当前位置: 仪器信息网 > 行业主题 > >

丁氟螨酯代谢物

仪器信息网丁氟螨酯代谢物专题为您提供2024年最新丁氟螨酯代谢物价格报价、厂家品牌的相关信息, 包括丁氟螨酯代谢物参数、型号等,不管是国产,还是进口品牌的丁氟螨酯代谢物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丁氟螨酯代谢物相关的耗材配件、试剂标物,还有丁氟螨酯代谢物相关的最新资讯、资料,以及丁氟螨酯代谢物相关的解决方案。

丁氟螨酯代谢物相关的资讯

  • 关于《食品中氟虫腈及其代谢物残留检测液质联用》的公示
    p style="text-align: justify " 根据《中华人民共和国食品安全法》有关规定,我委按照《2018年广西食品安全地方标准项目计划》,组织广西食品安全标准审评委员会进行了《食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法》食品安全地方标准制定工作,形成了标准征求意见稿(见附件1-2),现进行公示并公开征求意见。如有意见,请于2018年11月20日前将意见反馈表(格式见附件3)以传真或电子邮件形式反馈我委。/pp  联系人:宋振华/pp  电 话:0771-2823593/pp  传 真:0771-2805181/pp  邮 箱:gxwjwspc@163.com/pp  附件:/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201811/attachment/6603b2b8-b1ba-4f8a-a382-d5c64318b1da.doc" title="广西壮族自治区食品安全地方标准制修订征求意见反馈表.doc"广西壮族自治区食品安全地方标准制修订征求意见反馈表.doc/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201811/attachment/03bbcc4c-d054-47f7-be8e-d83be79960e9.docx" title="广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 (征求意见稿).docx"广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 (征求意见稿).docx/a/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201811/attachment/f5a2109c-d8a7-4ba4-9c25-d821f6ef25bc.doc" title="广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 编制说明 (征求意见稿).doc"广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 编制说明 (征求意见稿).doc/a/ppbr//p
  • 青岛能源所提出“拉曼组内关联分析”揭示代谢物转化网络
    细胞内代谢物之间是否正在发生相互转化,是细胞代谢活动最重要的动态特征之一,但其检测方法一般极为繁琐。针对这一瓶颈,青岛能源所单细胞中心提出了名为“拉曼组内关联分析”(Intra-Ramanome Correlation Analysis IRCA)的理论框架与算法,并示范了细胞工厂功能测试等方面的应用。在无需标记或破坏细胞的前提下,IRCA仅仅基于一个拉曼组数据点(即一个样品的一个状态),利用其中不同单细胞拉曼光谱的差异,就能推测该状态下的代谢物相互转化网络。相关工作于8月31日发表于《mBio》。图 拉曼组内关联分析(IRCA)仅需一个细胞群体的一个状态,即可预测其代谢物转化网络  代谢物相互转化网络的构建,传统上基于质谱或色谱等代谢组学方法。它们通常必须破坏细胞,每次分析需要大量的细胞,而且要求基于一系列不同代谢状态的实验样品进行关联比较,这导致整个过程非常繁琐与耗时。针对这一瓶颈问题,单细胞中心提出了基于“拉曼组”(ramanome)的原创解决方案。拉曼组,是一个细胞群体在特定状态下单细胞拉曼光谱的集合。这些单细胞,尽管遗传背景与环境条件等均一致,其代谢状态却可各不相同,导致其拉曼光谱之间具有细微但显著的差异。一个“遗传同质性”样品中细胞间具有“代谢异质性”,是生命体系最本质的特性之一。  利用该本质特性,单细胞中心何曰辉博士带领的研究小组提出了命名为“拉曼组内关联分析”(Intra-Ramanome Correlation Analysis IRCA)的思路。首先,一张单细胞拉曼光谱中数百乃至数千的拉曼谱峰中,每个谱峰(或其组合)可潜在代表一个代谢表型,如一类化合物的种类与含量。其次,把每个细胞作为一个独立的生物学重复,在不同细胞之间,将同一位置的谱峰与其它任一谱峰进行两两关联分析,如果发现呈现“负关联”的峰-峰组合,即意味着其对应的两类化合物之间存在相互转化的关系。最后,将该分析拓展到单细胞拉曼光谱中所有可能的峰-峰组合,则能建立一个该状态下之胞内化合物相互转化(或代谢表型相互关联)的“网络”。  该研究小组以各种光合微藻为模式,通过一系列系统性的生物化学与遗传学实验,验证了IRCA预测结果的准确性和可靠性。这些实验证明,仅仅需要一个样品(即一个拉曼组数据点)中的数十个细胞,通过IRCA算法,就能够揭示该特定条件与时间下,细胞中蛋白、多糖、油脂、色素、核酸等各种储碳物质的相互转化规律。这些规律的快速探测,对于光合固碳细胞工厂的筛选与表征至关重要。  最后,研究人员还通过IRCA,构建了微藻、酵母、大肠杆菌等物种在多种状态下的代谢物转化网络,验证了该方法的广谱适用性,并证明这种名为IRCN(Intra-Ramanome Correlation Network)的网络有望成为一种极为灵敏、信息量丰富的代谢表型组学数据类型,来定义、表征乃至监测任何细胞体系的代谢功能。  相对于质谱、色谱等分析手段,IRCA具有超灵敏、快速、高通量、低成本(无需试剂耗材)等核心优势,因此IRCA将在合成生物学、精准医学、生态监控、生物制造等广阔领域开辟一系列全新的应用。同时,基于拉曼组概念和单细胞拉曼分选等核心器件的创新,单细胞中心发明和产业化了临床单细胞拉曼药敏快检仪CAST-R、单细胞拉曼分选-测序文库耦合系统RACS-Seq、高通量流式拉曼分选仪FlowRACS等。IRCA将通过这些原创国产的单细胞科学仪器,服务于广大的科学与产业用户。  该工作由单细胞中心徐健研究员主持完成,获得了国家自然科学基金、中国科学院先导专项、山东省自然科学基金、中国博士后科学基金的支持。  原文链接:https://journals.asm.org/doi/10.1128/mBio.01470-21  Yuehui He, Shi Huang, Peng Zhang, Yuetong Ji, Jian Xu. Intra-Ramanome Correlation Analysis unveils metabolite conversion network from an isogenic population of cells. mBio 2021, 12(4): e01470-21.
  • 阿尔塔氟虫腈及其代谢物混标现货供应!
    2017年7月20日,比利时通过RASFF系统通报鸡蛋中检出氟虫腈。问题鸡蛋已被销往12个国家或地区。据报道,问题鸡蛋产自荷兰,氟虫腈被不恰当的用于养鸡场的清洁物品中,造成鸡蛋被检出残留物。针对此事,国家质检总局第一时间在官网做出回应表示,“我国对进口禽蛋及其产品实施严格的检验检疫准入管理。目前包括荷兰在内的欧盟各成员国的新鲜禽蛋和禽蛋产品均尚未获得检验检疫准入资格,不能向我国出口,请中国境内消费者不必为此担心。”氟虫腈是一种苯基吡唑类广谱杀虫剂,对蚜虫、叶蝉、飞虱、鳞翅目幼虫、蝇类和鞘翅目等重要害虫有很高的杀虫活性,对作物无药害。然而氟虫腈会对农作物周围的蝴蝶、蜻蜓等造成影响,并且现有动物实验研究表明,短期摄取大量氟虫腈会对神经系统造成不良影响,长期摄取氟虫腈可能会损害肝脏、甲状腺和肾脏,但不会引起基因突变、致癌或对生殖能力、胎儿造成影响。德国禁止在用于食品加工的动物养殖过程中使用氟虫腈。目前德国实行欧盟的相关规定,要求食品中的氟虫腈残留不能超过0.005毫克/千克。我国国标GB 2763-2016中明确了氟虫腈在谷物、油料和油脂、蔬菜、水果、糖类和食用菌中的限量(玉米及鲜食玉米0.1mg/kg,其他为0.02mg/kg),但未明确在蛋类中的规定。“毒鸡蛋“事件发生后,虽然我国国内市场暂无进口禽蛋,但是仍然引起相关各科研机构、第三方检测公司的及仪器公司的注意,其中阿尔塔的合作伙伴SCIEX及博纳艾杰尔在最快的时间内发布了鸡蛋中氟虫腈的检测方法。SCIEX:如何应对欧洲“毒鸡蛋”来袭?博纳艾杰尔:这个八月有点忙,“毒鸡蛋”怎么防? 阿尔塔科技有限公司提供氟虫腈及其代谢物的单标、混标,均为现货!更多产品欢迎咨询订购!单标货号产品名称英文名称CAS#溶剂包装1ST20305-100M氟虫腈Fipronil120068-37-3甲醇100ppm, 1ml1ST20502-100A氟甲腈Fipronil Desulfinyl205650-65-3乙腈100ppm, 1ml1ST20306-100M氟虫腈硫化物Fipronil Sulfide120067-83-6甲醇100ppm, 1ml1ST20308-100M氟虫腈砜Fipronil Sulfone120068-36-2甲醇100ppm, 1ml混标1ST27612-100A氟虫腈及其3种代谢物混标, 100ppmFipronil & 3 Metabolites Mix Solution, 100ppm乙腈100ppm, 1ml
  • 中国科大实现对多种植物叶片代谢物空间成像
    记者14日从中国科学技术大学获悉,该校科研团队在植物叶片代谢物质谱成像取得新进展,实现对多种植物叶片中代谢物的空间成像。  这一成果由该校国家同步辐射实验室潘洋教授团队利用自行研发的质谱成像平台,实现对多种植物叶片中代谢物的“拍照”。  研究成果近日发表于国际分析化学领域著名期刊 Analytical Chemistry杂志。  在已知植物种群中,有约200,000个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。  质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像。  课题组通过印迹方法,将叶片中的植物代谢物转移至多孔聚四氟乙烯材料上,并对印迹后的材料进行成像,可实现对叶片植物代谢物的间接成像。由于使用DESI/PI技术,相比于传统DESI方法,正离子模式下可新检出多达百种萜类、黄酮类、氨基酸和苷类等次生代谢产物 负离子模式下整体代谢物信号强度可增强一个数量级。  课题组进一步利用该技术对茶叶进行研究,发现咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力的证据。  实验还检测到茶叶中儿茶素生物合成网络中重要的黄酮类代谢物并以质谱成像的形式展示出空间分布,表明印迹DESI/PI成像技术在探索植物代谢转化位点和途径方面有巨大的潜力。
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之五:硝基呋喃及其代谢物类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技陆续推出了四期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的硝基呋喃及其代谢物类化合物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。部分硝基呋喃及其代谢物类化合物:了解更多产品或需要定制服务,请联系我们
  • 硝基呋喃及其代谢物检测三大利器!
