当前位置: 仪器信息网 > 行业主题 > >

吡啶硼酸标准品

仪器信息网吡啶硼酸标准品专题为您提供2024年最新吡啶硼酸标准品价格报价、厂家品牌的相关信息, 包括吡啶硼酸标准品参数、型号等,不管是国产,还是进口品牌的吡啶硼酸标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶硼酸标准品相关的耗材配件、试剂标物,还有吡啶硼酸标准品相关的最新资讯、资料,以及吡啶硼酸标准品相关的解决方案。

吡啶硼酸标准品相关的资讯

  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。   根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。   资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。   2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。   宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。   中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。   5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。   李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。   5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。   李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。   在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。   此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。   中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。   宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。   5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。   作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。   宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。   “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。   据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。   针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 农业农村部公开征求《食品安全国家标准 植物源性食品中威百亩残留量的测定 气相色谱法(征求意见稿)》等三项标准意见
    根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》等相关规定,我司组织拟定了《食品安全国家标准 植物源性食品中二氯吡啶酸等11种农药残留量的测定 液相色谱-质谱联用法(征求意见稿)》等3项农药残留检测方法国家标准。现公开征求意见,请于2024年8月30日前将意见反馈国家农药残留标准委员会秘书处。联系人:罗媛媛电话:010-59194077传真:010-59194107电子邮箱:nyclbz@agri.gov.cn附件:食品安全国家标准 植物源性食品中威百亩残留量的测定 气相色谱法(征求意见稿).docx食品安全国家标准 植物源性食品中二氯吡啶酸等 11种农药残留量的测定 液相色谱-质谱联用法(征求意见稿).docx食品安全国家标准 植物源性食品中敌螨普异构体和6种敌螨普酚残留量的测定 液相色谱-质谱联用法(征求意见稿).docx农药残留检测方法国家标准征求意见表.docx农业农村部种植业管理司2024年7月29日
  • 标准品和高纯试剂的区别
    标准品,国内和国际上有很多叫法,不同体系的称呼也不同,这里只是遵循国际上常规的称呼,即用RM即Reference Materials作为标准品的统称。在ISO体系中有参考物质(RM)和认证参考物质(CRM)两种计量的标准物质。根据ISO Guide 30规定, 参考物质/标准物质是含有一种或多种特定属性值并且足够均匀和稳定的物质,专用于测量过程,评价测量方法或给材料赋值的材料或物质。认证参考物质的特点是通过可计量的有效程序指定一个或多个属性,并连同一证书,提供指定属性的值,相关的不确定度,以及计量的可追溯性的声明。认证参考物质和参考物质的相同点和不同点主要见下表:标准品是按照ISO 17034:2016《标准物质/标准样品生产者能力认可准则》来指导生产,那么什么是ISO 17034?• ISO 17034是标准物质/标准样品生产者能力认可的国际标准。• 从原材料选择、生产、质量控制、运输和储存到售后实行质量监管。• 生产:原材料选择和纯化,生产计划和控制;• 描述:检测方法、不确定度、溯源性;• 批次稳定性评估;• ISO Guide 34 从2016年11月已经正式更名ISO 17034。试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。1.优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度zui高,杂质含量zui低,适合于重要jing密的分析工作和科学研究工作,使用绿色瓶签。2.分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。3.化学纯(CP),又称三级试剂,≥99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)瓶签。4.实验试剂(LR:Laboratory reagent),又称四级试剂。纯度远高于优级纯的试剂叫做高纯试剂(≥99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度zui高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种jing密分析的要求。除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(ExtraPure)、超纯、光谱纯等不同叫法。[1]高纯试剂通常应用于色谱使用的色谱纯试剂、光谱使用的光谱纯试剂,此外,电路、液晶等领域都有各自行业标准的高纯试剂。但是高纯试剂通常不使用在分析纯试剂使用的领域,如配制标准溶液、滴定剂等,高纯的单质例外。也就是说高纯试剂不是一个计量学概念的物质,而标准品是在计量学范畴内的。高纯试剂遵循的生产标准是ISO9001。不同行业使用的高纯试剂有各自的标注方式,通用的标注是用9的数目来表示。例如,纯度为99.999%,含五个九则表示为5N;纯度为99.995%,含四个九一个五,表示为4.5N。高纯试剂不需要确定不确定度,溯源性,主要是对试剂的纯度和杂质的控制,没有计量学的要求,所以标准品的生产在jing准方面,要求会更高。月旭提供的A2S在生产有机标准品方面已经通过ISO9001, ISO Guide 34 (现ISO17034)资质认证,目前可以提供高品质纯品型标准品、单标溶液、混标溶液,并且可以为客户提供混标个性化定制服务,如GB2763、GB23200系列多农残查混标定制,欢迎大家咨询选购!
  • 海鲜食品安全危机?标准、解决方案这里都有
