当前位置: 仪器信息网 > 行业主题 > >

磷酰二肽超纯级

仪器信息网磷酰二肽超纯级专题为您提供2024年最新磷酰二肽超纯级价格报价、厂家品牌的相关信息, 包括磷酰二肽超纯级参数、型号等,不管是国产,还是进口品牌的磷酰二肽超纯级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷酰二肽超纯级相关的耗材配件、试剂标物,还有磷酰二肽超纯级相关的最新资讯、资料,以及磷酰二肽超纯级相关的解决方案。

磷酰二肽超纯级相关的论坛

  • 【原创】丙谷二肽杂质对照品

    丙谷二肽杂质对照品名称 环-(L-丙氨酰-L-谷氨酰胺) 规格:0.25gL-焦谷氨酰-L-丙氨酸 规格1g"N-(2)-D-丙氨酰-L-谷氨酰胺" 规格:0.25gL-丙氨酰-L-谷氨酸 规格:1gL-焦谷氨酸 规格:125mg

  • 【原创】朋友多出了二台法国阿尔卡特真空泵

    [b][color=#d40a00][size=4]因改造直读光谱仪,朋友多出了二台法国阿尔卡特真空泵(型号2012),陈色较新,功能一切正常,拿来即用,东西在成都,如有兴趣的朋友,可以发邮件[/size][/color][/b][email=wccd@163.com][color=#d40a00][size=4][b]wccd@163.com[/b][/size][/color][/email][color=#d40a00][size=4][b]或电话联系(13983930602)[/b][/size][/color]

  • 【转帖】杀虫剂二嗪磷将遭加拿大淘汰

    杀虫剂二嗪磷将遭加拿大淘汰加拿大卫生部有害生物管理局(PMRA)已通过决议,确定有机磷酸酯类杀虫剂二嗪磷(diazinon)将遭淘汰。但是,当局却放弃了2007年的原定计划,将二嗪磷的最终退市时间定在了2012年。不但如此,在当局与相关干系人进行协商之后还制订了风险管理计划和过渡期措施。 参照之前的决议,将根据重要性及是否有替代物决定二嗪磷的某些用途将在短期内被淘汰,而有些用途还能继续使用更长时间。因此,PMRA决定授予杏子,桃子,梨和李子用二嗪磷更长一些的使用期限。 在此期间,PMRA要求在二嗪磷的标签上要列出更详尽的减少使用风险的方法,包括罗列出使用者应备有的保护器具,喷洒农药时彼此之间的间距等。为保护非目标物种和水生生态,还应在相关区域设立警告牌。(来源:Agropages)

  • 乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8/阿基瑞林

    乙酰基六肽-8,别名阿基瑞林,是一种优质的祛皱化妆品原料, 其抗皱活性高, 副作用小,已在各高端化妆品系列中应用。【详情请咨询国肽生物】它能局部阻断神经传递肌肉收缩讯息,影响皮囊神经传导,使脸部肌肉放松,达到平抚动态纹、静态纹及细纹;有效重新组织胶原弹力,可以增加弹力蛋白的活性,使脸部线条放松,皱纹抚平改善松弛。可用于化妆品内,作为抗皱成分,且效果极佳。产品参数----乙酰基六肽-8/阿基瑞林中文名称:乙酰基六肽-8/阿基瑞林/六胜肽/乙酰六胜肽-3英文名称:Acetyl Hexapeptide-8/Argireline/Acetyl Hexapeptide-3, CAS号:616204-22-9纯度:≥99%分子量 :888.91g/mol分子式 :C34H60N14O12S外观:白色粉末或液体储存条件:2 ℃~8 ℃包装规格(粉末):1g, 10g, 100g包装规格(液体):20ml/瓶,1KG/瓶应用:化妆品原料功效与应用----乙酰基六肽-8/阿基瑞林抗皱抗衰老改善皮肤质量脸部、颈部和手护理品可添加到美容护肤品中,如乳液、面膜、早晚霜、眼部精华液等作用机理----乙酰基六肽-8/阿基瑞林乙酰基六肽-8参与竞争 SNAP - 25 在融泡复合体的位点, 从而影响复合体的形成。当融泡复合体稍有不稳定, 囊泡不能有效释放神经递质, 从而致使肌肉收缩减弱,防止皱纹的形成。[img=,690,143]https://ng1.17img.cn/bbsfiles/images/2020/10/202010141430498557_1196_3531468_3.jpg!w690x143.jpg[/img]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物

  • 月旭用户掀起第四季度购买狂潮,Ipad2已送出4台,仅剩最后1台,花落谁家?

