括CH3HgS- 、CH3HgCN、CH3HgSO3-、 CH3Hg2S、CH3HgNH3+和腐殖质结合汞等,其中以腐殖质结合汞最为主要。一般来说,土壤中有机质结合态 汞通常约占总汞的2%。研究结果表明,在各种有机化合态汞中,以甲基汞形式存在于土壤中的汞生物有效性较高,毒性也大,容易被植物吸收并且通过食物链在生物体内逐级富集,对生物和人体健康造成危害 而腐殖质结合汞的生物有效性较低,不容易被作物吸收,而且毒性也低。5、汞在环境中的迁移转化5.1汞在自然环境中的迁移转化汞的化合物(除Hg(NO3)2外)溶解度很小,这种性质直接影响它在环境中的赋存形态和迁移性及其迁移 转化规律。汞的天然来源为含汞原矿。在风化作用下,汞以固体微粒等形态进入环境中。进入土壤中的汞可以被植物吸收,也可以挥发进入大气,还可以被降水冲进入地面水和地下水中。大气中气态和颗粒态的汞随风飘散又可沉降到地面或水体中。水体中的汞主要存在于沉积物中,且水中汞主要被悬浮物吸附,影响吸附的主要环境因素是pH值及颗粒物含量。在河流底质中,汞主要是与有机质的迁移转化相联系,悬浮态汞是汞迁移的主要形式。底泥中的汞可 在微生物的作用下转化为甲基汞(MeHg+ ) 。甲基汞可溶于水,因此又从底泥回到水中。环境中汞在大气、土壤、水之间就是这样不断迁移和转化的。5.2汞在陆生食物链中的迁移积累土壤汞的污染主要出现在耕作层,而耕作层又是植物根系密集分布的地方,在同级别的污染区域中,园林土壤的含汞量显著高于农业土壤。园林土壤的平均含汞量约为农业土壤的6倍。这是因为农业生态系统为全开放系统,植物对土壤的归还率很低,而园林生态系统中植物的归还率高,使土壤中有机质得以积累,相应对汞的富集作用也加强,在汞污染严重地区,可以通过园林植物将污染控制在有限的范围内。植物对汞的富集能力不同。汞富集能力,依次为常绿阔叶树常绿针叶树灌木落叶阔叶树草本植物蔬菜。富集顺序表现了各类植物在空中暴露面积的大小和生长时期长短的积累效应。显然,园林植物的吸汞量比蔬菜高,因此,不适宜在点源附近种植蔬菜或农作物。尽管蔬菜生长季节短暂,但其可食部分的含汞量仍然超过食品卫生标准7倍多,对人畜健康将会产生 严重的危害。6、汞污染的危害20世纪50年代初, 日本九州水俣镇不断发现一些怪病人,口齿不清、步态不稳、面部痴呆、耳聋眼瞎、全身麻木,最后神经失常、大喊大叫而死,同时,有些猫、狗发疯。这种中枢神经性疾患的公害病称“水俣病”。经多年研究发现,水俣镇上的一些化工厂将大量含汞工业废水直接排放到水俣弯的水域中,致使水体被汞污染。无机氯化汞经过微生物作用逐渐转化为有机汞,并在鱼等水生物体中浓集。当地居民吃了受汞污染的鲜鱼和贝类等产品,汞随食物入人体,最终导致“水俣病”的产生。6.1汞对人体的危害微量的汞在人体内不致引起危害,可经尿、粪和汗液等途径排除体外,如数量过多,即可损害人体健康。汞对人体的危害主要累及中枢神经系统、消化系统及肾脏,此外对呼吸系统、皮肤、血液及眼睛也有一定影响。汞在人和生物体中多积蓄于肾、肝、脑中。烷基汞比可 溶性无机汞化合物毒性大10100倍,主要毒害神经系统,破坏蛋白质和核酸。经研究,人的病状与甲基汞积蓄量关系为:使人知觉异常(25mg)、步行障碍(55mg)、发音障碍(90mg)、死亡(200mg以上) 。根据动物实验,汞还具有致癌性。6.2汞的神经毒性汞有很强的神经毒性,即使是低水平暴露也会损害神经系统,表现为精神和行为障碍,能引起感觉异常、共济失调、智能发育迟缓、语言和听觉障碍等临床症状。6.3汞对植物的危害汞作为植物的有害元素,影响到种子的发芽和植物 的形态建成。汞含量较低时, 对植物的生长发育影响甚微,但超过一定浓度,植物的生长就会完全被抑制。汞对作物生长发育的影响主要有抑制光合作用、根系生长 和养分吸收、酶的活性、根瘤菌的固氮作用等。6.4汞对动物的危害汞在鸟类体内的分布具有较强的选择性,主要蓄积 于肝脏和肾脏。卵中的Hg含量超过1. 5~18mg/kg就足以导致卵重下降、 畸形、孵化率降低、生长率以及雏鸟成活率的降低。环颈雉肝脏中的汞达到3~13mg/kg时孵化率显著降低。甲基汞还会导致绿头鸭的雏鸟警戒反应减少。7、防治措施7.1工业汞污染的防治方法汞在工业上应用广泛, 造成污染较严重。因此,必须采取以防为主、防治结合的综合措施。首先从工艺改革入手,采取替代物质,减少汞的使用量,从源头控制汞污染的产生。其次,淘汰落后工艺,此外,由于汞比重 大,有流动性,在作用金属汞时,应尽量减少流散,万一 不慎将汞撒落,必须尽可能收集起来,并在凡有可能遗留汞的地方都复盖上硫磺粉,使汞生成难溶的HgS。储藏汞必须密封,防止汞的挥发引起汞蒸气中毒。对于产生含汞废水的有色冶炼厂和化工厂,应采取有效的处理措施,使车间排放口达标排放。从废水中去除无机汞的方法有:硫化物沉淀法、化学聚法、活性炭吸附法、金属还原法和离子交换法等。应视其工艺不同、排放浓度大小和废水酸碱性选用相应的经济技术可行的方法。7.2土壤汞污染的防治方法土壤汞污染治理主要有两条途径, 一是改变汞在土壤中的存在形态,使其由活化态转化为稳定态,其二是从土壤中去除汞以使土壤中的汞的浓度接近或达到土壤汞背景值浓度水平。目前,通常采用的方法主要有物 理、物理化学和生物修复法。7.2.1物理及物理化学的方法一般的做法有:热处理技术,动电修复技术,淋滤法和洗土法,施用调控剂等,但以往采用的这些方法存在着明显的不足就是这些方法一般投资昂贵,使用设备复杂,不太适宜大范围推广应用。7.2.2生物修复(1 )植物修复。植物修复是一种很有效且廉价处理污染的新方法,这种方法在美国等发达国家已开展了大规模的试验,并证明有效。(2)微生物修复。利用微生物对某些重金属的吸收、沉积、氧化和还原等作用,减少植物摄取。从而降低重金属的毒性。7.3政府汞污染的治理对策(1 )能源结构。我国城市的一次能源结构中,煤炭一直占据主导地位。燃煤汞污染是我国城市汞污染的一个重要来源,因此调整能源结构,引进和发展清洁能源,将目前以原煤为主的污染型能源结构逐步转变为以天然气、电力等优质能源为主的清洁型能源结构,减少煤炭在一次能源中所占的比例,是减少汞排放量的主要措施。(2)提高能源效率。目前能源消费环节浪费仍然比较严重,主要表现在燃煤锅炉热效率较低、建筑采暖热能浪费严重等。因此,加强高新技术在能源供应和消费领域的推广应用,提高能源利用效率,可以进一步减少汞的排放量。(3 )增加用煤洗选比例,降低燃煤中的汞含量。结合煤炭清洁燃烧工艺,开发燃煤脱汞技术。(4 )实行垃圾分类和加强固体废弃物管理。如果生活垃圾能分类收集、分别处理,对其中的含汞电池、荧光灯、体温计等采取比一般生活垃圾更严格的防护措施。(5)制定完善的汞管理法律、法规,建立全面的汞环境标准,包括排放标准和各种环境质量标准。(6 )加强汞污染危害的宣传教育和减少汞污染的知识的普及,提高人们的环保意识。8、结语随着现代工农业的发展,重金属污染问题日趋严重。重金属污染,不同于其它类型污染,具有隐蔽性、长期性和不可逆转等特点。重金属可直接对环境中的大气、水和土壤造成污染,在土壤→植物→动物→人体之间的食物链中,不仅鸟类作为高级消费者会受到威胁,人类也会深受其害。防治重金属污染,应当提高全民素质、增强环保意识,从根本上消除污染源 要坚决杜绝工业“三废”的直接排放,规划城市垃圾的堆放,严格控制含有重金属的化肥、农药的使用。我国汞污染研究还滞后于国际环境形势发展需要。今后除了要加强基础研究工作,还要对重要汞污染地区污染状况、机制、环境效应开展研究,以全面掌握我国汞污染的来源、汞污染源分布以及环境汞污染现状,安排汞污染治理专项资金,对重点地区优先实施汞污染治理。期待在不久的将来,会有越来越多的汞污染地区得到有效治理。华唯计量专注XRF行业30年,致力于为用户解决重金属检测全面应用问题,除提供优质产品及服务外,更可针对用户行业特点及技术疑难开发专项产品。主营产品有RoHS检测仪、镀层测厚仪、合金分析仪、粮食重金属检测仪、大气重金属在线分析仪等。
  • 科技部公示973计划152个项目后三年预算安排 共16.4亿(附详细名录)
    12月24日,《科技部关于国家重点基础研究计划(973计划)2015年立项152个项目后三年预算安排初步方案的公示》通知发布,共计16.4亿元。  根据通知内容,经过中介机构评估、预算管理部门的综合审查,国家重点基础研究发展计划(973计划)2015年立项的152个项目后三年预算方案初步确定(见附件)。按照《国家重点基础研究发展计划专项经费管理办法》规定的程序,现予公示。  社会各界如对该批项目的预算有重大异议,请在2016年12月22日前以书面形式反馈至科技部资源配置与管理司,并请同时通过电子邮件与科技部源配置与管理司联系。国家重点基础研究发展计划(973计划)项目专项经费预算拟安排情况汇总表 国家重点基础研究发展计划(973计划)项目专项经费预算拟安排情况汇总表 金额:万元序号 项目编号 项目名称 承担单位 负责人 研究周期 项目预算安排情况 总经费 专项经费 12015CB05720020/14nm集成电路晶圆级三维集成制造的基础研究中南大学朱文辉后三年1813.001813.0022015CB057300大功率屏蔽式核主泵自主化形性协同制造原理大连理工大学雷明凯后三年1841.001841.0032015CB057400航空发动机运行安全基础研究西安交通大学陈雪峰后三年1860.001860.0042015CB057500压电精密驱动功能部件的基础研究南京航空航天大学裘进浩后三年793.00793.0052015CB057600高压氢系统大型承载件设计制造的基础研究浙江大学郑津洋后三年792.00792.0062015CB057700特大跨桥梁安全性设计与评定的基础理论研究长沙理工大学张建仁后三年1563.001563.0072015CB057800高水压越江海长大盾构隧道工程安全的基础研究北京交通大学袁大军后三年1589.001589.0082015CB057900强震区重大岩石地下工程地震灾变机理与抗震设计理论中国科学院武汉岩土力学研究所盛谦后三年1624.001624.0092015CB058000燃(油)气爆炸灾害安全性基础研究中国人民解放军理工大学方秦后三年1005.001005.00102015CB058100TBM安全高效掘进全过程信息化智能控制与支撑软件基础研究中铁工程装备集团有限公司李建斌后三年814.00814.00112015CB059900玻璃微纳阵列高效超精密模压制造基础研究北京理工大学周天丰后三年288.00288.00122015CB060000大跨桥梁持续环境荷载的时变效应与服役性能评估大连理工大学伊廷华后三年283.00283.00132015CB060100道路沥青混合料全天候服役的损伤机理武汉理工大学罗蓉后三年245.00245.00142015CB060200复杂采空区大规模坍塌的灾害孕育机理研究中南大学周子龙后三年255.00255.00152015CB150100光合作用分子机制与作物高光效品种选育中国科学院植物研究所张立新后三年1711.001711.00162015CB150200油菜高产油量形成的分子生物学机制中国农业科学院油料作物研究所王汉中后三年1670.001670.00172015CB150300牛羊重要寄生虫致病机制的分子基础中国农业科学院兰州兽医研究所朱兴全后三年1750.001750.00182015CB150400作物高产高效群体与关键生态因子的匹配及其调控中国农业大学张福锁后三年1693.001693.00192015CB150500作物高产高效的土壤微生物区系特征及其调控南京农业大学沈其荣后三年1718.001718.00202015CB150600微生物群体感应通讯系统与病害防控基础研究华南农业大学张炼辉后三年1984.001984.00212015CB150700可控水体中华鲟养殖关键生物学问题研究水利部中国科学院水工程生态研究所常剑波后三年741.00741.00222015CB150800人工草地生产力形成机理与调控途径中国科学院东北地理与农业生态研究所梁正伟后三年727.00727.00232015CB158200稻田自然生物膜养分转化功能与调控机制中国科学院南京土壤研究所吴永红后三年250.00250.00242015CB158300作物-固氮根瘤菌特异与广谱共生的分子机理与设计中国科学院上海生命科学研究院王二涛后三年281.00281.00252015CB250900陆相致密油高效开发基础研究中国石油大学(北京)姜汉桥后三年1665.001665.00262015CB251000高压直流短路电流开断机理及其应用基础西安交通大学荣命哲后三年2389.001639.00272015CB251100新型高性能二次电池的基础研究北京理工大学吴锋后三年1718.001718.00282015CB251200海洋深水油气安全高效钻完井基础研究中国石油大学(华东)孙宝江后三年1701.001701.00292015CB251300大规模超临界压缩空气储能系统的基础研究中国科学院工程热物理研究所秦伟后三年770.00770.00302015CB251400典型化工冶金过程节能的新理论和新方法中国科学院过程工程研究所张锁江后三年730.00730.00312015CB251500燃煤发电系统能源高效清洁利用的基础研究华北电力大学杨勇平后三年1653.001653.00322015CB251600我国西北煤炭开采中的水资源保护基础理论研究中国矿业大学张东升后三年736.00736.00332015CB258400高比能锂硫二次电池界面问题的基础研究华中科技大学谢佳后三年273.00273.00342015CB258500致密储层压裂诱发微地震的发震机理与波传播规律中国科学院地质与地球物理研究所王一博后三年246.00246.00352015CB351700视觉认知的脑工作机理及高级脑机交互关键技术研究西安交通大学龚怡宏后三年1812.001812.00362015CB351800基于视觉特性的视频编码理论与方法研究北京大学高文后三年1601.001601.00372015CB351900可延展柔性无机光子/电子集成器件的基础研究清华大学冯雪后三年1952.001952.00382015CB352000纳米分辨快速光学成像机理与技术的基础研究浙江大学刘旭后三年1731.001731.00392015CB352100超灵敏微纳生物化学传感器集成自治系统基础研究中国科学院电子学研究所夏善红后三年1778.001778.00402015CB352200基于开源生态的网构化软件开发原理和方法北京大学金芝后三年631.00631.00412015CB352300面向城市管理的三元空间大数据计算理论与方法清华大学朱文武后三年718.00718.00422015CB352400城市大数据三元空间协同计算理论与方法上海交通大学过敏意后三年761.00761.00432015CB352500城市大数据的计算理论和方法山东大学陈宝权后三年742.00742.00442015CB358600超导纳米线单光子检测应用基础研究苏州大学邹贵付后三年248.00248.00452015CB358700大数据群体计算的基础理论与关键技术清华大学李国良后三年241.00241.00462015CB358800移动应用恶意行为检测控制的基础理论与关键技术复旦大学杨珉后三年284.00284.00472015CB452600中国西南特提斯典型复合成矿系统及其深部驱动机制中国地质大学(北京)邓军后三年1738.001738.00482015CB452700典型山地水土要素时空耦合特征、效应及其调控中国科学院水利部成都山地灾害与环境研究所邓伟后三年1607.001607.00492015CB452800登陆台风精细结构的观测、预报与影响评估中国气象科学研究院端义宏后三年1927.001927.00502015CB452900人类活动引起的营养物质输入对海湾生态环境影响机理与调控原理中国科学院南海海洋研究所黄小平后三年1650.001650.00512015CB453000中国北方巨型砂岩铀成矿带陆相盆地沉积环境与大规模成矿作用天津地质矿产研究所金若时后三年1678.001678.00522015CB453100新型持久性有机污染物的区域特征、环境风险与控制原理研究中国科学院生态环境研究中心郑明辉后三年809.00809.00532015CB453200热带和中高纬季节内振荡的动力机理及延伸期预报方法研究南京信息工程大学李天明后三年1118.001118.00542015CB453300近海环境变化对渔业种群补充过程的影响及其资源效应中国水产科学研究院黄海水产研究所金显仕后三年716.00716.00552015CB458900富营养化湖泊中POPs在底栖-浮游耦合食物网中的传递行为和机制北京大学刘永后三年284.00284.00562015CB459000新型持久性有机物在电子废弃物污染源及周边区域的迁移转化与修复