    北京时间24日中午12时,日本向海洋排放福岛第一核电站污染水正式启动, 2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。对此,群众最为关心的莫过于对我国生态环境和食品安全是否会有影响。据了解,核污染具有毒性和生物蓄积性,对生态系统造成破坏,长期摄入或造成慢性放射性中毒。8月24日,我国海关总署发布公告,自24日(含)起全面暂停进口原产地为日本的水产品(含食用水生动物)。日本核污水排海的后续影响有待研究机构和有关部门进一步判定。小编特整理了海鲜水产品检测中涉及到的检测项目、检测仪器及解决方案,供大家参考:一、检测项目:1)理化检测:感官检测、水分、pH值、净含量检测、含砂量、干燥失重、盐分检测、浸出物、酸价测定、过氧化值、多磷酸盐、挥发性盐基氮、新鲜度检测2)卫生检测:甲醛、多氯联苯、组胺检测、生物胺检测、挥发酚检测、食品添加剂检测、明矾、硼酸、重金属、亚硝胺检测3)微生物检测:菌落总数、大肠菌群、沙门氏菌检验、金黄色葡萄球菌、副溶血性弧菌、寄生虫、商业无菌检测4)农药残留检测:马拉硫磷、毒死蜱、三氯杀螨醇、三唑酮、烯丙菊酯、氯丹、杀扑磷、硫丹、丙草胺、六六六,敌敌畏5)兽药残留检测:青霉素检测、红霉素、土霉素、四环素检测、硝基呋喃类、磺胺类、孔雀石绿6)营养成分检测:能量,蛋白质检测,脂肪,碳水化合物,氨基酸检测,无机盐,维生素检测、DHA检测、EPA7)成分分析:主成分分析,全成分分析,未知物分析,定性定量分析,指标检测,成分含量检测二、海鲜相关检测标准:GB/T 18108-2008 鲜海水鱼GB 5009.206-2016 食品安全标准 水产品中河豚毒素的测定GB 5009.273-2016 食品安全标准 水产品中微囊藻毒素的测定GB 5009.274-2016 食品安全标准 水产品中西加毒素的测定GB 5009.231-2016 食品安全标准 水产品中挥发酚残留量的测定GB 2733-2015 食品安全标准 鲜、冻动物性水产品GB 10136-2015 食品安全标准 动物性水产制品GB 29682-2013 食品安全标准 水产品中青霉素类药物多残留的测定GB 29684-2013 食品安全标准 水产品中红霉素残留量的测定GB 29705-2013 食品安全标准 水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定GB/Z 21702-2008 出口水产品质量安全控制规范GB/T 20361-2006 水产品中孔雀石绿和结晶紫残留量的测定GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定GB 14882-1994 食品中放射性物质限制浓度标准SN/T 4590-2016 出口水产品中焦磷酸盐、三聚磷酸盐、三偏磷酸盐含量的测定SN/T 4526-2016 出口水产品中有机硒和无机硒的测定SN/T 0393-1995 出口水产品中总汞含量检验SN/T 3196-2012 水产品中致病性弧菌检测SN/T 0223-2011 进出口冷冻水产品检验规程SN/T 2564-2010 水产品中致病性弧菌检测SN/T 1974-2007 进出口水产品中亚甲基蓝残留量检测SN/T 1643-2005 进出口水产品中砷的测定SC/T 3012-2002 水产品加工术语SC/T 3015-2002 水产品中土霉素、四环素、金霉素残留量的测定SC/T 3011-2001 水产品中盐分的测定SN 0598-1996 出口水产品中多种有机氯农药残留量检验SN/T 0392-1995 出口水产品中硼酸的测定三、海鲜食品检测仪器有:序号海鲜食品检测仪器名称用途1水分测定仪测定海鲜水分含量2酶标仪检测海鲜疫病、兽药残留、抗生素、真菌毒素等3气相色谱仪配置定制,根据测的项目不同,进行配置4气相色谱-质谱联用仪现场的有机污染物进行准确定性和定量检测,主要应用于环境空气、水体、土壤和固体废弃物中挥发性和部分半挥发性有机物的现场分析5紫外可见分光光度计测量物质对不同波长单色辐射的吸收程度,定量分析6电子天平样品称量必备仪器7脂肪测定仪测定脂肪含量的仪器8凯氏定氮仪测定蛋白质含量的仪器9微生物检测仪用于海鲜食品中的活菌总数、大肠杆菌、绿脓杆菌、沙门氏菌、链球菌、酵母菌等微生物的快速检测10兽药残留检测仪可定量快速检测阿莫西林、孔雀石绿、瘦肉精、黄曲霉毒素等11食品安全检测仪检测海鲜中是否含有重金属、细菌、病毒等超标的污染物。12马弗炉用于测定水分、灰分、挥发分、灰熔点分析、灰成分分析、元素分析。也可以作为通用灰化炉使用。13微波消解仪微波消解对样品进行前处理,可完全消解样品,便于检测更多海鲜食品检测仪器请点击查看: 仪器优选四、海鲜食品相关解决方案: 1、 海鲜水产呋喃类代谢物残留快速检测解决方案 2、 海鲜组织中的兽药分析——实时直接分析 (DART) 和高效液相色谱 (HPLC) 与 Agilent 6400 系列三重四 极 杆质谱仪 (QQQ-MS) 联用系统 3、 海鲜甲醛检测操作流程 4、 解决方案 | 食品中放射性物质锶-90的测定 5、 海鲜储存对质地的影响更多海鲜食品检测解决方案请点击查看:水产品检测面对日本核污水排放这一事件,我们不能过于恐慌。我们应该保持理性,采取必要的措施来保障食品安全。同时,我们也需要加强环境监测和食品安全监管,确保我们的食品安全和健康。最后,让我们一起关注食品安全和环境保护问题,为我们的健康和未来努力。══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/ ) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
  • 新民晚报报道泰坦科技 创业掘金瞄准“高端实验室服务”
    报刊原文 上海松江,新飞路1500弄66号楼,每天灯火通明,6名上海博士创办的上海泰坦科技(泰坦化学)股份有限公司,紧张又忙碌。他们默默创业6年,要为中国科学家提供更好的实验室产品与服务,为中国科学登峰助一臂之力。 昨天,记者走进松江科技园区,探访这家自我定义为“中国科学服务首席提供商”的年轻企业。1. 瞄准国内科技服务洼地 橙红、明黄、墨绿。走进“泰坦”五楼,数百平米的标准化实验室整洁明亮。每个实验桌上都有一个红色抽气罩,造型有些卡通;饮水桶大小的褐色容器上,盖着红色瓶盖;有的实验桌面是一整片墨绿…… 别小看这些颜色,这可是董事长谢应波带领团队在多年的实验室经历中摸索、梳理出来的“泰坦牌”实验室“色系”。“比如,合成实验等科研的实验室台面是整片墨绿或蓝绿,因为耐脏;化妆品实验室多选用白色,看上去干净、放心;科学仪器上亮丽的小色彩,易于辨识,又能刺激科研人员大脑,有助于提升创新活跃度。 科学实验室也讲究搭配?这在七八年前的中国科研界是很难想象的。那时,科研人员创新产品做实验,实验室里的瓶瓶罐罐都得自己淘,高端实验仪器、科研试剂与耗品基本依赖国际邮购,不仅要等上几个月,价格还比国外贵几倍。有些高精尖材料或试剂甚至限制出售给中国,让国内科学家时常“巧妇难为无米之炊”。 相反,欧美等科技强国,都有本土的科学服务公司,甚至发展成世界500强企业,如飞世尔、默克、Danaher等,年销售超1000亿元。就连邻国日本,也有年销售额超过100亿元的科技服务企业。 “2004年近1000亿元,到2012年超过1万亿元,8年间我国科研投入增长十倍,可连一家年销售额10亿元的专业科学服务公司都没有。”在谢应波眼里,落后的科研配套服务已经“绑住”了中国科学家的研发效率。2007年,尚在读博的他与5位同学一拍即合,决定创立“泰坦”,瞄准国内科技服务的巨大洼地。2. 6位穷学生10万元创业 取名泰坦,是因为几位年轻人都爱玩的一款游戏,里面有个名叫“泰坦”的神兽,它源自希腊神话中曾统治世界的古老神族。创业之初,6位穷学生东拼西凑借来10万元,再加上市大学生科技创业基金会20万元的无偿资助开始起步。“我们四处租小公司的实验室用,为了多做实验多省钱,常常是早上7时来,晚上12时才离开。” 半年后,资本金尚未花光,产品已经有销售了。他们白天在市科技创业中心提供的三间免费办公桌“拉业务”,晚上用临时租来的实验室与设备,围绕客户需求开发各种新型化合物分子。终于,泰坦接到了第一笔大订单:给诺华公司制作1千克某硼酸分子。 这种硼酸分子,读书时做出来过,每次仅合成1至2克。如今一下子放大千倍,纯度要符合世界500强公司质量要求,团队心里没底。几个人轮着没日没夜实验,当试管里第一次出现色泽、形状均匀,纯度达标的晶体时,谢应波高兴得简直要飞起来。那年春节,6个家在外地的创始人都没有回家。“那笔订单我们赚了8万元,更与诺华这样的大客户奠定了良好的合作关系。” 那年开始,泰坦核心团队连续3年在实验室里过春节。慢慢地,从第一次为世界500强制药提供的吡啶类化合物,到率先建立一系列频哪酯类化合分子库,再到开发国内最多的杂环氟化物系列产品;从一个一个产品开发,到创立自己的品牌,再到成功打造了国内最大的自主高端试剂品牌Adamas,提供近3万种试剂,上海现货库存超过1.8万种,其中3000种产品独家拥有。3. 