    硝基呋喃类抗菌药物是一种广谱抗生素,包括了硝基呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林,曾广泛应用于水产养殖业,用来治疗由大肠杆菌或沙门氏菌所引起的肠炎、疥疮、赤鳍病、溃疡病等。这类化合物对光敏感,衰减快,其母体化合物在动物体内及其产品中代谢很快,但其代谢物以蛋白结合物的形式存在可残留较长时间,目前各国均将硝基呋喃代谢物作为指示硝基呋喃类药物残留的标示物。因硝基呋喃类药物及其代谢物具有相当大的毒副作用,世界上绝大部分国家规定在食用动物组织中不允许有硝基呋喃药物残留;美国21CFR530.41规定食源性动物禁止食用呋喃唑酮和呋喃妥因;欧盟EEC2377/90将硝基呋喃类药物及其代谢物列为A类禁用药物;我国也于2002年颁布了禁用硝基呋喃类抗生素的禁令。2017年3月9日,农业部办公厅发布关于开展2017年水产品质检机构检测能力验证工作的通知,提到硝基呋喃类代谢物的检测方法依据为《水产品中硝基呋喃类代谢物残留量的测定-液相色谱-串联质谱法》(农业部783号公告-1-2006),使用内标法定量。First Standard推出硝基呋喃及其代谢物检测三大利器,确保您的实验全程无忧!它们是:4种硝基呋喃混标帮助您节省实验前的准备时间,浓度100ppm,可配制多组工作液Cat.No中文名称规格/CAS#1ST9262-100M4种硝基呋喃混标100ppm1ST4207呋喃唑酮67-45-81ST4208呋喃它酮139-91-31ST4209呋喃妥因67-20-91ST4210呋喃西林59-87-04种硝基呋喃类内标溶液许多客户反馈内标难找,我们这里4种内标齐全,1支混标搞定!Cat.No中文名称规格/CAS#1ST9230-100M4种硝基呋喃类内标混标100ppm1ST4226氨基脲-13C,15N2盐酸盐1173020-16-01ST4203D53-氨基-5-吗啉甲基-2-噁唑烷酮-d51017793-94-01ST4201D43-氨基-2-噁唑烷酮-d41188331-23-81ST4204C31-氨基-2-乙内酰脲-13C3957509-31-84种硝基呋喃代谢物衍生化混标不用担心标品衍生不成功或衍生不完全影响实验,我们提供衍生好的混标!Cat.No中文名称规格/CAS#1ST9283-100ppm4种硝基呋喃代谢物衍生化混标(以代谢物计)100ppm1ST42152-NP-呋喃妥因代谢物623145-57-31ST42172-NP-呋喃它酮代谢物183193-59-11ST42192-NP-呋喃唑酮代谢物19687-73-11ST42212-NP-呋喃西林代谢物16004-43-6如需订购请联系天津阿尔塔科技有限公司或各地经销商。
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 代谢组学研究最新进展与代谢物鉴定分析交流会顺利举行
    p strong 仪器信息网讯/strong 2016年5月6日,由中国科学院大连化学物理研究所代谢组学研究中心与大连达硕信息技术有限公司联合主办的代谢组学研究最新进展与代谢物鉴定分析交流会通过仪器信息网网络讲堂平台顺利举行。/pp  本次会议采取了网络直播与现场会议相结合的模式,300多名用户报名参加了在线的网络直播会议,同时有近50名来自有大连理工大学、黑龙江中医药大学等高校的研究人员在大连化物所参加了现场会议。/pp  据介绍,本次交流会的举行主要是为了庆祝OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统开发完成。该系统由大连达硕信息技术有限公司与中国科学院大连化学物理研究所代谢组学研究中心共同开发完成,基于近2000个标准化合物,4个主流网络数据库,以及用户自建数据库,可实现代谢物的快速、批量、准确定性分析。/pp style="TEXT-ALIGN: center"img title="会议直播.jpg" style="HEIGHT: 347px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201609/insimg/dc5e6755-def3-4ad1-b27d-8b13c1d917d8.jpg" width="500" height="347"//pp style="TEXT-ALIGN: center"img title="许国旺2c.jpg" src="http://img1.17img.cn/17img/images/201605/insimg/606abeb9-aeb1-45dc-937f-46d81e32daad.jpg"//pp  会议中,中国科学院大连化学物理研究所代谢组学研究中心许国旺研究员首先从代谢组学概述、代谢组学研究方法、代谢组学应用的新进展、前景展望等四个方面对代谢组学做了详细介绍。/pp  代谢组学是研究生命体对于内在基因突变、病理生理变化以及外在环境等因素刺激作用下的体内的动态多元的代谢物响应,定性定量描述生物体内所有内源性代谢物。与其他组学相比,基因及环境因素改变而引起的变化在代谢组上体现的更为显著,并且代谢组变化快速、使得其对环境变化的应答更为及时灵敏,对于发现实际表型变化前的早期代谢扰动具有重要的潜力。目前,代谢组学在疾病、植物、肠道菌群、药物研发、食品等领域都有应用。/pp  许国旺在报告中提到“基因组学和蛋白质组学告诉你可能发生了什么,而代谢组学则可以告诉你已经发生了什么,疾病变化往往在代谢组中能更早的体现出来,因而在早期疾病诊断中更具优势。”/pp  对于代谢组学的未来的发展,许国旺介绍说如何更好的表征代谢物,拓展代谢组学的分析能力,从而促进代谢组学在生化医学领域的应用是大家所关注的,如进行规模化代谢物鉴定,提高对所获取代谢物信息的利用率 高通量分析,应对大规模代谢组学分析 提高对低丰度代谢物信息的利用 由经典的表型发现向功能表征推进等。/pp  大连达硕信息技术有限公司总经理曾仲大博士在会议中介绍了OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统的开发背景,需要解决的主要问题,采取的解决方案和关键技术,以及相应的应用实例。/pp  曾仲大介绍说代谢物的鉴定是后续深度生物解释的基础和前提。而目前普遍认为,常规方法(主要指LC-MSsupn/sup、GC-MS和NMR)能检测和鉴别的代谢物应不到样品中代谢物总量的10-15%。一次常规的代谢组学血液分析,在所获得了成千上万质谱特征中,往往仅能鉴定出几十至上百种代谢物,且大多数情况下并没有验证其准确性。/pp  OSI/SMMS 代谢组学小分子化合物快速鉴定分析软件系统融合多级质谱的精确质量数与保留时间信息,实现未知代谢物的多层次鉴定分析。该软件的特色在于快速、准确的实现未知代谢物定性,减少繁复的操作步骤,降低对使用者的要求。它拥有信息完备的自建标准数据库、集成了主流网络数据库、采用先进的定性匹配算法、能够实现多层次未知物定性,可实现定性经验的传递,以及丰富的数据库功能。/pp  本次会议得到了用户的充分认可,会后仪器信息网的网友们通过多种渠道对许国旺研究员和曾仲大博士带来的精彩报告表示感谢。错过会议的网友们可查看本次网络讲座的视频回放,了解报告详细内容。请见链接:a href="http://www.instrument.com.cn/webinar/Video/play/103101"http://www.instrument.com.cn/webinar/Video/play/103101/a/p
  • 农产品加工研究所构建苹果时空品质评价代谢物数据库
    我国是世界第一大苹果生产国和消费国,2022年全国苹果产量约3500万吨。随着消费习惯的改变,人们对果实品质和营养健康效益也越来越重视,而不同品种果实在食用品质、贮藏特性、营养品质等方面存在差异。果实特征与代谢物直接关联,建立基于营养代谢物的时空品质评价数据库是提升果实品质的基础,这不仅是满足人民对美好生活向往的需要,更是农业高质量发展、乡村振兴和改善人民生命健康的重要举措。农产品加工研究所基于广谱代谢组技术构建了苹果时空品质评价代谢物数据库,包含类黄酮、酚酸、有机酸、脂质、生物碱、单宁、氨基酸、核苷酸、糖及糖醇、萜类等2575种营养代谢物。对来自全球的292份自然群体苹果品质与代谢物含量进行分析,比较了不同族系差异代谢物及其营养特征,鉴定了特征代谢物对不同品种果实鲜食、加工、贮藏等特性的影响。在此基础上,基于全基因组关联分析鉴定了222877个与2205种苹果营养代谢物显著关联的位点。这是目前最大的苹果时空品质评价代谢物数据库,从基因组层面系统解析物质代谢调控位点,为我国果实品质改良、加工适宜性和营养品质评价等提供数据支撑,将极大地促进果实品质的数字化、标识化、优质化和加工原料品种专一化,为打造农产品品牌和提升生产加工标准化提供了技术支撑。该研究成果在国际顶级期刊《Genome Biology》(IF5-y=20.366)在线发表。农产品保鲜与物流创新团队林琼副研究员、研究生陈静、果蔬加工与品质调控创新团队刘璇研究员、迈维代谢王彬博士为论文共同第一作者,毕金峰研究员为通讯作者。研究材料采自国家苹果梨种质资源圃。研究得到了国家重点研发计划(2022YFD2100100)、国家苹果产业技术体系(CARS-27)、中国农科院农产品加工研究所创新工程院所重点任务(CAAS-ASTIP-G2022-IFST-02)等项目支持。原文链接:https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02945-6图 基于群体代谢视角揭示苹果品质改良机制
  • 重磅!我国科学家实现植物叶片代谢物质谱成像新方法!
