当前位置: 仪器信息网 > 行业主题 > >

小鼠垂体瘤细胞

仪器信息网小鼠垂体瘤细胞专题为您提供2024年最新小鼠垂体瘤细胞价格报价、厂家品牌的相关信息, 包括小鼠垂体瘤细胞参数、型号等,不管是国产,还是进口品牌的小鼠垂体瘤细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠垂体瘤细胞相关的耗材配件、试剂标物,还有小鼠垂体瘤细胞相关的最新资讯、资料,以及小鼠垂体瘤细胞相关的解决方案。

小鼠垂体瘤细胞相关的资讯

  • Neuro Oncol . | 汤富酬教授/文路副研究员与合作者揭示垂体瘤转录组特征
    垂体是最重要最复杂的内分泌腺体之一,主要由五种激素细胞组成,包括生长激素细胞、催乳素细胞、促甲状腺素细胞、促肾上腺皮质激素细胞和促性腺激素细胞,在生长发育、代谢调节、生殖以及应激等生理过程中发挥重要作用。每种激素细胞都有可能异常增殖形成肿瘤,即垂体神经内分泌肿瘤(Pituitary neuroendocrine tumors,PitNETs),又称垂体腺瘤或垂体瘤,是第二大常见的颅内肿瘤,大约占颅内肿瘤的10%~16%。基因组学研究发现40~60%的生长激素瘤有GNAS基因突变,40~60%促肾上腺皮质激素瘤有USP8突变,但60%垂体瘤未发现基因突变,病因不明。垂体瘤细胞中哪些基因的表达水平发生了异常变化?传统转录组学未能有效解决这个问题。这是由于正常垂体组织中,五种类型的激素细胞互相混杂,传统的群体细胞转录组学所检测到的实际是“平均激素细胞”。由于缺乏正常对照信息,群体细胞转录组学难以准确鉴定垂体瘤细胞中发生的基因表达变化。另外,多激素垂体瘤和侵袭性垂体瘤是否存在瘤内细胞异质性,也是尚未研究清楚的问题。北京大学生物医学前沿创新中心汤富酬教授和文路副研究员,与北京天坛医院神经外科周大彪主任合作,于2021年4月28日在Neuro-Oncology杂志在线发表题为《 Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors》的研究论文。该研究对21个病人的23例垂体瘤组织样本进行了单细胞转录组测序(2679个细胞),并对其中5例组织进行了单细胞多组学测序(238个细胞),为深入理解上述问题提供了新的视角(图1)。该研究论文的主要发现包括:图1 垂体瘤病人临床信息1)通过单细胞转录组的无监督式聚类可区分所有垂体瘤亚型,与临床基于免疫组织化学的分类结果一致(图2)。单细胞转录组测序还提供了一些新的有趣信息。例如,一例垂体瘤(P11)同时表达促肾上腺皮质激素细胞关键转录因子T-PIT(TBX19)与促性腺激素细胞关键转录因子SF-1(NR5A1),其细胞在线性降维空间中位于两个谱系之间,显示其处于一种中间状态。另一例垂体瘤(P14)被临床诊断为零细胞垂体瘤,与促性腺激素瘤聚类,提示其细胞来源可能是促性腺激素细胞。图2 所有肿瘤细胞及重要转录因子的表达在PCA图中的映射2)我们分离鉴定出了三种正常垂体内分泌细胞:生长激素细胞、催乳素细胞和促性腺激素细胞,首次获得这些成体垂体激素细胞类型的单细胞转录组图谱。与相应肿瘤细胞类型比较,我们全面鉴定了生长激素垂体瘤、促性腺激素垂体瘤和催乳素垂体瘤的肿瘤差异表达基因谱(图3A-3D)。生长激素瘤的差异表达基因以上调为主(76.1%, 283/372),而促性腺激素瘤的以下调为主(84.3%, 542/643)。生长激素瘤上调的基因中富集分泌相关基因如SCG3,可能与该肿瘤类型的功能亢进特征有关。促性腺激素瘤下调基因中包括LHB和GNRHR等激素相关基因,与该肿瘤类型往往功能沉默有关;下调基因中还富集细胞周期负向调控基因如CDKN2A,表明该肿瘤类型发生了细胞增殖失调。值得指出,研究鉴定出了新的垂体瘤相关基因,如AMIGO2,在生长激素瘤与促性腺激素瘤中表达显著增高(图3E)。图3 A-D,垂体瘤肿瘤细胞和相对应的正常细胞的差异表达基因(A-C)和GO分析(D)。E,垂体瘤肿瘤相关基因在所有细胞中的表达水平3)通过单细胞转录组分析,证实多激素垂体瘤中,多种激素相关基因及转录因子在单个细胞中共表达,未发现瘤内异质性(图4)。在侵袭性瘤中,也未发现明显的瘤内异质性。图4 PIT-1谱系垂体瘤和多激素垂体瘤中单细胞水平的激素相关基因表达4)单细胞多组学分析表明,即使是基因组拷贝数紊乱的垂体瘤,单细胞层次也具有基本一致的拷贝数变异模式,表明其为单克隆起源(图5A)。但我们也鉴定到了少量的瘤内基因组拷贝数变异异质性(图5B)。图5 P20(A)和P21(B)垂体瘤患者肿瘤细胞中的基因组拷贝数变异(CNV)情况总之,本研究首次从单细胞水平上对垂体瘤转录组和基因组进行了较全面分析,解析了瘤间与瘤内异质性,鉴定了新的垂体瘤相关基因,为阐释垂体瘤发病机理与发现治疗靶点提供了新的线索。北京大学生物医学前沿创新中心崔月利博士、博士生蒋振寰、博士后张书博士和北京天坛医院博士生李超为本文共同第一作者。北京大学未来基因诊断高精尖创新中心、生物医学前沿创新中心、生命科学学院汤富酬教授和文路副研究员,与北京天坛医院神经外科周大彪主任为该论文的共同通讯作者。该研究项目得到了国家自然科学基金委和北京大学未来基因诊断高精尖创新中心的支持。论文链接:https://academic.oup.com/neuro-oncology/advance-article/doi/10.1093/neuonc/noab102/6256973
  • 进击的流式细胞术,浅谈百花齐放的FCM新技术与应用
    进击的流式细胞术,浅谈百花齐放的FCM新技术与应用2021年08月26日,为期3天的第三届流式细胞技术网络大会(iCFCM 2021)圆满结束。本届大会由仪器信息网主办,开创性设置海外澳洲分会场,首次由中国分析测试协会标记免疫学会分会指导,开设临床应用分会场。本届网络会议吸引来自海内外高校科研单位、生物技术企业、科学仪器技术企业在内百余家单位,远超2000人参加。流式细胞技术(Flow Cytometry, FCM)是一种可以快速、准确、客观地同时检测单个微粒(通常是细胞)的多项特性,并加以定量的技术,具有速度快、精度高、准确性好等优点。流式细胞分析仪正是采用这一技术,普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础医学研究领域,同时也可以应用于外周血内皮细胞测定、调节性T细胞等尖端领域。流式细胞仪作为最重要的细胞研究工具之一,在生命科学基础研究、临床诊断等领域有重要应用。随着诊断、制药等应用级市场对流式技术的需求日益增加,流式技术得到极大普及。近年来处于上游的研发制造创新活力高涨,随着光谱流式、质谱流式等新技术的推广,对流式的应用越来越深入、多元,应用场景还在不断丰富和扩大。本届大会上有哪些新的创新技术和应用领域呢?就技术发展而言,质谱流式和光谱流式都扮演着重要的角色。技术发展篇质谱流式技术质谱流式是近年来发展起来的细胞表征新技术,相比于传统流式细胞术,质谱流式对细胞的分类更精准,不仅可发现以往被忽略的但可能在疾病发生发展中扮演重要角色的细胞亚群,还可以细胞亚群间组合的方式提供全新的观测指标。恶性肿瘤伴随着可逆的全身系统性免疫改变,运用质谱流式技术可能为恶性肿瘤等疾病的早筛早诊提供新的可能。质谱流式技术将荧光染料替换为金属标记,能够获得单个细胞的多种参数,并且克服了传统流式荧光发射基团光谱重叠的问题。质谱流式检测通道理论上可高达百余个,可以同步对更多的细胞特征进行分析。与荧光流式相比,质谱流式技术能够同时检测更多目标蛋白,打破了荧光配色的局限,避免了复杂的补偿操作。更重要的是,从2009年质谱流式正式推出以来,质谱流式(mass cytometry)在肿瘤、免疫、干细胞、代谢等研究领域的影响不断扩大。在这场肆虐全球的新冠疫情中,质谱流式在通道数量、标签稳定性等方面的优势,也使其成为研究病毒感染机制的重要手段。在应用不断扩展的同时,质谱流式技术本身也在不断迭代发展。本届大会中,清华大学张四纯教授、浙江大学盛剑鹏研究员以及浙江大学医学院附属第一医院章琦副主任医师均在质谱流式技术的应用方面深入研究,主要涉及单细胞分析以及肿瘤早期诊断应用。质谱流式典型的技术企业有:富鲁达(Fluidigm)、上海宸安生物光谱流式随着免疫学和诊断医学领域的研究不断深入,如今的流式实验仍然聚焦于同时检测更多颜色,很多研究已经对30色乃至40色以上的多色方案提出了需求。光谱流式细胞术是一种基于常规流式细胞术的技术,其中光谱仪和多通道检测器(通常为CCD)代替了常规系统中的传统反射镜,滤光器和光电倍增管(PMT)。流式细胞仪可以快速进行多参数收集并分析单个细胞或颗粒上的数据。将多色的光谱分析与强大的分选功能相结合,可以更好地帮助科学家开展单细胞层面的基因组学及功能研究。此外,辅以智能化的操作模块,可节省大量的仪器准备时间,并实现高速、高纯度、高活性的细胞分选。可以说,光谱流式代表了近几年新的仪器端技术发展趋势,大幅度增加了流式检测光学信息含量,由简单的信号强度分析扩展到光谱特征分析。该技术能够有效降低试剂选择、试验方案、荧光补偿等复杂度问题,代表了流式技术进入了一个新时代。2011年,索尼获得了普渡大学(Purdue University)的光谱技术专利许可,并致力于开发光谱流式细胞仪。目前典型的光谱流式技术企业有:SONY、Cytek、还有年初收购Bigfoot的赛默飞。流式细胞分选技术流式细胞分选技术是将研究者感兴趣的目标细胞在流式分析鉴定的基础上,重新回收用于后续研究的精确的细胞分选技术,在生物学与医学领域的诸多研究方向如免疫学、肿瘤学、细胞生物学、神经生物学和病原微生物学等中均有重要应用,是现代生命科学、生物医药等广泛的研究领域中不可或缺的实验技术。实现最优良的分选实验,需要在包括仪器、样本、分选操作等大量细节的优化,并且依赖于对分选原理的理解。因此,详细掌握样品制备、仪器准备、上样控制、圈门分选等各个环节的优化操作对于流式分选至关重要。典型的流式分选技术企业:BD、Bio-Rad、Cytek、美天旎等应用领域篇就应用领域而言,流式细胞术已成为分子生物学、医学、免疫学、病理学、植物生物学、海洋生物学等多个研究领域对荧光信号进行高速、灵敏分析的有效方法。肿瘤免疫&临床应用 流式细胞术在临床转化中的应用意义重大,目前,流式细胞术已实现了单细胞分选及测序技术。随着该技术了解的愈发深入,流式细胞术相关的研究论文发表数量逐年增多。据不完全统计,目前借助流式细胞技术平台或相关主题,每年发表的科研论文数量超30万篇。免疫疗法由于其特异性靶向且高治愈率的优势特点,正在不断革新癌症治疗的临床方案和疗效,且愈来愈要求个性化精准治疗。从基础医学到临床诊断,稀有细胞得到越来越多的关注,如循环肿瘤细胞(CTCs),抗原特异性T细胞外泌体等数量稀少,但对恶性肿瘤进行早期诊断、预后评估,以及获得肿瘤耐药性评估等重要信息。流式细胞术除在临床转化中的应用外,在血液病诊疗中的应用也十分广泛。流式细胞技术可应用于血液系统恶性疾病免疫表型及MRD的判断,借助免疫表型判断白血病的不同疾病时期。流式细胞术不仅可用于CAR-T治疗患者的监测,同时在各种良、恶性疾病的诊断、治疗,感染的免疫指标评价,移植物抗宿主病、CMV、EBV或者其他感染等移植后并发症的诊断、评价,噬血综合征等特殊免疫状态的监测与防治中,都起到极为重要的作用。自身免疫病中自身抗体非常复杂,一种自身免疫病可能有多种自身抗体,一种自身抗体也可能见于多种自身免疫病。多种自身抗体的联合检测,对疾病的辅助诊断、鉴别诊断、疗效监测、预后评估等具有重要的价值。近年来,随着技术的进步,越来越多自身免疫病特异性或相关性自身抗体在临床得到推广使用,临床也对实验室自身抗体检测菜单、检测效率、能否给出定量结果等提出更高的需求。流式荧光技术因其可多项联检、高效、定量等优势,能很好地助力自身抗体检测,助力疾病诊疗,技术进步,恰逢其时。此外,流式荧光技术在HPV、细胞因子、肿瘤标志物以及Torch检测领域均表现出重要的应用。北京大学第一医院闫存玲主任、中国医学科学院肿瘤医院陈汶教授、青岛市海慈医疗集团(青岛市中医医院)宗金宝主任、上海市华东医院赵虎主任、浙江省儿童医院尚世强主任等重磅专家为大家呈现精彩的报告分享。(敬请观看流式大会的精彩报告视频回放https://www.instrument.com.cn/webinar/video/collection/10897)。外囊泡/纳微医药应用纳微米颗粒、外泌体以及近红外材料在生物示踪以及生物医药领域的研究越来越受关注。其中细胞外囊泡是肿瘤液体活检的重要生物标志物。由于纳米尺寸的细胞外囊泡超出了流式细胞术的检测限,通过将囊泡吸附在微球上并借助抗体的特异性识别,实现了对细胞外囊泡表面特定蛋白分子信息的放大,从而可通过流式细胞术对细胞外囊泡的检测和分析。实现了乳腺癌、脑胶质瘤、垂体瘤等的肿瘤进展评估、预后评价等临床应用。流式作为一种重要定量手段,有助于最大程度实现对特定类微纳米颗粒的精准设计,可应用于药物载体和疫苗佐剂研究。基于流式技术,可以开展颗粒/细胞表征、有效性/安全性评价工作,为该领域相关研究提供参考。重要的是,成像流式作为独特的流式技术,因其超高灵敏度和可视化的流式数据,突破了长期以来存在于外泌体、纳米材料等微颗粒检测中的瓶颈。通过提供明场和多通道的荧光图像,清晰分辨每个微颗粒的表征,溯源其与亲源细胞间的关系,以及与靶向细胞间的相互作用,在微颗粒研究、体外诊断、药物开发等领域有着独特的、不可或缺的应用。动、植物/微生物检测应用围绕水环境保护、渔业可持续发展、微藻生物能源方面的重大战略需求,流式细胞技术在鱼类遗传育种学、藻类生物学、淡水生态学、水环境工程学和保护生物学的应用具有一定的优势。流式技术在除人、小鼠以外其他多种模式生物中具备组织特异性的流式检测及分选应用也十分广泛。病毒是颗粒很小、以纳米为测量单位的非细胞型微生物。它在疾病预防、传染病爆发等方面扮演重要角色。对病毒生物学、病毒与宿主相互作用、免疫应答机制等研究,有利于药物与疫苗的研发,建立快速有效的临床诊断和治疗体系。流式细胞术在病毒颗粒检测、疫苗效价评估、免疫细胞亚群及免疫反应分析等流程中是必不可少的方法之一。此外,仪器的质控是流式课题必须和不可或缺的步骤。流式仪每天都需要通过质控以确保数据的准确性。熟悉日常流式仪器质控的主要参数,掌握如何进行和解读质控,仪器性能跟踪和故障排除。长期流式课题的实验间质控的必须性和方法,并且掌握如何通过质控获得可重复性的结果都非常重要。
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 蛋白质组学的前世今生与未来: 蛋白质存在形式 -- 记中南大学湘雅医院詹显全教授
    p style=" text-align: justify line-height: 1.75em "   詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会(EPMA)的会士和国家代表、美国肿瘤学会(ASCO会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文130 余篇,主编国际学术专著3 本,参编国际学术专著16 本,获得美国发明专利2 个。受邀在中科院1 区影响因子9.068 MassSpectrometry Reviews 和中科院2 区影响因子3.65 Frontiers in Endocrinology 的国际期刊上客座主编了3 个专刊。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本篇文章仪器信息网获得授权转载,来源中国科技成果杂志。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 深入剖析蛋白质组学技术最新进展与应用 /strong /span /p p style=" text-align: justify line-height: 1.75em "   詹显全:人类结构基因组测序接近尾声,人们就从结构基因组学研究转向功能基因组学研究,即对转录组和蛋白质组进行研究。1995 年正式提出了”蛋白质组”和”蛋白质组学”的概念,距今已有25 年历史了。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 蛋白质组学的主要技术包括蛋白质组的分离技术、鉴定技术和蛋白质组信息学技术。 span style=" text-indent: 2em " 蛋白质组的分离技术主要有双向凝胶电泳(2DE)和多维液相色谱(2DLC)。蛋白质组的鉴定技术主要是基于质谱(MS)的技术,主要分为肽质指纹(PMF)和串联质谱(MS/MS)分析技术,其用于蛋白质大分子分析的两大离子源主要有MALDI 和ESI。质谱技术发展很快,主要朝向高灵敏度、高通量和高精度方向发展。 /span /p p style=" text-align: justify line-height: 1.75em "   蛋白质组信息学技术主要是用来构建蛋白质相互用网络的相关技术。蛋白质组的分离技术和质谱技术的不同联合就形成了各种类型的蛋白质组学分析技术:如2DE-MS和2DLC-MS。2DE-MS 又有2DE-MALDI-PMF 和2DE-ESI-LC-MS/MS, 该技术在蛋白质组学研究的头10-15 年是其主要技术,然而常规概念认为2DE 的通量不高,即一个2D 胶点中一般仅含有1 ~ 2 个蛋白质,通常一次实验其通量仅能鉴定几十到一千个蛋白质,这样其在蛋白质组学中的地位逐渐被淡化。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 2DLC-MS 主要有iTRAQ or TMT-based SCX-LC-MS/MS and labelfree LC-LC-MS/MS, 这就是人们通常说的“Bottomup”蛋白质组学,该技术在最近10 ~ 15 年在蛋白质组学中起着核心技术的作用,因为其通量明显增加,一次实验其通量可达到几千到一万的蛋白质能被鉴定,但该法鉴定的结果是一个protein group, 实质上鉴定的是编码蛋白质的基因, 而并没有鉴定到真正意义上的蛋白质,即蛋白质存在形式(Proteoforms 或Protein species)。蛋白质存在形式(Proteoforms)是蛋白质组的基本单元。人类基因大约2 万个,人类转录本至少10 万个,每个转录本指导核糖体按三联密码子决定一个氨基酸残基来合成氨基酸序列,刚合成出来的蛋白质氨基酸序列是没有功能的,它必须到达其指定的位置如胞内、胞外,和不同的亚细胞器等,形成特定的三位空间结构,并与其周围的相关分子相互作用,形成一个复合物(complex)才能发挥其功能作用。从核糖体刚合成出来到其指定的位置过程中有很多的蛋白质翻译后修饰(PTMs 据估计人体有400 ~ 600 种PTMs)。我们最近对蛋白质存在形式的概念给出了最新最完整的定义:蛋白质的氨基酸序列+ 翻译后修饰+ 空间构型+ 辅助因子+ 结合伴侣分子+ 空间位置+ 特定的功能。而蛋白质的概念被定义为:由同一个基因编码的所有蛋白质存在形式的集合体。这样,人类蛋白质组中的蛋白质存在形式(Proteoforms)至少有100 万或甚至达10 亿 (图1)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202008/uepic/1d18fad3-b010-4ea5-a812-432853ad4ec6.jpg" title=" 1111111.png" alt=" 1111111.png" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图1 :Proteoforms 的概念及形成模式 (Zhan et al,Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   如此庞大数量的Proteoforms/Protein species, 如何对其进行大规模的探测、鉴定和定量,是一个至关重要的事情。目前关于Proteoforms 的研究有两套策略一是“Top-down”MS 技术, 二是“Top-down” 和“Bottom-up”相结合的技术即2DE-LC/MS 技术(图2)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/202008/uepic/94f48c94-fd0b-4959-90fb-dd399cebf074.jpg" title=" 2.png" alt=" 2.png" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em "   图2 :Proteoforms 研究技术比较(Zhan et al., Med One, 2018 Zhan et al., Proteomes, 2019) /p p style=" text-align: justify line-height: 1.75em "   “Top-down”MS 技术能探测、鉴定和定量Proteoforms,获得蛋白质的氨基酸序列和PTMs 信息,然而该技术的通量较低,目前最大通量鉴定到5700 个Proteoforms, 对应到860 蛋白质。 /p p style=" text-align: justify line-height: 1.75em "   最近,詹显全教授团队发现2DE-LC/MS 技术是一超高通量的技术平台,在探测、鉴定和定量Proteoforms方面, 可以鉴定达几十万至上100 万的Proteoforms。随着质谱灵敏度的显著提高,自2015 年以来,詹显全教授团队就发现每个2D 胶点包含了平均至少50 个甚至达几百个Proteoforms,并且大多数是低丰度的 并在近1 ~ 2 年来发表了相关论文来全面阐述2DE-LC/MS 的新理念和实践,完全打破了40 多年来人们对双向电泳的传统认识 (即一个2D 胶点中一般仅含有1 ~ 2 蛋白质),为大规模的Proteoforms 研究提供了技术基础。Proteoforms/Protein species 概念的发展极大的丰富了蛋白质组的内涵,是蛋白质组学研究的更高层次,是国际科学发展的前沿,必将影响着整个生命科学和医学科学的研究和实践,有助于发现可靠而有效的疾病标志物,用于深度理解疾病分子机制和决定药物靶点,或者用于有效的预测、诊断、预后评估。另外,蛋白质组是表型组的重要成分,是基因组功能的最终执行者,是基因组和转录组研究所不能替代的,要实现真正的个性化医学和精准医学,蛋白质组学研究是不能绕过去的。 /p p style=" text-align: center line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 基于整合组学发现疾病标志物才是精准发展之重 /strong /span /p p style=" text-align: justify line-height: 1.75em "   1. 您一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,请谈谈在这方面的最新的研究成果,以及过程中的主要挑战和解决方案 /p p style=" text-align: justify line-height: 1.75em "   詹显全: 垂体瘤是颅内常见肿瘤,绝大多数是良性的,只有少数具有侵袭性和恶性,并能引起激素分泌紊乱和颅内压迫症状,出现严重的临床症状,危害人体健康。临床上分为功能性垂体瘤和非功能性垂体瘤,并且非功能性垂体瘤不表现血中激素水平增加,不易早期诊断,经常是当肿瘤体积增加到压迫周围组织器官产生压迫综合征时才被诊断,这时已经是中晚期了,且其分子 /p p style=" text-align: justify line-height: 1.75em "   机制并不清楚,缺乏早期诊断标志物和药物治疗靶标。因此,非功能性垂体瘤被选为主要研究对象。虽然垂体瘤是在颅内,但我们认为垂体瘤是一种多病因、多过程、多结果的全身性的慢性疾病,并且还具有肿瘤的异质性 它涉及到一系列的分子改变,包括发生在基因组、转录组、蛋白质组、代谢组和相互作用组水平上的改变,而这些不同水平改变的分子和信号通路又不是孤零零的起作用,而是相互间具有千丝万缕的联系。因此,我们很难用一种单一因素来解决其预测、预防、诊断、治疗和预后评估 而必须从单因素模式转向多参数系统思维模式。垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统性给其“同病同治”提出了严峻挑战,同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件。多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。因此,我们认为多参数系统策略观和多组学是进行垂体瘤个性化医学和精准医学的研究和实践的重要理念和技术方案。 /p p style=" text-align: justify line-height: 1.75em "   我们从2001 开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008 年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。经过过去近20 年未间断的研究,我们在垂体瘤的蛋白质组学、翻译后修饰组学、多组学、分子网络和系统生物学研究方面在国际上处于了主导地位。 /p p style=" text-align: justify line-height: 1.75em "   在我们研究过程中,我深深体会到一个重大思转变就是从以前的单参数模式转向了多参数系统思维模式,这符合肿瘤的真实情况。另外,就是多组学技术促进了这一模式的转变,并是其主要的解决方案。 /p p style=" text-align: justify line-height: 1.75em "   2. 从您的研究方向及重点出发,您认为多组学研究在精准医学中接下来的研究应当侧重于哪些方面,以及如何才能比较好的实现从研究到临床的转化落地? /p p style=" text-align: justify line-height: 1.75em "   詹显全:我的研究对象是肿瘤(垂体瘤、卵巢癌、肺癌、胶质瘤),研究理念是肿瘤的多参数系统策略观,技术手段是多组学和系统生物学,研究的目标是要解决肿瘤的预测预防个体化医学(PPPM)和精准医学(PM)。 /p p style=" text-align: justify line-height: 1.75em "   我们认为多组学中的不同组学对PPPM/PM 的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM 应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、与周围分子相互作用、及信号通路网络问题。代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。要真正实现PPPM 和PM,蛋白质组和代谢组的贡献是基因组所不能替代的是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms 的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系 一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify line-height: 1.75em "   3. 作为EPMA(欧洲预测预防个体化医学协会)的中国代表,想请您分享下国际上对于组学研究在精准医疗中的应用现状、趋势以及发展规划 /p p style=" text-align: justify line-height: 1.75em "   詹显全:欧洲预测预防个体化医学协会(EPMA)是国际个体化医学领域领头的学术协会,由来自全球55 个国家和地区的专家学者组成,其创办的官方杂志EPMA Journal( 中科院2 区,ESI IF5.661) 涵盖了24 个专题内容,较全面地反映了预测预防个体化医学(PPPM)和精准医学(PM)的研究、实践与最新动态,还涉及到PPPM 和PM 的政策、伦理、卫生经济和社会保障等许多方面,为PPPM 和PM 的科研、实践提供了一个很好的交流平台。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 我本人作为EPMA 的中方代表(National Representative of EPMA in China) 和其官方杂志EPMA Journal 的副主编,参与了其经历的重要活动。我从2008 开始起在EPMA 中主要负责多组学和创新技术方面,在EPMA 白皮书中的“肿瘤预测预防个体化医学的多参数系统策略观”这部分最早就是我写的,之后我们写了一系列文章来论述基于多组学的多参数系统策略的研究和实践。因此,在EPMA,我们的基于多组学的多参数系统策略观还是比较早的,近五六年来多组学研究在EPMA 圈内(55 个国家和地区)发展得很快,已经深入到PPPM 的各个领域。 /p p style=" text-align: justify line-height: 1.75em "   另外,我认为,精准医学在理念上没错,严格意义上的精准医学是个理想化的概念,人们只能无限去逐步接近它。现阶段搞精准医学还是要回归到人类健康的保护过程,即预测、预防、诊断、治疗和预后评估,这里应该是针对个人来说而不是针对群体,严格说来应该是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。对于人类健康保护过程来说,预测、预防还是上策,其次就是早诊断、早治疗。多组学研究已渗入到人类健康保护过程的每个环节,主要用来寻找基于多组学的生物标志物,当然这里的生物标志物应泛指前面说的两类:一类是解决疾病机制和治疗靶点的标志物,一类是解决预测、诊断、预后评估的标志物。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 因此,基于多组学的PPPM/PM 的研究和实践一定是今后发展的一个长远趋势。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 802px " src=" https://img1.17img.cn/17img/images/202008/uepic/581ff7cf-5c3e-4fd6-8f5f-805989791ee5.jpg" title=" 詹.jpg" alt=" 詹.jpg" width=" 600" height=" 802" border=" 0" vspace=" 0" / /p p br/ /p
  • Science|发现肿瘤免疫治疗新潜在靶点
    8月4日,中国科学技术大学生命科学与医学部周荣斌、江维教授团队与转化医学与创新药物国家重点实验室唐任宏团队合作,在Science以“First Release”的形式在线发表题为“Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression”的“Research Article”研究论文,报道了下丘脑-垂体轴及其产生的激素α-MSH在介导肿瘤诱导的髓系造血和免疫抑制中的关键作用。肿瘤诱导的免疫抑制是其逃避免疫监视和攻击的重要原因。靶向PD-1和CTLA-4等靶点的免疫检查点治疗(ICT)策略在一定程度上能够逆转肿瘤免疫抑制并取得了较好的治疗效果,但临床响应性还比较低,需要进一步揭示肿瘤免疫抑制机制并寻找新的免疫治疗靶点和策略。肿瘤患者经常遭受抑郁、恐惧、焦虑等精神或情感应激,且流行病学研究发现长期抑郁、压力会加速肿瘤的发展并削弱肿瘤免疫治疗的效果,表明神经系统及其介导的应激反应在肿瘤生长和免疫调控中发挥重要作用。下丘脑-垂体(HP)轴是神经内分泌系统的重要组成部分,也是机体感应应激反应的重要调节中枢。过去的研究发现HP可通过产生激素如促肾上腺皮质激素、促甲状腺激素和催乳素调节免疫反应。此外,在肿瘤患者中HP产生的雌激素、孕激素和糖皮质激素等一些下游激素或效应物显著升高,提示神经内分泌系统和HP轴可能调节肿瘤免疫,但是HP轴在肿瘤免疫中的作用及免疫系统感应肿瘤诱导的神经应激的机制尚不清楚。在该项研究中,研究人员通过构建不同的肿瘤模型(ICT抵抗的LLC和B16F10-GMCSF肿瘤以及敏感的MC38和MCA205肿瘤)来研究下丘脑-垂体轴在肿瘤免疫中的作用,发现荷瘤小鼠血清中α-MSH浓度显著升高,但垂体产生的其他激素如内啡肽、促甲状腺激素、催乳素、卵泡刺激素、黄体生成素等无显著差异。与此同时,研究人员发现荷瘤小鼠下丘脑室旁核(PVH)神经元被激活,并且垂体中叶负责编码α-MSH合成的蛋白POMC的表达也显著增强,表明肿瘤可促进下丘脑活化和垂体α-MSH产生。为了进一步研究POMC及其产物α-MSH在肿瘤免疫中的作用,研究人员利用立体定位注射腺病毒载体的的方式敲低垂体Pomc基因的表达,随后进行荷瘤实验。结果显示敲低垂体Pomc的表达能够显著抑制不同皮下肿瘤的生长。同时,在B16F10肺转移模型和LLC原位肿瘤模型中,敲低垂体Pomc的表达也能够显著抑制肺部转移灶数目和肺部结节数量。进一步研究人员发现敲低垂体Pomc表达能够增强抗肿瘤免疫能力,同时抑制髓系造血和肿瘤相关髓系细胞(MDSCs和TAMs等)的聚集。这些结果表明垂体来源的α-MSH通过诱导髓系造血和免疫抑制促进肿瘤生长。为了探究α-MSH通过何种受体参与调控肿瘤诱导的髓系造血和免疫抑制,研究人员检测了α-MSH的受体的表达情况,发现MC5R在骨髓造血前体细胞高表达。通过构建Mc5r全身或条件型缺陷小鼠进行荷瘤实验,研究人员发现Mc5r缺陷可以显著地增强抗肿瘤免疫并抑制不同类型肿瘤的发生发展。此外,Mc5r缺陷可以抑制肿瘤诱导的髓系造血。更为重要的是,不管是ICT敏感还是抵抗的肿瘤模型中,利用多肽抑制剂阻断MC5R均可抑制肿瘤生长,且MC5R多肽抑制剂与抗PD-1抗体联合使用可提高ICT的效率。最后,研究人员探讨了上述研究的临床相关性,发现非小细胞肺癌(NSCLC)和恶性头颈癌(HNC)患者血清中α-MSH浓度显著升高并与外周血中的MDSCs比例呈正相关。论文链接:10.1126/science.abj2674
  • 单细胞测序前的3大关键问题,您都处理对了吗?
    在无数实战经验中,制备高质量的单细胞悬液被公认为重中之重。实验过程中,如单细胞活性不高,细胞数过低,以及污染和杂质等问题,都会影响到有效单细胞数的产出、单细胞核酸的质量等,最终得到的单细胞数据分析及统计结果不可信。那么,组织如何解离?需要选什么酶?还需要注意什么?科技君根据相关权-威文献整理了单细胞悬液制备的方法和小贴士,让我们一起来解决单细胞研究方案中的拦路虎。实体组织解离关键——酶的合理选择 实体组织解离两大步骤,包含机械分离和酶消化处理。首先,组织需要通过物理切割或刀片切碎,然后通过酶消化来分离细胞。特定的组织消化酶及消化时间不同,相关建议可参考如下表格:人和小鼠的部分组织类型——肝脏、肺、皮肤、脾脏、消化道、胰腺、肾脏、视网膜等[1]。 表1 人鼠各类型组织酶解单细胞悬液方法总结[1]除此之外,常用酶的类型还包括:Accutase™ 、弹性蛋白酶和胶原酶,以及商业酶混合物,如 TrypLE Express 和 Liberase Blendzyme 等[1],另外,科技君也总结已发表文献中常见实体组织解离所采用的酶,供大家参考,步骤详见参考文献:小鼠心脏肌肉组织:Collagenase IV and Dispase II[2]上皮组织:dispase(Corning) -商业化试剂[3]小鼠胚胎组织:TrypLE Express[4]乳-腺癌及其癌旁组织: Liberase TL (Sigma) -商业化试剂[5]小鼠主动脉血管:Collagenase type II (C6885, Sigma Aldrich) 和 Elastase (LS002292, Worthington Biochemistry)[6]小鼠脑垂体:Collagenase type II, trypsin, DNase I,amphotericin B 混合[7]血液处理成关键——离心稳定操作[1]样品经过密度离心(例如使用Ficoll-Paque或Histopaque-1077技术),可以直接用于外周血单核细胞(PBMC)捕获[1]。建议不少于5mL EDTA 抗凝血,且不要使用肝素抗凝管收集血液;同时注意在合适转数离心操作后,管中内容物分为三层,上层为血浆(内含细胞碎片),中间层为分层液,底层为红细胞,在上、中层液体界面处可见到乳白色混浊的单核细胞层( 白膜层,薄)。此时,需使用无菌吸管小心沿离心管壁周缘吸取界面层单核细胞后,再加入HBSS /PBS重悬。更多注意事项请参见华大科技单细胞送样建议。单细胞悬液制备的8条建议[1]1. 建议采用无菌样品处理方式,包括使用不含核酸酶的试剂和耗材。2. 为降低对细胞的损伤,移液和离心应保持在最低程度。在一定的离心速度、时间和温度下,细胞浓度和大小直接影响制备的效率。3. 在进行细胞清洗和重悬过程中,使用具有合适大小的器皿,避免高浓度导致细胞集聚和结块,请注意选择。4. 应使用适当大小的细胞过滤器过滤悬浮液,孔径大于细胞直径,以去除团块和碎片。5. 细胞清洗和复苏,推荐使用含牛血清的磷酸盐缓冲盐水(不含钙和镁),减少细胞损失和聚集的白蛋白。6. 细胞裂解升高可导致细胞团块形成,在细胞分离过程中,DNase I可减少细胞团块形成。7. 细胞团块会导致自动细胞计数器低估单个细胞的有效浓度,因此制备后应尽快处理悬浮液,最-好在30分钟内处理。8. 总之,在单细胞制备中,尽可能减少细胞聚集物、死亡细胞、非细胞核酸和逆转录(RT)抑制剂是非常重要的。为了在最大限度地提高不同细胞类型的纯度和无偏回收率的同时,最小化这些污染物,可能需要应用优化,例如,调整洗涤步骤的数量、洗涤溶液的组成、离心条件和/或过滤器类型。
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • Neuron:最新下丘脑室旁核(PVH)催产素神经元单细胞全脑投射图谱
    前言骆清铭院士和龚辉教授带领MOST团队发明的显微光学切片断层成像系列技术(MOST/fMOST)作为介观尺度最精准的三维完整器官成像技术,已在神经机制、脑疾病、心脑血管疾病以及药理毒理等科学前沿领域研究中发挥重要作用,并带动了相关标记技术和大数据处理和解析技术的发展。 文章题目:Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns发表时间:2024年1月29日发表期刊: Neuron研究团队:北京大学生命科学学院黎胡明珠、华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者;北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者 催产素是九个氨基酸组成的环状神经肽,由大脑中的神经细胞合成、分泌。其最早被报道的作用是促进分娩和泌乳,主要由垂体分泌至外周循环的催产素完成。进一步研究发现催产素还参与维持机体代谢平衡和内稳态,并调控社交行为、学习与记忆、奖赏等复杂行为。关于催产素的研究已经持续百年,但其多样功能的结构基础仍不清楚。一个关键问题是,催产素神经元如何将催产素分泌至各个脑区及外周组织,从而实现特定功能的调控。前人研究表明大脑中产生催产素的神经元主要分布在14个脑区中,其中下丘脑室旁核(paraventricular hypothalamic nucleus, PVH)拥有数量最多且投射最为复杂的催产素神经元。因此,对于室旁核催产素神经元投射的形态解析对理解其功能多样性至关重要。室旁核包含两类传统方法定义的催产素神经元类群:大细胞催产素神经元被认为拥有复杂的轴突结构并参与中枢和外周的调控,小细胞催产素神经元主要参与中枢自主神经调控(图1)。然而群体示踪的方法无法精细区分两类神经元的投射图谱,也无法揭示每一类群中是否存在进一步的功能与形态异质性。系统性重构单神经元形态为解答这一问题提供了可能。 2024年1月29日北京大学于翔团队与合作者在 Neuron 期刊发表了题为“Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns”的研究论文,在单细胞水平揭示了下丘脑室旁核催产素神经元的完整形态。中国科学院脑科学与智能技术卓越创新中心与上海科技大学联合培养,目前就职于北京大学生科院的黎胡明珠博士为第一作者。 图1:(左)根据传统分类与群体示踪的大细胞催产素神经元(magnocellular)与小细胞催产素神经元(parvocellular)分类。(右)基于系统性重构单神经元形态提出的室旁核催产素神经元C1与C2分类 该研究首先构建了病毒载体rAAV-EF1α-DIO-YPet-p2A-mGFP,在Oxytocin-ires-Cre小鼠中实现了室旁核催产素神经元的稀疏高亮标记。通过荧光显微光学切片断层成像(fluorescence micro-optical sectioning tomography, fMOST)对稀疏标记样本进行全脑成像,用Fast Neurite Tracer进行形态追踪,重构了264个室旁核催产素神经元的完整三维形态,从而绘制了亚微米分辨率下的单神经元全脑投射图谱。进一步通过层级聚类和投射靶点相关性分析,揭示室旁核催产素神经元包含两类投射模式互斥的类群。其中,C1类包括177个神经元,轴突较短且终止于正中隆起(连接下丘脑与垂体的脑区),仅有少量分支分布于下丘脑区域,且对其他脑区几乎没有投射(图2,红色);C2类包括87个神经元,其轴突广泛投射至除正中隆起之外的两百余个脑区,涵盖新皮质、嗅区、海马结构、皮质板下层、纹状体、苍白球、丘脑、下丘脑、中脑、脑干、脑桥、延髓、小脑和纤维束(图2,绿色)。每一类群又可进一步分为投射模式不同的三个亚类。此外,还发现室旁核催产素神经元,特别是C2类神经元的树突形态复杂并可延伸至室旁核以外,而C1类神经元的树突则较简单且分布在胞体附近,两类神经元胞体位置有一定偏好,并具有独特的转录特征与分子标志。 图2:小鼠下丘脑室旁核催产素神经元根据单神经元投射图谱可分为C1类(红色)和C2类(绿色)。 C1类和C2类神经元及其亚类在投射模式上的高度异质性,表明各亚类神经元可能分别执行了催产素的不同生理功能:(1)正中隆起—垂体后叶是催产素向外周分泌的重要途径,因此C1类神经元应主要负责通过神经内分泌调控外周生理活动,同时其在下丘脑的投射分支可能参与中枢自主神经调控;(2)C2类1亚型(C2-1)神经元投射至脑干多个区域,可能参与自主神经调控、介导躯体感觉以及伤痛感觉的调控;(3)C2-2 和 C2-3亚型神经元拥有复杂且精细轴突分支,全脑广泛投射,除了涵盖C2-1亚型神经元的功能之外,很可能介导社会识别、亲社会行为、学习与记忆、奖赏行为及厌恶行为等高级脑功能;(4)脑室周围存在C2类神经元轴突分布,提示其分泌的催产素可能是脑脊液中催产素的重要来源之一;(5)对催产素神经元树突的重构发现其分支延伸至室旁核周围核团中,可能具有整合信号输入及通过催产素的树突释放调控周围脑区的作用(图3)。 图3:(A, B) 室旁核催产素神经元各亚类的单神经元投射图谱。(C) C1类与C2类神经元具有截然不同的投射模式。(D) C2类神经元轴突投射至脑室附近区域。 综上,该研究对室旁核催产素神经元进行全方位的、单细胞精度的胞体、树突和轴突形态学分析,为进一步理解催产素神经元调控复杂生理功能提供了详实的结构基础。两类神经元分子标记物的鉴定,为后续特异性的分子、环路操作和功能探索奠定了基础。该项工作从单细胞水平,更新了人们长久以来对于室旁核催产素神经元形态结构的认知,并将为后续研究提供重要的参考。 该研究工作是多团队联合攻关的成果。中科院脑科学与智能技术卓越创新中心和上海科技大学博士毕业生,现北京大学生命科学学院研究助理黎胡明珠是该论文的第一作者。华中科技大学苏州脑空间信息研究院江涛是论文的共同第一作者。北京大学于翔教授、华中科技大学李安安教授、西湖实验室边文杰研究员为论文的共同通讯作者。华中科技大学骆清铭、龚辉与李安安团队,中科院遗传与发育研究所吴青峰课题组,中科院脑科学与智能技术卓越创新中心严军与许晓鸿课题组及全脑介观神经联接图谱平台中心对该研究做出了重要贡献。 原文链接:https://www.cell.com/neuron/fulltext/S0896-6273(23)01010-3
