当前位置: 仪器信息网 > 行业主题 > >

鞘氨醇单胞菌属

仪器信息网鞘氨醇单胞菌属专题为您提供2024年最新鞘氨醇单胞菌属价格报价、厂家品牌的相关信息, 包括鞘氨醇单胞菌属参数、型号等,不管是国产,还是进口品牌的鞘氨醇单胞菌属您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鞘氨醇单胞菌属相关的耗材配件、试剂标物,还有鞘氨醇单胞菌属相关的最新资讯、资料,以及鞘氨醇单胞菌属相关的解决方案。

鞘氨醇单胞菌属相关的论坛

  • 【原创大赛】我测定植物鞘氨醇的经历(1)

    几年前,我刚刚进入分子生物学领域,接手的实验室鉴定植物鞘氨醇的组分及含量。那个时候,实验室没有相关设备,我的实验是举步维艰。现在闲来无聊,用指尖文字回忆下那段日子。提取植物鞘氨醇的第一步自然是取样,这没什么问题,取完样之后的研磨也没有任何问题。而这之后,我采用的方法伴随一个110的加热16小时,这个16小时的加热着实成为我实验中的一个问题。首先,我不知道应该用什么样的仪器实现这个110度,在我们实验室,只有干燥箱可以达到并控制住这个温度。而我的样品只有3-4 mL,并且还含有2 ml易挥发的溶剂,用普通的离心管盛放我的样品放入干燥箱后,用不了16小时样品就蒸发的没有了,这显然不行。 我听实验室的前辈说,以前做这个实验的师姐是利用沸水浴进行的实验。沸水浴?显然达不到110度呀!他们说其实110度也没那么严格,用沸水浴也可以。好吧,那我也就用沸水浴吧。我从实验室找了一个废弃的但还可以加入的小灭菌锅,加满了水,把我的样品放进去,盖子使劲的拧紧呀,拧紧(盖子经常因为离心管内部的高温而破裂,所以一次实验下来还要换好几次盖子,那实验那叫一个粗糙啊!嘿嘿),然后就像炖肉一样的煮啊煮啊。我记得那时候放小锅的实验室里那叫一个热啊!hoho!而且16个小时下来,要添很多次水呢,我从来都不敢开着锅过夜的,吃饭什么的都得求人帮我看着锅。那段日子呀……后来,大家嫌热,也嫌锅的热气太大,就把我的小锅请出了实验室,放到了走廊里。我就经常在走廊里“开伙”煮我的样品。但是即使如此,这样的日子也没有持续多久,在一个月黑风高的夜晚,我的小破锅被盗了,第二天要用的时候,我发现它不见了,着实难过了很久,因为我找不到另外一个可以替代它的小破锅了。我的实验下一步该怎么办?我只好又一次陷入了沉思和搜索……

  • 【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm, 1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/12/201412302201_530374_2217446_3.jpg质谱条件Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200[