控制南开大学王莹莹后三年268.00268.00572015CB553400大气细颗粒物引发呼吸道损伤的病理生理学机制与干预研究中国医学科学院基础医学研究所蒋澄宇后三年1695.001695.00582015CB553500精神活性物质成瘾记忆的形成和消除复旦大学马兰后三年1682.001682.00592015CB553600中国人代谢综合征的分子营养机制及干预研究上海交通大学医学院附属瑞金医院宁光后三年1662.001662.00602015CB553700炎-癌生物信号交互调控癌进展及阻抑治疗分子机制中国人民解放军第四军医大学陈志南后三年1555.001555.00612015CB553800炎-癌信号互作在肿瘤发展和肿瘤干预中作用的研究厦门大学韩家淮后三年1511.001511.00622015CB553900恶性肿瘤癌前病变发生发展的分子机理研究中国医学科学院肿瘤医院詹启敏后三年1721.001721.00632015CB554000结直肠癌和肝细胞癌的癌前病变和侵袭的早期分子事件研究中国人民解放军第二军医大学曹广文后三年1972.001922.00642015CB554100异种肝脏移植免疫耐受机制及诱导中国人民解放军第四军医大学窦科峰后三年795.00795.00652015CB554200重要病原细菌关键生物学特性适应性进化机制的研究中国科学院微生物研究所朱宝利后三年1351.001351.00662015CB554300慢性丙型病毒性肝炎免疫逃逸与免疫病理研究中国科学院上海巴斯德研究所钟劲后三年1445.001445.00672015CB554400基于病证结合的气血相关理论研究中国中医科学院西苑医院刘建勋后三年1498.001498.00682015CB554500基于临床的灸法作用机理研究上海中医药大学吴焕淦后三年1633.001633.00692015CB559100多囊卵巢综合征关键基因调控网络及药物作用机制研究上海交通大学师咏勇后三年252.00252.00702015CB559200模型驱动的奖赏记忆相关脑区的功能整合研究北京大学李健后三年277.00277.00712015CB654600高储能密度无机电介质材料的关键问题清华大学南策文后三年1864.001834.00722015CB654700高性能轮胎橡胶材料制备科学与关键技术北京化工大学刘力后三年1873.001873.00732015CB654800高速、重载轮轨系统金属材料与服役安全基础研究中国铁道科学研究院何华武后三年1662.001662.00742015CB654900新型多铁材料显微组织和性能的原子尺度观测与表征南京大学潘晓晴后三年917.00917.00752015CB655000高效率、低成本有机高分子发光材料研究华南理工大学彭俊彪后三年1395.001395.00762015CB655100严酷环境下混凝土材料与结构长寿命的基础研究东南大学缪昌文后三年1614.001614.00772015CB655200非烧蚀防隔热一体化轻质热防护材料及其演变规律航天材料及工艺研究所张大海后三年842.00842.00782015CB655300面向应用的高性能水处理膜设计与制备南京工业大学汪勇后三年780.00780.00792015CB659300二维原子晶体材料热传导的机理及调控南京大学朱嘉后三年270.00270.00802015CB659400硅基微结构材料的中红外非线性光学效应及中红外探测的研究南京大学刘晓平后三年252.00252.00812015CB755400活细胞的太赫兹波无标记检测技术基础研究中国人民解放军第三军医大学府伟灵后三年1140.001140.00822015CB755500脑胶质瘤精准诊疗技术的关键科学问题研究中国科学院深圳先进技术研究院郑海荣后三年1726.001726.00832015CB755600灵长类神经回路精细结构成像的新方法和新工具华中科技大学曾绍群后三年1552.001552.00842015CB755700生物固氮及相关抗逆模块的人工设计与系统优化中国农业科学院生物技术研究所林敏后三年2130.002130.00852015CB755800飞机结冰致灾与防护关键基础问题研究中国空气动力研究与发展中心桂业伟后三年1855.001855.00862015CB755900超深渊生物群落及其与关键环境要素的相互作用机制研究国家深海基地管理中心刘峰后三年3006.002240.00872015CB759500大脑皮层微尺度信息传入活动图的绘制中国人民解放军第三军医大学谌小维后三年268.00268.00882015CB759600高压大容量碳化硅IGBT电力电子器件若干基础科学问题研究中国科学院半导体研究所张峰后三年251.00251.00892015CB856000非结构数据的统计学习:数学基础及算法北京大学鄂维南后三年958.00958.00902015CB856100大陆俯冲带壳幔相互作用中国科学技术大学郑永飞后三年1270.001270.00912015CB856200表观遗传信息建立与解读的分子基础中国科学院生物物理研究所朱冰后三年1254.001254.00922015CB856300靶向线粒体代谢的分子探测与过程调控南京大学郭子建后三年831.00831.00932015CB856400睡眠脑功能及其机制研究北京大学陆林后三年1211.001211.00942015CB856500分子基功能碳材料新型拓扑结构的基础与前沿研究天津大学Jay Siegel后三年1279.001279.00952015CB856600基于惰性体系的新一代化学转化北京大学施章杰后三年987.00987.00962015CB856700北京谱仪IIItau-粲物理实验研究中国科学院高能物理研究所沈肖雁后三年1455.001455.00972015CB856800非晶体系的热力学、动力学微观特征和时空关联性基本物理问题研究中国科学院物理研究所汪卫华后三年1357.001357.00982015CB856900高压缩重子物质的物理实验研究华中师范大学许怒后三年1414.001414.00992015CB857000暗能量观测:基于大规模红移巡天精确测量宇宙膨胀历史和结构增长速率上海交通大学杨小虎后三年1343.001343.001002015CB857100110米大口径全可动射电望远镜关键技术研究中国科学院新疆天文台王娜后三年1536.001536.001012015CB859700基于逆康普顿散射的高增益超快x光源若干前沿问题研究上海交通大学向导后三年302.00302.001022015CB859800新抗病毒基因的作用机理与病毒拮抗机制的研究天津大学杨海涛后三年247.00247.001032015CB910100真核生物跨膜运输蛋白的结构与机理研究清华大学颜宁后三年1453.001453.001042015CB910200植物细胞表面受体的功能和作用机理中国科学院遗传与发育生物学研究所周俭民后三年1387.001387.001052015CB910300基于蛋白质调控网络的系统生物学研究北京大学汤超后三年1320.001320.001062015CB910400代谢应激和肿瘤发生发展中蛋白质修饰动态调控及生理病理效应复旦大学雷群英后三年799.00799.001072015CB910500流感等重要病毒与宿主动态互作的细胞分子机制中国科学院微生物研究所陈吉龙后三年796.00796.001082015CB910600DNA损伤响应重要蛋白维持基因组稳定性机制研究浙江大学华跃进后三年1443.001443.001092015CB910700蛋白激酶R在脓毒症中导致免疫抑制的分子调控机制中南大学吕奔后三年275.00275.001102015CB910800单分子膜蛋白原位定量检测技术的研发及其在神经突触膜蛋白研究中的应用浙江大学陈伟后三年258.00258.001112015CB910900叶绿体重要生理过程蛋白质的结构与功能解析中国科学院上海生命科学研究院张鹏后三年261.00261.001122015CB921000宏观量子态的表面与界面调控清华大学王亚愚后三年1288.001288.001132015CB921100高迁移率半导体及新型二维电子材料的新有序态北京大学谢心澄后三年1254.001254.001142015CB921200磁电功能氧化物界面的量子调控和原型器件研究南京大学吴迪后三年747.00747.001152015CB921300强自旋-轨道耦合体系中的关联效应及其量子态调控中国科学院物理研究所胡江平后三年1079.001079.001162015CB921400受限磁结构中的自旋相关输运及其动力学复旦大学吴义政后三年761.00761.001172015CB921500垂直磁各向异性铁磁/半导体异质结构中自旋调控中国科学院半导体研究所赵建华后三年763.00763.001182015CB921600多重非常规外场耦合下二维材料的物性调控与器件研究南京大学缪峰后三年191.00191.001192015CB921700过渡金属氧化物薄膜及相关异质界面电磁特性的量子调控清华大学于浦后三年244.00244.001202015CB931800肺癌在体分子分型的新型纳米分子成像探针基础研究哈尔滨医科大学申宝忠后三年1378.001378.001212015CB931900耐极端条件的有机含氟纳米材料的研究中国科学院上海有机化学研究所胡金波后三年727.00727.001222015CB932000功能纳米材料在地下水体优控污染物去除中的应用基础研究中国科学院生态环境研究中心景传勇后三年761.00761.001232015CB932100难溶性药物口服纳米制剂的转运机制及临床转化研究北京大学张强后三年1212.001212.001242015CB932200钙钛矿型太阳电池的基础研究南京工业大学黄维后三年1220.001220.001252015CB932300面向车用燃料电池的纳米-介观-宏观多级结构的电催化体系的研究厦门大学田中群后三年1190.001190.001262015CB932400面向光信息处理功能的新型纳米等离激元器件研究中国科学院物理研究所徐红星后三年1194.001194.001272015CB932500柔性能源存储纳米材料中的关键科学问题清华大学伍晖后三年256.00256.001282015CB932600基于响应性生物探针设计的微纳米器件用于乳腺癌早期检测的基础研究华中科技大学夏帆后三年285.00285.001292015CB932700基于二维层状材料的新型纳米信息器件与集成苏州大学鲍桥梁后三年274.00274.001302015CB942800消化器官发育的细胞和分子基础西南大学罗凌飞后三年1385.001385.001312015CB942900植物根干细胞形成与可塑性调控的分子机制中国科学院遗传与发育生物学研究所李传友后三年764.00764.001322015CB943000长非编码RNA在精子发生中的功能及机制复旦大学文波后三年1233.001233.001332015CB943100利用遗传修饰猪及小鼠研究骨骼肌与脂肪发育的分子机制中国农业科学院北京畜牧兽医研究所李奎后三年775.00775.001342015CB943200肠道黏膜免疫系统发育及其相关疾病的调控机制清华大学吴励后三年742.00742.001352015CB943300母-胎交互对话异常致妊娠相关重大疾病的分子机制复旦大学李大金后三年1358.001358.001362015CB9434003型天然淋巴细胞(ILC3)发育的分子调控机制及其与肠道免疫相关疾病的关系中国科学院上海生命科学研究院邱菊后三年254.00254.001372015CB943500复叶发育的分子调控网络研究山东大学周传恩后三年266.00266.001382015CB953600地球工程基础理论和影响评估研究北京师范大学John Moore后三年784.00784.001392015CB953700全球陆表能量与水分交换过程及其对全球变化作用的卫星观测与模拟研究中国科学院遥感与数字地球研究所施建成后三年700.00700.001402015CB953800末次冰消期以来中国中东部极端气候环境事件与农业起源发展和人类适应研究南京师范大学郑洪波后三年1317.001317.001412015CB953900北极海冰减退引起的北极放大机理与全球气候效应中国海洋大学赵进平后三年1138.001138.001422015CB954000南海碳循环过程、机理及其全球意义厦门大学戴民汉后三年1181.001181.001432015CB954100人类活动与全球变化相互影响的模拟与评估香港中文大学深圳研究院林珲后三年756.00756.001442015CB954200草地土壤碳氮的迁移、转化过程及其机制研究
  • 珀金埃尔默发布药材及饮片中农药多残留和真菌毒素的液质联用检测解决方案
    药材及饮片中农药多残留的液质联用检测近日,国家药典委员会拟修订和公示关于《中国药典》2015年版四部“0212药材和饮片检定通则”、“2341农药残留量测定法修订草案”。其中关于新增“第五法药材及饮片(植物类)中禁用农药多残留测定法”,以及在检定通则中规定了33种禁用农药不得检出,为药材及饮片中农药残留的测定提供技术保障和法规依据。在第五法药材及饮片(植物类)中禁用农药多残留测定法征询意见稿中,规定了三重四极杆液质联用(lc-ms/ms)分析方法,用于 30 种农药的检测分析。珀金埃尔默采用 qsight lc-ms/ms液质联用系统,建立了药材及饮片中上述农药残留分析的整体解决方案。样品前处理根据样品基质的特点和方法确认结果,参照《中国药典》 “2341 农药残留量测定法(新增第五法)公示稿 ”所列直接提取法、快速样品处理法(quechers)和固相萃取法(spe),选择适宜的样品制备方法。lc-ms/ms仪器方法perkinelmer lx50 uhplc 参数色谱柱:kinetex c18 色谱柱, 4.6 x 100 mm, 2.6 μm柱温:35℃流速:0.8 ml/min流动相及梯度:表 1进样量:5 μl表1. 30种农药化合物液相色谱梯度洗脱表质谱参数以下参数以perkinelmer qsight 210三重四极杆质谱仪为例,目标化合物质谱参数见表2和表3。表2. 30种农药化合物质谱参数表(1)表2. 30种农药化合物质谱参数表(2) 表2. 30种农药化合物质谱参数表(3) 表2. 30种农药化合物质谱参数表(4) 表3. 质谱离子源参数 检测结果图1中展示了采用30种农药化合物浓度为10.0 μg/l的总离子流色谱图,经色谱条件优化,各个化合物的峰型对称,获得优异的色谱分离效果。 图1.30种农药化合物提取离子色谱图(浓度为10 μg/l)药材及饮片中真菌毒素的液质联用检测黄曲霉毒素 (aflatoxin) 是由黄曲霉,寄生曲霉等真菌产生的一类分子结构相似的次级代谢产物,是一类毒性和致癌性很强的化合物,为第一类致癌物,是人类原发性肝癌的主要致病因素之一。中药材在生长和储存过程中,环境条件不当便会滋生霉菌从而产生黄曲霉毒素。2015 版《中国药典》对柏子仁、莲子、使君子、槟榔、麦芽、肉豆蔻、决明子、远志、薏苡仁、大枣、地龙、蜈蚣、水蛭、全蝎等14味药材及其饮片品种项下增加“黄曲霉毒素”检查项目,限度为“黄曲霉毒素b1不得过5 μg/kg;黄曲霉毒素g2、黄曲霉毒素g1、黄曲霉毒素b2总量不得过10 μg/kg”。药典中已经确定三重四级杆液质联用(lc-ms/ms) 分析方法为黄曲霉毒素的仲裁检测方法。珀金埃尔默采用 qsight lc-ms/ms液质联用系统,建立了药材及饮片中黄曲霉毒素含量测定整体解决方案。样品前处理方法提取: 取供试品粉末约15 g(过二号筛),精密称定,加入氯化钠 3 g,置于均质瓶中,加入70%甲醇溶液75 ml,高速搅拌 2 分钟(搅拌速度大于11000 转/分),离心 5 分钟(离心速度2500 转/分),精密量取上清液 15 ml,置于 50 ml 量瓶中,用水稀释至刻度,摇匀,用微孔滤膜(0.22 μm)滤过,待净化。净化:(1)上样:将准确移取15.0 ml 样品提取液注入免疫亲和柱,调节空气压力泵的压力使溶液以约6 ml /min 流速缓慢通过免疫亲和柱,直至2 ml~3 ml 空气通过柱体,随后调节开关,使液体以1~2 d/s 的速度流出;(2)淋洗:以10 ml 水淋洗免疫亲和柱两次,弃去全部流出液,并使2 ml~3 ml 空气通过免疫亲和柱,流速为2~3 d/s;(3)洗脱:准确加入1. 0 ml 色谱级甲醇洗脱,流速为1 ml/min~2 ml/min,收集全部洗脱液于玻璃试管中,供检测用。lc-ms/ms仪器方法perkinelmer lx50 uhplc 参数色谱柱:brownlee spp c18,100mm*2.1mm,2.7μm柱温:40 ℃ 流速:0.3 ml/min进样量:10 μl流动相及梯度:见表 4表4. 4种黄曲霉毒素液相色谱梯度洗脱表 质谱参数以下参数以perkinelmer qsight 210三重四极杆质谱仪为例,目标化合物质谱参数见表5和表6。表5. 4种黄曲霉毒素化合物质谱参数表(*为定量离子对) 表6. 质谱离子源参数 检测结果图2中展示了采用4种黄曲霉毒素的提取离子流色谱图,经色谱条件优化,各个化合物的峰型对称,获得优异的色谱分离效果,图3为4种黄曲霉毒素标准曲线,表7为相关系数和检出下限及重复性。 图2. 4种黄曲霉毒素的提取离子流色谱图 图3. 4种黄曲霉毒素标准工作曲线表7. 4种黄曲霉毒素的线性范围、相关系数(r2)、loq及重现性数据 本文采用qsight lx50 uhplc-qsighttm 210三重四极杆液质联用系统建立了快速,高灵敏度和可靠的lc-ms/ms实验方法测定中药材及饮片中的农药化学品残留和黄曲霉毒素。本方法具有分析速度快、灵敏度高等特点,适用于中药质检部门对中药材及饮片中农药化学品多残留和黄曲霉毒素的定性定量分析。 图4. 世界第一台立式四极杆质谱系统 —— 珀金埃尔默 qsight 三重四级杆液质联用系统 图5. “不怕脏”的珀金埃尔默 qsight 三重四级杆液质联用系统的优势设计扫描下方二维码,即可下载药材及饮片中农药多残留和真菌毒素的液质联用检测解决方案