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • 科学仪器六月沙龙:常见肿瘤临床诊断及治疗
    p & nbsp strong 仪器信息网讯 /strong 2017年6月19日下午,由首都科技条件平台检测与认证领域中心、慕尼黑展览(上海)有限公司主办,首都科技条件平台生物医药领域中心、首都科技条件平台北京大学研发实验服务基地协办的“常见肿瘤临床诊断及治疗”主题沙龙活动在北京UCoffee悠咖啡成功举办。来自主办方、科研院校、仪器厂商及检测机构等20余名代表参加了本次沙龙。仪器信息网作为支持媒体也积极参加了本次活动。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/6409ac95-7a7a-46f8-93c8-7eb31861bc70.jpg" / /p p style=" text-align: center " strong 活动现场 /strong /p p   本次沙龙活动由北京科学仪器装备协作服务中心协作部部长苏立清主持,她谈到,肿瘤是一种高死亡率且发病率逐年升高的疾病,严重威胁人类的健康。近年来,随着医学影像学及体外诊断试剂技术的迅速发展,临床医学在肿瘤的早期诊断、疗效评估以及预后转归等方面均取得可喜的研究进展。为使肿瘤诊疗临床方面医务工作者、医疗影像医疗仪器研发工作者、体外诊断领域工作者深入了解肿瘤的诊疗全过程,本次沙龙特别邀请北京大学肿瘤医院放射科主任徐刚教授、中国人民解放军火箭军总医院放疗科赵志强教授作精彩报告并与大家座谈交流。 br/ /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/53f6d437-eacd-4b0b-a10e-041d640fad1b.jpg" / /p p style=" text-align: center " strong 北京科学仪器装备协作服务中心协作部部长 苏立清 /strong /p p   北京大学肿瘤医院放射科主任徐刚教授主讲了题为《癌症的早期诊断》的精彩报告,从癌症早期症状、望闻问切视触叩听、早期诊断新技术三个部分讲解了癌症早期诊断的全过程。癌细胞虽然能无限增殖化,但其修复能力差。因此,越早发现,越早治疗,癌症越有可能被治愈。徐教授谈吐风趣幽默,深入浅出地讲解了直肠癌、胃癌、食管癌、肺癌、胰腺癌、膀胱癌、皮肤癌、口腔癌、乳腺癌等多种癌症的早期症状。这些早期症状包括疼痛、大小便习惯改变、消瘦、发热、出血和分泌物、溃疡、结节肿块等,只要留心这些早期异常信号,及时治疗,就能将癌症消灭在萌芽阶段。徐刚特别介绍了一种肿瘤标记物——血清甲胎蛋白(AFP),可通过检测该标记物来诊断肝细胞癌、生殖细胞癌、胚胎细胞癌、卵巢畸胎瘤、胃癌、胆道癌、胰腺癌等癌症。但是当患有肝炎、肝硬化、肠炎以及遗传性酪氨酸血症等良性病时,AFP也会升高,因此,在诊断时需要注意这一情况。 br/ /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/be1cd266-728c-4c59-b01b-a2755553d879.jpg" / /p p style=" text-align: center " strong 北京大学肿瘤医院放射科主任 徐刚教授 /strong /p p   中国人民解放军火箭军总医院放疗科赵志强教授在题为《常见肿瘤临床诊断及治疗概述》的报告中给大家介绍了肿瘤的综合治疗。综合治疗是指根据病人的身心情况,肿瘤的具体部位病理类型、侵犯范围和发展趋向,结合细胞分子生物学的改变,有计划地、合理地使用现有的多学科各种有效治疗手段,以最适当的费用取得最好的效果,同时最大限度的改善病人的生活质量。肿瘤综合治疗应遵循局部与全身、分期治疗、个体化治疗、生存率与生存质量并重、成本与效率并重、中西医并重的多项原则。之后,赵志强教授着重讲解了肿瘤的发生部位及诊治特点。发生在头部的常见肿瘤有脑胶质瘤、脑膜瘤、脑垂体瘤等,临床上多表现为头晕、头痛,脑胶质瘤还能引起为癫痫,治疗多以手术、伽马刀治疗为主。胸部常见肿瘤有食管癌、肺癌、乳腺癌等,食管癌多表现为进食哽咽感、吞咽困难等,治疗上多视具体情况以手术、放疗、化疗及靶向治疗相结合的疗法。腹部常见肿瘤有肝癌、胰腺癌、直肠癌等,肝癌、胰腺癌临床上多表现为腹胀、腹痛,直肠癌多表现为便秘、便血,治疗上多采用手术、放疗,对于肝癌有时也会采取介入、射频疗法。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/f27bf2a8-3e53-4ff4-a37e-5cbb459b6771.jpg" / /p p style=" text-align: center " strong 中国人民解放军火箭军总医院放疗科 赵志强教授 /strong /p p   本次沙龙活动现场气氛热烈,专家同与会人员面对面交流,为提问者当面答疑,成果显著。 br/ /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/ee84bb88-1c29-430f-941c-4b5a4c2de412.jpg" / /p p style=" text-align: center " strong 现场提问互动环节 /strong /p p   让我们共同期待下次科仪沙龙快些到来吧! /p
  • 北航冯林课题组: 磁流体基靶向给药微纳米机器人小鼠体内实现肿瘤杀伤
    近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死肿瘤细胞,在体内抑制肿瘤体积、破坏肿瘤间质、增加肿瘤细胞凋亡、抑制肿瘤细胞增殖。这项研究为基于磁流体的毫米机器人在体内实现靶向治疗提供了参考。近日,北京航空航天大学机械学院冯林课题组提出了一种通过具有生物相容性的磁流体机器人实现肿瘤的光热治疗方法。该方法将磁流体的基载液改为具有生物相容性的植物油,通过三维电磁控制系统实现磁流体机器人的靶向控制,对该种磁流体机器人在体外与体内的生物相容性和光热肿瘤杀伤效果进行了细致的研究。本研究中的所有3D模型均使用摩方精密nanoArch® S140设备打印。相关研究内容以“Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in Near-Infrared II window”为题发表在《Advanced Healthcare Materials》期刊上,冯林教授为通讯作者,硕士生纪易明为第一作者。图1.用于近红外 II 窗口肿瘤光热治疗的生物兼容磁流体液滴机器人(BFR)概念图。图2. BFR表征。(A)Fe3O4纳米粒子的 XRD 图。(B)Fe3O4纳米颗粒的傅立叶变换红外图。(C)油酸包裹Fe3O4纳米颗粒的傅立叶变换红外图。(D) BFRs 中纳米粒子的透射电子显微镜(TEM)结果。(E) 所制备磁流体的磁滞线。(F) 磁流体的紫外-可见-近红外吸收光谱。(G) 不同浓度的BFR在 1064 纳米近红外照射下的温度曲线。(H) 5个加热-冷却循环过程中BFR的光热稳定性研究。该研究制备了一种生物相容性磁流体(BFR),并对其进行了详细表征,如图2所示。该生物相容性磁流体由超顺磁性纳米颗粒(磁响应组分)和生物相容性植物油(基载液)构成。双层的油酸包裹磁颗粒使磁流体获得较好的稳定性。磁滞回线展现出该磁流体良好的磁响应能力。红外吸收光谱和光热升温曲线体现了该磁流体较好的光热转换效率和光热稳定性。图3. BFR在体外模拟血液循环环境中的运动。(A) BFR 可被控制移动到全血环境中三维血管模型的任意分支。比例尺:5 毫米:(B) BFR 在肝门静脉血管模型中的运动控制,显示了 BFR 由于可变形性和分裂能力而在血管中的可移动性。比例尺:2 毫米。(C) 磁流体机器人越过障碍物的侧面示意图。(D) BFR 在磁阻力作用下穿过障碍物和心脏组织表面的沟槽。(E) BFR 超声成像示意图。比例尺:5 毫米:(F) BFR 在一块牛心血管组织的内表面形成一个稳定的球体。(G) 超声成像视频快照,显示运动控制过程中 BFR 在不同时间的位置。比例尺:2 毫米。(H) BFR 在全血环境中逆流而上。比例尺:1 毫米。同时该研究对BFR在针对模拟体内靶向治疗环境的运动控制进行了详细研讨。通过四线圈三维电磁系统,磁流体机器人可以实现高精度三维运动控制。由于其具有极强的变形、分裂和融合能力,BFR可以在更为复杂的血管环境(如模拟肝门静脉模型)中运动,以及逆血流的运动。此外,因所选磁流体基载液材为有机液体,该种磁流体并不会与血管和心脏内壁发生粘连,可以实现在血管中和心脏表面的运动控制。磁颗粒与体内环境的密度差异也使得超声成像对BFR在体内的位置进行实时显示。图4. 体内肿瘤杀伤实验。(A) 各实验组裸鼠在治疗六天后的肿瘤情况,(B) 体重曲线。(C) 肿瘤大小曲线。(D) 六天治疗后离体肿瘤组织的体积统计。(E) 小鼠肿瘤切片的 H&E 染色结果。比例尺:50 微米。(F) 和 (G) 肿瘤切片的 TUNEL 和 KI67 染色结果。黑色背景图像为荧光图像,白色背景图像为特征荧光图像。比例尺:100 μm。此外,该种磁流体对体内肿瘤的治疗效果得到了验证。通过小鼠实验可以观察到治疗组小鼠的肿瘤体积有明显的减小。在染色结果中治疗组也展现出了对肿瘤组织的杀伤和抑制生长效果。
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 中南大学湘雅医院詹显全:多组学研究推进精准医学发展
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 精准医学是以个体化医疗为基础,随着基因组测序技术快速发展以及生物信息与大数据科学的交互应用而发展起来的新型医学概念与医疗模式。预测、预防、诊断、治疗和预后评估是人类健康保护过程中不可逾越的阶段,对人类健康的重要性来说,预测/预防是上策,早期诊断/治疗是中策,晚期诊断/治疗是下策。因此,精准医学严格来说应是个性化的精准预测、精准预防、精准诊断、精准治疗和精准预后评估。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 现今多种组学技术(如基因组、转录组、蛋白质组和代谢组)的进步已在极其详尽的分子水平促使个体化医疗成为可能。尽管每个单独的组学技术都促进了医学的进步并已进入临床实践,然而单个技术难以捕捉大多数人类疾病的整体复杂性。 span style=" color: rgb(0, 112, 192) " strong 整合多组学技术正成为综合研究生物和疾病的新方法。 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本文介绍一位深耕生命医学最前沿的优秀医学科研工作者,中南大学湘雅医院的詹显全教授,文章内容由仪器信息网整理自网络以及部分公开发表内容,以飨读者。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2aad20da-4bcf-4ac0-a1e6-6f178f3fa5f6.jpg" title=" 詹显全.png" alt=" 詹显全.png" / /p p style=" text-align: center " 中南大学湘雅医院 詹显全教授 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 詹显全最初在湖南医科大学肿瘤研究所从事博士后研究,并且在导师陈主初教授的指导下,率先在国内开展蛋白质组学相关研究,参与发起和建立了国内第一个部级蛋白质组学重点实验室——卫生部肿瘤蛋白质组学重点实验室。博士后出站后,他又到美国田纳西大学和克利夫兰临床中心工作11年之久,曾任美国田纳西大学健康科学中心医学院副教授。这期间,他不仅在学术上学到了扎实的知识,对蛋白质组和蛋白质组学在概念和技术上也有了更全新深入的理解。2001—2012年间,詹显全一直在美国从事垂体瘤、视网膜病、胶质瘤、慢性阻塞性肺疾病等疾病的蛋白质组学、疾病相关标志物和硝基化蛋白质的检测和鉴定研究,并取得了可喜成绩。其研究成果被刊载于国际蛋白质组学领域的权威刊物上。其研究技术和方法被收录在国际重要专著和书籍中,被国际同行广泛学习和采用。在从事酪氨酸硝基化蛋白质组学研究的过程中,他发表了一系列关于蛋白质酪氨酸硝基化修饰的SCI论文,在国际硝基化蛋白质组学研究中处于领先地位。2012年,詹显全在内心的牵引下全职回国,任中南大学教授、博士研究生导师、博士后合作导师等职。并积极致力于肿瘤蛋白质组学与系统生物学、预测预防个体化治疗(PPPM)靶标鉴定及精准分子医学(PM)研究。 /span br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 如今,詹显全在垂体瘤蛋白质组学研究方面已经处于国际主导地位,他不仅在国内外首次开展了恶性肿瘤血管新生的动态蛋白质组学研究,还大力开展蛋白质翻译后修饰研究、使硝基化蛋白质组学研究,获得多项国家级和省部级科研基金资助。他提出并倡导肿瘤预测预防个体化医学的多参数系统策略观点并得到国际知名学者和EPMA学术协会的认可,大力促进国际交流与合作,引进国际知名专家,成功推荐湘雅医院成为欧洲EPMA的成员单位。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 詹显全一直专注于肿瘤蛋白质组学的研究,例如垂体瘤、卵巢癌等相关恶性肿瘤结合组学的研究,其认为垂体瘤的多病因、多过程、多结果、全身性、慢性、分子网络系统给其“同病同治”提出了严峻挑战。同时为实现其个性化的精准预测、精准预防、精准诊断和精准治疗提供了机遇和条件,多组学(基因组学、转录组学、蛋白质组学、代谢组学、影像组学)和系统生物学技术的发展驱动了这一多参数系统思维模式的转变、推进了其个性化医学和精准医学的研究和实践。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 其团队从2001年开始进行垂体瘤的蛋白质组学及其翻译后修饰组学研究,从2008年开始进行多组学和分子网络研究,及预测预防个体化医学(PPPM)和精准医学(PM)研究。 span style=" color: rgb(0, 112, 192) " strong 詹显全认为其研究过程中重大的思想转变是从单参数模式转向了多参数系统思维模式,这符合肿瘤研究的真实情况。另外,多组学技术也促进了这一模式的转变,并是其主要的解决方案。 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 0, 0) " 就未来多组学研究在精准医学研究的侧重及如何更好实现从基础研究到临床的转化落地方面,詹显全认为, /span 多组学中的不同组学对PPPM/PM的贡献是不平衡的,即个性化的表型组是基因组通向PPPM/PM应用实践的桥梁,而蛋白质组和代谢组是表型组中两重要成分。蛋白质组的内涵包括蛋白质的 拷贝数变化、剪切变化、翻译后修饰、转位、再分布、空间构型、 与周围分子相互作用、及信号通路网络问题。 代谢组的内涵涉及到体内所有物质(包括糖、脂、蛋白质、核酸)的代谢产物及其代谢网络问题。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 要真正实现PPPM和PM, 蛋白质组和代谢组的贡献是基因组所不能替代的,是不能绕过去的。人们应从以基因组为中心的研究和实践转向以表型组为中心的研究和实践。其中蛋白质组的研究又应以翻译后修饰和蛋白质存在形式(Proteoforms)作为今后的研究方向。Proteoforms的研究必将影响着整个生命科学和医学科学。从临床转化研究来看,基于多组学的整合生物标志物是发展方向。对于这里的生物标志物,我们将其分为两类:一类是解决疾病分子机制和药物靶点的生物标志物,这类生物标志物一定要有因果关系;一类是解决预测、诊断、预后评估的生物标志物,这类标志物不一定要求有因果关系,但必要要有量的变化。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此,基于多组学的PPPM/PM的研究和实践一定是今后发展的一个长远趋势。 /p p /p p /p p /p p /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 詹显全,中南大学教授、博士研究生导师、博士后合作导师,英国皇家医学会会士(FRSM)、美国科学促进会(AAAS)会员、欧洲预测预防个体化医学协会 span style=" text-indent: 2em " (EPMA)的会士和国家代表、美国肿瘤学会(ASCO)会士、欧洲科技合作组织(e-COST)的海外评审专家,中国抗癌药物国家地方联合工程实验室技术委员会委员、技术带头人和副主任,临床蛋白质组学与结构生物学学科学术带头人和学科负责人,国家临床重点专科建设项目重点实验室建设项目学科带头人,湖南省百人计划专家、湖南省高层次卫生人才“225”工程医学学科的学科带头人、中南大学“531”人才工程专家。目前正致力于从多参数系统策略角度阐述肿瘤的分子机理、发现肿瘤分子标志物,研究并整合基因组、转录组、蛋白质组和代谢组的变异来实现肿瘤的预测、预防与个体化治疗及精准医学。已发表学术论文 130 余篇,主编国际学术专著 3 本,参编国际学术专著 16 本,获得美国发明专利 2 个。受邀在中科院 1 区影响因子 9.068 MassSpectrometry Reviews 和中科院 2 区影响因子 3.65 Frontiersin Endocrinology 的国际期刊上客座主编了 3 个专刊。 /span /p p /p p /p p /p p /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 0, 0) " /span /p
  • 王凯研究组:共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像