    近日,中国科学技术大学国家同步辐射实验室的研究团利用之前自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。研究成果发表于国际分析化学领域著名期刊Analytical Chemistry。代谢活动是生命体的本质特征和物质基础。随着生物分析技术的发展,代谢组学逐渐成为生物学研究的重要领域,并在植物研究中受到广泛关注。目前已知的植物有30万-35万种,其产生的代谢产物预计有20万-100万种,其中鉴定出化学结构的植物代谢物约有20万个。植物代谢物的成分分析和空间成像对于研究植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。通过直接扫描生物样本,可以同时获得多种分子的空间分布特征,具有免荧光标记、不需要复杂样品前处理等优点。但常规的MALDI和DESI等软电离技术难以穿透植物叶片表层的角质层和表皮蜡作用于叶肉组织,因此无法对叶片中的代谢物进行直接成像。为解决这一问题,研究团队通过印迹方法,将叶片中的植物代谢物转移至多孔聚四氟乙烯材料上,并对印迹后的材料进行成像,以这种间接成像方式实现了叶片植物代谢物的质谱成像。研究团队在成像种使用的技术是2019年团队自行研发的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像技术。该技术的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。相比于传统DESI方法,正离子模式下可新检出多达百种萜类、黄酮类、氨基酸和苷类等次生代谢产物;负离子模式下整体代谢物信号强度可增强一个数量级。研究团队以茶叶为实验对象对该印迹DESI/PI成像技术进行了验证,在咖啡因、茶氨酸和儿茶素等茶叶代谢物研究中取得了重要成果,表明印迹DESI/PI成像技术在探索植物代谢转化位点和途径方面有巨大的潜力。作为一门新兴的学科,植物代谢组学还处于发展的初级阶段,印迹DESI/PI成像技术为植物代谢组学研究提供了一种新的方法,推动了植物代谢组学的发展。
  • 许国旺团队新成果:食品中兽药及其代谢物非靶向筛查新方法
    近日,中科院大连化物所高分辨分离分析及代谢组学研究组(1808组)许国旺研究员团队在食品中风险物质非靶向筛查技术研究方面取得新进展,通过系统研究兽药及其相应代谢物的质谱碎裂特征,构建了复杂食品基质中兽药及其代谢物的非靶向筛查策略,可为食品中风险物的发现提供重要的技术手段。  食品安全关系国计民生,不断出现的未知/新型风险物质给食品安全带来了挑战。针对未知风险物识别的难题,该研究团队在前期工作中先后建立了两种非靶向筛查策略,可实现对有空白样本(Anal Chem.,2016)和无空白样本(Anal Chem.,2018)的食品中潜在风险物质的筛查。考虑到风险物质在体内会被代谢并以多种形式存在于食品中,团队于近期构建了包含3710种兽药及其相应代谢物的质谱数据库,研究、归纳了共有或独有的质谱碎裂特征,并基于质谱碎裂特征及智能检索程序,开发了一种针对复杂食品基质中已知/未知兽药及其代谢物的非靶向筛查方法。团队利用该方法在蛋类样本中进行了示范性应用,证明了其在食品安全风险物筛查中具有应用潜力。  相关研究成果以“Nontargeted Screening Method for Veterinary Drugs and Their Metabolites Based on Fragmentation Characteristics from Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry”为题,发表在《食品化学》(Food Chemistry)上。该工作的第一作者是我所1808组博士研究生梁雯莹。上述工作得到了国家重点研发计划、国家自然科学基金、大连化物所创新基金等项目的资助。(文/图 梁雯莹)文章链接:https://doi.org/10.1016/j.foodchem.2021.130928
  • 赛默飞世尔科技推出全自动代谢物筛查软件MetQuest
    犹他州盐湖城(2010年5月25日)——赛默飞世尔科技在2010年美国质谱年会(ASMS)上宣布推出可同时实现定量和定性分析的全自动代谢物筛查软件MetQuest,为药物代谢和药代动力学研究带来了革命性的突破。  MetQuest软件充分利用了Orbitrap技术得到的高分辨率准确质量数数据,一次进样可以同时鉴定和定量分析化合物及其代谢产物。  全球科学服务领域的领导者赛默飞世尔科技公司今天推出了Thermo Scientific MetQuest软件,让实验室可以充分利用Thermo Scientific Orbitrap质谱得到高分辨率准确质量数(HRAM)的全扫描数据,一次进样可以同时鉴定和定量分析化合物及其代谢产物。与传统的多反应监测(MEM)方法相比,使用MetQuest™ 软件可以为药物代谢和药代动力学(DMPK)的研究者节省可观的时间和费用。MetQuest软件将在2010年5月24-26日犹他州盐湖城举办的美国质谱年会期间展示,展出地址为Salt Palace Convention Center Salons 250BCEF。  MetQuest软件与业界认可的Thermo Scientific LTQ Orbitrap或Exactive液相色谱/质谱(LC/MS)系统联用后,研究者可以在一次分析过程中完成常规的定性和定量分析。与代谢物研究所用的三重四极杆MRM方法相比,这种方法可以节省时间和费用。Zhang和Bateman等人的文章报道了这种方法的定量结果,包括药物及其代谢产物的精密度、准确度、线性范围和灵敏度,都可以与已经建立的三重四极杆MEM方法媲美。  “在药物研发过程中,尽早同时得到定性和定量信息对于制药工业是极为重要的。”赛默飞世尔科技公司科学仪器部市场经理Patrick Bennett说,“MetQuest软件让用户可以同时定量和鉴定化合物及其代谢产物,并且不用重复全部实验(包括样品制备和LC/MS分析)就能随时查询数据,得到更多的补充信息。软件已经投入使用,业界因此而受益,并将对DMPK实验室中LC/MS实验的执行方式产生根本性的影响。  研究和记录候选药物的代谢过程是药物研发早期阶段的关键步骤。使用MRM方法的三重四极杆系统常用作化合物的定量分析。这种系统的优点在于MRM方法的特异性,但同时也存在缺点。MRM方法在检测某一特定化合物时很有效,但是却可能丢失样品中其他化合物的信息,比如代谢产物,除非预先设定了MRM方法检测这些化合物。MRM方法还需要很长时间选择和优化参数,比如为每一个感兴趣的目标分析物选择母离子、子离子、分离和碰撞能量等参数。因此,时间、精力和必须的技术水平对于那些每天必须分析许多新化合物的实验室来说是十分重要的。  Orbitrap专利技术尤其适合于化合物鉴定和同时定量和定性的高通量筛选。Orbitrap具有高达10万的超高质量分辨率,能够排除化学噪声(如生物基质带来的同质量数的干扰),降低检出限和假阳性率。MetQuest软件的专利算法,特别适合自动处理全扫描高分辨数据,即使面对最复杂的生物基质,也不需要预先设定扫描的质荷比就能够鉴定未知化合物。由于MetQuest软件不需要在串联质谱方法开发和优化过程上花费时间,可以更容易地建立方法,而且一种方法适用于多种化合物的分析。与手动生成曲线的其他软件相比,从处理数据中自动生成代谢稳定性曲线的MetQuest软件可节约大量时间。  如果需要有关MetQuest软件或其他赛默飞世尔产品的更多信息,请在ASMS 2010期间访问Thermo Scientific展台69,或访问Thermo Scientific迎宾室(Salt Palace Convention Center Salons 250BCEF)。如果需要Thermo Scientific质谱解决方案的更多信息,请致电1-800-532-4742或发邮件至analyze@hermofisher.com。  关于赛默飞世尔科技  赛默飞世尔科技公司(纽约证交所代码:TMO)是全球服务科学领域的领导者,帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工30,000人,服务超过350,000个客户,我们的客户遍布各个领域:制药和生物科技公司、医院和临床诊断实验室、知名高校、科研院校、政府机构,以及环境和工业过程控制设备制造商等。通过公司旗下Thermo Scientific和Fisher Scientific两大品牌,我们帮助客户解决分析领域中从常规测试到复杂研发的各种挑战。Thermo Scientific为客户提供全方位的高端分析仪器、实验室设备、软件、服务、耗材和试剂等一系列综合实验室流程解决方案。Fisher Scientific则为卫生保健、科学研究、安全和教育领域提供整套实验室设备、化学品、其他用品和服务。我们一起努力为客户提供最方便的采购选择,不断改进我们的技术以加速科学发明的步伐,提升客户价值,为股东创造利润,使员工获得发展。欢迎登录www.thermofisher.com。