    月旭公司2011第四季度隆重推出的年度最给力的促销活动,详情见:http://www.welchmat.com/promotion_info.php?id=23其中,购买月旭任一款色谱柱,里面就有一张刮刮卡,如果集齐“月旭色谱柱”,“超月极限”、“旭写辉煌”三张卡,就可以领取Ipad2一个。月旭公司将累计送出5台Ipad2。目前已经嗖嗖嗖,发出去4台,如下:第一台:恭喜!浙江海正制剂分析部赢取首个iPad2大奖!(浙江海正药业分析部在第四季度累计购买月旭色谱柱21支)第二台:祝贺!iPad2幸运降临广西桂林华信制药(桂林华信在第四季度累计购买月旭色谱柱6支)第三台:羡慕!浙江海正稳定性部门中了iPad2大奖!(海正稳定性部门在第四季度累计购买月旭色谱柱20支)第四台:月旭iPad2大奖砸中天津药物研究院!(天津药物研究院在第四季度累计购买月旭色谱柱12支)目前,还剩最后一台,先到先得!5台Ipad2发完为止!!同时,只集到2种卡的用户,也可以兑换价值400元的奖品,稍后将公布获得400元奖品的用户名单!

  • 【概念知识10】什么是超纯气体

    【概念知识10】什么是超纯气体

    超纯气体 super pure gas   又称高纯气体,指纯度高于99.99%的气体,是一种高纯化学试剂。为适应一些科学研究和尖端技术的特殊需要而制备。一些对气体要求特别纯净的部门,需要超纯气体的纯度高达99.9999%以上,每升气体中粒度大于0.5μm的尘粒数应小于三个。   品种和用途  超纯气体的品种发展十分迅速,1981年单一超纯气体120多种,混合超纯气体12类约300多种。中国能生产单一超纯气体十多种,混合超纯气体几十种。除表中所列主要品种外,单一超纯气体还有二氧化硫、一氧化碳、二氧化碳、乙烯、正丁烷、砷烷、丙二烯、顺丁烯、丁二烯等。混合超纯气体为上述单一超纯气体的混合气,分别有专门的用途,如纯氩-氮混合气用于电光源中钨丝的还原,纯氩-氖混合气、氩-氦混合气用于霓虹灯充气等,还有不少超纯混合气体作为色谱、质谱和光谱分析中的标准气。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611011300_31257_1634962_3.jpg[/img]制备方法  超纯气体的制备大多是从工业气体加以纯化,有吸附法、吸收法、薄膜扩散法、电解法、生化法、辐射法、光解法、低温精馏法、催化法等。例如超纯氢、氮、氦、氩,先通过空气分离提取较纯气体,再经低温吸附得到超纯气体;粗氩也可以从合成氨弛放气中提取;粗氪、氙从核裂变气中提取,再经纯化而得超纯气体。   贮运  对于超纯气体,任何微小的污染都会严重影响气体的质量,因此气体贮存和运输过程中的洁净和高度密封性特别重要。超纯气体主要采用高压钢瓶或低温液化气体容器贮存和运输。高压钢瓶坚实耐用,运输和使用灵活,气体无损耗,但气体纯度稳定性较差;低温液化气体容器单位容积贮量很大,但有气体排放损耗。