  • AI辅助拉曼光谱+生物打印技术,用于血液中细菌的高通量检测
    美国斯坦福大学(Stanford University)开发了用于分析血液和废水的人工智能(AI)辅助方法。微生物的可靠检测和鉴别对于医学诊断、环境监测、食品生产、生物防御、生物制造和药物开发至关重要。虽然病原体检测通常使用体外液体培养方法,但据估计,使用目前的实验室方法,可以轻松培养的细菌种类不到所有细菌种类的2%。此外,在这2%中,根据细菌种类的不同,培养过程可能需要数小时到数天不等。因而由于诊断进程缓慢,在等待细菌培养结果时通常使用广谱抗生素,导致抗生素耐药细菌数量惊人地增加。拉曼光谱是一种无标记振动光谱技术,最近已成为一种有前途的细菌种类鉴别平台。由于每个细胞种类和菌株都有独特的分子结构,因而它们具有可用于鉴别的独特的光谱指纹。与基于核酸的检测方法(如聚合酶链式反应(PCR))和基于蛋白质的检测方法(如基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF)和酶联免疫分析(ELISA))相比,拉曼光谱检测技术只需很少或不需要使用试剂或标记,设备成本相对较低,并具有无扩增检测的潜力。此外,拉曼光谱检测技术是一种无损技术,首先,其激发激光功率很低,使细胞可以保持活性;其次,测量结果基本不受细胞中水分的干扰;最后,检测只需非常小的样本量。与等离子体或米式共振纳米颗粒结合,拉曼光谱信号平均可以增强10⁵-10⁶倍,最高可增强10¹⁰倍,从而实现对细胞的快速检测。由于这些优势,拉曼光谱检测技术已经成功地应用于基因分析、蛋白质检测,甚至单分子检测。最近的工作也显示了拉曼光谱检测技术在细胞鉴别方面的令人兴奋的进展,包括细菌鉴别、免疫分析和活体活检。然而,为了提高拉曼光谱检测技术的临床和工业实用性,它必须与简便的样本制备方法相结合。据悉,近期,美国斯坦福大学的一个研究项目开发了一种细菌鉴别技术,该技术结合了表面增强拉曼光谱(SERS)、机器学习和用于样本制备的生物打印方法。这项研究近期以“Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood”为题发表在Nano Letters期刊上。拉曼光谱技术用于细菌鉴别原理示意图据参与该项目的研究人员称,传统培养方法可能需要数小时或数天,作为传统培养方法的替代方法,这种新方法可以快速、廉价、更准确地对许多不同液体进行微生物分析。斯坦福大学Fareeha Safir说:“不仅每种细菌都表现出独特的光谱特征,而且给定样本中几乎所有其他分子或细胞都是如此。样本中的红细胞、白细胞和其他成分都在发送自己的信号,因此很难从其他细胞的噪音中区分微生物的光谱信号。”要解决这个问题,研究小组需要考虑的是如何利用极少量的样本达到最好的细胞分离效果,尽可能多地去除不必要的光谱信号。为了解决这一挑战,该研究借鉴了喷墨打印技术的原理,使用了一种被称为声学微滴喷射(ADE)的技术。在使用声学微滴喷射技术时,超声波将聚焦在流体-空气界面,产生辐射压力,从而使液体表面喷射出液滴,其液滴大小与换能器的频率成反比。从细胞原液中喷射出的图案化液滴未来的即时检测技术该平台的拉曼面利用金纳米棒(GNRs)进行表面增强,将金纳米棒引入样本液体中,通过声学打印操作将细菌和金纳米棒都沉积到镀金载玻片上。声学打印平台和共聚焦拉曼装置示意图该研究团队在其发表的论文中评论道:“这项试验首次展示了利用微观生物实体和纳米颗粒进行的多组分样本的稳定而精确的高频声波打印。”此外,在该项试验中,基于拉曼光谱的分析被应用于大肠杆菌、葡萄球菌,以及小鼠红细胞样本,并使用之前从均匀细胞样本中训练的机器学习算法来鉴别不同类别样本的拉曼光谱特征。利用拉曼光谱信号鉴别用金纳米棒(GNRs)打印的细胞样本基于机器学习算法和拉曼光谱技术鉴别大肠杆菌、葡萄球菌,以及小鼠红细胞样本结果显示,该系统对细胞纯样本的分类准确率超过99%,对细胞混合样本的分类准确率为87%。此外,使用金纳米棒和不使用金纳米棒的检测结果证实,拉曼光谱信号在生物打印样本中会发生表面增强,其放大倍数高达1500倍。根据该研究团队的说法,该方法可以帮助推进基于拉曼光谱的研究、临床诊断和疾病管理,为未来的即时检测系统提供基于流体的生物标志物微创检测。该平台也可以应用于其他液体的检测,比如公共卫生监测领域的饮用水检测。研究团队成员Amr Saleh说:“这是一种创新的解决方案,有可能挽救生命。我们对该方法潜在的商业化机会感到兴奋,这可以帮助重新定义细菌检测和单细胞表征的标准。”
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。   研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。   利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。   研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。   据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。   参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。   据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 珀金埃尔默发布《中药农药残留与真菌毒素检测解决方案》
    珀金埃尔默发布《中药农药残留与真菌毒素检测解决方案》中国药典与农药残留检测《0212药材和饮片检定通则》:植物类药材及饮片禁用33类(55种)农药不得检出。《2341农药残留量测定法》:使用气相色谱(GC)结合电子捕获(ECD)、火焰光度(FPD)等检测器测定有机氯、有机磷、菊酯类农药;使用液相色谱-质谱联用(LC-MS/MS)和气相色谱-质谱联用(GC-MS/MS)进行农药多残留的定性定量检测。中国药典与真菌毒素检测《2351真菌毒素测定法》:使用高效液相色谱法(HPLC,第一法)测定黄曲霉毒素、赭曲霉毒素A、玉米赤霉烯酮、呕吐毒素等;如果HPLC 测定结果超出限度时,采用LC-MS/MS (第二法) 进行确认。使用LC-MS/MS测定展青霉素和多种真菌毒素(10种)。珀金埃尔默中药农药残留和真菌毒素检测解决方案珀金埃尔默一直致力于为药物生产和监管提供真正合规、全面、有效、创新的药品安全解决方案。作为全球分析仪器领域的先行者,珀金埃尔默凭借值得信赖的样品前处理和稳定可靠、高灵敏度的色谱质谱技术,提供全面解决方案助您轻松应对药材饮片中的农药残留和真菌毒素分析,在保证分析结果准确可靠的前提下不断提高分析效率,充分满足法规要求。欲了解2020版药典中药农药残留和真菌毒素的相关内容,以及因拥有优异的自清洁功能设计而被业界称为“一台真正不怕脏的液质联用”的珀金埃尔默QSight LC-MS/MS,在测定农药残留和真菌毒素时,是如何做到运行稳定、检测灵敏、操作简单、维护便捷,请扫描下方二维码即刻获取《珀金埃尔默中药农药残留和真菌毒素检测解决方案》。扫描上方二维码即可下载资料
  • 2020版中国药典珀金埃尔默系列解决方案(三) | 《中药农药残留与真菌毒素检测解决方案》
    令人瞩目的新版《中国药典》已于2020年12月30日正式实施,为用药安全提供了强有力的保障,也对药品生产和监管提出了更高标准要求。珀金埃尔默发布为药物生产和监管提供真正合规、全面、有效、创新的系列药品安全解决方案,全力支持2020版国家药典的实施。01 农药残留检测《0212药材和饮片检定通则》列出植物类药材及饮片禁用33类(55种)农药不得检出(不得过定量限);《2341农药残留量测定法》规定使用气相色谱(GC)结合电子捕获(ECD)、火焰光度(FPD)等检测器测定有机氯、有机磷、菊酯类农药;使用液相色谱-质谱联用(LC-MS/MS)和气相色谱-质谱联用(GC-MS/MS)进行农药多残留定性定量检测。02 真菌毒素检测《2351真菌毒素测定法》:方法1~4中使用高效液相色谱法(HPLC,第一法)测定黄曲霉毒素、赭曲霉毒素A、玉米赤霉烯酮、呕吐毒素等;如果HPLC测定结果超出限度时,采用LC-MS/MS (第二法) 进行确认。方法5和方法6使用LC-MS/MS测定展青霉素和多种真菌毒素(10种)。03 中药农药残留和真菌毒素检测解决方案作为全球分析仪器领域的先行者,珀金埃尔默凭借值得信赖的样品前处理和稳定可靠、高灵敏度的色谱质谱技术,提供全面解决方案助您轻松应对药材饮片中的农药残留和真菌毒素分析,在保证分析结果准确可靠的前提下不断提高分析效率,充分满足法规要求。欲了解2020版药典中药农药残留和真菌毒素的相关内容,以及因拥有优异的自清洁功能设计而被业界称为“一台真正不怕脏的液质联用”的珀金埃尔默QSight LC-MS/MS,在测定农药残留和真菌毒素时,是如何做到运行稳定、检测灵敏、操作简单、维护便捷,请扫描下方二维码即刻获取《珀金埃尔默中药农药残留和真菌毒素检测解决方案》。扫描上方二维码即可下载右侧资料➡
  • 恭贺艾森生物RTCA技术获得美国“肿瘤细胞免疫疗法”之父卡尔朱恩(Carl June )团队高度评价
    恭贺艾森生物RTCA技术获得美国“肿瘤细胞免疫疗法”之父卡尔朱恩(Carl June )团队高度评价 肿瘤细胞免疫疗法是当今最有希望治愈癌症的治疗手段,由美国科学院院士、宾夕法尼亚大学教授卡尔?朱恩在全球最先成功运用于病人的治疗。日前,宾夕法尼亚大学卡尔实验室撰文,高度评价由艾森生物自主研发的实时细胞分析系统(xCELLigence Real Time Cell Analyzer,RTCA)即艾森生物RTCA技术,在临床评价肿瘤细胞免疫治疗的关键CAR T细胞对肿瘤细胞杀伤活性方面的价值。 昊诺斯作为艾森生物独家授权的区域代理商,为艾森生物能拥有这样先进的技术感到骄傲,并对艾森生物RTCA技术获得美国“肿瘤细胞免疫疗法”之父卡尔朱恩(Carl June )团队高度评价表示祝贺,昊诺斯也一直致力于把这种艾森生物RTCA技术、相关产品介绍给自己的用户,希望大家受益。 肿瘤细胞免疫疗法作为近年来国际上最热门的新型细胞疗法,其基本原理就是利用病人自身的T细胞进行基因改造,成为嵌合抗原受体T细胞(简称CAR T细胞),以此对肿瘤细胞进行高度靶向性的精准治疗,并可能成为最终治愈肿瘤的手段。然而,对CAR T细胞的肿瘤杀伤作用,目前全球没有一个成熟的评价系统和标准,这是目前肿瘤细胞免疫治疗急需攻破的难关。 例如,为监测关键细胞——CAR T细胞对肿瘤细胞的总体杀伤活性,治疗者需要对治疗性T细胞在应用于病人治疗前进行快速评估。卡尔实验室运用艾森生物RTCA技术发现,该艾森生物RTCA技术可揭示不同肿瘤细胞杀伤的动力学差异,这是其他传统终点检测方法无法实现的。而与其他实时分析技术相比,艾森生物RTCA技术也有更多优势,它仅需很少的细胞进行检测分析,能及时反映组合治疗的动态过程,并可为用于体内研究的治疗性T细胞提供快速活性质控。总之,艾森生物RTCA技术在基因修饰的T细胞活性功能评价、活性动力学特征评估、体外联合治疗的量效和时效评估,以及快速稳定的质控检测等方面,都显示了非常有价值的功能和独特优势。 艾森生物致力于开发具有国际领先水平的细胞自动化分析系统等系列产品,其核心技术及产品实时细胞分析系统,已拥有20多个国际发明专利,并获得中国国家科技型中小企业技术创新奖,产品远销北美、欧洲、亚洲30个国家的近2000家大型医药公司和研究机构,获广泛好评。 值得一提的是,正是基于自身这一核心技术和产品的强大优势,艾森生物新药研发团队运用此技术积极挺进自主创新药的研发,在当今医学界研究和关注的两大热点和难点——治疗肿瘤和自身免疫性疾病的创新药物开发上,均取得了骄人成绩。艾森生物原创新药马来酸艾维替尼(AC010),是国内首个第三代小分子表皮生长因子受体抑制剂,主要用于靶向治疗非小细胞肺癌,已在中国和美国同时进行临床研究,进展顺利。公司首创的另一口服靶向新药AC0058,主要用于治疗系统性红斑狼疮和类风湿性关节炎,是全新机制小分子化合物,于2015年获美国FDA临床试验批准,即将在美国开展临床研究。 香农?迈克杰蒂甘博士将代表卡尔实验室,于2016年1月25日,参加在美国加州圣地亚哥召开的第八届免疫及免疫监控大会(8th Immunotherapeutics & Immunomonitoring Conference, San Diego, CA.USA),专题报告艾森生物RTCA技术在肿瘤细胞免疫治疗中的运用情况。报告综述原文如下:Discovery and Pre-Clinical Evaluations of CAR T Cell Cytotoxic Activity Using the xCELLigence Real Time Cell AnalyzerPresenting Author: Shannon McGettiganAdditional Authors: Yanping Luo, Keisuke Watanabe, John Scholler, Carl H June Research Specialist University of Pennsylvania Cytotoxicity assays are an important characterization in the development of anti-cancer therapeutics. Chromium release assays are considered the gold standard for evaluating lymphocyte cytotoxic activity but requires the burden of using radioactive materials, is time consuming, and is limited to a single time point.our lab and others have developed flow cytometric and luciferase based cytotoxcity assays for screening and evaluating novel therapeutic CAR T cells against a wide range of cancer cell lines and primary tumor however, these can also be time consuming and limited to a single snapshot. In order to monitor the overall killing activity of our CAR T cell therapies as a function of time and more rapidly drive our understandings in early development of therapeutic T cells, we have started to utilize the xCELLigence real time cell analyzer (RTCA). Our studies have compared how measurement of changes in adherent cell’s electrical impedance compares to our standard cytotoxicity measurements by the remaining viable cell numbers in flow based assays or relative changes in luciferase activity. We found that a correlation exists between the platform for measuring cytotoxicity. Real time cellular impedance analysis reveals kinetic differences that cannot be captured practically with conventional fixed end point platforms. We have found that using the xCELLigence platform has many benefits beyond just real time monitoring. The assay requires minimal number of cells which can be retrieved for further analysis, saves time, provides a kinetic readout of combination therapies, and is a quick quality control cytotoxicity assay for therapeutic T cells used in in vivo experiments. Together the xCelligence Real time platform shows valuable utility for screening gene modified T cells cytotoxic function, characterizing the kinetics of their activity, evaluating the dosage and timing of combination therapies in vitro and providing a quick stable platform for quality control of therapeutic T cells.扫码关注昊诺斯微信公众号