  • 氢氘交换结合单细胞纳喷雾高分辨质谱提高细胞代谢物鉴定效率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Hydrogen/Deuterium Exchange Aiding Metabolite Identification in Single-Cell Nanospray High-Resolution Mass Spectrometry Analysis1。该文章的作者是中国地质大学(武汉)的彭月娥老师。在生物医药研究中,从单细胞水平进行代谢物的分析可以揭示细胞异质性。但由于样本量较小、代谢转化率快、浓度范围广以及分子结构多样,单细胞中代谢物的准确识别和定量具有挑战性。毛细管微采样电喷雾电离质谱(Capillary microsampling ESI-MS)以及单细胞质谱(single-cell MS)技术的使得单细胞代谢物分析得以发展。但目前其常规实验方案是没有与色谱(LC)耦联的,单靠一级谱图精确质量、二级碎裂谱图以及目前已知代谢物谱图数据库对于鉴定的准确性仍是有局限的。氢氘交换(HDX)技术可以用于氘代小分子中含氢的官能团(-OH、 -COOH、 -NH和-SH)从而起到区分作用。本文将HDX与nanospray 高分辨质谱(nanospray HRMS)结合起来提高Allium cepa L.细胞中的代谢物鉴定效率。图1. 实验装置。(a)微采样系统。(b)捕捉细胞时的电镜图。(c)HDX nanospray离子源。(d)源内HDX原理。图2. 鉴定流程实验装置如图1所示,用于提取细胞代谢物并在喷雾时进行HDX反应。鉴定流程如图2所示。作者首先用[(H3PO4)n-H]-评价了该体系的氘代能力,如图3,最终确定该体系能够使可氘代化合物发生80-83%的氘代。图3. [(H3PO4)n-H]-的氘代谱图如图4是该方法的应用实例。对于洋葱细胞样品中代谢物的谱图,作者首先用多个商业化软件进行了初次匹配。接着通过匹配其发生的氘代数从而进行进一步确证。例如一级谱图中观测到的m/z 178.0530一物质,软件给出该分子量对应元素组成只有C6H11O3NS这一选项。氘代后的谱图显示该物质含有3个不稳定H。562个备选化合物中只有65个符合该特点。通过碎裂模拟发现其中只有27个物质的二级谱图与该峰的二级谱图能够匹配。通过寻找碎片离子不稳定H将可能化合物数量又降至了25。只通过MS法几乎无法区分立体异构体,因此忽略备选化合物中的立体异构体,将备选数量降至11。通过调研文献,并利用标准物参考中确定,该物质极可能是isoalliin。图4. Isoalliin的鉴定流程基于该鉴定作者接下来分析了单细胞中isoalliin的分解途径。据报道isoalliin首先降解为sulfenic acid,然后降解为propanethial S-oxide。但sulfenic acid和propanethial S-oxide属于同分异构体(C3H6OS),且sulfenic acid是瞬时存在的,因而常规的LC-MS流程很难鉴定区分。通过HDX nanospray HRMS,作者发现细胞中C3H6OS的不稳定H在喷雾后10~15min间从2个变为了1个(图6)。Sulfenic acid中理论不稳定H为2,propanethial S-oxide中理论不稳定H为1。这表明sulfenic acid转化成了propanethial S-oxide,时间尺度是15min左右。图5. C3H6OS采样10min后(a)和采样15min后(b)的HDX分布。(c)C3H6OS 氘代数随时间变化。本研究整合HDX与单细胞HRMS法,提高了单细胞代谢物分析的准确度,并利用HDX特性分析了物质在单细胞水平的代谢过程,为细胞代谢过程中生化反应的监测提供了新方法。撰稿:罗宇翔编辑:李惠琳原文:Hydrogen/Deuterium Exchange Aiding Metabolite Identification in Single-Cell Nanospray High-Resolution Mass Spectrometry Analysis李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Osipenko, S. Zherebker, A. Rumiantseva, L. Kovaleva, O. Nikolaev, E. N. Kostyukevich, Y., Oxygen Isotope Exchange Reaction for Untargeted LC-MS Analysis. J. Am. Soc. Mass Spectrom. 2022, 33 (2), 390-398.
  • 岛津水产品中硝基呋喃类代谢物残留LCMSMS检测方案
    硝基呋喃类药物(Nitrofurans)是一类合成的抗菌药物,它们作用于微生物酶系统,抑制乙酰辅酶A,干扰微生物糖类的代谢,从而起抑菌作用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。 硝基呋喃类药物很不稳定,很容易生成代谢物。硝基呋喃类药物在动物体内迅速分解产生代谢物,代谢物在体内与细胞膜蛋白结合成结合态。由于代谢物比较稳定也有致癌作用,所以在食品安全的检测中检测硝基呋喃代谢物。常见的硝基呋喃代谢物的衍生物有如下四种,包括:3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用检测水产品中硝基呋喃类代谢物的残留量的测试方法。样品经处理后,用超高效液相色谱LC-30A在4.0 min内完成分离,三重四极杆质谱仪LCMS-8030进行定量分析。对四种硝基呋喃类代谢物残留的线性、精密度、检出限(LOD)、定量限(LOQ)进行了验证。3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)在1~200 &mu g/L内线性良好,相关系数均大于0.999;分别用浓度为1 µ g/L、10 µ g/L和50 µ g/L的混合标准溶液进行了精密度实验,实验结果表明连续6次进样保留时间和峰面积相对标准偏差分别在0.28 ~ 0.07%和4.76 ~ 1.68%间,仪器精密度良好。满足《GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检验方法 高效液相色谱串联质谱法》的检测要求。 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中硝基呋喃类代谢物残留》。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 代谢物QTOF定量?!可以和QQQ媲美的高分辨质谱!