    p style=" text-align: justify text-indent: 2em " 8月10日23点, i Nature Biotechnology /i 在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。 /p p style=" text-align: justify text-indent: 2em " 跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。 /p p style=" text-align: justify text-indent: 2em " 传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。 /p p style=" text-align: justify text-indent: 2em " 然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。 /p p style=" text-align: justify text-indent: 2em " 研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μm sup 3 /sup 的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。 /p p style=" text-align: justify text-indent: 2em " 团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。 /p p style=" text-align: justify text-indent: 2em " 研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。 /p p style=" text-align: justify text-indent: 2em " 研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9bfa0661-24ad-4d0d-9ccd-10db465617c7.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: justify text-indent: 2em " 图1.(上)共聚焦光场显微镜原理示意图。(下)不同于传统光场显微镜,共聚焦光场显微镜采用片状照明,选择性激发样本的一部分,在垂直照明的方向上扫描,采集到的信号被遮挡板过滤掉焦层范围之外的部分。对采集到的图像进行重构可以得到焦层内的三维信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/28e2bd6d-59f5-4ff1-8085-355f6d295cbf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: justify text-indent: 2em " 图2.(左)斑马鱼幼鱼捕食行为的一个例子。0s 为斑马鱼吞食草履虫的时刻。(右)左图斑马鱼捕食行为中,共聚焦光场显微镜记录到的两个不同脑区的神经元活动。箭头所指为过程中激活的单个神经元。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c26412e7-a408-4c67-8533-1c5a118fdb4b.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(68, 68, 68) font-family: 微软雅黑 background-color: rgb(255, 255, 255) "   /span 图3.(左)共聚焦光场显微镜拍摄得到的小鼠视皮层中的复杂血管网络。6个在不同深度拍摄的体积连接为一个深度达600 μm的三维结构。(中)100 μm到250 μm深度血管网络的平面投影,颜色代表不同血管分支中血细胞的平均流速。(右)图中箭头所指的区域中五个血管分支在一段时间内流过血细胞数量的计数。 /p
  • 转化医学系列|人源化模式小鼠在肿瘤免疫药物研究中的应用
    肿瘤免疫疗法是当前肿瘤治疗领域中最具前景的研究方向之一,已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式。肿瘤免疫学治疗的方法种类繁多,目前各大医药研发企业的关注焦点主要包括:免疫检查点抗体药物,CAR-T疗法,溶瘤病毒等等,但新型的免疫疗法如何进行可靠有效的临床前效果评估,是推进肿瘤免疫疗法的一关键节点。百奥赛图自主研发了一系列免疫检查点人源化小鼠,为免疫检查点抗体药物筛选提供了可靠的体内药效模型,此外基于重度免疫缺陷B-NDG小鼠建立的免疫系统人源化小鼠模型也为药物验证提供了更多的选择。本期转化医学系列webinar邀请到的是百奥赛图药理药效事业部总监郭雅南博士,郭博士将给大家介绍:1. 免疫检查点抗体单用或联用在体内药效筛选的策略2. 利用免疫重建小鼠和B-hCD3e人源化小鼠进行双特异性抗体的体内药效评估与毒性检测3. 利用重度免疫缺陷小鼠B-NDG小鼠对CAR-T药物进行体内药效评估与毒性检测转化医学系列网络讲座第五期讲座题目:人源化模式小鼠在肿瘤免疫药物研究中的应用讲座时间:7月25日下午14:00-15:00主讲人:郭雅南 博士(百奥赛图)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)即刻报名扫描下方二维码主讲人简介郭雅南 博士百奥赛图 药理药效事业部总监清华大学生物科学与技术系本科;美国罗切斯特大学神经生物学/药理学博士学位;2009-2013年,在哈佛大学医学院伯明翰妇女医院转化医学系从事博士后研究工作;2014年回国,担任百奥赛图基因生物技术有限公司研发部副总监。拥有10多年癌症生物学和神经生物学的研究经验,现担任药理药效事业部总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间高内涵筛选助力个性化癌症医疗8月小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 多项仪器研发项目列入863计划生物和医药领域2014备选项目
    一、前沿生物技术主题   1.蛋白质测序新技术新装备及配套试剂国产化   (1)阵列毛细管柱蛋白质分离-阵列点样装置   研制二维阵列毛细管分离新装置,第一维分离柱可分离48个馏分,第二维维阵列毛细管分离柱可同时分离48个流份 开发阵列紫外检测器 研制多柱点样头并行点样器和流份收集器 开发在线靶上快速酶解装置用于和激光解析基体辅助离子源-分子量鉴定测序装置接口 研制相关控制和数据处理软件。提供一套单通道流速范围200-2500nL/min的二维毛细管阵列分离仪器。   本方向国拨经费控制额为1500万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (2)激光解析基体辅助离子源-分子量鉴定蛋白质测序装置   研制激光解析基体辅助离子源-飞行时间质谱(MALDI-TOFMS)仪器,配有96、384点样孔MALDI靶板 研制适合于MALDI离子源的质谱控制软件和蛋白质库搜索软件。整机可达到5000-6000个以上非冗余蛋白/每天的高速测序能力。   本方向国拨经费控制额为1500万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (3)电喷雾离子源-串级质谱测序管家技术及装置研发   研制多重四级杆-串级质谱仪器(QTOF-MS/MS)并进行高精度串级质谱分析,研制线性离子阱累加器用以累积目标母离子 研制高稳定电喷雾(ESI)装置实现喷雾肽段溶液并离子化 研制蛋白质库搜索软件和结构解析软件。完成达到6000-7000个以上非冗余蛋白/每天的高速测序能力的整机样机。   本方向国拨经费控制额为1500万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (4)蛋白质相互作用仪器和配套试剂国产化   研发一套基于能量转移均相时间分辨荧光分析技术的高通量全自动蛋白质-蛋白质相互作用分析仪器。开发配套的通用试剂,研究开发均相时间分辨荧光多孔板阵列分析试剂。研究开发3-5种均相时间分辨荧光免疫诊断试剂盒。   本方向国拨经费控制额为1500万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (5)蛋白质测序试剂国产化   构建多肽/重组蛋白制备技术平台,开发与蛋白质测序相关的特异肽段和蛋白标准品、消化酶、多肽纯化试剂、色谱柱、重稳同位素标记内标和细胞培养重稳同位素标记试剂盒等产品。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (6)蛋白质功能分析试剂国产化   构建多种抗体制备技术平台,研究开发应用于蛋白定性、定量、定位、修饰和功能研究的高特异性、高亲和力的抗体和衍生产品。研制10项(类)基于多肽/蛋白和抗体的衍生分析试剂。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   2. 代谢物组与非编码RNA的系统识别与鉴定关键技术研发   (1)超灵敏高覆盖代谢组定量分析关键技术研发   创制一批超灵敏多功能代谢分析探针库,发展多代谢途径高覆盖同步定量测量技术,发展用于未知代谢物结构鉴定、细胞与组织代谢组的无创性原位定量测量技术。   本方向国拨经费控制额为2000万元,拟支持2个课题,任务实施周期为3年。   (2)非编码RNA的系统识别与鉴定关键技术研发   建立非编码RNA的系统识别与鉴定关键技术 构建基于信号通路、大分子相互作用等的非编码RNA识别和功能分析的算法软件平台 建立长非编码RNA数据库及应用软件平台。   本方向国拨经费控制额为2000万元,拟支持2个课题,任务实施周期为3年。   3. 微生物数字化信息系统集成关键技术研发   (1)微生物资源及技术数据集成整合的关键技术研发   开发基于云技术的微生物数据采集系统和自动汇交管理软件 研究海量、动态、异构、异质微生物数字资源整合的技术框架,整合各类数据资源,构建微生物领域数字化信息系统 开发基于云环境的智能化数据服务及应用平台。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年。   (2)微生物组学数据集成及分析的关键技术研发   集成海量微生物组学数据,建立数据库系统 开展微生物的基因调控和代谢网络分析研究,研发可对微生物的功能、毒理和致病性机理、工业微生物改造研究提供系统支撑的分析工具集。   本方向国拨经费控制额为800万元,拟支持1个课题,任务实施周期为3年。   (3)微生物数字化信息集成标准规范研发及知识库集成   针对微生物数字资源多样化特点,研究制定微生物数字资源整合的数据标准和信息服务标准 研究基于科学文献的知识挖掘和知识转化技术 建设微生物领域专家、机构、研究项目、技术成果数据库等管理数据库以及检索分析系统。   本方向国拨经费控制额为700万元,拟支持1个课题,任务实施周期为3年。   (4)微生物数字资源集成和信息服务关键技术研发   突破异构、多源、海量、动态微生物信息的按需聚合与集成技术、针对微生物数字资源的垂直检索技术 研发多层次组学数据关联搜索、对接、比较和系统建模分析的新技术和新方法。   本方向国拨经费控制额为500万元,拟支持1个课题,任务实施周期为3年。   二、医药生物技术主题   1. 基于临床信息的肿瘤分子网络研究及关键产品开发   (1)食管癌的分子网络研究   完成不少于2,000例食管癌的分子网络分析,研发基于临床信息的食管癌关键分子网络关键技术,实现对食管癌的多维度分子网络分析,用于指导临床食管癌的早期诊断、个性化治疗和预后分析。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年。   (2)肺癌的蛋白质分子网络研究   完成不少于1,500例肺癌的蛋白质分子网络分析,绘制肺癌相关核心信号通路中由关键节点蛋白质组成的分子网络谱图,包括肺癌细胞生长和肿瘤耐药等谱图,用于以上肿瘤的诊断、耐药分析和治疗、生存预测 发展基于肿瘤分子网络分析的新技术和新型诊疗产品。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年。   (3)胃癌的蛋白质分子网络研究   完成不少于1,000例胃癌及其对应癌旁组织的样本采集、临床信息集成及蛋白质分子网络构建 绘制胃癌特征性的蛋白质分子表达谱图、生存预测谱图以及耐药信息谱图 发现胃癌分子网络特征模式谱图及其变化规律。   本方向国拨经费控制额为700万元,拟支持1个课题,任务实施周期为3年。   (4)乳腺癌的蛋白质分子网络研究   发展多维可视化的乳腺癌组织蛋白质分子网络信息分析体系 完成不少于2,000例乳腺癌分子网络构建 绘制基于临床信息的乳腺癌特征性分子网络谱图 研发分子网络信息识别、集成和解析的新技术 研发专用分子网络分析试剂。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年。   (5)卵巢癌和宫颈癌等女性肿瘤的蛋白质分子网络研究   完成不少于1,200例卵巢癌、宫颈癌和子宫内膜癌等女性肿瘤的蛋白质分子网络分析 实现以核心调控蛋白质为节点的分子信号网络与临床信息的集成 绘制肿瘤特征性的蛋白质分子网络谱图并发现其变化规律。   本方向国拨经费控制额为700万元,拟支持2个课题,任务实施周期为3年。   (6)肾癌的蛋白质分子网络研究   完成不少于1,000例肾癌的蛋白质分子网络分析 实现蛋白质分子信号网络与临床信息的集成 绘制肾癌特征性的蛋白质分子网络谱图,用于肾癌的临床诊断、耐药分析和预后判断。   本方向国拨经费控制额为600万元,拟支持1个课题,任务实施周期为3年。   (7)胰腺癌的蛋白质分子网络研究   完成不少于1,200例胰腺癌的蛋白质分子网络分析 实现蛋白质分子信号网络与临床信息的集成 绘制胰腺癌特征性的蛋白质分子网络谱图,用于胰腺癌的临床诊断、耐药分析和预后判断。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年。   (8)脑垂体瘤的分子网络研究   完成不少于800例脑垂体瘤的分子网络分析 实现分子信号网络与临床信息的集成 绘制脑垂体瘤特征性的分子网络谱图,用于脑垂体瘤的临床诊断、耐药分析和预后判断。   本方向国拨经费控制额为500万元,拟支持1个课题,任务实施周期为3年。   (9)肿瘤蛋白质分子网络关键技术和产品的研发   发展基于以上课题中肿瘤临床信息的多维可视化临床肿瘤蛋白质分子网络信息系统 完成多种肿瘤的蛋白质分子网络构建,发展全新概念的基于肿瘤蛋白质分子网络分析的新技术产品 研究用于蛋白质分子网络信息的识别、集成、融合和解析技术,研发相关网络信息分析产品。   本方向国拨经费控制额为1500万元,拟支持1个课题,任务实施周期为3年。   2. 疫苗产业化共性技术和装备研发   (1)疫苗产业化新细胞基质研发   筛选和构建适用于疫苗药物产业化的新型细胞基质,包括人二倍体细胞,动物细胞等进行广谱病毒的适应性传代培养等,以及多种基因工程蛋白质和抗体的高效表达 驯化适用于无血清培养的疫苗和抗体药物产业化新型细胞基质,能够采用生物反应器等进行大规模培养,建立规模化培养技术平台。   本方向国拨经费控制额为700万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (2)个性化细胞培养基、无血清培养基研究开发   研制适用于动物细胞规模化培养的无血清培养基 研制适用于病毒性疫苗制备和生产的无血清,无蛋白培养基和可用于流加培养的浓缩无血清培养基和个性化细胞培养基 建立符合GMP标准的大规模粉末培养基制备技术平台,研究大规模粉末培养基制备的质量控制技术和质量标准。   本方向国拨经费控制额为1300万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (3)高效分离纯化介质开发及应用   开发系列抗污染、高通量、高选择性超滤膜、透析膜分离材料和不具免疫原性且特异性吸附能力强的新型层析介质,建立高性能分离膜及层析介质规模化制备技术,开展疫苗等大分子生物药物的纯化工艺研究和应用示范。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (4)高效分离纯化装备研制及应用开发   开发低剪切膜分离技术、多柱组合层析技术及关键参数在线检测和控制技术 研究低剪切膜分离设备、多柱组合层析分离设备和膜-层析集成分离装备的设计、优化、放大和制造 研究膜-层析集成分离工艺和装备,建立疫苗生产应用示范。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (5)大规模动物细胞培养技术研究及装备开发   建立基于多尺度参数相关分析及代谢流分析的动物细胞培养过程优化策略,建立基于流场特性与细胞生理代谢特性的大规模动物细胞培养过程放大技术 研制哺乳动物细胞大规模培养装置,积极开展动物细胞大规模培养主体设备设计制造,建立符合GMP标准生产的50L-500L-3000L哺乳动物细胞培养生物反应器装备系统,开发GMP标准的各类动物细胞生物反应器装置技术及GMP标准模块化车间设计。   本方向国拨经费控制额为2000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   3. 人体营养素检测关键技术与产品开发   (1)人体维生素与抗氧化能力等检测系统及配套试剂的研发   研发全自动分析系统及配套维生素检测试剂盒,包括但不限于维生素B12、叶酸、谷胱甘肽过氧化物酶、总抗氧化活性等项目。研制可实现荧光强度检测,紫外可见吸收光检测,化学与生物发光检测,时间分辨荧光检测的多功能临床营养分析仪,实现对多种营养成分的快速、准确定量分析。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (2)人体微量元素分析系统及半自动/全自动人体肠道微生态分析仪的研制   研发基于电感耦合等离子体质谱(ICP-MS)等分析技术的微量元素分析系统,实现对10种以上人体微量元素的准确、高灵敏分析。研制半自动/全自动人体肠道微生态分析仪,可对样品中的微生物做湿片分类,可检出不少于20种预成酶和10种微生物代谢产物。配套试剂要求采用逐层组合多酶多底物的点阵技术,满足门诊和住院病人肠道微生态分析的需要。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   三、现代医学技术主题   1. 实用新型人源化动物模型的研发及其转化应用研究   (1)具有人类造血免疫系统的人源化动物模型的研发及其转化应用   建立4-5种具有人类造血免疫系统的人源化动物模型,应用于重大疾病诊断、防治技术的转化。   本方向国拨经费控制额为1500万元,拟支持2个课题,任务实施周期为3年。   (2)重大疾病的人源化动物模型的研发及其转化应用   针对恶性肿瘤、心脑血管疾病、代谢性疾病、自身免疫性疾病、遗传性疾病等重大疾病建立人源化动物模型,并应用于重大疾病诊断、防治技术的转化。   本方向国拨经费控制额为1500万元,拟支持2个课题,任务实施周期为3年。   2. 结直肠癌诊治新型关键技术研究及转化应用   (1)结直肠癌临床疗效与预后判断生物标志的筛选   筛选结直肠癌及癌旁组织中影响结直肠癌疗效和预后判断的免疫与炎症相关细胞及差异表达的关键分子,在此基础上开展相应的治疗干预技术研究。发现和确证2-3项对结直肠癌疗效或预后判断具有重要价值的生物标志物或新方法。   本方向国拨经费控制额为1300万元,拟支持1个课题,任务实施周期为3年。   (2)结直肠癌早期诊断关键技术研究   筛选结直肠癌代谢分泌物及血液中应用于结直肠癌早期诊断的关键分子,研究其在结直肠癌中的早期诊断应用价值,并开展相应的关键技术和产品研发。研发1-2项对结直肠癌早期诊断具有重要价值的相关产品和关键技术。   本方向国拨经费控制额为700万元,拟支持1个课题,任务实施周期为3年。   3. 生物治疗新型前沿技术及新型产品研发   (1)体细胞治疗制品临床级细胞分离关键技术研究   开展临床级体细胞(非干细胞)分离免疫磁性粒子及相关装置的研发,结合目前我国进入临床研究的细胞治疗制品的制备工艺,建立前体细胞的规模化高效分离技术,完成样机制造和科学验证。   本方向国拨经费控制额为3000万元,拟支持2个课题,任务实施周期为3年。   (2)新型效应细胞的规模化制备及高效诱导分化关键技术研究   建立基于特异性识别受体修饰的效应细胞规模化制备技术 建立效应细胞的高效诱导分化技术 建立基于细胞反应器的个体化临床级规模化制备技术。   本方向国拨经费控制额为2000万元,拟支持2个课题,任务实施周期为3年。   (3)慢性疾病新型疫苗的研发   针对非传染性慢性疾病包括糖尿病、哮喘、高血压、肥胖等慢性疾病研发新型疫苗。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年。   (4)靶向可控基因治疗关键技术研究   开展基因治疗关键技术和新型前沿技术研发,主要包括新型靶向可控基因治疗载体研发和基因靶向导入及可调控表达新技术研究,带动相关产品的研发。   本方向国拨经费控制额为2000万元,拟支持2个课题,任务实施周期为3年。   四、工业生物技术主题   1.工业蛋白质高效表达系统的构建与应用   (1)蛋白质合成代谢优化与酵母表达系统的构建及应用   研究构建克鲁维酵母、毕赤酵母等表达系统,改造关键基因,优化宿主生长与蛋白质合成等能力,提高工程菌株生物量与目标蛋白质表达水平,并开展其在酶制剂生产中的大规模高密度发酵试验。   本方向国拨经费控制额为1200万元,拟支持1个课题,任务实施周期为3年。   (2)蛋白质可溶性表达与大肠杆菌表达系统的构建与应用   改造大肠杆菌碳源代谢途径,加强外源蛋白质合成中氨基酸补给、辅酶循环、能量供应 控制外源基因转录、翻译速率及分子伴侣改造,提升蛋白质表达水平,进行高密度发酵试验与规模化应用试验。   本方向国拨经费控制额为900万元,拟支持1个课题,任务实施周期为3年。   (3)蛋白质高拷贝表达与芽胞杆菌表达系统的构建与应用   构建由多重启动子、信号肽以及质粒表达与染色体整合表达的蛋白质高效表达系统,优化蛋白质分泌和蛋白质切割系统,显著提升蛋白质表达水平,应用于多种酶制剂的重组表达,实现规模化开发。   本方向国拨经费控制额为900万元,拟支持1个课题,任务实施周期为3年。   2. 营养化学品生物合成技术   (1)抗氧化类营养化学品生产菌的系统优化   进行抗氧化类营养化学品合成的微生物育种,提高辅酶Q10、虾青素等发酵水平,优化发酵工艺与分离精制工艺,降低发酵生产成本,提高产品质量,实现抗氧化类营养化学品发酵生产的产业化示范。   本方向国拨经费控制额为1500万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (2)多不饱和脂肪酸的发酵生产   选育ARA、DHA等多不饱和脂肪酸的新一代高效生产菌种,大幅提高其产量、拓宽原料范围 研究发酵过程优化与控制、大容积发酵罐工艺放大及分离提取新技术,提高产品生产强度、转化率和收率。   本方向国拨经费控制额为1500万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (3)维生素类营养化学品生产菌的系统优化   进行维生素类营养化学品合成的微生物育种,提高核黄素、维生素K2等发酵水平,优化发酵工艺与分离精制工艺,降低维生素类营养化学品发酵生产的生产成本,提高产品质量。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   3. 非粮生物质原料的生物炼制技术   (1)玉米芯组分的精细分离与转化技术   开展半纤维素和/或纤维素水解产物生产糠醛、糠酸、呋喃、糖醇等高值产品研究 对木质素化学改性和转化,开发新型木质素提取和原料高值化利用技术,实现生物质原料的全利用。   本方向国拨经费控制额为800万元,拟支持1课题,任务实施周期为3年,由企业牵头申报。   (2)生物炼制系统技术与工艺集成   选择集约性的非粮生物质为原料,开展有效组分的分离转化技术研究,系统集成和优化非粮生物质原料全组分利用技术,选型和匹配各工艺节点关键装备,实现示范生产。   本方向国拨经费控制额为1200万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   4. 工业助剂的绿色制造技术   (1)生物增塑剂的绿色催化技术   选育高效工业生物催化剂,实现生物/化学催化合成工业助剂反应过程集成和工程放大。,开发和优化生物/化学催化转化制备柠檬酸酯、长链脂肪酸酯、二元醇酯和多元醇酯类生物增塑剂的工艺过程。   本方向国拨经费控制额为1200万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (2)糖脂类生物表面活性剂的双相发酵技术   构建高产、稳定的糖脂类生物表面活性剂重组生产菌种 研究生物表面活性剂发酵过程控制和规模放大技术,以及分离提取工艺,建立先进、低成本的生物表面活性剂制造工艺。   本方向国拨经费控制额为1200万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (3)羟基酸类生物螯合剂的生物催化与转化技术   挖掘乙醇酸和酒石酸等重要助剂生物制造的酶制剂或代谢途径关键酶基因 构建生物催化合成系统 开发水相、有机相或无溶剂酶催化反应过程工艺并优化流程 研究过程集成和放大技术。   本方向国拨经费控制额为1100万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (4)胶原蛋白生物助剂的发酵合成与酶法修饰技术   构建产胶原蛋白工程菌,建立高密度发酵控制策略及高效分离工艺,实现规模化生产 开发胶原蛋白的酶法/化学法修饰技术 开发胶原蛋白部分水解技术,建立可控分子量的胶原肽酶法合成技术。   本方向国拨经费控制额为500万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   5. 大宗生物基化学品的衍生转化   (1)谷氨酸和赖氨酸的脱氨与脱羧技术   开展大宗氨基酸的衍生转化关键技术研究,建立谷氨酸到戊二酸、赖氨酸到戊二胺及其衍生物、戊二胺类至生物基尼龙的产品路线,完成产品中试。   本方向国拨经费控制额为1000万元,拟支持2个课题,任务实施周期为3年,由企业牵头申报。   (2)丁二酸和乳酸的脱水、加氢衍生转化   研究丁二酸、乳酸等有机酸的生物与化学转化技术,开展有机酸脱水、加氢等生物/化学催化剂的设计构建,构建丁二酸到1,4-丁二醇、乳酸到丙酮酸、丙烯酸等的生物/化学转化路线,完成产品中试。   本方向国拨经费控制额为1000万元,拟支持2个过程控制、水循环、病虫害防治等关键技术,优化微藻固碳的工艺条件,建设千吨级的微藻固碳示范线。   本方向国拨经费控制额为1000万元,拟支持1个课题,任务实施周期为3年,由企业牵头申报。   (3)微藻固碳产品多联产关键技术研究   优化微藻高效固碳并积累活性产物的工艺条件,突破高效、绿色、低成本的微藻采收和后处理技术,开发藻基高附加值产品,实现藻渣的综合利用,构建微藻固碳产品的多联产技术体系。   本方向国拨经费控制额为1200万元,拟支持3个课题,任务实施周期为3年,由企业牵头申报。   六、青年科学家专题   凡符合国家“863”计划生物和医药技术领域前沿生物技术主题、医药生物技术主题、现代医学技术主题、工业生物技术主题、生物资源与安全技术主题的研究内容均可自由申请。申请内容应聚焦生物与医药技术领域的国际前沿,以掌握国际核心竞争力和自主知识产权为目标,以生命科学、人口健康和生物医药产业的共性需求为牵引,发展具有引领性的生物与医药新技术、新方法、新模型和新工具。课题研究内容应突出原创性,优先资助具有良好前景的研究项目。   本项目拟安排国拨经费5000万元。支持30-40个课题,每个课题资助经费不超过150万元,实施年限3年。   七、指南要求:   1.青年科学家专题:   申报要求:   (1)青年科学家专题以课题为单位申报   (2)课题负责人应具有博士学位或高级职称,年龄不超过35周岁(截止指南发布之日)   (3)每个课题的承担单位为1个   (4) 除课题负责人外,课题参加人员不超过4人(含4人),   (5)课题负责人及课题参加人员投入本课题研究时间不得少于9个月/年。   (6)第一轮申请表须经依托单位盖章方可生效。   申报方式   (1)课题申报采用两轮申报的形式   (2)第一轮申报:由课题负责人在生物和医药技术领域内自由申报研究方向,申报材料包括课题名称、申报人姓名、承担单位、申报人有效联系信息及研究目标和内容,总字数不超过800字(仿宋四号字,1.25倍行距)。截止日期为5月16日。   电子版发送至:邱宏伟 qiuhw@cncbd.org.cn   孙燕荣 sunyr@most.cn   盖章纸质版快递至:中国生物技术发展中心邱宏伟 收   北京市海淀区西四环中路16号   邮编:10000   (3)第二轮申报:通过第一轮评审的课题申报人将被邀请进行二次申报,按照863计划管理办法要求的格式填报完整的课题申请书,并进行答辩评审,择优支持。   2.牵头或参与申报课题的企业,要求企业应至少具有3年以上从事申请课题内容相关的技术和产品开发的经验,具有配套的中试场所和基础设施,拥有相关同类产品的发明专利和稳定人才队伍,2012年相关产品的销售额在1000万以上,要求提供不少于1:2的配套经费。   3.咨询:中国生物技术发展中心政策协调处   邱宏伟 01088225161
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
  • ​Nat Bio Eng封面文章 | 傅阳心团队开发新型双特异性抗体—通过靶向树突状细胞上的PD-L1来重新激活肿瘤特异性T细胞
    双特异性T细胞衔接器(bispecific T-cell engager,BiTE)是一种能够同时结合肿瘤相关抗原(tumor associate antigen, TAA)和 CD3 复合物的抗体类抗肿瘤药物。传统的技术是通过靶向TAA 来实现肿瘤内T细胞上CD3信号通路的再激活,从而达到杀伤肿瘤细胞的效果【1-3】。自上世纪90年代起,针对双特异性抗体疗法的设计和改进已经有了近30年的研究。然而,目前为止只有安进公司(Amgen)的Blinatumomab (针对CD19 的 BiTE) 被FDA 批准用于治疗复发或难治性急性淋巴细胞白血病 (acute lymphoblastic leukemia, ALL)【4,5】。以细胞因子风暴(cytokine storm)为主的副作用限制了其他针对实体瘤的BiTE所进行的临床测试。仅在2021年,安进公司就暂停了4种 BiTE的一期临床试验, 所涉及的抗原包括FLT3, BCMA, CD33和EGFRVIII。除了严重的副作用之外,半衰期短,TAA特异性低以及抑制性肿瘤微环境都是限制BiTE在体内发挥抗肿瘤效应的重要因素。因此,提升双特异性抗体的有效性并降低其副作用能够极大的促进该疗法在临床的广泛应用。图1 正在以单药形式进行临床测试的双特异性抗体2021年11月1日,美国德克萨斯大学西南医学中心傅阳心团队在Nature Biomedical Engineering杂志上发表了题为Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells的文章。该研究构建了靶向免疫检验点PD-L1 和CD3ε的双特异性抗体 (PD-L1xCD3)。在多种小鼠肿瘤模型上,PD-L1xCD3比传统的TAA靶向性双特异性抗体(ErbxCD3)展现出了更强的抗肿瘤效果。利用多种条件性敲除小鼠表明,PD-L1xCD3在体内主要结合树突状细胞(dendriticcells, DCs)表达的PD-L1而并非肿瘤细胞或巨噬细胞表达的PD-L1,进而重新激活了肿瘤内部的抗原特异性CD8 T 细胞免疫反应来达到治疗肿瘤的效果。进一步的机制研究表明,PD-L1xCD3与DC上PD-L1的结合,促进了共刺激分子B7和CD28之间的相互作用,从而避免T细胞发生激活诱导的细胞死亡(activation-induced cell death),进而实现肿瘤内T 细胞长效激活的效果。研究团队首先在体外验证了制备的PD-L1xCD3能够同时结合PD-L1和CD3ε,并能够以PD-L1依赖的方式刺激T细胞活化并分泌IFNγ,杀伤肿瘤细胞。体内实验进一步表明PD-L1xCD3能够在MC38模型上产生良好的抗肿瘤效果并优于anti-PD-L1和anti-CD3的联合治疗,从而表明PD-L1xCD3具有其独特的作用机制。通过细胞过继转移和删除实验表明,PD-L1xCD3能够诱导抗原特异性CD8 T细胞反应并产生免疫记忆,而这一现象依赖于肿瘤内预存的CD8 T 细胞。为了研究PD-L1xCD3是否比传统的TAAxCD3具有更强的抗肿瘤效果,作者们制备了靶向TAA的ErbxCD3双特异性抗体,并通过体外实验证明其具有与PDL1xCD3相似的亲和力,激活T细胞能力和肿瘤细胞杀伤能力。然而体内实验却表明,在相同剂量下PD-L1xCD3比ErbxCD3展现出了更强的抗肿瘤效果,并且这一现象在TC1,B16F10,TuBo等多种模型上均得到了验证,提示靶向免疫检验点PD-L1的双特异性抗体比靶向TAA具有更好的激活T细胞能力。为了进一步探究产生这种区别的本质原因,作者们首先通过在不同的细胞上敲除了PD-L1来探寻哪种细胞表达的PD-L1对于PD-L1xCD3在体内的抗肿瘤效果是必须的。出乎意料的是,尽管肿瘤细胞本身是最主要的PD-L1阳性的细胞,但敲除肿瘤细胞上的PD-L1并没有影响PD-L1xCD3的治疗效果。与之相反,敲除宿主细胞上的PD-L1却彻底废除了PD-L1xCD3的治疗效果。通过条件性PD-L1敲除小鼠实验表明,树突状细胞而并非巨噬细胞表达的PD-L1起到了至关重要的作用。作者进一步利用Batf3敲除小鼠确认树突状细胞亚群(cDC1)对于PD-L1xCD3的治疗效果是不可或缺的。前期研究表明,anti-PD-(L)1 治疗能够通过增强B7-1(CD80) 与CD28的相互作用来达到激活T 细胞的效果6, 7。由此,研究人员提出了PD-L1xCD3治疗是通过增强共刺激信号来发挥作用的假设。结果也表明,用抗体阻断CD80/86后,PD-L1xCD3的治疗效果消失同时抗原特异性T细胞反应也大大减弱。通过体外共培养实验证明,PD-L1xCD3能够通过增强共刺激信号的方式促进IL-2的分泌,避免T细胞因过度激活导致的凋亡,从而实现肿瘤内T细胞的长效激活。传统BiTE的设计理念是通过单链抗体(ScFv)衔接T细胞与肿瘤细胞,促使T细胞活化并直接进行肿瘤细胞杀伤。然而,在肿瘤微环境里T细胞的数量和质量都非常有限。而肿瘤细胞不仅数量“占优”并且能够通过激活抑制性信号通路(如PD-L1/PD-1)来逃逸杀伤。与此同时,由于肿瘤细胞本身并不表达共刺激分子,其激活T细胞的效果非常有限。面对数倍于己的“敌军”,T细胞在反复杀伤的过程中很容易产生耗竭而败下阵来。与之相反,作为新型双特异性抗体,PD-L1xCD3能够将T细胞与树突状细胞衔接在一起,从而为其激活提供充足的条件(共刺激分子)。通过与树突状细胞的相互作用,T细胞不仅得到了有效的激活并且能够通过IL-2实现自我扩增。最终实现T细胞的持续性激活并获得持久的抗肿瘤免疫反应。图二:PD-L1xCD3的作用机理综上所述,该研究为新一代双特异性抗体设计提供了思路。证明了PD-L1xCD3 具有优于传统BiTE的如下特点:1)靶向肿瘤组织降低毒性;2)阻断PD-L1/PD-1相互作用,解除T细胞抑制;3)靶向DC细胞为T细胞激活提供共刺激信号,从而促进IL-2介导的T细胞存活。据悉,该论文已被选为Nature Biomedical Engineering 杂志11月份的封面故事。该研究的通讯作者是美国德克萨斯大学西南医学中心的乔健博士和傅阳心教授。刘龙超博士为论文的第一作者。原文链接:https://www.nature.com/articles/s41551-021-00800-2
  • 文献解读丨奥曲肽口服制剂抗胃粘膜损伤的药代动力学和药效学证据
    本论文发表在药理学专业期刊Acta Pharmacologica Sinica (2018)39:1373-1385,介绍了中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室团队在奥曲肽口服制剂抗胃粘膜损伤的研究中获得的药代动力学和药效学证据。 在生长抑素类似物中,奥曲肽(octreotide,OCT)是临床上常用的静脉或皮下注射药物,用于治疗生长激素、胃泌素或胰岛素分泌增加引起的各种疾病。为了评价OCT口服制剂开发的可行性,我们在几种动物模型上对OCT进行了系统的药动学和药效学分析。大鼠体内药代动力学研究表明,OCT灌胃给药的生物利用度极低(测得的大鼠OCT的平均血浆浓度-时间曲线;(B)口服剂量为30 mg/kg的OCT后大鼠各组织中的OCT浓度 使用仪器:岛津iMScope图2. OCT在小鼠胃内的空间分布及消除静脉注射OCT 0.1mg/kg ,给药后10min(a1,b1)、20min(a2,b2)、40min(a3,b3)、60min(a4,b4)和120min(a5,b5)OCT的空间分布(a1~a5:小鼠胃放大图;b1~b5:奥曲肽MS成像分析) 综上所述,灌胃给药后的组织特异性分布和良好的抗GMI保护作用使OCT的口服制剂成为可能,SSTR2在胃肠道的高表达有助于OCT的组织特异性分布和达到治疗效果。鉴于SSTR2介导的OCT的组织特异性分布特点和SSTR2在多种肿瘤细胞上的过度表达,口服OCT也可用于其他临床适应症,包括胃肠胰神经内分泌肿瘤和垂体腺瘤。本研究不仅为奥曲肽的进一步开发和临床应用提供了支持,而且为其他多肽类药物口服制剂的开发提供了新的途径。 文献题目《Pharmacokinetic and pharmacodynamic evidence for developing an oral formulation of octreotide against gastric mucosal injury》 使用仪器岛津LCMS-8050、iMScope 作者Xi-nuo LI, Tai RA0, Yang-fan XU, Kang-rui HU, Zhang-pei ZHU, Hao-feng LI, Dian KANG, Yu-hao SHAO, Bo-yu SHEN,Xiao-xi YIN, Lin XIE, Guang-ji WANG, Yan LIANGKey Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University,Nanjing 210009, China
  • Bruker:质谱在医学诊断中具有广泛而重要的应用前景