破垄断降国内科研成本 最新揭晓的上海市企业创新类十大科技英才中,谢应波当选(“泰坦科技董事长兼CEO谢应波获第七届上海青年科技英才称号(企业创新类)”新闻请见“阅读原文”),他却连称自己沾了“幸运儿”泰坦的光。 “我们是草根企业,起点低、底子薄、资源少,创业时正赶上市大学生科技创业基金成立第二年,免费拿到‘第一桶金’。后来,又承担多项科技部、市发改委、市科委、市经信委及徐汇区的技术创新和服务平台项目。从一个初创微小企业,第一年销售额只有3000元,到如今全球10个销售网点,为1万多家科研院所和企业研发中心提供服务,年销额超过3亿元。泰坦抓住行业机遇,创新生产模式的同时,更运气十足。” 最近3年,泰坦公司销售额年增长率平均超过100%;未来3年,目标是年销售额突破10亿元。针对国内科研配套服务业相对落后,泰坦还率先实现了行业信息化高端平台——探索网,其产品覆盖化学试剂、实验耗材、生物耗材、常备设备、分析设备和实验室管理软件等方面,通过简便搜索,使科研工作者的选择、购买过程最简化——原来辗转一两个月才能买到的实验材料,如今1天就搞定。 “真正让我们自豪的,是在科技服务领域真正打破了国外巨头的垄断,实现了为国内生物医药、有机合成、材料化学、食品香料、能源化工及分析检测领域提供最优质研发试剂愿望,为我国科研直接和间接降低成本超过6亿元。”谢应波说,着眼于未来信息化的积累,公司已拥有超过15万个的生物、化学试剂数据,数万种实验仪器耗材的参数数据、使用方法及稳定供应,终于使泰坦成为跟国际科学服务巨头一样,为国内科研工作者和质控人员提供一站式的实验室产品与服务。【上海泰坦科技股份有限公司由在读博士生创办的高科技企业,一直得到科技部、教育部和上海市政府的重点扶持。公司产品分为高端试剂、通用试剂、分析试剂、实验耗材、仪器仪表、安全防护、实验室建设和科研信息化软件八大业务板块,为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域提供全方位的产品与服务。公司已成功搭建具有国际化视野、全球供应链整合、专业化咨询的国内首家科学一站式服务平台,真正实现“有实验室的地方就有专业的产品和服务”,成为“中国科学服务首席提供商”。】
  • 农业部发布29项色谱质谱食品安全检测标准
    2013年10月16日,农业部网站发布消息称,《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项标准业经食品安全国家标准审评委员会审定通过。并经农业部、卫生和计划生育委员会审查批准,发布为中华人民共和国食品安全国家标准,自2014年1月1日起实施。   附件:《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项兽药残留检测方法标准目录 序号 标准名称 标准编号 1 食品安全国家标准牛奶中左旋咪唑残留量的测定高效液相色谱法 GB 29681-2013 2 食品安全国家标准水产品中青霉素类药物多残留的测定高效液相色谱法 GB 29682-2013 3 食品安全国家标准动物性食品中对乙酰氨基酚残留量的测定高效液相色谱法 GB 29683-2013 4 食品安全国家标准水产品中红霉素残留量的测定液相色谱-串联质谱法 GB 29684-2013 5 食品安全国家标准动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱-质谱法 GB 29685-2013 6 食品安全国家标准猪可食性组织中阿维拉霉素残留量的测定液相色谱-串联质谱法 GB 29686-2013 7 食品安全国家标准水产品中阿苯达唑及其代谢物多残留的测定高效液相色谱法 GB 29687-2013 8 食品安全国家标准牛奶中氯霉素残留量的测定液相色谱-串联质谱法 GB 29688-2013 9 食品安全国家标准牛奶中甲砜霉素残留量的测定高效液相色谱法 GB 29689-2013 10 食品安全国家标准动物性食品中尼卡巴嗪残留标志物残留量的测定液相色谱-串联质谱法 GB 29690-2013 11 食品安全国家标准鸡可食性组织中尼卡巴嗪残留量的测定高效液相色谱法 GB 29691-2013 12 食品安全国家标准牛奶中喹诺酮类药物多残留的测定高效液相色谱法 GB 29692-2013 13食品安全国家标准动物性食品中常山酮残留量的测定高效液相色谱法 GB 29693-2013 14 食品安全国家标准动物性食品中13种磺胺类药物多残留的测定高效液相色谱法 GB 29694-2013 15 食品安全国家标准水产品中阿维菌素和伊维菌素多残留的测定高效液相色谱法 GB 29695-2013 16 食品安全国家标准牛奶中阿维菌素类药物多残留的测定高效液相色谱法 GB 29696-2013 17 食品安全国家标准动物性食品中地西泮和安眠酮多残留的测定气相色谱-质谱法 GB 29697-2013 18 食品安全国家标准奶及奶制品中17&beta -雌二醇、雌三醇、炔雌醇多残留的测定气相色谱-质谱法 GB 29698-2013 19 食品安全国家标准鸡肌肉组织中氯羟吡啶残留量的测定气相色谱-质谱法 GB 29699-2013 20 食品安全国家标准牛奶中氯羟吡啶残留量的测定气相色谱-质谱法 GB 29700-2013 21 食品安全国家标准鸡可食性组织中地克珠利残留量的测定高效液相色谱法 GB 29701-2013 22 食品安全国家标准水产品中甲氧苄啶残留量的测定高效液相色谱法 GB 29702-2013 23 食品安全国家标准动物性食品中呋喃苯烯酸钠残留量的测定液相色谱-串联质谱法 GB 29703-2013 24 食品安全国家标准动物性食品中环丙氨嗪及代谢物三聚氰胺多残留的测定超高效液相色谱-串联质谱法 GB 29704-2013 25 食品安全国家标准水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定气相色谱法 GB 29705-2013 26 食品安全国家标准动物性食品中氨苯砜残留量的测定液相色谱-串联质谱法 GB 29706-2013 27 食品安全国家标准牛奶中双甲脒残留标志物残留量的测定气相色谱法 GB 29707-2013 28 食品安全国家标准动物性食品中五氯酚钠残留量的测定气相色谱-质谱法 GB 29708-2013 29 食品安全国家标准动物性食品中氮哌酮及其代谢物多残留的测定高效液相色谱法 GB 29709-2013
  • 全国特殊食品标准化技术委员会关于筹建《保健食品中辅酶Q10的测定》等十四项国家标准起草工作组的通知
    下载相关附件14 项保健食品分析方法标准修订项目清单序号计划号项目名称120230857-T-424保健食品中褪黑素的测定220230858-T-424保健食品中吡啶甲酸铬含量的测定320230859-T-424保健食品中盐酸硫胺素、盐酸吡哆醇、烟酸、烟酰胺和咖啡因的测定420230860-T-424保健食品中辅酶 Q10 的测定520230861-T-424保健食品中甘草酸的测定620230862-T-424保健食品中番茄红素的测定720230863-T-424保健食品中绿原酸的测定820230864-T-424保健食品中泛酸钙的测定920230865-T-424保健食品中淫羊藿苷的测定1020230866-T-424保健食品中肌醇的测定1120230867-T-424保健食品中免疫球蛋白 IgG 的测定1220230868-T-424保健食品中脱氢表雄甾酮(DHEA)的测定1320230869-T-424保健食品中大豆异黄酮的测定方法 高效液相色谱法1420230870-T-424保健食品中葛根素的测定
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。   有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。   有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。   在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。   表格一 拟议的统一分类和标签以及物质使用范例。 物质名称 EC号 CAS号 拟议统一分类和标签 使用范例 环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮 218-499-0 2164-08-1 对水生环境有危害 对水生环境的危害未分类 作为一种除草剂 硼酸 233-139-2 10043-35-3 生殖毒性 硼酸被用于许多行业和专业应用,被添加在消费品中。 硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。   *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 2024年5月份有338项标准将实施——农林牧渔及食品标准独领风骚
