当前位置: 仪器信息网 > 行业主题 > >

荧光素钠参考谱

仪器信息网荧光素钠参考谱专题为您提供2024年最新荧光素钠参考谱价格报价、厂家品牌的相关信息, 包括荧光素钠参考谱参数、型号等,不管是国产,还是进口品牌的荧光素钠参考谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光素钠参考谱相关的耗材配件、试剂标物,还有荧光素钠参考谱相关的最新资讯、资料,以及荧光素钠参考谱相关的解决方案。

荧光素钠参考谱相关的资讯

  • 重磅!我国首绘中国人泛基因组参考图谱 成果于《Nature》发布
    我国在基因研究方面的新突破日前由复旦大学西安交通大学等国内26个科研单位联合开展研究绘制出了基于36个族群的中国人泛基因族参考图谱。相关成果于北京时间6月14日23点在国际权威学术期刊Nature发表,这也是我国科学家首次自主进行本国人群全景图谱式泛基因组研究所取得的第一个重大成果。基因研究是当代生物学领域的重要方向。人类的基因组包含了3万个以上基因在内的30多亿碱基对,其纷繁复杂的作用关系我们目前还知之甚少。从上个世纪末开始科学家联合开展人类基因组研究,但鉴于当时的技术条件只能依据极少个体绘制出一种简单化基因组草图。复旦大学教授 徐书华随着科学进步,泛基因组研究目前成为生命科学的新方向,相比过去片段化、单一维度的局限,它相当于要绘制一幅包含人类全部遗传信息的全景式多维度图谱。我国科学家组团公关力争使中国在这一前沿领域不再落后于人。这次独立进行的本土人群泛基因组参考图谱绘制科研进度基本与国外持平,有利于建立自主可控的人类基因组资源培养自己的核心技术力量。在第一期参考图谱绘制中,我国科学家通过引入新技术新算法选取有代表性和覆盖性的样本,在原有人类基因组的基础上新获取了1.9亿个简基对新序列,包含近600万个变异。对于探究中国人群基因组核心特征具有重大意义。据介绍这项研究有助于更加清晰地揭示中华民族的历史发展脉络,对于华夏文明探源族群遗传演进等研究都有重要价值。而进一步掌握本国人群的遗传密码,则在发展精准医学和前沿生物技术保障人民健康维护国家安全等各个方面都有着基础作用和远景意义。
  • CNAS认可的医学参考测量实验室被列入JCTLM国际参考测量实验室列表
    2013年底,在法国巴黎国际计量局(BIPM)举行的国际检验医学溯源联合委员会(JCTLM)执委会议上,获中国合格评定国家认可委员会(CNAS)认可的我国医学参考测量实验室顺利通过JCTLM专家评审,进入JCTLM医学参考测量实验室列表。这是我国第1个,同时也是全球酶学类第5个、代谢物和底物类第9个进入JCTLM列表且可为全球提供医学参考测量(计量)服务的医学参考测量实验室,表明我国的医学参考测量实验室认可制度和获认可实验室达到了国际先进水平。   JCTLM由国际计量学会(CIPM)、国际临床化学与实验室医学联合会(IFCC)和国际实验室认可组织(ILAC)联合成立,致力于向全球公布满足其相关技术要求的国际参考物质、参考测量程序和参考测量实验室。根据JCTLM程序要求,通过ILAC互认框架下认可机构的ISO/IEC17025和ISO15195认可是医学参考测量实验室进入其实验室列表的必要条件之一。CNAS于2011年建立了医学参考测量实验室认可制度。 文章转载自:中国合格评定国家认可委员会
  • 检测领域能力验证开展情况参考信息发布
    关于发布检测领域能力验证开展情况参考信息的通知   各有关机构、评审员:   为帮助各相关方更好地理解CNAS-AL0⒎ 2011《能力验证领域和频次表》中检测领域的相关要求,CNAs认可五处根据检测领域能力验证的开展情况,编制了《检测领域能力验证开展情况参考信息》,现予以发布,供各相关参考使用。同时,CNAs认可五处将根据检测领域能力验证开展情况的变化,动态更新检测领域能力验证开展情况参考信息,请各相关方关注。   如有疑问,欢迎垂询CNAs认可五处,联系信息如下:   联系人:韩春旭   电话: 010-67105292   乍争差弓: 010-67105055   E-mail∶ hancxacnas。。rg。cn   特此通知。   附件:检测领域能力验证开展情况参考信息.pdf 行业/领域 子领域 对应的项目 参数提供方式 实施机构 金属与合金类材料与制品 化学分析 成分分析 能力验证计划/测量审核 北京中实国金国际实验室能力验证研究中心 宝山钢铁股份有限公司分析测试研究中心 物理性能 钢中非金属夹杂物、金属晶粒参数、钢的脱 碳层深度、球墨铸铁金相组织、高速工具钢 的大块碳化物的评级、结构钢低倍组织缺陷 评级、渗氮层深度、灰铸铁金相组织等 能力验证计划/测量审核 北京中实国金国际实验室能力验证研究中心 机械性能 高温拉伸性能、室温拉伸性能、夏比冲击、 硬度等 能力验证计划/测量审核 北京中实国金国际实验室能力验证研究中心 宝山钢铁股份有限公司分析测试研究中心 中国建筑科学研究院建筑工程检测中心 无损检测 超声波法检测、射线法检测 能力验证计划/测量审核 北京中实国金国际实验室能力验证研究中心 矿物 化学分析 成分分析 能力验证计划/测量审核 北京中实国金国际实验室能力验证研究中心 宝山钢铁股份有限公司分析测试研究中心 辽宁出入境检验检疫局检验检疫技术中心 山东出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 石油及相关产品 化学分析 水分、硫、硫酸盐灰分、残炭、灰分等 能力验证计划/测量审核 山东出入境检验检疫局检验检疫技术中心 辽宁出入境检验检疫局检验检疫技术中心 物理性能 密度、运动粘度、倾点、常压馏程、冷凝点、闭口闪点、开口闪点等 能力验证计划/测量审核 山东出入境检验检疫局检验检疫技术中心 辽宁出入境检验检疫局检验检疫技术中心 高分子及复合材料 化学分析 涂料中的苯、甲苯、二甲苯;塑料中RoHS(铅 、镉、汞) 能力验证计划 山东非金属材料研究所 物理性能 塑料(密度、熔体流动速率、氧指数) 能力验证计划/测量审核 山东非金属材料研究所 橡胶(密度) 能力验证计划/测量审核 山东非金属材料研究所 机械性能 塑料(拉伸性能) 能力验证计划/测量审核 国家塑料制品质量监督检验中心(北京) 橡胶(拉伸性能、邵尔硬度) 能力验证计划/测量审核 山东非金属材料研究所 化妆品 化学分析 甲醇、铅、砷等 能力验证计划 广东省疾病预防控制中心 食品 营养成分 脂肪、总糖、茶多酚、咖啡碱、蛋白质等 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 沈阳产品质量监督检验院 中国检验检疫科学研究院综合检测中心 重金属 铅、锰、总砷、铜、铬、汞等 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 北京中实国金国际实验室能力验证研究中心 山东出入境检验检疫局检验检疫技术中心 添加剂 山梨酸、苯甲酸、糖精钠、柠檬黄、日落黄 、邻苯二甲酸酯等 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 沈阳产品质量监督检验院 北京中实国金国际实验室能力验证研究中心 中国检验检疫科学研究院综合检测中心 药物残留 农药残留:有机磷类(甲胺磷、对硫磷)、 有机氯类(γ-六六六、δ-六六六、2,4'-滴 滴涕、4,4'-滴滴涕、氰戊菊酯、溴氰菊酯) 等 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山东出入境检验检疫局检验检疫技术中心 沈阳产品质量监督检验院 中国检验检疫科学研究院综合检测中心 兽药残留:β-受体激动剂(克伦特罗)、抗 生素(磺胺、恩诺沙星、环丙沙星、丹诺沙星、诺氟沙星、氧氟沙星、四环素、土霉素 、金霉素)等 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 山东出入境检验检疫局检验检疫技术中心 江苏出入境检验检疫局动植物与食品检测中心 中国检验检疫科学研究院综合检测中心 毒素 黄曲霉毒素 能力验证计划 山东出入境检验检疫局检验检疫技术中心 山西出入境检验检疫局检验检疫技术中心 微生物 菌落总数、大肠菌群、致病菌(金黄色葡萄球菌、单增李斯特菌、沙门氏菌、致贺氏菌、肠出血性大肠杆菌、副溶血性弧菌、坂崎 肠杆菌) 能力验证计划/测量审核 辽宁出入境检验检疫局检验检疫技术中心 山东出入境检验检疫局检验检疫技术中心 中国检验检疫科学研究院综合检测中心 转基因 大豆 能力验证计划 沈阳产品质量监督检验研究院 中国检验检疫科学研究院综合检测中心 原料药及中西药制剂 理化分析 成分分析(紫外分光光度法、气相色谱法、高效液相色谱法、滴定法(容量法)、原子吸收分光光度法、密度) 能力验证计划 上海药检所/北京药检所(PT实施机构) 中国食品药品检定研究院(测量审核) 环境保护 水化学分析 水中金属元素、苯胺、氨氮、总磷、砷、氟、氯、硫酸根、硝酸根、生化需氧量、挥发酚、总氮等 能力验证计划/测量审核 环境保护部标准样品研究所 北京中实国金国际实验室能力验证研究中心 土壤化学分析 元素分析(Cu、Zn、Pb、Cd、Cr、Fe、Mn、 Ni、Hg、Se、As) 测量审核 环境保护部标准样品研究所 丝、纤维和纺织品 化学分析 纺织品游离甲醛含量、禁用偶氮染料、pH值、纤维含量等 能力验证计划/测量审核 北京出入境检验检疫局检验检疫技术中心 江苏出入境检验检疫局工业产品检测中心纺织实验室 中国纤维检验局检验中心 物理特性 纺织品的色牢度、拉伸断裂强力等 能力验证计划/测量审核 北京出入境检验检疫局检验检疫技术中心 中国纤维检验局检验中心 丝的纤度、断裂强度、捻度等 能力验证计划/测量审核 浙江出入境检验检疫局丝类检测中心 煤及相关产品 煤常规分析 煤炭的理化指标分析(发热量、灰分、挥发分、全硫、形态硫、碳、氢、氮、磷、氯、焦化指标、哈氏可磨性指数等) 能力验证计划/测量审核 山西出入境检验检疫局检验检疫技术中心 煤炭科学研究总院煤炭分析实验室 秦皇岛出入境检验检疫局煤炭检测技术中心 煤灰特性分析 煤灰成分、煤灰熔融性 能力验证计划/测量审核 煤炭科学研究总院煤炭分析实验室 秦皇岛出入境检验检疫局煤炭检测技术中心 电气 材料试验 灼热丝试验、耐电痕化、针焰试验、球压试验 能力验证计划/测量审核 中国家用电器研究院 电学试验 接地电阻、泄露电流、电气强度、温升试验、输入功率等 能力验证计划/测量审核 威凯检测技术有限公司 中国家用电器研究院 上海出入境检验检疫局机电产品检测技术中心 结构判定 电气间隙和爬电距离、产品的结构判定(如电动工具)等 能力验证计划/测量审核 中国家用电器研究院 性能测试 低温试验、洗衣机的洗净比、电机效率、电器产品的待机功耗、噪声测试等 能力验证计划/测量审核 威凯检测技术有限公司 中国家用电器研究院 上海出入境检验检疫局机电产品检测技术中心 电磁兼容 辐射骚扰场强、电源端子传导骚扰电压、谐波发射电流等 能力验证计划/测量审核 中国计量科学研究院环能所 威凯检测技术有限公司 有害物质测试 塑料中RoHS(铅、镉、汞) 能力验证计划/测量审核 广东出入境检验检疫局检验检疫技术中心 兽医及动植物检验检疫 微生物 猪繁殖与呼吸综合征病毒、新城疫病毒中强毒株、禽流感病毒H5亚型、鲤春病病毒核酸检测、小麦矮腥黑穗病菌、油菜茎基溃疡病菌等 能力验证计划/测量审核 北京出入境检验检疫局检验检疫技术中心 辽宁出入境检验检疫局检验检疫技术中心 山东出入境检验检疫局检验检疫技术中心 中国检验检疫科学研究院综合检测中心 物种和组织结构鉴定 毒麦、四纹豆象、菜豆象、假高粱、桔小实蝇、动物源性成分鉴定等 能力验证计划/测量审核 北京出入境检验检疫局检验检疫技术中心 辽宁出入境检验检疫局检验检疫技术中心 公共卫生和医疗保健 艾滋病检测 HIV抗体检测 能力验证计划/测量审核 国家质量监督检验检疫总局北京国际旅行卫生保健中心 梅毒检测 梅毒抗体检测 能力验证计划/测量审核 乙型肝炎检测 HBV抗原检测 能力验证计划/测量审核 卫生部临床检验中心/上海市临床检验中心/国家质量监督检验检疫总局北京国际旅行卫生保健中心 丙型肝炎检测 HCV抗体检测 能力验证计划/测量审核 血液分析 全血细胞计数、血红蛋白检测等; 能力验证计划/测量审核 卫生部临床检验中心/上海市临床检验中心 体液分析 尿液常规检测; 能力验证计划/测量审核 生化分析 血液酶(ALT、AST、LDH、AMY…)血糖、血脂、离子等; 能力验证计划/测量审核 建工建材 化学分析 水泥、粉煤灰等化学成分分析 能力验证计划/测量审核 中国建筑科学研究院建筑工程检测中心 中国建材检验认证集团股份有限公司 有害物质 胶粘剂和涂料中的苯、甲苯、二甲苯、水泥 和混凝土外加剂中的氯离子等 能力验证计划/测量审核 中国建筑科学研究院建筑工程检测中心 中国建材检验认证集团股份有限公司 物理性能 建筑材料放射性、混凝土结构、水泥(细度、密度、比表面积、凝结时间、胶砂流动度等) 能力验证计划/测量审核 中国建筑科学研究院建筑工程检测中心 中国建材检验认证集团股份有限公司 力学性能 混凝土试块的抗压强度、防水材料的拉伸性能、水泥的胶砂强度、钢筋的拉伸性能等 能力验证计划/测量审核 中国建筑科学研究院建筑工程检测中心 中国建材检验认证集团股份有限公司 玩具 化学安全 可迁移重金属、总铅、总镉、总汞、邻苯二甲酸酯增塑剂等 能力验证计划/测量审核 北京出入境检验检疫局检验检疫技术中心 广东出入境检验检疫局检验检疫技术中心 机械物理性能 弹射玩具动能测试、选项测试、小零件判定等 能力验证计划/测量审核 广东出入境检验检疫局检验检疫技术中心 燃烧性能 玩具化妆服饰织物燃烧性能 能力验证计划 北京出入境检验检疫局检验检疫技术中心 广东出入境检验检疫局检验检疫技术中心 纸张和包装产品 机械物理性能 纸巾纸柔软度、抗张强度;纸张亮度(白 度)、荧光亮度(白度)等能力验证计划/测量审核 中国制浆造纸研究院检验计量中心 陶瓷 有害元素分析 铅、镉溶出量 能力验证计划/测量审核 淄博出入境检验检疫局检验检疫技术中心 信息技术 软件产品测试 软件的功能性易用性测试等 能力验证计划 中国航天工程咨询中心软件测评实验室 信息产业信息安全测评中心   二零一三年五月二日