  • 【转贴】超净高纯试剂的现状、应用、制备及配套技术

    超净高纯试剂的现状、应用、制备及配套技术1 微电子技术的发展微电子技术主要是指用于半导体器件和集成电路(IC)微细加工制作的一系列蚀刻和处理技术,其中集成电路,特别是大规模及超大规模集成电路的微细加工技术又是微电子技术的核心,是电子信息产业最关键、最为重要的基础。微电子技术发展的主要途径之一是通过不断缩小器件的特征尺寸,增加芯片的面积,以提高集成度和速度。自20世纪70年代后期至今,集成电路芯片的发展基本上遵循GordonEM预言的摩尔定律,即每隔1.5年集成度增加1倍,芯片的特征尺寸每3年缩小2倍,芯片面积增加约1.5倍,芯片中晶体管数增加约4倍,也就是说大体上每3年就有一代新的IC产品问世。在国际上,1958年美国首先研制成功集成电路开始,尤其是20世纪70年代以来,集成电路微细加工技术进入快速发展的时期,这期间相继推出了4、16、256K 1、4、16、256M 1、1.3、1.4G的动态存贮器。进入20世纪90年代后期,IC的发展更迅速,竞争更激烈。美国的Intel公司、AMD公司和日本的NEC公司这3个IC生产厂家的竞争尤为激烈,1999年Intel公司、AMD公司均实现了0.25Lm技术的生产化,紧接着Intel公司在1999年底又实现了0.18Lm技术的生产化,AMD公司也在紧追不舍。到2001年上半年,Intel公司实现了0.13Lm技术的生产化,而到2001年的2季度末,日本的NEC公司宣布突破了0.1Lm工艺技术的难关,率先成功研发出0.095Lm的半导体工艺技术,现已开始接受全球各地厂商的订货,并将于2001年的11月开始批量生产。因此,专家们认为世界半导体工艺技术的发展将会加速,半导体制造厂商将会以更先进的技术加快升级换代以适应新的市场要求。我国集成电路的研制开发始于1965年,与日本同时起步,比韩国早10年。现在我国已经有了从双极(5Lm)到CMOS、从2~3Lm到0.8~1.2Lm及0.35~0.5Lm工艺技术,并形成了规模生产,0.25Lm工艺技术生产线目前正在北京和上海同时建设,预计到2002年即可投产。“十五”期间及到2010年北京建设的北方微电子基地将建成20条0.35、0.25和0.18Lm工艺技术生产线,上海在浦东将建成大约40条0.35、0.25及0.18Lm工艺技术生产线,深圳也将建设多条超超大规模集成电路生产线。随着芯片制造技术向亚微米发展,出现了产品“多代同堂”的局面,以满足不同用途的需要。可说在生产技术方面我国几乎已经与国际先进水平同步,但在研发方面,我国与国际先进水平还有较大的差距。2 超净高纯试剂的现状超净高纯试剂(国际上称为ProcessChemi-cals)是超大规模集成电路制作过程中的关键性基础化工材料之一,主要用于芯片的清洗和腐蚀,它的纯度和洁净度对集成电路的成品率、电性能及可靠性都有着十分重要的影响。超净高纯试剂具有品种多、用量大、技术要求高、贮存有效期短和强腐蚀性等特点。随着IC存储容量的逐渐增大,存储器电池的蓄电量需要尽可能的增大,因此氧化膜变得更薄,而超净高纯试剂中的碱金属杂质(Na、Ca等)会溶进氧化膜中,从而导致耐绝缘电压下降 若重金属杂质(Cu、Fe、Cr、Ag等)附着在硅晶片的表面上,会使P-N结耐电压降低。杂质分子或离子的附着又是造成腐蚀或漏电等化学故障的主要原因。因此,随着微电子技术的飞速发展,对超净高纯试剂的要求也越来越高,不同级别超净高纯剂中的金属杂质和颗粒的含量要求各不相同,而配套于不同线宽的IC工艺技术。超净高纯试与IC发展的关系见表1。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608011544_22431_1634962_3.gif[/img]国外20世纪60年代便开始生产电子工业用试剂,并为微细加工技术的发展而不断开发新的产品。到目前为止,在国际上以德国E.Merck公司的产量及所占市场份额为最大,其次为美国Ashland、Olin公司及日本的关东株式会社,另外还有美国的MallinckradtBaker公司、英国的B.D.H.公司、前全苏化学试剂和高纯物质研究所、三菱瓦斯化学、伊期曼化学公司、AlliedSig-nal公司、Chemtech公司、PVS化学品公司、日本化学工业公司及德山公司等。近年来,新加坡、台湾地区也相继建立了5000~10000t级的超净高纯试剂生产基地。由于世界超净高纯试剂市场的不断扩大,从事超净高纯试剂研究与生产的厂家及机构也在增多,生产规模不断扩大,但各生产厂家所生产的超净高纯试剂的标准各不相同。为了能够规范世界超净高纯试剂的标准,国际半导体设备与材料组织(SEMI)于1975年成立了SEMI化学试剂标准委员会,专门制定超净高纯试剂的国际标准。目前国际SEMI标准化组织将超净高纯试剂按应用范围分为4个等级:(1)SEMI-C1标准(适用于1.2Lm IC工艺技术的制作) (2)SEMI-C7标准(适用0.8~1.2Lm IC工艺技术的制作) (3)SEMI-C8标准(适用于0.2~0.6Lm IC工艺技术的制作) (4)SEMI-C12标准(适用于0.09~0.2Lm IC工艺技术的制作)。我国超净高纯试剂的研制起步于20世纪70年代中期,1980年由北京化学试剂研究所(以下简称试剂所)在国内率先研制成功适合中小规模集成电路5Lm技术用的22种MOS级试剂。随着集成电路集成度的不断提高,对超净高纯试剂中的可溶性杂质和固体颗粒的控制越来越严,同时对生产环境、包装方式及包装材质等提出了更高的要求。为了满足我国集成电路发展的需求,国家自“六五”开始至“八五”,将超净高纯试剂的研究开发列入了重点科技攻关计划,并由试剂所承担攻关任务。到目前为止,试剂所已相继推出了BV-Ⅰ级、BV-Ⅱ级和BV-Ⅲ级超净高纯试剂,其中BV-Ⅲ级超净高纯试剂达到国际SEMI-C7标准的水平,适用于0.8~1.2Lm工艺技术(1~4M)的加工制作,并在“九五”末期形成了500t年的中试规模。目前试剂所正在进行用于0.2~0.6Lm工艺技术的BV-Ⅳ级超净高纯试剂的研究开发。