  • 动物性食品中伊维菌素残留量测定的前处理方法
    伊维菌素的危害及检测目的阿维菌素类药物(Avermectins,AVMs)由链霉菌的发酵产物中分离的大环内酯类抗生素,包括伊维菌素、多拉菌素、阿维菌素、爱普菌素等品种。阿维菌素类药物是目前兽医临床上应用广泛的兽用驱虫药,被广泛应用于牛、羊等动物,其作用机理是干扰害虫神经生理活动,致使害虫出现麻痹而中毒死亡。阿维菌素类药物虽然作用剂量小,但其脂溶性较高,残留时间长,世界卫生组织将其列为高毒化合物。该类药物的不规范使用和食物链富集,易引发运动失调、呼吸缓慢、中枢神经系统中毒等症状,甚至致人死亡,对人类健康造成严重威胁,所以应对动物性食品中阿维菌素类药物含量进行监测。我国农业农村部和国家市场监督管理总局2019年发布的GB 31650-2019《食品安全国家标准食品中兽药最 大残留限量》中明确规定了伊维菌素、多拉菌素、阿维菌素、乙酰氨基阿维菌素在动物靶组织中的残留限量。本文阐述了如何将伊维菌素从样品基质中分离提取出来,并经过净化后,转化成液相色谱-串联质谱仪可以检测的形式。以提取、净化为重点,依据国标GB/T 22953-2008,为检测人员和相关领域研究人员提供一定的参考。检测项目:伊维菌素、阿维菌素、多拉菌素、乙酰氨基阿维菌素应用范围:河豚鱼肌肉、鳗鱼肌肉、烤鳗高效液相色谱法方法原理:河豚鱼、鳗鱼和烤鳗中残留的伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留用乙腈提取后,正己烷脱脂,中性氧化铝柱净化。样品溶液供液相色谱-串联质谱仪检测,外标峰面积法定量。前处理仪器:分析天平(感量0.1 mg和0.01 g);组织捣碎机;匀浆机(8000 r/min);离心机(4000 r/min);超声波水浴;液体混匀器;固相萃取装置;氮吹仪。 检测仪器: HPLC-MS/MS+ESI源试样的制备与保存取样品约500 g用组织捣碎机捣碎,装入洁净容器作为试样,密封,并标明标记,于零下18 ℃冰箱中保存。制样操作过程中应防止样品受到污染或残留物含量发生变化。 前处理方法1.提取准确称取2 g组织样品(准确至0.01 g)至50 mL离心管中,加入8 mL乙腈,匀浆机上8000 r/min均质20 s,4000 r/min离心5 min,上清液转移至50 mL离心管中;另取一50 mL离心管加入8 mL乙腈,洗涤匀浆刀头10 s,洗涤液移入前一离心管中,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管,离心管中的沉淀再加入6 mL乙腈,用玻棒捣碎离心管中的沉淀,液体混匀器上振荡30 s,4000 r/min离心5 min,上清液合并至50 mL离心管中,乙腈定容至25.0 mL刻度,混匀备用。2.净化向上述装有样品提取液的50 mL离心管中加入10 mL乙腈饱和的正己烷脱脂,涡旋振荡1 min,4000 r/min离心5 min,弃去上层正己烷,重复此操作一次,下层乙腈溶液待用。将中性氧化铝净化柱安置在固相萃取装置上,准确移取10.0 mL已脱脂的样品提取液至中性氧化铝净化柱中,控制流速在1 mL /min~2 mL /min,用2 mL×2乙腈淋洗净化柱,收集全部流出液,流出液转移至吹氮管中,50 ℃下氮气吹至干,用1.00 mL乙腈溶解残渣,并置超声波水浴中超声振荡10 min,0.2 μm滤膜过滤,供液相色谱-串联质谱测定。 国标解读及注意事项1.标准物质用乙腈配成100 μg/mL的标准储备液,在零下18 ℃保存。2.本方法通过乙腈提取,正己烷脱脂,中性氧化铝柱净化的方式进行目标化合物的提取净化。3.本方法采用洗涤均质刀头,三次提取的方式,提高目标化合物的回收率。4.氧化铝柱净化过程中除了活化溶液,其余溶液(上样液和淋洗液)都要收集。为保证净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。可用商品化的中性氧化铝固相萃取柱替代方法中手工填充的中性氧化铝净化柱。5.由于该类化合物没有对应的同位素内标用于回收率的校正,所以本方法使用空白样品提取液配制基质标准工作液,进行定量。 参考文献GB/T 22953-2008 河豚鱼、鳗鱼和烤鳗中伊维菌素、阿维菌素、多拉菌素和乙酰氨基阿维菌素残留量的测定 液相色谱-串联质谱法河豚鱼、鳗鱼中伊维菌素残留量测定的前处理流程图:
  • 瑞士帝肯2013年销售及经销商会议在上海圆满落幕
    2013年1月24日至25日,瑞士帝肯(Tecan) 2013年销售及经销商会议在上海浦东嘉里大酒店顺利召开,来自亚太地区包括新加坡、泰国、印尼、马来西亚、越南、台湾、韩国、中国等在内的七十多位经销商代表们与Tecan管理销售团队欢聚一堂,总结2012 Tecan的骄人成绩,展望2013 Tecan兴旺之路。 会议首先由Tecan集团CEO David Martyr先生根据此次会议主题&ldquo 创造价值,共铸成长(Growth with Values)&rdquo 致大会开幕词,他公布了2012年Tecan集团在中国业务的快速增长,祝贺Tecan中国年销售额首次突破两千万瑞郎,并对2013年Tecan集团亚太市场的发展重点进行了部署。 Tecan集团CEO David Martyr先生热情致辞 随后,Tecan中国及东南亚地区总经理Raymond Chan先生介绍了Tecan亚太地区2012年度经营业绩,并详细阐述了2013年Tecan亚太地区的销售及经营目标任务、思路与措施。他强烈号召Tecan全体员工及经销商队伍齐心协力,致力于打造一流团队,创建一流服务。在上海这个中国最具经济活力的城市,Tecan用一系列重量级的举措,向市场传递着对于未来必胜的信心! Tecan中国及东南亚地区总经理Raymond Chan先生的发言鼓舞人心 瑞士Tecan销售及经销商会议现场 之后,Tecan中国销售、市场、售后服务管理团队针对2012年不同市场和经营情况逐一与参会嘉宾进行交流,并热情洋溢地强调了不同部门2013年保持高速发展的内在驱动力。高管们的激励人心的演讲让与会经销商们对Tecan公司2013年的发展充满了信心。 此次销售及经销商会议在年度总结、展望未来基础上,Tecan公司的产品专家团队隆重推出了新产品,如:Freedom EVO® 平台新选件-Air-Liha(空气置换加样机械臂);Freedom EVO® 液体处理工作站全套性能验证方案-QC Kit;全自动酶免分析系统Freedom EVO® Elisa等;以及热点本地定制化应用解决方案,如生物样本库biobanking、微生物实验室应用等。另外,产品应用团队还与大家分享了关于2012年发布的新产品皮升级药效学矩阵生成系统HP D300、功能及模块升级的Infinite® 系列多功能酶标仪、成功获得SFDA医疗器械注册证的96通道高速洗板机HydroSpeedTM等的宝贵推广经验,专家们的精彩发言启发了销售及经销商团队的营销新思路,为2013年业绩的增长寻找到更多的突破点。 1月24日晚上进行的颁奖晚宴则是对辛苦一年的Tecan经销商们最好的奖励。2012年最佳业务开拓奖、最佳售后服务奖、最杰出合作伙伴、CEO感谢奖等奖项相继被颁出。闪耀的奖杯不仅代表着经销商个人的荣誉,也是厂商双方精诚合作,携手共进的见证。 Tecan集团管理层共同举杯祝酒 颁奖晚宴现场 随着全体与会人员在会场的合影定格,瑞士帝肯2013年销售及经销商会议圆满落下帷幕。瑞士Tecan将以这一刻为起点,带着对胜利的强大信念,携手迈向一亿瑞郎,实现2013年业绩的再次腾飞,迎接更辉煌的未来! Tecan大家庭合影 关于帝肯 瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域自动化及解决方案供应商。公司成立于1980年,总部设在瑞士Mä nnedorf,分别在瑞士、北美和奥地利设有自己的研发和生产基地,目前公司主要经营的产品有三大类:全自动化液体处理平台 ( Liquid Handling & Robotics )、多功能酶标仪(Multimode Reader)和OEM组件。销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。其液体处理技术已拥有行业经验32年,在全球处于领先地位,备受世界领先生命科学实验室的青睐。作为原始设备制造商(OEM),Tecan同样在OEM设备和组件开发和生产方面占有世界领先地位。2011年,Tecan创造了3.77亿瑞士法郎(即4.24亿美元;或3.06亿欧元)的销售业绩。Tecan集团的注册股票在瑞士证券交易所交易 (TK: TECN/Reuters: TECZn.S/ ISIN: 12100191)。欲了解更多信息,请浏览公司网站:www.tecan.com。 关于帝肯中国 瑞士Tecan于2004年在北京开设代表处,正式进驻中国市场。2008年4月在上海浦东成立帝肯(上海)贸易有限公司, 作为Tecan集团在亚太地区(日本及韩国除外)总部,全面负责Tecan集团在中国的所有商业活动,包括销售、市场活动与合作、以及客户支持。帝肯(上海)目前拥有一支专业的售前和售后服务团队,在科研、制药、公安刑侦、医院、血站、CDC和CIQ领域构建了良好的经销和售后服务网络,并以&ldquo 力求比客户期望做的更好&rdquo 的服务理念,给广大的终端用户提供专业的服务。我们致力于成为包括客户在内的所有合作方的首选合作伙伴(Partner of Choice)。 欲了解更多信息,请浏览公司网站:www.tecan.cn。 更多详情,欢迎您联系: 帝肯(上海)贸易有限公司 Libby Zhu Tel: 021 2206 3206 / 010 8511 7823 Fax:021 2206 5260 / 010 8511 8461 infotecancn@tecan.com www.tecan.com www.tecan.cn
  • 珀金埃尔默助力肿瘤治疗创新|7月24日昆明国际肿瘤研究论坛
    肿瘤治疗已有250多年的历史。自传统的化疗起,肿瘤治疗经历了传统化疗/放疗时代,基于小分子和抗体的靶向药时代,肿瘤免疫治疗时代,和当下的精准医疗时代。与此同时,珀金埃尔默一直致力于——“为了更健康的世界,不断创新”,从传统化疗/放疗-基因组学-高通量筛选-单细胞组学-生物制药多个方向全面助力肿瘤治疗创新之路。在此,我们盘点肿瘤治疗历史的大事件,并从应用角度介绍珀金埃尔默对肿瘤治疗的贡献。传统治疗传统治疗兴起于90年代,主要包括手术切割,放射疗法和化学治疗等。通过近三十年的努力,美国于1937年建立National Cancer Institute (NCI) 用于开展肿瘤研究,深入了解肿瘤发病原因并开发有效的治疗方案。同年, Richard Perkin 和 Charles Elmer 合伙创建珀金埃尔默(PerkinElmer)并涉足分析仪器领域,推出原子吸收光谱仪用于追踪顺铂类化疗药物的摄取。PerkinElmer 于1987年推出首个商业化PCR系统Perkin-Elmer Cetus DNA Thermal Cycler,助力分子克隆研究。尽管近年来新的抗癌疗法不断涌现,传统疗法依然是当下肿瘤治疗的中流砥柱和一线手段。基于传统疗法,我们致力于耐药研究和联合用药等方向的前沿应用,如单细胞ICP-MS联合高内涵在单细胞组学水平研究肿瘤耐药机制[1],基于Alpha技术的高通量筛选则为靶向耐药的联合用药治疗方案打下基础(下图)[2]。图片源自文献:Cell. 2019 Jun 27 178(1):152-159.e11.靶向治疗上个世纪80-90年代的分子研究,包括针对癌症相关基因如P53和HER2基因的鉴定和克隆,为靶向药物开发打下了基础。1997年罗氏Roche药厂研发靶向CD20的利妥昔单抗(Rituximab)成为首个获批的单克隆抗体。次年著名的曲妥珠单抗(Trastuzumab)在美国获批,用于 HER-2阳性乳腺癌治疗。曲妥珠单抗的获批显著提升治疗效果的同时,也极大的推动针对乳腺癌的靶向治疗开发。2001年FDA批准首个激酶抑制剂格列卫(Imatinib mesylate),标志着肿瘤治疗进入靶向治疗时代。针对含有费城染色体融合基因 (BCR-ABL)的慢性骨髓性白血病病人,格列卫治疗可达到惊人的90%反应率,并能做到对疾病的持久控制。2001年也同时见证了首个Magic bullet抗体药物偶联物(Antibody Drug Conjugates ,ADCs)的获批。与后期兴起的免疫治疗不同,ADCs在病人免疫系统受损的情况下依然能发挥抗癌效果。随着格列卫的获批,多种著名的小分子靶向药物,尤其是激酶抑制剂进入抗癌市场[3]。同时,珀金埃尔默的小动物产品线也发挥活体成像的优势,助力多个小分子药物获批,其中包括由舒尼替尼(Sunitinib)和尼罗替尼(Nilotinib)。除了激酶抑制剂外,珀金埃尔默的活体成像平台也参与了首个,也是目前唯一获批的蛋白酶体抑制剂硼替佐米(Bortezomib)的研发。图片源自文献:Trends Pharmacol Sci. 2015 Jul 36(7):422-39.针对靶向治疗,珀金埃尔默参与了多个领域的进展。在基因水平研究,GeneAmp Thermo Cycler和ABI PRISM 310 Genetic Analyzer可用于分析描述BCR-ABL[4]。在激酶抑制剂研究领域,1998年我们推出了均相免疫检测LANCE平台,并进一步在2006年推出LANCE Ultra 平台,专注体外激酶活性筛选,除了分子水平外,我们的激酶解决方案还涵盖了细胞和活体水平研究,例如新一代TRK抑制剂研究的案例[5]。同时,我们一直致力于高通量药物筛选及药物研发应用,推出行业金标准多模式读板仪Envision和高内涵成像分析平台Opera 和Operetta,以及对应的试剂耗材和移液工作站平台,并在今年收购拥有HTRF® 免疫检测技术的生命科学领域尖端企业Cisbio Bioassays,以加速药物筛选、靶向药物发现和联合用药研究[6]。图片源自文献:Nat Biotechnol. 2009 Jul 27(7):659-66.肿瘤免疫新兴的肿瘤免疫主要包括两个大板块:以免疫检查点抑制剂为代表的肿瘤免疫治疗和以CAR-T疗法为代表的免疫细胞治疗。除此之外,免疫疗法还包括个性化肿瘤疫苗,溶瘤病毒和改造抗体例如BITE等。