当前位置: 仪器信息网 > 行业主题 > >

甲基丙醇标准品

仪器信息网甲基丙醇标准品专题为您提供2024年最新甲基丙醇标准品价格报价、厂家品牌的相关信息, 包括甲基丙醇标准品参数、型号等,不管是国产,还是进口品牌的甲基丙醇标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基丙醇标准品相关的耗材配件、试剂标物,还有甲基丙醇标准品相关的最新资讯、资料,以及甲基丙醇标准品相关的解决方案。

甲基丙醇标准品相关的论坛

  • 3-甲基丙醇

    我用GC-FID测芝麻香型白酒中的3-甲基丙醇,为何检不到?请指点。

  • 我国有棒曲霉素和氯丙醇的限量标准吗?

    我国有棒曲霉素和氯丙醇的限量标准吗?

    2012年9月3日,新加坡发布2012年食品法规。新的食品法规对食品中棒曲霉素和氯丙醇的限量做了规定:http://ng1.17img.cn/bbsfiles/images/2012/10/201210092141_395625_1641058_3.jpg我国有这方面的限量标准吗?

  • 异丙醇,甲基叔丁基醚的有效碳数。

    最近在做实验,需要计算手动校正因子。关于有效碳数的计算。想问问大家,异丙醇,甲基叔丁基醚,甲醛,乙醛,丙烯酸,叔丁醇的相对校正因子的计算。望大家给解答下,谢谢。

  • 寻找电子级别异丙醇的国家标准

    现在我们公司准备在做高纯度的异丙醇项目,作为技术部在找国家在高纯度异丙醇方面的标准资料作为参考。还设有就是国家标准查询的网站和机构有的话帮忙分享一下。

  • 【原创大赛】食品中3-氯丙醇测定方法简介

    [align=center][b]食品中3-氯丙醇测定方法简介[/b][/align][align=center][b] [/b][/align]氯丙醇最初是在酱油中被发现的,传统方法制作酱油这些调味品过程中,添加不安全的酸来水解植物蛋白时能够产生一定量的氯丙醇。而氯丙醇在食品中分游离态和酯态两种形态,食用油中的氯丙醇主要是以氯丙醇酯的形式存在,且主要是3-氯丙醇酯,很少以游离的形式出现(20 μg/kg)。鉴于氯丙醇的危害性严重,许多国家制定了限量标准来控制食品中该污染物的含量,食品中氯丙醇的残留量仅限于酸水解蛋白调味品,而食用油脂中氯丙醇的残留量并没有限量规定。目前,食用油脂中3-MCPD酯的检测方法分为间接法和直接法。间接法指将各3-氯丙醇酯(sn-1,3-氯丙醇单酯、sn-2,3-氯丙醇单酯和3-氯丙醇双酯)通过酯交换反应转化为游离态的3-MCPD,且该方法已经被广泛应用。直接法为不破坏3-MCPD酯的结构而直接检测其含量,目前多数是采用固相萃取柱净化、色谱分离质谱检测。两种分析方法都有自己的不足之处,间接法只能测定油脂中3-MCPD酯的交换产物3-MCPD的总量,不能区分油脂中原有的3-MCPD酯是单酯还是双酯,且间接法中的碱水解法会使得3-MCPD和缩水甘油互相转化,而酸水解法酯交换时间需16h,比较耗时。直接法测定需要通过高分辨率质谱仪,仪器价格昂贵,且需要各种3-MCPD酯的标准品,检测成本高。 2017年欧盟发布了食品中缩水甘油酯(GE酯)的限量要求,具体内容如下:面向消费者上市销售或用于普通食品配料的植物油脂(除婴幼儿食品和加工谷物制品)最大残留量为1000 μg/kg;用作婴幼儿食品和加工谷物制品的植物油脂配料最大残留量为500 μg/kg;而婴儿配方、较大婴儿配方和婴幼儿特殊医学用途配方食品分为粉体和液体两种形式,最大残留量分别为75 μg/kg和10 μg/kg(2019年6月30日前),50μg/kg和6.0 μg/kg(2019年7月1日后)。但是目前并没有相应的方法标准能够将缩水甘油酯的检测限降到欧盟的限量要求,因此,建立低含量缩水甘油酯检测方法至关重要。