  • 求助书籍《聚氨酯弹性体及其应用》和《聚氨酯树脂及其应用》

    1. 书名: 聚氨酯弹性体及其应用 作者:傅明源,孙酣经 编著 出版社:化学工业出版社 书号:7502578455 简介:本书主要阐述了聚氨酯混炼胶、聚氨酯浇注胶和聚氨酯热塑胶的合成配方和工艺、加工配方和工艺的具体数据和计算公式;聚氨酯革、聚氨酯胶黏剂、聚氨酯泡沫弹性体、聚氨酯涂料、聚氨酯水乳胶、聚氨酯灌浆材料和聚氨酯弹性纤维等的制作工艺、反应原理;简要介绍了新型聚氨酯弹性体;各种聚氨酯制品的加工方法及其应用。还介绍了合成聚氨酯的原材料的成品的分析,以及聚氨酯的工业卫生等。书中对TPUR半预聚法生产、聚氨酯革生产、反应注射成型(RIM)和增强的反应注射成型(RRIM)方法的生产作了较多介绍。 \r\n 本书除对第二版内容作适当补充修正外,还增加了聚氨弹性体助剂、聚氨酯预聚体以及田径场地塑胶跑道、篮球、排球、羽毛球和网球场地的聚氨酯塑胶铺面、聚氨酯地板和地板砖、聚氨酯防水材、聚氨酯嵌缝材和聚氨酯防腐材与新世纪展望等内容。 \r\n 本书实用性强,内容丰富,可供从事聚氨酯生产、科研、加工应用的工程技术人员和技术工人使用,也可供大专院校及中专高分子专业的师生参考。2. 书名: 聚氨酯树脂及其应用  ISBN:7502537449  著作者:李绍雄 刘益军  出版社:化学工业  出版日期:2002-05-01    页数:743  内容简介:第1章 绪论1.1 聚氨酯树脂的发展史1.2 我国聚氨酯工业的发展史1.3 国外聚氨酯树脂的生产与市场1.4 国内聚氨酯树脂的生产与市场1.5 聚氨酯树脂的技术发展动态第2章 聚氨酯化学2.1 异氰酸酯基本反应2.2 催化剂及温度对反应的影响2.3 聚氨酯分子结构与性能的关系第3章 基本原料3.1 概述3.2 异氰酸酯3.3 聚酯多元素3.4 聚醚多醇3.5 其它低聚物多元醇3.6 助剂第4章 聚氨酯泡沫塑料4.1 概述4.2 泡沫形成的化学机理4.3 软质聚氨酯泡沫塑料4.4 硬质聚氨酯泡沫塑料4.5 聚氨酯半硬泡4.6 聚氨酯泡沫的阻燃4.7 聚氨酯泡沫塑料的应用第5章 弹性体5.1 概述5.2 弹性体原料及原料对性能的影响5.3 浇注型聚氨酯弹性体5.4 热塑性聚氨酯5.5 混炼型聚氨酯弹性体5.6 聚氨酯弹性体的应用第6章 聚氨酯涂料6.1 概述6.2 聚氨酯涂料的分类与特性6.3 聚氨酯涂料的原料6.4 氨酯油6.5 双组分聚氨酯涂料6.6 封闭型聚氨酯涂料6.7 湿固化型聚氨酯涂料6.8 催化固化型双组分聚氨酯涂料6.9 聚氨酯沥青涂料6.10 聚氨酯弹性涂料6.11 水性聚氨酯涂料6.12 聚氨酯粉体涂料6.13 聚氨酯涂料的应用第7章 聚氨酯胶粘剂7.1 概述7.2 聚氨酯胶粘剂粘接机理7.3 多异氰酸酯胶粘剂7.4 双组分聚氨酯胶粘剂7.5 单组分聚氨酯胶粘剂7.6 聚氨酯胶粘剂7.7 聚氨酯密封胶第8章 聚氨酯人造革与合成革8.1 概述8.2 聚氨酯革的主要原料8.3 干法生产聚氨酯人造革8.4 湿法聚氨酯革第9章 聚氨酯弹性纤维9.1 概述9.2 聚氨酯弹性纤维的基本原理9.3 聚氨酯弹性的纤维的制造9.4 聚氨酯弹性纤维的性能与检验9.5 聚氨酯弹性纤维纱线及应用第10章 聚氨酯铺地材料10.1 概述10.2 主要原料10.3 胶面层浆料制备工艺10.4 聚氨酯跑道的铺设10.5 聚氨酯地板第11章 聚氨酯防水材料11.1 概述11.2 焦油聚氨酯防水材料11.3 沥青聚氨酯防水材料11.4 聚醚型聚氨酯防水材料11.5 聚氨酯防水材料标准和施工11.6 油溶性聚氨酯灌浆材料11.7 水溶性聚氨酯灌浆材料11.8 亲水性聚氨酯材料第12章 水性聚氨酯12.1 概述12.2 水性聚氨酯制备用原料12.3 水性聚氨酯的制备12.4 水性聚氨酯的性能12.5 水性聚氨酯的交联12.6 聚氨酯与其它聚合物共混或共聚分散液12.7 水性聚氨酯的应用第13章 反应注射成型聚氨酯13.1 概述13.2 原料体系13.3 RIM生产设备及工艺参

  • 【原创大赛】我测定植物鞘氨醇的经历(3)

    成功解决了加热的问题,我是信心倍增,后面就是萃取和浓缩,重悬了,这就简单了,很容易的,样品制备好了。终于可以检测了。可是对于我却也并不是像我想的那么顺利,因为鞘氨醇是男挥发的长链脂肪醇,需要用高效液相色谱(HPLC)检测,我们实验室没有这样的仪器。以前实验室做这个的前辈并不是用的这个方法,用其他的方法也没有获得成功,所以我那时是摸着石头过河,自己一个人一路跌跌撞撞啊。还好,所里有一台HPLC,我和管仪器的老师说好去试一下,那个老师很热情,帮了我这个忙,用了一天的时间才把四个样品检测完,不过结果还不错,这让我信心更足了。开始重复我的实验,谁知道,重复的实验却不理想。我又开始惆怅了,因为管HPLC的老师很忙,她的仪器也很忙,她还替我检测不收钱,再加上我怕给她的仪器弄坏了,让我实在不好意思再去打扰她。我想找到一个收费检测的地方,或者我想我学化学的同学那里如果可以检测也好。我给他打电话问他,他说他们那里倒是有仪器,也不忙,可是却没有荧光检测器,只有紫外检测器。没有办法,我们找到另一个可以承接对外业务的实验室,他们是按小时收费的,这没关系,只要检测成功就好了,但是事与愿违,没成功啊。继续找地方测,终于,功夫不负有心人啊,我找到了一个可以检测的地方,他们利用我提供的检测条件顺利的成功检测了我的样品,并且重复的实验结果也很稳定,他们是一个权威的检测机构,实验结果可靠,我后面的检测就放心的交给了他们。实验成功了,开心……

