当前位置: 仪器信息网 > 行业主题 > >

赤藓酮糖标准品

仪器信息网赤藓酮糖标准品专题为您提供2024年最新赤藓酮糖标准品价格报价、厂家品牌的相关信息, 包括赤藓酮糖标准品参数、型号等,不管是国产,还是进口品牌的赤藓酮糖标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合赤藓酮糖标准品相关的耗材配件、试剂标物,还有赤藓酮糖标准品相关的最新资讯、资料,以及赤藓酮糖标准品相关的解决方案。

赤藓酮糖标准品相关的论坛

  • GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第一法(RI)

    GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第一法(RI)

    [align=center][b][color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定([/color][color=black]RI[/color][color=black])[/color][/b][/align][align=center][b][color=black][/color][/b][/align][align=left][/align][color=black][/color][align=left][color=black]本实验根据《[/color][color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第一法,使用示差折光检测法[/color]对[color=black]木糖醇、山梨醇、麦芽糖醇、赤藓糖醇[/color][color=black]4[/color][color=black]种[/color]标准品进行分析,并对标准曲线进行考察。[/align][align=center][/align][align=center][img=,600,163]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100910_01_2222981_3.png[/img][/align][align=left]使用资生堂氨基柱CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. [color=black]× [/color]250 mm(GQAD 05507)依据国标方法进行分析,可以实现4种糖醇的良好分析(见图1)。 [/align][align=center][/align][align=center][img=,690,336]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100911_01_2222981_3.png[/img][/align][align=center][/align][align=center][/align][align=left]进一步,依据标准,配制1.6 mg/mL, 2.4 mg/mL, 3.2 mg/mL, 4.0 mg/mL, 4.8 mg/mL, 6.0 mg/mL系列标准工作液,以峰面积为纵坐标,标准工作液浓度为横坐标,绘制标准曲线。[/align][align=left]如图2~5,[color=black]赤藓糖醇、木糖醇、山梨醇、麦芽糖醇[/color]在1.6mg/mL~6.0 mg/mL浓度范围内线性良好,相关系数R[sup]2[/sup]均在0.999以上。[/align][align=center][/align][align=center][img=,582,328]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100911_03_2222981_3.png[/img][img=,547,322]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100912_01_2222981_3.png[/img][/align][align=center][img=,563,326]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100913_01_2222981_3.png[/img][/align][align=center][img=,560,320]http://ng1.17img.cn/bbsfiles/images/2017/08/201708100917_01_2222981_3.png[/img][/align][align=center][/align]综上,依据《[color=black]GB 5009.279-2016 [/color][color=black]食品安全国家标准[/color][color=black] [/color][color=black]食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第一法,[/color]使用资生堂CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. × 250 mm(GQAD 05507)色谱柱,以示差折光检测器进行检测,对[color=black]木糖醇、山梨醇、麦芽糖醇和赤藓糖醇[/color]标准品能够得到良好分析结果。在1.6 mg/mL~6.0 mg/mL浓度范围内绘制标准曲线,相关系数R[sup]2[/sup]均在0.999以上,能够得到良好线性关系。[align=center][/align]注: 图中色谱峰线条不平滑是由于图像在复制过程中解像度问题引起的。

  • GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第二法 (NQAD)

    GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定 第二法 (NQAD)

    [align=center]GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定-NQAD[/align]《GB 5009.279-2016 食品安全国家标准食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定》第二法中推荐使用蒸发光散射检测器对4种糖醇进行检测。本实验室使用资生堂高灵敏度气溶胶通用型检测器NQAD对该项目进行检测。使用资生堂氨基柱CAPCELL PAK NH2 UG80 S5 4.6 mm i.d. × 250 mm(GQAD 05507)依据国标方法进行分析,可以实现4种糖醇的良好分析(见图1)。[img=,678,525]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030937_01_2222981_3.png[/img][img=,611,257]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030937_02_2222981_3.png[/img]进一步对标准曲线进行绘制,依据国家标准,以峰面积为纵坐标,标准工作液浓度为横坐标,以赤藓糖醇浓度为0.14 mg/mL, 0.21 mg/mL, 0.28 mg/mL, 0.35 mg/mL, 0.42 mg/mL, 0.49 mg/mL,木糖醇、山梨醇、麦芽糖醇浓度为0.10 mg/mL, 0.15 mg/mL, 0.20 mg/mL, 0.25 mg/mL, 0.30 mg/mL, 0.35 mg/mL的混合系列标准工作液,进行标准曲线绘制。如图2~5所示,赤藓糖醇在0.14 mg/mL~0.49 mg/mL浓度范围内,木糖醇、山梨醇、麦芽糖醇在0.1 mg/mL~0.35 mg/mL浓度范围内线性良好,相关系数R[sup]2[/sup]均在0.99以上。[img=,534,330]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_01_2222981_3.png[/img][img=,573,327]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_02_2222981_3.png[/img][img=,573,326]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_03_2222981_3.png[/img][img=,556,342]http://ng1.17img.cn/bbsfiles/images/2017/08/201708030938_04_2222981_3.png[/img]注:图中色谱峰线条不平滑是由于图像在复制过程中解像度问题引起的。

  • 美国更新标准以减少儿童吞食电池风险

    为了更好减少年幼儿童因吞食硬币/纽扣电池而导致的意外,美国保险商实验室(UL)宣布将修订其针对家用、商业和专业音频/视频产品的标准。 UL 60065标准(音频、视频及类似电子设备安全要求)附件一的修订呼吁加强电池驱动的非玩具产品(特别是远程遥控适用产品)的警示标签和标识,以提醒消费者注意误吞电池的危害。该标准还建立了关于滥用的要求,减少因产品破碎而掉落小型电池的风险。由于对此前认证产品的再测试需要,以及生产线的再设计和更换机械设备潜在需要,新标准将于2014年1月2日生效。 此次UL 60065标准的修订由消费者电子协会(CEA)产品安全工作小组(PSWG)提出。 美国玩具安全标准ASTM F963,呼吁在玩具电池盒安装锁定机制,确保年幼儿童无法接触到小型电池,有效地防止了儿童从玩具中取出电池。而新的UL标准强调了与非玩具产品有关的误吞电池的关键问题。

  • 儿童食品尚无食品标准

    最近,一些食品生产商为了吸引眼球,打出了“儿童食品”或儿童词的标注,目前我国没有“儿童食品”的概念和相关食品标准。中国协会明确表示,一些高糖,高热,高钠或含有一些调味品,添加剂和其他休闲食品,不适合儿童的零食消费长期大。由于近年来,食品安全问题的关注,安全,营养均衡的食物对孩子成为父母的追求。但在我国,目前,除三岁的年龄,没有概念和相关食品标准的儿童食品。即使明确标注“儿童”或印有孩子的头的话(卡通)的食物,只能用普通的食品标准管理。中国协会还指出,高热高糖,目前的数量,高钠或含有一些调味品,添加剂和其他休闲食品不适合儿童长期食用的零食。食品生产经营企业应在配料中的成分的产品包装或说明书,标明食品的营养和能量值,等等。如果食品生产主要针对儿童,建议标签,如实反映食品的情况,包括,但不限于原材料,利用营养成分,能量值,敏感材料,提醒,最好根据每公斤体重标签推荐有限的日常消费和充分保护消费者的权利要知道回避和选择,让孩子们享受一个安全,健康和美味的食物。严格的法律法规和儿童食品标准的制定和实施,引导和鼓励行业内的生产企业,以及研究和开发更适合儿童食用安全、营养均衡的食物。学校和家长应该教育孩子掌握必要的安全知识,健康饮食,食品购买前仔细检查食品包装说明,引导他们远离“山寨”和“三不”的食物。

  • 儿童食品尚无食品标准

    最近,一些食品生产商为了吸引眼球,打出了“儿童食品”或儿童词的标注,目前我国没有“儿童食品”的概念和相关食品标准。中国协会明确表示,一些高糖,高热,高钠或含有一些调味品,添加剂和其他休闲食品,不适合儿童的零食消费长期大。由于近年来,食品安全问题的关注,安全,营养均衡的食物对孩子成为父母的追求。但在我国,目前,除三岁的年龄,没有概念和相关食品标准的儿童食品。即使明确标注“儿童”或印有孩子的头的话(卡通)的食物,只能用普通的食品标准管理。中国协会还指出,高热高糖,目前的数量,高钠或含有一些调味品,添加剂和其他休闲食品不适合儿童长期食用的零食。食品生产经营企业应在配料中的成分的产品包装或说明书,标明食品的营养和能量值,等等。如果食品生产主要针对儿童,建议标签,如实反映食品的情况,包括,但不限于原材料,利用营养成分,能量值,敏感材料,提醒,最好根据每公斤体重标签推荐有限的日常消费和充分保护消费者的权利要知道回避和选择,让孩子们享受一个安全,健康和美味的食物。严格的法律法规和儿童食品标准的制定和实施,引导和鼓励行业内的生产企业,以及研究和开发更适合儿童食用安全、营养均衡的食物。学校和家长应该教育孩子掌握必要的安全知识,健康饮食,食品购买前仔细检查食品包装说明,引导他们远离“山寨”和“三不”的食物。