  • 【分享】超纯金属

    【分享】超纯金属

    超纯金属 ultra pure metals   任何金属都不能达到绝对纯。“超纯”具有相对的含义,是指技术上达到的标准。由于技术的发展,也常使“超纯”的标准升级。例如过去高纯金属的杂质为ppm级(即百万分之几),而超纯半导体材料的杂质达ppb级(十亿分之几),并将逐步发展到以ppt级(一万亿分之几)表示。实际上纯度以几个“9”(N)来表示(如杂质总含量为百万分之一,即称为6个“9”或6N),是不完整概念,如电子器件用的超纯硅以金属杂质计算,其纯度相当于9个“9”,但如计入碳,则可能不到6个“9”。“超纯”的相对名词是指“杂质”,广义的杂质是指化学杂质(元素)及“物理杂质”(晶体缺陷),后者是指位错及空位等,而化学杂质是指基体以外的原子以代位或填隙等形式掺入。但只当金属纯度达到很高的标准时(如纯度9N以上的金属),物理杂质的概念才是有意义的,因此目前工业生产的金属仍是以化学杂质的含量作为标准,即以金属中杂质总含量为百万分之几表示。比较明确的办法有两种:一种是以材料的用途来表示,如“光谱纯”、“电子级纯”等;一种是以某种特征来表示,例如半导体材料用载流子浓度,即一立方厘米的基体元素中起导电作用的杂质个数(原子/厘米3)来表示。而金属则可用残余电阻率(ρ4.2K/ρ300K)表示。   超纯金属的制备有化学提纯法如精馏(特别是金属氯化物的精馏及氢还原)、升华、溶剂萃取等和物理提纯法如区熔提纯等(见硅、锗、铝、镓、铟)。其中以区熔提纯或区熔提纯与其他方法相结合最有效。   化学提纯法由于容器与药剂中杂质的污染,使得到的金属纯度受到一定的限制,只有用化学方法将金属提纯到一定纯度之后,再用物理方法如区熔提纯,才能将金属纯度提到一个新的高度。可以用半导体材料锗及超纯金属铝为例说明典型的超纯金属制备及检测的原理(见区域熔炼)。   用区熔提纯方法提纯金属时,杂质的分配系数对提纯金属有重大的关系,由于锗中大部分杂质的分配系数都小于1,所以锗的区熔提纯是十分有效的。半导体材料的纯度,也可用电阻率来表征。区域提纯后的金属锗,其锭底表面上的电阻率为30~50欧姆厘米时,纯度相当于8~9N,可以满足电子器件的要求。但对于杂质浓度小于1010原子/厘米3的探测器级超纯锗,则尚须经过特殊处理。由于锗中有少数杂质如磷、砷、铝、镓、硅、硼的分配系数接近于1或大于1,要加强化学提纯方法除去这些杂质,然后再进行区熔提纯。电子级纯的区熔锗锭用霍尔效应测量杂质(载流子)浓度,一般可达1011~1012原子/厘米3。经切头去尾,再利用多次拉晶和切割头尾,一直达到所要求的纯度(1010原子/厘米3),这样纯度的锗(相当于13N)所作的探测器,其分辨率已接近于理论数值。   超纯金属铝的制备与检测方法与锗不同。用三层电解法制备的精铝,其纯度为99.99%,金属铝中杂质的分配系数如表1。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611272040_33830_1634962_3.jpg[/img]精铝经过区熔提纯,只能达到5N 的高纯铝,但如使用在有机物电解液中进行电解,可将铝提纯到99.9995%,并可除去有不利分配系数的杂质,然后进行区熔提纯数次,就能达到接近于 7N 的纯度,杂质总含量<0.5ppm。这种超纯铝除用于制备化合物半导体材料外,还在低温下有高的导电性能,可用于低温电磁设备。制备化合物半导体的金属如镓、铟、砷、磷,可利用氯化物精馏氢还原、电解精炼、区熔及拉晶提纯等方法制备超纯金属,总金属杂质含量为 0.1~1ppm。其他金属如银、金、镉、汞、铂等也能达到≥6N 的水平。  超纯金属的检测方法极为困难。痕量元素的化学分析系指一克样品中含有微克级(10-6克/克)、毫微克级(10-9克/克)、微微克级(10-12克/克)杂质的确定。常用的手段有中子和带电粒子活化分析,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析,荧光分光光度分析,质谱分析,化学光谱分析及气体分析等。  半导体中的电离杂质浓度可以通过霍尔系数测定,对于非本征半导体材料,在补偿度不大的情况下,只要知道迁移率的数据,就可通过电阻率的测量。锗和硅的电阻率与杂质浓度的关系如图。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611272041_33831_1634962_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611272041_33832_1634962_3.jpg[/img]超纯金属铝中杂质,已低于化学分析和仪器分析灵敏度的限量,须用物理方法测定,可用剩余电阻率(ρ4.2K/ρ300K)来测定铝的纯度,因为在4.2K下,点阵中原子振动所引起的电阻率可以忽略,这样测出的电阻率就是杂质引起的电阻率,各种纯度铝中的杂质含量及剩余电阻率如表2[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611272042_33833_1634962_3.jpg[/img]超纯镓的纯度也可以用剩余电阻率来测定,其值约为2×10-5。  现代科学技术的发展趋势是对金属纯度要求越来越高。因为金属未能达到一定纯度的情况下,金属特性往往为杂质所掩盖。不仅是半导体材料,其他金属也有同样的情况,由于杂质存在影响金属的性能。钨过去用作灯泡的灯丝,由于脆性而使处理上有困难,在适当提纯之后,这种缺点即可以克服(钨丝也有掺杂及加工问题)。当金属纯度提高以后,就能进一步明确杂质对金属性能的影响,因此制备超纯金属既为金属性能的科学研究创造了有利的条件,又在工业上有很大意义。   参考书目  A.E.Javitz ed.,Material Science and Technology for Design Engineers,Hayden Book Co.,New York,1972.