  • 显色培养基菌落辨识第二期【沙门氏菌】

    显色培养基菌落辨识第二期【沙门氏菌】

    显色培养基是一类利用微生物自身代谢产生的酶与相应显色底物反应显色或产生不同菌落形态及周边培养基变化的原理来检测微生物的新型培养基。随着技术的发展显色培养基也逐步的被写入各类标准,但检测人员对该培养基的依赖程度越来越高,使得致病菌检测的漏检率或误判率逐步升高。这不仅给生产企业带来损失也给检测机构的检测成本大大增加。为此我们将给大家带来一系列关于食品微生物检测显色培养基的辨识图片及所用菌株。供大家参考[img=图A,651,651]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221430337039_780_3830199_3.jpg!w651x651.jpg[/img] 图A[img=图B,652,652]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221430541439_4962_3830199_3.jpg!w652x652.jpg[/img] 图B[img=图C,651,651]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221431046895_8486_3830199_3.jpg!w651x651.jpg[/img] 图C上图所用培养基为[color=#333333]chromagar 科玛嘉 沙门氏菌显色培养基。图A 为 ATCC 14028 [color=#333333]鼠伤寒沙门氏菌 ;图B为 ATCC 27853 铜绿假单胞菌;图C为 少动鞘氨醇单胞菌[/color][/color][color=#333333][/color]

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽孢杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌污染面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包**头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2。在厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~**5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌**面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包或馒头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2**厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~4.5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。**

  • 纯毛地毯选购窍门

    窍门一:看原料 优质纯毛地毯的原料一般是精细羊毛纺织而成,其毛长而均匀,手感柔软,富有弹性,无硬根;劣质地毯的原料往往混有发霉变质的劣质毛以及腈纶丙纶纤维等,其毛短且根粗细不均,手摸索时无弹性,有硬根。 窍门二:看外观 优质纯毛地毯图案清晰美观,绒面富有光泽,色彩均匀,花纹层次分明,下面毛绒柔软,倒顺一致;而劣质地毯则色泽黯淡,图案模糊,毛绒稀疏,容易起球粘灰不耐脏。 窍门三:看脚感 优质纯毛地毯脚感舒适,不粘不滑,回弹性很好,踩后很快便能恢复原状;劣质地毯的弹力往往很小,踩后复原极慢,脚感粗糙,且常常伴有硬物感觉。 窍门四:看工艺 优质纯毛地毯的工艺精湛,毯面平直,纹路有规则;劣质地毯则做工粗糙,漏线和露底处较多,其重量也因密度小而明显低于优质品。

  • 48.9 酮咯酸氨丁三醇在大鼠体内药动学

    48.9 酮咯酸氨丁三醇在大鼠体内药动学

    【作者】 马铭研; 周丹丹; 于治国;【机构】 沈阳药科大学药学院; 沈阳药科大学药学院 辽宁沈阳110016; 辽宁沈阳110016;【摘要】 目的:比较研究大鼠尾静脉注射与局部皮肤给予酮咯酸氨丁三醇的药动学行为。方法:采用HPLC法,色谱柱:Dia-monsil C18柱(200mm×4.6mm,5μm);流动相:甲醇-水-三乙胺-冰醋酸(80∶19.9∶0.02∶0.08);流速:1.0mL.min-1;柱温:30℃;检测波长:313nm。结果:酮咯酸氨丁三醇在0.2~100mg.L-1范围内与峰面积呈良好的线性关系(r=0.999 0),日内RSD为2.3%~5.1%,日间RSD为2.2%~12.2%,萃取回收率为86.8%~96.2%,注射剂和凝胶剂的T1/2α分别为(0.4±0.3)h,(2.9±2.6)h;T1/2β分别为(2.7±2.0)h,(9.0±8.5)h。结论:本试验建立的方法操作简单,方法灵敏、特异,结果准确。酮咯酸在大鼠体内药动学行为符合二房室模型;外用给药透皮吸收良好。【谱图】 http://ng1.17img.cn/bbsfiles/images/2012/08/201208142206_383898_1609970_3.jpg