  • 【原创】粗多糖含量测定中标准品的选择之二

    苯酚-硫酸法是一种常用的检测粗多糖含量的方法,其原理是苯酚-硫酸试剂可与游离的寡糖、多糖中的己糖、糖醛酸起显色反应,在480-490 nm处有最大吸收值,吸收值与糖含量呈线性关系。此法是先用标准品多糖制作标准曲线后,再通过多糖的显色反应测定吸光度,然后根据其在曲线上的位置推算出多糖的浓度从而推算其含量。此法操作简单、快速、灵敏、重复性好,对每种多糖仅需制作一条标准曲线[1]。目前大家研究较多的、生物活性较高的一些真菌多糖,如香菇多糖、灵芝多糖、姬松茸多糖、猴头菇多糖、灰树花多糖等[2],在结构上大多是以β-(1→3)、β-(1→4)或β-(1→6)糖苷键连接的葡聚糖,另外,分子量也一般分布在十几万到几十万之间。因此,由北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证的《粗多糖含量的测定方法》中建议使用50万分子量的葡聚糖作为标准品[3]。为行业内粗多糖含量的测定统一了标准,使各企业之间多糖类产品更具有可比性。燕麦β-葡聚糖是一种β-(1→3)-(1→4)键接的线性葡聚糖,在结构、粘度等其他物理性质上与常见的植物和真菌多糖很相似,适合作为植物、真菌来源多糖含量测定的标准品。但由于多糖纯化困难,市面上不少葡聚糖纯度较低,不适合作为标准品。下面,我们来比较两种不同纯度的燕麦β-葡聚糖产品作为多糖标准品的区别。1 材料与方法1.1 实验材料高纯度燕麦β-葡聚糖PS-Con-Ⅰ由武汉百特纯大分子科技有限公司提供,纯度大于97%(其中,另外3%主要是结合水),低纯度燕麦β-葡聚糖由某食品研究所提供,纯度约50%,苯酚、浓硫酸均为化学纯。1.2 实验方法样品溶解:高纯度燕麦β-葡聚糖经70℃水浴,15min后完全溶解。低纯度燕麦β-葡聚糖70℃水浴,30min后仍有不溶物,升高溶解温度至90℃后继续溶解30min,仍有少量不溶物,过滤。溶液配制:配制0.1mg/ml葡聚糖标准溶液,50mg/ml苯酚溶液备用。标准曲线的制作:精密吸取葡聚糖标准液0.10,0.40, 0.80,1.20,1.60,2.00ml(分别相当于葡聚糖0.01,0.04,0.08,0.12,0.16,0.20mg),补充水至2.0mL,加入苯酚溶液1.0ml,混匀,再加入浓硫酸5ml,混匀,沸水浴2分钟,混匀,冷却后用分光光度计在485nm波长处以试剂空白溶液为参比,测定吸光度值(A),以A为横坐标,葡聚糖含量C为纵坐标绘制标准曲线。2 结果与分析2.1 样品溶解高纯度燕麦β-葡聚糖溶解速度较快,溶液澄清透明,说明此产品溶解性良好。低纯度燕麦β-葡聚糖难以溶解,且溶解1h后仍有不溶物存在,说明此产品溶解性差,杂质较多。 2.2 标准曲线下表为两种标准品分别配制不同葡聚糖浓度(含量)反应后得到的吸光值:葡聚糖含量(mg)0.010.040.080.120.162.00高纯度标样吸光值0.0530.0800.2000.2620.3530.450低纯度标样吸光值0.0010.0550.1130.1730.2400.320通过数据处理,得到标准曲线如下:高纯度燕麦β-葡聚糖 C=0.4657A-0.0068 (R=0.9955)低纯度燕麦β-葡聚糖 C=0.609A+0.0101(R=0.9985)比较这两个标准曲线发现,当待测样品吸光值一定,使用低纯度葡聚糖作为标准品得到的标准曲线计算葡聚糖含量值时,明显高于高纯度标准品。究其原因,低纯度葡聚糖所含杂质较多,在作为标准品时,部分杂质不能溶解,却计入了标准品葡聚糖总量,因此,使得结果偏高。另外,即使溶解的物质中,也有可能存在部分不能参加反应的蛋白等杂质,同样会造成结果偏高。由以上数据和分析可以得出,测定粗多糖含量不能使用低纯度葡聚糖作为标准品,应尽量选用高纯度葡聚糖标准品,按照国家建议方法和行业标准进行检测,这样才能保证各企业多糖系列产品在含量和纯度上的可比性,有利于规范企业行为和保健品市场。参考文献[1] 胡居吾,范青生,肖小年. 粗多糖测定方法的研究. 江西食品工业. 2005, 1[2] 李明元. 真菌粗多糖测定方法的研究. 食品研究与开发. 2007, 5[3] 粗多糖的测定方法. 北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证. 食品伙伴网

  • 【转帖】粗多糖含量测定中标准品的选择之二

    苯酚-硫酸法是一种常用的检测粗多糖含量的方法,其原理是苯酚-硫酸试剂可与游离的寡糖、多糖中的己糖、糖醛酸起显色反应,在480-490 nm处有最大吸收值,吸收值与糖含量呈线性关系。此法是先用标准品多糖制作标准曲线后,再通过多糖的显色反应测定吸光度,然后根据其在曲线上的位置推算出多糖的浓度从而推算其含量。此法操作简单、快速、灵敏、重复性好,对每种多糖仅需制作一条标准曲线[1]。目前大家研究较多的、生物活性较高的一些真菌多糖,如香菇多糖、灵芝多糖、姬松茸多糖、猴头菇多糖、灰树花多糖等[2],在结构上大多是以β-(1→3)、β-(1→4)或β-(1→6)糖苷键连接的葡聚糖,另外,分子量也一般分布在十几万到几十万之间。因此,由北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证的《粗多糖含量的测定方法》中建议使用50万分子量的葡聚糖作为标准品[3]。为行业内粗多糖含量的测定统一了标准,使各企业之间多糖类产品更具有可比性。燕麦β-葡聚糖是一种β-(1→3)-(1→4)键接的线性葡聚糖,在结构、粘度等其他物理性质上与常见的植物和真菌多糖很相似,适合作为植物、真菌来源多糖含量测定的标准品。但由于多糖纯化困难,市面上不少葡聚糖纯度较低,不适合作为标准品。下面,我们来比较两种不同纯度的燕麦β-葡聚糖产品作为多糖标准品的区别。1 材料与方法1.1 实验材料高纯度燕麦β-葡聚糖PS-Con-Ⅰ由武汉百特纯大分子科技有限公司提供,纯度大于97%(其中,另外3%主要是结合水),低纯度燕麦β-葡聚糖由某食品研究所提供,纯度约50%,苯酚、浓硫酸均为化学纯。1.2 实验方法样品溶解:高纯度燕麦β-葡聚糖经70℃水浴,15min后完全溶解。低纯度燕麦β-葡聚糖70℃水浴,30min后仍有不溶物,升高溶解温度至90℃后继续溶解30min,仍有少量不溶物,过滤。溶液配制:配制0.1mg/ml葡聚糖标准溶液,50mg/ml苯酚溶液备用。标准曲线的制作:精密吸取葡聚糖标准液0.10,0.40, 0.80,1.20,1.60,2.00ml(分别相当于葡聚糖0.01,0.04,0.08,0.12,0.16,0.20mg),补充水至2.0mL,加入苯酚溶液1.0ml,混匀,再加入浓硫酸5ml,混匀,沸水浴2分钟,混匀,冷却后用分光光度计在485nm波长处以试剂空白溶液为参比,测定吸光度值(A),以A为横坐标,葡聚糖含量C为纵坐标绘制标准曲线。2 结果与分析2.1 样品溶解高纯度燕麦β-葡聚糖溶解速度较快,溶液澄清透明,说明此产品溶解性良好。低纯度燕麦β-葡聚糖难以溶解,且溶解1h后仍有不溶物存在,说明此产品溶解性差,杂质较多。 2.2 标准曲线下表为两种标准品分别配制不同葡聚糖浓度(含量)反应后得到的吸光值:葡聚糖含量(mg)0.010.040.080.120.162.00高纯度标样吸光值0.0530.0800.2000.2620.3530.450低纯度标样吸光值0.0010.0550.1130.1730.2400.320通过数据处理,得到标准曲线如下:高纯度燕麦β-葡聚糖 C=0.4657A-0.0068 (R=0.9955)低纯度燕麦β-葡聚糖 C=0.609A+0.0101(R=0.9985)比较这两个标准曲线发现,当待测样品吸光值一定,使用低纯度葡聚糖作为标准品得到的标准曲线计算葡聚糖含量值时,明显高于高纯度标准品。究其原因,低纯度葡聚糖所含杂质较多,在作为标准品时,部分杂质不能溶解,却计入了标准品葡聚糖总量,因此,使得结果偏高。另外,即使溶解的物质中,也有可能存在部分不能参加反应的蛋白等杂质,同样会造成结果偏高。由以上数据和分析可以得出,测定粗多糖含量不能使用低纯度葡聚糖作为标准品,应尽量选用高纯度葡聚糖标准品,按照国家建议方法和行业标准进行检测,这样才能保证各企业多糖系列产品在含量和纯度上的可比性,有利于规范企业行为和保健品市场。参考文献[1] 胡居吾,范青生,肖小年. 粗多糖测定方法的研究. 江西食品工业. 2005, 1[2] 李明元. 真菌粗多糖测定方法的研究. 食品研究与开发. 2007, 5[3] 粗多糖的测定方法. 北京卫生防疫站建立,经中国预防科学院营养与食品卫生研究所验证. 食品伙伴网[em0805]