    代谢表型分析在临床和流行病学研究方面都有着很大的帮助,通常使用质谱来完成这一工作,用于高通量和稳定的测量疾病相关的代谢物。传统的定量分析使用三重四级杆的方法,但这种方法缺乏发现新的代谢物的能力。因此,Jeremy K. Nicholson团队1于2021年在《Talanta》上发表了《Asimultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS》,提出了一种基于高分辨质谱(HRMS)的工作流程,在定量34中氨基酸及其他生物胺类代谢物的同时,还可进行全扫对未知代谢物进行探索。本研究使用三种人类体液(血浆,血清和尿液)对比了高分辨QTOF和传统QQQ的定量结果,发现两者准确度和精密度相当,且线性良好。将该方法扩展应用于SARS-CoV-2阳性患者和健康组血浆样本的对比分析,QQQ和QTOF均可实现两类样本的正确分类。重要的是,QTOF的全扫描数据可回溯分析,对34个目标定量物质之外的其他的感兴趣的生物标志物进行定量分析。实验设计QQQ和QTOF使用同样的液相条件,QQQ使用MRM扫描模式,QTOF使用bbCID扫描模式。QTOF使用的为布鲁克的impact II。两种仪器对比时线性,精度度和准确性,特异性等计算判断方法依据FDA和EMA生物分析指南进行。日内稳定性通过在一天内多次重复分析不同浓度的QC样本进行,日间稳定性在三天内分析不同浓度的QC样本并进行对比。实际样本的对比,进行了两组实验。第一组比较了两种不同仪器平台,定量人体血浆,血清和尿液样本中34种目标代谢物的结果。第二组使用两种质谱分析SARS-CoV-2感染者和健康人群样本,并进行统计学分析。结论线性和特异性QTOF和QQQ均能在1-400umol/L范围内实现良好线性,相关系数大于0.99,残差小于15%。表明QTOF在所需浓度范围良好的定量能力。QQQ一般情况下,会选择一个定性离子和一个定量离子来确证目标化合物并进行定量。但当目标化合物有背景干扰时,可能需要改变其定性离子来确证化合物,或者在样本前处理/色谱分离过程除去干扰。但高分辨QTOF可以使用高精度的窄窗口实现化合物筛选和定量。下图给出了一个相关的例子,分析尿液中的精氨酸时QQQ受到背景杂质干扰,但QTOF并不会。准确度和精密度对比了两台QTOF,三台QQQ的日间和日内精密度。根据欧洲生物分析论坛关于血浆代谢物分析的提议,我们的检测验证的预定义接受标准是四个不同浓度的QC样本的三次重复的平均偏差和CV为20%。图2显示了对NISTSRM1950样本中部分氨基酸定量结果日间精密度的雷达图。不同平台仪器对比为了评估本研究中五台仪器上实际样品的定量结果之间的一致性,对12个血浆、血清和尿液样品的氨基酸定量结果进行了比较。图3所示的相关矩阵表明,两类仪器平台的实际血浆样品中氨基酸的计算浓度之间高度一致,相关系数0.849.PCA分析PCA是代谢分析中常用的分析方法,用于对大批量数据的统计学分析。这里,我们使用PCA对34种氨基酸及生物胺类化合物进行分析,这34种代谢物在之前的文章中被验证为SARS-CoV-2感染引起相关变化的代谢物。图4给出了QQQ和QTOF数据PCA的结果。两类仪器均可明显区分健康组和感染组。区分健康对照组和COVID-19感染者的能力证明了该方法对COVID-19进一步研究的价值。QTOF同时定性和定量分析使用QTOF相比于QQQ最大的优点是数据采集过程中能最大程度的保留样本的信息,尤其是在样本非常珍贵的情况下,只需一针进样,就可以同时进行定性和定量分析。不仅可以进行靶向分析,还可进行非靶向目标物的分析。非靶向的分析可通过MetaboScape软件实现。在刚才的样本分析中,QTOF的全扫共扫描到2700多个特征峰,而QQQ只能扫描目标的34个化合物。这2700个特征峰中,存在很多潜在的标志物,使用QTOF可以对这些标志物进行定性和定量。下图给出了分析的相关示例。参考文献Nicola Gray, Nathan G. Lawler, Rongchang Yang, Aude-Claire Morillon , Melvin C.L. Gay, Sze-How Bong, Elaine Holmes, Jeremy K. Nicholson, Luke Whiley. "A simultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS", Talanta 223 (2021) 121872.
  • Nature | 菌群代谢物激活自然杀伤性T细胞的机制
    机体与共生微生物相互作用,共同进化,在机体的免疫系统发育和稳态维持发挥关键作用。微生物代谢物多样性水平很高,宿主已经进化出复杂的机制来区分病原体和共生体衍生而来的分子。但是在一个物种中,微生物代谢物仍然会存在结构变异。以结构为基础探究化学异构体的生物学作用极具挑战性。在人肠道微生物中,脆弱拟杆菌经常用于研究共生菌衍生物活性的分子机制。目前已经鉴定出α-半乳糖神经酰胺(α-Galactosylceramide BfaGCs)是由脆弱拟杆菌产生的可用做免疫调节分子的衍生物。新生小鼠脆弱拟杆菌单菌定植或者新生小鼠口服BfaGCs可以调节肠道NKT细胞数量。而给与小鼠BfaGCs突变的脆弱拟杆菌,小鼠的表现类似于无菌小鼠。也有报道发现鞘氨醇单胞菌可以调控肠道NKT(natural killer T)细胞功能。但是菌群衍生物在调控宿主免疫系统中的分子机制尚不清楚。2021年11月10日,来自哈佛大学的Dennis L. Kasper 团队在Nature 上发表题为Host immunomodulatory lipids created by symbionts from dietary amino acids 的文章。本研究从结构水平上证实BfaGCs可以直接作用于NKT细胞,与CD1d和TCR结合激活NKT。作者首先利用LC-MS/MS技术分析脆弱拟杆菌鞘脂发现BfaGCs是同源酰基链的混合物。其中C34丰度最高。鉴于共生菌来源鞘脂的结构多样性,作者系统构建了16个BfaGCs类似物,7个异构体。支链BfaGCs在真核生物中相对少见,原核生物中更常见。于是作者评估了支链氨基酸对于BfaGCs生物合成的影响。分析后发现支链氨基酸可以直接渗入脂质决定BfaGCs的结构,而不含氨基酸时BfaGCs倾向于单支和非支化结构。进一步研究发现宿主饮食中补充或者去除支链氨基酸直接影响单支和分支型鞘脂的比例。这些结果在分子水平证实了宿主膳食对于肠道菌群衍生物合成的影响。接下来作者开始通过靶向脆弱杆菌支链氨基酸代谢途径来探究支链BfaGCs对于肠道NKT的调控作用。支链氨基酸转氨酶BCAT将支链氨基酸脱氨基为a-酮羧酸,进一步再转化为支链脂肪酸。作者构建了目标基因敲除菌株(BF9343-Δ3671)。对比发现野生菌株与敲除菌株在小鼠肠道定植水平相当,敲除菌株产生不含分支的BfaGCs水平更高。分析结果显示敲除菌株定植的小鼠成年后结肠NKT细胞数量较高。作者又利用BMDC(小鼠骨髓来源树突状细胞)和NKT共培养体系评估21种合成BfaGCs对NKT的作用。检测IL2的产生水平,作者把21中合成物分成了两组:强刺激物和弱刺激物。10个属于强刺激物都是分支结构,11个弱刺激物没有这些结构。作者又直接挑选了支链和不含支链的代表合成分子SB2222和SB2223,浓度梯度实验发现支链长度与刺激强度无关。作者用脆弱拟杆菌主要合成的SB2217 和SB2219进行体内实验。对比与KRN7000诱导的IFNr产生和CD1d配体OCH诱导的IL4,含支链的SB2217则只能较弱的产生IFNr和IL4,不含支链的SB2219则几乎不能产生IFNr和IL4。预防性给与小鼠SB2217可以保护小鼠免受炎症,减少小鼠体重减轻和组织损伤。为了细致分析SB2217的体内效应,作者分析了SB2217处理后脾脏NKT细胞的转录组特征。分析发现SB2217可以促进NKT相关细胞因子表达以及免疫信号的激活。这表明SB2217是CD1d的功能性配体和NKT细胞的激动剂。最后作者分析了BfaGC和CD1d、TCR相互作用的晶体结构,从结构水平上证明了BfaGC是由CD1d呈递的配体,并被NKT细胞受体以保守方式识别。亲和力比较支链BfaGC SB2217大于非支链 SB2219。本研究证实BfaGCs的分支结构是激活NKT细胞的关键决定因素,从而诱导特定的免疫调节基因表达特征,并从结构水平和亲和力分析证实了BfaGCs与CD1d和TCR相互作用方式。本文为菌群、饮食以及免疫系统相互作用提供了分子机制范式。原文链接:https://doi.org/10.1038/s41586-021-04083-0
  • 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》产品配置方案
    2018年6月份,国内首部将气相色谱-三重四极杆联用系统用于多种农药残留检测的国家标准《GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》发布,并于2018年12月21日正式实施。《GB 23200.113-2018》几乎囊括了所有的植物源性食品,包括蔬菜、水果、食用菌,谷物、豆类、油料作物,茶叶、香辛料,植物油等9大类23种样品基质。目标针对208种农药及其代谢物,包括有机磷、有机氯、菊酯、三唑类、酰胺类、三嗪类、苯氧羧酸类、氨基甲酸酯类等。月旭科技针对GB 23200.113-2018《食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》进行了梳理,整理出了该方法中所用到的样品前处理耗材、色谱柱耗材、分析标准物质以及通用耗材等,旨在为新标准提供整体解决方案。上期回顾《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》产品配置方案。GB 23200.113-2018《植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》产品配置方案表