  • 【第三届原创参赛】废水氨氮测定

    维权声明:本文为yhc2004原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。为了贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人民身体健康。作为医药生产企业必须做好水污染的防治,做到污水排放达到国家标准,因此,污水中氨氮含量应时时监测,减少对环境的污染和破坏,从而达到可持续发展的目的。本方法采用紫外-可见分光光度法测定污水中氨氮含量,以期对污水中氨氮总量的控制提供参考和依据。1.仪器和试剂HANGPING FA1004型电子天平,UV-1800型紫外分光光度仪。硫酸(分析纯),盐酸(分析纯),氢氧化钾(分析纯),碘化钾(分析纯),二氯化汞(分析纯),酒石酸钾钠(分析纯),硫代硫酸钠(分析纯),硫酸锌(分析纯),氢氧化钠(分析纯),淀粉-碘化钾试纸,氯化铵(优级纯)。2.方法原理以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡棕红色的络合物,该络合物的吸光度与氨氮含量成正比,于波长420nm波长处测量吸光度。3. 试验步骤3.1 对照品的制备3.1.1 氨氮标准溶液的配制3.1.1.1 氨氮标准贮备溶液的配制精密称取3.8190g氯化铵(优级纯,在100℃~105℃干燥2小时),溶于水中,移入1000ml量瓶中,加水稀释至标线,以氮计浓度为1000µg/ml。可在2℃~5℃下保存1个月。3.1.1.2 氨氮标准工作溶液的配制精密量取5.00ml氨氮标准贮备液于500ml量瓶中,加水稀释至刻度,浓度为10µg/ml。临用前现配。3.2 测定波长的选择精密量取氨氮标准工作溶液8ml,按照测定法项下制备对照品溶液和参比溶液,在400~700 nm范围进行波长扫描,结果氨氮标准工作溶液在420 nm处有最大吸收。因此选择420nm为测定波长。3.3 标准曲线的绘制精密量取0.00ml、1.00ml、2.00ml、4.00ml、8.00ml、12.00ml、16.00ml、20.00ml氨氮标准工作溶液于50ml纳氏比色管中,其对应的氨氮含量分别为0.0µg、10.0µg、20.0µg、40.0µg、80.0µg、120.0µg、160.0µg、200.0µg,加水至标线。加入2.0ml酒石酸钾钠溶液(称取50.0g酒石酸钾钠溶于100ml水中,加热煮沸以驱除氨,充分冷却后稀释至100ml),摇匀,再加入3.0ml纳氏试剂(称取15.0g氢氧化钾,溶于50ml水中,冷至室温。称取5.0g碘化钾,溶于10ml水中,在搅拌下,将2.50g二氯化汞粉末分多次加入碘化钾溶液中,直到溶液呈深黄色或出现淡红色沉淀溶解缓慢时充分搅拌混和,并改为滴加二氯化汞饱和溶液,当出现少量朱红色沉淀不再溶解时,停止滴加。在搅拌下,将冷却的氢氧化钾溶液缓慢的加入到上述二氯化汞和碘化钾的混合液中,并稀释至100ml,于暗处静置24h,倾出上清液,贮于聚乙烯瓶内,用橡皮塞或者聚乙烯盖子盖紧,存放暗处,可稳定一个月),摇匀,放置10min后,在波长420nm处,用10mm比色皿,以水为参比,测量吸光度。以吸光度为横坐标、浓度(µg/ml)为纵坐标,绘制标准曲线。其回归方程为Y=4.6502X-0.0025,r2=0.9996(n=7)。结果表明氨氮浓度在0.18mg/L~3.64 mg/L范围内与吸收度呈现良好的线性关系。试验结果见表1,标准曲线见图1。 表1 线性关系试验结果校正吸光度0.0440.0440.0850.0850.1480.148[a

  • “荧光假单胞菌”是“发光猪肉”的元凶

    猪肉为何会在黑夜里发出荧荧蓝光?昨天下午,北京市工商局对外揭晓“谜底”:通过抽检发现,这是一种叫荧光假单胞菌的细菌在“作祟”,与猪肉安全无关。  专家介绍称,该细菌并不可怕,对正常人群不具有致病性。  抽检未发现荧光增白物  近期,有几位消费者反映在建欣苑菜市场、八里桥市场等处购买的猪肉,夜晚会发出荧光,担心吃了可能对身体有害。而这些肉都是从正规屠宰场批发,且肉身上有检验检疫章(本报12月12日曾报道)。  近日,北京工商部门组织了抽检,由北京市食品安全监控中心对送检样本进行荧光增白物质和荧光假单胞菌检测,结果显示,送检样本均未检出荧光增白物质,不过都检出了荧光假单胞菌。  猪肉煮熟可杀灭该细菌  “荧光假单胞菌能产生黄绿色荧光色素而使猪肉发光”,中国农业大学微生物系教授王贺祥介绍,这种细菌在肉及肉制品、禽蛋类等蛋白质丰富的食品中,易生长繁殖。  王贺祥说,荧光假单胞菌属于革兰氏阴性嗜冷菌,广泛存在于土壤、水、植物、动物活动环境中,也是存在于人类肠道的正常细菌,对正常人群不具有致病性,不必对其恐慌。  如何杀灭猪肉上的细菌呢?王贺祥介绍,该菌在42℃就会停止生长,超过70℃,只需数秒即可杀死。  市工商局也表示,消费者购买到的“发光猪肉”,可能在屠宰、储存、运输、销售等过程中污染了荧光假单胞菌,只要猪肉本身没有腐败变质,可以通过焯、炒、煮等方式将猪肉熟制后食用,不会对人体健康产生影响。