  • CNS_19.018_赤藓糖醇

    [align=left][font='宋体'][size=24px]赤藓糖醇[/size][/font][font='宋体'][size=24px]的性质及国标测定方法[/size][/font][/align][size=24px]游臻[/size][size=24px]时 间:2021.[/size][size=24px]7[/size][align=center][font='黑体'][size=20px]赤藓糖醇的性质及国标测定方法[/size][/font][/align][size=16px]摘 要[/size][size=16px]:[/size][size=16px]赤藓糖醇,一种天然活性物质,被广泛应用于食品、医药保健品、日化产品和化工产品中。近年来,随着人们对于营养健康的关注度逐渐增加,学者对其理化及生物学特性研究的不断深入,赤藓糖醇的安全性得到证实,应用范围逐渐扩大。为此,本文对赤藓糖醇的理化特性[/size][size=16px]、[/size][size=16px]来源[/size][size=16px]、[/size][size=16px]提取方法[/size][size=16px]、[/size][size=16px]应用[/size][size=16px]、[/size][size=16px]检测方法[/size][size=16px]、[/size][size=16px]检测标准[/size][size=16px]进行了简要介绍,从机理和应用的角度阐述了赤藓糖醇在不同领域的研究。[/size][size=16px]因为[/size][size=16px]赤藓糖醇独特的代谢方式,使其被应用于糖尿病、葡萄糖不耐受症等特殊人群的功能食品中。赤藓糖醇的防龋性、抗氧化性、保湿性和不可燃性等特性使其在医药、日化领域的应用不断扩展。[/size][size=16px]关键词[/size][size=16px]:赤藓糖醇;性质;检测;应用;生产[/size][size=18px]一、[/size][size=18px]赤藓糖醇的理化性质[/size][size=18px]与生理性质[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的性质[/size][/font][size=13px]赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为[/size][size=13px]1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,[/size][size=13px]其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]1][/size][/font][font='宋体'][size=14px](1) [/size][/font][font='宋体'][size=16px]赤藓糖醇的甜度[/size][/font][size=13px]赤[/size][size=13px]藓糖[/size][size=13px]醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的[/size][size=13px]70%~80%。[/size][size=13px]与其他甜味剂混合使用具有改善、协调味质[/size][size=13px]的[/size][size=13px]作用,如赤藓糖醇与高甜味剂甜菊[/size][size=13px]糖[/size][size=13px]苷以[/size][size=13px]1000:(1~7)混合使用,可有效掩盖甜菊[/size][size=13px]糖[/size][size=13px]苷[/size][size=13px]的后苦味;将[/size][size=13px]20%以上的赤藓糖醇与白砂糖并用,其后[/size][size=13px]味和甜味比白砂糖更为理想;溶液中[/size][size=13px]1%~3%的赤藓糖[/size][size=13px]醇能有效掩饰刺激性口味,改善溶液的口感和风味[/size][size=13px];与糖精,阿斯巴甜等甜味剂混合使用,甜味特性良好,可以掩盖人工合成甜味剂的不良味感。[/size][font='宋体'][size=14px](2) [/size][/font][font='宋体'][size=16px]赤藓糖醇的稳定性[/size][/font][size=13px]赤[/size][size=13px]藓糖醇在热[/size][size=13px],[/size][size=13px]酸,碱条件下[/size][size=13px]稳定,[/size][size=13px]适用的酸碱范围为[/size][size=13px]pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。[/size][font='宋体'][size=14px](3) [/size][/font][font='宋体'][size=16px]赤藓糖醇的结晶性[/size][/font][size=13px]赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为[/size][size=13px]20℃、相对湿度为90%的环境中,放置5d后的吸湿增[/size][size=13px]重,麦芽糖约为[/size][size=13px]17%,蔗糖约为10%,而赤藓糖醇仅为2 %左右。[/size][font='宋体'][size=14px](4) [/size][/font][font='宋体'][size=16px]赤藓糖醇的溶解热[/size][/font][size=13px]赤藓糖醇在[/size][size=13px]20℃时溶解度仅为37%,大约是山梨醇[/size][size=13px]溶解度的[/size][size=13px]50%,在制作高甜度食品时,为防止结晶析出,[/size][size=13px]保持食品的质构稳定,应和其他糖醇混合使用。赤藓糖醇溶解热高是葡萄糖的[/size][size=13px]3倍,为-96.86kJ/kg,溶于水会吸[/size][size=13px]收较多的能量,食用时有一种凉爽的口感特性。赤藓糖醇结晶性好,不吸潮,在[/size][size=13px]20℃、相对湿度为90%时仍不吸[/size][size=13px]潮,特别适用于加工巧克力糖果等食品。[/size][font='宋体'][size=14px](5) [/size][/font][font='宋体'][size=16px]赤藓糖醇的[/size][/font][font='宋体'][size=16px]渗透压[/size][/font][size=13px]由于赤藓糖醇分子小,分子量仅为蔗糖的[/size][size=13px]1/3左右,[/size][size=13px]能大大地降低水分活度。[/size][size=13px]25℃、36%的水溶液,水分活度[/size][size=13px]为[/size][size=13px]0.91;而赤藓糖醇渗透压高,20℃、15%的水溶液渗透[/size][size=13px]压为[/size][size=13px]1861mosm/kg,是蔗糖的3.2倍,山梨醇的1.8倍。赤[/size][size=13px]藓糖醇的这一特性有利于提高食品的防腐能力,延长食品的[/size][size=13px]保质[/size][size=13px]期。[/size][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]2][/size][/font][font='宋体'][size=16px]2.赤藓糖醇的生理性质[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]1)赤藓糖醇的代谢[/size][/font][font='宋体'][size=13px]赤藓糖醇在小肠易于吸收,大部分能进入血液中循环,仅有少量直接进入大肠中作为碳源发酵。由于人[/size][/font][font='宋体'][size=13px]体缺乏代谢赤藓糖醇的酶系,进入血液中的赤藓糖醇不能被消化降解,只能透过肾从尿液中排出体外,这一独特的代谢特征,决定了赤藓糖醇低热值的特性。据文献报道[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],进入机体内的赤藓糖醇有约[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]经小肠吸收并从[/size][/font][font='宋体'][size=13px]尿液中排出,[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]左右进入大肠,进入大肠中的最多有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]被细菌利用,其他经由粪便排出体外。由此得知,摄入的赤藓糖醇只有[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]代谢产能,为人体提供能量,而赤[/size][/font][font='宋体'][size=13px]藓糖醇的能量值为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]k[/size][/font][font='宋体'][size=13px]cal/g[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]kcal/g[/size][/font][font='宋体'][size=13px],仅为蔗糖能量[/size][/font][font='宋体'][size=13px]的[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],是所有多元糖醇甜味剂中能量最低的一[/size][/font][font='宋体'][size=13px]种。[/size][/font][font='宋体'][size=13px]由于进入机体的赤藓糖醇进入大肠的量很少,因此不会造成不吸收物质可能带来的腹泻及肠胃胀气等副作用,所以赤藓糖醇具有很高的耐受性,是糖醇中耐受性最高的一种。由于人体缺乏代谢赤藓糖醇的酶系,进入机体的赤藓糖醇大部分由尿液排出,其代谢途径与胰岛素无关或很少依赖胰岛素,所以对糖代谢没有影响。食用含赤藓糖醇的食品对糖尿病患者等糖限量的特殊消费群体是安全的。[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]2)赤藓糖醇的非致龋齿特性[/size][/font][font='宋体'][size=13px]由于口腔中的细菌,特别是金黄链球菌[/size][/font][font='宋体'][size=13px]([/size][/font][font='宋体'][size=13px]Streptococcus mutans)[/size][/font][font='宋体'][size=13px]不能利用和发酵赤藓糖醇,所以不会引[/size][/font][font='宋体'][size=13px]起口腔牙表面[/size][/font][font='宋体'][size=13px]pH[/size][/font][font='宋体'][size=13px]值下降产生牙斑,导致龋齿。[/size][/font][size=18px]二[/size][size=18px]、[/size][size=18px]赤藓糖醇的生产[/size][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]化学法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]化学合成法[/size][/font][font='宋体'][size=13px]是[/size][/font][font='宋体'][size=13px]由丁烯二醇与过氧化氢反应,其中丁烯二醇是由乙炔和甲醛先制成2[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]丁烯[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 1,4 [/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px] 二 醇, 然后将其水溶液与活性镍催化剂混合并加[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]阻化剂氨水,在[/size][/font][font='宋体'][size=13px]0.5[/size][/font][font='宋体'][size=13px] M Pa压力下通[/size][/font][font='宋体'][size=13px]入[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]氢化,得到赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖醇产品。