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 近年来,随着质谱技术在生命组学、精准医疗及临床医学中发挥着越来越大的作用,质谱应用于医学检验的热度不断走高。各大质谱厂商在该领域多有发力,其中,Bruker成功引领MALDI-TOF质谱技术走进临床微生物检验领域,堪称临床微生物质谱的标杆企业。为了使质谱技术和临床医学及相关领域机构、专家和工作者更深入地了解应用于医学检验的质谱最新产品、技术、解决方案,仪器信息网特别约稿Bruker。 /span /p p    strong 仪器信息网:贵公司怎样看待质谱应用于医学诊断的市场前景? /strong /p p    strong Bruker /strong :精准医疗已经得到国内外医学界认同和重视,然而,全面实现精准医疗,人类还有很长的路要走。精准医疗离不开精准诊断和精准治疗,精确诊断需要准确的临床检测技术。准确、灵敏的质谱技术正在逐渐被临床诊断市场认识与接受。质谱作为新兴的临床检测技术,在医学诊断市场具有广泛而重要的应用前景。 /p p   众所周知,高效液相色谱串联三重四级杆质谱技术 (LC-MS/MS) 涉入医学检验领域已经有几十年的历史,比如在药物血药浓度监测、新生儿遗传代谢病筛查和内分泌激素检测等方面的应用。与传统的检测方法相比,LC-MS/MS技术本身具有的高灵敏度、高特异性和高准确度特点,能够适应和满足临床检测的需要。然而,由于LC-MS/MS技术对样本前处理和技术人员的质谱操作能力要求较高,使得LC-MS/MS进入临床检验的速度和广度远不及临床质谱的后起之秀基质辅助激光解吸电离飞行时间质谱 (MALDI-TOF MS) 临床微生物快速鉴定技术。MALDI-TOF质谱技术鉴定微生物不仅准确、快速,而且对于绝大多数经过培养的临床微生物样本无需前处理步骤,同时仪器操作简便。因此,提高质谱技术在临床实验室的实用性是促进质谱技术在临床检验中迅速发展的重要环节之一。 /p p    strong 仪器信息网:请回顾贵公司质谱产品及技术的研发历史,有哪些优势/专利技术? /strong /p p    strong Bruker /strong :Bruker公司创建于是1960年,创始人Gü nther Laukien教授从研发生产核磁共振仪器起步,逐步扩展各种高端分析仪器。1992年Bruker推出了第一台商品化MALDI-TOF质谱仪,1980年正式Bruker质谱业务部正式在德国不莱梅成立,专门开发和提供基于质谱的创新性生命科学研究工具。现今,我们的质谱产品主要涵盖基质辅助激光解吸电离飞行时间质谱仪 (MALDI-TOF)、基质辅助激光解吸电离串联飞行时间质谱仪 (MALDI-TOF/TOF)、电喷雾离子阱质谱仪 (ESI-Ion Trap)、四极杆傅立叶变换串联质谱仪 (Q-q-FTMS)、液相色谱-电喷雾/飞行时间质谱仪 (Q-TOF)、气质联用仪 (GC/MS/MS)、液质联用仪 (EVOQ) 等,以及一系列自动样品处理系统和完整的生物信息软件。 /p p   Bruker自从1992年推出了第一台商品化MALDI-TOF质谱仪以来,一直是MALDI-TOF技术的市场引领者。今年是Bruker MALDI创新25周年!我们回顾MALDI的昨天,展望MALDI的今天和明天,纪念MALD带给我们的影响力、突破力和洞察力,让我们共同欢庆MALDI技术已有的突破。长期以来我们一直秉承知识持续积累,技术不断创新,精准再创新高的理念,在全球范围内建立了MALDI-TOF市场占有率最大的用户大家庭。 /p p    strong 仪器信息网:贵公司当前应用于医学诊断市场的质谱主流产品和主流技术? /strong /p p    strong Bruker /strong :近十年来,Bruker在推动MALDI技术进步,积累了丰富的经验 不断将MALDI的应用推向新的领域,同时创造了世界一流的MALDI质谱系列。Bruker MALDI-TOF质谱产品拥有microflex、autoflex、ultraflex和rapifleX四条产品线和九个型号,可以充分满足不同领域用户的各种应用需求。 /p p   由于世界各国政府对抗生素滥用导致的耐药性问题越来越严重,很多发达国家医院每日微生物样本的送检量高达数几百个,临床微生物鉴定高通量的趋势明显增加。为了满足日益增加的需求,2015年Bruker推出测样速度最快的微生物质谱鉴定系统MALDI Biotyper smart,采用Bruker独有的smartbeam激光技术,激光频率高达200Hz。 /p p style=" text-align: center " img width=" 124" height=" 200" title=" 1.jpg" style=" width: 124px height: 200px " src=" http://img1.17img.cn/17img/images/201711/insimg/e750184d-a3b4-4fe1-9f80-a4ac163d7a0e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " br/ /p p style=" margin: 0px 0px 11px text-align: center " span style=" color: rgb(79, 129, 189) font-family: arial black,avant garde " strong span style=" line-height: 107% font-family: " MALDI & nbsp Biotyper smart /span /strong /span /p p   为了满足MALDI-TOF分子成像技术在肿瘤、癌症成像应用对质谱的要求,2015年Bruker隆重推出rapifleX,适合MALDI成像的高性能质谱特性: /p p   (1) smartbeam 3D激光技术,频率高达10kHz /p p   (2) 新型的光路自动校准离子源,操作人员无需工具轻松拆卸透镜组件,可用溶剂淋洗,组装后透镜光路自动调整。离子源便于维护,耐用性增强,实现最高利用率 /p p   (3) Beam scanning 技术:真正的方形像素技术,充分扫描像素点内所有离子,达到像素点全覆盖,显著提高成像质量。 /p p   (4) M5多路数据采集与聚焦技术:超快速覆盖像素面积,提高成像数据采集效率,大大缩短成像数据采集时间。 /p p style=" text-align: center " img width=" 120" height=" 300" title=" 2.jpg" style=" width: 120px height: 300px " src=" http://img1.17img.cn/17img/images/201711/insimg/0d58410a-75b5-4a0b-a63a-eb515f513b62.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong span style=" color: rgb(79, 129, 189) " rapifleX /span /strong /p p   strong  仪器信息网:目前贵公司质谱应用于医学检测主推的解决方案有哪些? /strong /p p    strong Bruker /strong : /p p style=" text-indent: 2em " span style=" color: rgb(79, 129, 189) " strong 一、MALDI Biotyper—— 临床微生物质谱快速鉴定新技术 /strong /span /p p   作为引领MALDI-TOF质谱走进临床微生物鉴定与分类领域的开拓者,Bruker早在1998年就组建了MALDI-TOF微生物鉴定研发小组,2004年推出MALDI Biotyper微生物快速鉴定系统,2009年通过欧洲体外诊断器械 IVD 98/79/EC条例认证,推出IVD MALDI Biotyper系统 分别在2013年和2014年获得美国FDA和中国CFDA批准的医疗器械许可证,准入临床微生物实验室。 /p p   每种微生物都有自身独特的蛋白质组成,因而拥有独特的蛋白质指纹图谱。MALDI Biotyper全自动快速生物质谱检测系统利用MALDI-TOF 质谱仪测得待测微生物的蛋白质分子指纹谱图,通过MALDI Biotyper软件对这些指纹谱图进行处理并与Bruker独家开发的微生物数据库进行分析比对,快速准确地完成对微生物的鉴定。与现有传统的微生物鉴定技术相比,具有操作简单、快速、通量高、灵敏度高、准确度好、试剂耗材非常经济等优势。通过采用Biotyper快速准确的微生物鉴定,可以显著缩短病人诊疗时间,减少病人医疗负担和住院时长,同时增加医院效益。 /p p   1. MALDI Biotyper工作流程 /p p   MALDI Biotyper高通量微生物鉴定系统通过MALDI-TOF质谱仪测得待测微生物的蛋白质指纹谱图,通过MALDI Biotyper软件对这些指纹谱图进行处理并和Bruker独家开发的微生物数据库进行比对,从而在几分钟之内完成对微生物的鉴定。 /p p style=" text-align: center " img width=" 600" height=" 400" title=" 3.jpg" style=" width: 600px height: 400px " src=" http://img1.17img.cn/17img/images/201711/insimg/1f226acb-a328-436a-b7cf-b7ec809e59ea.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   2. MALDI Biotyper高通量微生物鉴定系统拥有如下的优点 /p p   (1) 操作简单、测定快速 /p p   单个微生物菌落经简单的样品前处理后,用MALDI-TOF质谱仪进行测定。所获得的质谱图可直接送到MALDI Biotyper数据库进行检索。这个简单而独特的工作流程可以满足绝大多数微生物的鉴定,而且不需要进行革兰氏染色、氧化酶试验或选择PCR引物。一个样品从获得单克隆开始,到样品处理、谱图采集和获得鉴定结果可以在几分钟内完成,操作简单、快速,通量高。 /p p   (2) 灵敏度高 /p p   使用经久耐用且性能可靠的Bruker microflex MALDI-TOF质谱仪,可以实现高重现性的快速、可靠检测。由于仪器的高灵敏度,可以检测到低至5000个细胞。 /p p   (3) 结果准确 /p p   MALDI--TOF获得的蛋白指纹图谱用作模式匹配,匹配分值决定鉴定结果。Biotyper软件对所得的图谱进行归一化分析,科学的无监督算法保证鉴定结果的准确性。蛋白指纹图主要集中在2-20kDa,稳定、高表达的核糖体蛋白受微生物生长环境和状态的影响很小小,不影响鉴定结果。 /p p   3. MALDI Biotyper高通量微生物鉴定系统拥有如下的创新性: /p p   (1) 性能优越、设计先进的硬件技术。 /p p   MALDI Biotyper台式质谱仪性能稳定、功能强大。具有专利的红外激光自动清洗离子源功能,WhisperMode sup & #8482 /sup 静音运行技术,FlashDetector sup & #8482 /sup 检测技术和专利的PAN sup & #8482 /sup 宽质量范围离子聚焦等一系列先进技术。智能化设计理念,主要部件均具有自我诊断功能。 /p p   (2) 数据库覆盖面广,包含菌种数量业内领先 /p p   MALDI Biotyper数据库覆盖超过两千多个菌种,囊括了临床常见菌种如葡萄球菌、链球菌、奈瑟菌、沙门氏菌、埃希氏菌、致贺菌、伯克霍尔德菌、李斯特氏菌、肠球菌、克雷伯菌、变形菌、军团菌、耶尔森菌、弧菌、假单胞菌、嗜血流感菌、金黄杆菌、梭菌、拟杆菌等等,可直接应用于临床微生物鉴定。除临床常见菌,同时也包括其它领域的常见菌,如环境、食品、畜牧等领域的各类微生物,有利于应对罕见菌的人类感染。Bruker独有的分枝杆菌和丝状真菌数据库,有助于破解临床微生物鉴定的难题。 /p p   (3) 功能强大的MALDI Biotyper软件。 /p p   MALDI Biotyper软件拥有强大的聚类分析和主成分分析能力,拓展科研功能包括细菌分型、耐药试验和菌株溯源院感分析等。除此之外,用户可使用软件自行生成新的微生物的标准谱图模式,建立自有数据库,并用于鉴定。自建库采用与临床库相同的建库原理和算法,从而确保自建库的可靠性。 /p p    strong span style=" color: rgb(79, 129, 189) " 二、MALDI-TOF成像技术—— 探寻肿瘤生物标志物新视角 /span /strong /p p   MALDI-TOF成像技术主要用于快速直观地发现组织中的生物标志物,测定的目标分子主要集中在蛋白、多肽和脂类等。尽管目前处于临床医学研究阶段,但具有可观的临床诊断前景,为医学临床诊断学研究提供了一个具有前瞻性的医学检测平台。在临床病理诊断中克服了人为因素,医生有可能用真实的数据来评判病情。 /p p   1. MALDI-TOF成像的工作流程 /p p   在导电玻璃片上固定组织冷冻切片,组织切片表面喷雾基质,然后选用MALDI TOF质谱仪测定,最后用flexImaging和SCiLS Lab软件分析数据。 /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201711/insimg/c8b9bf97-4661-42df-af7c-84e1f4dec30a.jpg" / /p p   2. 性能可靠、独一无二的硬件组合 /p p   (1) Smartbeam& #8482 3D激光技术 /p p   rapifleX MALDI -TOF成像解决方案采用布鲁克专有的smartbeam 3D激光,相比传统的MALDI-TOF系统可以提高20倍的工作速度。常规的组织切片可以在大约30分钟内成像。 /p p   (2) 独特的导电载玻片和MALDI Imaging专用靶托 /p p    /p p style=" text-align: center " img width=" 300" height=" 286" title=" 5.jpg" style=" width: 300px height: 286px " src=" http://img1.17img.cn/17img/images/201711/insimg/a713279c-231f-48f6-9b41-7114558ac65e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 成像专用靶托 /strong /p p    /p p style=" text-align: center " img width=" 300" height=" 217" title=" 6.jpg" style=" width: 300px height: 217px " src=" http://img1.17img.cn/17img/images/201711/insimg/ce76ebf0-6b33-48ca-985d-87a15969b1dc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 导电载玻片 /strong /p p   3. 功能多样化、信息量大、可视性好的控制软件和生物信息软件组合 /p p   flexImaging 软件专门用于MALDI组织成像的分析软件,包括图谱的生成及相关数据的分析。SCiLS Lab 软件是海量成像数据统计分析的专业软件 随着MALDI 成像技术的发展,成像分辨率不断提高,样本的数目也在不断增加,导致成像数据越来越大。SCiLS Lab 软件可以完成几百万张谱图,高达几十GB数据的统计分析。数据处理功能包括: /p p   (1) 完成成像数据的平滑,砍基线,多种算法的归一化等多种基本处理 /p p   (2) 对数据进行多层次分组管理,便于后续的比较分析,寻找差异 /p p   (3) 支持多种统计分析算法,如均值和方差计算,ROC分析多种单因素分析方法 空间聚类分析,PCA分析,PLSA分析等多种多因素统计分析方法 也还支持诊断模型的建立,对未知数据、样本进行分类。 /p p   成像分析结果以图像、统计曲线、图表等多种方式灵活直观大的展示 是从组织成像数据中寻找差异,发现新的生物标志物,建立诊断模型,观测目标化合物实时变化的有效工具。 /p p   4. 应用前景——从走近临床必将走进临床 /p p   纵观以下MALDI-TOF分子成像研究成果,不难看出MALDI-TOF成像技术正在逐渐涉足临床肿瘤监测领域,相信她终有一天会走进临床实验室,成为精准医学诊断不可缺少的临床检测技术。 /p p    strong · /strong 2010年:发现乳腺癌HER2阳性生物标志物,用于区分乳腺癌组织HER2阳性还是HER2阴性癌变。预示着MALDI-TOF质谱成像技术有可能帮助临床诊断。 (Classification of HER3 Receptor Status in Breast Cancer Tissues by MALDI Imaging Mass Spectrometry. J Proteome Res 2010 9:1854-63) /p p    strong · /strong 2013年:食管癌化疗效果与蛋白表达水平的相关性,MALDI成像研究结果发现对化疗响应不同的患者,蛋白表达水平有显著差异。 (Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J Pathol 2013 230: 410–419) /p p   strong  · /strong 2014年:简单快速的MALDI组织多肽/蛋白指纹谱分析法,有可能在手术期间精准实时区分肺癌组织和正常组织。(MALDI-TOF Mass Spectrometry for the Rapid Diagnosis of Cancerous Lung Nodules. PLoS ONE 2014 9: e97511) /p p    strong · /strong 2015年:垂体瘤近实时快速检测与定位 (MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. PNAS 2015 112: 9978–83) 垂体瘤发病率在脑肿瘤中排名第三,从垂体组织中准确可靠的区分肿瘤组织和正常组织是手术成功的关键。研究表明MALDI组织成像技术有可能直接在手术中检测和区分正常垂体组织和垂体瘤组织。在临床垂体瘤外科手术切除过程中引入MALDI组织成像检测技术,有助于帮助医生进行精确的手术,尽可能完全切除肿瘤组织,同时尽可能多的保留正常组织,从而改善患者手术预后情况。 /p p   肿瘤特异性分析是肿瘤精确诊断所面临的重要挑战之一。 MALDI成像技术适合给肿瘤特异性提供正确的数据分析。随着rapifleX MALDI-TOF质谱仪在速度和性能方面的大幅度提高,使得将MALDI成像数据转化成可靠的个性化医学信息源成为可能。 /p p    strong 仪器信息网:请问贵公司目前医学检测领域对质谱业务贡献如何? /strong /p p    strong Bruker /strong :Bruker致力于研发高端质谱仪,不仅注重科研领域,为科研人员设计专用的工具,帮助他们在各自研究领域做出成绩。同时也非常重视常规检测领域,不断推出各种满足应用领域需求的解决方案。Bruker成熟的解决方案有:MALDI Biotyper微生物快速鉴定系统,是临床微生物检测的专用工具 MALDI Tissuetyper 是以rapifleX为核心技术的MALDI分子成像解决方案,肿瘤、癌症病理学临床研究的首选 业内独一无二的药物筛选解决方案MALDI PharmaPulse& #8482 ,旨在协助制药、生物技术和CRO企业实现药物高通量筛选,加快新药物的研发速度 农残筛查与鉴定的专用QTOF平台Pesticide Screener 基于离子阱平台和Q-TOF平台的毒物快速筛查的解决方案 Toxtyper和ToxScreeener,在法医领域有着广阔的应用前景。 /p p   自从MALDI Biotyper获得国家食品药品监督管理总局医疗器械注册证,正式进入中国临床检验以来,不仅MALDI Biotyper的临床市场需求逐年递增,而且国内研究人员对MALDI-TOF分子成像技术的关注和应用也在与日俱增。临床检验和医学研究对MALDI-TOF需求的日益增加,正在带动Bruker MALDI-TOF全线产品的销量。 /p p style=" text-align: right " (内容提供:Bruker) /p p style=" text-align: right " 编辑:李博 /p
  • 流式新技术|魏勋斌团队:在体流式细胞检测技术(IVFC)揭示循环肿瘤细胞昼夜节律
    光域生物医学完成数千万天使轮融资——自主知识产权的在体流式细胞检测技术(点击查看此前报道)光域生物医学宣布已经完成天使轮融资,由专业医疗投资机构苇渡创投独家投资。本轮融资资金主要用于研发投入和临床技术创新。公开资料显示,光域生物医学科技(苏州)有限公司成立于2022年4月,其核心技术是国际首创并具有自主知识产权的在体流式细胞检测技术,基于该技术可实现免抽血、实时、动态、连续、无创、定量检测/监测人体或动物循环系统中的细胞、分子、纳米颗粒等目标物质,获取多维度的科研或临床数据,直接反映人或实验动物体内环境真实的分子、生理、代谢、药物等方面的参数和状态,区别于传统离体检测方式。光域生物医学即将上市发布的IVFC-1000系列科研仪器将成为国际上首台基于IVFC技术的商用仪器,开创一项全新的活体细胞学检测方法,并具有完全自主知识产权。魏勋斌教授开发“体内流式细胞术”(IVFC)癌症是人类生命的巨大威胁,癌症转移是癌症患者死亡的主要原因。循环肿瘤细胞(ctc)是肿瘤转移的临床生物标志物之一。目前检测血液样本中ctc的体外方法都是基于ctc在外周血中的分布不随时间发生显著变化的假设 然而,最近的研究对这种方法的正确性提出了挑战。由于连续抽取患者或实验动物的血液,研究CTC计数的每日振荡是不现实的,理想的方法是在体内长时间监测CTC。在发表于《光科学与应用》(Light Science & Application)杂志上的一篇新论文中,以上海交通大学医学- x研究所和生物医学工程学院、北京大学生物医学工程系魏勋斌教授为首的一组科学家,和同事开发了一种非侵入性光学方法来监测异种移植瘤模型中的ctc。他们开发的光学系统被命名为“体内流式细胞术”(IVFC),这与传统的“体外”流式细胞术不同,后者只能在体外检测荧光标记的细胞。在IVFC中,调整激光聚焦于实验小鼠耳的微动脉。当荧光标记的CTC通过光片时,荧光被激发并被光电倍增管(PMT)检测。为了说明这种光学结构的意义,血液循环中的ctc可以无创、反复、连续检测。“我们的IVFC技术不同于目前用于CTC检测的实验室或临床方法。操作系统不需要抽血。由于反复采血不会破坏生物环境,因此我们可以长期定期、无创地监测ctc。”他们说。通过这项技术,他们在前列腺癌原位小鼠模型中监测了24小时内不同癌症进展阶段的gfp表达ctc。在CTC计数方面,他们观察到,在夜间开始时,也就是啮齿动物的活跃阶段,每天都有惊人的振荡。在第6天、第12天、第18天和第24天用IVFC实时检测ctc,结果显示在转移性循环早期出现了明显的爆发活性。结果表明,前期爆发的概率高于后期。“这些发现可能会扩展我们对ctc和时间框架之间关系的理解。ctc并非全天均匀分布于血液中。他们在白天和晚上是不同的。提示昼夜节律可能调节CTC释放。临床检测ctc时应考虑到这一因素。”“ctc似乎比人们预期的更复杂。本研究为我们提供了一个影响临床CTC检测的潜在因素。了解CTC是否昼夜变化和爆发,从而加深对其分布规律的认识,是非常重要的。IVFC技术不需要在不同的时间点采血,重复的采血过程可能会改变生物环境。毫无疑问,我们越来越了解ctc和癌症转移。ctc的检测比以往任何时候都更加精确。”生物学家和临床医生说。用血管代替流动室,IVFC和FCM相似在使用这种类型的IVFC检测CTC之前,需要对感兴趣的细胞进行标记。 基于荧光的IVFC的基本原理与传统的FCM相似,只是使用生物体内的天然血管代替常规流式细胞仪中的流动室。 当荧光标记的细胞通过聚焦在血管上的激光束的狭缝时,可以激发它发射荧光。 然后可以通过PMT检测该信号(结构详见下图)。 因此,可以长时间获得生物信息而无需抽血。参考文献Wei Xunbin,Zhou Jian,Zhu Xi et al. A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.[J] .Methods Mol. Biol., 2017, 1634: 247-262DOI:10.1038/s41377-021-00542-5文献作者:魏勋斌,博士,博士生导师,博雅特聘教授,国家杰出青年科学基金获得者,SPIE(国际光学工程组织)Fellow(会士)。1993 年于中国科技大学物理系光电子技术专业获学士,1999 年获美国加州大学 Irvine 分校生物物理学博士,1999-2001 年在哈佛大学从事博士后研究。2001-2006 年任哈佛大学生物医学光学中心研究助理教授。2006 年回国,国内工作期间获得国家杰出青年科学基金、教育部新世纪优秀人才、科技部 973 国家重大基础研究计划、国家传染病重大专项、国家自然科学基金仪器专项、上海市领军人才、上海市优秀学科带头人、上海市曙光学者、上海市浦江人才计划等项目资助。共发表 NATURE、PNAS、NATURECOMMUNICATIONS 等 100 余篇,总影响因子400,他引 3600 余次。获得国家三类医疗注册证一项,国内外专利20 余项。1)可用于肿瘤光学早期检测的“在体流式图像细胞仪”; 2)在体肿瘤光学分子影像技术及近红外纳米光学探针技术; 3)活体光学细胞操纵技术研究; 4)激光医学与老年痴呆症的光治疗技术。