  • 【世界环境日】氨氮总氮超标后的处理方法

    氨氮和总氮超标是水处理中常见的问题,处理这类问题通常有以下几种方法:化学法处理:氨氮去除剂:可以直接向废水中投加氨氮去除剂,这类药剂能通过氧化作用快速分解氨氮,反应时间快,一般在5~6分钟内即可看到效果。氨氮去除剂的浓度可根据实际氨氮浓度调节,灵活性较高。折点加氯氧化法:使用次氯酸钠或漂白粉等氧化剂将氨氮氧化为氮气释放。此方法操作快速,但需注意控制加药量以避免余氯过高。生物法处理:硝化和反硝化:利用微生物的硝化和反硝化过程去除氨氮。硝化细菌将氨氮转化为亚硝酸盐和硝酸盐,随后反硝化菌将硝酸盐还原为氮气,实现脱氮。此方法适用于有足够停留时间的生化处理系统,需要维护良好的微生物环境。物理化学法:化学沉淀法:如磷酸铵镁沉淀法,通过添加化学药剂促使氨氮和其他离子形成沉淀物,再通过沉淀分离去除。吹脱法:通过调节pH值和增加空气吹脱,促进氨氮以气体形式逸出。蒸氨法:适用于高浓度氨氮废水,通过加热蒸发氨氮,然后冷凝回收氨气。电氧化分解法:利用电解过程将氨氮氧化,适合小规模或特殊场合。直接整体处理:通过构建新的或改进现有处理工艺,如MBR(膜生物反应器)、SBR(序批式活性污泥法)等高级处理工艺,虽然处理效果好,但建设和运行成本较高。

  • 【金秋计划】“芽孢杆菌”鉴别小技巧

    [size=12px][b][b]一、形态学特征[/b][/b] 形态学鉴别菌种是最直接的方法,也是最简单的方法。[b][color=#000000][b][color=#000000][b]1.菌落特征[/b][/color][/b][/color][/b]不同的菌种在不同培养基上菌落形态不同,这是鉴别所有菌种的特征之一。不同的芽孢杆菌,菌落的大小、颜色、凸起、边缘形状等也不同。因此,根据菌落形态可以区分不同的芽孢菌种。有的边缘整齐,有的边缘呈锯齿状,特征非常明显。拿到菌种,记住菌落形态或拍照记录很重要。[b][color=#000000][b]2.芽孢位置[/b][/color][/b]芽孢杆菌,属于革兰氏染色阳性菌,最大的特点就是能够产生芽孢,不同的芽孢杆菌芽孢出现的位置不同,这是鉴别芽孢杆菌的重要特征之一。有的芽孢在菌体的中部、有的在菌体一侧或顶端。可以按照芽孢的位置区分是否属于自己的菌种。观察芽孢可以采用简单染色法也可以采用芽孢染色法。 [b][b]二、生化生化特征[/b][/b] 相比形态学特征,生化特性比较繁琐,但是鉴别芽孢杆菌的重要方法。通过分析芽孢杆菌分泌的代谢产物,比如说酶活、条带的位置、抑菌圈、有机酸等,鉴别是否是目标产物,进而鉴别是否是自己的菌种。 [b][b]三、分子生物学手段[/b][/b] 如果形态学方法和生理生化方法不能鉴别,只能采用分子生物学手段。每个菌种的遗传物质都不同,常采用16S rDNA测序,跟已知序列进行比对后,可以准确地定位芽孢杆菌的种属,这是鉴别菌种最重要的方法。 [/size]

  • 氨氮显色剂的配制

    请求做过氨氮的朋友们,用纳氏试剂光度法分析氨氮的显色剂(第一种)配制时有什么诀窍,或者应该注意什么?