以淀粉为原料的化学合成法是将淀粉用高碘酸法生成双醛淀粉,再经氧化裂解生成赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]和其他衍生物[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]化学合成生产赤[/size][/font][font='宋体'][size=13px]藓[/size][/font][font='宋体'][size=13px]糖[/size][/font][font='宋体'][size=13px]醇[/size][/font][font='宋体'][size=13px]的工艺方法存在流程长、成本高、污染严重、条件要求高、产品安全性差等不足,无法与发酵法比拟,因此目前研究和应用最多的是以淀[/size][/font][font='宋体'][size=13px]粉为原料的发酵法来生产赤藓糖醇的工艺方法。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]发酵法生产赤藓糖醇[/size][/font][font='宋体'][size=13px]发酵法是以淀粉水解葡萄糖为原料,经耐高渗酵母菌株发酵产生赤藓糖醇及少量的核糖醇,丙三醇等副产物,经分离,提取,精制,获得高纯度的赤藓糖醇产品。产品的收率大约为5[/size][/font][font='宋体'][size=13px]0%[/size][/font][font='宋体'][size=13px]。与化学合成法相比,具有条件温和,易于控制,环境友好,污染少,产品安全,原料来源丰富,成本低等优点,更易于实现规模生产。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4][/size][/font][font='宋体'][size=18px]三[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的应用[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在食品工业的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇经过急性、亚急性、慢性毒性试验等动物 试验以及人体试验确认安全无毒、食用安全性较好, 允许添加量较高,不易引起腹泻或胃肠等不适感。1990 年日本食品法规批准赤藓糖醇可直接作为食品配料; 1997年通过美国食品与药品管理局(FDA)批准,获美 国FDA安全食品配料(GRAS)认[/size][/font][font='宋体'][size=13px]证和允许在标签上标 注“有益于牙齿健康”;1999年世界粮农组织(FAO)和 世界卫生组织(WHO)联合组成的食品添加剂专家委员 会(JECFA)批准赤藓糖醇作为食用甜味剂,无需规定 ADI值;1999年澳大利亚和新西兰食品监督局(AN 、A)批准赤藓糖醇作为食用配料,我国在GB 2760-86标准 中也允许其在食品中应用。 [/size][/font][font='宋体'][size=13px]由于赤藓糖醇的热、酸稳定性好,在一般性食品加工条件下,几乎不会引起褐变或分解现象,在硬糖生产时高温熬煮也不会引起褐变。赤藓糖醇的热稳定性高使巧克力生产的精炼可以在更高的温度下进行,进一步促进巧克力风味的形成,改善产品的品质。赤藓糖醇的吸湿性差,在湿度为90%的环境也不易吸潮,这一特性对巧克力、口香糖等食品加工很有利。赤藓糖醇的高吸热性使得产品食用后具有持久的爽口清凉感觉,对改善口香糖、清凉性固体饮料和糖果的品质十分重要。赤藓糖醇甜味爽净,在与蛋白糖、甜菊糖等高甜度甜味剂复配时可有效地掩盖其后苦味;赤藓糖醇还可以降低酒精的异味,改善蒸馏酒和葡萄酒的口感与风味,在蔬菜汁饮料中使用,可有效地抑制蔬菜饮料特有的不良口味;在饮用咖啡时添加可有效地抑制咖啡的涩味。赤藓糖醇的耐热和耐酸等特性,使得巴氏高温或超高温等杀菌工艺对以赤藓糖醇为甜味剂的饮料外观品质均不会产生影响。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在医药生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇的防龋特性是近年来赤藓糖醇的一个应用热点。张帆等通过体外的人工龋实验证实,赤藓糖醇和牛奶的混合液具有抑制变异链球菌在生物膜中黏附生长,促进脱矿牙釉质再矿化的作用,可以在一定程度是阻止龋病的发展。未来,赤藓糖醇-牛奶混合液,作为一种安全、营养的食品,极有可能成为替代加氟牛奶成为另一条防龋的有效途径。李维丹实验表明赤藓糖醇对牙周炎的主要致病菌牙龈卟啉单胞菌有明显抑制作用,并能降低其在牙骨质表面的黏附作用,为牙周病的防治提供了新的方向。[/size][/font][font='宋体'][size=13px]此外,赤藓糖醇还能抑制多种龋病致病链球菌及耐氟菌的生长和产酸。目前,越来越多的防龋产品使 用赤藓糖醇代替传统的氟化物和抗生素。赤藓糖的抗氧化性,不仅是添加到柠檬汁饮料中保护 VC,还可以应用为一种体内抗氧化剂,防止身体的氧化应激损伤。韩春妮等通过设计实验表明,赤藓糖醇可减轻 H2O2 对 PC12 细胞的氧化损伤程度,具有体外抗氧化损伤的作用,为赤藓糖醇应用于预防和治疗机体氧化应激引起的糖尿病及其并发症提供了理论基础。在链脲佐菌素诱导的糖尿病大鼠实验中,赤藓糖醇不仅是一种极好的自由基清除剂和抑制剂,还具有保护内 皮细胞层的作用。此外,研究还表明,赤藓糖醇对2,2-偶氮二异丁基脒二盐酸盐引起的大鼠溶血有抑制作用,对减轻高血糖症引起的血管损伤起到积极作用。此外,赤藓糖醇的吸湿性低、分散性好、口感优良、与各种药物兼容性好等特性,正越来越多的应用于药片包衣、药剂辅料、吸入剂药物载体或赋形剂等诸多领域[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇在日化品生产的应用[/size][/font][font='宋体'][size=13px]赤藓糖醇因其防龋齿性,促进牙菌斑分解,有利于维持口腔健康等优势已被应用于牙膏中, KAO(花王)、LG 竹盐炫润白系列牙膏都添加有赤藓糖醇。另外,赤藓糖醇不仅具有和甘油相同的保湿及改善肌肤粗糙的效果,而且黏稠性低、有清凉效果,已被日本资生堂用于多个系列的护肤品中[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=18px]四[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的检测[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]高效液相色谱法[/size][/font][font='宋体'][size=13px]根据[/size][/font][font='宋体'][size=13px]GB 26404-2011[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]利用高效液相色谱仪和示差折光检测器,色谱条件为流动相是重蒸蒸馏水;色谱柱为[/size][/font][font='宋体'][size=13px]氢型大孔径阳离子交换树脂填充柱,树脂包含大网格磺化聚苯乙烯[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]二乙烯基苯[/size][/font][font='宋体'][size=13px]共聚物,交联度为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px],颗粒大小为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]微米;流速为[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]ml[/size][/font][font='宋体'][size=13px]/[/size][/font][font='宋体'][size=13px]min;柱温为6[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]摄氏度;进样量为1[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]L。[/size][/font][font='宋体'][size=13px]实验步骤为[/size][/font][font='宋体'][size=13px]准确称取0.25g 在105℃下干燥4h后的赤藓糖醇标准品[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个[/size][/font][font='宋体'][size=13px]50mL容量瓶中,用流动相溶解,稀释定容至刻度[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]再[/size][/font][font='宋体'][size=13px]确称取2.0g在105℃下干燥4h后的赤藓糖醇试样[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]精确至0.0001g[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。[/size][/font][font='宋体'][size=13px]最后[/size][/font][font='宋体'][size=13px]在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录60min的色谱图。赤藓糖醇的出峰时间根据标准品的出峰时间定性。重复实验两次,得到平均峰面积值[/size][/font][font='宋体'][size=13px]。[/size][/font][font='宋体'][size=13px]结果计算[/size][/font][font='宋体'][size=13px]赤藓糖醇含量以赤藓糖醇([/size][/font][font='宋体'][size=13px]C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px])的质量分数 w[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]计,数值以%表示,按公式计算:[/size][/font][font='宋体'][size=13px]式中: m[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──称取的赤藓糖醇标准品质量的数值,单位为克(g); m[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g); A[/size][/font][font='宋体'][size=13px]1[/size][/font][font='宋体'][size=13px]──试样液色谱图中赤藓糖醇平均峰面积值的数值; A[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中赤藓糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px] 实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于0.5%。[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]7[/size][/font][font='宋体'][size=13px]][/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]灼烧残渣的测定[/size][/font][font='宋体'][size=13px]准确称取2g试样,精确至0.0001g,置于800℃±25℃下灼烧至恒重的坩埚中,缓缓加热直至试 样完全碳化。