    2024年5月份有338项标准将实施 ——农林牧渔及食品标准独领风骚我们通过国家标准信息平台查询到,在2024年5月份将有338项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:5月份新实施标准一览通过上述图表我们发现,5月份主要是以农林牧渔及食品相关的为主,占比达到了69%(234条)。在这些新实施标准中有水产、农产品农副产品及农药、食品饲料及乳制品等质量及检测方法标准,标准中使用了大量的生命科学类仪器检测。另外还有16%(55条)医药和7%(24条)环境监测标准也将实施。在5月份新实施标准中,涉及大量的科学仪器检测,如:液相色谱-串联质谱仪 、气相色谱-质谱联用仪 、气相色谱仪 、液相色谱 、荧光定量PCR 、红外光谱 、分光光度 、荧光免疫层析 、生物芯片试剂盒 、免疫分析 、拉曼光谱 、X 射线荧光光谱 、原子吸收光谱 等仪器设备。具体2024年5月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(1个)TB/T 1869.7-2023铁路信号变压器 第7部分:BE系列扼流变压器农林牧渔食品标准(234个)SC/T 9447-2023 水产养殖环境(水体、底泥)中丁香 酚 的测定 气相色谱 - 串联质谱法 SC/T 9446-2023 海水鱼类增殖放流效果评估技术规范 SC/T 9112-2023 海洋牧场监测技术规范 SC/T 7002.7-2023 渔船用电子设备环境试验条件和方法 第 7 部分:交变盐雾( Kb ) SC/T 7002.11-2023渔船用电子设备环境试验条件和方法 第11部分:倾斜 摇摆SC/T 5005-2023 渔用聚乙烯单丝及超高分子量聚乙烯纤维 SC/T 4033-2023 超高分子量聚乙烯钓线通用技术规范 SC/T 2123-2023 冷冻卤虫 NY/T 574-2023 地方流行性牛白血病诊断技术 NY/T 572-2023 兔 出血症诊断技术 NY/T 4451-2023 纳米农药产品质量标准编写规范 NY/T 4450-2023 动物饲养场选址生物安全风险评估技术 NY/T 4449-2023 蔬菜地防虫网应用技术规程 NY/T 4448-2023 马匹道路运输管理规范 NY/T 4447-2023 肉类气调包装技术规范 NY/T 4446-2023 鲜切农产品 包装标识技术要求 NY/T 4445-2023 畜禽屠宰用印色用品要求 NY/T 4444-2023 畜禽屠宰加工设备 术语 NY/T 4443-2023 种牛术语 NY/T 4442-2023 肥料和土壤调理剂 分类与编码 NY/T 4440-2023 畜禽液体粪污中四环素类、磺胺类和 喹 诺酮类药物残留量的测定 液相色谱 - 串联质谱法 NY/T 4439-2023 奶及奶制品中乳铁蛋白的测定 高效液相色谱法 NY/T 4438-2023 畜禽肉中 9 种生物胺的测定 液相色谱 - 串联质谱法 NY/T 4437-2023 畜肉中龙胆紫的测定 液相色谱 - 串联质谱法 NY/T 4436-2023 动物冠状病毒通用 RT-PCR 检测方法 NY/T 4432-2023 农药产品中有效成分含量测定通用分析方法 气相色谱法 NY/T 4431-2023 薏苡仁中多种酯类物质的测定 高效液相色谱法 NY/T 4430-2023 香石竹斑驳病毒的检测 荧光定量 PCR 法 NY/T 4429-2023 肥料增效剂 苯基磷酰二胺( PPD )含量的测定 NY/T 4428-2023 肥料增效剂 氢醌( HQ )含量的测定 NY/T 4427-2023 饲料近红外光谱测定应用指南 NY/T 4426-2023 饲料中二 硝托胺 的测定 NY/T 4425-2023 饲料中 米诺地尔 的测定 NY/T 4424-2023 饲料原料 过氧化值的测定 NY/T 4423-2023 饲料原料 酸价的测定 NY/T 4422-2023 牛蜘蛛腿综合征检测 PCR 法 NY/T 4421-2023 秸秆还田联合整地机 作业质量 NY/T 4420-2023 农作物生产水足迹评价技术规范 NY/T 4419-2023 农药桶混助剂的润湿性评价方法及推荐用量 NY/T 4418-2023 农药桶混助剂沉积性能评价方法 NY/T 4417-2023 大蒜营养品质评价技术规范 NY/T 4416-2023 芒果品质评价技术规范 NY/T 4415-2023 单氰胺可溶液剂 NY/T 4414-2023 右旋 反式氯丙炔 菊酯原药 NY/T 4413-2023 噁 唑 菌酮原药 NY/T 4412-2023 抑霉 唑 水乳剂 NY/T 4411-2023 抑霉 唑 乳油 NY/T 4410-2023 抑霉 唑 原药 NY/T 4409-2023 苏云金杆菌可湿性粉剂 NY/T 4408-2023 苏云金杆菌悬浮剂 NY/T 4407-2023 苏云金杆菌母药 NY/T 4406-2023 萘 乙酸钠可溶液剂 NY/T 4405-2023 萘 乙酸( 萘 乙酸钠)原药 NY/T 4404-2023 抗倒酯微乳剂 NY/T 4403-2023 抗倒 酯 原药 NY/T 4402-2023 甲 哌 鎓可溶液剂 NY/T 4401-2023 甲 哌 鎓原药 NY/T 4400-2023 氟 啶 虫酰胺水分散粒剂 NY/T 4399-2023 氟 啶 虫酰胺悬浮剂 NY/T 4398-2023 氟 啶 虫酰胺原药 NY/T 4397-2023 氟虫 腈 种子处理悬浮剂 NY/T 4396-2023 氟虫 腈 悬浮剂 NY/T 4395-2023 氟虫 腈 原药 NY/T 4394- 2023 代森锰锌 霜 脲 氰可湿性粉剂 NY/T 4393- 2023 代森联可湿性 粉剂 NY/T 4392- 2023 代森联水 分散粒剂 NY/T 4391- 2023 代森联原药 NY/T 4390-2023 丙炔氟草胺 可湿性粉剂 NY/T 4389-2023 丙炔氟草胺 原药 NY/T 4388-2023 苯 醚甲环唑 水分散粒剂 NY/T 4387-2023 苯 醚甲环唑 微乳剂 NY/T 4386-2023 苯 醚甲环唑 乳油 NY/T 4385-2023 苯 醚甲环唑 原药 NY/T 4384-2023 氨氯吡啶酸可溶液剂 NY/T 4383-2023 氨氯吡啶酸原药 NY/T 4382-2023 加工用红枣 NY/T 4381-2023 羊草干草 NY/T 394-2023 绿色食品 肥料使用准则 NY/T 3213-2023 植保无人驾驶航空器 质量评价技术规范 NY/T 1668-2023 农业野生植物原生境保护点建设技术规范 NY/T 1236-2023 种羊生产性能测定技术规范 LS/T 8013-2023 气膜钢筋混凝土圆顶仓工程施工与验收规范 LS/T 8012-2023 气膜钢筋混凝土圆顶仓设计规范 LS/T 8005-2023 农户小型粮仓建造技术规范 LS/T 6148-2023 粮油检测 粮食中铅的测定 时间分辨荧光免疫层析快速定量法 LS/T 6147-2023 粮油检测 粮食中 T-2 毒素的测定 时间分辨荧光免疫层析快速定量法 LS/T 6146-2023 粮油检验 粮食中霉菌计数 荧光快速检测法 LS/T 3323-2023 食品工业用玉米蛋白 LS/T 3322-2023 冷冻熟面条 LS/T 3321-2023 马铃薯全粉 LS/T 3127-2023 鹰嘴豆 LS/T 3126-2023 油用杏仁 LS/T 1233-2023 粮油储藏 粮食仓储企业危险源辨识与评价方法 SN/T 5658.3-2023 蒸馏酒质量鉴别方法 第 3 部分:多酚总量的测定 分光光度法 SN/T 5658.2-2023 蒸馏酒质量鉴别方法 第 2 部分:橡木浸出物的测定 超高效液相色谱法 SN/T 5658.1-2023 蒸馏酒质量鉴别方法 第 1 部分: 18 种挥发性成分含量的测定 气相色谱法 SN/T 5656-2023 食品中 5 种杂粮成分定性检测方法 实时荧光 PCR 法 SN/T 5655.13-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 13 部分:胡桃 SN/T 