  • CNAS开始受理医学参考测量实验室的认可
    各有关单位:   为了保证我国医学检验量值的溯源性,中国合格评定国家认可委员会(CNAS)从即日起,开始接受医学参考测量实验室的认可申请。相关要求和申请文件可以从www.cnas.org.cn免费下载。   CNAS将根据实验室的申请,安排评审(包括现场评审),并将获得认可的实验室在CNAS网站上予以公布。   特此通知。 2011.9.21
  • Nature子刊!多种测序技术联合 助力高质量豌豆参考基因组和泛基因组发布
    2022年9月22日,中国农业科学院作物科学研究所联合中国科学院微生物所、山东省农业科学院农作物种质资源研究所、国际半干旱热带作物研究所和澳大利亚默多克大学等国内外多家单位在Nature Genetics上以长文的形式发表了题为Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics的研究论文。研究团队完成了中国豌豆主栽品种“中豌6号”的基因组组装和解析,解决了长期以来悬而未决的豌豆基因组精细物理图谱组装难题,揭示了豌豆基因组结构和进化的独特特征,发掘了一批与粒型、株高和荚型等孟德尔性状和重要农艺性状相关的位点和基因,同时构建了栽培和野生豌豆泛基因组,展示了豌豆近缘野生种和地方品种作为未来豌豆育种改良资源的巨大潜力。高质量的参考基因组、注释和泛基因组对豌豆种质资源挖掘利用和育种改良的基础与应用研究具有重要参考价值和指导作用,同时也为其他豆科作物基因组和泛基因组研究提供了重要借鉴。自孟德尔发现遗传定律以来,豌豆作为遗传研究的“明星”植物,受到了学界和公众的广泛关注。豌豆 (Pisum sativum L., 2n=2x=14) 是一年生冷季食用豆类,属于豆科(Leguminosae)、蝶形花亚科(Papilionoideae)、野豌豆族(Viceae)、豌豆属(Pisum L.)。豌豆富含蛋白质、淀粉、纤维素和多种矿物质,是粮菜饲兼用的食用豆类作物,在世界范围内广泛种植。据FAO统计资料显示(http://www.fao.org/faostat/),世界豌豆的总产量和种植面积逐年增加,中国豌豆特别是鲜豌豆的总产量与种植面积也增长迅速。同时,豌豆的生物固氮能力可以减少氮肥使用,有效改善土壤结构,还可作为倒茬作物减少病虫害,促进农业和自然生态系统的可持续发展。作物种质资源是支撑农业发展创新和作物遗传改良的物质基础,目前国家作物种质库保存豌豆种质资源达到7000余份,蕴藏着丰富的遗传多样性,亟待深入挖掘和利用【1】。图1 中豌6号形态特征及豌豆种质资源多样性豌豆基因组大小约为4.28 Gb,远大于大豆(4倍)、鹰嘴豆(6倍)、普通菜豆(7倍)、绿豆和小豆(8倍)等其他豆科作物基因组,其基因组中有超过80%的重复序列。由于豌豆基因组的复杂性,直到2019年,国际上才公布了第一版以二代测序技术(Next Generation Sequencing, NGS)为主的豌豆参考基因组,为豆科植物基因组进化提供了新的见解【2】。然而,由于NGS技术的短板,这一版基因组组装得到的218,010个contigs的 N50 值仅为37.9 Kb,组装结果碎片化严重,尤其是在复杂的重复区域,与高质量参考基因组的标准相去甚远【2】。此外,研究表明,与国外豌豆种质资源相比,中国豌豆具有独特的遗传背景和丰富的遗传变异【3】。由于缺乏豌豆高质量基因组和精细物理图谱,严重滞后了豌豆重要农艺性状的遗传解析和种质资源挖掘利用进展,尤其阻碍了对国内外不同豌豆种质资源的综合利用。为了解决上述科学难题,研究团队利用中国豌豆主栽品种“中豌6号(ZW6)”,以PacBio 单分子实时 (SMRT) 测序为基础,结合 10x 长片段测序、Bionano 光学图谱和染色质三维构象捕获 (Hi-C),以及 Illumina NGS 技术,联合优化多种组装策略,完成了迄今为止最高质量的豌豆基因组精细图谱和基因注释(图2)。该基因组组装大小约为3.8 Gb,序列对总共7条染色体的定位率达到97.96%,组装的contig水平N50达到了8.98Mb。通过遗传图谱一致性评估、BUSCO分析、Merqury分析以及LAI分析在内的综合基因组组装评估方法,均表明该组装在连续性、准确性和完整性方面表现优异。此外,该组装共注释出47,526个编码基因,并且在基因完整性、调控区完整性、转座子组装完整性和注释完整性方面均得到了明显改善。豌豆基因组高质量精细物理图谱的获得,拓宽了我们对豌豆巨大基因组背后遗传学的了解,为豌豆重要农艺性状的遗传解析和种质资源的挖掘利用提供了宝贵基因组资源。图2. 豌豆基因组的重要特征。豌豆大约在10,000 年前被驯化,被认为是最早驯化的豆类作物之一。然而,尽管它在推进植物遗传学方面发挥了关键作用,但豌豆属内的物种划分长期存在争议,其驯化过程仍不清楚【4】。研究团队基于118个栽培和野生豌豆的全基因组重测序数据,不仅揭示了栽培和野生豌豆SNP、InDel和SV等不同变异类型的基因组多态性特征,同时基于SNP和SV多态性变异信息的群体遗传结构和系统发育分析,阐明了栽培和野生豌豆的群体遗传结构,支持豌豆属内包含3个物种P. fulvum、P. sativum 和 P. abyssinicum的结论。同时在 P. sativum中鉴定出了三个遗传分组,其中 P. sativum II (PSII) 和 P. sativum III (PSIII) 主要对应于代表亚洲和欧洲不同地理区域栽培豌豆的两个遗传分组,可能与豌豆驯化后的传播途径有关(图3)。以上结果解决了长期以来关于豌豆属物种划分的争议,为豌豆起源驯化提供了新的基因组学证据,也为豌豆种质资源的综合开发利用提供了科学依据。图3 基于SNP (a, b, e)和SV (c, d, f)的118份栽培和野生豌豆的群体遗传结构。孟德尔通过研究豌豆的七个性状发现了遗传规律,开创了遗传学研究的先河。在过去的几十年中,孟德尔研究的四个性状包括粒型(R/r)、株高(Le/le)、子叶颜色(I/i)以及种皮和花色(A/ a)的四个基因位点已经被克隆并进行了功能分析;而其他三个孟德尔性状,果荚颜色 (GP/gp)、荚型 (V/v) 和花的位置 (Fa/fa)相关的基因位点尚未解析【5】。为了探索豌豆重要农艺性状的遗传基础,研究团队利用GBS测序对WJ×ZW6杂交构建的300个F2群体中的12个农艺性状进行了QTL分析(图4),鉴定出了25 个与12个农艺性状相关的QTLs,其中有三个为孟德尔性状相关位点和基因,包括控制粒型(圆粒/皱粒,R/r)和株高(高/矮,Le/le)的孟德尔基因,以及与荚型(硬荚/软荚,V/v)相关的候选基因。图4 豌豆12个农艺性状QTL分析结果以及与孟德尔性状相关的3个QTL位点和基因【5】。越来越多的研究表明,单一的参考基因组不足以代表一个物种,特别是对于豌豆这类经历过长期驯化的物种,而泛基因组分析为作物种质资源变异解析和挖掘利用提供了有效手段。为了更深入地了解栽培和野生豌豆的多样性,研究团队构建了基于116个栽培和野生豌豆全基因组测序的泛基因组(图5),发现栽培和野生豌豆种质资源大部分泛基因组多样性主要存在于不同物种和遗传分组之间,并且以特有基因组序列的形式存在。对豌豆泛基因的存在/缺失变异模式(PAV)分析发现,随着新基因组数目的增加,核心基因的数量减少,而泛基因的数量增加,并逐渐趋于饱和(图5a)。同时,在多个豌豆基因型中存在的核心基因在其他27 个植物基因组中也更保守(图5b),表明它们具备通用的核心功能。基于跨基因组同源基因系统发育分类方法(HOG),研究人员将116个泛基因组的基因聚类生成 112,776个泛基因簇,在不同物种之间显示出差异显著的PAV模式(图5c)。对不同泛基因分组中特有泛基因的 GO 分析显示出保守基因和可变基因之间的不同功能富集。值得注意的是,P. abyssinicum独特的泛基因在刺激和化学反应方面富集,而P. fulvum的泛基因在发育、生长、繁殖、细胞骨架等方面富集,进一步证实了豌豆野生近缘种和地方种质资源作为育种材料在未来提高豌豆品种抗性和产量方面的潜在价值。图5 116个代表性栽培和野生豌豆的泛基因组分析结果(包括 ZW6)。总之,研究人员克服了复杂基因组组装的多重障碍,成功绘制了中国豌豆基因组高质量精细物理图谱,还构建了栽培和野生豌豆泛基因组,揭示了豌豆基因组进化特征、群体遗传结构与重要性状的分子基础,为豌豆起源驯化、基因挖掘、种质创新和育种改良以及豆科植物比较基因组学研究提供了重要借鉴和宝贵资源。这项研究邀请了澳大利亚默多克大学Rajeev K Varshney教授共同开展国际合作研究,他认为这次研究成果为公众提供了高质量的豌豆参考基因组,产生的基因组资源不仅有助于豌豆的遗传基础研究,以应对气候变化带来的挑战,还将促进豌豆优异基因的挖掘和优良品种的开发。此外,宗绪晓课题组及其合作团队还建立了豌豆遗传转化体系,利用CRISPR/Cas9基因编辑体系成功实现对豌豆PDS基因的编辑【6】。恰逢孟德尔诞辰200周年,豌豆高质量基因组和泛基因组的发布,以及豌豆基因编辑技术体系的建立将为豌豆重要农艺性状的遗传解析和种质资源的挖掘利用提供有力的技术支撑。中国农业科学院作物科学研究所杨涛副研究员和刘荣助理研究员、中国科学院微生物研究所骆迎峰副研究员和胡松年研究员以及山东省农业科学院农作物种质资源研究所王栋助理研究员为论文的共同第一作者。中国农业科学院作物科学研究所宗绪晓研究员、中国科学院微生物所高胜寒特别研究助理、山东省农业科学院农作物种质资源研究所丁汉凤研究员、国际半干旱热带作物研究所和澳大利亚默多克大学Rajeev K Varshney教授为论文的共同通讯作者。中国科学院植物研究所葛颂研究员,西北农林科技大学徐全乐副教授、山东省农业科学院作物种质资源研究所李娜娜副研究员、云南省农业科学院何玉华研究员、青海大学刘玉皎研究员、江苏沿江地区农业科学研究所王学军研究员、四川省农业科学院项超副研究员以及中国农业科学院作物科学研究所研究生王晨瑜、李冠、黄宇宁、季一山、李孟伟,国际半干旱热带作物研究所Manish K Pandey和Rachit K Saxena博士,也参与了该项研究。辽宁省农业科学院李玲研究员,澳大利亚谷物种质库Bob Redden教授和美国农业部农业研究中心、华盛顿州立大学胡锦国教授对项目开展提供了重要帮助。豌豆基因组研究得到了科技部国家重点研发计划(2018YFD1000701/2018YFD1000700)、中国科学院青年创新促进会(2017140)、山东省农业品种改良项目(2019LZGC017)、中国农业农村部食用豆现代产业技术体系(CARS-08)、国家自然科学基金(31371695和31801428)、山东省农业科学院科技创新项目(CXGC2018E15)、作物种质资源保护(2130135)、山东省农科院科技创新项目产业团队农业科学(CXGC2016A02)、山东省现代农业产业技术体系粗粮创新团队(SDAIT-15-01)、中国农业科学院创新工程(ASTIP)和山东省农业科学院青年研究基金(2016YQN19)等项目的支持。