  • 间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    [align=center][b]间三氟甲基苯丙醇和杂质I的分离[/b][/align]客户提供了间三氟甲基苯丙醇和相关杂质I,并反馈曾尝试使用反相C[sub]18[/sub]柱对两化合物进行分离,但未能得到基线分离结果。现客户希望本实验室选择合适色谱柱并对色谱条件进行优化,来实现间氟甲基苯丙醇和其相关杂质I的基线分离。首先,我们尝试使用中等极性的CAPCELLPAK C[sub]18[/sub] MGII色谱柱,在磷酸盐-乙腈体系中分析50 μg/mL的混标溶液及各单标溶液,通过调整流动相中水相和有机相比例为60:40时,50 μg/mL的混标溶液中,间三氟甲基苯丙醇和杂质I能实现基线分离,分离度为1.52(见图1)。同客户沟通,客户希望供试品溶液(当间三氟甲基苯丙醇浓度为1mg/mL,杂质I为1 μg/mL)中两化合物分离度大于1.50。[align=center][img=,422,132]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009027392_4941_2222981_3.png!w422x132.jpg[/img][/align][align=center][img=,656,427]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009243004_918_2222981_3.png!w656x427.jpg[/img][/align][align=center]图1 MGII分析混标及单标溶液结果[/align][align=left][img=,575,197]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009245664_7431_2222981_3.png!w575x197.jpg[/img][/align][align=left]在此实验基础上,进一步分析供试品溶液,结果发现由于间三氟甲基苯丙醇浓度过高,致使色谱峰展宽,杂质I与间三氟甲基苯丙醇的分离度下降,未能达到1.50的基线分离要求;进一步尝试通过升高柱温来改善分离度,结果如图2,在50°C时能够得到良好分离结果,分离度为1.59。[/align][align=left][/align][align=center][img=,650,418]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031030364182_5088_2222981_3.png!w650x418.jpg[/img][/align][align=center]图2 MGII分析混标及单标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,575,195]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031031319132_5141_2222981_3.png!w575x195.jpg[/img][/align][align=left][/align][align=left]为有更多的选择,我们也尝试了两款非C[sub]18[/sub]色谱柱,包括键合特殊官能团——金刚烷基的高极性色谱柱ADME和键合五氟苯基的PFP色谱柱。在使用PFP色谱柱分析50 μg/mL混标溶液时,发现两化合物峰重合,未能实现分离。但使用ADME分析混标溶液时,能够得到1.36的分离度(见图3)。[/align][align=left][/align][align=center][img=,620,423]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034384978_3594_2222981_3.png!w620x423.jpg[/img][/align][align=center]图3 PFP、ADME分析50 μg/mL混标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,552,214]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034366042_2199_2222981_3.png!w552x214.jpg[/img][/align][align=left][/align][align=left]尝试改善分离度,继续使用ADME色谱柱进行分析,通过降低有机相比例来延长保留,最终得到了1.50的分离度(见图4),与此同时对供试品溶液进行分析,发现由于主成分峰展宽未能得到基线分离结果(见图5)。[/align][align=left][/align][align=center][img=,658,430]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035399180_5905_2222981_3.png!w658x430.jpg[/img][/align][align=center]图4 ADME分析混标溶液结果[/align][align=center][/align][align=center][img=,657,435]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035148034_8911_2222981_3.png!w657x435.jpg[/img][/align][align=center]图5 ADME分析供试品溶液结果[/align]注: 峰上标数字为分离度。[align=left][img=,586,223]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035150115_8050_2222981_3.png!w586x223.jpg[/img][/align]

  • 用顶空进样气相色谱质谱检测土壤中的异丙醇,想做标准曲线但是异丙醇不出峰

    现在想用顶空做异丙醇的标准曲线,把异丙醇和乙酸乙酯、乙酸丙酯、乙酸丁酯做成了混标,参照土壤挥发性有机物HJ642标准设置的仪器条件,顶空进样器进样,平衡 温度80度,平衡时间30分钟,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪检测,试了几次结果都是乙酸乙酯、乙酸丙酯、乙酸丁酯出峰,异丙醇不出峰。但是手动进样到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]里4种都会出峰,所以真的太迷茫了。。。[img]https://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img]

  • 【求助】食品中三氯丙醇的测定

    各位,有没有用GB/T 5009.191-2006第一法(GCMS内标法)测定食品中三氯丙醇的啊?我遇到个技术问题。衍生后的内标和标准品在GCMS上的响应有很大的不确定性。即使是一个人同时间做的双样,内标的相应也会存在几倍甚至十倍的差异,导致定量结果也有很大的偏差。现在找不到引起这种偏差的原因。不知有没有有这方面经验的啊,能否分享一下。先谢过了。

  • 三氯丙醇就是酱油版的“三聚氰胺”吗?