将碳化的试样冷却,用0.5 mL的硫酸润湿残渣,继续加热至硫酸蒸汽逸尽,并在800℃ ±25℃的高温炉中灼烧残渣至恒重[/size][/font][font='宋体'][size=13px]灼烧残渣以质量分数[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]计,数值以[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]表示,按公式计算[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──残渣和空坩埚的质量的数值,单位为克(g);m[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──空坩埚的质量的数值,单位为克(g);m──称取的试样质量的数值,单位为克(g)。[/size][/font][font='宋体'][size=13px]实验结果以平行测定结果的算术平均值为准,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.05%[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]还原糖(以葡萄糖计)的测定[/size][/font][font='宋体'][size=13px]准备[/size][/font][font='宋体'][size=13px]葡萄糖溶液:0.75mg/mL。费林溶液A:称取34.66 g硫酸铜(CuSO[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]5H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O),溶于水中,完全溶解后,用水稀释至500 mL,贮存于密闭容器中。费林溶液B:称取173g酒石酸钾钠(KNaC[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]4H[/size][/font][font='宋体'][size=13px]2[/size][/font][font='宋体'][size=13px]O)和50g氢氧化钠(NaOH),溶于水中,完全溶解后,用水稀释至500 mL,贮存于橡胶塞玻璃瓶内。 [/size][/font][font='宋体'][size=13px] 分析步骤[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]准确称取约0.5 g试样,精确至 0.0001 g,转移至一个 20 mL 烧瓶中,加入2mL水,溶解、混合,此为试样液。移取2mL葡萄糖溶液,置于另一烧瓶中。分别往两个烧瓶中加入1mL费林溶液 A和1mL费林溶液 B,加热至沸腾后冷却。溶液形成红棕色沉淀。[/size][/font][font='宋体'][size=13px]若葡萄糖溶液反应液较试样液反应液混浊,则判定为合格。[/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]核糖醇和丙三醇的测定[/size][/font][font='宋体'][size=13px]参考色谱条件同[/size][/font][font='宋体'][size=13px]赤藓糖醇测定的参考色谱条件。准确称取核糖醇标准品和丙三醇标准品各 0.025g,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm 微孔滤膜过滤。试样液制备:准确称取2.0g在105℃下干燥4h后的赤藓糖醇试样,精确至0.0001g,转移至一个50mL容量瓶中,用流动相溶解,稀释定容至刻度,混匀后备用。色谱分析前,用0.45μm微孔滤膜过滤。在参考色谱条件下,分别对标准溶液和试样液进行色谱分析,记录 60 min 的色谱图。核糖醇和丙三醇的出峰时间根据对应标准品的出峰时间定性。重复实验两次,得到平均峰面积值。[/size][/font][font='宋体'][size=13px]结果计算核糖醇和丙三醇的含量分别以质量分数w[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]和w[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]计,数值均以%表示[/size][/font][font='宋体'][size=13px]式中:[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──称取的核糖醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]0[/size][/font][font='宋体'][size=13px]──称取的试样质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]3[/size][/font][font='宋体'][size=13px]──试样液色谱图中核糖醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中核糖醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]m[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──称取的丙三醇标准品质量的数值,单位为克(g);[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]5[/size][/font][font='宋体'][size=13px]──试样液色谱图中丙三醇平均峰面积值的数值;[/size][/font][font='宋体'][size=13px]A[/size][/font][font='宋体'][size=13px]6[/size][/font][font='宋体'][size=13px]──标准溶液色谱图中丙三醇平均峰面积值的数值。[/size][/font][font='宋体'][size=13px]取两次平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值不大于[/size][/font][font='宋体'][size=13px]0.01 %[/size][/font][font='宋体'][size=18px]五[/size][/font][font='宋体'][size=18px]、[/size][/font][font='宋体'][size=18px]赤藓糖醇的国家标准[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]在产品中的使用量[/size][/font][font='宋体'][size=13px]赤藓糖醇在国家标准中规定在产品中适量使用,没有明确的限制标准,这是因为赤藓糖醇安全性较高并且在产品中过量使用时反而会使产品的外观口感等质量指标大幅度下降,从而影响产品的销售。所以国标中对产品中赤藓糖醇的使用量并没有限制量。[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].[/size][/font][font='宋体'][size=16px]赤藓糖醇的质量标准[/size][/font][font='宋体'][size=13px]感官要求标准,[/size][/font][font='宋体'][size=13px]色泽[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]白色[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]滋味[/size][/font][font='宋体'][size=13px]要求[/size][/font][font='宋体'][size=13px]有甜味[/size][/font][font='宋体'][size=13px],[/size][/font][font='宋体'][size=13px]组织状态[/size][/font][font='宋体'][size=13px]为[/size][/font][font='宋体'][size=13px]结晶性粉末或颗粒[/size][/font][font='宋体'][size=13px]理化指标为[/size][/font][font='宋体'][size=13px]赤藓糖醇[/size][/font][font='宋体'][size=13px](以[/size][/font][font='宋体'][size=13px] C[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]H[/size][/font][font='宋体'][size=13px]10[/size][/font][font='宋体'][size=13px]O[/size][/font][font='宋体'][size=13px]4 [/size][/font][font='宋体'][size=13px]计,以干基计),w/% [/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]99.5~100.5[/size][/font][font='宋体'][size=13px]干燥减量,[/size][/font][font='宋体'][size=13px]w/% ≤ 0.2 [/size][/font][font='宋体'][size=13px]灼烧残渣,w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]还原糖(以葡萄糖计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.3 [/size][/font][font='宋体'][size=13px]核糖醇和丙三醇(以干基计),[/size][/font][font='宋体'][size=13px]w/% ≤ 0.1 [/size][/font][font='宋体'][size=13px]铅([/size][/font][font='宋体'][size=13px]Pb)/(mg/kg) ≤ 1 [/size][/font][font='宋体'][size=13px]参考文献[/size][/font][font='宋体'][size=13px]:[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]肖素荣,李京东.赤藓糖醇的特性及应用[J].中国食物与营养,2008(05):26-28.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥.低热值甜昧剂——赤藓糖醇[J].食品与发酵工业,2007(09):132-135.[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]3]尤新.尤新食品发酵论文选[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]M].北京:中国轻工业出版社,2005.272[/size][/font][font='宋体'][size=13px]-[/size][/font][font='宋体'][size=13px]274[/size][/font][font='宋体'][size=13px][[/size][/font][font='宋体'][size=13px]4[/size][/font][font='宋体'][size=13px]]李树东,宋微,魏春红,曹龙奎.发酵法生产赤藓糖醇的研究综述[J].农产品加工(创新[/size][/font][font='宋体'][size=13px]版),2009(12):50-52.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]刘建军,赵祥颖,田延军,韩延雷,张家祥,李丕武.低热值甜味剂赤藓糖醇的研究现状及应用[J].中国酿造,2006(12):1-3+16.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]李俊霖,郭传庄,王松江,王建彬,隋松森.赤藓糖醇的特性及其应用研究进展[J].中国食品添加剂,2019,30(10):169-172.[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]?[/size][/font][font='宋体'][size=13px]GB 26404-2011, 食品安全国家标准 食品添加剂 赤藓糖醇[s].[/s][/size][/font]