5655.12-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 12 部分:开心果 SN/T 5655.11-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 11 部分:夏威夷果 SN/T 5655.10-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 10 部分:巴西坚果 SN/T 5655.9-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 9 部分:榛子 SN/T 5655.8-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 8 部分:腰果 SN/T 5655.7-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 7 部分:扁桃仁 SN/T 5655.6-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 6 部分:乳 SN/T 5655.5-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 5 部分:大豆 SN/T 5655.4-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 4 部分:花生 SN/T 5655.3-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 3 部分:蛋类 SN/T 5655.2-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 2 部分: 甲壳纲类动物 SN/T 5655.1-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 1 部分: 麸 质 SN/T 5649-2023 动物源食品 中克百威 及代谢物 3- 羟基克百威 残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5643.5-2023 出口食品中化学污染物的快速检测方法 第 5 部分: 4 种真菌毒素含量的测定 生物芯片 试剂盒法 SN/T 5643.4-2023 出口食品中化学污染物的快速检测方法 第 4 部分: 西布曲明 的测定 拉曼光谱法 SN/T 5643.3-2023 出口食品中化学污染物的快速检测方法 第 3 部分:苋菜红的测定 拉曼光谱法 SN/T 5643.2-2023 出口食品中化学污染物的快速检测方法 第 2 部分:碱性嫩黄 O 的测定 拉曼光谱法 SN/T 5643.1-2023 出口食品中化学污染物的快速检测方法 第 1 部分:砷、镉、汞、铅含量的测定 X 射线荧光光谱法 SN/T 5642.7-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 7 部分:副干酪乳杆菌 SN/T 5642.6-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 6 部分: 嗜 酸乳杆菌 SN/T 5642.5-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 5 部分:鼠李糖乳 杆菌 SN/T 5642.4-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 4 部分:植物乳杆菌 SN/T 5642.3-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 3 部分:动物双 歧 杆菌 SN/T 5642.2-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 2 部分:两双 歧 杆菌 SN/T 5642.1-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 1 部分:青春双 歧 杆菌 SN/T 5638-2023 冰葡萄酒中 20 种醛酮类物质的测定 气相色谱 - 质谱 / 质谱法 SN/T 5637-2023 6 种常见黑松露成分定性检测方法 实时荧光 PCR 法 SN/T 5636-2023 16 种鱼类成分定性检测方法 实时荧光 PCR 法 SN/T 5604-2023 东北林蛙物种鉴定方法 实时荧光 PCR 法 SN/T 5521-2023 进口麦卢卡蜂蜜中 5 种特征物质的测定 液相色谱 - 质谱 / 质谱法 SN/T 5520-2023 动物源食品中苯乙醇胺 A 的测定 液相色谱 - 质谱 / 质谱法 SN/T 5519-2023 出口植物源性食品 中氰氟草酯 和 氰氟 草酸残留量的测定 SN/T 5518-2023 出口植物源食品中 棉隆及其 代谢物残留量的测定 气相色谱 - 质谱 / 质谱法 SN/T 5517-2023 出口水产品及其制品中甲基汞的测定 全自动甲基 汞分析仪法 SN/T 5515-2023 出口食品中氟 唑 菌酰胺残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5514-2023 出口食品中产毒素真菌快速检测方法 实时荧光 PCR 法 SN/T 5513-2023 出口禽肉中弯曲 菌 计数方法 SN/T 5512-2023 出口动物源食品中那西肽残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 4544.3-2023 商品化试剂盒检测方法 菌落总数 方法三 SN/T 1988-2023 出口动物源食品中头 孢 类抗生素残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 1681-2023蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 5599-2023 进境鲜冻肉类产品名称规范 SN/T 5561-2023 出口食品中乙 嘧 硫磷残留量的测定 气相色谱法 DB32/T 4727-2024 鳜鱼传染性脾肾坏死病诊断及综合防控技术规程 DB32/T 4726-2024 畜禽粪污 沼 液果 蔬 生产施用技术规范 DB32/T 4735-2024 优良食味粳稻生态种植技术规程 DB32/T 4732-2024 设施蔬菜园区农业机械配置规范 DB32/T 4731-2024 农机专业合作社机务管理规范 DB32/T 4730-2024 南美白对虾小型温棚健康养殖技术规范 DB32/T 4724-2024 草莓生产中微生物菌剂(肥)应用技术规程 DB5308/T 77—2024 桉树速生丰产林培育技术规程 DB42/T 235-2024 地理标志产品 京山桥米 DB42/T 582-2024 猕猴桃主要真菌性病害防控技术规程 DB42/T 1428.1-2024 猕猴桃轻简高效生产技术规程 第 1 部分:高枝牵引技术 DB42/T 2230.1-2024 麦茬复种 第 1 部分:夏直播棉 DB42/T 2228.4-2024 农副产品加工流通管理规程 第 4 部分:加工或保藏的水果 DB42/T 2228.3-2024 农副产品加工流通管理规程 第 3 部分:动、植物油脂 DB42/T 2228.2-2024 农副产品加工流通管理规程 第 2 部分:谷物粉制品 DB42/T 2228.1-2024 农副产品加工流通管理规程 第 1 部分:加工或保藏的蔬菜 DB42/T 2227.2-2024 食用菌菌种质量检验规范 第 2 部分:荷叶离褶伞 DB42/T 2217-2024 稻田迟直播油菜生产技术规程 DB42/T 2216-2024 普通白菜机械化生产技术规范 DB42/T 2215-2024 甘蓝型油菜品种真实性及其实质性派生品种 MNP 鉴定法 DB42/T 2214-2024 甘蓝类蔬菜 集约化穴盘育苗 技术规程 DB42/T 2213-2024 设施草莓 / 西瓜模式栽培技术规程 DB6521/T 071-2024 葡萄平茬嫁接技术规程 DB6521/T 070-2024 红巴拉多葡萄栽培技术规程 DB6521/T 069-2024 紫霞玫瑰葡萄栽培技术规程 DB6521/T 068-2024 火州翠玉 葡萄栽培技术规程 DB6521/T 067-2024 