    山西醋勾兑风波未完,酱油又被卷进来.近日,港媒曝出用水解植物蛋白等7种化合物可配制出可能致癌的"化学酱油",与酿造酱油从口味和质感都相差无几。  调味品协会负责人称,酿造酱油和配制酱油之分,不属于食品安全问题;而我们更想知道的,不是配制酱油是否属于食品安全问题,而是它安全不安全?7种化合物配制可产生致癌物,那它肯定不安全,既不安全,它不是食品安全问题,又是什么问题呢?  配制酱油的致癌风险,是因为人工配制过程中,大豆中所含的丙醇因酸水解而生成二类致癌物质三氯丙醇.北京一轻研究院研究员鲁绯表示,国家行业标准对三氯丙醇物质是规定有限量的,只要控制在限量范围内,就是安全的.专家的说法肯定是有科学依据的,我们应该相信科学,然而我们却无法相信生产者都能科学操作,也无法相信对国标执行的监管是百分之百负责任的.  限量范围内安全,它是一个放之四海而皆准的真理;三聚氰胺、瘦肉精,乃至砒霜,只要限量使用都应该安全,然而我们有没有能力控制这个"限量"却是个问题.美国等24个国家是允许饲料添加瘦肉精的,那是因为他们确信瘦肉精能够确保控制在标准内使用.而据说,我们国家严格禁止添加瘦肉精的主要原因,就是担心失控.滥用食品添加剂的问题空前严重,越来越没有底线的语境下,我们如何相信二类致癌物质三氯丙醇在配制酱油中会"限量使用"呢?而最令人不能接受的是:目前的酱油国标中并没有对三氯丙醇的限量规定,据说国家"正在考虑把对其限量写进去".难怪酱油协会人士瞪眼说"不属于食品安全问题".  终于明白:三氯丙醇,其实就是酱油里面的"三聚氰胺".二者都严重危害人体健康乃至夺命;三聚氰胺原来不也说无法检测吗,因为和现在酱油中的三氯丙醇一样,国家标准既没有限量一说,更没规定检测.  国家质检总局今年4月公布了对酱油的国家质量监督抽查结果,合格率在95.9%.然而所谓的"合格率95.9%"并不包括致癌物质三氯丙醇检测,就是说,不管酱油里含有多少致癌物,都可能被检测为"合格".而且,我们无法知道,各种食品中还有多少"三聚氰胺"和"三氯丙醇"逍遥于国家标准之外,非等到不幸被媒体曝料或业内人士良心发现,才会出现写进标准的"考虑"?然而,从揭地沟油教授、奶业协会人士被封口,以及醋业协会副会长被责令辞职的下场来看,今后再有人"良心曝料",可能要先作风险评估了.

  • 超净高纯电子化学试剂———异丙醇制备方法 !