  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。 苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。 英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol, 化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇, 分子式:C19H24N2O4 分子量:344.17 结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品 适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》 货号:CDBO-1100726 中文名:苯乙醇胺A(克伦巴胺)参考品 规格:10mg/L于甲醇,纯度99%,1mL 价格请询。 欲了解更多信息,请与我司业务员联系。电话:021-54890099。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 398首台(套)!江苏省首台(套)重大技术装备匹配大规模设备更新需求(附参考清单)
    2024年7月25日,江苏省工业和信息化厅印发江苏省首台(套)重大技术装备匹配大规模设备更新需求参考清单,参考清单将能够匹配大规模设备更新需求的近五年来的省首台(套)重大技术装备纳入,按照制造业设备更新与技术改造装备、能源和环保领域设备、建筑和市政基础设施领域设备、交通运输设备、农业农村装备设备、教育文旅医疗设备等六个方面设置,共涉及398个省首台(套)重大技术装备,部分装备可用于多个领域。具体清单如下:一、制造业设备更新与技术改造设备(共221台)(一)高端装备跃升行动领域设备(共138台)序号所在地单位产品型号名称认定年份1南京南京华士电子科技有限公司BDX-AC440/DC110CRH-001充电机20192南京南京大量数控科技有限公司NTL-DG6H 六轴钻孔机20193南京江苏瑞驰机电科技有限公司JK-300ES在线激光开槽打孔装置20194无锡江苏三联生物工程股份有限公司SLXP-001 全自动微阵列化学发光(生物芯片)检测系统20195无锡中科微至智能制造科技江苏有限公司WZ-CROSS 交叉带自动分拣系统20196无锡无锡华氏恒辉精密装备科技有限公司HD-SV1-SI 液晶显示屏半自动背光组立机20197无锡江苏凤谷节能科技有限公司FGPDFNC-Φ800×16000 锂电池正极材料烧结用动态加热炉20198徐州赛摩电气股份有限公司SRZ-MT机器人全自动制样系统20199徐州江苏鲁汶仪器有限公司LMEC-200磁存储器刻蚀机201910徐州江苏协鑫软控设备科技发展有限公司GCL-ERCZ型单晶炉201911徐州江苏省徐州锻压机床厂集团有限公司XD-CQ整体驱动车桥智能化热成形生产线201912常州江苏嘉轩智能工业科技股份有限公司STYB315-(2.0-5.0)X1400(1000-1400)(660/1140)型外转子永磁直驱电动滚筒(或永磁直驱电动滚筒)201913常州常州市武进长虹结晶器有限公司180*725*800型管式一次成型板坯结晶器201914常州常州时创能源科技有限公司Anti-LID4800型晶硅太阳电池体缺陷钝化设备201915常州温康纳(常州)机械制造有限公司KT-F-1E型短周期压机201916常州常州好迪机械有限公司HPC1500-ZD438型破碎抛丸处理系统201917常州常州市赛嘉机械有限公司SGE2283型宽隔距高速双针床经编机201918常州常州市华强焊割设备有限公司HQCombiCut166001.30Pr型数控精细等离子平板坡口无限回转切割机201919常州常州市同和纺织机械制造有限公司TH598J集聚纺自动落纱细纱机201920常州常州格林电力机械制造有限公司HZND850型大型核级液压阻尼器201921常州常州市新墅机床数控设备有限公司SLTD100-12型伺服动力刀架201922常州常州市德速机械有限公司BT50-40LD-L950-75型链式刀库201923苏州苏州苏大维格科技集团股份有限公司iGrapher UV 200 激光直写设备201924苏州安拓思纳米技术(苏州)有限公司AH18-300 高压均质机201925苏州纽威数控装备(苏州)有限公司HE100A 卧式加工中心201926苏州崴立机电(苏州)有限公司CB-212数控龙门加工中心201927苏州苏州艾科瑞思智能装备股份有限公司HX2100 集成电路智能点胶装片机201928苏州昆山禾信质谱技术有限公司SPAMS0525 PM2.5在线源解析质谱监测系统201929苏州苏州苏福马机械有限公司BP3313/25/4型气流铺装机201930苏州程泰机械(吴江)有限公司GLS-1500LS数控车床201931苏州苏州精濑光电有限公司JL-VI-01 液晶面板宏观检查机201932苏州苏州德龙激光股份有限公司AGC20 全自动玻璃倒角激光切割设备201933苏州昆山大阳机电设备制造有限公司DYJD-1200 高精密RO膜涂覆装备201934苏州昆山东威电镀设备技术有限公司VCP-R260-6CU 卷对卷垂直连续电镀设备201935南通南通中远重工有限公司高寒地区1200Tx230m 造船用门式起重机201936南通江苏海四达电源股份有限公司F1-IFP200高比能量动力电池系统总成201937南通南通常测机电设备有限公司HD235 混合动力总成台架201938南通江苏中海重型机床有限公司ZH37K-4000/16000 数控液压制管成套设备201939南通南通振康焊接机电有限公司ZK1400-06高精度弧焊机器人201940南通南通超力卷板机制造有限公司W10D-3×120型柔性数控微型电机壳成形机201941南通南通虹波机械有限公司26m HRT高效耐磨浓密机201942连云港中国船舶重工集团公司第七一六研究所JARI-CS-03大型船用舱室多功能焊接机器人201943连云港江苏新航电气有限公司XHAMP-C/1250船载高压岸电系统201944盐城江苏高精机电装备有限公司GJR1058 型数控五轴精密拉刀磨床201945盐城江苏赛福探伤设备制造有限公司SFUT-25特种管材超声波自动探伤检测系统201946盐城射阳县杰力纺织机械有限公司GE168型经编分条整经机201947扬州扬州京柏自动化科技有限公司JB-AL-DB-036菱形支架点胶保压装备201948扬州扬力集团股份有限公司BE4-800FT-4500×2500闭式四点落料压力机201949镇江江苏仅一联合智造有限公司JYG21型自动压圆帽盖机201950泰州江苏汤臣新材料科技有限公司JUNO中心探测器用有机玻璃球装备(内径35.4米)201951南京南京工大数控科技有限公司CLFH-200 型数控可重构齿轮复合加工中心201952无锡无锡富瑞德测控仪器股份有限公司FRD-HT系列智能化汽车发动机零件在线测量装备201953无锡无锡派克新材料科技股份有限公司GH4065A高温合金精密环锻件(Ø 756mm)20195457扬州江苏亚威机床股份有限公司FB-2516A-FMC数控多边折边单元2019
  • 钢研纳克:从源头深度剖析镉大米——检测综合解决方案参考
    p style=" text-indent: 2em text-align: justify " strong 镉大米重现江湖,这次还是湖南。 /strong /p p style=" text-indent: 2em text-align: justify " 4月24日,湖南省益阳市委宣传部表示,针对“云南昭通市镇雄县销毁一批来自湖南益阳的重金属超标大米”的报道,益阳市通过调查核实相关情况,决定对7家涉事企业予以立案调查,坐实了问题大米来自湖南益阳。 /p p style=" text-indent: 2em text-align: justify " 时间追溯到三年前,还是湖南益阳企业,将1440.25吨镉超标大米销售到包括云南昭通在内的多省市,引起湖南大米市场大动荡。回顾历年此类新闻事件,监管部门对此涉事企业与单位的处罚与问责不断,毒大米事件却屡曝不止。 /p p style=" text-indent: 2em text-align: justify " 多年后,镉大米再现湖南,是巧合?还是惩罚问责力度不够?恐怕都不是,这还得从镉大米的前世今生说起: /p p style=" text-indent: 2em text-align: justify " 湖南矿产资源比较多,在过去的几十年随着社会建设的需要,矿产企业野蛮生长,对于污染的控制程度又不足,导致诸多的污水排放到了农田形成重金属污染。 /p p style=" text-indent: 2em text-align: justify " 不仅仅是湖南,对于存在重金属污水肆意排放的工业区,环境水和土壤都受到了不同程度重金属污染。因此,要想从根本上杜绝镉大米事件,恐怕还得从镉大米的上下游(见图1 “镉大米”是如何种出来的)层层把控监测,严格执行相关标准(见图2),才能形成良性的企业、环境、食品产业链。 /p p style=" text-indent: 2em text-align: justify " 钢研纳克针对此次事件提出了全方位的检测方案,从工业污水等水质检测到土壤健康体检,最后对食品中重金属的检测分析,全面为大米安全保驾护航。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8d9f5dbf-3075-4818-9bd5-c205aee433ff.jpg" title=" 1.jpg" alt=" 1.jpg" / span style=" text-indent: 0em " 图1 “镉大米”是如何种出来的 /span /p p span style=" text-indent: 0em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8e38de37-4b18-4e08-8dd8-9c0996e5fe20.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " 图2 重金属检测相关标准 /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 20px " 水质检测——从源头监测,不给镉大米留机会 /span /h1 p style=" text-indent: 2em text-align: justify " ICP光谱仪和ICP-MS是痕量元素分析的重要手段,广泛应用于环保、食品、药品、轻工、钢铁、有色等领域。 /p p style=" text-indent: 2em text-align: justify " 钢研纳克国产ICP光谱仪Plasma 3000采用垂直火炬,双向观测,冷锥消除尾焰等技术,具有更宽的动态线性范围和更低的背景,广泛适用于冶金、环境、固废、水质、食品、轻工等领域。其检测能力和检出限均完全满足标准《HJ776-2016 水质 32种元素的测定 电感耦合等离子体发射光谱法》和《污水综合排放标准》(GB8978-1996)的标准要求。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 570px height: 578px " src=" https://img1.17img.cn/17img/images/202005/uepic/cbb65c2e-69b9-41c1-bf32-8ae3e89c50fa.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 570" height=" 578" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 同时钢研纳克研发生产的国产电感耦合等离子体质谱仪PlasmaMS 300凭借其检出限低、动态线性范围宽、干扰少、分析精度高、分析速度快、可进行多元素同时测定等优异的分析性能,已成为国内环境检测领域的示范性仪器。