顺行龙干葡萄栽培技术规程 DB4413/T 43-2024 滨海旅游海鲜餐饮经营规范 DB4413/T 42-2024 糯 小麦种植技术规范 DB44/ 613-2024 畜禽养殖业污染物排放标准 DB41/T 2620-2024 沿 黄稻虾共 作生态种养技术规程 DB41/T 2617-2024 饲料霉变防控及霉菌毒素脱毒技术规范 DB41/T 2616-2024 杨树锈病综合防治技术规程 DB41/T 2615-2024 山桐子育苗技术规程 DB41/T 2614-2024 银木栽植 养护技术规程 DB41/T 2612-2024 薄壳山核桃容器苗培育技术规程 DB41/T 2611-2024 食用林产品抽样技术要求 DB41/T 2609-2024 设施西瓜、甜瓜水肥一体化设备配置与运行规程 DB41/T 2608-2024 设施蔬菜冬春季防灾减灾技术规范 DB41/T 2607-2024 蓝 莓 组培快 繁 技术规程 DB41/T 2606-2024 丘陵山地朝天 椒 生产技术规程 DB41/T 2605-2024 蜡梅 种质资源描述规范 DB41/T 2604-2024 规模化养殖池塘尾水生态处理技术规范 DB41/T 2597-2024 沼气用玉米、小麦秸秆黄 贮技术 规程 DB41/T 2596-2024 鹅常见病毒病防控技术规程 DB41/T 2595-2024 猪急性腹泻综合征诊断技术 DB41/T 2594-2024 规模化牛场布鲁氏菌病、结核病净化技术规范 DB41/T 2593-2024 黄山松培育技术规程 DB41/T 2592-2024 月季品种观赏性评价技术规程 DB41/T 2591-2024 石榴盆栽技术规程 DB41/T 2588-2024 苍术栽培技术规程 DB41/T 2587-2024 怀地黄种栽繁育技术规程 DB41/T 2586-2024 黄精种子育苗技术规程 DB41/T 2585-2024 大口黑鲈四种病毒性疾病防控技术规范 DB41/T 2583-2024 荷斯坦犊牛饲养管理技术规程 DB41/T 2582-2024 湖北紫荆培育技术规程 DB41/T 2581-2024 迁飞性昆虫的雷达观测技术规范 DB41/T 2577-2024 麦套朝天 椒 机械化直播生产技术规程 DB41/T 2576-2024 冬小麦 - 夏玉米 籽粒双 机收栽培技术规程 DB11/T 2171.3-2023 粮食节约减损规范 第 3 部分:加工环节 DB11/T 2171.2-2023 粮食节约减损规范 第 2 部分:运输环节 DB11/T 2171.1-2023 粮食节约减损规范 第 1 部分:储存环节 DB36/T 779-2023 毛红椿培育技术规程 DB36/T 1888-2023 长豇豆大棚栽培技术规程 DB36/T 1887-2023 油菜 - 中稻生产技术规程 DB36/T 1886-2023 湿地松种子园营建技术规程 DB36/T 1885-2023 辣椒水肥一体化栽培技术规程 DB36/T 1884-2023 苦瓜大棚秋延后栽培技术规程 DB36/T 1883-2023 黄瓜设施越夏栽培技术规程 DB36/T 1882-2023 黑皮冬瓜设施栽培技术规程 DB36/T 1881-2023 黑斑 侧褶蛙米尔 伊丽莎白 菌 分离鉴定技术规范 DB36/T 1880-2023 稻草全量还田下的油菜直播生产技术规程 DB36/T 1879-2023 测土配方施肥系统县域数据库规范 DB36/T 1878-2023 蛋鸭笼养技术规程 DB36/T 1876-2023 食品生产企业食品安全风险分级评定规范 DB36/T 848-2023 早稻集中育秧和移栽气象等级 DB36/T 1872-2023 旱地 “ 甘薯 — 油菜 ” 轮作生产技术规程 DB36/T 1871-2023 “ 早春红芽芋 — 晚粳稻 ” 轮作栽培技术规程 DB36/T 1870-2023 井冈蜜柚平衡施肥技术规程 DB36/T 1869-2023 香菇菌种生产技术规程 DB36/T 1868-2023 西方蜜蜂成熟 蜜 生产技术规程 DB36/T 1867-2023 白莲蜜蜂授粉技术规程 DB36/T 1866-2023 中华蜜蜂育王技术规程 DB36/T 1864-2023 切花石蒜栽培技术规程 DB36/T 1859-2023 特殊食品经营管理规范 DB36/T 1858-2023 特殊食品经营示范主体评价规范 DB36/T 1857-2023 校园食品安全总监(食品安全员)培训管理规范 DB4110/T 63-2023 玉米腐植酸 控释参混肥 施用技术规程 DB4110/T 62-2023 小麦玉米两熟制高产高效栽培技术规程 DB41/T 2598-2024 豫选黄河鲤 2 号 DB64/T 1980—2024 枸杞春季花期霜冻气象指标 DB41/T 1346-2024 稻田紫云英 - 水稻秸秆协同还田利用技术规程 DB64/T 1984—2024 酿酒葡萄晚霜冻灾 害调查 规范 环境环保标准(24个)NY/T 4435-2023 土壤中铜、锌、铅、铬和 砷含量 的测定 能量色散 X 射线荧光光谱法 NY/T 4434-2023 土壤调理剂中汞的测定 催化热解 - 金汞齐富集原子吸收光谱法 NY/T 4433-2023 农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法 SN/T 5523-2023水中铜绿假单胞菌的测定 酶底物法DB32/T 4729-2024 河湖生态疏浚工程施工质量检验与评定规范 DB32/T 4728-2024 河道保护规划编制导则 DB32/T 4740-2024 耕地和林地损害程度鉴定规范 CJ/T221-2023 城镇污泥标准检验方法 DB44/ 2462-2024 水产养殖尾水排放标准 DB64/T 702—2024 畜禽养殖污染防治技术规范 DB64/T 1981—2024 土壤水分自动观测站建设规范 DB64/ 819—2024 煤质活性炭工业大气污染物排放标准 DB64/ 1996—2024 燃煤电厂大气污染物排放标准 DB64/ 1995—2024 水泥工业大气污染物排放标准 DB41/ 2555-2023 医疗机构水污染物排放标准 DB37 4676—2023 海水养殖尾水排放标准 DB36/T 1865-2023 湿地碳汇监测 技术规程 DB41/T 2602-2024 湖泊水生态系统修复工程设计导则 DB41/T 2601-2024 农村水系综合治理设计导则 DB41/T 2613-2024 沿黄生态廊道建设导则 DB41/T 2579-2024 高山环境质量自动监测站防雷技术规范 DB32/T 4725-2024 池塘养殖尾水生态处理技术规范 DB41/T 754-2024 在用固体燃料工业锅炉节能评价规程 DB41/T 900-2024 旋流燃烧方式锅炉冷态试验导则 医药卫生标准(55个)GB 9706.222-2022 医用电气设备 第 2-22 部分:外科、整形、治疗和诊断用激光设备的基本安全和基本性能 专用要求 WS 10014-2023 学校及托幼机构饮水设施卫生规范 WS 10013-2023 公共场所集中空调通风系统卫生规范 WS 10012-2023 地方性 砷 中毒病区判定和划分 WS/T 10011.5-2023 公共卫生检测与评价实验室常用名词术语标准 第 5 部分:分子生物学检测 WS/T 10011.4-2023 公共卫生检测与评价实验室常用名词术语标准 第 4 部分:毒理学安全性评价 WS/T 10011.3-2023 公共卫生检测与评价实验室常用名词术语标准 第 3 部分:微生物检测 WS/T 10011.2-2023 公共卫生检测与评价实验室常用名词术语标准 第 2 部分:理化检测 WS/T 10011.1-2023 公共卫生检测与评价实验室常用名词术语标准 第 1 部分:基础术语 WS/T 10010-2023 卫生监督快速检测通用要求 WS/T 10009-2023 消毒产品检测方法 WS/T 10008-2023 7 岁 -18 岁儿童青少年体力活动水平评 WS/T 10007-2023 中小学生体育锻炼运动负荷卫生要求 WS/T 10006-2023 环境化学污染物参考剂量推导技术指南 WS/T 10005-2023 公共场所集中空调通风系统清洗消毒规范 WS/T 10004-2023 公共场所集中空调通风系统卫生学评价规范 WS/T 10003-2023 环境健康名词术语 WS/T 10002-2023 克山病病区控制和消除 WS/T 10001-2023 疾病预防控制机构实验室仪器设备配置和管理 