  • 细胞多样性控制机制或揭晓 将有助于延缓肿瘤生长
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据最新一期《发育细胞》期刊报道,加拿大研究人员发现了一种在发育神经系统中产生细胞多样性的机制。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 为了繁殖并产生新的组织,干细胞分裂成两个并不一定相同的子细胞,这些子细胞能够分化形成适当组织功能所必需的各种细胞类型,亦即细胞多样性。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 为了解释这一现象,蒙特利尔大学临床研究所和多伦多大学组成的研究团队提出了一个假设——干细胞分裂的方向会影响细胞的多样性。他们假设桌上有一个顶红底绿的苹果,如果以垂直方式切开,分成两半的苹果将拥有相同的红色和绿色部分;如果以平行方式切开,分成两半的苹果将呈现完全不同的一红一绿。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 研究人员证明,一个名为SAPCD2的基因会影响细胞分裂的方向,分裂方向则控制着体内子细胞的命运。研究人员对小鼠的视网膜干细胞进行了基因改造,使其能够表达或不表达SAPCD2基因。在不存在SAPCD2基因的情形下,大部分分化改变方向,此时产生的子细胞是不同的。在存在该基因的情形下,产生的子细胞则是相同的。因此,是该基因控制着干细胞分裂的方向,进而影响细胞的多样性。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 此项发现或可改善编程干细胞以产生特定细胞类型的能力,这些特定细胞植入患者体内后就能重建受损组织。此外,该研究也将有助于设计出更有针对性的方法来延缓肿瘤生长。 /p p br/ /p
  • Theranostics| 天津医科大学肿瘤医院通过组织原位真实完整单细胞形态评估Tim-3调节2型
    肿瘤微环境的免疫抑制是肿瘤免疫治疗的主要障碍。干扰素刺激因子(STING)激动剂可以触发炎症性的先天免疫反应,有可能克服肿瘤的免疫抑制。虽然STING激动剂可能有望成为潜在的癌症治疗药物,但是肿瘤对STING单一疗法的耐药性已经在临床试验中出现,其机制尚不清楚。2023年9月4日,天津医科大学肿瘤医院任秀宝教授团队在Theranostics(IF=12.4)上发表题为“Blocking Tim-3 enhances the anti-tumor immunity of STING agonist ADU-S100 by unleashing CD4+ T cells through regulating type 2 conventional dendritic cells”的文章。本实验使用小鼠肿瘤模型,测量了STING激动剂ADU-S100(S100)和抗T细胞免疫球蛋白和粘蛋白结构域-3抗体(αTim-3)的体内抗肿瘤免疫效果。利用流式细胞术检测了肿瘤特异性T细胞的激活和肿瘤微环境的改变。同时测量了树突状细胞(DC)的成熟和功能,以及CD4+ T细胞在联合治疗中的重要性。此外,还通过体外实验验证了S100对CD4+ T细胞的影响。最后,进一步评估了在人类肿瘤样本中高表达Tim-3的常规树突状细胞(cDC)2对生存或治疗效果的影响。S100通过激活cDC1增强了CD8+ T细胞的反应,但未能启动cDC2。在机制上,S100的给药导致了小鼠和人类cDC2(Tim-3+cDC2)中Tim-3的上调,这具有免疫抑制作用。Tim-3+cDC2抑制了CD4+ T细胞,并减弱了CD4+ T细胞驱动的抗肿瘤反应。S100与αTim-3的联合治疗有效地促进了cDC2的成熟和抗原呈递,释放了CD4+ T细胞,从而降低了肿瘤负担,延长了生存。此外,人类肿瘤微环境中Tim-3+cDC2的高百分比预示着不良的预后,而Tim-3+cDC2的丰度可能作为CD4+ T细胞质量的生物标志物和免疫治疗反应性的贡献指标。这项研究证明了阻断Tim-3可以通过调节cDC2来增强STING激动剂ADU-S100的抗肿瘤免疫效果,释放CD4+ T细胞。它还揭示了ADU-S100单一疗法的内在障碍,同时提供了一种克服肿瘤免疫抑制的联合策略。实验部分本实验收集了58例接受新辅助化疗(NAC)或新辅助培溴利珠单抗联合化疗(NAPC)治疗的肺癌患者的肿瘤标本。使用TissueGnostics公司TissueFAXS Spectra全景多光谱组织扫描定量分析系统获取图像。获取到图像利用StrataQuest软件进行定量分析,评价肿瘤浸润性TIM-3+CDC2或CD4+T细胞与疗效的关系。Panel : CD11c、CD1C、Tim-3、CD4、Foxp3和DAPI为了验证在DC上表达的Tim-3对CD4+ T细胞的负向调控作用,文章作者对Tim-3+ cDC2 和 CD4+ T的作用关系进行了分析,并参考主要病理反应(MPR)作为临床特征指标进行作用关系评估。考虑到在免疫作用中CD4+T细胞处于cDC2的下游,其存在的相互作用在传统意义上只能通过整体水平进行粗略评估,但是无法精准量化,故此次本文作者借助于Tissue Cytometry技术对Tim-3-cDC2/Tim-3+cDC2 和 CD4+ T/Treg细胞的分布进行了空间定量分析。研究者根据文献记载,采用泊松分布原理,将Tim-3-cDC2/Tim-3+cDC2半径(r = 30 μm)内的CD4+T细胞的分布密度进行比较,发现在 NAC 和 NAPC 患者中,与 Tim-3-cDC2 相比,Tim-3+cDC2 周围的 CD4+ T 细胞显着减少,代表CD4+ T 和 Tim-3+cDC2 之间细胞接触的可能性降低。这个分析结果启发性的为Tim-3+cDC2肿瘤患者预后不良的关系提供了初步的证据,“急需相关临床试验证实“——作者在文中写道。大部分现有的技术是利用空间坐标方法,对细胞空间生物学信息进行研究,但是当细胞呈梭形或不规则形态时,细胞中心点就无法代表其真实的组织形态轮廓,导致分析结果出现偏差。Tissue Cytometry技术与其他技术不同,采用组织原位真实的细胞形态、轮廓,通过原始成像结果中真实像素距离运算作为距离分析基础,这样不但可以获得真实细胞的距离关系,更可以通过组织-细胞形态计算其微环境分布水平,让分析结果更加精准可靠。Figure 1 高比例TIM-3+cDC2预示肿瘤患者预后不良(A)治疗后肺癌样本的多重免疫荧光图像(B)接受NAC或NAPC治疗的患者的MPR百分比的比较。接受NAC或NAPC治疗的MPR或非MPR患者的(C)Tim-3+cDC2或(D)CD4+T细胞的比较。(G-I) 采用空间分析方法,计算参考细胞周围30μm半径范围内感兴趣细胞的密度,并进行图示。与NAC和NAPC患者中Tim-3+cDC2细胞相比,Tim-3-cDC2细胞周围30μm范围内的 (H) CD4+ T细胞和 (I) Treg细胞密度如下。
  • 新闻 |【手术视频】徕卡神刀博览-同仁医院康军:视神经减压术治疗骨纤维异常增殖症
    徕卡神刀博览第2期神外前沿讯,骨纤维异常增生(fibrous dysplasia,FD)也称作骨纤维异常增殖症是一种先天性、非遗传性疾病,临床上以四肢骨多见,也可只累及颅骨,约占颅骨疾病的11.5%~17%。颅底骨纤维异常增生多好发于额眶蝶骨等部位,是引起视神经管狭窄的常见原因,也可向副鼻窦生长造成阻塞症状和面部畸形,其中以筛窦、蝶窦和上颌窦最为常见。★临床表现为:视力进行性下降,渐进性突眼,眶周颅骨外观异常乃至颅面部畸形,随着病情的进展眼底呈现原发性神经萎缩等。★该病药物治疗通常无效,因此手术治疗骨纤维异常增生具有非常重要的意义:一方面切除病变组织可以改善已有的临床症状,预防新的临床症状的出现;另一方面可以在某种程度上延缓疾病的进一步发展,同时也有美容效果。颅骨纤维异常增殖症在临床中并不少见,很多神经外科医生都会遇到,但如果手术处理不当,尤其在术中磨除病变的过程中忽略了对视神经保护,则有可能造成患者失明的风险。首都医科大学附属北京同仁医院神经外科主任康军教授凭借该院在眼科领域的强大技术支撑和自身丰富的临床经验,对颅底骨纤维异常增殖症视神经减压术的操作提出了三点建议:找到视神经、保护视神经和充分减压。颅骨纤维异常增殖症另外一个特点就是青少年患者不断复发的几率较高,所以康军教授强调在保护视神经的前提下尽可能多的切除病变,以延缓病变可能的复发时间。本期展示的病例就是一个14岁复发患者的再次手术病例,通过精彩的手术视频和细致的讲解、充分的病例资料信息等,相信能够对神外医生操作此类手术有所启发和帮助。本视频仅供医学人士交流学习之用;点击上方图片直接播放由术者首都医科大学附属北京同仁医院神经外科主任康军教授讲解,全文如下:患者是一位14岁的女孩,复发的颅底骨纤维异常增殖症,在外院第一次开颅手术后已经三年了,这次是右眼视力下降伴眼睛疼痛6个月,因为病变压迫了视神经。在2012年第一次手术前,视神经两侧都有累及,左侧比较重,左侧的前床突、蝶窦、视神经管周围都是病变。手术切除了左侧病变。在2013年随访时,发现病变又开始生长。颅底骨纤维异常增殖症患者,如果视力受损严重,就要考虑视神经减压手术。因为视神经周围都是病变,所以一般经颅手术,部分病例也可以采用内镜经鼻入路视神经减压。病人的病变有可能到了成年才会静止,而在儿童期、青春期病变会随着身体发育而不断发展。手术中把视神经周围病变切的越多越好,由此可以尽量延缓其复发时间,但手术并不能把所有颅底病变都切除掉,因为病变太广泛了。这位患者2015年手术前,视神经周围已经长满了病变,与三年前相比蝶窦也都充满了。我们采用额颞入路,从硬膜外处理视神经时,我们沿着硬膜外先找到眼眶,把眼眶后部打开后沿着眼眶往后面磨,就不至于直接磨到视神经管了,因为骨纤维病变特别广泛,包裹住了视神经,如果直接去暴露视神经管,很容易用磨钻就把视神经磨坏了。这类手术一般开颅时间很长,因为病变累及颅骨,常比正常颅骨厚3-4倍,而且通常骨质比较硬。减压后能够发现的视神经又薄又长,所以患者出现视力下降的症状。开颅的视神经减压我们都是在硬脑膜外操作,不影响脑组织,在硬膜外把眶上裂和前床突的病变都去除掉,这样减压的范围很充分。手术的主要目的是防止视力进一步下降。本例手术后,患者眼球活动没有问题,外观也没有问题。(见视频)本例手术采用右侧额颞入路,骨瓣拿下来之后,打开眼眶后沿着眼眶往后去就都是病变,病变非常厚,要拿着磨钻一点点磨,磨的过程中一直要喷水,就像雕刻一样从“石料”中把神经显露出来,最后把神经鞘上表面的病变一点点去掉。手术时间通常很长,有时候开颅就要两个小时。骨纤维特别硬的情况下,我们一个手术要用2-3个磨钻头。主刀一手拿磨钻一手拿吸引器,要磨到视神经表面上一层蛋壳样薄骨,过程中助手不停喷水,喷水的目的一是降温,一是对视神经的保护。手术要点 :(从硬膜外做骨纤维异常增殖症的视神经减压)1、先要找到视神经,因为病变把视神经包的很厉害,没有解剖的标志,所以我们一般主张从眶上裂和框尖进入,然后沿着暴露出的软组织,再往内侧找到视神经。在磨除的过程中一定要小心,但该快的时候快,如果一开始就慢也不行,因为病变特别广泛。2、对视神经的保护,磨钻的力度等要掌握好,有些患者在手术后失明了,很大原因就是术中没有保护好视神经。3、减压充分,要尽可能切除视神经周围的病变,包括蝶窦里和前床突的部分的病变都要切掉,以此尽量延缓病变复发时间。术者简介康军,教授,主任医师,首都医科大学附属北京同仁医院神经外科主任,医学博士,博士后。中华医学会神经外科分会微侵袭与内镜学组委员,中华医学会北京市神经外科分会委员,中国医师协会北京市神经外科分会常委及常务理事,世界华人神经外科学会委员,中国医师协会神经内镜专业委员会委员,中国医师协会神经创伤培训委员会委员,中国医疗保健国际交流促进会脑健康分会副主任委员,中国医疗保健国际交流促进会颅底外科分会委员,中国神经科学学会神经肿瘤分会、神经创伤分会委员,中国垂体瘤协作组委员。从事神经外科专业23年,主要从事内镜神经外科、颅底疾病和功能神经外科的临床与研究工作。在复杂颅底沟通性病变,鞍区肿瘤,复杂颅面创伤,视神经损伤,复杂脑脊液漏等疾病的诊疗上具有丰富的经验和较高的水平。以第一作者发表论文20余篇,负责北京市科委课题2项,完成国家自然科学基金青年基金和面上项目各1项。参编参译著作8部。相关报道:[第79期专访]同仁医院康军: 颅脑创伤中被忽视的视神经损伤如何减压治疗 同仁神外已积累1000例以上病例既往治疗情况患者邱XX,女,14岁,在外院开颅骨纤维术后3年,右眼视力下降伴随眼痛6月余。患者在2012年7月无明显诱因出现左眼视力下降,就诊于当地医院,诊断为“颅底骨纤维异常增殖症”,于该院行开颅骨纤维切除术,术后病理支持“颅底骨纤维异常增殖症”诊断。2015年4月患者无明显诱因出现右眼疼痛、无头痛头晕、恶性呕吐等其他不适,患者就诊于当地医院,检查提示右眼视力0.6,2015年10月患者哭泣后右眼疼痛再次发作,于当地医院检查视力已经下降至0.5。现患者为求进一步诊治,以“颅底骨纤维异常增殖症”收入北京同仁医院神经外科。2012年7月2012年7月术后2012年9月术后2013年9月同仁神外术前检查2015年10月右-左 同仁神外手术及术后资料右-左关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。
  • 科学家发现同时具备两种DNA修复功能的新蛋白靶点
    人类每天在辐射、雾霾等各种外部环境及细胞代谢产物等内源因素影响下,生命的核心DNA会受到不同程度的损伤,其中DNA双链断裂(DNA double-stranded breaks, DSBs)是损伤中最为严重的一种。同时,生命也无时无刻不在自我修复,而其不正确的修复会促进癌症的发展。针对如何准确修复DSBs的研究备受关注。  近日,英国弗朗西斯克里克研究所和美国纪念斯隆-凯特琳癌症中心的联合研究团队发现了一个同时具备两种DNA修复功能的新蛋白靶点。HELQ是一种超家族2解旋酶,该蛋白的缺陷会导致小鼠体内生殖细胞的丢失,增加对卵巢和垂体肿瘤的易感性。通过生物化学分析、单分子成像和细胞试验,该研究团队证实HELQ 是利用内在易位酶和 DNA 链退火活性的辅因子依赖性调节参与DSB的修复,且该功能受RAD51蛋白和RPA蛋白的调控。相关研究结果以“HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51”为题发表在《Nature》杂志上。  注:此研究成果摘自《Nature》,文章内容不代表本网站观点和立场。  论文链接:https://www.nature.com/articles/s41586-021-04261-0
  • 肿瘤微环境调节免疫细胞功能机制获揭示
    p   华中科技大学科研团队揭示了肿瘤微环境中肿瘤细胞与免疫细胞相互调节机制。《临床研究杂志》近日在线发表了该成果。 /p p   近年来,随着肿瘤免疫治疗,特别是Car-T细胞免疫治疗技术和免疫节点治疗在临床上的成功,深入研究肿瘤微环境对免疫细胞功能的调节机制具有重要的基础研究意义。 /p p   华中科技大学基础医学院免疫学系杨想平团队的研究发现,在小鼠模型中,皮下移植的肿瘤细胞在小鼠中生长更快,尾静脉注射的肺腺癌肿瘤细胞向肺转移结节在小鼠中明显增多,血管增多,巨噬细胞向促肿瘤表型极化增强。 /p p   杨想平团队和病理系王国平团队合作发现,在人的临床肺腺癌患者组织中,肿瘤细胞能通过其代谢产物调控巨噬细胞囊泡水解酶表达,从而使肿瘤相关巨噬细胞在肿瘤微环境中编程重组为促进肿瘤生长的免疫细胞。 /p p   该研究还发现囊泡水解酶表达高低可作为肺腺癌重要的预后标志,因此具有重要的临床意义。 /p p /p
  • 马光辉院士/魏炜研究员团队开发工程化细胞外囊泡治疗胶质母细胞瘤
    通过交叉科学研究,提出并发展生物医学前沿新技术,是提高重大疾病治疗效果的重要手段。胶质瘤是发病率和死亡率最高的中枢神经系统肿瘤,其中胶质母细胞瘤(GBM)是最恶性的肿瘤,也被称为“癌中之王”。临床上治疗GBM以外科手术为主,同时辅助放化疗,但是效果非常有限;以手术和替莫唑胺联合治疗为例,5年生存率小于5%。因此,亟需开发新型高效的GBM治疗策略。 GMB治疗棘手的原因主要有三方面。首先, 血脑屏障(BBB) 的存在阻止了药物进入中枢神经系统,需要发展更有效的药物递送策略;其次,单一化疗药物的使用易导致耐药性的产生,需要联合新的肿瘤杀伤手段;另外,GBM具有复杂的肿瘤微环境,对其快速生长和向周围组织的浸润起到重要作用,在治疗的过程中不容忽视。 近日,中科院过程工程所生化工程国家重点实验室 魏炜 研究员、 马光辉 院士、深圳市第二人民医院 李维平 教授,作为共同通讯作者 在 Signal Transduction and Targeted Therapy 期刊发表了题为: Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects 的研究论文。 该研究基于工程化细胞外囊泡发展了“ 免疫调控-化学动力-乏氧激活 ”多级联动的治疗新策略,为胶质母细胞瘤的治疗带来了新思路。针对胶质母细胞瘤治疗难题,过程工程所生化工程国家重点实验室基于具有定向趋化能力的巨噬细胞的细胞外囊泡 (EVs) 和工程化的设计,提出了“免疫调控-化学动力-乏氧激活”多级联动的治疗新策略,并联合深圳市第二人民医院交叉合作,进行了个体化创新药物制剂的研发。 研究团队首先基于胶质瘤患者的临床样本和小鼠模型进行了免疫组化的研究,发现胶质瘤恶性程度越高,肿瘤组织中浸润的M2型巨噬细胞/M1型巨噬细胞的比例也相应更高,并且这些巨噬细胞大多来源于外周血。在此基础上,研究团队提出了以M1巨噬细胞EVs作为载体,一方面可以利用M1巨噬细胞的趋化特性在GBM部位大量蓄积,另一方面可以通过调控巨噬细胞表型实现GBM微环境的免疫调控。图1 胶质瘤样本中巨噬细胞的表型及其来源分析:a. 胶质瘤患者临床样本中巨噬细胞表型分析示意图;b. 不同级别胶质瘤中M1、M2和Ki67(细胞增殖指标)的分析;c. 基于TCGA数据库分析不同级别胶质瘤中M2/M1比例;d. 基于TCGA数据库分析胶质瘤患者瘤内M2/M1比例与生存曲线的关系;e. GBM组织中小胶质细胞和M1巨噬细胞的共定位分析;f. 免疫荧光染色分析GBM组织中小胶质细胞和M2巨噬细胞的共定位;g. 小鼠胶质瘤样本中巨噬细胞表型分析示意图;h. 在不同胶质瘤细胞系(U87MG、G422和GL261)中M1、M2和Ki67的分析;i. 免疫荧光染色分析不同鼠胶质瘤组织中小胶质细胞和M1或M2巨噬细胞的共定位情况;图中标尺均为50 μm 研究团队进一步在M1EVs的细胞膜和内腔差异化装载了化学激发分子对 (CPPO和Ce6) 以及乏氧药物 (AQ4N) ,以此将肿瘤微环境调控、化学激发动力学及肿瘤乏氧治疗合理有序地集成于M1EVs递送系统中。上述仿生剂型 (CCA-M1EVs) 静脉注射后,M1EVs可以携带上述组分穿过BBB进入GBM病灶,进而实现多级联动治疗:M1EVs调控免疫微环境产生大量过氧化氢,从而激发CPPO和Ce6生成自由基 (ROS) ,同时该反应消耗氧气激活细胞毒性药物AQ4N。借助上述作用的协同,在小鼠原位胶质瘤模型和患者来源的 (PDX) 模型上显著抑制了疾病的进程,大幅延长了生存期。图2 基于M1EVs的仿生剂型构建方案、抗肿瘤机制及PDX疗效:a. 仿生剂型的构建示意图;b. 仿生剂型在GBM模型中的累积及免疫调节、化学激发动力学和乏氧触发化疗的协同作用示意图;c. 基于光声成像分析仿生剂型在PDX小鼠GBM病灶中的累积;d. 各组PDX小鼠的抑瘤效果(20天核磁成像);e. 各组PDX小鼠的生存期分析;f. 各组PDX小鼠的TUNEL分析(标尺50 μm) 十余年来,过程工程所生化室魏炜研究员和马光辉院士创制了一系列仿生递送新剂型,利用其体内的天然路径和属性,在动物模型上成功用于肿瘤、传染病、炎症性疾病的防治,并且部分剂型已通过医院伦理批准进入个体化临床前和临床研究。 深圳市第二人民医院 王晓君 博士和丁辉博士为该论文的共同第一作者,中科院过程工程所生化工程国家重点实验室魏炜研究员、马光辉院士和深圳市第二人民医院李维平教授为共同通讯作者。论文链接 : https://www.nature.com/articles/s41392-022-00894-3