  • 超净高纯电子化学试剂———异丙醇制备方法 !

    超净高纯电子化学试剂———异丙醇制备方法 梁 凯 (黑龙江省化工研究院,黑龙江 哈尔滨 150078) 摘 要:本文介绍了用含量98%的工业级异丙醇经过金属离子络合剂处理、脱水处理、微滤膜过滤、多级精馏、钠滤膜过滤制备超净高纯电子化学试剂———异丙醇的制备方法。该方法制备的超净高纯异丙醇符合半导体技术的芯片及硅园片的清洗和刻蚀的要求。 关键词:超净高纯异丙醇;金属离子络合剂;多级精馏;纳滤膜过滤 中图分类号:TQ224.23 文献标识码:A 文章编号:1002-1124(2011)07-0063-02 随着半导体技术的迅速发展,对超净高纯试剂的要求越来越高。在集成电路(IC)的加工过程中,超净高纯试剂主要用于芯片及硅园片表面的清洗和刻蚀,其纯度和清洁度对集成电路的成品率、电性能及可靠性有着十分重大的影响。超净高纯异丙醇作为一种重要的微电子化学品已经广泛用于半导体、大规模集成电路加工过程中的清洗、干燥等方面。随着 IC的加工尺寸已经进入亚微米、深亚微米时代,对与之配套的超净高纯异丙醇提出了更高的要求,要求颗粒和杂质含量降低 1~3 个数量级,达到国际半导体设备和材料组织制定的SEMI- C12标准,其中金属阳离子含量小于 0.1×10- 9,颗粒大小控制在 0.5μm以下。 目前,超净高纯异丙醇通常是以工业级异丙醇为原料纯化精致而成。精馏是工业化提纯异丙醇的主要方法,包括共沸精馏、萃取精馏等。但是用于微电子化学品工业的超净高纯异丙醇对其中金属杂质,颗粒大小含量和阴离子的要求十分苛刻,精馏工艺已经无法满足要求。 现有文献公布的超净高纯异丙醇的制备方法,以工业异丙醇为原料,以碳酸盐调节 pH 值,加入脱水剂,进行回流反应,经精馏、蒸馏、膜过滤,得到符合国际半导体设备和材料组织制定的SEMI- C12标准的超纯异丙醇。这一公开报道的制备方法无法稳定控制产品质量,特别是产品中金属离子含量以及颗粒杂质大小。