针对标准《HJ 700-2016 水质 65种元素的测定 电感耦合等离子体发射光谱法》做了针对性的方案设计和应用开发,能对生活污水、工业废水、河流湖海水、地下水等多种水质进行准确分析(检测结果参见表1 Plasma 3000元素检出限和标准要求)。 /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/d95ff811-8846-4ee4-9d0a-7e609aa3b25e.jpg" title=" 表1.JPG" alt=" 表1.JPG" / /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 20px " 土壤检测——让健康“无镉土壤”长出放心的“无镉大米” /span /h1 p style=" text-indent: 2em text-align: justify " 当重金属超标的污水违规排放进入土壤后便形成了土壤污染,目前全国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。针对上述情况,钢研纳克检测技术股份有限公司借助已有的技术积淀,结合自身优势,推出土壤重金属快速检测仪、全谱电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等检测仪器,可应用于土壤样品快速筛查、痕量元素精确测定。同时,钢研纳克于2016年成立专项组,对不同的土壤样品进行针对性应用研究,积累了大量的工作经验开发多种检测方法并形成多篇应用报告。 /p p style=" text-indent: 2em text-align: justify " 钢研纳克研发的X荧光土壤重金属检测仪NX-200S可高效解决土壤重金属快检难题,服务“土十条”的快速检测要求,其对土壤中镉元素的检出限低至0.28mg/kg,最短三分钟可检测26种元素。同时具有测试速度快、前处理简单、能对多种重金属元素同时测定、不产生二次污染、测试简便快捷、仪器小巧轻便等优点。还能根据客户需求开发自动进样机型,实现无人值守自动测试。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 599px height: 342px " src=" https://img1.17img.cn/17img/images/202005/uepic/7701b65b-b264-4fa5-8894-417a73362922.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 599" height=" 342" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 同时采用上述提到的Plasma 3000和PlasmaMS 300可实现对土壤检测提供更低更精确的结果(见表2,3,4),与X荧光土壤重金属检测仪NX-200S实现系统的土壤检测解决方案。 /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" width: 646px height: 409px " src=" https://img1.17img.cn/17img/images/202005/uepic/68abb004-9378-4c63-bc00-a77e6711336c.jpg" title=" 表4.JPG" width=" 646" height=" 409" / /p p style=" text-align: center" img style=" width: 649px height: 249px " src=" https://img1.17img.cn/17img/images/202005/uepic/b62029a6-a029-4e81-a386-f91f9c432c58.jpg" title=" 表3.JPG" width=" 649" height=" 249" / /p p style=" text-align: center" img style=" width: 633px height: 153px " src=" https://img1.17img.cn/17img/images/202005/uepic/f2326411-15ec-43b9-b57f-ac21c20e7090.jpg" title=" 表2.JPG" width=" 633" height=" 153" / /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 20px " 食品检测——健康身体是吃出来的,放心粮食是“测”出来的 /span /h1 p style=" text-indent: 2em text-align: justify " 为了守护百姓餐桌,钢研纳克于2013年开发了首台X荧光食品重金属快速检测仪。2014年率先通过国家粮食局《粮食中镉含量测定方法国家标准适用性验证》,参与起草了粮食行业标准LS/T 6115-2016《粮油检验 稻谷中镉含量快速测定X射线荧光光谱法》。NX-100FA食品重金属检测仪器操作简便,无需样品前处理,对大米中镉元素检出限低至0.038mg/kg;自动进样,测试速度快低至3分钟;钢研纳克食品重金属检测仪NX-100FA获得了国家粮食局科技进步奖,中国优秀专利奖、BCEIA金奖、中国分析测试仪器奖、朱良漪分析仪器奖,2018年入选国家博物馆“改革开放”40年大型成就展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 581px height: 442px " src=" https://img1.17img.cn/17img/images/202005/uepic/7b3e182c-f7fa-4f73-92ed-8ec278a018eb.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 581" height=" 442" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 同时配合钢研纳克国产ICP-MS PlasmaMS 300,可对食品中重金属进行精确定量,检测结果可参见表5 PlasmaMS 300 粮食标准物质检测结果。 /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/92639fe7-d4b6-47db-ba7c-9c353dc38e8e.jpg" title=" 表5.JPG" alt=" 表5.JPG" / /p p style=" text-indent: 2em text-align: justify " 钢研纳克坚持以科技带动国家发展和改善国民生活健康水平,始终为国计民生提供最全面的保障和最有力的技术支撑。在镉大米这次事件上,钢研纳克从检测设备和应用方案上提供最具性价比和全面的检测解决方案,从全产业链的视角遏制镉大米事件再生。 /p p style=" text-align: right text-indent: 0em " (钢研纳克供稿) /p
  • 原子荧光光谱法测定食品添加剂中砷元素
    GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定代替GB/T 5009.76-2003 食品添加剂中砷的测定,将于2016年3月1日正式实施。标准中将原子荧光光谱法作为食品添加剂中砷的测定方法之一。原子荧光作为检测砷、汞、铅等重金属的常规分析仪器具有灵敏度高、操作简便等特点,而作为中国氢化法原子荧光技术发源地的北京金索坤推出的新一代原子荧光光度计更是具有“多、快、好、省”四大特色。下面为各位实验室检测同行分享下如何应用原子荧光光度计测试食品添加剂中的砷元素。 按照新标准,应用原子荧光光度计测试食品添加剂中的砷元素需要准备以下试剂:氢氧化钠(NaOH)(优级纯)、硼氢化钠或硼氢化钾(NaBH4或KBH4)、硫脲(CH4N2S)、硝酸(HNO3)(优级纯)、硫酸(H2SO4)(优级纯)、高氯酸(HCIO4)(优级纯)、盐酸(HCl)(优级纯)、硝酸镁[Mg(N03)2.6H2O]、氧化镁(MgO)、过氧化氢(H2O2)。 试剂的配制1、氢氧化钠溶液(2 g/L):称取2.0 g氢氧化钠,溶于1 000 mL水中,混匀。2、硼氢化钠溶液(10 g/L):称取10.0 g硼氢化钠,溶于1 000 mL氢氧化钠溶液中,混匀。临用现配(也可称取14 g硼氢化钾代替硼氢化钠)。3、硫脲溶液(50 g/L):称取50 g硫脲,溶于1 000 mL水中,混匀。4、硫酸溶液(1+9):量取100 mL硫酸,小心倒入水900 ml。中,混匀。5、氢氧化钠溶液(100 g/L):称取1.0 g氢氧化钠,溶于10 mL水中。6、盐酸溶液(1+1):量取100 mL盐酸缓慢倒入100 mL水中,混匀,冷却后使用。7、硝酸镁溶液(150 g/L):称取150 g硝酸镁,溶于1 000 mL水中,混匀。 标准溶液的配制1、砷标准储备液(0.1 mg/mL。):精确称取于100℃干燥2h以上的三氧化二砷0.1320 g,加100 g/L氢氧化钠溶液10 mL溶解,用水定量转入1 000 mL容量瓶中,加硫酸溶液(1+9)25 mL定容至刻度。2、砷标准使用液(1/μg/mL):吸取1.00 mL砷储备标准液于100 mL容量瓶中,用水稀释至刻度。 分析步骤以湿法消解为例称取固体试样1 g~2.5 g(精确至0.001 g),液体试样5 g~10 g(精确至0.001 g),置于100 mL锥形瓶中,加硝酸20 mL~40 mL,硫酸1.25 mL,放置过夜。次日置于电热板上加热消解(主气流量:为定值,500mL/min左右 辅气流量:800~1000mL/min泵速:70~80转/min检出限(参考值):0.01ng/mL 注意事项:(1)在盐酸中一般都存在着一定含量的As,因此采用优级纯HCL可减少空白。但也有个别情况分析纯中As含量低于优级纯,以及不同生产厂或不同的生产批号As的含量差别也很大, 因此建议在使用前先用少量的HCl配制成10%(V/V)条件下进行对比检验。(2)将所使用前的各种器皿必须用(1+1)HNO3浸泡24小时,然后认真清洗干净,防止As的污染。(3)本说明所配制的砷标准贮备液为三价状态,为防止在保存期间砷被氧化,仍建议加入硫脲+抗坏血酸,碘化钾预先还原As(Ⅴ)至As(Ⅲ),还原速度受温度影响,室温低于或小于15℃,至少应放置30分钟,样品也必须同样进行预还原。(4)配置标准溶液的容量瓶必须长期固定不变,不能任意变动。(5)配制标准溶液时宜采用固定的一支5mL刻度的移液管,可直接用于配制全部标准系列。(6)硼氢化钾溶液浓度对As测定有较大影响。
  • 加州拟定苯的最新参考暴露水平
    美国加州环境健康危害评估环保办公室(OEHHA)宣布将于2013年7月26日就苯的参考暴露水平(Reference Exposure Levels ,RELS)举办第二次研讨会。   OEHHA正在就拟议的苯的参考暴露水平草案文件征求公众意见。参考暴露水平是指挥散在空气中对一般人群包括敏感人群在特定的暴露期内不会导致非癌症的健康影响的浓度。OEHHA要求根据空气有毒物质热点计划(the Air Toxics Hot Spots Program)--健康安全法规第44360(b)(2)部分中实施的健康风险评估建立指导原则。为了响应法定规定,OEHHA于2008年采纳技术性支持文件(Technical Support Document ,TSD),该文件包含更新急性、八小时以及慢性参考暴露水平的指导原则。这些指导原则已经用于一些化学物质参考暴露水平的更新,OEHHA目前就苯的最新参考暴露水平递交草案。   建议值如下:   急性REL(1小时暴露): 27微克/立方米   8小时REL(累计8小时暴露): 7微克/立方米   慢性REL(长期暴露): 7微克/立方米
  • POCT急需质控 荧光仪器是否靠谱?