  • 把细胞铺匀的7个小技巧

    做cell biology实验,细胞铺板大概是最常见的一个实验了。但是有很多人不是很得要领,铺得不是均匀: 要么中间密周围稀,要么周围密中间秃顶。以下是我的一些技巧,希望可以帮助到大家。1. 一般96孔板我每孔是加100微升细胞悬液,从孔的左边靠近底部加入,加完半边板后,将未加的细胞悬液混一下再,继续加剩余的半边板子,都加完后盖上盖子,左手轻轻扶住板的左边,右手轻轻敲击板的右边缘,注意把握力度(我一般轻巧敲三下),太强或次数太多会导致细胞集中成堆,将板顺时针旋转(逆时针效果不好),依次敲击剩余三个边,静置约5分钟,放入37度培养箱。 6孔板12孔板或24孔板,我均采用将第一个孔加入少量无血清培养基,晃动浸润整个孔底,然后用移液枪吸至第二孔,同样方法浸润孔底,其它孔一次类推,这样整个孔底都是湿润的,细胞悬液会平铺在整个孔底,加细胞悬液的时候可以避免加在中间中间细胞多,而加在周边晃匀后周边细胞多中间少的现象,细胞分散较均匀,注意加完细胞悬液后要放工作台静置一下。这个方法就是有点慢,但操作熟练了也不慢。也可以采用轻拍的方式,但力度没有96孔板好掌握,效果没有96孔板好,所以我放弃改用浸润孔底的方法。2.细胞悬液加完后,将细胞培养板抬高,对着灯光,从底部往上看,看细胞有没有抱团。然后从底部敲击,使之分散。3. 如果实验室有平板振荡器的话,我建议用这个仪器稍振荡一下,效果不错,就是振幅小,频率高的那种。4. 细胞要尽量打散,大部分呈单个状态。离心后,要充分悬浮!还有转移到六孔板后,是要晃得!晃的时候最好不要让那个细胞液转圈,不然细胞就全被带到中间去了,就会不均匀!5. 一瓶细胞长满后,正常处理,在培养瓶里吹匀,然后铺6孔板,每孔2毫升,铺完之后不用观察直接用酒精棉擦拭,然后放到培养箱里,轻微的左三圈右三圈 前三圈 后三圈。基本上24小时之后观察 每孔的细胞都会很均匀。6.计算好所需要的全部液体量和细胞量,混匀后,加到六孔板里,六孔板按横8字型晃,显微镜下观察,如果不均匀,按上述方法再晃。如果细胞未计数直接种的话,在种六孔板的过程中,随时晃一下混匀用的瓶子,瓶子我通常是顺时针或逆时针转圈。7.放在水平板面上先上下移动,再左右移动,每个方向5到6次,但关键的是摇完后最好直接放入培养箱中,不要再做过多的运动,例如放到镜下去看,否则很容易就又聚到中间去了。

  • 关于氨氮蒸馏的问题

    做印染废水的氨氮,使用普通蒸馏瓶,蒸馏时会有大量气泡,容易顺着管道进入接收容器内。是不是一定要用专门的氨氮蒸馏装置才能避免?单加个氮球行吗?还是得连凯氏烧瓶一块儿购置?或者有其他窍门,求传授。