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/L Tris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。注意事项1.标准物质分别用甲醇配制成100 mg/L的标准储备液,其中卡巴氧用二甲基甲酰胺配成100 mg/L的标准储备液,在-18 ℃保存,可使用1年。2.本方法使用了喹噁啉-2-羧酸-d4(QCA-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。3.本方法各个化合物的提取净化方法不同,原药用乙腈+乙酸乙酯直接提取,代谢物需要酶解后过SPE小柱净化,根据检测需要选择方法,具体方法见流程图。4.MAX固相萃取柱用于酸性化合物的净化,过程是“碱上样、酸洗脱”。淋洗后一定抽干小柱,防止水相进入洗脱液。5.氮气浓缩过程中,吹至近干潮湿状态,定容后采取涡旋加超声的方式复溶,可以提高回收率。6.该方法化合物检出限为0.5 μg/kg,内标添加量为2.0 μg/kg。参考文献GB/T 20746-2006 牛、猪肝脏和肌肉中卡巴氧、喹乙醇及代谢物残留量的测定 液相色谱―串联质谱法图1 卡巴氧残留量测定的前处理流程图图2 脱氧卡巴氧残留量测定的前处理流程图图3 QCA和MQCA残留量测定的前处理流程图坛墨质检标准品推荐喹噁啉类药物信息表(标准溶液)坛墨质检标准品推荐喹噁啉类药物信息表(纯品)本文版权归坛墨质检-标准物质中心所有
  • 岛津人标准血清中代谢物GC-MS/MS分析方案
    单四极杆型GC-MS具有出色的色谱分离能力,测定稳定,因此,广泛用于进行生物体内代谢物全面性解析的代谢组学解析。但是,生物样品含有较多的代谢物与多种基质,使用单四极杆GC-MS有时难以实施分离。而的MRM在四极杆Q1和四极杆Q3进行2次MS分离,因此,较使用一个四极杆进行MS分离的扫描模式测定,可以除去由干扰成分造成的峰重叠影响,获得高灵敏度且准确的定量结果。 本应用方案使用岛津三重四极杆气质联用仪 GCMS-TQ8030,利用GC/MS代谢成分数据库Ver.2中的扫描及MRM方法测定了人标准血清中的代谢物,并比较了测定结果。 岛津三重四极杆型气相色谱质谱联用仪GCMS-TQ8030集结了最尖端UF技术,实现「更迅速」、「更准确」、「更顺畅」分析 了解详情,请点击《基于GC-MS/MS的人标准血清中代谢物的分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津的抗肿瘤药物及其代谢物LCMSMS检测方案
    目前,在全球处方药市场中,抗肿瘤药物增长势头最快,有报告预计在近1-2年其将超过降血脂药成为市场销售冠军。抗肿瘤药分为烷化剂、抗代谢类、抗生素类、天然来源类、激素类和其他类等多种。本方案分析的对象HD和HD-M属于天然来源类抗肿瘤药物,分子量分别为490和314,其中HD-M是HD的代谢物。目前处于新药研发过程中,化合物名称和结构属于保密阶段。方案中使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定抗肿瘤药物HD和HD-M,给出了线性范围、重复性和灵敏度测试结果。 本方案中使用岛津超高效液相色谱仪LC-30A与三重四极杆质谱仪LCMS-8030联用系统。具体配置为LC-30AD× 2输液泵,DGU-20A5在线脱气机,SIL-30AC自动进样器,CTO-30AC柱温箱,CBM-20A系统控制器,LCMS-8030三重四极杆质谱仪,LabSolutions Ver.5.41色谱工作站。岛津三重四极杆质谱仪LCMS-8030超快速分析装置实现最大500通道/秒(最小驻留时间1msec,最小延迟时间1msec)、 正负极性切换时间15msec的超快速MRM测定,最高15000 u/sec的超快速扫描测定。在高速分析中,可抑制串扰的UFsweeper碰撞室与NexeraTM LC-30A组合,改善分析的通量,提高用户的分析效率。配备高可靠性离子化接口,在长时间的测定中,获得稳定可靠的数据。准确捕捉超快速LC分析中的尖锐色谱峰,提高重现性。碰撞室串扰最小化保证高定量精度。 岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用系统 本方案使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定了抗肿瘤药物(代号HD)及其代谢物(代号HD-M)。样品用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行外标法定量分析,在1.2分钟内完成检测。HD在0.05~50 &mu g/L,HD-M在0.1~10 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对0.5 &mu g/L、5 &mu g/L和50 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.182%和2.780%之下,系统精密度良好;HD定量限为0.005 &mu g/L,HD-M定量限为0.1 &mu g/L。 欲知详情请点击超高效液相色谱三重四极杆质谱联用法测定抗肿瘤药物及其代谢物。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • SCIEX在线SPE系统对污水中12种毒品及代谢物的定性与定量分析
    城市生活污水中毒品成分监测分析工作是科学、客观评价当地毒情发展态势的有效手段,是禁毒工作决策的重要依据。根据检测结果、污水处理厂当日潜水流量等参数,得到城市日均毒品消耗量、城市人口日毒品吸食总量和平均人口毒品暴露水平,用来追踪毒品滥用随时间的变化情况,城市非法药物和毒品贩制情况、以及城市的非法药品使用滥用情况,实现实时毒情监测。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”话题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的技术及解决方案。SCIEX公司 应用技术专家孙小杰经理污水中毒品及其代谢物的浓度测定是污水分析法评估毒品使用量的关键。方法的基本思路是对污水中的毒品及代谢物进行检测,但毒品代谢物进入污水系统后与生活污水进行混合,其中的化合物含量有可被稀释上千倍,浓度在ng/L级别,同时污水中复杂的基质也对仪器的抗污染能力提出较高要求。相比传统的离线固相萃取方式,在线固相萃取(On-line SPE)具有样品利用率高、所需样品少;全体积自动在线萃取、解吸、进样,通量高、可大大节约人力及时间成本;同时前处理交叉污染相对较少等特点。因此在实际污水验毒工作中深受一线检测人员欢迎。基于此,我们开发了SCIEX On-line SPE-MS/MS 系统对污水中12种毒品及代谢物进行定性与定量分析方法。本方法具有以下特点:1、速度快:无需复杂前处理过程,一针进样只需15分钟,同时结合重叠进样(Load Ahead)功能,可极大的减少样品等待时间,提高检测效率。2、抗污染:SCIEX专利的Turbo VTM离子源可耐受长期、大量的污水检测工作,无需频繁的清洗和维护,有效减少工作量,提高定量准确度。3、兼容性好:设备可以在On-line SPE-MS/MS和常规的UPLC-MS/MS之间无缝切换,在做污水验毒项目时不影响其他项目的检测。试验方法1.样品前处理取10mL污水,加入同位素内标制得25ng/L的溶液,10000rpm转速下离心10min,取上清,待上样分析。2. 液相条件液相:SCIEX Exion LC 20ADTM系统大体积进样器:CTC PAL3 进样系统分析柱及流动相条件:Phenomenex Kinetex Biphenyl(2.1*100 mm, 2.6μm),流速0.4mL/min,流动相A:水(0.02%甲酸+2mM甲酸铵);B:乙腈(0.02%甲酸+2mM甲酸铵),梯度见表1。SPE柱及流动相条件:HLB(2.1*30mm, 20μm),流速2mL/min,A:水;B:甲醇,梯度见表2。柱温:40 ℃上样量:2mL梯度洗脱条件:表1 表2 实验结果12种毒品及代谢产物的典型色谱图采用空白污水样本加标,配置浓度在1-500ng/L范围内的系列标准曲线,内标加入浓度为25ng/L,全部12种化合物线性关系良好,见图2。图 2 12种毒品及代谢物的线性关系曲线总结建立了一种CTC On-line SPE系统和SCIEX Triple QuadTM 4500系统联用,分析污水中12种常见毒品及代谢物的分析方法。该方法前处理操作简单,可有效地节约时间和人力成本,提高工作效率;方法的灵敏度高、重复性好、准确度高,经过多批次的实际样品测定,结果稳定可靠。通过多目标物的在线自动富集,可有效提高方法的检测灵敏度,更好的应对污水验毒工作。打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。