    p POCT即时检测,在中国发展已经有10几年的时间,一直让各位检验人又爱又恨——爱其快速、贴合临床所需;恨其质控混乱,或根本毫无质控可言。 /p p 故许多检验人一直对POCT持审慎或抗拒的态度。近年来,随着时代发展以及业界呼吁,POCT里已有许多厂商,开始迎合检验人的质控要求,提出如双重质控、多重质控等概念,但似有泥沙俱下、鱼目混珠之感,许多是概念大于实质。 /p p 如何真正做好POCT的质控?又以何标准,去判断一个POCT厂商是否真的在践行质控?本文拟就此题,稍作阐述,以供参考。 /p p strong POCT急需质控 /strong /p p POCT(point of care test),一般译为床旁快速检测,或即时检测。2004年,POCT的理念和技术开始进入中国,在中国发展已有14年的时间。前半段可能知者甚少,但最近几年明显感觉到其发展异常快速,大有铺天盖日之势,上百厂商群雄征战、连绵不休。 /p p 外部资本热捧,内部IVD行内热议,自身POCT涵盖项目越来越多、覆盖医院也越来越广,看似一切都在朝着好的方向发展。然而,作为检验人的我们清楚的知道,噱头只是表象,质控依旧是POCT的软肋。 /p p 这也是我们检验人,既往对POCT一直持审慎态度的原因,因为我们见多了POCT各种检测结果波动大、与临床不符、厂商毫无质控观念等诸多问题。为此,我们一直在呼吁,POCT也要进行规范质控! /p p 呐喊了多年,终于有了些成果,POCT行业里已有部分厂商,开始迎合检验人的质控需求,提出如双重质控、多重质控等概念,但似有泥沙俱下、鱼目混珠之感。 /p p POCT业界纷繁复杂,有名有姓的生产商过百,颇有点IT界2014年“百团大战”的感觉,然而,这过百家里,能真正响应检验人对质控的号召、满足检验人要求的、实质大于概念的,不过廖廖。 /p p strong 也难怪各位同仁大声疾呼:POCT,质控路在何方?! /strong /p p 在此,笔者并不准备重复强调质控的意义、呼吁厂商重视了,因为该重视的都重视了,并采取了相应的措施;对于不重视的厂商,“你永远唤不醒一个装睡的人”。仅想结合自己所见所思,为大家提供一个评判、甄选标准,即:如何去判断一个POCT品牌,其管理者是真正重视质控的?哪些是真正用心在做事,而又有哪些,是在鱼目混珠的? /p p strong 一、方法学是否有特色? /strong /p p 把方法学特色纳入评判标准,估计有些同道会有些意见。从专业角度,方法学与质控应该是联系不大的。然而,各位别忘了,这是在中国,我们有自己的中国特色!为何? /p p 请听我细细道来:由于目前POCT发展火热,许多厂家均投入这一市场,但苦于自研麻烦、耗时费力,又只想赚快钱,故有一部分走捷径,从试剂到仪器,均是直接向第三方公司OEM贴牌的,自己本身只做商业销售。这其中,尤以普通荧光和胶体金的POCT为重灾区!这也是为什么,目前POCT品牌会有过百家扎堆的原因!近日,某第三方公司甚至推出了从原料至试剂再到仪器全部可帮订制的服务,局中乱象,可见一斑。 /p p 试问一下,在国家临床检验中心大力推动室间质评的大背景下,如果连产品都不是自己生产的,又有何资格谈质控?连研发能力都没有,又如何谈质量升级呢?技术原理都是照抄别人而不升级,谈何质控?也只能跟着别人人云亦云而已。所以,唯有在技术上独占鳌头、引领新的技术变革的弄潮儿,才能在自己最熟悉领域上进行质控与升级。笔者把方法学放在首位,并非想一杆子打翻一船人,而是为了让各位,快速识别一大批近年跟风的投机者。 /p p POCT发展到现在,多以胶体金、荧光素或荧光微球技术为原理支撑。能在方法学上有突破、让笔者自觉眼前一亮的,如量子点技术和磁敏POCT。代表性的两家企业均位于深圳,深圳确实不愧创新之都、医械重镇之名。 /p p strong 二、核心原材料是否自研自产? /strong /p p 众人周知,好的食材才能做出好的味道。原材料于POCT厂商,就如食材之于厨师。POCT的原料包括标记物(按方法学不同而不同)、抗原抗体以及NC膜、包装盒等等诸多材料,其中最为核心的是方法学使用的标记原料,以及抗原抗体。 /p p 标记物原料方面,目前能自产的极少,若碰到有能自产的,请好好珍惜——这肯定是个靠谱的、是真的在用心做事的; /p p 而抗原抗体,国内厂商也有部分使用自制,但性能方面,目前与国外知名厂家还有差距,如其使用抗原抗体是Hytest、 Medix Biochemica、Dako等等——亦请好好珍惜,说明该厂商比较注重品质。 /p p strong 三、生产过程是否全自动化? /strong /p p 人比机器强的是创造性,但在重复性的工作方面,自动化生产远比人工可靠得多。既往使用POCT检测,常出现废卡,不仅延误病情诊断,重复抽血更是给患者带来更多创伤。原因之一,就在于某些厂商的生产过程控制不到位,设备按照预设的程序完成全部生产过程,比人更可控。 /p p 有机会的话,各位可以去参观一下备选厂商的厂房,看是否为机械自动化生产、是否条码全检、是否自动剔除废卡,不能达到以上标准的,请慎重考虑。 /p p strong 四、仪器是否有校准卡,以及校准卡是否为绝对数值质控? /strong /p p span style=" color: rgb(255, 0, 0) " POCT目前均为封闭式系统,各家的试剂仅能在各家自身的仪器上进行检测,试剂质控方面已如上所说,基本上就是由原料+生产过程所决定,而仪器的质控,在POCT的整体质控上,亦扮演着重要角色。 /span /p p span style=" color: rgb(255, 0, 0) " 那么,仪器如何做质控呢?仪器最核心的部分,就是其光学系统,若以胶体金为例,则较为简单,是仪器内置摄像头拍照后,对其进行灰度分析、并转换为对应检测结果;以荧光为例,则结构更为精密、复杂,一般包括荧光激发模块以及荧光强度读取模块。胶体金由于灵敏度问题,其已经渐退出定量的舞台,目前以荧光(包括普通荧光、时间分辨免疫荧光,以及最新的量子点荧光)最为主流。 /span /p p span style=" color: rgb(255, 0, 0) " 而真正靠谱的荧光仪器光学质控方法,应是采用绝对数定值校准,即厂商提供一张校准卡,上面仅有一个条带,内置荧光物质,并在上方标明光强的具体靶值(以绝对数的形式)。将这校准卡插入仪器后,仪器内置激发系统激发,使校准卡产生荧光,读取其荧光强度,并与靶值做比对。如此,方能真正检测仪器内的荧光激发模块& amp 荧光读数模块是否均正常、在控。对于采用将LED灯镶嵌在空白试剂卡上、或采用相对值校准卡质控的,大家稍加思考,即可知其与绝对数定值校准的差距所在, 这显然是一种偷换概念,不科学的做法。 /span /p p strong 五、是否有质控品与能否自动生成质控图? /strong /p p 关于质控品的重要性勿庸多言,大可质问厂商: /p p 1.是否有质控品? /p p 2.质控品是否有注册证? /p p 3.质控品是否为冻干粉?——如业内大拿所说,冻干粉质控品为实力的象征! /p p 4.质控品是否起码有高中低三个浓度以上? /p p 5.仪器是否能自动生成质控图? /p p 若不能符合三条以上,对其质量,应心存疑虑。 /p p strong 小结 /strong /p p 以上即为个人之言,五大标准,层层筛选下来,即可剔除大多数鱼目混珠之辈;而能真正符合这五大标准的,就是真正在做事、想把事做好的厂家,也值得我们检验人去予以支持和鼓励。 /p p POCT,路在何方?我想,这个问题,到这也有了答案,我们检验学人登高呐喊,而这些真正做事、想把事做好的厂商,如同头雁一样,顶着风雨,将POCT的质量水平,带往我们想要的方向! /p p 最后,笔者想以深圳某公司为例,名字就不说了,以免有打广告之疑。其不仅仅提出全程质控,并已经默默践行!其质控要求上,甚至比笔者提出的上述标准更为苛刻。笔者衷心希望业内所有厂商,均能如此去要求自己,从而更好地为广大患者服务;衷心希望,所有POCT厂商,均能有这样的承诺和行动! /p
  • 迈克生物:参考检测能力已经达到世界先进水平
    近日,迈克生物收到国际溯源联合委员会(JCTLM)成绩通知,迈克生物参加2015年参考方法国际能力试验(RELA)的十个项目(25-OH-V D3/Thy/T/Prog/AST/GGT/Glu/TBil/AP/UA/)全部符合要求。从2008年至今,迈克生物已经成为连续八年参加RELA项目结果全部符合的单位。  迈克生物本次参加的25-羟基维生素D3、甲状腺素、睾酮、孕酮(25-OH-V D3/Thy/T/Prog)四个项目采用同位素稀释高效液相色谱质谱联动分析法(ID-LC/MS/MS),本方法属一级参考方法,在检验医学界属最高等级。同时有四个项目一级参考方法RELA试验符合,说明迈克生物的参考检测能力已经达到世界先进水平。  公司表示, 该结果的取得不会对公司生产经营造成重大影响,但有利于提升公司自主产品的质量稳定优势,对公司开拓市场及推广产品产生积极的影响,保持公司技术的领先性,亦提升了公司的核心竞争力。
  • 安捷伦科技推出关于 GC/MS/MS 农药分析的综合参考指南
    安捷伦科技推出关于 GC/MS/MS 农药分析的综合参考指南 涵盖最新的食品检测方法和技术 2013 年 6 月 11 日,北京 &mdash 安捷伦科技公司(纽约证交所:A) 今日推出了《GC/MS/MS 农药残留分析指南》,该综合参考指南是 Excellcon International, LLC. 公司的总裁 Katerina Mastovska 博士与来自加州食品与农业部、佛罗里达州农业与消费者服务部以及安捷伦的科学家的合力之作。 该文集详尽地列出了针对食品中农药残留分析方法的修改和再优化的说明以及标准操作程序。某州立环境实验室已采用本文集,进行饮用水中农药的 GC/MS/MS 分析。 该指南包括完整的 GC/MS/MS 分析说明、相应的样品前处理步骤、以及使用安捷伦农药和环境污染 MRM 数据库扩展分析方法的介绍。 参加本周在明尼阿波里斯市举办的美国质谱协会会议的来宾可从109号展台 ,或者在傍晚到访安捷伦接待室获取本指南、与安捷伦科学家进行交流。若没有参加此次会议,可联系当地的安捷伦客户服务中心领取本指南。 佛罗里达州农业部化学残留实验室环境经理 Raymond Allum 说到:&ldquo 这是一本很好的资料,它为实验室提供了农药分析方法的完整说明,列出了哪些农药可使用 GC/MS/MS 或 LC/MS/MS 进行检测,同时还就如何分析最复杂的农药给出了建议。事实证明,该分析方法强大可靠,分析不同的食品基质均能获得优异的分析结果。&rdquo 安捷伦高级应用科学家 Melissa Churley 谈到:&ldquo 涉及 QuEChERS 法的修改、校准、基质相关问题以及仪器分析条件时,分析人员通常面临众多选择。此外,要想建立一个广泛适用、可靠的 GC-MS/MS 方法,就必须使得气相或液相色谱适用于整个分析物列表中的至少某一类分析物及其各种变异体,这几乎难以实现。然而,指南中 Mastovska 博士推荐的核心方法却被证实是一个为许多美国客户成功解决问题的一站式解决方案,因为只需短短几天就能将它运用到各个应用。我们相信,世界各地的很多客户都需要这个解决方案。&rdquo 安捷伦 GC/MS 营销主管 Terry Sheehan 谈到:&ldquo 食品、水和环境安全领域的法规日益严苛,这意味着实验室必须担负起优化筛查工具和流程的责任,确保分析结果的有效性和可靠性。可喜的是,现在高度成熟的技术可助其一臂之力。 本指南为实验室提供了完整的信息,实验室可据此判断哪种技术最适合自己的需求、如何建立严格的检测方法实现最低农药检出限,以及如何以更快的速度获得可信度更高的分析结果。&rdquo 新版《GC/MS/MS 农药残留分析指南》提供了备受推荐的采用 Agilent 7000 三重四极杆 GC/MS 进行农药多残留分析的 GC/MS/MS 方法。指南还包括了方法的开发、优化、修改和常规使用方面的操作技巧和注意事项。 此外,还探讨了与气相色谱和二级质谱的农药分析相关的一些重要问题,尤其是处理基质的相关问题,主要取决于样品提取物的化学组成。因此,本指南还着重介绍了在农药多残留分析中使用 QuEChERS(快速、简便、经济、高效、耐用和安全)方法进行样品前处理的基本信息,还包括推荐的操作步骤。 指南内容 农药多残留分析概述; QuEChERS 的发展过程、修改和净化选择; 内部质量/过程控制标准的使用; 农药的气相色谱分析(基质效应、进样技术、校准方法、分析物保护剂和色谱柱反吹); 二级质谱检测的注意事项; GC/MS/MS 方法的开发和优化; 用于其他分析物的方法修改; 以表格形式对比 GC/MS/MS 与 LC/MS/MS 可检测的农药,以及使用 QuEChERS 法时有特殊要求的农药; GC/MS/MS 方法的标准操作程序示例; 相应的 QuEChERS 方案示例,包括试剂溶液的前处理说明; 详细参考资料; 《GC/MS/MS 农药残留分析指南》是安捷伦全套质谱产品的一员,安捷伦质谱包括功能强大、应用广泛的 GC/MS、LC/MS 以及 ICP-MS 解决方案。 关于化学残留实验室管理局 化学残留实验室管理局是佛罗里达州农业和消费者服务体系食品安全部的分支机构,负责对佛罗里达州境内生产和销售的人类食品中的有毒化合物残留进行化学分析,同时还负责根据联邦农药和抗生素残留限、以及佛罗里达州采用的生鲜农产品指南进行法规监管。 关于安捷伦科技公司 安捷伦科技(NYSE 代码:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 药监局发布基因测序仪等体外诊断产品新参考准则!含三项指导原则