    超净高纯电子化学试剂———异丙醇制备方法 梁 凯 (黑龙江省化工研究院,黑龙江 哈尔滨 150078) 摘 要:本文介绍了用含量98%的工业级异丙醇经过金属离子络合剂处理、脱水处理、微滤膜过滤、多级精馏、钠滤膜过滤制备超净高纯电子化学试剂———异丙醇的制备方法。该方法制备的超净高纯异丙醇符合半导体技术的芯片及硅园片的清洗和刻蚀的要求。 关键词:超净高纯异丙醇;金属离子络合剂;多级精馏;纳滤膜过滤 中图分类号:TQ224.23 文献标识码:A 文章编号:1002-1124(2011)07-0063-02 随着半导体技术的迅速发展,对超净高纯试剂的要求越来越高。在集成电路(IC)的加工过程中,超净高纯试剂主要用于芯片及硅园片表面的清洗和刻蚀,其纯度和清洁度对集成电路的成品率、电性能及可靠性有着十分重大的影响。超净高纯异丙醇作为一种重要的微电子化学品已经广泛用于半导体、大规模集成电路加工过程中的清洗、干燥等方面。随着 IC的加工尺寸已经进入亚微米、深亚微米时代,对与之配套的超净高纯异丙醇提出了更高的要求,要求颗粒和杂质含量降低 1~3 个数量级,达到国际半导体设备和材料组织制定的SEMI- C12标准,其中金属阳离子含量小于 0.1×10- 9,颗粒大小控制在 0.5μm以下。 目前,超净高纯异丙醇通常是以工业级异丙醇为原料纯化精致而成。精馏是工业化提纯异丙醇的主要方法,包括共沸精馏、萃取精馏等。但是用于微电子化学品工业的超净高纯异丙醇对其中金属杂质,颗粒大小含量和阴离子的要求十分苛刻,精馏工艺已经无法满足要求。 现有文献公布的超净高纯异丙醇的制备方法,以工业异丙醇为原料,以碳酸盐调节 pH 值,加入脱水剂,进行回流反应,经精馏、蒸馏、膜过滤,得到符合国际半导体设备和材料组织制定的SEMI- C12标准的超纯异丙醇。这一公开报道的制备方法无法稳定控制产品质量,特别是产品中金属离子含量以及颗粒杂质大小。

  • 正丙醇影响下的乙醇

    由于尸体腐败可能会产生乙醇,一般尸体腐败产生乙醇的同时平行产生正丙醇,其正丙醇的浓度是鉴别乙醇是否是死后新生的重要指标。查了下有论文写到这方面,说是研究认为如果血中乙醇含量在正丙醇含量的20倍以内,则可以认定为死后产生的乙醇,否则系生前摄入乙醇。想问下,有谁知道20倍的数据是从哪里来的吗?是有什么标准上面明确写明的吗?