  • 鸡蛋中氟虫腈及其代谢物基于岛津LCMS-8060的快速检测方案
    目前,欧洲多国正在经历一场食品安全危机,造成危机的问题食品竟然是几乎人人都会日常食用的鸡蛋。荷兰、德国、比利时的食品监管部门都在鸡蛋中检出了违禁杀虫剂氟虫腈。消息一经传出,立即引发了广泛担忧。氟虫腈残留问题在我国也引起了广泛的关注。中国的国家标准GB2763-2016《食品中农药最大残留限量》中规定,氟虫腈在植物源性食品中限量在0.02-0.1mg/kg之间,其中鸡蛋的限量为0.02mg/kg,日本肯定列表中规定鸡蛋中氟虫腈最大残留限量为0.02mg/kg,欧盟最严格,在(EU)No.1127/2014中规定蛋类中氟虫腈的残留限量为0.005mg/kg。本文介绍北京市疾控中心基于岛津液相色谱质谱联用仪LCMS-8060的氟虫腈残留检测方案,其灵敏度高、检测快(5min内),完全满足国标要求。 岛津液相色谱质谱联用仪LCMS-8060 了解详情,敬请点击《LCMS-8060检测鸡蛋中的氟虫腈及其代谢物》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津推出鼠尿中代谢物的GC-MS/MS分析方案
    代谢物解析测定生物体内小分子代谢物以把握其变化,广泛使用具有高色谱分离能力、高灵敏度且可稳定测定的GC-MS。但在分析多基质的生物样品时,使用GC-MS时,目标成分有时难以与基质分离。 此次岛津推出了基于具备出色MS分离能力的岛津GC-MS/MS的鼠尿中代谢物的分析方案,并与基于GC-MS的分析数据进行了比较。GC-MS模式的SIM测定时,因基质的影响,难以进行Glycerol-3TMS、Suberic acid-2TMS的化合物鉴定、定量。而GC-MS/MS的MRM测定将基质影响质量分离,可以进行鉴定・ 定量。GC-MS/MS可以有效地分析存在大量杂质的生物样品。 岛津基于独有的UF(Ultra Fast)技术最新推出了三重四极杆型GC-MS/MS装置GCMS-TQ8030。UF技术主要是指:UF sweeper超快速碰撞池、UF switching超快速正负极切换、UF scanning超快速扫描、UF quad超快速反映质量分析器,超快速扫描/正负极切换时不牺牲灵敏度和质谱图正确性。高速MRM分析时速度达600MRM/ sec,高速扫描时速度达20,000 u/sec,另外配备了专利的ASSP高速扫描控制技术,支持Scan/MRM同时扫描并获得高质量的数据。GCMS-TQ8030灵敏度极为出色,应用在食品、水质、农残、残留性有机污染物(POPs)以及一些复杂体系的分析中,这些检测除了要求仪器具备高灵敏度和高选择的性能之外,还要求分析能够更加快速,GCMS-TQ8030完全满足上述需求。岛津气相色谱质谱联用仪GCMS-TQ8030 详细内容请点击鼠尿中代谢物的GC-MS/MS分析关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 文献速递丨SFC-MS/MS法同时测定血清中多种维生素D代谢物(下)
    文献速递上期回顾中国疾病预防控制中心营养与健康研究所、宁波大学食品与药学院中国食品科学与技术系、岛津企业管理(中国)有限公司联合研究,成功建立并验证了适用于血清中多种维生素D代谢物的高通量、高灵敏度SFC-MS/MS分析方法。上期介绍了研发背景及如何建立并优化色谱条件等研究内容。本期将介绍对已建立的SFC-MS/MS方法进行验证 、并与LC-MS/MS法比较等研究成果。文章出处Journal of Chromatography B 1120 (2019) 16-23岛津Nexera UC全相系统之SFC-MS系统本研究采用岛津超临界流体色谱仪Nexera UC、岛津三重四极杆液质联用仪LCMS-8060● 超临界流体与改性剂配合使用,可在更大范围内满足不同极性化合物的检测需要;● 低死体积和背压控制单元有效降低脉动,提高灵敏度;● 溶剂使用量少且分析时间短,是一种绿色环保、高效的分析手段。SFC-MS/MS方法验证验证项目有:拖尾因子(TF)、保留时间RSD、峰面积RSD、标准曲线线性、检出限(LOD)和定量限(LOQ)。表1 SFC-MS/MS的方法验证结果此外,还对准确度和精密度进行了评估。如表2所示,QC和NIST样品的准确度均<5.5%。日内和日间精密度的RSD值分别在0.52-7.93%和1.35-9.04%之间,表明SFC-MS/MS性能偏差在可接受范围内。表2 QC和NIST样品的准确度和精密度(日内和日间)SFC-MS/MS法与LC-MS/MS法的比较将验证过的SFC-MS/MS方法与同一色谱柱内部开发的参考LC-MS/MS方法进行比较。SFC在10 min内实现分析物的基线分离,而LC系统则需要16分钟以上才能实现等质量的分析物的相似分离度。此外,与LC-MS/MS相比,SFC-MS/MS具有更低信噪比获得较低的LOQ。表3 比较SFC-MS/MS和LC-MS/MS法对VD代谢物的保留时间、信噪比(S/N)、定量限(LOQ)和峰分离度(USP)的影响。为考察SFC-MS/MS法对实际样品分析的准确度,对46份未加标的人血清样品进行分析,以评估该法与LC-MS/MS方法相比的潜在偏差。如图1,SFC-MS/MS法与LC-MS/MS法回归相关性显著,VD2/VD3、25-OH VD2/VD3、3-epi-25-OH VD2/VD3和24,25-(OH)2 VD3分别为R2≥0.98和P≤0.001。Bland-Altman图表明,两种方法之间不存在浓度依赖的差异。方法间的测量值对LC-MS/MS测量值的平均差异偏差为-0.9% ~ 2.7%。图1. SFC-MS/MS和LC-MS/MS方法的回归分析和Bland-Altman结论本研究开发并验证了SFC-MS/MS方法作为同时测定人血清中VD代谢物的替代方法。不同VD代谢物在SFC和LC体系中洗脱能力也有差异。并且SFC有效改善等质量分析物的分离,比LC具有更短的保留时间和更高的灵敏度。与反相LC相比,超临界CO2更环保,有机溶剂消耗更少。因此,采用SFCMS/MS方法可以在高通量的情况下对VD代谢产物进行准确、精确的分析。建立的SFC-MS/MS方法与参考的LC-MS/MS方法对人血清中VD代谢物ng/mL水平的定量一致,两种方法之间不存在浓度依赖性差异。然而,对于痕量(pg/mL)的VD代谢物,如1,25-(OH) VD2/VD3,还需要未来开发出更高灵敏度的质谱仪来分析。本文内容非商业广告,仅供专业人士参考。
  • 岛津推出世界首款代谢物TQ 气质MRM数据库
    2013年8月26日,岛津宣布推出GC/MS代谢物数据库Ver. 2版本,它支持采用岛津三重四极杆气质(GC/MS/MS)或四极杆气质(GC/MS)的代谢组学分析。它是基于与岛根大学医学系、神户大学医学院和集成电池材料科学研究所(iCeMS)、京都大学的共同合作,且结果来自于NEDO(New Energy and Industrial Technology Development Organization)项目&ldquo 促进人类干细胞工业应用的基础技术&rdquo 。  该数据库注册化合物类型数量增加至511个。此外,它现在还包括来自于血液和细胞,以及尿液的生物样品。它是世界上第一款包含代谢物TQ GC/MS MRM的数据库。它包含适合低分子量代谢产物测量的GC条件,以及每种化合物最佳的GC/MS和GC/MS/MS测定的参数。这使研究人员能够立即开始分析工作,而不需要任何复杂的参数设置。该数据库还包含预测计算的保留时间保留指数,允许即使没有代谢产物标准样品也可以开始分析。它支持代谢疾病、药物评估和研究,还将为生物燃料和农产品生产改善作出贡献。(编译:杨娟)
  • 《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定》
    2021年3月份,国家卫生健康委员会、农业农村部、国家市场监督管理总局联合正式发布GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,该标准涉及到蔬菜、水果、食用菌、糖料、谷物、油料、坚果、茶叶、香辛料、植物油类10大类农产品,规定了植物源性食品中331种农药及其代谢物残留量的液相色谱-质谱联用测定方法,并将于今年9月份正式实施。新标准实施在即,月旭科技针对GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》进行了梳理,整理出了该方法中所用到的样品前处理耗材、色谱柱耗材、分析标准物质以及通用耗材等,旨在为新标准提供整体解决方案。GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》产品配置方案表
  • 【国抽应对】水产品中硝基呋喃代谢物的检测(GB 31656.13-2021)难点解析