    为进一步指导基因测序仪等体外诊断产品临床评价,规范审评工作,国家药监局器审中心于11月24日发布《基因测序仪临床评价注册审查指导原则》、《来源于人的生物样本库样本用于体外诊断试剂临床试验的指导原则》、《微卫星不稳定性(MSI)检测试剂临床试验注册审查指导原则》等3项指导原则。《基因测序仪临床评价注册审查指导原则》旨在指导注册申请人对基因测序仪注册申报资料的准备及撰写,同时也为技术审评部门提供参考,适用于高通量测序的基因测序仪采用通过同品种医疗器械临床数据或通过自身临床试验数据进行临床评价。《来源于人的生物样本库样本用于体外诊断试剂临床试验的指导原则》旨在明确来源于人的生物样本库样本用于体外诊断试剂临床试验的相关要求,从而指导申办者的临床试验工作,也为技术审评部门对临床试验资料的技术审评提供参考,适用于按照医疗器械管理的体外诊断试剂临床试验中,涉及到入组生物样本库样本的情形。《微卫星不稳定性(MSI)检测试剂临床试验注册审查指导原则》旨在指导注册申请人对微卫星不稳定性(MSI)检测试剂临床评价资料的准备及撰写,同时也为技术审评部门提供参考,适用于采用荧光PCR-毛细管电泳法检测结直肠癌患者肿瘤组织细胞基因组DNA中的MSI状态,从而辅助鉴别结直肠癌中可能的林奇综合征患者的体外诊断试剂。详情如下:
  • 选择比表面仪的实用参考资料
    为使人们了解更多有关比表面及孔径分析测试仪的相关基本知识,解答广大客户对比表面及孔径分析测试仪存有的疑惑,让人们买到称心如意的设备,北京理工大学材料系钟家湘教授为此特写了一篇题为&ldquo 高校应如何选择国产比表面仪&rdquo 的文章。 文中首先介绍了表面特性的重要性及其主要指标。钟教授指出:&ldquo 微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,而材料的使用性能与其表面效应最相关。  表面效应的主要影响因素是表面原子的状态与特性,主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化。&rdquo 其次,主要详细介绍了中国比表面积及孔径分析仪概况,具体内容包括比表面及孔径分析仪的分类、国产静态容量法氮吸附仪与动态法氮吸附仪以及与进口比表面仪的对照。从比较中不难看出,静态容量法比表面仪采用国际通用的静态法,具有动态法氮吸附仪所不具备的性能;同时,其测试精度高,重复性好,已赶超国际先进水平,并有质优价廉的优势。 最后,钟教授对高校如何选择国产比表面及孔径分析仪提出了些许建议,是人们在购买仪器时首要了解的最实用参考资料。 链接【高校应如何选择国产比表面仪】 www.lunwentianxia.com/product.free.10011339.1/ 链接【技术交流】 www.jwgb.cn/Technology_View.Asp
  • 参考环境标准HJ/T 59-2000测定环境水中的铍
    铍(Be)主要被用于铍铜合金等合金的硬化剂。Be的粉尘具有毒性,可能会危害人的身体健康。通过原子吸收分光光度计可以对微量甚至痕量的Be元素进行定量分析。环境水中仅含有微量的Be,水中的其他物质如碱金属、碱土金属会产生背景吸收,影响测定数据的准确性。偏振塞曼校正法可不受共存物质的背景吸收干扰,高精度分析样品。中国地表水环境标准(GB3838-2002)规定铍的标准浓度应在0.002mg/L,地下水环境标准(GB/T-14848-2017)规定铍浓度应低于0.0001mg/L。 下面使用日立偏振塞曼原子吸收分光光度计ZA3000,测定河水和海水中的铍。参考方法:中国国家环境保护标准HJ/T 59-2000水质铍的测定.石墨炉原子吸收分光光度法。 ■ 环境水中铍前处理步骤示例按照HJ 602-2011的前处理方法对样品进行处理。取适量待测样品,添加0.5mL 硝酸铝(Al1%) 和0.2mL 硫酸(硫酸:水=1:1),水稀释定容至10mL。原子化过程中,每分钟充入200mL的载气,以降低灵敏度。加入基体改进剂会改变原子化谱峰的形状,因此,实验采用峰面积法进行定量计算。 ■ 实验条件■ 实验结果HJ/T 59-2000规定铍的检出限为0.02 μg/L,此次实验数据的检出限为0.01 μg/L。加标回收率在标准规定的85%~115%的范围内,测定数据准确。 综上所述:日立偏振塞曼原子吸收分光光度计ZA3000系列测定环境水中的铍,符合中国国家环境保护标准HJ/T 59-2000要求,测定灵敏度高,结果准确可靠。
  • 广州明慧|选购荧光显微镜光源需要考虑的关键因素
    荧光显微镜是现代生物学和医学研究中的重要工具,能够通过荧光染料来照亮和观察样本,荧光染料被激发并发出荧光,从而使样本更加清晰可见。而荧光光源是荧光显微镜中的关键部件。正确的荧光光源可以提供高分辨率、高对比度的成像效果,而错误的选择则会使成像质量受到影响。因此,选择适合的荧光光源至关重要,因此介绍在选购显微镜荧光光源时需要考虑的关键因素。①波长:荧光染料只能在特定的波长下被激发。因此,选择荧光光源时需要确保其波长与所使用的荧光染料相匹配。荧光光源的光谱有连续的和非连续的,在不同波段能量不同。光源的波长需根据荧光物质来确定,常用的波长为365nm,470nm等。常用的荧光波段为UV紫外,B蓝,G绿,根据自己具体应用来选择某个具体波段,也可以根据需要定制波段。有单色荧光、双色荧光及多色荧光等多种配置方案可选,能够满足大部分的显微镜荧光实验需求。②亮度:荧光光源的亮度越高,样本就越容易被观察到。因此,选择亮度高的荧光光源可以提高观察效果。③稳定性:荧光光源的稳定性直接影响到观察的可靠性。因此,选择稳定性高的荧光光源可以减少实验误差。④寿命:荧光光源的寿命也是一个重要的考虑因素。选择寿命长的荧光光源可以减少更换光源的频率,LED荧光光源具有非常大的吸引力,提供高品质、稳定性的荧光照明,寿命更长,安全性更高,使用更加轻便以及节省实验成本等优点。综上所述,选择适合自己实验需求的荧光光源非常重要。需要考虑到波长、亮度、稳定性和寿命等因素,并且选择高品质的荧光光源可以提高实验的效率和准确性。这里要介绍的是荧光显微镜光源的最佳选择——LED光源,新型LED作为光源,提供高品质、稳定性的荧光照明,远优于传统的汞灯照明。相较其他光源具有明显的性能优势和成本优势,将逐步的替代超高压汞灯、氙灯、金属卤素灯,成为荧光显微镜主流的荧光光源,可满足科研、分析、检验不同用户的需求。此外,多波段LED光源可选,并可控制每一个LED的亮度,实现多波长的选择激发,便捷高效。广州明慧公司自主研发的显微镜LED荧光光源适用于目前市面上大部分正置显微镜、倒置显微镜和体视显微镜,通用型荧光光源,安装简便易操作,体积小不占空间,可定制,非常适合实验室需要将普通显微镜升级为荧光显微镜的应用需求,性价比高,方便高效。如果您对我们的显微镜LED荧光光源感兴趣,可与我们技术交流。
  • 布鲁克发布超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS新品
    微区X射线荧光光谱仪,M4 TORNADO PLUS,X射线荧光成像光谱仪,微区XRFM4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用超轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,超高通量脉冲可以zui大程度提升采样速度,BRUKER专利孔径管理系统(AMS)可以获取超大景深,对表面不平整样品分析具有独特的优势。超轻元素检测M4 TORNADOPLUS是史上第yi台能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有超轻元素窗口的大面积硅漂移探测器和一个特别优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用超轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而可靠地鉴别这两种矿物。图:鉴别萤石与方解石?左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度极深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的zui高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,所有组件聚焦在更大的景深范围内。创新点:M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。 作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。 超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS
  • 实验室洗瓶机选型参考
    p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 随着国家科研能力的不断提升,实验室建设的标准也在不断提高。诸多实验,如食品检测、微生物培养、化学合成等等,都面临着大量的实验器皿清洗工作。然而繁重的实验课题往往不允许花费大量时间在手动清洗器皿上,因此,让器皿清洗工作变得高效快捷势在必行,实验室洗瓶机应运而生。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 实验室洗瓶机的优势较手工清洗非常显著: /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (1)节省时间,提高实验效率; /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (2)清洗结果均一性好,减少对实验重现性的影响; /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (3)各项清洗参数可记录追溯,提高实验结果的可靠性; /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (4)可应用各种清洗剂配合清洗,减少清洗机对人体的直接接触。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 在我国,目前全自动玻璃器皿清洗机的普及程度并不高,受经费、洗瓶机的信息了解不足等多重因素限制,目前多数实验室还出于人工清洗实验器皿的状态。那么如何能选购到一款价格合适,使用起来得心应手的洗瓶机,是大多实验室工作人员所关心的问题。目前市面上的产品众多,产品性能也各有所长,国产与进口质量水平也千差万别,要想选到一款真正适用的并非易事,下面汇总了选购洗瓶机的一些角度: /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 1.产品方面 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 产品本身的质量及参数是选购时最重要的参考依据,产品选购可从一下几个方面考量: /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (1)控温系统 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 温度控制是否准确,温控范围在1℃以内的仪器通常认为设计的比较精良,控制范围大于1℃时,一些温度敏感性污染物,如生物蛋白或无法有好的清洗,而且温度设置不精确,不同批次清洗的效果也会没有保障。洗瓶机的加热方式有循环泵集成加热和循环泵与加热丝分体两种,不同的加热方式直接影响清洗的时间长短,循环泵集成加热具有高效率,大大缩短清洗的时间。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (2)篮架设计 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 篮架设计的是否灵活合理,会影响到使用时的效率。好的篮架设计一次性可清洗的器皿品种及数量较多,提高运作效率。通常,良好的清洗篮架在设计时会经过严格的计算和测试,注射头数量、每个注射头的出水压力、出水量,各注射头是否一致等。半注射式篮架和插架,可满足更广泛的清洗要求。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (3)防水设置 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 防水系统属于洗瓶机的一项升级保障装置,当仪器出现漏水时,防水系统会自动关闭进水管路,自动打开排水阀排水,同事停止设备运转,这就保证了产品使用的安全性,减少人为处理的可能。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (4)过滤/监测系统 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 好的产品会有4层精密过滤系统,同时保证对量具有最小的磨损,延长用具使用寿命。有无旋转臂运行监测系统和水压监测系统也是衡量产品好坏的一大因素,有监测可避免在旋转臂不转或循环泵堵塞压力变小时清洗不足的问题。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " (4)添加剂装量装置 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 洗瓶机可添加的洗涤剂种类众多,如酸、碱、酶制剂、消毒机等等,功能完善的产品通常可同时装有粉末添加器和液体添加器两种洗涤剂添加装置,可是仪器适用范围更广。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 2.其他方面 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 从生产企业的一些基本情况也可一定程度上判断其所生产的洗瓶机的质量好坏。例如可通过厂商规模、主打方向、研发投入侧面判断产品的质量。 /span /p p style=" text-indent: 2em " span style=" color: rgb(89, 89, 89) " 此外,产品是否经济环保也是当下各用户十分关注的问题。设计合理,减少生产材料,水和清洗剂用量,清洗干净,减少残留,耗电少,损耗慢,少故障少维修等等都是产品是否经济环保的因素。& nbsp /span /p p br/ /p