  • 单细胞技术之肿瘤免疫微环境研究应用|含肿瘤微环境会议预告
    肿瘤异质性对癌症预后和治疗反应有显著影响。传统的基因组和转录组分析被广泛用于研究不同的癌症类型,在预测预后和对不同治疗的反应以及为癌症治疗提供靶点方面具有潜在作用。不同癌症类型的单细胞分析表明,肿瘤免疫微环境的详细信息在多种癌症类型之间共享。目前,自从发现检查点抑制剂以来,免疫治疗彻底改变了癌症治疗并引起了越来越多的关注。肿瘤免疫微环境由非细胞成分(血管、细胞外基质、信号分子等)和细胞成分(T细胞、髓细胞、成纤维细胞等)组成。尽管传统的基因组和转录组学分析,也强调免疫相关途径和计算方法,并已应用于预测免疫细胞成分,但技术限制阻碍了时间的精确表征。传统的批量基因组和转录组分析获得的信号均来自不同细胞,掩盖了特定细胞类型和状态的识别。原位杂交和免疫组织化学已被用于探索单个细胞的基因组、转录组和蛋白质组学特征,但其产量相对较低。流式细胞术能够分析数千或数百万个单细胞蛋白质组学图谱;然而,这些方法需要事先选择感兴趣的抗体。随着细胞分离和测序技术的突破,单细胞转录组测序已经能够在单次运行中在单细胞水平上对许多细胞进行无偏好的全基因组分析。单细胞转录组测序已被用于分析单个细胞的转录组学,用于解析细胞间的异质性。肿瘤免疫微环境在诊断、治疗和预测不同类型癌症的预后方面显示出了潜力。与传统方法相比,scRNA-seq可用于识别新的细胞类型和相应的细胞状态,加深了我们对肿瘤免疫微环境的理解。1.介绍了scRNA-seq的原理,并比较了不同的测序方法。2.根据肿瘤免疫微环境中新的细胞类型、持续的过渡状态以及肿瘤免疫微环境成分之间的相互通讯网络找到了癌症的预后预测和治疗的潜在靶点。3.总结出在肿瘤免疫微环境中应用scRNA-seq后发现的由癌症相关成纤维细胞、T细胞、肿瘤相关巨噬细胞和树突状细胞组成的新型细胞簇。4.提出了肿瘤相关巨噬细胞和耗尽的T细胞的发生机制,以及中断这一过程的可能靶点。5.对肿瘤免疫微环境中细胞相互作用的干预治疗进行了总结。几十年来,肿瘤免疫微环境中的细胞成分定量分析已被应用于临床实践,预测患者生存率和治疗反应,并有望在癌症的精确治疗中发挥重要作用。总结目前的研究结果,我们认为单细胞技术的进步和单细胞分析的广泛应用可以导致发现癌症治疗的新观点,并应用于临床。最后,作者提出了肿瘤免疫微环境研究领域的一些未来方向,并认为通过scRNA-seq对这些方向进行辅助。相关会议预告:8.30召开,点击报名scRNA-seq在刻画肿瘤免疫微环境中的应用scRNA-seq技术进展scRNA-seq程序主要包括单细胞的分离和提取、cDNA合成、核酸扩增、测序和数据分析。与传统的批量测序相比,scRNA-seq单个细胞中的RNA量相对较少。因此,需要更有效的扩增方法。研究人员已经成功建立了稳定的单细胞文库构建过程,以产生足够的cDNA用于测序。单细胞分离和捕获是scRNA-seq在不同方法中的基本程序。目前单细胞分离和捕获的常用方法。这些程序分为四大类:激光捕获微切割、油滴包裹技术、流式细胞荧光分选技术和微流控微孔技术。scRNA-seq技术的未来发展可能会降低成本并增加细胞产量,使scRNA-seq成为研究单个细胞转录组的标准工具。肿瘤免疫微环境的细胞成分肿瘤免疫微环境的细胞成分包括淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)、成纤维细胞和其他免疫细胞。成纤维细胞传统上被归类为基质细胞,因为它们在构建细胞外基质中发挥着重要作用。在这里,作者将肿瘤免疫微环境的癌相关成纤维细胞包括在内,因为它们分泌丰富的促炎和抗炎因子来重塑免疫微环境。细胞毒性CD8+T细胞识别肿瘤细胞上的特异性抗原并随后消除它们,是免疫微环境最常见和最有效的免疫细胞。CD8+T细胞的细胞毒性功能依赖于CD4+T Th1细胞。其他CD4+T细胞,包括Th2细胞和Th17细胞,也促进肿瘤微环境中的免疫反应。调节性T细胞抑制肿瘤免疫微环境并加剧肿瘤进展。自然杀伤T细胞和自然杀伤细胞也参与其中。它们的受体识别肿瘤细胞,从而激活其他免疫细胞。作为先天免疫的重要组成部分,骨髓细胞,包括肿瘤相关巨噬细胞和树突状细胞,在肿瘤免疫微环境中发挥着重要作用。巨噬细胞通常分为促炎M1和抗炎M2表型。肿瘤相关巨噬细胞主要由M2巨噬细胞组成,通过产生生长因子和细胞因子促进肿瘤生长、肿瘤存活和血管生成。DC对于T细胞的抗原呈递至关重要,连接先天免疫和适应性免疫。癌症相关成纤维细胞在肿瘤免疫微环境中维持增殖和分泌调节因子,可分为炎症性CAF和肌纤维母细胞CAF。炎症性CAF具有较高的细胞因子和趋化因子分泌,而肌纤维母细胞CAF高度表达收缩蛋白,成纤维细胞对免疫微环境起相互抑制作用。研究表明,成纤维细胞募集M2巨噬细胞和调节性T细胞,抑制肿瘤微环境中的免疫反应。肿瘤相关成纤维细胞也被发现在某些情况下会支持抗肿瘤免疫。除了分泌抗体,B细胞还通过产生与T细胞相互作用的细胞因子参与细胞免疫。研究表明,B细胞抑制细胞毒性T细胞并诱导CD4+T细胞分化为调节性T细胞。B细胞也是最近引入的三级淋巴结构的重要组成部分,富含B细胞的三级淋巴结构与各种肿瘤的生存和免疫治疗反应有关。先前的研究强调了细胞成分在时间中的重要作用。然而,免疫细胞的鉴定常基于有限的细胞标记,并借助免疫组织化学。个体免疫细胞的转录组图谱是探索不同免疫细胞及其相应功能所必需的。为了理解细胞进化过程及其决定因素,有必要应用scRNA-seq观察每个细胞的转录动态。利用scRNA-seq探索免疫微环境的新发现聚类和注释对于解释scRNA-seq数据探索至关重要。根据细胞相似性对数据进行划分,挑战在于在不提供先验知识的情况下估计固有的簇数或密度。可能的解决方案是采用分层聚类方法来揭示细胞的分层结构,这也与细胞本体相一致。给定聚类方法产生的数据划分结果,需要细胞类型注释来提供生物学意义。注释的主要挑战是确定每个聚类中存在多少细胞类型,以及是否存在当前未发现的细胞类型。在实践中,研究人员通常首先识别每个聚类的标记基因,然后根据专业知识和文献对其进行注释。scRNA-seq使研究人员能够以更高的分辨率将免疫细胞分类为具有不同功能的亚群,描述了免疫细胞的常规亚型。利用scRNA-seq发现的淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)和成纤维细胞的组成(图2)。人和小鼠样本的scRNA-seq表明,成纤维细胞可分为抗原呈递CAFs、癌症相关成纤维细胞或肌成纤维细胞。抗原提呈CAFs独特地表达主要组织相容性复合体(MHC)II类基因,包括激活CD4+T细胞的CD74。在结直肠癌中也观察到类似的抗原提呈CAFs亚群。乳腺癌症基因工程小鼠模型中成纤维细胞的scRNA-seq进一步鉴定了血管CAF、基质CAF、发育CAF和循环CAF。血管CAF、基质CAF和发育CAF似乎起源于固有成纤维细胞和恶性细胞发生上皮-间充质转化时的血管周围位置。循环CAF是血管CAF群体中增殖的部分。在其他小鼠模型中也发现了血管CAF和基质CAF,它们在患者乳腺肿瘤样本中是保守的,并且发现它们会增加乳腺癌症细胞的转移。提高CAF的分辨率为开发精确靶向CAF的药物提供了生物标志物。另一项关于乳腺癌症的scRNA-seq研究将调节性T细胞分为五类:共表达细胞毒性T淋巴细胞相关抗原-4的调节性T细胞、具有Ig和ITIM结构域的T细胞免疫受体,以及相互或仅表达相同基因的GITR和其他调节性T细胞,它们具有不同的功能。不同预后的患者具有不同比例的调节性T细胞簇,为个性化治疗提供了靶点。免疫微环境对T细胞和髓细胞进行了更详细的泛癌研究,发现存在颗粒酶K+T细胞、干扰素刺激基因+T细胞、杀伤细胞免疫球蛋白样受体在记忆性T细胞和NK细胞上表达、转录因子7+CD8+T细胞,ficolin 1+常规DC2、分泌性磷酸蛋白1+TAM,以及肿瘤微环境中的叶酸受体β+TAMs。基于scRNA-seq数据,免疫微环境还发现了新的免疫细胞亚群。葡萄膜黑色素瘤的scRNA-seq鉴定了以前未识别的细胞类型,包括主要表达检查点标记LAG3而不是程序性死亡-1或CTLA-4的CD8+T细胞。同时,在肝细胞癌中发现浸润耗尽的CD8+T细胞和具有高表达layilin的记忆T细胞的克隆富集,这些研究为癌症免疫治疗提供了新的靶点。因为CD8+T细胞是参与消除恶性细胞的主要成分。大肠癌CXC基序趋化因子的scRNA-seq鉴定配体BHLHE40+Th1样细胞与干扰素-γ调节转录因子BHLHE40。在不稳定肿瘤中,这些细胞对免疫检查点阻断有良好的反应,可能会提高免疫疗法的疗效。树突状细胞对于呈递抗原以激活肿瘤免疫微环境中的T细胞是必不可少的。胃癌的scRNA-seq揭示了一个新的树突状细胞簇,表达吲哚胺2,3-双加氧酶1和趋化因子C–C基序趋化因子配体(CCL)22、CCL17、CCL19和白细胞介素-32,它们参与T细胞的募集。胰腺导管腺癌的scRNA-seq还鉴定了除了常规细胞标记物之外还高表达吲哚胺2,3-双加氧酶1的树突状细胞簇。吲哚胺2,3-双加氧酶1对于催化色氨酸消耗和犬尿氨酸产生、抑制T细胞增殖和细胞毒性至关重要,这揭示了树突状细胞和T细胞之间的密切相互作用。此外,通过scRNA-seq鉴定了溶酶体相关膜蛋白3+树突状细胞,并且似乎是经典树突状细胞族的成熟形式。溶酶体相关膜蛋白3+DC可以迁移到淋巴结,并高度表达与T细胞相互作用的配体。这些表达特异性标记物的新型树突状细胞簇的发现为癌症免疫治疗提供了一个新的视角。使用scRNA-seq在肺腺癌中发现了肿瘤相关巨噬细胞的新特征基因,包括髓系细胞触发受体2、CD81、具有胶原结构的巨噬细胞受体和载脂蛋白E。此外,乳腺癌症的scRNA-seq表明,除了M2型基因如CD163、跨膜4域A6A和转化生长因子β1外,血管生成因子纤溶酶原激活剂、尿激酶受体和IL-8也在肿瘤相关巨噬细胞中表达。肿瘤相关巨噬细胞中这些新的基因特征图谱与患者生存相关,并为癌症治疗提供了新的潜在靶点。肿瘤样本scRNA-seq显示,一个肿瘤相关巨噬细胞亚群呈现出SPP1、巨噬细胞清除剂受体MARCO和MHC II类基因的高表达。MARCO和SPP1是巨噬细胞激活中的抗炎和免疫抑制信号,而MHC II类基因与促炎功能有关。其他scRNA-seq研究表明,肿瘤相关巨噬细胞经常同时具有促炎和抗炎特征。这一现象表明,肿瘤微环境中的巨噬细胞活化与传统的M1/M2极化不一致。图2:利用scRNA-seq揭示免疫微环境中的新的免疫亚群单细胞数据揭示免疫细胞进化大多数免疫细胞都处于细胞发育过程中。大量的免疫细胞处于发育轨迹的瞬态状态,而不是分化良好的细胞的离散状态。借助scRNA-seq和深入分析,研究人员可以探索分化细胞的特征、特定细胞类型的转变及其可能的机制。最常用的计算方法是拟时序分析。轨迹描述了细胞的发育过程,其特征是基因表达的级联变化。分支点代表细胞分化的显著差异。各种机器学习计算方法已被用于构建轨迹,包括Monocle3、DTFLOW、DPT、SCORPIUS和TSCAN,这些方法已在单独的综述中进行了评估和比较。由于肿瘤相关巨噬细胞和T细胞代表了免疫微环境中最丰富的免疫细胞类型,这里主要关注这两种细胞类型。scRNA-seq显示,TAMs经常共表达M1基因,包括TNF-α和M2基因,如IL-10,并且肿瘤相关巨噬细胞的分化和状态与其抗肿瘤作用直接相关。拟时序轨迹分析证实,肿瘤相关巨噬细胞在M1和M2表型之间连续转换。转录因子IRF2、IRF7、IRF9、STAT2和IRF8似乎在决定TAMs分化中很重要,并可作为表观遗传学靶点诱导肿瘤相关巨噬细胞的M1极化,从而产生促炎和抗肿瘤的微环境。使用环境刺激和抗原T细胞受体(TCR)刺激测定T细胞表型。不同状态的细胞之间TCR库的重叠,即TCR共享,也可用于研究T细胞的进化。结合scRNA-seq和TCR追踪在结直肠癌中发现20个具有不同功能的T细胞亚群。在黑色素瘤肿瘤的耗竭T细胞中发现了28个基因的耗竭特征,包括TIGIT、TNFRSF9/4-1BB和CD27,并且在大多数肿瘤的高耗竭细胞中也被发现上调。另一项关于T细胞的研究进一步鉴定了CD8+T细胞中的其他耗竭标记物,如LAYN、普列可底物蛋白同源物样结构域家族A成员1和突触体相关蛋白47。拟时序轨迹分析表明,T细胞在时间上处于连续激活和终末分化(衰竭)状态(图3)。已经进行了额外的研究来研究耗尽的T细胞的进化和逆转T细胞耗尽的潜在靶点。scRNA-seq与TCR分析相结合表明,功能失调的衰竭T细胞和细胞毒性T细胞可能在时间上与发育有关。因此,研究集中在CD8+T细胞从效应细胞到衰竭T细胞的过渡过程。scRNA-seq鉴定出两个CD8+T细胞簇为非小细胞肺癌中预先耗尽的T细胞。在肺腺癌中,预先耗尽与耗尽的T细胞比率与更好的预后相关。因此,在耗尽前中断预先耗尽的T细胞可能对癌症免疫治疗至关重要。由于免疫细胞和恶性细胞之间的密切相互作用,恶性细胞的进化在免疫细胞进化中也起着至关重要的作用。拟时序轨迹分析表明,转移性肺腺癌的轨迹分支不同于向纤毛细胞和肺泡型细胞的正常分化。受恶性细胞进化的影响,正常的骨髓细胞群体被单核细胞衍生的巨噬细胞和新型树突状细胞取代。T细胞也被发现会衰竭,从而构建免疫抑制的肿瘤微环境。同样,另一项研究表明甲状腺癌症细胞来源于乳头状甲状腺癌症细胞亚簇,其中构建了不同的肿瘤免疫微环境,导致预后显著恶化。图3:肿瘤相关T细胞和巨噬细胞的进化过程免疫微环境中不同细胞间的通讯网络免疫微环境上的细胞通讯与肿瘤进展有关。配体-受体相互作用是一种重要的细胞通讯类型,对于构建免疫微环境和识别潜在的治疗靶点至关重要。scRNA-seq是在细胞基础上进行的,这使得研究未发现的细胞相互作用变得可行。已经开发了许多基于scRNA-seq数据研究配体-受体相互作用的分析工具,包括iTALK、CellTalker和CellPhoneDB。这些工具利用了已知配体-受体对相互作用的数据库。其中,CellTalker利用差异表达的基因,而CellPhoneDB包括配体和受体的亚基结构。其他工具,如NicheNet,也考虑了受体细胞下游通路的变化。在肿瘤进展过程中,恶性细胞导致免疫细胞的募集和功能障碍,从而相互影响肿瘤的发生和恶性细胞的进化,形成恶性循环(图4)。发现TAMs通过表皮生长因子受体-双调节蛋白配体受体对与恶性细胞相互作用。在基底样乳腺癌细胞系中AREG的调节导致抗炎TAMs的招募。同时,基于scRNA-seq,发现了一种EGFR相关的反馈回路可促进胰腺腺鳞癌的进展。来源于TAMs的抑瘤素M也与其在恶性细胞上的受体相互作用,以激活信号转导子和转录激活子3。研究人员通过整合素受体与胶原蛋白、纤维连接蛋白、血小板反应蛋白1配体和富含亮氨酸重复序列的G蛋白偶联受体4-R-反应蛋白3的相互作用,发现CAF与胃癌细胞之间的通信,这些配体调节干细胞。此外,胰腺导管腺癌的scRNA-seq揭示了TIGIT与T细胞和NK细胞中的甲型肝炎病毒细胞受体2之间的相互作用,以及它们在恶性细胞中的相应配体PVR和LGALS9,导致免疫细胞功能障碍和胰腺癌症进展。因此,基于单细胞数据探索免疫细胞和恶性细胞之间的细胞相互作用提供了可能治疗靶点,以打破肿瘤进展的恶性循环。除了恶性细胞外,scRNA-seq和随后的分析还预测了免疫细胞之间在时间上的相互作用,这表现出相反的功能(图3)。例如,研究发现TAM降低了CXCL12-C-X-C基序趋化因子受体3和CXCL12-CXCR4的相互作用,增强了鼻咽癌细胞毒性T细胞和Tregs之间的CD86-CTLA-4相互作用,导致肿瘤免疫微环境加重癌症进展。此外,CAFs通过分泌CXCL12募集Tregs,并通过periostin与M2巨噬细胞相关。图4:免疫微环境中的细胞通讯网络基于scRNA-seq的肿瘤免疫微环境的临床应用和潜在靶点几十年来,临床实践中一直采用时间的量化来预测患者的生存率和对治疗的反应。利用免疫组化分析的免疫评分,量化肿瘤中的原位免疫细胞浸润。与传统的免疫评分相比,scRNA-seq在免疫微环境上提供了前所未有的渗透免疫细胞分辨率。已经鉴定出与预后相关的新的免疫细胞簇。例如,在早期复发的肝细胞癌中发现了一种独特的低细胞毒性先天性样CD8+T细胞表型。这些T细胞过表达KLRB1,同时下调共刺激和耗竭相关分子,包括肿瘤坏死因子受体超家族、成员9、CD28、诱导型T细胞共刺激因子、TIGIT、CTLA-4和HAVCR2。这种T细胞簇的浸润与癌症的不良预后相关。此外,基于scRNA-seq的细胞相互作用也被计算在预测模型中。基于细胞间通讯相关基因构建了机器学习模型,以预测肺腺癌的复发。将八个细胞间通讯相关基因和患者的临床信息相结合,获得了0.841的受试者-操作者特征曲线下面积。除了预后预测外,肿瘤免疫微环境中独特的细胞相互作用也与免疫疗法的反应有关。scRNA-seq分析发现,抗PD-1治疗的应答者和非应答者之间存在不同的细胞-细胞通信网络,有可能预测患者对抗PD-1疗法的反应。因此,在scRNA-seq的帮助下,可以更准确地预测患者的预后和对免疫疗法的反应。利用scRNA-seq在精准医学中具有启发性,例如帮助靶向治疗克服耐药性。例如,医生在使用替比法尼治疗的非CR肌肉浸润性膀胱癌症患者治疗前后应用患者衍生异种移植物的scRNA-seq。在治疗后的PDX中发现PD-L1的上调,并降低了免疫细胞的抗肿瘤作用。因此,选择了用PD-L1抑制剂进行额外治疗。随后,患者获得了良好的反应。此外,在单药耐药性肿瘤中,通过scRNA-seq鉴定了新的免疫亚型。用抗集落刺激因子1受体阻断TAMs不能减少胆管癌的肿瘤进展。scRNAs-eq鉴定了表达APOE的粒细胞髓系衍生抑制细胞的补偿富集,其介导T细胞抑制。TAMs和粒细胞性骨髓源性抑制细胞的双重抑制与抗CSF1R和抗淋巴细胞抗原6复合物、基因座G治疗联合增强了小鼠的免疫检查点阻断效果小鼠模型,这在临床实践中很有前景。除了治疗耐药肿瘤外,scRNA-seq在免疫微环境上的应用也突出了需要进一步研究的潜在新靶点。T细胞是免疫微环境中去除恶性细胞最重要的免疫细胞。然而,在不同的肿瘤中,耗尽的CD8+T细胞会导致不利的预后。除了众所周知的免疫抑制检查点外,scRNA-seq还鉴定了高表达内皮前体蛋白、酪氨酸酶相关蛋白1和内皮素受体B型的耗尽CD8+T细胞,这些细胞可以作为新的潜在靶点。髓细胞是免疫微环境招募免疫细胞所必需的。通过scRNA-seq鉴定TREM2/APOE/补体组分1,q亚组分阳性巨噬细胞浸润为透明细胞肾癌复发的预后生物标志物。另一项研究证实,小鼠中靶向TREM2的抗体与缺乏MRC1+和CX3CR1+巨噬细胞以及表达免疫刺激分子的髓系簇的扩增有关,这促进了T细胞反应并导致更好的预后。细胞相互作用也可以用作治疗靶点。肝内胆管癌的scRNA-seq揭示了血管CAFs与肝内胆管细胞之间的串扰。血管CAFs分泌的IL-6诱导Cajal间质细胞细胞的表观遗传学改变,从而增强恶性肿瘤。因此,IL-6信号在Cajal间质细胞的中断变得非常有趣。表1总结了scRNA-seq显示的癌症治疗的潜在靶点。表1:scRNA-seq显示的癌症治疗的潜在靶点总结scRNA-seq可以绘制全面的肿瘤免疫微环境细胞图谱,为各种肿瘤的临床应用提供了新的视角。此外,免疫微环境的细胞成分和通讯为癌症治疗提供了潜在靶点,并有助于精确医学的发展。技术的进步和单细胞分析的广泛应用可以发现癌症治疗的新观点,助力临床研究。作为突破性的新技术,单细胞分析技术有望逐渐取代传统的整体样本二代测序。单细胞分析技术在临床和药物开发方面的应用前景更为广阔,可以代替或补充分子、细胞和组织病理检测的现有技术,也可以用于新兴的细胞治疗。
  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制