    近期,2022版食品安全监督抽检实施细则发布,其中指定GB 31656.13-2021《水产品中硝基呋喃类代谢物多残留的测定 液相色谱-串联质谱法》,为淡水鱼、淡水虾、海水鱼等基质硝基呋喃代谢物的检测标准(表1)。 表1 2022版国抽细则水产品中硝基呋喃代谢物检测项目01标准亮点 ▶ 细化了适用范围。适用于鱼、海参、鳖等水产品可食组织中硝基呋喃类代谢物 AOZ、AMOZ、AHD 和 SEM 残留量的测定;虾和蟹等甲壳类可食组织中 AOZ、AMOZ和 AHD的测定,这里不包括SEM,因为此类基质中,可能存在SEM这种内源性物质,从而导致结果假阳性。▶ 提高了HCl溶液的浓度,为0.5mol/L,水解更彻底。▶ 提高了提取、净化步骤中的离心转速,分别为6000、14000r/min,简化了前处理步骤。▶ 采用1次提取即可,更高效。 众所周知,硝基呋喃代谢物检测在兽残检测中属于较难做的项目,下面我们也来梳理一下实际做样过程中应该注意哪些方面。 02注意事项 ▶ 部分标准品(如SEM)较难溶,可借助超声波助溶。▶ 2-硝基苯甲醛现配现用,标准品与样品同步衍生。▶ 衍生后的目标物不稳定,前处理过程注意避光。▶ 注意pH的调节,pH为7.0-7.5时,目标物提取效果好。▶ 注意SEM的假阳性问题。除了上述可能存在内源性物质干扰外,还有几个方面可能造成SEM的假阳性——塑料包装材料中使用的偶氮甲酰胺,在高温下受热可分解产生SEM;采用次氯酸钠对水产品进行消毒和漂白也可以产生SEM。 小编认为,注意了以上细节,硝基呋喃的检测应该不会有太大问题啦。接下来,再为大家介绍岛津的应对方案。 03鱼肉中硝基呋喃类代谢物的测定岛津LCMS-8045三重四极杆液质联用仪 ▶ 检测仪器:岛津LCMS-8045▶ 色谱柱:Shim-pack GISS C18 Column(2.1 mm I.D.×100 mm L., 1.9 μm)▶ 流动相:A相:(0.01%甲酸)水, B相:(0.01%甲酸)乙腈▶ 流速:0.50 mL/min▶ 柱温:40℃▶ 进样体积:10 µL▶ 洗脱方式:梯度洗脱,初始比例10%B 表2 通用梯度洗脱程序图1 标准样品的MRM色谱图(0.5 ng/mL) 表3 校准曲线参数图2 鱼肉加标样品色谱图(1.0 ng/mL) 本文内容非商业广告,仅供专业人士参考。
  • 研究发现促进多组织再生、延缓衰老的小分子代谢物
    再生是机体修复受损、病变或衰老组织的重要过程。从低等动物到人类,不同物种具有不同程度的再生能力,且这种能力随着物种的不断进化而逐步降低。例如,低等动物中的蝾螈能够实现断肢的完全再生,而包括人类在内的多数哺乳动物仅具备有限的再生和损伤修复能力。哺乳动物中,鹿角是唯一能够完全再生的器官。尽管高度进化的物种能在组织损伤时启动相应的再生修复程序,但这种再生修复的能力会随年龄增长而逐渐降低。众所周知,干细胞在组织再生和修复的过程中具有关键作用。例如,蝾螈可以通过形成芽基组织(一群去分化的具有干性的细胞)来完成肢体的再生。同样地,在每年的鹿角再生过程中,位于鹿角骨膜的鹿茸干细胞可以分化产生包含血管、软骨、骨、真皮和神经在内的完整鹿角器官。人类成体干细胞,如间充质干细胞,在多种组织和器官的再生修复过程中均起到重要作用,但这些干细胞的数量和再生能力同样会随着机体年龄的增加而降低。  虽然研究已发现机体再生能力随进化和衰老而逐步丧失的规律,但分子机制尚不明确。内源性小分子代谢物在不同物种间相对保守;然而,迄今为止,关于能够调节衰老和再生的小分子代谢物知之甚少。通过向自然界存在的低等动物的再生过程学习,以及向具有较强再生能力的年轻组织和干细胞学习,理论上有望发现跨物种保守的、调节再生和衰老的关键代谢小分子,从而为解码再生的代谢调控机制,发现促进再生、延缓衰老的关键代谢物提供新的线索和思路。  2月1日,中国科学院动物研究所刘光慧研究组、曲静研究组,与中科院北京基因组研究所(国家生物信息中心)张维绮研究组合作,在Cell Discovery上,在线发表了题为Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor的研究论文。该研究解析了跨物种、跨年龄、跨组织的代谢分子特征,解码了与较高再生能力密切相关的代谢调节通路,鉴定了一系列能改够延缓人类干细胞衰老、促进多组织再生的关键通路和小分子代谢物,为衰老的科学评估、衰老相关疾病的防治以及再生医学的发展提供了潜在的分子标记物和干预策略。  该研究跨物种、跨年龄、跨组织地绘制多种细胞类型的代谢图谱,包括蝾螈断肢再生的芽基、鹿茸干细胞、年轻和年老食蟹猴的多种组织(脑、心脏、肝脏、肌肉、肾脏、脂肪、皮肤、血液)以及年轻和衰老的间充质干细胞,系统揭示了一些跨物种保守的、再生相关的代谢通路。例如,再生能力强的生物样本更倾向于富集多胺代谢、尿嘧啶代谢和脂肪酸代谢通路。进一步结合人类干细胞衰老的研究平台,研究细致的筛选潜在的促再生代谢物,发现小分子代谢物尿苷(Uridine)可以明显提升衰老人间充质干细胞的自我更新能力。进一步研究显示,尿苷处理可以在5种小鼠的组织损伤模型(肌肉损伤模型、肝纤维化模型、毛发再生模型、心肌梗塞模型和关节炎模型)中助力损伤或病变组织的再生修复。在肌肉损伤模型中,尿苷有效提升了肌肉的再生修复能力、缓解了肌肉损伤引起的炎症反应,同时增强了小鼠的肢体抓力和系统运动能力;在肝脏纤维化模型中,尿苷缓解了四氯化碳诱导的肝纤维化,有效改善了肝功能的多个生理指标;在毛发再生模型中,尿苷处理可以刺激毛囊提前进入生长期,从而促进毛发的生长;在心肌梗塞模型中,尿苷能有效缓解急性炎症、提升损伤心脏的收缩能力;在关节炎模型中,尿苷可以促进关节软骨再生、提升小鼠的关节运动能力。上述研究表明,单一代谢物尿苷能够促进哺乳动物多器官组织的再生修复过程。与年轻个体具有较强的再生能力一致,年轻人血液中具有比老年人更高的尿苷含量。科研人员进一步探索了尿苷处理是否可以增强老年个体的生理机能。结果发现,两个月的口服尿苷处理可以增强老年小鼠(22月龄)的生理机能,表现为肢体抓力和运动能力的显著提升。这些发现从多个层面证实了尿苷具有抑制人类干细胞衰老、促进多组织再生修复、提高老年个体生理机能的潜在活性。  该研究首次绘制了跨物种、跨年龄及跨组织细胞的内源性代谢物的全景图谱,系统解析了强再生能力所伴随的分子代谢通路。更为重要的是,该研究发现尿苷是一种能延缓人类干细胞衰老、促进哺乳动物多组织再生修复的关键代谢物。这些发现为深入认识机体损伤或病理修复的机制奠定了理论基础,并为提升老年群体的健康、预防和治疗衰老相关疾病提供了新策略。  该研究的相关数据已上传至衰老多组学数据库Aging Atlas(AA,https://bigd.big.ac.cn/aging/index)和再生多组学数据库Regeneration Roadmap(RR,https://ngdc.cncb.ac.cn/aging/index)。首都医科大学宣武医院、北京医院、北京大学第三医院等参与研究。研究工作得到科技部、国家自然科学基金、中科院及北京市等的支持。  论文链接
  • 大连达硕信息技术有限公司与中科院大连化物所 联合发布先进的代谢物鉴定分析系统
    2016年5月6日下午,代谢组学研究的最新进展与代谢物鉴定分析交流会在中国科学院大连化学物理研究所代谢组学研究中心举行。该交流会由许国旺研究员和曾仲大博士主讲,分别介绍了代谢组学研究的概述、研究方法、最新进展与前景展望,以及如何更快速、更准确地批量获得基于LC-MSn分析的代谢物鉴定结果。该交流会采用线上、线下结合的方式进行,线上通过仪器信息网网络讲堂进行,前期有约5000人关注本次交流会,近400人报名参会,线下则组织大连多个研究单位,以研究人员亲临现场聆听的方式进行,取得了非常良好的交流效果。在交流会中,许教授介绍,代谢组学是近年来获得极大关注的系统生物学研究工具,与基因组学和蛋白组学相比,能更直接地体现生物体内已经或正在发生的生理或病理过程,也非常详细地介绍了代谢组学研究中从样本采集到样本预处理,从数据采集到数据分析,以及生物解释的完整流程,高屋建瓴地指出每个过程中的方法要领与特别需要注意的事项等。最后许教授结合具体的研究实例,介绍了代谢组学在农业、临床和疾病研究等多个领域中的应用成果。曾博士则介绍了基于LC-MSn分析的代谢组学研究中,代谢物鉴定分析的背景与主流方法、存在的主要问题与解决策略,以及解决代谢物定性分析问题需要攻克的关键技术以及应用实例。在本次交流会上,同时发布了基于多层次定性体系的代谢小分子化合物快速鉴定分析系统(简称OSI/SMMSTM),该系统是大规模代谢组快速、准确、批量定性分析的利器,具有以下几个方面的核心优势: 1、采用SOP的方法,购买近2,000个标准化合物,在正、负离子模式,高、中、低三个能量下,采集每个化合物的保留时间、一级质谱、二级质谱信息,构建完整的数据库,并发展先进的数据定性分析算法,以准确完成未知代谢物的匹配定性及定性确认。 2、发展多层次定性体系,整合上述自建标准化合物数据库、HMDB、Metlin、Lipid maps与MMCD等主要网络数据库,以及研究组内不同成员间共享的扩展数据库,以海量质谱特征可批量定性、多库同时搜索与整合分析的方式展现定性分析结果,极大提高定性分析的准确性与鉴定分析效率。 3、系统功能丰富强大、体验优异,从数据导入到数据校正,从定性分析到结果整合等均可自动、智慧、批量完成,是代谢物鉴定分析的最佳整体解决方案。OSI/SMMSTM由大连化物所代谢组学研究中心与大连达硕信息技术有限公司联合开发完成。目前已经面向全国销售,有需要试用或者购买的单位或个人,可与大连达硕信息技术有限公司联系.代谢组学小分子化合物快速鉴定软件系统介绍(OSI/SMMSTM)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制