  • 甜味剂——赤藓糖醇

    赤藓糖醇是一种采用生物技术生产的新型发酵型低热量甜味剂,1999年6月国际食品添加剂专家委员会(JECFA)批准赤藓糖醇作为食用甜味剂,且无需规定ADI值。目前,赤藓糖醇在美国、日本、澳大利亚、新西兰、新加坡、韩国、墨西哥等国已用于食品生产。2007年6月19日我国卫生部公告批准赤藓糖醇作为甜味剂应用于口香糖、固体饮料、调制乳等食品中。 1 赤藓糖醇的性质 赤藓糖醇在自然界分布十分广泛,海藻、蘑菇以及甜瓜、葡萄、桃等水果类中均含有赤藓糖醇。由于细菌、真菌和酵母也能产生赤藓糖醇,所以在发酵食品果酒、啤酒、酱油中也存在,另外还存在于人和哺乳动物的体液中。赤藓糖醇为白色结晶的四碳多元醇类化合物,化学名称为1,2,3,4-丁四醇,分子式为C4H10O4,分子量122.12,熔点126℃,沸点329~331℃,溶解热-97.4J/g,其化学性质与山梨糖醇、甘露糖醇和木糖醇等糖醇相类似。1.1 甜味纯正赤藓糖醇与蔗糖的甜昧特性十分接近,爽净且无后苦味,甜度约为蔗糖的70%~80%。与其他甜味剂混合使用具有改善、协调味质作用,如赤藓糖醇与高甜味剂甜菊苷以1000:(1~7)混合使用,可有效掩盖甜菊苷的后苦味;将20%以上的赤藓糖醇与白砂糖并用,其后味和甜味比白砂糖更为理想;溶液中1%~3%的赤藓糖醇能有效掩饰刺激性口味,改善溶液的口感和风味。1.2 稳定性高赤藓糖醇在热、酸、碱条件下稳定,适用的酸碱范围为pH2~12,符合一般食品对酸碱的要求,由于不含羰基,所以在与氨基酸共存的情况下无美拉德反应发生。试验表明,赤藓糖醇在160℃高温条件下不会出现分解及热变色,避免高温加工过程食品出现的焦化。 1.3 结晶性好赤藓糖醇吸湿性低,结晶性好,易粉碎制得粉状产品,其吸湿性在糖醇及蔗糖等甜味剂中是最小的。温度为20℃、相对湿度为90%的环境中,放置5d后的吸湿增重,麦芽糖约为17%,蔗糖约为10%,而赤藓糖醇仅为2%左右。1.4 熔解热高 其溶解热为-97.4J/g,由于溶解热较大,溶于水时会吸收较多的能量,有很强的制冷作用。实验表明,将10g赤藓糖醇溶解于90g水中,温度下降约4.8℃,用它添加生产的固体食品和糖果在食用时具有口感清凉特点。

  • 单糖标准品

    谁购买过D-木糖,L-阿拉伯糖,D-半乳糖,D-甘露糖的标准品用来做高效液相,价格是多少?进口的价格比较高,国产的纯度怎么样呀?谢谢大家

  • 【原创大赛】QB/T2343.2-2013标准赤砂糖中还原糖分的测定方法解读

    【原创大赛】QB/T2343.2-2013标准赤砂糖中还原糖分的测定方法解读

    QB/T2343.2-2013标准赤砂糖中还原糖分的测定方法解读经常会接到很多的同事问:按 QB/T2343.2-2013标准检测赤砂糖中还原糖分,我怎么做不出来啊,颜色判定不出来,结果计算出来为什么这么多都是不合格啊,标准的计算公式为什么是这样的。。。。。等各种问题。针对这些问题,本人在此详细对 QB/T2343.2-2013标准赤砂糖中还原糖分的测定方法进行解读,欢迎跟贴进行讨论。溶液的配制:这么略,与标准一致。从测定步骤开始:[img=,690,334]https://ng1.17img.cn/bbsfiles/images/2018/09/201809161714176758_2764_2166779_3.png!w690x334.jpg[/img]注意滴定时:一定要在有白色底面的滴定台中滴定:因为赤砂糖样液会呈红色,利用它的白色来反衬亚甲基蓝的蓝色,认真观察,还是可以观察到样液颜色的变化的。标准中的计算公式其实是有误的:[img=,690,219]https://ng1.17img.cn/bbsfiles/images/2018/09/201809161720042647_5859_2166779_3.png!w690x219.jpg[/img]这里计算出耗用配制糖液中所含有的蔗糖量G是为了查下表得出校正系数f的:[img=,690,226]https://ng1.17img.cn/bbsfiles/images/2018/09/201809161722215594_1734_2166779_3.png!w690x226.jpg[/img]真正计算出赤砂糖样品中还原糖分的百分含量是下面的计算公式:[img=,690,270]https://ng1.17img.cn/bbsfiles/images/2018/09/201809161724082221_328_2166779_3.png!w690x270.jpg[/img]结论:我们检测人员不能生搬硬套标准,一定要理解标准的检测原理,计算公式最好能根据自己的测定步骤导推出其计算公式,有时真的是尽信书还不如无书啊,因为标准有时也会有出差的地方,尤其是计算公式这一类直接导致计算结果错误的地方。希望通过这个标准的解读让大家更好地理解这个检测方法。

  • 测糖蜜还原糖,如何用95%的无水葡萄糖标准品做准确度验证?

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 【求购】药品标准:生尔发糖浆

    生尔发糖浆________________________________________拼音名:Sheng'erfa Tangjiang英文名:书页号:z14-31 标准编号:WS3-B-2677-97【处方】 熟地黄 120g 制何首乌 240g 菟丝子 240g赤芍 100g 当归 60g 黄芪 150g桑椹 150g 女贞子 150g 墨旱莲 120g五味子(醋制) 100g【制法】 以上十味,取墨旱莲,加水煮沸后,于80~90℃温浸二次,每次2小时,合并温浸液,滤过,滤液静置;其余制何首乌等九味,加水煎煮二次,每次2小时,合并煎液,滤过,滤液静置24小时,取上述两种澄清液合并,浓缩至适量,加入蔗糖650g与防腐剂适量,煮沸溶解,滤过,加水至1000ml,搅匀,即得。【性状】 本品为棕褐色的粘稠液体;气微,味甜、微苦、涩。【鉴别】 取本品10ml,加水10ml及稀盐酸1ml,摇匀,加乙醚20ml,振摇,乙醚层应显黄色;分取乙醚液,加氢氧化钠试液1ml,振摇碱液层显红色。【检查】 相对密度 应不低于1.27(附录Ⅶ A)。其他 应符合糖浆剂项下有关的各项规定(附录Ⅰ H)。【功能与主治】 滋补肝肾,补气养血。用于肝肾不足,气血亏虚所引起的各种脱发。【用法与用量】 口服,一次30~40ml,一日3次。【注意】 忌食辛辣食物。【贮藏】 密封,置阴凉处。————————————————————————

  • 【原创大赛】为何「无糖」食品,味也甜?代糖安全吗?