在肿瘤免疫治疗领域,靶向细胞毒性T细胞抗原-4(CTLA-4)的伊匹单抗(Ipilimumab,Yervoy)成为首个获批的免疫检查点抑制剂,并开启了肿瘤免疫时代。2014年同时见证了两款靶向PD-1的肿瘤免疫治疗明星药:帕博利珠单抗(Pembrolizumab, Keytruda,K药)和欧狄沃(Nivolumab, Opdivo,O药)的成功上市。值得一提的是,珀金埃尔默的DELFIA平台参与了O药的体外研发过程中的ADCC检测[7]。肿瘤领域免疫治疗带来的里程碑式的突破也让两位先驱 James P. Allison 和Tasuku Honjo,摘得2018年诺贝尔生理学或医学奖桂冠。在他们的研究成果中,不乏看到珀金埃尔默的身影。例如,我们的核酸解决方案协助Tasuku Honjo研究PD-1激活机制[8]。在解析肿瘤免疫微环境的研究过程中,James P. Allison作为MD Anderson癌症中心的一线科学家,多次使用多光谱组织病理成像系统进行肿瘤免疫微环境全景分析[9-10]。图片源自文献:NatRev Drug Discov. 2018 Dec 17(12):922.在细胞治疗领域,2017年由诺华推出的首个CAR-T细胞疗法Kymriah™ 的获批上市无疑是一针强心剂,激励肿瘤治疗方向细胞疗法的研发投入。当下,在肿瘤治疗领域,细胞治疗增长最为迅猛,成为最火热的研发管线[11]。靶向包括CAR-T和CAR-NK在内的细胞治疗,我们同样提供多个维度的金标准解决方案,主要包括体外水平的细胞功能评价[12]和体内水平研究[13]。在细胞功能描述上,我们支持细胞因子检测、细胞增殖追踪和基于高内涵以及多模式检测平台细胞杀伤效力评价。在体内水平研究,强大的IVIS活体成像平台则可协助监测体内肿瘤进展以及追踪免疫细胞体内的分布和迁移[14]。进一步在组织水平,多光谱组织病理成像系统则可通过其多标和成像优势深入解析细胞治疗对肿瘤免疫微环境带来的变化[15]。精准医疗肿瘤治疗的变革的背后也贯穿着精准医疗的演化。精准医疗(Precision Medicine)于2011年首次被定义,并因2015年精准医疗计划(Precision Medicine Initiative)的宣布成为覆盖全球的热门话题。在2016年的美国国家癌症射月计划(Cancer Moonshot)中再次强调利用精准医疗进行药效预测。同年中国也正式启动精准医疗计划,并将其列为国家重大战略性新兴产业。图片源自文献:Comprehensive Medicinal Chemistry III 2017, Pages 388-415虽然从定义上来看精准医疗不依赖于某个特定的技术平台,但测序技术,尤其是二代测序的兴起对精准医疗的推动不言而喻。在测序技术的引领下,我们已从基因测序时代步入大数据时代。然而,现阶段肿瘤治疗依然难以复制格列卫的临床效果。肿瘤细胞的高度异质性和持续进化能力让基于终点法的测序技术很难有效的预测肿瘤细胞-药物相互作用。与此同时,免疫治疗的成功更是向我们强调了细胞间相互作用的重要性。为了克服这些挑战,并将精准医疗推向新的高度,珀金埃尔默主要致力于两个方向开发应用:(1)基于ICP-MS和高内涵等平台的单细胞组学研究和(2)以新兴类器官和病人来源原代细胞为基石的个性化指导用药研发[16-18]。类器官结合了表型筛选和3D水平研究于一体,最大程度提高生理/病理相关性的同时支持中高通量的筛选,为精准用药,肿瘤基因型-药物相互作用研究和样品库制备开辟了新的道路[19]。会议邀请会议时间:2019年7月24日会议地点:恒盛酒店二楼恒盛厅(昆明市龙泉路77号)欲了解更多大会咨询,请点击下面链接http://www.kiz.ac.cn/qt/tzgg/sygg/201906/t20190625_5328203.html参考文献[1]单细胞ICP-MS联合HCS为您揭秘顺铂化疗耐药机制https://mp.weixin.qq.com/s/foZlyjWWXddY5FK0woqy2A[2] Wojtaszek JL, et al. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell. 2019 Jun 27 178(1):152-159.e11.[3] Wu P, et al. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015 Jul 36(7):422-39.[4] Chasseriau J, et al. Characterization of the Different BCR-ABL Transcripts with a Single Multiplex RT-PCR. J Mol Diagn. 2004 Nov 6(4):343-7.[5] 精准医疗案例速递 | TRK抑制剂拉罗替尼开启泛癌种治疗新篇章https://mp.weixin.qq.com/s/-ZjWrUBnj2nqOG6hXBhRuQ[6] Lehár J, et al. Synergistic drug combinations improve therapeutic selectivity. Nat Biotechnol. 2009 Jul 27(7):659-66.[7] Wang C, et al. In Vitro Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and In Vivo Toxicology in Non-Human Primates. Cancer Immunol Res. 2014 Sep 2(9):846-56.[8] Freeman GJ, et al. Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med. 2000 Oct 2 192(7):1027-34.[9] 2018诺贝尔奖得主James P. Allison桂冠之下的荆棘与赤诚https://mp.weixin.qq.com/s/s773rk2aWrmVP0r5TpUg-Q[10] Jianjun Gao, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017 May 23(5): 551–555.[11] Tang J, et al.Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018 Dec 17(12):922.[12] 细胞治疗干货 | 免疫细胞杀伤经典案例https://mp.weixin.qq.com/s/47krDPy-vsxS5AP91T1GDw[13] IVIS视角——回顾2018年Carl H. June教授团队在CAR T领域的相关研究成果https://mp.weixin.qq.com/s/NMukfK6zcG8foSc7l4q6_w[14] Smith EL, et al.GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells.Sci Transl Med. 2019 Mar 27 11(485).[15] Ng SSM, et al.Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. Clin Cancer Res. 2017 Jun 1 23(11):2817-2830.[16] Snijder B, et al.Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematol. 2017 Dec 4(12):e595-e606.[17] Lee JK, et al.Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018 Oct 50(10):1399-1411.[18] Vlachogiannis G, et al.Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.Science. 2018 Feb 23 359(6378):920-926.[19] L.Li, et al.P 3D High-Content Screening of Organoids for Drug Discovery. Comprehensive Medicinal Chemistry III 2017, Pages 388-415关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 卵巢癌精准治疗,基因检测先行——中国首个多中心卵巢癌患者BRCA突变研究数据公布
    今年10月29日,中国首个大样本多中心卵巢癌患者BRCA突变研究数据在葡萄牙里斯本举办的IGCS(国际妇癌协会)双年会上发布,填补了我国在该研究领域的空白。11月11日,在由上海市抗癌协会妇科肿瘤专业委员会主办,阿斯利康和华大基因协办的“中国首个多中心卵巢癌患者BRCA突变研究数据公布”媒体发布会上,该研究负责人复旦大学附属肿瘤医院妇瘤科主任吴小华教授指出:“中国首个多中心卵巢癌患者BRCA突变研究数据的公布,为学界提供了首个可靠的、具有代表性的中国患者人群BRCA突变状况的数据,为进一步在中国卵巢癌患者中制定精准治疗方案、确立BRCA检测共识提供了理论基础和依据。” BRCA一旦突变,卵巢癌发病风险将大幅增加 卵巢癌是女性中最常见的恶性肿瘤之一,据国家癌症中心资料,我国每年卵巢癌新发病例数约为5.21万人,死亡病例数约为2.25万人,死亡率位居妇科恶性肿瘤的首位。卵巢癌发病隐匿,且缺乏有效的筛查及早期诊断措施,约70%患者在确诊时已属晚期,存在肿瘤的广泛播散和转移,5年生存率仅为30-40%左右。 研究发现BRCA突变与卵巢癌的发生关系密切,BRCA1和BRCA2均为抑癌基因,在调节细胞复制、DNA损伤修复、细胞正常生长方面有重要作用,如果BRCA发生突变,就丧失了抑制肿瘤发生的功能,导致癌细胞大量繁殖。研究发现,一般人群的卵巢癌终生发病风险约为1%,而BRCA1突变携带者的卵巢癌发病风险可高达40%,BRCA2突变携带者的卵巢癌发病风险可升高至11-18%。因此BRCA检测不仅能成为卵巢癌早期筛查的重要参考数据,对卵巢癌患者后期用药也极具临床指导意义。 美国著名影星安吉丽娜茱莉就曾因检测出BRCA1突变而预防性切除了双侧卵巢及输卵管以预防卵巢癌,一时间BRCA检测成为社会热点话题。 BRCA检测:简单方便告知患癌风险BRCA1/2都是典型的抑癌基因,其突变可能出现于基因的各个区域,仅仅检测这两个基因的某几个变异,不仅不能全面解析患癌风险,反而会有大范围漏检的可能,因此传统的测量单个位点的一代测序不适用于检测BRCA突变。另外一个值得关注的点是,每个人都有各类基因变异,但其中大多都是无害的,所以检测机构不仅要找到基因变异,更要有可靠的数据库和遗传解读能力,后者决定了每个找到的基因变异能否被正确地判定为有害还是无害。 大众在选择基因检测机构时首先要看准资质。一般而言,三甲医院进行的遗传性肿瘤基因检测相对可靠,但是三甲医院中能开展该检测项目的比较稀少,目前国内进行遗传性肿瘤基因检测的多为第三方临床检验中心。2015年3月27日,国家首批肿瘤诊断与治疗项目高通量基因测序技术临床试点单位确定,全国仅5家第三方临检机构获得该试点资格,包括深圳华大临床检验中心和天津华大医学检验所。卫生部临床检验中心2016年4月对44家做肿瘤基因测序的实验室(包括医院和基因检测公司)进行了考试,深圳华大临床检验中心、天津华大医学检验所、中山大学附属肿瘤医院、深圳市罗湖区人民医院等都获得了满分。美国病理学会(CAP)的2016年上半年BRCA基因检测能力验证项目结果表示,深圳华大临床检验中心的结果全部合格,满分通过,也标志着华大基因在BRCA1/2基因检测项目的检测流程、信息分析和临床解读整个环节的规范性和准确性均达到了国际标准。 28.45%的中国卵巢癌患者存在BRCA突变 近二十余年,国外很多文献报道过卵巢癌患者中BRCA突变的比例大致在5-29%,但来自亚洲的数据很少,尤其是在中国,由于BRCA检测并不是一项常规检测项目,因此尚无此方面大规模、多中心的研究数据。 由复旦大学附属肿瘤医院、中国医学科学院肿瘤医院、山东大学齐鲁医院、中山大学附属肿瘤医院、四川大学华西第二医院共同完成的中国首个多中心卵巢癌患者BRCA突变研究,共纳入826例上皮性卵巢癌患者,采用目前国际上公认最准确的二代测序方法进行BRCA1/2基因突变的检测,发现我国卵巢癌患者BRCA突变率为28.45%,其中BRCA1突变率为20.82%,BRCA2突变率为7.63%。该研究牵头人,吴小华教授指出:“此项研究证实:中国超过四分之一的卵巢癌患者都存在BRCA突变,彻底颠覆了我国卵巢癌患者BRCA突变率较低的传统观念;同时,研究还发现BRCA突变不仅局限于有卵巢癌家族史的患者或者是某一病理类型,因此非常有必要在中国将BRCA检测作为所有上皮性卵巢癌患者的常规检测之一,该检测对于进一步制定和评估治疗方案必不可少。” 推广BRCA突变检测,助力卵巢癌精准治疗 对卵巢癌患者进行BRCA突变检测,有助于更好地进行预后的判断、化疗方案的选择、家族遗传史患者亲属的风险评估,帮助医生根据患者的基因特点来选取更精准的治疗方案。由于BRCA突变检测对实验室设备和检测人员技能要求很高,目前该检测并没有普及,即使是一些大医院都不能进行该项检测。临床多中心研究中的BRCA1/2基因检测,由华大基因提供。随着第二代高通量测序技术的普及,将会有越来越多的医院能开展BRCA基因检测。 在媒体沟通会上,吴小华教授总结道:“此次中国首个多中心卵巢癌患者BRCA突变研究的成功发布,要感谢阿斯利康和华大基因的大力协助。目前,晚期卵巢癌的治疗一直是妇科肿瘤医生面临的严峻考验,我相信通过对疾病的深入研究,对新药的不断研发,以及基因检测技术的提高和普及,最终将惠及卵巢癌患者,为她们争取更多宝贵的、高质量的生存时间,绽放生命的精彩。”
  • Illumina旗下Grail9亿美元B轮融资落地 腾讯参投
    3月1日,已经在民间流传很久的癌症早筛公司GRAIL要启动10亿美金B轮融资的传闻终于落地了。  GRAIL宣布,获得由ARCH Venture Partners和Johnson & Johnson Innovation联合领投第一波B轮融资,GRAIL已经拿到超过9亿美元。此外,Amazon, Bristol-Myers Squibb, Celgene, McKesson Ventures, Merck,Tencent Holdings Limited 和Varian Medical Systems跟投。  据悉,第二波的B轮融资正在计划开启中,这一波完成之后,GRAIL将收获超10亿美元的超级B轮融资。资本市场如此看好GRAIL和癌症早筛与基因测序价格不断下降关系密切(基因测序价格下降速度低于预期,翘首以待的「百元基因组」时代仍需3-10年)。  2016年1月10日,Illumina正式宣布组建血液基因检测公司Grail,企图通过对血液中DNA片段深度测序,发现没有临床表现的早期癌症。Illumina联合微软创始人比尔盖茨和亚马逊创始人杰夫贝佐斯,共同为Grail注入1亿美元的A轮投资。  Illumina创办Grail并非一时心血来潮,早在2015年9月Illumina就与纪念斯隆-凯特琳癌症中心(Memorial Sloan Kettering,MSK)开展合作,已经透漏出Illumina要介入癌症早期检测的决心。  Illumina和MSK认为,传统的组织活检虽然也可以获取肿瘤细胞的DNA,但是这种侵入性的活检存在一定的风险 另外这种组织活检多用于癌症的治疗指导、疗效分析和预后,不能作为早期诊断的工具。  Illumina与MSK合作意欲建立ctDNA与早期癌症之间的模型。根据二者合作协议,MSK主要收集合适的检测样本,Illumina负责测序和数据分析。作为Grail当时的掌门人,Jay Flatley表示,Grail将在接下来的数年内完成数万人的基因测序,累计要达到40万人的样本量。Flatley希望通过这些数据分析出早期癌症与ctDNA之间的关系。  MSK的José Baselga说,MSK和Illumina现在做的事情如果成了,会使癌症的治疗发生根本性的变化。Baselga表示,可以筛选所有癌症的产品会在2017年开展临床试验,预计于2019年面市,但是在这之前,会先推出肺癌和乳腺癌的检测产品。  Flatley在接受采访时百感交集的说:“我们现在有一种强烈的紧迫感,我们要尽快将产品推向市场,如果按照我们预计的方向发展,我们会拯救数百万人的生命。”
  • 欧美联手打造1000个癌症新模型,癌症研究将迎“大跃进”?