  • 2015版《化妆品安全技术规范》方法基础上对16种防晒剂异丙醇体系分析方法的开发——实际样品分析

    2015版《化妆品安全技术规范》方法基础上对16种防晒剂异丙醇体系分析方法的开发——实际样品分析

    [align=center][b]2015版《化妆品安全技术规范》方法基础上[/b][/align][align=center][b]对16种防晒剂异丙醇体系分析方法的开发——实际样品分析[/b][/align]按照2015版《化妆品安全技术规范》方法对苯基苯并咪唑磺酸等15种防晒剂进行分析时,第一法和第二法所使用的流动相体系均为[b]四氢呋喃-甲醇-水[/b]体系。该体系中,四氢呋喃的挥发性强,容易对人体造成伤害,并且四氢呋喃对PEEK材质的管线和配件有溶胀作用,易导致仪器损坏。在此,实验室在15种防晒剂分析方法的基础上,追加了甲酚曲唑三硅氧烷,并开发了[b]异丙醇-乙腈-水[/b]流动相体系下对16种防晒剂(15种防晒剂+ 甲酚曲唑三硅氧烷)的分析方法。该方法不含四氢呋喃,对实验人员和仪器伤害较少,更加环保。使用资生堂CAPCELL PAK C[sub]18 [/sub]MGII S5 4.6 mm i.d. × 250 mm色谱柱,通过调整梯度条件,在不含四氢呋喃的[b]异丙醇-乙腈-水[/b]流动相体系下,最终实现了16种防晒剂的良好分离。分析结果如图1所示。[align=center][img=,690,469]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071729_01_2222981_3.png!w690x469.jpg[/img][/align][align=center]图1 防晒剂标准品分析图(MGII)[/align]注:图上所示数字为分离度。1:对氨基苯甲酸; 2:苯基苯并咪唑磺酸; 3:二苯酮-4和二苯酮-5; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:奥克立林; 8:丁基甲氧基二苯甲酰基甲烷; 9:PABA乙基己酯;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:甲酚曲唑三硅氧烷; 14:乙基己基三嗪酮; 15:亚甲基双-苯并三唑基四甲基丁基酚;16:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,220]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071731_01_2222981_3.jpg!w690x220.jpg[/img]在以上液相方法基础上,进一步对混合标准系列溶液进行分析,绘制标准曲线,并对实际样品进行测定。在此,选用两种溶剂对样品(膏状样品)进行提取,并将实测值与配方值进行比较,同时进行加标回收实验,来考察不同溶剂的提取效果。[b]1. 标准曲线的绘制 [/b]取16种防晒剂标准储备溶液各10 μL(各防晒剂标准储备溶液按照2015版《化妆品安全技术规范》要求配制),使用稀释剂(流动相A / 流动相B = 30/ 70)分别稀释至1 mL,再使用异丙醇稀释1倍,制得[b]混合标准储备溶液[/b],浓度如表1所示。取混合标准储备溶液0 mL、0.20 mL、1.00 mL、5.00 mL、10.0 mL于10 mL容量瓶中,使用稀释剂(流动相A / 流动相B = 30/ 70)稀释至刻度,配制成[b]混合标准系列溶液[/b]。[align=center][img=,690,532]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_01_2222981_3.png!w690x532.jpg[/img][/align][align=center][/align][align=left]取防晒剂混合标准系列溶液分别进样,以溶液浓度为横坐标、峰面积为纵坐标绘制标准曲线,各防晒剂标准曲线线性方程和相关系数如表2所示。各防晒剂组分线性关系良好。[/align][align=left][/align][align=center][img=,608,534]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071733_01_2222981_3.png!w608x534.jpg[/img][/align][align=left][b]2. 实际样品中防晒剂分析[/b][/align][b][/b][align=left][b] [/b][/align][align=left][/align][align=left]我们对含有②苯基苯并咪唑磺酸、⑩甲氧基肉桂酸乙基己酯和⑪ 水杨酸乙基己酯3种防晒剂的实际样品进行分析。[/align][align=left]我们分别使用(1)四氢呋喃和(2)异丙醇作为提取溶剂对实际防晒剂样品进行提取处理,具体处理方法如下:[/align][align=left]样品处理:称取样品0.10 g于10 mL离心管,加入提取溶剂至刻度线,混匀,超声30 min,以11000 rpm离心15 min,取此溶液1 mL,再用70%流动相B稀释至10 mL,经0.22 μm滤膜过滤,滤液作为样品待测溶液。[/align][align=left][/align][align=left]分别取样品待测溶液进行上机检测,并将实测值和配方标识量进行比较,计算回收率(配),结果如表3所示,使用异丙醇提取可以得到和四氢呋喃相似的提取效果,3种防晒剂回收率均在90%-125%之间。[/align][align=left][/align][align=center][img=,690,244]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_02_2222981_3.png!w690x244.jpg[/img][/align][align=left][b]3. 实际样品加标回收率[/b][/align][b][/b][align=left][b] [/b][/align][align=left]接下来进行加标回收率实验。向防晒剂实际样品中,添加②苯基苯并咪唑磺酸、⑩甲氧基肉桂酸乙基己酯、⑪ 水杨酸乙基己酯以及样品中未添加的⑧丁基甲氧基二苯甲酰基甲烷,进行加标回收率实验。结果如表4所示,加标回收率在75%-110%之间。除苯基苯并咪唑磺酸外,异丙醇提取的回收率均略高于四氢呋喃提取的回收率。[/align][align=center][/align][align=center][img=,385,307]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_03_2222981_3.png!w385x307.jpg[/img][/align][align=center][/align][align=left]综上所述,使用资生堂CAPCELL PAK C[sub]18[/sub] MGII S5 4.6 mm i.d. × 250 mm色谱柱,在不含有四氢呋喃的[b]异丙醇-乙腈-水[/b]体系下,可以实现16种防晒剂的良好分离。使用异丙醇和四氢呋喃对实际样品(膏状样品)中3种防晒剂均能实现良好的提取效果。对其他剂型样品,以及其他防晒剂成分的提取回收情况待进一步考察。[/align]