SN/T 5605-2023 蝾螈壶菌检疫技术规范 SN/T 5602-2023 豇豆花叶病毒属病毒 RT-PCR 筛查方法 YY/T 1883-2023 Rh 血型 C 、 c 、 E 、 e 抗原检测卡(柱凝集法) YY/T 1874-2023 有源植入式医疗器械 电磁兼容 植入式心脏起搏器、植入式心律转复除颤 器和心脏再同步器械的电磁兼容测试细则 YY/T 1866-2023 一次性使用无菌 肛肠套扎器 胶圈或弹力线式 YY/T 1789.5-2023 体外诊断检验系统 性能评价方法 第 5 部分:分析特异性 YY/T 1411-2023 牙科学 牙科治疗机水路生物膜处理的试验方法 YY/T 1268-2023 环氧乙烷灭菌的产品追加和过程等效 YY/T 0893-2023 医用气体混合器 独立气体混合器 YY/T 0862-2023 眼科光学 眼内填充物 YY/T 0128-2023 医用诊断 X 射线辐射防护器具 装置及用具 YY/T 1012-2021 牙科学 手机连接件联轴节尺寸 YY 9706.272-2021 医用电气设备 第 2-72 部分:依赖呼吸机患者使用的家用呼吸机的基本安全和基本性能 专用要求 YY 9706.270-2021 医用电气设备 第 2-70 部分:睡眠呼吸暂停治疗设备的基本安全和基本性能 专用要求 YY 9706.252-2021 医用电气设备 第 2-52 部分 : 医用病床的基本安全和基本性能 专用要求 YY 9706.247-2021 医用电气设备 第 2-47 部分:动态心电图系统的基本安全和基本性能 专用要求 YY 9706.234-2021 医用电气设备 第 2-34 部分 : 有创血压监护设备的基本安全和基本性能 专用要求 YY 9706.221-2021 医用电气设备 第 2-21 部分:婴儿辐射 保暖台 的基本安全和基本性能 专用要求 YY 1045-2021 牙科学 手机和马达 YY/T 0671-2021 医疗器械 睡眠呼吸暂停治疗 面罩和应用附件 DB32/T 4737.1-2024 社区慢性病患者自我管理工作规范 第1部分:总则 DB32/T 4736-2024 医疗卫生信用评价规范 DB42/T 2218-2024 中药材 艾草种植技术规程 DB14/T 2997—2024 特色针法操作规程 中风利咽通窍针 DB14/T 2996—2024 医疗机构 灸 疗场所设置要求 DB14/T 2995—2024 灸疗技术 操作规范 中药泥 灸 DB14/T 2994—2024 灸疗技术 操作规范 通督 灸 DB14/T 2993—2024 灸疗技术 操作规范 麦粒 灸 DB14/T 2992—2024 医疗肿瘤多学科诊疗工作规范 DB64/T 1986—2024 老年友善医疗机构建设评价规范 DB36/T 1875-2023 结核病定点医疗机构医院感染预防与控制规范 DB36/T 1855-2023 困境儿童监护风险干预指南 DB41/T 2603-2024病媒生物预防控制机构服务规范DB41/T 2610-2024 养老机构康复辅助器具配置服务规程 DB41/T 2621-2024 产前诊断(筛查)技术医疗机构服务规范 SN/T 4445.4-2023 进口医疗器械检验技术要求 第 4 部分:输液泵 冶金矿产标准(4个)DB36/T 1860-2023 稀土产品链的可追溯性体系设计与实施指南 DB36/T 863-2023 黄蜡 石质量 等级划分与评定 DB41/T 2599-2024 煤矿地震监测站网技术规范 DB41/T 2578-2024 铝合金深井铸造工艺系统安全规程 化工塑料标准(3个)SN/T 5660-2023进出口危险化学品检验规程 甲酸SN/T 5659-2023进出口危险化学品检验规程 发火液体 基本要求DB32/T 4723-2024 石墨 烯 材料包装储运通用要求 轻工纺织标准(1个)SN/T 5615-2023 进出口纺织品 再生纤维素纤维定性分析 显微镜法 能源标准(3个)DB64/T 1979—2024 风能太阳能开发项目选址气候可行性论证技术指南 DB32/T 4722-2024 固定式海上风力发电机组 安装技术规范 DB32/T 4721-2024 海上风电场 雷电预警系统技术规范 机械车辆标准(2个)DB31/T 310021-2024 纯电动公交车运营管理规范 DB14/T 2998—2024 电动自行车消防安全管理指南 其他标准(11个)SN/T 5622-2023 化学分析实验室标准物质的选择和使用 SN/T 5603-2023 进出境旅客行李物品中有害物质气味 嗅探技术 规程 DB36/T 1877-2023 直投式橡塑复合改性沥青混合料应用技术规范 DB36/T 744-2023 废旧轮胎橡胶沥青路面施工技术规范 DB31/T 310023-2024 绿色产品和服务认证规范 DB41/T 2584-2024 装配式桥梁现浇部分超高性能混凝土施工技术规范 DB41/T 2600-2024 地震应急指挥技术系统建设要求 TB/T 3385.1-2023 铁路无线电监测 第 1 部分:总体要求 TB/T 3295-2023 铁路大型施工机械 箱梁 运梁车 SN/T 5624-2023 检测实验室质量安全风险管理 通则 SN/T 4499-2023 技术性贸易措施工作规程 国外技术性贸易措施影响企业统计调查 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 借标准台阶冲上龙头
    江苏高淳县在南京市并不算是一个有良好工业基础的县,县属企业总量也不多,但近年来却先后有5家企业成为相关国家标准的主起草单位,分别牵头制定了9项国家标准。   最近,高淳县南京固柏橡塑制品有限公司(以下简称固柏橡塑)厂房一片繁忙,在同行企业开始停产或减产的时候,该公司生产车间却每天24小时开足马力生产。   看到质监工作人员到来,该公司董事长张收才热情相迎。他对记者说了一句话:“以前质监局的人来了,我是不出来迎接的,现在哪怕是一个普通工作人员来,我也要出来跟他谈一谈。”其中的原因是在高淳县质监局的指引下,凭借走标准化之路,固柏橡塑这个原先论规模在全国只能算中上等的企业,迅速发展成为行业中的龙头企业,销售业绩蒸蒸日上。   说到走标准化道路,张收才用4个阶段来概括:“从无所谓,到正视,到投入精力,再到现在见到效果、尝到甜头。” 2005年,张收才想过做标准,但当时心里主要想的还是如何提高产量。直到2007年5月,高淳县质监局局长周骏贵的一番话,让他意识到走标准化道路对企业发展的重要性。随后在高淳县质监局的帮助和指导下,经过一年多的努力,固柏橡塑主持起草的“工业用橡胶板”国家标准,在2008年4月正式批准发布,并于当年10月1日正式实施。该公司当年的销售就实现100%,收入较2007年翻了一倍,达到6300万元,上缴国家税收近400万元。面对金融危机,该公司的外贸订单却比以前增长200%以上。“现在我们的业务经理出门跑业务,只要把我们制定的标准带过去就可以了。这对我们来说,危机就是机遇。”张收才的喜悦之情溢于言表。   目前,固柏橡塑已申请筹建“弹性铺装材料”国家专业委员会,目前进入公示阶段。2010年,该公司还要增加两条生产线,争取上缴税收1000万元。   自2007年初高淳县委、县政府把名牌战略作为高淳县经济发展的“三大引擎”之一以来,高淳县质监局引导企业采用国际标准、国外先进标准,帮助企业开展技术创新并参与制定国家标准。该局还利用服务中掌握的信息,搭建产品配套信息平台,向社会推荐高淳县质量过硬的名优产品。在当地质监局的大力推动下,除固柏橡塑外,红太阳、红宝丽、大地水刀、高淳陶瓷4家企业也分别牵头制定了3-甲基吡啶、吡啶、太阳能热水器用硬质聚氨酯泡沫塑料、一异丙醇胺、二异丙醇胺、超高压水切割机、蜂窝陶瓷、日用瓷器等国家标准,成为高淳的经济名片。   企业形象地比喻说:“做产品赚1分,做品牌赚1毛,做标准赚1块。”5家企业尝到了参与国家标准制定、赢得市场话语权的甜头,不少客户就冲着国家标准制定企业的名头而来,这些企业订单大增,同时也走出了价格竞争的怪圈。