  • 【讨论】关于邻苯二甲酸酯的前处理和萃取熔剂选择问题

    邻苯二甲酸酯萃取的标准方法是用1:1的二氯甲烷和甲醇索氏萃取6小时,然后用10ml三氯甲烷定容。后来我们为了简便,就用10ml三氯甲烷直接超声30min,然后过滤。 第二种方法是简便了,可是在读机的时候就出问题了,QC读不回来,偏得很高,我认为是由于三氯甲烷的溶解性太大,把样品中的基质都溶解了,都成糊状了,基质干扰太严重。那我的问题是: 1。如果还用三氯甲烷作溶剂超声的话,怎么才能比较好的去除基质干扰,可以加一些什么东西使基质和我要的东西分开,我试过离心,不行,不知道优美更好的方法,希望大家提宝贵意见。2。如果不用三氯甲烷超声,那选用什么溶剂萃取邻苯二甲酸酯效果会好些,谢谢。

  • 求助:己二酰氯检测

    目前面临一个己二酰氯的纯度检测的问题,因此物质非常活泼,遇明火、高热可燃。与氧化剂可发生反应。遇水或水蒸气反应放热并产生有毒的腐蚀性气体。遇高热分解释出高毒烟气。遇潮时对大多数金属有腐蚀性。若遇高热,容器内压增大,有开裂和爆炸的危险。请问有无接触过己二酰氯的检测的大虾,给指点下。

  • 【原创】B超做多了对胎儿和孕妇有伤害吗?

    找不到版面发表,暂借这个版面用一下:最近,我的表姐怀孕了18周,可是做了4次的B超了,因为家里人很关心胎儿的情况,可是我在网上看到一些资料说B超做的次数太多了,会影响胎儿的生长...叶请教过医生,回答是没有太大的关系,可我还是担心.....有哪些过来人知道...所以请教,怀孕期间,B超做多了对胎儿和孕妇有伤害吗?

  • 超声萃取邻苯二甲酸酯的若干问题

    操作标准是GLOP 0006-74201、当使用时间比较长时,超声清洗器的温度如何控制(机器没有温感控制)?具体温度应该控制在什么范围?2、超声波通过换能器转换成机械振动,在二氯甲烷和水中的情况是一样的吗?我遇到的情况是往往水是冷的,可二氯甲烷却热的。。。3、温度对邻苯二甲酸酯的萃取有什么影响?4、水位应控制在什么范围内才不会对结果有影响?5、最大限度可允许多少样品同时超声?我们是用了架子装着,一个架子可以放35个样品,样品多的时候会同时处理70个样品,但最近不被允许这样做,说是可能影响萃取率。。。

  • 【求助】基准试剂邻苯二甲酸氢钾到底吸潮吗?

    [em48] 我从资料上看到介绍基准试剂邻苯二甲酸氢钾“性质稳定,不吸潮”,可是我在标定NaOH溶液时,从烘箱取出放在干燥器内冷却后却表面结块,称量敲料时容易粘附在称量瓶口。这是怎么回事?是资料介绍的不对,还是我买的试剂有问题?

  • 不同液相为何有很大的检测数据差异

    如题,我们公司有三台岛津lc20AT。最近发现了一个问题,几台仪器之间同一个样品响应不一样。第一台跟第二台样品走的最多,最近走的样品,第一台峰高1000mv,面积750AU;同一个样同方法第二台走的,峰高750mv,面积500AU,由于是面积归一法的纯度,直接导致了,主峰占比不同,第一台纯度85%,第二台只有79%(已经确认过了,非样品降解,也不是色谱柱的原因,走过其他样品,结果都是这样,第一台比第二台走出来高)。我把第一台流通池换到第二台,走了同一个样品,峰面积提高了一点,变成了600Au,总纯度变成了80%,但是总体还是与第一台相差非常多!发现这个问题后,我去测试了一下第三台仪器,还是同样的方法,样品与第二台对比,结果是第三台峰高更低……请问是否遇到过这种情况?讨论一下,能有什么办法排查或者解决吗?