    当代人在生活中常常面对一个巨大的矛盾——在健康养生和口腹之欲中间反复横跳,一边养生,一边放纵。但当你看到自己「吨吨吨」喝的奶茶换算成一堆方糖时,还是会觉得吓人。近年来,控糖、抗糖、戒糖成为了热门概念。不少商家推出了「无糖奶茶」、「无糖饼干」、「无糖可乐」等各种「无糖」概念食品。「无糖」食品的兴起响应着当代人的养生需求,满足了口腹之欲的快乐,也多了一层心理补偿。我喝的是无糖的呀。但是,你是否有过这样的疑惑:为啥我喝的无糖XX水是甜的?下面小C给大家揭秘「无糖」食品[b][size=18px]「糖」的标准定义[/size][/b]首先了解「无糖」中的「糖」是指什么?「糖」是指“所有的单糖和双糖”。[1][img=,450,]https://pic1.zhimg.com/80/v2-dbcbfa333402620a5e31a63710de90ed_720w.jpg[/img]很多天然食物(例如水果、蜂蜜等)中都含有「糖」,吃起来会觉得甜。因为糖的摄入会给人体提供能量,所以糖吃多了,容易发胖。1g的「糖」可产生16.7kJ的能量。小伙伴可能会疑问,常说的淀粉吃多了也会胖,那这个淀粉是「糖」吗?不是的哦!淀粉是指「多糖」[1]。像小麦粉、米粉、土豆这类食物中,淀粉含量都比较高。不同于「糖」,淀粉不会产生明显的甜味口感,但是在进入人体后,会被消化分解成麦芽糖和葡萄糖。所以,淀粉吃多了也会「月半」的。[size=18px][b]「无糖」的标准定义[/b][/size]商家的产品如果「糖」含量小于或等于0.5g/100g(固体)或100ml(液体),它的产品广告就可以声称「无糖或不含糖」[2]。「无糖」并非绝对意义上的完全「不含糖」。小伙伴可能会好奇,含「糖」量这么少,为什么吃起来还是很甜?是不是加了食品添加剂?Bingo~[b][size=18px]「无糖」食品为什么甜?[/size][/b]「无糖」食品有甜味,主要是食品中添加了食品添加剂(甜味剂)来代替糖—简称代糖。这类代糖(甜味剂)可根据是否产生热量分为:营养型代糖(可(chi)以(le)产(ye)生(hui)热(pang)量(de))和非营养型代糖(无热量)。▬ ▬ ▬ 营养型代糖常见的是糖醇类:山梨醇、木糖醇、甘露醇、麦芽糖醇、赤藓糖醇等。食用后依然会产生热量,只是相比于传统「糖」比较低。同样1g的量,「糖」的热量是营养型代糖的1.7倍。当然有个特殊的存在,赤藓糖醇能量系数为0kJ/g,一点热量贡献没有。非营养型代糖分为:人工合成类(如糖精钠、阿斯巴甜、安赛蜜、甜蜜素等)和天然类(甜菊糖苷、甘草、罗汉果糖等)。这些代糖,也不会提供热量。代糖又甜蜜又热量低,貌似完美,但是安全吗?[b][size=18px]代糖安全吗?[/size][/b][img=,652,]https://pic4.zhimg.com/80/v2-c2e52cd8f743d9a72cc819407f927e0f_720w.jpg[/img]常常有人谈添加剂色变,但是脱离剂量谈危害,都是耍流氓的行为哦!只要按照GB 2760《食品安全国家标准 食品添加剂使用标准》使用甜味剂,那就满足国家标准要求,安全放心。但小C温馨提醒,部分特殊群体应该要注意代糖的摄入,比如:█ 苯丙酮尿症(PKU)的人群,要避免摄入阿斯巴甜。添加了阿斯巴甜的食品其标签要标注“阿斯巴甜(含苯丙氨酸)”。█ 肠胃不好的人群,建议控制糖醇的摄入量,避免胃胀、胃痛等消化问题。█ 糖精钠和甜菊糖苷对于孕妇和哺乳期妇女的风险未知,建议控制摄入量。参考资料:[1] GB/Z 21922《食品营养成分基本术语》[2] GB 28050《食品安全国家标准预包装食品营养标签通则》

  • 儿童食品标准缺位,需要采取哪些措施?

    “六一”儿童节前后,许多商场的食品专区搞起了促销活动,儿童果汁、儿童饼干、儿童酱油……一些专为儿童推出的食品受到孩子和家长的欢迎。  面对花样频出、价格不菲的儿童食品,一些家长表示,最关心的还是安全问题。  “六一”国际儿童节前夕,中国消费者协会针对儿童食品安全问题发布了消费警示。中消协表示,在我国,除3周岁以下婴幼儿必需食品外,尚无有关“儿童食品”的概念和相关食品标准。即使明确标注“儿童”字样或印有儿童头像(卡通)的食品,也只能按普通食品标准进行管理。   据了解,国外对儿童食品的标准也没有明确规定。美国曾因各年龄阶段肥胖者的数量均有所增加,而建议禁止美国企业为含糖量过高的儿童食品做广告,以应对日益严重的儿童肥胖问题。韩国拟修订儿童喜爱的食品质量认证标准,只是鼓励企业制造、加工和销售安全、营养均衡的儿童食品。日本曾在地震后制定婴幼儿食品辐射检测标准,但是并没有针对儿童食品的特别措施。讨论:儿童食品往往原材料比较丰富,引入的各种元素也比较多,我们需要采取哪些措施才能保证儿童食品的安全呢?欢迎大家讨论,分享经验,赢取积分奖励。

  • 分光测还原糖,如何用95%标准品做准确度验证?

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 分光测还原糖,如何用95%标准品做准确度验证

    各位大神,我用DNS分光法测糖蜜中还原糖,网上没买到相对应的质控样,只买到了95%的D-葡萄糖标准品,我打算用分析纯无水葡萄糖做标准曲线,用95%的D-葡萄糖标准品做准确度验证,因为样品的还原糖高达48%,不打算做加标回收率,如何把95%的D葡萄糖标准品配制成10mg/ml的标准溶液做准确度验证?

  • 【转帖】维维豆奶“低糖”食品被查不符国家标准

    根据规定,强调某种或数种配料的含量较低或较高时,应标识所强调配料在产品中的含量。就“低糖”而言,每100克食品内,蔗糖含量不超过5克,才能称得上“低糖”;含量低于0.5克的,才能叫“无糖”或“不含糖”;蔗糖含量比一般基准食品,减少25%以上的,才能称作“减糖”食品。 汉阳墨水湖北路一超市内,10.8元一袋的核桃豆腐花,标有“低糖”字样,其实不然。工商人员到超市调查发现,该产品由佛山市碧泉食品公司生产,厂家提供的“低糖豆腐脑”鉴定报告显示:每100克含糖68.9克,符合该企业在当地备案的企业标准,却不符合低糖标准。  工商人员在抽查中还发现,维维豆奶的“高钙低糖”豆奶粉,100克产品中,钙≥450毫克,符合“高钙”食品的规定(每100克固体食品中,钙含量≥240毫克)。可是总糖标称小于45克,大大超过了5克的“低糖”标准。厂方说,他们执行的是企业标准,也达到了企业标准――总糖含量为40-70克的要求。