  • 【金秋计划】雷公藤红素促进小肠上皮细胞肝X受体α表达调控胆固醇代谢研究

    胆固醇稳态对机体正常的细胞和系统功能至关重要,胆固醇平衡失调是心血管疾病、神经退行性疾病和癌症等其他疾病的基础[1]。胆固醇代谢包括内源性胆固醇合成、吸收和排泄等环节。研究表明,胆固醇在体内不能被降解,有效排泄是维持其稳态的重要环节[2]。体内积累的胆固醇最终通过肠道以粪便消除胆固醇和胆汁酸的形式达到平衡,目前已知的胆固醇排泄途径包括了胆固醇逆转运(reverse cholesterol transport,RCT)途径和经肠胆固醇排泄(transintestinal cholesterol excretion,TICE)途径;前者是肝脏将胆固醇转化为胆汁酸后经肠排出,后者是由血直接经肠道分泌和排出血浆脂蛋白来源的胆固醇,二者交汇于肠道,因此,肠道在胆固醇稳态中发挥了重要作用[3-4]。调血脂治疗是防治体内高胆固醇含量诱导的相关疾病的有效方法,目前临床常用调血脂药物他汀类的作用是通过降低低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)以限制内源性胆固醇合成,从而防治心血管等疾病的发生发展,但其相关发病率和死亡率仅降低了30%[5]。这意味着需要更多策略来解决这个严重的公共卫生事件。 雷公藤红素(celastrol,CeT)是一种从传统中药雷公藤Tripterygium wilfordii Hook. f.中提取分离出的活性成分,具有抗炎、抗癌和抗动脉粥样硬化等多种药理活性[6],且具有良好的成药性,被《Cell》杂志列为最可能转化为现代药物的5种有潜力传统药物之一[7]。Zhang等[8]前期研究发现,体外有效成分为CeT的南蛇藤能够通过在促进RCT减少脂质蓄积方面具有积极作用,其机制主要是通过激活清除剂受体B类成员1(scavenger receptor class B member 1,SRB1)、ABC转运体和细胞色素P450家族7亚家族A成员1(cytochrome P450 family 7 subfamily A member 1,CYP7A1)途径促进胆固醇代谢。然而,有关CeT调控胆固醇代谢的作用机制探索尚不完善。此外,迄今为止,并无有关CeT通过调控肠道TICE途径介导胆固醇代谢的相关研究。因此,本研究采用网络药理学和系统生物学理论,通过构建“CeT-靶点-肠道胆固醇代谢”多层次网络,初步预测CeT调控肠上皮细胞胆固醇代谢的作用机制[9-10],并结合实验深入探讨和验证CeT调控肠上皮细胞胆固醇代谢的作用及机制,旨在为维持体内胆固醇稳态提供新的方向和理论依据。 1 材料 1.1 细胞 大鼠小肠隐窝上皮IEC-6细胞(批号ZQ0783)由中国科学院上海细胞库提供。 1.2 药品与试剂 CeT(批号C0869)购自美国Sigma公司;肝X受体α(liver X receptor α,LXRα)抑制剂GSK2033(批号HY-108688)、Bodipy荧光染色(批号HY-W090090)购自美国MCE公司;0.25%胰蛋白酶(批号PB180229)购自美国Hyclone公司;DMEM高糖完全培养基(批号ZQ-121)、DMEM基础培养基(批号09122)购自上海中乔新舟生物科技有限公司;磷酸酶抑制剂(批号CW2383S)、蛋白酶抑制剂(批号CW2200S)、BCA试剂盒(批号CW0014S)、SDS-PAGE试剂盒(批号CW0022S)、Loading buffer(批号CW0028S)液购自康为世纪生物科技股份有限公司;CCK-8试剂盒(批号C0037)、RIPA裂解液(批号P0013B)、ECL化学发光试剂盒(批号P0018S)购自碧云天生物技术股份有限公司;油红O染色试剂盒(批号G1262-4)购自北京索莱宝科技有限公司;PVDF膜(批号ISEQ00010)购自美国Millipore公司;兔抗三磷酸腺苷结合盒转运蛋白G5(adenosine triphosphate-binding cassette transporters G5,ABCG5)抗体(批号27722-1-AP)、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗体(批号10494-1-AP)、山羊抗兔二抗(批号SA00001-2)购自美国Proteintech公司;兔抗ATP结合盒转运蛋白G8(ATP-binding cassette transporters G8,ABCG8)抗体(批号A01482-2)购自武汉博士德生物工程有限公司;兔抗NPC1样细胞内胆固醇转运蛋白1(NPC1 like intracellular cholesterol transporter 1,NPC1L1)抗体(批号PA5-116672)购自美国Thermo Fisher Scientific公司;兔抗LXRα抗体(批号ab41902)、DAPI染液(批号ab228549)购自英国Abcam公司。 1.3 仪器 ix 73型倒置荧光显微镜(日本Olympus公司);FC型酶标仪、Forma 3系列CO2培养箱、EVOS fl auto全自动荧光倒置荧光学显微镜(美国Thermo Fisher Scientific公司);ChemiDoc XRS+化学发光成像系统、Mini-PROTEAN Tetra蛋白电泳系统(美国Bio-Rad公司)。 2 方法 2.1 网络药理学研究 将PubChem(https://pubchem.ncbi.nlm.nih.gov/)得到的CeT 3D结构导入PharmMapper(http://www. lilab-ecust.cn/pharmmapper/)进行药物靶点预测。通过NCBI(https://www.ncbi.nlm.nih.gov/)得到肠道和胆固醇代谢靶点。