    长久以来,对于研究癌症的科学家而言,人工培养的癌细胞系是不可或缺的研究工具。然而,令科学家头痛不已的一个大问题就是:这些经过人工培养的癌细胞与人体真实环境下的癌细胞往往存在某些不同之处。由此带来的一个恶果便是:某种试验药物或能有效杀死人工培养的癌细胞,但对癌症患者的疗效却很差。  如今,这一令科学家们无比尴尬的局面或将发生根本性改变。发生了什么事?原来,癌症研究领域的几位巨头正打算开展一项名为“人类癌症模型计划”(HCMI)的国际性合作,目标是发展1000个新癌细胞模型(细胞系)!并且,这或许仅仅是开始!  “人类癌症模型计划”的成员目前包括:美国国家癌症研究所(NCI)、英国癌症研究会、英国韦尔科姆基金会桑格研究所以及荷兰“海布雷赫茨类器官技术”基金会。按照该计划7月11日公布的方案,研究人员将在未来3年建立起1000个癌细胞模型。  美国国家癌症研究所负责人Louis Staudt称,即使是这首批1000个癌细胞模型,也已经是目前全球拥有的癌细胞模型数量的两倍。如果计划进展顺利,那么还会派生出数千个新癌细胞模型。事实上,按照Staudt的估计,因为癌症实在是种类繁多,要想充分满足研究人员所需,至少得有10000个模型。“当然,今后我们会不会把该项目继续往前推动,在很大程度上取决于前期计划进行得顺不顺利,是不是物有所值。”Staudt如是说。更真实  与现有的大多数癌细胞模型相比,此次打算推出的新模型优势明显。首先,新细胞系与临床数据结合得更紧密,甚至连捐赠者对治疗有何反应等信息都包含在了里面。其次,研究计划将会运用最顶尖的生物技术,包括细胞3D培养类器官技术,以更好地模拟体内生长条件。  正因为如此,与目前使用的癌症研究细胞系相比,新模型将更真实地反映人类肿瘤的组织架构和复杂程度,更准确地反映出人类肿瘤的生物学特性,从而更好地为新药研发和癌症新疗法的诞生助一臂之力。  伦敦大学学院组织工程专家Umber Cheema称,实施这项计划有利于联合各研究团体。她说:“眼下不同国家、不同研究团体在癌症研究领域显得有点各自为战,如果善于分享和整合,必将事半功倍!”  桑格研究所癌症研究专家Mathew Garnett认为,该项目将会为各成员提供解决问题的方案,有助于他们开发出更廉价、更高效的产品。目前存在的最主要的障碍则是:如何建立起一个收集样本的临床网络系统,并将其用于模型的开发中。  在这里要特别提一下美国国家癌症研究所,之前该研究所曾开展过一个项目,即用移植至小鼠体内、源自病人组织样本的细胞建立起癌细胞系。Staudt称该项目的成果也将融入本项计划。  Staudt指出,一些研究小组当下正在努力探索难以培养的癌细胞的最佳培养条件,比如说淋巴瘤。还有一些研究小组则把精力放在改进现有模型上,使之能更好地反映肿瘤的自然生长环境,例如,Cheema团队正采用3D培养技术来培养细胞,旨在更好地模拟现实环境,甚至还拥有血管系统(虽然较原始)。Cheema团队希望,通过对现有技术的改良,能够比较好地确定个体癌细胞是否具有转移性或对某种治疗方法如何反应。  雄心勃勃的“人类癌症模型计划”是否能取得成功,近而大力提升癌症研究整体水平、为广大癌症患者带来福音?还是让我们拭目以待吧。
  • 作为焦点的“致泻大肠埃希氏菌”,究竟该如何检测?
    GB29921-2021《食品安全国家标准 预包装食品中致病菌限量》于2021年9月7日发布,2021年11月22日实施。“致泻大肠埃希氏菌”突然就成了焦点!在2013版本中,原检测项目为大肠埃希氏菌O157:H7/NM。然而随着对致泻大肠埃希氏菌检验、鉴定能力的提升,越来越多的由其引起的暴发和病例被识别出来,其导致的疾病负担以往也可能被低估。我国食源性疾病监测结果显示,近几年细菌性食源性疾病暴发事件中,致泻大肠埃希氏菌引起的事件数已经上升到第五位,高危食品主要为肉制品、蔬菜、水果等。2021版标准修订将“大肠埃希氏菌O157:H7”修改为“致泻大肠埃希氏菌”,并对肉制品中的牛肉制品、即食生肉制品、发酵肉制品类,即食果蔬制品中的去皮或预切的水果、去皮或预切的蔬菜及上述类别混合食品规定了限量要求n=5,c=0,m=0/25g。(来源:食品安全国家标准数据检索平台)致泻大肠埃希氏菌是什么?致泻大肠埃希氏菌是一类能引起人体以腹泻为主的大肠埃希氏菌,可经过污染食物引起人类发病。常见的致泻大肠埃希氏菌主要包括:肠道致病性大肠埃希氏菌EPEC肠道侵袭性大肠埃希氏菌EIEC产肠毒素大肠埃希氏菌ETEC产志贺毒素大肠埃希氏菌STEC(包括肠道出血性大肠埃希氏菌EHEC)肠道集聚性大肠埃希氏菌EAEC致泻大肠埃希氏菌如何检测?GB4789.6-2016致泻大肠埃希氏菌检验流程:目前国标PCR确认试验方法为普通PCR法。接下来带大家了解一下美正的两种PCR检测方案1. 普通PCR检测流程及产品介绍2. 荧光定量PCR检测流程及产品介绍致泻大肠埃希氏菌检测注意事项及常见问题 操作注意事项 (1)PCR鉴定前需将菌纯化于非选择性的固体培养基上;(2)所有PCR操作需严格分区,不同区域内仪器物品不可混用;(3)所有冷冻试剂使用前需融化混匀短暂离心后开盖使用;(4)试剂避免反复冻融,大体积试剂可配置后小体积分装冷冻;(5)操作需要带手套,不可使用带荧光物质或者是带粉末的手套;(6)提核酸加热后需冷却到室温后在开盖操作,避免气溶胶污染;(7)PCR管及管盖上不可使用记号笔标记;(8)不同批次试剂盒试剂不可混用;(9)严格按照试剂盒说明书设定反应参数和荧光通道。 用荧光定量PCR符合标准要求吗? 答:这个不好说,一般按照不同的评审员的理解来要求。多数评审员应该会算是一种方法偏离吧。但是荧光定量PCR在技术上肯定是更先进的,至少明显降低了污染风险和生物安全风险,是今后食品微生物学检验技术的发展方向。GB 4789.6-2016的6.5.8条款:如用商品化PCR试剂盒或多重聚合酶链反应(MPCR)试剂盒,应按照试剂盒说明书进行操作和结果判定。这时候,我使用商品化荧光定量PCR试剂盒,是不是就可以按照试剂盒说明书进行了?大家可以探讨一下。 现在的食品实验室是否可以通过改装成分子实验室?食品检测的BSL-II室可以和PCR实验室共用吗? 答:食品实验室本来就可以包括分子实验部分。所以,常规食品微生物检测的生物安全二级实验室可以和PCR实验室共用。但是,因为生物安全二级实验室必须是负压或者常压,而PCR实验室是相对正压,还有人流物流的多次进进出出,在防止交叉污染方面比较辛苦。最好还是不要合并使用。产品名称24T普通PCRDZ10015-348T用于PCR操作过程短暂离心
  • Seer 公司 Max Mahoney:高深度无偏蛋白质组学新技术,开启肿瘤早筛新纪元
    蛋白质组学的发展方兴未艾,是后基因组时代重点关注的热点领域,新思路,新技术层出不穷,应用领域和场景不断拓展。Seer公司就是在这种大背景下诞生的一家科技新锐,为全球同行开启了一扇通向——大规模,高深度,无偏蛋白质组学的大门。本次采访,让我们聚焦Seer公司技术体系在肿瘤早筛领域的应用。  Seer公司提供的Proteograph™XT平台利用经过特殊制作的纳米粒子磁珠,在跨数十个数量级丰度之间,非特异性地结合各类蛋白,无需额外去除高丰度蛋白,再利用高性能的质谱技术,达到高精度测量。在兼顾深度,增强蛋白组分析通量的情况下,实现对大规模血液蛋白的可重复性定量分析,创造了无偏差高通量探寻生物标记物的机会。  Max Mahoney 是 Seer 公司最早的员工之一,参与设计开发了数个专利的纳米颗粒和ProteographTM系统,先后担任全球高级应用科学家、区域商业负责人等职。Max更是助力中国蛋白质组学发展的老朋友。2022年初,在他的中国之行中,见证了Seer公司和应脉医疗“蛋白质组学新技术和应用卓越创新中心”在上海揭幕,全程指导完成了中国第一台、第二台Seer ProteographTM 系统的安装、调试、培训、样品测试、质谱检测、数据分析等全部流程。2023年,Max亚洲之行,让我们一起聆听对他的采访。  Seer是蛋白质组学行业领头企业,于2020年在纳斯达克上市。作为Seer公司最早的核心员工之一,你能不能简单介绍一下公司及发展历程?  MAX:Seer的经历非常传奇,而且方兴未艾。公司成立于2017年,是一家非常年轻的企业。公司的愿景和目标是:推动蛋白质组学发生革命性变革。Seer的设备和检测试剂本身就非常强大,能让人类从前所未有的全新角度理解蛋白质组,所以极具竞争力。2020年12月底公司完成了首台设备的交付及安装。2022年初推出了第一款商业可用的解决方案,不仅限于美国,也在全球市场进行销售。预计在2024年初会有大量成果发表。  近年来癌症早期筛查的创新技术飞速涌现,蛋白质组学在癌症早期筛查方面具备怎样的潜力?与其它组学相比有哪些优势?  MAX:其实,癌症筛查这个概念已经存在很多年了,但是直到二、三十年前都是被动进行的。意思是,患者感觉身体有异样或者不舒服了才会寻求诊断和治疗。早期癌症筛查的出现从根本上改变了人类对癌症的认知以及后续治疗。随着精准医学的推广,人类终于有能力在疾病最终成型前就检测到它,再针对特定患者类型制定具体的治疗方案。基因组学的发展,实现了海量基因组数据的获得,驱动肿瘤早筛取得前所未有的进步。接下来,蛋白质组学的研究跟基因组学类似,我们已经能够利用海量数据充分理解血清或血浆的蛋白质组,理解器官的蛋白质组。未来,这项技术会从根本上改变我们看待以及管理人类健康的方式。  但蛋白质组却会根据身体状况而改变,所以它提供的是一个动态的指标,动态缩影。让大家能实时掌握自己的健康状况。直到5年前,蛋白质组内容的易获得性才得到大幅提升。现在,大规模蛋白质组研究已经不是遥不可及的幻想,已经成为了现实。我坚信,当人类可以彻底了解蛋白质组,我们对于人体健康的认知也会发生根本性变革。  2022年9月,应脉医疗宣布在中国市场取得了重大成绩,SEER全球总部与应脉医疗的研发团队合作,成功突破了5,000个血浆蛋白的检测数量。这项成就对于癌症早期筛查会产生怎样的推动作用?Seer在这方面还有哪些战略部署?  MAX:首先,无论是对于单一样本还是组群样本,5,000这个数字都是一个巨大的成就。但这还只是刚刚起步。Seer平台潜力无限。通过Seer与应脉的合作,无偏发现蛋白质组学领域的样本数量将持续提升。也许几年之后再回看现在,5,000都显得微不足道。通过赋能以Seer为代表的核心技术,结合后端的质谱检测设备,样本数量会持续增长。而且不仅仅是蛋白质组,像蛋白质存在形式,蛋白质的翻译后修饰,蛋白质间相互作用等其它类型的样本数量都会进一步增长。  随着样本数量增加,人类对于生物复杂性的理解也会被刷新,未来进展本质上将取决于对数据的利用能力。生物知识已经有了,问题是怎么能更容易地获得内容,这也是Seer和应脉医疗合作要解决的问题。在5,000蛋白质样本的基础上,通过大规模研究,这个上限会不断突破,7,000,1万,甚至2万,数据库正在不断扩充。  Seer产品的技术原理是什么?如何助力科研人员打通痛点难点?  MAX:Seer是基于沃尔曼效应(Vroman Effect) 对蛋白冠加以利用,Seer采用多种纳米颗粒,用不同颗粒形成不同蛋白冠,以此获得信息,达成新的生物学见解。  近年来,新的蛋白质分析技术不断涌现。Seer的技术受到高度关注。Seer的独特优势在于何处?  MAX:优势很多。首先就是无偏检测平台。这是种基于理论假设的研究方式。研究人员不需要知道目标蛋白质或目标肽就可以进行研究。传统的定向研究法要求必须对研究对象有一定的假设,或有一定的背景知识。相比之下,Seer技术使用纳米颗粒为基础的无偏平台,对蛋白质组的动态范围进行全范围取样。不但能了解与你所研究的疾病相关联的已知信息,更重要的是能发现从未与任何疾病建立联系的未知新信息。而且这些发现的前提是,不需要知道筛查目标的机制或生物学原理。我们的平台是一个真正的发掘性平台,一个真正能为研究人员赋能的发现工具。  Seer技术的第二大优势是对检测样本的物种和样本类型不加区分。也就是说,检测对象适用于任何生物体液。血浆、血清、脑髓液、尿液、条件介质等各类生物体液与Seer技术的纳米颗粒组合都兼容。检测对象也不限于一个物种,不限于人类。猪、老鼠的血浆跟人类很相似,都可以作为样本物种或样本类型。Seer平台的无偏发现特质,与多物种、多类型体液取样能力相结合,一定会成为改变游戏规则的核心技术,助力全球的研究人员和企业。  Seer的ProteographTM是一个高创新、全自动化的系统,这款产品的特征是什么?临床上的主要应用是什么?  MAX:Seer作为一个高端平台,提供的是一个真正的终端到终端的解决方案。  自从Seer进入中国市场以来,很多科学家对它产生了极大的兴趣。现在公司也正在推出新产品。新产品有什么新特征呢?  MAX:Seer的最新产品Proteograph XTTM十分值得期待,是基于近年来的客户反馈完成的。在保留了之前全部优势的基础上,通量提升2.5倍,综合成本进一步下降,对于大队列客户更加友好。  只要Seer这家公司还存在一天,研发就是我们的立身之本。我们推出第一款商业可行的解决方案后,一直在收集客户反馈,开发最新产品。现在我们非常期待在中国市场推出最新产品。
  • 重金属残留拟列入粮食检验项目