  • 关于“氯丙醇酯和缩水甘油酯”的风险解析

    近期,有相关机构的研究报告指出,在200℃以上高温精炼过程中,棕榈油比其他植物油会产生更多的氯丙醇酯、缩水甘油酯。随后,一些媒体关于食品中氯丙醇酯、缩水甘油酯毒性的报道引起了消费者的关注。日前,国家食品药品监督管理总局发布2017年第2期《食品安全风险解析》,组织有关专家解读。一.3-氯丙醇酯和缩水甘油酯是全球关注的植物油污染物  氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化产物,按照氯丙醇种类的不同分为3-氯丙醇酯(3-MCPD酯)、2-氯-1,3-丙二醇酯(2-MCPD酯)、1,3-二氯-2-丙醇酯(1,3-DCP酯)和2,3-二氯-2-丙醇酯(2,3-DCP酯),食品中检出量较高的是3-氯丙醇酯。近年来的研究发现,在谷物、咖啡、鱼、肉制品、马铃薯、坚果和以植物油为原料的热加工油脂食品中都有3-氯丙醇酯检出。尤其精炼植物油等食品中检出3-氯丙醇酯的报道逐渐增加。缩水甘油酯是脂肪酸与缩水甘油的酯化产物,它与氯丙醇酯是一对孪生兄弟,形成机理相似。在油脂精炼过程中,缩水甘油酯通常会伴随3-氯丙醇酯一起形成,3-氯丙醇酯含量高,缩水甘油酯含量也高。3-氯丙醇酯和缩水甘油酯已成为全球关注的植物油新型污染物。二.一些研究认为这两种物质对人体健康造成危害的风险较低  目前,关于3-氯丙醇酯和缩水甘油酯毒理学研究尚不系统。香港食品安全中心依据饼干、植物油、糕点等食品中3-氯丙醇酯的含量对人群暴露量进行评估,结果认为通过上述食品摄入的3-氯丙醇酯对健康的风险不需要特别关注。德国风险评估研究所对欧洲人群经植物油摄入缩水甘油酯的风险进行了评估,认为一般人群经植物油摄入的缩水甘油酯对健康不存在安全风险。我国目前公开发表的研究资料也认为一般人群在通过植物油等食品摄入的缩水甘油酯对人体健康造成危害的风险较低。三.目前国际上未制定这两种物质的限量标准  针对3-氯丙醇酯可能在体内水解为3-氯丙醇,2012年联合国粮食及农业组织(FAO)/世界卫生组织(WHO)食品添加剂联合专家委员会(JECFA)制定了3-氯丙醇暂定每日最大耐受量(PMTDI)为每公斤体重2μg/kg。但尚未制定3-氯丙醇酯和缩水甘油酯的相应限量标准。四.优化精炼工艺可以减少这两种物质的含量  研究表明,3-氯丙醇酯在油脂加工原料和未精炼的植物油中含量极低,而植物油精炼后含量显著增加,其含量水平与毛油的原料种类有关,相比玉米油、菜籽油、大豆油,以果肉为原料的植物油如棕榈油更容易产生3-氯丙醇酯。优化生产工艺可以降低和控制植物油精炼过程中3-氯丙醇酯和缩水甘油酯的产生。因此,专家建议:一是加强分析研究,为这两种物质是否需要制定限量标准提供科学依据。二是针对不同油脂原料特点,比如有些油适合冷榨,有些适合热加工,建立不同的加工方式。适度加工,减少有害物质的形成,避免各种风险因子的过量形成。三是消费者日常饮食注意营养搭配,食物多样化,参照《中国居民膳食指南(2016)》中的指导摄入量食用植物油,避免过量摄入。(文章来源:国家食品药品监督管理总局)

  • 乙二醇是否不溶于异丙醇?

    不知道乙二醇是不是不溶于异丙醇,我做乙二醇,标准说是用2%的异丙醇溶液做溶剂,我理解成溶液中含2%异丙醇有没有错?我用的是含有2%异丙醇的二硫化碳溶液去做乙二醇的溶剂,但是不知道是不是乙二醇不溶于异丙醇,配好的溶液出现了分层,上层是澄清的,下层是混浊的溶液,想请问一下,这是怎么回事?

  • 顶空+GCMS定量测试异丙醇

    一固体样品(稍微有点吸潮),要求用顶空+GCMS来测试该样品中异丙醇的残留量。请问:1.标准溶液应该怎么配制?用“水+异丙醇”、“样品+异丙醇”还是“水+样品+异丙醇”来作为标准待测液呢?2.用DB-624的柱子适合测异丙醇吗?谢谢了!