  • 【原创大赛】糖标准品的困惑-从购买到假乳果糖谈起

    【原创大赛】糖标准品的困惑-从购买到假乳果糖谈起

    糖标准品的困惑-从购买到假乳果糖谈起最近为了测定一批甘露醇和乳果糖的样品(采用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法),原来乳果糖对照品几乎用完了,需要重新购,于是我在学校的虫洞采购平台上订购,从麦克林公司购买了乳果糖的对照品,一般而言,我不可能去验证糖对照品的准确性。将对照品给学生后,就把以前的色谱条件交给她们,让她们去做。做了几次后,学生反映,跟原来的结果不一样,保留时间对不上,我自己也没仔细查看,就跟学生说,这样品做了数百个了,条件和色谱柱都是固定不变了,不会有问题。不行,继续试,不行,再继续做。在几次失败后,学生无意用了原来剩下的标样试了一下,发现跟新买来的标样保留不一样,跑过来跟我说,这时我才有点醒悟。在仔细观察了色谱图,并查阅色谱条件后,我明白学生为什么做不出来的原因。买来的乳果糖标样不对,因为原来的乳果糖标样不止买过一次,十年来都没出过问题。而且从色谱图的保留时间看,买来的乳果糖标样出峰时间在单糖的位置,肯定是糖标样有问题。本来我想狠狠批评学生,但也怪我,我之前没有仔细查看色谱图,我负有不可推卸的责任!学生第一次做,缺乏经验,但对于单糖双糖的保留时间位置,应该有感性的认识,我只能教育他们,并告诉他们判断的依据。客户在催,我只能再从网上订购,这次另外换了一家公司,从迈瑞尔公司订购了乳果糖。试剂到后,让学生先测试一下,是否是乳果糖。实验的结果跟从麦克林买来一样,不对,还是单糖不是双糖(乳果糖是双糖)。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/08/201908192347296833_4583_1617661_3.jpg!w690x387.jpg[/img]甘露醇和购买的假乳果糖的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/08/201908192348130616_5401_1617661_3.jpg!w690x387.jpg[/img]甘露醇和原来的乳果糖(原来试剂时间放长了,有变质,图不是很好,但能说明问题,)二次从二个不同的厂家采购相同的乳果糖,结果表明二者都不是乳果糖,都是单糖,可能是半乳糖(没核对),这个漏洞也太大了吧,说明麦克林和迈瑞尔对进货的乳果糖都没有检验,或者检验有缺失,万一出错,这是多么可怕的事,会对实验造成严重的后果,如果一个第一次使用这种糖的人,如果缺乏判断经验,不可想象。我不敢再买了,那个是真的?那些小的试剂公司更不敢碰。用户一边在催实验结果,另一边试剂还没着落,买进口保险吗?或许如此,但价格高很多了。时间上也不见得来得及。为了保险起见,我再次联系了第三家试剂公司,阿拉丁,通过电话沟通,让他们确认试剂的可靠性,如果有检验的话,单糖和双糖是极容易区分的。在他们保证后,第三次购买了乳果糖,实验结果表明,这次购买的是正确的,跟留下来的乳果糖是同一种糖,实验终于可以进行了。通过这次事件,我预感到,试剂市场可能存在一定的乱象,一旦出现滥竽充数,如果不加检验,一些小公司可能根本没有能力判断。错误试剂会对实验结果造成严重的后果。但是让用户去检验试剂的可靠性,虽然我能做到,但是测试成本会远远高于购买的成本。而一般用户,根本没有能力。这也许是低价造成的恶果!大家是否有相同的经历!!!

  • GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-RI

    GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-RI

    [align=center][b]GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-RI[/b][/align]三氯蔗糖(TGS),是唯一以蔗糖为原料的功能性甜味剂,甜度可达蔗糖600倍。这种[url=http://baike.sogou.com/v130009.htm][color=windowtext]甜味剂[/color][/url]具有无能量,甜度高,甜味纯正,高度安全等特点,是最优秀的功能性甜味剂之一。[align=center][img=,170,99]http://ng1.17img.cn/bbsfiles/images/2018/03/201803080920210187_4197_2222981_3.png!w170x99.jpg[/img][/align][align=center]三氯蔗糖结构式[/align]实验室前期按照《GB 22255-2014 食品安全国家标准食品中三氯蔗糖(蔗糖素)的测定》方法,使用高灵敏度气溶胶型检测器——纳克级水凝粒子计数检测器(NQAD),得到了三氯蔗糖标准品的良好分析结果。本实验按照相同条件,使用示差折光检测器(RI)对三氯蔗糖标准品进行分析。色谱柱同样选择中等极性的普适型色谱柱CAPCELL PAK C[sub]18 [/sub]MGII S5 4.6 mm i.d. × 150 mm,得到结果如图1所示。三氯蔗糖保留时间为12.400min,与标准谱图保留时间基本一致,理论塔板数为12350,不对称因子为0.95,峰形良好。[align=center][img=,690,489]http://ng1.17img.cn/bbsfiles/images/2018/03/201803080945469257_8172_2222981_3.png!w690x489.jpg[/img][/align][align=center]图1 三氯蔗糖标准品分析色谱图(0.4 mg/mL)[/align]*注:峰上标数字由下至上依次为保留时间、理论塔板数及不对称因子。[img=,472,187]http://ng1.17img.cn/bbsfiles/images/2018/03/201803080945471937_6640_2222981_3.png!w472x187.jpg[/img][align=center][img=,690,435]http://ng1.17img.cn/bbsfiles/images/2018/03/201803080946205953_7240_2222981_3.png!w690x435.jpg[/img][/align][align=center]附图:GB方法中标准色谱图[/align]接下来,按照国标要求配制三氯蔗糖工作液,0.02 mg/mL、0.05 mg/mL、0.1 mg/mL、0.2 mg/mL、0.4 mg/mL,进行线性考察实验。线性实验结果如图2所示,R[sup]2[/sup]=0.9939,得到良好线性结果。同时,由于低浓度0.02 mg/mL、0.05 mg/ mL标准品溶液均未检出色谱峰,因此根据标准曲线最高浓度的信噪比计算出检出限(以S/N=3计)约为0.17 mg/ mL。[align=center][img=,650,398]http://ng1.17img.cn/bbsfiles/images/2018/03/201803080947051037_4812_2222981_3.png!w650x398.jpg[/img][/align][align=center]图2 三氯蔗糖标准曲线图[/align]综上,按照《GB 22255-2014 食品安全国家标准食品中三氯蔗糖(蔗糖素)的测定》方法,使用示差检测器(RI)进行检测,以及CAPCELL PAK C[sub]18[/sub] MGII S5 4.6 mm i.d. ×150 mm色谱柱进行分析,可得到三氯蔗糖标准品的良好线性分析结果;但RI检测器的检测灵敏度较低。

  • [求助]请问哪里有低聚异麦芽糖的标准品卖

    我们的液相色谱刚刚买的,为了检测低聚异麦芽糖和果葡糖浆什么的,,打算让他跑跑柱子看下,谁知道哪里有卖以下标准品的: 果糖,葡萄糖、麦芽糖、麦芽三糖、异麦芽糖、潘糖、异麦芽三糖 告诉下 谢谢~~~~

  • GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-NQAD检测器

    GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-NQAD检测器

    [align=center][b]GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定——三氯蔗糖标准品分析-NQAD检测器[/b][/align]三氯蔗糖(TGS),是唯一以蔗糖为原料的功能性甜味剂,甜度可达蔗糖600倍。这种甜味剂具有无能量,甜度高,甜味纯正,高度安全等特点,是最优秀的功能性甜味剂之一。[align=center][img=,170,99]http://ng1.17img.cn/bbsfiles/images/2018/03/201803011004470313_2453_2222981_3.png!w170x99.jpg[/img][/align][align=center]三氯蔗糖结构式[/align]本实验按照[b]《GB 22255-2014 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定》[/b]方法,使用[b][color=#ff0000]高灵敏度气溶胶型检测器——纳克级水凝粒子计数检测器(NQAD)[/color][/b]对三氯蔗糖标准品进行了分析。色谱柱选择中等极性普适型[color=#3333ff][b]CAPCELL PAK C18 MGII S5 4.6 mm i.d. × 150 mm[/b][/color],得到结果如图1所示。三氯蔗糖保留时间为12.709min,[b]与标准谱图保留时间基本一致,理论塔板数为9992,不对称因子为1.06,峰形良好。[/b][align=center][b][img=,690,497]http://ng1.17img.cn/bbsfiles/images/2018/03/201803011006155125_1559_2222981_3.png!w690x497.jpg[/img][/b][/align][align=center]图1 三氯蔗糖标准品分析色谱图[/align]*注:峰上标数字由下至上依次为保留时间、理论塔板数及不对称因子。[b][img=,633,176]http://ng1.17img.cn/bbsfiles/images/2018/03/201803011006367633_3986_2222981_3.png!w633x176.jpg[/img]附图:GB方法中标准色谱图[/b][align=center][b][img=,690,448]http://ng1.17img.cn/bbsfiles/images/2018/03/201803011007162573_9264_2222981_3.png!w690x448.jpg[/img][/b][/align][b][/b]接下来,按照国标要求配制三氯蔗糖工作液,浓度分别为0.02 mg/mL、0.05 mg/mL、0.1 mg/mL、0.2 mg/mL、0.4 mg/mL,进行线性考察实验。[b][color=#3333ff]由于NQAD检测器原理与常规蒸发光散射检测器ELSD不同,能够直接得到线性回归结果,不需要做对数方程,更加简单快捷。[/color][/b]线性结果如图2所示,R[sup]2[/sup]=0.996,得到良好线性结果。同时,我们根据标准曲线最低浓度的信噪比计算出定量限(以S/N=10计)约为3 μg/mL,[b][color=#ff0000]能够实现三氯蔗糖的高灵敏度检出[/color][/b]。[align=center][img=,658,399]http://ng1.17img.cn/bbsfiles/images/2018/03/201803011008425185_5014_2222981_3.png!w658x399.jpg[/img][/align][align=center]图2 三氯蔗糖标准曲线图[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制