    有研究团队在采样调查时发现,10%的市售大米存在镉金属超标,《粮食法》正式颁布后,这部分大米将被禁止流通。   广东增城两家大米加工企业两批次产品前段时间被检出金属镉超标,涉事企业随即被关停并处以罚款。随着土地污染状况加剧,粮食重金属超标问题日益突出,近日出台的《粮食法》征求意见稿(以下简称意见稿)对此有了明确规定,重金属残留将列入粮食质量检验项目。土地重金属污染严重地区的粮农或将直接受到影响,重金属超标的粮食将不被收购。   此外,意见稿中还涉及转基因粮食种植、粮食质量检验制度和粮食安全考核问责制度等受社会各界广泛关注。   转基因商业化运作前途未卜   转基因粮食能否合法种植一直是社会关注焦点。一方面,国家农业部门明确表示,我国尚未批准转基因粮食进入商业化生产,私自种植、加工和销售转基因粮食及加工制品的均属违法行为。另一方面,据媒体报道,转基因粮食已经在我国部分地区悄然“生根发芽”,且有形成规模化种植的趋势。公众寄望即将出台的《粮食法》能够对转基因粮食种植有一个明确态度,也让相关监管行动有法可依。   意见稿第十二条规定,“转基因粮食种子的科研、试验、生产、销售、进出口应当符合国家有关规定。任何单位和个人不得擅自在主要粮食品种上应用转基因技术”。按照此条规定,水稻、小麦、玉米、大豆等粮食作物将被套上转基因“紧箍咒”。然而,这里并没有明确“有关规定”指代的范围,在引用本条文判断相关行为时将面临困难。南方农村报记者查询发现,当前我国对转基因生物的管理主要依据2001年发布的《农业转基因生物安全管理条例》以及次年发布的四个配套管理办法,这些条例和办法发布至今已有10年。   同时,本条规定中“不得擅自”的表述也被认为不够明确,可能为种植转基因粮食作物留下了法律空间。经济学家顾秀林公开表示,她认为这个意见稿并没有禁止转基因粮食作物种植,“不得擅自”意味着可以“不擅自”。然而,意见稿也没有规定在何种情况下经何部门许可能够合法种植转基因粮食。   明确库存量意在抑制炒粮   粮食储备是一个动态平衡,既受市场供求关系影响,也受国家粮食安全战略制约。意见稿的亮点是明确规定国家建立粮食经营者最低、最高库存量制度。   《粮食流通管理条例》规定,从事粮食收购、加工、销售的经营者,必须保持必要的库存量。必要时,由省、自治区、直辖市人民政府规定最低和最高库存量的具体标准。这次公布的意见稿则将最低、最高库存量制度常态化,即要求各级政府制定并执行相关标准,更规范、更及时地对粮食储备进行监管。   艾格农业粮食产业分析师马文峰向南方农村报记者介绍,粮食经营企业出于自身风险控制的需要,会给自己划定最低、最高库存量,但这是从企业利益出发的。实际上在去年粮食价格波动之际,发改委已经组织划定了各地库存量“红线”,《粮食法》有意将此固定下来,反映出国家抑制炒作粮食的决心。可以预见,若该条款最终落实,对于保障粮食安全和打击囤积居奇将有重要意义。   农残超标列入检测项目   针对涉及粮食质量的食品安全问题,意见稿有详细和严格规定。第三十六条规定,国家实行粮食质量检验制度,建立健全粮食质量追溯体系。第十九条也提出建立粮食销售出库质量检验制度,凡已陈化变质、不符合食用卫生标准的粮食,严禁流入口粮市场。   尤其值得关注的是,粮食质量检验的内容也有了新变化,反映出国家对粮食质量安全的监管趋于严格。第二十六条规定,从事粮食加工活动的经营者,不得使用发霉变质的原粮进行加工,不得使用农药残留、真菌毒素和重金属等污染物超标的原粮进行加工,不得违反规定使用添加剂。相对于现行《粮食流通管理条例》(国务院第407号令)的规定,意见稿增加了农药残留、真菌毒素和重金属等明令禁止的污染物项目。   中国农业科学院研究员曾希柏告诉记者,粮食受金属污染问题由来已久,国内外都存在,近年来受社会广泛关注。曾希柏认为,农田重金属主要来自工业“三废”排放,而水稻对镉的吸收富集能力比较强,尤其容易超标。若能以立法形式确定对粮食中重金属的控制,有利于加强监管。而目前许多发达地区,土壤普遍重金属污染严重,这是否意味着这些地区将无法种植粮食,还不得而知。   除直接在粮食质量检验环节设置防线外,意见稿还从粮食生产源头着手,构建了覆盖上中下游的食品安全保护体系。意见稿第三十七条规定,粮食生产者应当科学合理使用化肥、农药、农用薄膜等产品,防止对粮食耕地造成污染。禁止向粮食生产区域排放或者倾倒有毒有害的废水、废气、固体废弃物等。该条规定既对种植户种植进行了规范,也为农民依法保障耕地不受污染提供了明确支持。   禁止粮食承储企业商业经营   基于粮食安全的重要性,我国一直实行粮食经营许可制度,只有达到一定条件并取得许可证的主体才可从事粮食经营,这在现行《粮食流通管理条例》中已有规定。   意见稿同样明确了粮食经营许可制度,并在阻止未达资质的散户从事粮食经营的同时,也限制了大型粮食储备企业参与粮食商业经营。意见稿第四十九条规定,储备粮承储企业应当按照国家有关规定管理储备粮,不得利用储备粮进行商业经营,不得从事其他违反国家粮食政策和规定的活动。   业内人士认为,中储粮一直试图通过其手中掌握的大量粮食资源进行粮食加工、贸易业务,如果该限制规定保留在《粮食法》定稿中,意味着中储粮利用储备粮进行商业经营的尝试被全面叫停。   马文峰透露,用储备粮进行商业经营一直都被禁止,但粮食承储企业可以通过“自拍自买”和下属企业参与竞拍等方式,开展变相商业经营。即使《粮食法》用法律形式明确禁止,也不一定能管得住。要让守着国家粮仓的储粮企业不对粮食商业经营动心,意见稿的相关规定难免还要经过利益博弈。
  • 徐光宪:第六次科技革命有四大核心内涵
    邓小平同志指出“科学技术是第一生产力”。所以,解决当前世界经济危机的根本出路,在于紧紧抓住第六次科技革命。(图片来源:昵图网)   现在国内外对第六次科技革命的核心内涵都正在讨论探索之中,没有达成共识。如果我们能准确预言新科技革命的核心内涵,我们就在勇做领头羊的进程中走了关键性的第一步。   ■徐光宪   邓小平同志指出“科学技术是第一生产力”。所以,解决当前世界经济危机的根本出路,在于紧紧抓住第六次科技革命。   中国科学院院长白春礼号召,我们中国人要勇做第六次科技革命的领头羊,担负起复兴中华的历史重任。我非常赞同白院长的号召,并认为,中国人要勇做第六次科技革命的领头羊,首先要确认第六次科技革命的核心内容。   中国科学院中国现代化研究中心主任何传启发表的《第六次科技革命的机遇》(2012年4月,第二版,科学出版社),对第六次科技革命作了大量调研、分析和探讨,他们每年发布的中国现代化报告,提供了重要的参考资料。   现在国内外对第六次科技革命的核心内涵都正在讨论探索之中,没有达成共识。如果我们能准确预言新科技革命的核心内涵,我们就在勇做领头羊的进程中走了关键性的第一步。   探索并独立自主地提出我们对第六次科技革命内涵的认识,可以大大启发我们的创新思维,培养高素质的创新型人才,建设创新型国家。   本文抛砖引玉,提出第六次科技革命的核心内涵是:(1)大化学的科技革命 (2)新生命科学和技术革命 (3)钱学森先生提出的大成智慧革命和新的信息及互联网革命 (4)物理科学的革命。其中,第二条是国内外多数人公认的 第四条也是国内外常提到的 第三条是钱学森晚年的重要科学思想,但还没有得到大家的重视 第一条是国内外都没有提出的,是我个人的看法。   当前中国和世界急需解决的问题   我认为第六次科技革命的核心内涵必须解决当前中国和世界的迫切问题,缓解世界经济危机,使各国都走上健康的发展道路。目前大致有14个问题值得我们特别关注。   (1)彻底改造污染环境的化工厂,建立绿色化学和化工以及冶金企业。   (2)现在的化工原料主要来自石油或煤炭(利用煤焦油或电石)。因为它们也作为能源燃料使用,如果维持现在的消耗速度,世界的石油资源将在几十年内耗竭,煤炭资源在一二百年内耗竭。   (3)温室气体二氧化碳的减少排放问题,即少用煤和石油,大力发展节能和新能源,如稀土节能灯,利用稀土材料做发电机的风能,利用稀土光电转换材料的太阳能,利用钍的核能等。   (4)不可再生、不能取代的稀土等矿产资源的节约高效开采,保护环境和综合利用。开发从废品中回收稀土的技术,避免浪费和快速耗竭稀土以及其他不可再生的战略矿产资源。   (5)淡水资源节约利用和海水的高效、低成本淡化问题。   (6)高新技术材料的研发和化学合成问题。   (7)海洋和太空资源(例如海底的可燃冰和月球上大量的He-3核聚变能源)的开发利用问题。   (8)人类的健康和新药物、新医学以及人工器官的研发问题。人工生命的合成,使化学与生物学互相连接的问题。研究合成直接导向病灶的靶点药物,大幅降低药物的副作用。   (9)人工合成固氮酶,使水稻、小麦等非豆科植物,也能利用空气中的氮,不必使用氮肥,或用生物科技新技术培养含有固氮酶的非豆科植物,引发农业科学技术的革命。   (10)研究光合作用的基本原理,找出光合作用的催化机理,提高太阳能的利用效益,有可能引发农业技术的革命。   (11)天气预报、地震预报、台风预报,以及其他自然和人为灾难的预防和急救问题。   (12)军事科学技术问题。中国要呼吁世界和平,必须有先进的军事科学技术,才有维护世界和平的发言权。世界上主要国家的军力必须平衡,才能制止第三次世界大战。   (13)和平科学的理论和实践问题。20世纪发生了两次世界大战和不断的局部战争,21世纪必须避免第三次世界大战,因为如果发生,那将是毁灭一半人类的核大战。所以必须研究和平科学的理论和实践。   (14)研究世界人口的节制和优生优育问题,研究中国和世界各国人民和谐相处,共同富裕、共同幸福的理论和实践。   正确认识化学科学和大化学革命   大化学革命是第六次科技革命的主要内涵之一   大化学(广义分子科学)革命与上述14个世界迫切需要解决问题的前10个问题密切相关。新生物学和技术革命与第8、第9、第10个问题相关。大成智慧革命和第11至第14个问题相关。物理革命对22世纪影响深远。   为什么此前国内外还没有人提出大化学革命呢?从上世纪下半叶以来,国内外有一股淡化化学科学的思潮,认为化学是一门老科学,在20世纪没有取得重大发展,在新闻媒体和报刊上,化学很少露面。在第六次科技革命中也很少有人提到化学。笔者认为这是一种误解。   联合国决定2011年为国际化学年,这是继2005年定为国际物理年后,对第二门基础科学的重视,也是对淡化化学学科舆论的一部分纠正,具有十分重要的意义。   20世纪的后半叶国内外舆论对化学科学的误解   误解之一:化学在20世纪没有提出重大科学问题。20世纪人类完成了最著名的三个重大科技工程:(1)人类基因组计划 (2)曼哈顿计划 (3)阿波罗登月计划。在这三大科技工程中,字面上都与化学无关。其实这些重大科技工程的完成,都是多学科的共同贡献,其中有一半是化学的贡献。认为化学和重大科技工程无关是误解。   人类基因组计划虽是生物学家提出来的,但却是分析化学家完成的。其全称应该是“人类基因分子的化学测序计划”。分析化学家的贡献占75%以上。我国化学家随后独立自主完成了水稻等重要基因的测序。我国留美化学家还在改进快速测序方面作出卓越贡献,大幅减少成本,使个人全基因组测序成为可能,并作为一种遗传疾病的重要诊断手段,从而可以制定个性化的医治和保健方案,大幅度提高人类的平均寿命。   曼哈顿计划是美国的原子弹试制计划。我国也独立自主完成了原子弹试制。这是我国核物理学家和放射化学家共同完成的任务。放射化学的贡献占50%。   阿波罗登月计划是美国开始的,后来中国也制定了巨大的太空航天计划。这是中国航空航天科学家和工程人员完成的伟大计划,但关键导航材料的研制,登月飞船特殊新材料,以及扫描、记录、传送等新材料的研制,都是化学家的任务,贡献占25%。 所以20世纪的三大科学工程都与化学有紧密的联系,总贡献率达50%。认为化学和重大科技工程无关是严重的误解。   误解之二:报刊上常说20世纪发明了六大技术:(1)信息技术 (2)生物技术 (3)核电站和核武器技术 (4)航空航天和导弹技术 (5)激光技术 (6)纳米技术。但却很少有人提到包括合成氨、合成尿素、合成抗生素、新药物、新材料和高分子的化学合成(包括分离)技术。   上述六大技术如果缺少一两个,人类照样能够生存。但如果没有哈勃发明的高压合成氨和后来的合成尿素技术,世界粮食产量至少要减半,全球70亿人口有35亿要挨饿。如果没有合成各种抗生素和大量新药物的技术,人类不可能控制最可怕的天花、肺结核、伤寒、痢疾等传染病,无法缓解心脑血管病,平均寿命就要缩短25年。如果没有合成避孕药,人类就不能有效控制人口。如果没有合成纤维、合成塑料、合成橡胶的技术,人类生活要受到很大影响。信息技术的核心是集成电路芯片,这是在化学提纯制备的硅单晶片上经过化学光刻生产的,计算机的存储器材料也是化学合成的,其他部件用了大量合成高分子材料。又如核电站的关键是核燃料铀、钚等的生产和后处理、放射性废水处理等,这些都是化学工业。   纳米技术是化学家发明并合成C-60、碳纳米管、石墨烯等纳米尺度的新材料,并发现纳米材料具有特殊性能的新技术。激光、光纤、航空、航天、导弹等技术无不需要化学合成的高新材料。所以如果没有化学合成技术,上述六大技术根本无法实现。   但化学和化工界非常谦虚,从来不提抗议(这句话是英国《自然》杂志在2001年的评论中说的)。我们应该理直气壮地大力宣传20世纪发明了七大技术,即化学合成(包括分离)技术和上述六大技术。在20世纪发明的七大技术中,人类最迫切需要的,对人们的生活和世界经济的发展影响最大的两大发明是化学合成技术和信息技术。   上述七大技术,按照对GDP贡献的大小来排序(依据2004年中国的统计资料),第一是与化学、化工、冶金、石油炼制、药物和高新材料的合成等密切相关的产业,总称为过程工程。原中国科学院化工冶金研究所所长郭慕孙院士非常有远见地把他们的所改名为中国科学院过程工程研究所。将来生物技术成熟了,也将很可能进入过程研究所,因为技术非常相似。   过程工程对GDP的贡献达16.6%,位居第一。第二是信息产业,包括计算机和芯片制造、电信服务、网络服务、软件产业等。对GDP的贡献为9.0%。第三是飞机、航天、人造卫星,导弹产业。第四是核电站和核工业。这四个都是大产业,其中核燃料生产和重水的生产实际上是化学工业,但划入核工业计算。第五是生物技术和生物产业,2004年占GDP还不到1%,但发展前途远大。第六是纳米产业。第七是激光技术产业。   误解之三:化学是一门有二三百年历史的老科学,没有多大发展前途。事实上,化学是创造新物质最多的科学,是20世纪发展最快的一级基础学科之一。   1900年在《美国化学文摘》(CA)上登录的,从天然产物中分离出来并确定其组成的,和人工合成的已知化合物只有55万种。经过45年翻了一番,到1945年达到110万种。再经过25年到1970年又翻一番,为236.7万种。以后新化合物增长的速度大大加快,到2011年9月14日CAS登录号已达11685万种,其中测定的生物大分子化学序列6314万种,合成的新药物、新材料等广义的新分子5371万种,比1970年增长50倍。