  • 高纯异丙醇分析求助

    现有纯度99.99%的电子级异丙醇样品,需要对其杂质丙酮、甲醇异丁基甲醇(MIBC)和甲基异丁基甲酮(MIBK)3个主要杂质进行色谱检测,杂质的含量预计在10~100ppm之间,请问采用哪种色谱柱和条件较为合适?另外,重金属离子检测,含量5PPb 请问采用哪种仪器可以检测,有直接提供重金属离子检测服务的可以留电话我直接联系,谢谢大家!

  • 求异丙醇采样频次?

    最近接了一个环评单子,检测要求为,监测一次最大值异丙醇,这个应该采样频次为多少

  • 【分享】空气中二氯丙醇的测定方法 变色酸比色法

    【分享】空气中二氯丙醇的测定方法 变色酸比色法

    空气中二氯丙醇的测定方法 变色酸比色法 1 原理二氯丙醇水解后,经高碘酸氧化生成甲醛。甲醛与变色酸作用生成紫色化合物,比色定量。2 仪器2.1 采样管(图77)。2.2 抽气机。2.3 流量计,0~1L/min。2.4 具塞比色管,25ml,10ml。2.5 分光光度计。3 试剂3.1 硅胶:40~60目硅胶,用混合酸(硫酸与硝酸等体积混合)在沸水浴上回流加热处理2h。水洗至中性,在110℃干燥4h,然后在200℃活化4h,贮于干燥器内备用。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201424_52378_1625938_3.jpg[/img]3.2 碳酸钠(Na2CO3)溶液,10g/L。3.3 高碘酸钾溶液,15g/L:称取1.5g高碘酸钾,溶于100ml3+2硫酸中。3.4 亚硫酸钠溶液,100g/L。3.5 硫酸,?20=1.84g/ml。3.6 变色酸溶液,20g/L。临用前配制。3.7 标准溶液:于25ml量瓶中加入约10ml碳酸钠溶液(3.2),准确称量,滴入2滴二氯丙醇,再准确称量,两次称量之差即二氯丙醇的质量,加碳酸钠溶液(3.2)至刻度,充分混合,计算1ml溶液中二氯丙醇的含量。临用前用碳酸钠溶液(3.2)稀释成50?g/ml二氯丙醇标准溶液。4 采样于采样管中先投入一个玻璃珠,使其恰好堵在采样管的下端狭窄部位,然后装入3g硅胶,以0.5L/min的速度抽取5L空气(采样管始终保持垂直位置)。5 分析步骤5.1 对照试验:同采样,于采样管中装入硅胶带至现场,但不抽取空气,照样品分析。5.2 样品处理:将采样管中的硅胶移入25ml比色管中,加10ml碳酸钠溶液(3.2),盖上磨口塞(不要塞严),放在沸水浴中加热90min,放冷,取2ml上清液于10ml比色管中。5.3 标准曲线的绘制:按表71配制标准管。向标准管中各加入0.2ml高碘酸钾溶液(3.2),混匀,放置30min,加入0.2ml亚硫酸钠溶液(3.4),振摇(此时溶液应为无色,如残有黄色可再补加一滴亚硫酸钠溶液),沿管壁徐徐加入3ml硫酸(3.5)及0.6ml变色酸溶液(3.6),混匀,放在沸水浴中加热20min,放冷,加水稀释至10ml,混匀,于波长570nm下比色。以二氯丙醇含量对吸光度作图,绘制标准曲线。5.4 测定:样品管操作同标准管,以现场对照管调仪器零点比色。由标准曲线上查出二氯丙醇的含量。6 计算表71 二氯丙醇标准管的配制[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201425_52379_1625938_3.jpg[/img]X=5C/V0式中:X——空气中二氯丙醇的浓度,mg/m3;C——所取样品溶液中二氯丙醇含量,微克;V0——标准状况下的样品体积,L。7 说明7.1 本法检测限为1微克/2ml。二氯丙醇浓度为1.5、10、20微克/2ml时,变异系数分别为1.4%、2.6%、2.3%。7.2 采样速度为0.5~1.0L/min时,硅胶对二氯丙醇的采样效率接近100%。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制