  • 是德科技与新思科技共同合作,支持台积电 N6RF 设计参考流程
    PathWave RFPro 与新思科技定制化编译器相辅相成,可提供无线晶片设计工作流程所需的整合式电磁模拟工具是德科技(Keysight Technologies Inc.) 是推动全球企业、服务供应商和政府机构网路连接与安全创新的技术领导厂商,该公司日前宣布其 Keysight PathWave RFPro 与新思科技(Synopsys)定制化编译器设计环境已完成整合,以便支持台积电(TSMC)最新的 6 纳米 RF(N6RF)设计参考流程。对于集成电路(IC)设计人员来说,EDA 工具和设计方法至关重要。最新的 TSMC N6RF 设计参考流程,为设计人员提供重要指引,使其能够利用台积电先进的 N6RF 互补式金氧半导体(CMOS)技术,准确地执行电路设计和模拟,以支持下一代 5G 和无线应用。PathWave RFPro 主设定视窗可显示使用 TSMC N6RF 技术设计的低杂讯放大器是德科技和新思科技共同在 Synopsys 编译器中开发定制化设计范例,方便工程师在 Keysight PathWave RFPro 中执行集成的电磁(EM)分析和定制的射频元件建模。客户可结合使用 PathWave RFPro 与定制化编译器并纳入其端对端工作流程中,以确保 EM 模拟和电路布局的互通性。是德科技 PathWave 软体解决方案事业群副总裁暨总经理 Niels Faché 表示:“Keysight PathWave RFPro EM 模拟软体与新思科技定制化编译器的紧密整合,可为客户提供经验证的解决方案,让他们能够使用 TSMC N6RF 设计参考流程,快速、准确地设计无线晶片。 企业需借助整合式电磁模拟,来验证并改善现今多制程射频设计中的寄生效应。 藉由迭代执行电磁电路协同模拟,设计工程师可确保一次设计就成功。台积电、新思科技和是德科技合作无间,缔造了这项互通性成就。”为了让 IC 设计人员更顺利部署此参考流程,是德科技与新思科技共同撰写了详细的应用说明。台积电已推出并提供 TSMC N6RF 设计参考流程及 N6RF 技术封装制程。新思科技工程事业群副总裁 Aveek Sakar 表示:“此参考流程是我们与是德科技长期合作的心血结晶,它将 Synopsys 定制化编译器和 Keysight RFPro 紧密整合在一起。 新的参考流程让设计人员能够利用台积电最新、最先进的 RF CMOS 技术*,尽快展开射频设计和模拟作业。”台积电设计建构管理处副总裁 Suk Lee 表示:“我们与是德科技和新思科技的合作,让客户能够利用我们领先业界的 RF CMOS 技术,部署先进的 IC 设计和模拟流程。 对于是德科技和新思科技共同开发的射频设计参考流程,我们感到非常满意,并期待未来我们能继续合作,以协助射频 IC 设计客户满足复杂的需求,并快速将其独特产品推出问市。”如需是德科技工具和解决方案的详细资讯,请浏览 Keysight EDA 软体:40 年设计成功案例。如需是德科技与新思科技合作成果的详细资讯,请参阅《是德科技与新思科技密切合作,提供整合式 5G 设计定制化设计流程》。* RF CMOS 技术是一种金属氧化物半导体(MOS)集成电路(IC)技术,可将射频、类比和数位电子,整合到混合信号 CMOS(互补式 MOS)射频电路晶片。
  • 北京建成全球首家血细胞分析参考实验室
    日前,北京市医疗器械检验所参考测量实验室血细胞分析项目通过中国合格评定国家认可委员会(CNAS)现场评审,成为全球首家通过认可的血细胞分析参考实验室。   北京市医疗器械检验所从2007年开始着手建立血细胞分析参考实验室,根据国际血液学标准化委员会(ICSH)和美国临床实验室标准化委员会(CLSI)等相关国际血液学标准化组织发布的国际约定参考方法,经过多年努力,先后建立红细胞计数、白细胞计数、红细胞压积、血小板计数和血红蛋白测定的参考测量程序,形成完整的血细胞分析参考测量实验室质量管理体系,能够满足未来客户多层次产品量值溯源需求。   该实验室建成后,与美国、德国、日本等国际知名血球参考实验室进行每周2次定期比对,结果与国际参考实验室达到等效一致,标志着该所血细胞测定参考方法迈入国际先进行列。   血细胞分析是临床最常用实验室检测指标,其结果的准确性直接影响对患者的诊断和治疗。血细胞分析参考实验室的核心工作是解决血细胞临床检验结果的可溯源、量值一致问题,保证各医学实验室血细胞化验分析数据结果的准确可比,这也是我国政府提出各医疗机构检验结果&ldquo 一单通&rdquo 的重要技术基础。
  • 861万!中国动物卫生与流行病学中心国家新城疫参考实验室建设项目2023年仪器设备采购项目
    一、项目基本情况项目编号:QDYS-ZC2023085项目名称:中国动物卫生与流行病学中心国家新城疫参考实验室建设项目2023年仪器设备第一批公开招标预算金额:861.000000 万元(人民币)最高限价(如有):861.000000 万元(人民币)采购需求:包号序号仪器设备名称数量(台/套)预算(万元)国产/进口产品11高通量全自动核酸提取系统1130国产2高通量序列分析仪155国产21实时荧光定量PCR仪198国产2高通量生物信息数据分析系统150国产31纳米孔测序仪1170国产41全自动洗板机120国产2多功能酶标仪140国产51生物安全型高压灭菌器220国产2样品制备系统113国产61自动化细胞成像分析系统1120国产71PCR仪735国产2实验室智能一体化超纯水系统110国产3台式高速冷冻离心机210国产81微滴式数字PCR仪190国产 合同履行期限:自签订合同之日起至质保期结束之日。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月28日 至 2023年10月11日,每天上午9:00至13:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:青岛市市南区宁夏路129号C座方式:潜在投标人将营业执照副本原件扫描件和单位授权委托书原件扫描件及单位信息(投标人名称、联系人、电话、邮箱)发送至qdyishi@126.com进行报名。售价:每包300元整人民币,售后不退(如需邮购,邮费自负,采购代理机构对邮寄过程中的遗失或者延误不负责任)。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国动物卫生与流行病学中心     地址:青岛市北区南京路369号        联系方式:0532-85610108      2.采购代理机构信息名 称:青岛毅石招标代理有限公司            地 址:青岛市市南区宁夏路129号C座            联系方式:于姣 0532-66565116            3.项目联系方式项目联系人:于姣电 话:  0532-66565116
  • 峰展宽?峰分叉?可能与溶剂效应有关!应对思路供您参考!
    《中国药典》2020年版实施已达10个月,中药配方颗粒首批160个国家标准发布已有半年以上,岛津技术人员在走访客户时发现,多位客户反馈在多个项目(2341通则禁用农药残留量检测、2351通则液质联用法扩项、配方颗粒特征图谱重现)上进行方法重现时遇到“峰展宽”或者“峰分叉”现象。 “峰展宽”或者“峰分叉”一般与“溶剂效应”有较大关联,原因在于样品(对照品和供试品溶液在制备时)溶剂的洗脱强度强于流动相强度,强洗脱溶剂不均衡地参与了目标物的洗脱,使色谱峰保留时间整体提前,而样品在柱前的不充分扩散导致了峰形扭曲。 这种影响轻则导致峰展宽,严重时甚至导致峰分叉,给定性定量带来影响,结合岛津技术人员所做案例,以下应对思路供广大客户参考。 应对思路及案例使用流动相、初始比例流动相或洗脱强度尽量低的液体作为样品溶剂,应注意使用该溶剂应不影响待测物的溶解性。乌梅配方颗粒对照品参照物溶液不同溶解溶剂对比图 使用较弱洗脱强度的溶剂稀释样品,应注意使用该溶剂应不影响待测物的溶解性。如《中国药典》2020年版四部“2341第五法药材及饮片(植物类)中禁用农药多残留测定法”LC-MS/MS法上样前加水是很好的方式。 降低进样体积,但需要注意此方法可能会降低灵敏度,对于痕量分析可能影响定量。赤芍配方颗粒特征图谱项目中对照品参照物溶液测试:没食子酸对照品、原儿茶醛对照品、儿茶素对照品、芍药苷对照品。增加柱前管路体积,一般使用更粗的管路比更长的管路有效。 使用co-injection功能co-injection功能原理 co-injection使用方法 使用技巧:为获取更好效果,纯化水吸取量一般为进样体积3-5倍。 co-injection在药典和配方颗粒项目分析检验中的应用 1、禁用农药残留量检测:LC-MS/MS方法,进样体积为2μL,纯化水吸取量10μL。2、真菌毒素检测:2351通则第六法呕吐毒素项,进样体积为5μL,纯化水吸取量20μL。3、配方颗粒应用:赤芍配方颗粒特征图谱项目(对照品参照物溶液),进样体积为10μL,纯化水吸取量30μL。以上三个项目案例可以看到,通过在线稀释进样,峰形改善,同时灵敏度有提升! 应对思路总结
  • 上海微系统所在自参考太赫兹双光梳研究方面取得进展
    近日,中国科学院上海微系统与信息技术研究所研究员曹俊诚、黎华团队与华东师范大学教授曾和平团队合作,在高稳定自参考太赫兹双光梳方面取得研究进展。研究团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果以Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation为题发表在《激光与光子学评论》(Laser & Photonics Reviews)上,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser,QCL)是实现THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,即载波包络偏移频率和重复频率。要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。尽管研究团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定,而要在实验室实现四个频率的完全锁定,将涉及复杂的硬件系统。该工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频产生的双光梳的每根梳齿都享有相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。研究通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性【图1(a)】。未稳频THz双光梳光谱在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz【图1(b)】。施加自参考稳频之后测得的THz双光梳光谱,在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上【图1(c)】。研究工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其他激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。 相关研究工作得到国家自然科学基金重点项目、国家优秀青年科学基金项目、中科院稳定支持基础研究领域青年团队计划、中科院“从0到1”原始创新项目、中科院科研仪器设备研制项目、上海市优秀学术带头人计划等的支持。  图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。
  • 上海微系统所在自参考太赫兹双光梳方面取得重要进展