没有一门其他科学能像化学那样在过去的110年中,创造出如此众多的新物质,并在过去的40年中使CAS的化学物质登录号增加近50倍。   上面是从数量来看合成化学的成就,从质量和重要性来看,合成和分离化学共获得了41项诺贝尔奖。其中对人类至关重要的发明可举例如下:   其一,哈勃(F.Haber)在1909年发明了用锇做催化剂的高压合成氨技术,在1918年获诺贝尔奖。C.Bosch 改进了合成氨技术,获1931年诺贝尔奖。这一合成氨技术,被国外传媒评为20世纪最重大的发明,因为它解决了最重要的世界粮食生产问题。   其二,W.N.Haworth 人工合成维生素C,获1937年诺贝尔奖。R.Kuhn人工合成多种维生素,获1938年诺贝尔奖。A.Butenandt 发现并分离提纯多种性激素,G.Domagk 发现能抗菌的磺胺药,获1939年诺贝尔奖。A.Fleming、E.B.Chain、H.W.Florey 发现青霉素的治疗效果并发明其生产技术,获1945年诺贝尔奖。R.Robinson 研究分离提纯生物碱,获1947年诺贝尔奖。S.A.Waksman 发现链霉素,获1952年诺贝尔奖。这些维生素、抗生素、激素和其他新药物的合成,对人类健康作出很大贡献。   其三,H.Staudinger 研究高分子聚合的原理,获1953年诺贝尔奖。K.Ziegler、G.Natta 发明用于高分子合成的Ziegler-Natta催化剂,获1963年诺贝尔奖。Alan J.Heeger、Alan G. MacDiarmid 研究合成导电性高分子,获2000年诺贝尔奖。高分子合成化学的发展大大提高了人类的生活水平。   其四,柯尔(R.F.Curl)、斯莫利(R.E.Smally)、克鲁托(H.W.Kroto)于1985年发现碳元素的第三种存在形式——巴基球(富勒烯),其中最重要的是C-60。富勒烯可以制成新的超导材料、有机化合物、高分子和纳米材料,获1996年奖。化学合成了零维的富勒烯、一维的碳纳米管、二维的石墨烯等纳米材料。所以纳米科学是在化学合成科学的基础上建立起来的。   化学的中心学科形象被其交叉学科的巨大成就所埋没   化学在“数理化天地生”六门传统科学中是承上启下的中心科学。化学又是一门社会迫切需要的中心科学,化学与人们的生活有非常紧密的联系。化学是与信息、生命、材料、环境、能源、资源、地球、海洋、空间和核科学等十大新兴或朝阳科学都有紧密联系、交叉和渗透的中心科学。   化学与十大朝阳科学和六大基础学科之间产生了许多重要的交叉学科,但化学家非常谦虚,在交叉学科中放弃冠名权。例如“化学生物学”被称为“分子生物学”,“生物大分子的结构化学”被称为“结构生物学”,“生物大分子的物理化学”被称为“生物物理学”,“固体化学”、“液体化学”、“溶液理论”被称为“凝聚态物理学”,“高分子物理化学”被称为“软物质物理学”等。   这样化学这门重要的中心科学(Central science)反而被社会看做是配角,是伴娘科学(Bridesmaid science)而不受重视。世界著名的《自然》杂志也为化学家鸣不平,在2001年发表了评论。评论中提到“当其他学科从自己的成就中声名远扬时,化学往往发现本学科中最辉煌的成就的名声被其他学科所占有”。哈佛大学教授George Whitesides也说:“许多化学中最有趣的部分往往被称作别的名字。我从来没弄清化学家们是怎么回事,他们总是过于谦虚和本分。他们发现了这些有趣的技术,别人把它们拿走了,他们居然不喊不叫也不抱怨。你从来不会发现一位生物学家会容忍别人把他们所做的东西这样拿走。”化学家的谦虚本是美德,但因此吸引不到优秀的年轻学生。化学缺少优秀生源,就会影响到十大前沿新兴科学的发展,这个问题就大了。   第六次科技革命的核心内涵   第六次科技革命的核心内容,按照重要性大小的次序是:1. 大化学(广义分子科学)与技术革命 2. 生命科学与技术革命 3. 大成智慧革命 4.物理科学革命。   1.大化学与技术革命   大化学与技术革命的内涵,首先要为中国和世界当前迫切需要解决的问题服务。例如在前面提到的14个问题中的前10个问题都与大化学有关。为了直接解决前三个问题,化学科学和技术必须进行彻底的革命。   (1)有机化学将从碳氢化合物及其衍生物的化学向碳水化合物及其衍生物的化学转变,化工流程都要完全改变,教科书要重写。   20世纪有机化合物的原料主要从石油和煤焦油来,所以有机化学定义为碳氢化合物及其衍生物的化学。按照现在的消耗速度,世界石油储量将在几十年内耗竭,煤炭将在一二百年内耗竭。这样有机化合物的原料不得不改为可以再生的植物资源,有机化学也将改为碳水化合物及其衍生物的化学。这是革命性的变化。   (2)绿色化学、原子经济化学和循环化学的革命。   20世纪的化工企业造成严重的环境污染,这种情况必须彻底改变。要大力发展原子经济的循环化工流程。人们敬而远之的化工企业要改造成为花园式的绿色企业。   (3)新药物和人工器官的合成及组装导致新医药革命。   (4)稀土风能发电机、稀土节能灯、新光电转换材料、海底可燃冰开发和利用、重水聚变和月球He-3的开发等,将引起新能源革命。   (5)天然植物中只有豆科植物的根瘤能够吸收利用空气中的氮,别的农作物如水稻、小麦必须使用氮肥。如果人工合成固氮酶成功,则可以不用化肥,直接利用空气中的氮。这将引起农业革命。上世纪50年代有远见的化学家卢嘉锡院士、唐敖庆院士、蔡启瑞院士等提出固氮酶课题,他们先从理论着手,提出固氮酶的“福州模型”和“厦门模型”,和后来国外学者从天然固氮酶中提出的结晶非常相似,进一步准备人工合成固氮酶,但因没有得到大力支持而中断。   (6)化学的繁荣将推动化学生物学和分子生物学的大发展,从而促进生命科学和医学的大发展,大幅度延长人类寿命。   2. 生命科学与技术革命   生命科学和技术是第六次科技革命的核心内涵,这是极大多数学者的共识。   (1)新的生物学是在分子水平上建立的生物学,而化学是研究分子的科学,所以大化学革命是生命科学革命的重要基础。   (2)新的生物学革命将是以分子生物学为基础,把传统的宏观生物学、生物分类学、遗传生物学、思维和神经科学等等整合成系统生物学,将进行仿生、创生、再生,直到永生的革命。   (3)通过新生物学革命,人类对自身的认识,将从无知到越来越明白自身的特点。人类基因组计划用了数十亿美元的资金。但由于近年快速基因化学测序法的发展,成本已降低到几百美元,所以每个人都有可能明白自己的遗传基因中有哪些致病基因,并加以预防和消除,加上新的、减少副作用抗癌药物和心血管药物的合成,新的再生医学技术的广泛临床应用将使人类的平均寿命大幅延长。   (4)中国人的平均寿命:1949年35岁,1978年68岁,1991年69岁,2010年74岁。建国61年增加39岁,平均年增0.64岁。新生物学革命将加快这一进程。保守估计,仍保持年增0.64岁的速度,则到2050年平均寿命应为100岁,到2100年应为132岁。   我们可以提出一个新的社会发展指数,称之为“人才的工作年限和教育年限比”。例如现在一个人从出生到大学毕业需23年,67岁退休,工作年龄44年。“工作与教育年限比”=44/23=1.91(2010年)。到了2050年,平均寿命达到100岁,退休年龄可到90岁,工作年龄67年,“工作与教育年限比”=67/23=2.91(2050年)。这样在40年中“工作与教育年限比”增长1.00,平均每年增长0.025,即2.5%。这个2.5%的增长,是最富有经验的人力增长。它将至少增加GDP 2.5%。这是了不起的贡献。   人类的平均寿命将从现在最高的八十余岁延长到本世纪末的150岁。有效工作年限将大幅提高,一生创造的财富和对社会的贡献将大幅提高,退休年龄每两年将至少提高一年。医学除疾病的治疗外,将关注预防和保健教育。   3.人机结合的大成智慧革命   大成智慧科学和大成智慧办公厅的设想是钱学森首先提出来的,是用人与计算机结合,来解决中国和世界这个复杂开放的巨系统的自然界和社会的各种问题。它涉及数学、系统科学、信息科学、计算科学、虚拟现实、网络技术、云计算技术和大数据库技术,天气、地震和灾害预报,经济危机预报和消解,消除第三次世界大战的风险等众多科技和社会问题的新方法。   4. 物理科学的革命   19世纪与20世纪之交,物理学的上空产生了几朵乌云,导致少数具有非凡天才的科学家,如爱因斯坦、波尔、薛定谔、Heisenberg、Dirac 等创建相对论和量子力学,引起20世纪科学的革命。   20世纪和21世纪之交,物理学上空同样有几朵乌云,例如相对论和量子力学如何统一?什么力量引起宇宙的加速膨胀?什么是暗能量?两者之间有没有关系?要解决这些问题很难,只有少数超人智商的人才可能去探索解决这些理论难题。它的影响可能在22世纪。   紧急呼吁教育部在高等学校自主招生理科考试中保留化学:   最近获悉,从今年开始,教育部将实行高等学校自主招生理科考试不考化学,只考数理两门。这将严重削弱化学科学的中等教育,严重加深社会人士、中学生和家长们对化学的轻视和误解,减少大学化学系的优秀生源,严重伤害中国做第六次科技革命的领头羊,也会影响中华复兴的大业。美国SAT考试相当于中国高考,其中化学的分量很重,还包含化学实验。为了减轻高中生的负担,我们可以借鉴美国的办法,让高中二年级的学生也能参加高考中1至3门课程的考试,如果获得满意成绩,三年级考试可以免考已考过的课程,避免了“一试定终身”的巨大压力。   作者简介:   徐光宪,中国科学院院士,北京大学化学与分子工程学院教授。
  • 中国仪器仪表行业协会与聚光科技携手圆满举办第八届理事会 第六次理事长联席会议
    5月26日,由中国仪器仪表行业协会主办,聚光科技(杭州)股份有限公司承办的“中国仪器仪表行业协会第八届理事会 第六次理事长联席会议”在杭州圆满举办,来自全国各地的近30位正副理事长及协会代表齐聚一堂,共同深入探讨行业发展态势,分享独到观点和看法,为行业的蓬勃发展注入了强大的动力。会议在协会理事长吴朋的主持下召开。聚光科技创始人姚纳新发表了热情洋溢的欢迎致辞,对各位理事长和协会代表前来杭州参会表示热烈欢迎。他表示,杭州作为一座充满开放活力、人才荟萃的城市,为我们提供了宝贵的机遇。聚光科技作为在杭州落地生根的企业,亲眼见证了杭州的快速发展。从聚光科技产业园到聚光中心,再到聚光科技青山湖创新基地,聚光科技不断发展壮大,与杭州共同成长。作为杭州科技型实体制造业的代表企业,聚光科技在当地政府的大力支持下,积极打造了一个高端仪器研发及产业化基地——聚光科技青山湖创新基地。该基地将实现产业链、供应链和服务链的安全稳定与自主可控,并致力于成为先进精密仪器的产业集聚区和人才聚集地。希望各位参会代表在参观聚光科技青山湖创新基地的过程中,能够在先进精密仪器全产业链的合作与资源整合上进行深入交流。聚光科技在研发平台和产品开发平台上拥有明确的专注点,我们非常期待与同行们展开更多合作,共同推动竞争力强、技术含量高的产品和解决方案的开发。特别是在生产过程监管和自动化等方面,通过自主创新仪器仪表融入智能化的生产和监管过程中,来开辟巨大的发展空间。相信通过大家不断地创新与合作,可以实现仪器仪表行业的弯道超车,取得更大的突破。会上,协会秘书长李跃光向参会代表汇报了协会换届筹备工作及相关情况,副秘书长程红则介绍了协会的重点工作与活动安排。参会代表一致肯定了秘书处在重点工作与活动安排方面的努力,深入交流和讨论了协会的换届筹备工作和行业发展情况,并提出了有价值的意见和建议,为协会的发展和行业的进步提供了有力的支持。会后,参会代表参观了聚光科技青山湖创新基地,受到聚光科技总经理韩双来的热情接待。在聚光科技的高端科学仪器制造产线和研发实验室,参会代表详细了解了聚光科技在创新发展方面的最新进展,并聆听了聚光科技就重大科学仪器研发和产业化创新应用等方面的相关介绍。座谈会上,韩双来对聚光科技进行了详细介绍。作为高端科学仪器行业的深耕者,聚光科技在过去二十余年中,从单一产品技术逐步扩展至多技术平台、多行业领域和多应用场景。以高端仪器装备产品技术为核心,公司不断拓展上下游产业链,提供包括高端仪器、信息化软件及平台、试剂耗材和第三方服务在内的创新产品组合与解决方案。从智慧工业到智慧环境、智慧实验室和生命科学业务板块,聚光科技成功构建了“4+X”多对多对多的业务模式。公司业务布局已从杭州走向全国,再由全国走向世界。聚光科技以快速、高效的成长态势不断推动公司的发展,并为行业的进步贡献力量。 韩双来强调,“创新精神”和“工匠精神”深深烙印在聚光科技的基因中。公司深入理解客户需求,高度重视市场动态,并坚定地持续创新。目前,聚光科技拥有1800余名研发人员,每年将营收的10%以上用于研发投入,牵头参与了众多国家级科研项目,累计申请了1300余项专利,并荣获两次国家科学技术进步奖二等奖。公司不断加大创新投入,取得了在技术创新、产品和解决方案开发方面的突破性成果。 座谈会后,参会代表高度赞赏聚光科技在自主创新方面的精神和取得的成就,对聚光科技承办此次会议及热情接待表示了感谢。作为中国科学仪器领军企业,聚光科技积极响应国家“要打好科技仪器设备、操作系统和基础软件国产化攻坚战”重大要求,坚持自主创新并实现国产化替代。公司将继续加强与行业各方的交流与合作,共同推动中国仪器仪表行业高质量发展,为加快实现高水平科技自立自强保驾护航。
  • 2017艾力特第一届制药行业灭菌技术研讨会圆满结束
    2017年7月7日艾力特第一届制药行业灭菌技术研讨会在上海总部成功举办,此次会议与会的嘉宾主要由来自华东地区的制药企业高官、专家学者等组成。会上,艾力特向大家隆重介绍了德国PEA汽化过氧化氢灭菌器和德国BMT脉动真空灭菌柜,并就当前制药行业最新的灭菌技术发展及应用展开讨论。大家对我司长期以来为制药企业用户所提供的灭菌产品及服务给予了肯定。针对客户提出的意见和问题,艾力特负责人也都在现场进行了一一解答。最后艾力特向长期支持我司产品与服务的嘉宾表达了感谢。相信在新的征程上,艾力特将为大家提供更好的产品和服务,携手共创美好未来。德国PEA产品经理空间灭菌原理介绍德国MMM销售经理为在场嘉宾抽奖艾力特产品经理现场样机演示
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制