  • 食品安全标准与监测评估司关于假肠膜明串珠菌等28种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对假肠膜明串珠菌申请新食品原料、聚天冬氨酸钾等16种物质申请食品添加剂新品种、环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物等11种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件: 假肠膜明串珠菌等28种“三新食品”的公告文本.pdf国家卫生健康委2023年2月7日附件 1新食品原料假肠膜明串珠菌 假肠膜明串珠菌中文名称假肠膜明串珠菌拉丁名称Leuconostoc pseudomesenteroides其他需要说 明的情况1. 批准列入《可用于食品的菌种名单》,使用 范围包括发酵乳、风味发酵乳、干酪、发酵 型含乳饮料和乳酸菌饮料 ( 非固体饮料),不包括婴幼儿食品。2. 食品安全指标须符合以下规定:铅(Pb,干基计),mg/kg ≤1总砷(As,干基计),mg/kg ≤1.5沙门氏菌,/25 g ( mL)0金黄色葡萄球菌,/25 g ( mL)0单核细胞增生李斯特氏菌,/25 g ( mL)0附件 2 聚天冬氨酸钾等 16 种食品添加剂新品种一、食品添加剂新品种序号名称功能食品分类号食品名称最大使用量 (g/L )备注1聚天冬氨酸钾PotassiumPolyaspartate稳定剂和凝固剂15.03.01葡萄酒0.3—二、食品工业用酶制剂新品种序号酶来源供体1氨基肽酶Aminopeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae2蛋白酶 Protease李氏木霉 Trichoderma reesei樟绒枝霉 Malbranchea sulfurea3磷脂酶 A2Phospholipase A2李氏木霉 Trichoderma reesei烟曲霉Aspergillusfumigatus4麦芽糖淀粉酶 Maltogenic amylase酿酒酵母Saccharomycescerevisiae嗜热脂解地芽孢杆菌Geobacillusstearothermophilus5木聚糖酶 Xylanase地衣芽孢杆菌Bacillus licheniformis地衣芽孢杆菌 Bacillus licheniformis6乳糖酶 (β-半乳糖苷 酶 ) Lactase(beta-galactosidase )Papiliotrematerrestris—7羧肽酶Carboxypeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae8脱氨酶 Deaminase米曲霉 Aspergillus oryzae—三、食品用香料新品种序 号名称功能食品分类号食品名称最大使用量备 注12- 己基吡啶 2-Hexylpyridine食品用香料—配制成食品用香精应用于各类食品中( GB 2760-2014 表 B. 1食品类别除外)按生产需要适量使用—
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 火锅底料添加剂标准或今年起草
    火锅底料最近成为市民关注的新焦点,随着一些媒体报道“火锅底料大量添加化学添加剂”后,网络上掀起一片热议。虽然中国烹饪协会火锅专业委员会于上月底公布中国火锅企业食品安全状况,称占全国市场七成份额的100家知名火锅企业底料检查100%合格,但相当一部分消费者仍然对火锅底料持不信任态度。近日,广东省食品学会食品专家范瑞副教授指出,其实火锅底料内添加剂有没有超量使用,消费者很容易通过感官辨别。   现状 在标准内使用添加剂属合法   范瑞指出,火锅底料中会使用到添加剂和调味料。现在网络上都在热炒火锅底料滥用“添加剂”,这一说法是不规范的。   目前火锅底料中出现的有3类物质:调味料(包括复合调味料)、食品添加剂和非食用物质。   其中,调味料包括一些天然的香辛料,例如姜、蒜、胡椒,也包括从天然香辛料中提取的成分,例如辣椒油、姜油,也包括味精等。还有是一些专业生产的复合调味料,例如猪肉膏、牛肉膏、鸡粉之类。   而食品添加剂,包括香精、鲜味剂、防腐剂等,这部分食品添加剂是允许使用的,是受到GB2760(食品添加剂使用卫生标准)的限制和要求的。因此,火锅底料中即使出现10种以上的食品添加剂是完全正常的,关键是其使用是否符合GB2760的要求。目前食品添加剂的使用主要问题是超量和超范围使用。   至于“非食用物质”,罂粟壳、苏丹红,均属于此类。   问题 火锅底料配方目前仍无标准可循   而辣椒素是目前火锅底料中广泛使用的一种提供辛辣感材料,主要是从印度种植的一种辣椒中提取而来,由于其性质过于强烈,其使用必须受到限制,但是目前存在的问题是还没有相应的管理依据。   火锅底料配方目前仍无标准可循。记者了解到,2011年商务部和卫生部正在征询的食品安全标准征集课题,有关部门已报送拟计划起草《火锅底料和调味品标准》,正在等待批准。   专家 市民外出吃火锅应去正规餐馆   专家提醒市民,外出吃火锅时,应尽量选择卫生环境好,经营规范,有一定经营规模,有信誉保障的餐馆。用餐时可通过感官鉴定火锅底料:非常辣、颜色非常鲜艳、非常红、非常香的火锅,其中往往香精添加量较大,对于此类火锅和火锅底料,尽量不吃。据悉,火锅底料传统的做法是用鸡、肉、骨、油脂打底,配合一些香辛料,但是这种方法成本高,并且其鲜味、辣味等指标不突出。目前生产火锅底料主要是用一些油脂、肉粉、骨粉打底,配合香辛料、香精加工而成。因此消费者不要长期大量食用火锅底料。   若购买火锅底料用于家庭消费,建议去正规的超市、商店购买。购买时要看产品的外观、包装是否完整,包装上的制造和经营企业的名称、生产地址、生产日期、净含量、配料表、QS标志、产品标准号等7项内容必须标示完整。这其中,QS是“全国工业生产许可证”的资格,QS后面有12位数字,一个QS号码就对应一个具体的生产企业,因此通过QS号码的查询就可以获得产品和生产企业的基本信息,消费者可以登陆国家质量监督局的官方网站查询真伪。   相关报道   肉丸比肉便宜?小心添加剂过量!   肉丸是火锅配料里的重要角色,然而爽脆、香喷喷的肉丸里,也可能存在用添加剂来冒充肉丸口感和香味的行为。餐饮界资深人士伍先生向记者透露,目前市面普遍存在肉丸、腊肠比猪肉便宜的现状,要做到肉的深加工食品比原料还便宜,当然是添加各种替代品。   价格倒挂不正常   伍先生表示,以潮州牛肉丸为例,牛肉现在要二十几元一斤,如果以传统方法制造牛肉丸,应该卖到三十元以上才是正常的价格。而现在火锅店里的牛肉丸拿货价普遍在十元左右,价格倒挂的背后,就是用添加剂来节省成本。广东省食品学会食品专家范瑞副教授在接受记者采访时指出,肉丸的传统做法,主要材料是肉(猪肉、牛肉、羊肉、鱼肉),肉的肥瘦比例依据不同风味有不同,一般来说“肥三瘦七”。肉丸的配料主要是鸡蛋、淀粉、葱、姜、香油、味精、盐及其他各种风味调料,鸡蛋的作用是调节控制肉丸的水分,尤其是在瘦肉较多的肉丸中可以提高肉丸的柔软度和口感,淀粉的作用主要是提高肉丸的保水性,改善肉丸的口感,使肉丸不会太硬,并有合适的咬口感。其他配料的作用都是调味的作用。目前肉丸已有工业化生产的方法,一般是采用速冻食品的形式,主要的用途是火锅搭配的食品。   出于降低成本的要求,很多肉丸的生产厂家都大量使用替代材料来减少肉的含量。肉的减少会导致肉丸出现两个问题,一是组织上会比较松散,缺少肉的弹性,二是风味上缺少肉的风味和香气。目前替代肉的材料主要是大豆(4513,-24.00,-0.53%)蛋白和淀粉,淀粉使用过多在口感上很容易品尝出来,而使用大豆蛋白,在组织和口感上比较接近肉,但是没有肉所特有、完整的风味,同时其口感上也不能完全达到肉的要求。在潮式牛肉丸等特别要求爽脆度的产品中,传统做法的爽脆度是依靠新鲜的牛肉、减少水(基本不加水)、反复搅拌的特殊工艺来实现,而对于肉很少的肉丸,基本上是达不到这种爽脆的要求。   为爽脆添加违规添加剂   有一些生产者在产品中使用卡拉胶、魔芋胶等海藻胶,这些胶体属于食品添加剂,对于提高肉丸的脆度有一定帮助,但是不能完全替代肉的作用。于是一部分肉丸的生产者为了追求肉的口感和弹性,违规添加硼砂。硼砂可以使肉馅膨胀,产生好的弹性,并且使肉馅的颜色鲜亮。近年来有很多关于沙县小吃中云吞和饺肉中使用硼砂的报道。   范瑞指出,硼砂为硼酸钠的俗称,为白色或无色结晶性粉末,因为毒性较高,世界各国多禁用为食品添加物。硼砂对人体健康的危害性很大,连续摄取会在体内蓄积,妨害消化道的酶的作用,其急性中毒症状为呕吐、腹泻、红斑、循环系统障碍、休克、昏迷等所谓硼酸症。人体若摄入过多的硼,会引发多脏器的蓄积性中毒。   由于减少肉的使用,必然导致肉的香气和口感不足,部分生产者为了补足香气,就会添加一些增香味剂(鲜香膏),这些增香味剂的主要成分是各种肉味香精和味精等鲜味剂。肉味香精在使用上是合法的,但是出于假冒目的而使用香精则是不符合法规的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制