    近日,中国科学院上海微系统与信息技术研究所曹俊诚、黎华研究员领衔的太赫兹(THz)光子学研究团队与华东师范大学曾和平教授团队合作,在高稳定自参考太赫兹双光梳方面取得重要研究进展。项目团队提出自参考方法,完全消除了THz双光梳共有载波噪声,同时抑制了重复频率噪声,将THz双光梳梳齿线宽由未稳频的2-3 MHz量级压缩至14.8 kHz,大幅提升了THz双光梳光源的稳定度。相关成果于2023年2月3日以“Terahertz Semiconductor Dual-comb Source with Relative Offset Frequency Cancellation”为题发表在Laser & Photonics Reviews期刊,并被遴选为封面论文。双光梳由两个重复频率略有不同的光频梳组成,通过多外差采样将光谱信息直接映射在微波波段,这种不依赖机械扫描的时间延迟结构令双光梳天然地具有高速、高分辨等优势,在高精度光谱、成像、测距以及大容量高速通信方面具有重要应用。在THz波段,基于电泵浦的半导体量子级联激光器(quantum cascade laser, QCL)是现实THz光频梳与双光梳的理想载体。当前,THz QCL双光梳通常工作于自由运行模式,具有较高的相位噪声,限制其高精度应用。提高双光梳频率稳定性的主要思路是分别控制两个光频梳基础频率分量,载波包络偏移频率和重复频率。因此,要完全锁定THz QCL双光梳需要同时锁定四个不同频率,即两个载波包络偏移频率和两个重复频率。四个不同频率的复杂系统。尽管项目团队在前期工作中将THz双光梳一根梳齿通过锁相环实现了锁定,并提升了双光梳的稳定性,但是还未实现THz双光梳的完全硬件锁定。而要在实验室实现四个频率的完全锁定,将涉及非常复杂的硬件系统。在本工作中,研究人员提出了自参考“软锁定”方法,不采用任何硬件锁模模块,对双光梳整体信号进行操控,实现了高稳定自参考THz QCL双光梳光源。双光梳梳齿噪声来源于两个未锁定的光频梳的载波包络偏移频率和重复频率噪声,通过多外差拍频过程,双光梳的每根梳齿都共享相同的载波包络频率及噪声。通过消除共有的载波包络频率噪声,则可以显著提高每根双光梳梳齿的稳定性。如图1(a)所示,通过窄带滤波器将双光梳的一根梳齿滤出并将其与整个双光梳信号进行混频,从而彻底消除双光梳梳齿的共有载波噪声,同时还可以抑制重复频率噪声,构造出无载波包络偏移频率的零偏双光梳,显著提高双光梳信号的长期稳定性。图1(b)为未稳频THz双光梳光谱,在15 s的测试时间内,测得的梳齿“最大保持”线宽为2 MHz。图1(c)为施加自参考稳频之后测得的THz双光梳光谱。在60 s内,测得的“最大保持”线宽为14.8 kHz,比未稳频的THz双光梳梳齿线宽提升了130倍以上。本工作提出的自参考稳频方法,不依赖任何锁定元件,同时可方便移植于其它激光系统中,为提高光谱、成像等各种应用的稳定性提供一种简单有效的稳频方法。本论文共同第一作者为中科院上海微系统所副研究员李子平、博士生马旭红,黎华研究员、曹俊诚研究员、曾和平教授为论文共同通讯作者。同时,上海理工大学李敏副教授和华东师范大学闫明研究员为该工作也做出了重要贡献。该研究工作得到了国家自然科学基金重点项目(62235019)、国家优秀青年科学基金项目(62022084)、中科院稳定支持基础研究领域青年团队计划(YSBR-069)、中科院“从0到1”原始创新项目(ZDBS-LY-JSC009)、中科院科研仪器设备研制项目(YJKYYQ20200032)、上海市优秀学术带头人计划(20XD1424700)等支持。图1(a)自参考稳频原理。其中frep1和frep2分别是两个光频梳的重复频率,其中frep2通过微波注入锁定到fRF。“彩虹”频谱表示MHz范围内的下转换双光梳信号,通过带通滤波器将其中一根梳齿滤出(虚线框),从而采用混频实现零偏自参考双光梳。(b)未稳频THz双光梳“最大保持”频谱,测量时间为15 s。(c)自参考双光梳“最大保持”频谱,测量时间为60 s。图2 论文封面论文链接:https://doi.org/10.1002/lpor.202200418封面链接:https://doi.org/10.1002/lpor.202370016
  • FluorCam叶绿素荧光成像技术应用案例——上海生命科学研究院
    近日,易科泰生态技术有限公司为上海生命科学研究院调试安装一套FluorCam封闭式GFP/Chl.荧光成像系统,该系统具备叶绿素荧光成像分析、GFP绿色荧光蛋白成像分析、PAR吸收与NDVI成像测量分析、实验程序自动运行监测等多项功能模块。上海生命科学研究院青年研究组长、博士生导师Chanhong Kim在苏黎世联邦理工学院(ETH-Zurich)、康奈尔大学博伊斯汤普森研究所(Boyce Thompson Institute at Cornell University)工作期间就已经使用FluorCam叶绿素荧光成像技术进行了大量的研究工作,并先后发表了“1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid”(PNAS(美国科学院院报),2009)、“Chloroplasts of Arabidopsis are the source and a primary target of a plant-speci?c programmed cell death signaling pathway”(The Plant Cell,2012)等学术论文。2014年,Chanhong Kim博士到上海生命科学研究院工作后,立刻就联系我公司购买了FluorCam封闭式GFP/Chl.荧光成像系统,计划率领他的青年科学家团队运用FluorCam叶绿素荧光成像技术结合特定胁迫因子来筛选拟南芥突变体,并通过Quenching实验程序进一步研究这些突变体光系统中的具体表型变化(Phenotyping)和生理机制,对植物光合作用和抗逆机理进行深入的探索;同时利用该系统绿色荧光蛋白成像分析功能,来定量鉴别检测分析转基因表达。图1. FluorCam封闭式叶绿素荧光成像系统在实验室的工作状态图2. 拟南芥叶绿素荧光Fm(左图)、Fv/Fm(右图)成像分析,图中上半部分为拟南芥野生型,下半部分为突变株,上部选择了3个植株Area 1、2、3,下部选择了3个植株Area 4、5、6,野生型的Fv/Fm远高于突变株图3. GFP成像图,图中发出明亮颜色的植株即为表达了GFP的植株,其颜色越偏向红色,则表明其表达的GFP更多图4:PAR absorptivity/NDVI成像分析(由Ecolab实验室提供)FluorCam叶绿素荧光成像技术由全球知名叶绿素荧光技术专业公司PSI生产,PSI公司最先研制成功并生产叶绿素荧光成像仪器。PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士首次将PAM叶绿素荧光技术与CCD技术结合在一起,研制成功了叶绿素荧光成像技术(Nedbal等,2000),并于1997年为美国华盛顿大学提供了第一台商业FluorCam系统。Nedbal教授也是权威著作《Chlorophyll a Fluorescence, a Signature of Photosynthesis》(Springer, 2009)叶绿素荧光成像技术的作者。Fluorcam叶绿素荧光成像系统是世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像仪器,目前易科泰生态技术公司Ecolab实验室有近400篇参考文献供参考查阅。易科泰生态技术公司作为PSI在中国区域的独家代理和技术咨询服务中心,致力于FluorCam叶绿素荧光成像技术的引进推广,以助力于我国植物生理生态与胁迫生理生态研究、植物育种与优良品种筛选、植物表型分析(Phenotyping)、藻类生理生态学研究、污染生态学及生态毒理学研究等,先后引进了FluorCam便携式荧光成像、封闭式荧光成像、开放式荧光成像、移动式大型叶绿素荧光成像系统、FKM多光谱荧光动态显微成像与光谱分析系统、多光谱荧光成像技术、PlantScreen高通量植物表型成像分析系统等;Ecolab生态实验室配备了便携式叶绿素荧光成像系统、FL3500多功能叶绿素荧光仪、FluorPen手持式叶绿素荧光仪、AquaPen手持式水体藻类荧光仪等,并与中科院植物所、中科院海洋所、中科院微生物所、中国农业大学、中国林科院林木遗传育种国家重点实验室等科研单位进行了一系列合作研究实验。欢迎合作研究或来我公司Ecolab实验室做实验。Ecolab实验室联系方式:电话:62615899;邮箱:info@eco-lab.cn, eco-lab@eco-tech.com.cn.
  • 市场监管总局:在X射线电子能谱、先进材料、人工智能等领域建立国家标准参考数据中心
    据央视新闻,市场监管总局办公厅近日印发《关于加强计量数据管理和应用的指导意见》,明确了20项重点任务,到2035年,计量数据归集共享规模显著提升,计量数据与产业链供应链结合更加紧密,计量数据潜能进一步释放。在重点领域、战略性新兴产业培育30家国家计量数据建设应用基地,挖掘和推广100个计量数据应用优秀案例。推动计量数据与量子信息、先进计算、未来网络等前沿技术融合发展,加快计量数据采集汇交、建模分析、质量评估等共性技术的研发和应用,提升计量数据安全保障能力,推动计量数字化转型。在质谱、热物性、X射线电子能谱、先进材料、人工智能等领域建立国家标准参考数据中心,探索构建标准参考数据库。
  • 参考最新环境保护标准(HJ957 -2018,HJ 958-2018)测定环境水中钴
    钴(Co)在电池材料、超硬合金、磁性材料、镀金等领域有着广泛的应用。它是维生素B12的组成成分,也是人体所必需的微量元素之一,但过量摄取会对身体产生危害。通过原子吸收分光光度计可以测量Co元素含量,但环境水中仅含有微量的Co,水中的其他物质如碱金属、碱土金属会产生背景吸收,影响测定数据的准确性。偏振塞曼校正法可不受共存物质的背景吸收干涉影响,高精度分析样品。目前,中国地表水环境标准(GB3838-2002)规定钴的标准浓度应在1.0mg/L,地下水环境标准(GB/T-14848-93)规定钴浓度应不高于0.005mg/L。 中国环境保护标准在19年初实施了新的水质钴的测定方法:水质钴的测定 火焰原子吸收分光光度法(HJ957 -2018)水质钴的测定 石墨炉原子吸收分光光度法(HJ 958-2018)下面让我们根据此方法进行环境水中钴分析 ■ 以下为HJ 958-2018记载的前处理方法。■ 环境水中钴分析(火焰法)向50mL样品添加0.6mL的硝酸锶(Sr 20 g/L)基体改进剂,作为待测样品备用。参考文献:中国国家环境保护标准HJ 957-2018. 水质钴的测定. 火焰原子吸收分光光度法. Water quality Determination of cobalt. Flame atomic absorption spectrometry.?HJ 957-2018(火焰法):使用日立偏振塞曼原子吸收分光光度计ZA3000可准确测定HJ 957-2018中规定的钴的测定下限值0.2 mg/L;加标回收率在HJ 957-2018规定的85%~115%的范围内,测定数据准确。 ■ 环境水中钴分析(石墨炉法)加入1000 mg/L的硝酸镁作为基体改进剂。参考文献:HJ 958-2018 . 水质钴的测定.石墨炉原子吸收分光光度法. Water quality Determination of cobalt. Graphite furnace atomic absorption spectrometry.HJ 958-2018(石墨炉法):使用日立偏振塞曼原子吸收分光光度计ZA3000可准确测定地下水环境标准(GB/T-14848-93)规定的钴标准值5μg/L;加标回收率在HJ 958-2018规定的80%~120%的范围内,测定数据准确。 日立偏振塞曼原子吸收分光光度计ZA3000,可完全满足中国国家环境保护标准规定的钴测定方法,能够快速准确的测出环境水中钴含量。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 参考指南 | 胺类化合物全流程分析方案
    胺类化合物 众所周知,胺类化合物是医药、环境、食品以及化工等领域极其常见的目标分析物。这类碱性物质的高活性也常常使气相分析面临重重困难,并夹杂着如拖尾,吸附,响应低等一系列问题。为此,安捷伦技术团队针对以上问题痛点研究出一整套消耗品方案,能有效解决或改善以上问题,从而帮助您更好地应对胺类分析挑战。 这本快速参考指南将帮助您,选择适用的应用色谱柱及工作流中所涉及的相关耗材。 应对胺类分析的安捷伦 J&W 气相色谱柱组合用于胺类分析的 Agilent J&W 气相色谱柱经过开发和测试,4 款色谱柱组合提供了从非极性到极性的宽固定相极性选择范围,满足不同样品的分离优化。无论是简单样品还是复杂样品,我们全面的创新型色谱柱系列产品都可助您实现快速、准确且可重现的分离。 胺类化合物方法开发色谱柱优选组合如果您的实验室工作涉及胺类化合物的方法开发,您可选择以上推荐的四款不同极性色谱柱的组合。这四款气相色谱柱的固定相皆有所不同,可提供不同的分离选择性,且都具有低流失和稳定耐用的特点,是理想的胺类化合物分析的色谱柱优选组合。 选择合适您样品的色谱柱对于胺分析检测,除气相色谱柱需要惰性处理外,如果整个流路不具备适当的惰性,使用气相色谱分析胺类化合物依然具有一定难度。在对活性化合物进行分析时,重要的是所选的所有部件能够在流路中提供尽可能高的惰性,以确保峰形尖锐、对称,并保持高灵敏度。 使用安捷伦惰性流路备件分析胺类化合物本订购指南提供了该分析所需产品的指导。单击“我的列表”标题将打开安捷伦在线商城* 中可编辑的预填充购物车,以便您轻松挑选所需的产品。 用于小分子挥发性胺类化合物的进样口衬管 用于分子量较大的胺类化合物,盐酸盐形式或中和后的碱性物质 安捷伦超高惰性进样口备件 安捷伦气体管理 安捷伦高品质样品瓶及瓶盖 来源:安捷伦视界
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制