  • 经阴道二维联合三维超声成像诊断宫腔黏连的临床价值分析

    【序号】:3【作者】: 施靖 陈艳【题名】:经阴道二维联合三维超声成像诊断宫腔黏连的临床价值分析【期刊】:现代实用医学. 【年、卷、期、起止页码】:2021,33(10)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=NBYX202110063&uniplatform=NZKPT&v=QRTf4TGZNo-QHML4b5Vc72POsEBVSKOSPqaaMfOOZcc8jFZIOSIaSdEKBuTkwthU

  • 如何看待超净高纯试剂的国产化之路!

    资料:超净高纯试剂是国家科技部重点支持的领域之一,目前国内芯片行业使用的超净高纯试剂全部依赖进口,急需国产化。 采用电解法制备超净高纯试剂:四甲基氢氧化铵,四乙基氢氧化铵,胆碱和苄基三甲基氢氧化铵。这类产品属于有机强碱,腐蚀性极强,。利用电解法使用原料少,不引入其他杂质的特点制备这类产品是方便的,可行的。在电子行业中广泛用作硅晶片蚀刻剂、清洗剂,IC(集成电路)、ULSI(超大规模集成电路)及TFT-LCD(薄膜晶体管液晶显示器件)正胶显影剂。仅四甲基氢氧化铵全球每年用量大约为5万吨。提高超净高纯试剂制备技术,提升我国电子行业的制造水平,加快芯片等电子产品的研发速度,降低电子产品的生产成本,提高国际竞争力。试剂特别是一些高纯、基准、标准试剂,国产的份额很小,大家如何看待这个问题,对高纯试剂如何国产化有何建议。

  • 请各位神人求助。。。1,超纯级物质可否用于液相标准品。2,到底如何测检测限,谢谢各位前辈

    1,我要测丙烯酰胺,我们实验室有,是超纯级,美国Amresco公司的,但是跑得时候杂质很多,不明白为啥,难道我配标准品的时候还有过0.22um的膜不成?2,如何测检测限,如何用3倍信噪比测,希望前辈详细点,我对这个是超级菜鸟。我看的文献可谓五花八门,方法检测限,样品检测限,什么名都有,单位也是千奇百怪,有ug/ml,ug/kg的,不理解,我的样品是液体,不知道检测限的单位是什么。实验室没人会,所以望各位前辈能够指教一下,O(∩_∩)O谢谢啦。

  • 每日服用阿司匹林可降卵巢癌风险

    据新华社华盛顿电 (记者林小春)美国国家癌症研究所一项新研究显示,每天服用阿司匹林可以把女性罹患卵巢癌风险降低20%。不过,研究人员同时强调,还需进一步研究才能把这个结论作为临床建议推荐。 早期卵巢癌可成功治疗,但早期卵巢癌症状与消化系统疾病和膀胱疾病类似,因此卵巢癌常常到晚期才被发现。 美国国家癌症研究所研究人员指出,晚期卵巢癌治疗选择有限,治疗效果不理想,因此预防措施对控制卵巢癌问题至关重要。阿司匹林具有抗炎症的效果,之前研究显示每日服用阿司匹林能够降低罹患结肠直肠癌、黑色素瘤等癌症的风险,因而他们开展了迄今最大型的研究来评估阿司匹林与卵巢癌风险之间的关系。 研究人员分析了来自约8000名卵巢癌患者和近1.2万名未罹患卵巢癌女性的数据,这些人中有18%经常服用阿司匹林。结果发现,与每周服用阿司匹林不到一次的女性相比,每天服用阿司匹林的女性患卵巢癌风险降低20%。 参与研究的美国国家癌症研究所布里顿·特拉贝特博士说:“我们的研究表明阿司匹林也可以降低卵巢癌风险,但这一结果不应影响当前的临床实践。我们还需要更多的研究以探索这种潜在防癌药物的风险与益处的平衡。”来源:中国科技网-科技日报 2014年02月13日

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制