并与CeT靶点取交集得到共有靶点;通过STRING(https://STRING-db.org)进行蛋白质-蛋白质相互作用(protein-protein interaction,PPI)网络构建,并导入Cytoscape 3.9.1软件构建网络模型并分析;通过DAVID(https://david. ncifcrf.gov/)进行基因本体(gene ontology,GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;利用PDB(https://www.rcsb.org/)筛选并下载分辨率小于0.25 nm的靶点的结晶复合式,结合上述得到的CeT 3D结构,采用Autodock进行分子对接,运用PyMol可视化处理。 2.2 实验验证 2.2.1 IEC-6细胞培养 IEC-6细胞用DMEM高糖完全培养基于37 ℃、5% CO2的恒温培养箱中常规培养。 2.2.2 CCK-8法检测细胞存活率 将对数生长期的IEC-6细胞接种于96孔板中,5×103个/孔。每孔加入100 μL含不同浓度(0.05、0.10、0.20、0.40、0.80 μmol/L)CeT的培养基,另设置加入无药物培养基的对照组,每组设置5个复孔,培养箱中培养24、48 h。每孔加入10 μL CCK-8试剂,于培养箱中孵育1~2 h后,采用酶标仪在450 nm处检测吸光度(A)值,计算细胞存活率。 细胞存活率=A给药/A对照 2.2.3 油红O染色评估CeT对肠上皮细胞胆固醇的影响 设置对照组、模型组和CeT(0.05、0.10、0.20 μmol/L)组,除对照组外,其余各组加入DMEM基本培养基配制的胆固醇胶束(cholesterol micelles, C-M,10 mmol/L)构建肠上皮细胞高胆固醇模型[11],给药组加入不同浓度的CeT溶液,对照组加入不含药物的培养基。干预24 h后,加入ORO Fixative固定液固定细胞;加入1 mL 60%异丙醇浸洗;加入油红O染液(ORO Stain A∶ORO Stain B=3∶2),洗涤至孔内无红色剩余;加入Mayer苏木素染色液,洗涤;加入油红O染液缓冲液;加入蒸馏水覆盖细胞并拍照,使用Image-Pro Plus软件以脂滴与整个图像的面积比进行定量。 2.2.4 Bodipy荧光标记法 按“2.2.3”项下方法进行分组和给药,干预24 h后,PBS洗涤,室温下多聚甲醛固定30 min;每孔加入2 μmol/L Bodipy染色液,于37 ℃细胞培养箱中孵育15 min;弃去染色液,PBS洗涤;DAPI复染核5 min,PBS洗涤;观察并拍照。使用Image-Pro Plus软件以荧光强度进行统计。 2.2.5 Western blotting检测TICE相关蛋白表达 按“2.2.3”项下方法进行分组和给药,干预24 h后,收集细胞;PBS洗涤后使用蛋白裂解液提取总蛋白质,BCA定量法测定蛋白质浓度。蛋白样品经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,转至PVDF膜,加入5%脱脂牛奶封闭3 h,用TBST洗涤后加入一抗,4 ℃孵育过夜;洗涤后加入二抗,室温孵育2 h;洗涤后进行显影,使用Image-Pro Plus软件分析条带灰度值。 2.2.6 免疫荧光检测LXRα/ABCG8和LXRα/ NPC1L1通路相关蛋白的影响 设置对照组、模型组、CeT(0.1 μmol/L)组、GSK2033(10 μmol/L)组和CeT+GSK2033组,除对照组外,其余各组加入DMEM基本培养基配制的胆固醇胶束(10 mmol/L)构建肠上皮细胞高胆固醇模型,各给药组加入相应药物,对照组加入不含药物的培养基。干预24 h后,PBS洗涤3次;4%多聚甲醛固定30 min,PBS洗涤3次后加入Trition X-100,室温下通透10 min;PBS洗涤3次后,加入免疫染色封闭液封闭60 min,吸去多余的牛血清白蛋白;分别滴加100 μL LXRα(1∶200)、ABCG8(1∶200)、NPC1L1(1∶200)一抗,4 ℃孵育过夜;回收一抗,PBS浸洗3次,滴加100 μL二抗(1∶300),室温避光孵育60 min;PBS洗涤3次,滴加DAPI复染核15 min,PBS洗涤3次;滴加抗淬灭剂10 μL,扣片,正面朝下盖在载玻片上,荧光显微镜下观察并拍照。使用Image-Pro Plus软件分析荧光强度。 2.2.7 统计学分析 采用GraphPad Prism 9.0和SPSS 26.0软件进行统计分析,数据以表示。两组间数据分布的正态性和方差齐性分别以Kolmogo? rov-Smirnov和Levene检验确定。组间均数比较采用t检验;多组间均数比较采用单因素方差分析,组间有差异进一步采用SNK-q检验进行两两比较。 3 结果 3.1 网络药理学研究 3.1.1 CeT-肠道胆固醇代谢靶点 通过TCMSP等数据库得到94个CeT相关靶点。通过NCBI Gene等数据库得到15 415个肠道相关靶点、14 177个胆固醇代谢相关靶点。并构建韦恩图预测CeT-肠道胆固醇代谢共有靶点,见图1。 图片 3.1.2 CeT-靶点-肠道胆固醇代谢网络构建 将PPI导入Cytoscape 3.8.1软件进行可视化,发现1个关键的子网络,见图2。 图片 3.1.3 CeT-肠道胆固醇代谢的GO功能富集分析 对CeT调控肠道胆固醇代谢的作用及机制进行GO富集分析,分别得到855个生物进程、17个细胞组成、53个分子功能,根据P<0.05,选出排名前10的条目,见图3。 图片 3.1.4 CeT-肠道胆固醇代谢的KEGG通路富集分析 CeT调控肠道胆固醇代谢的通路涉及34条,根据P<0.05,选出排名前10的通路,见图4。其中,主要涉及脂肪的消化和吸收、过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptor,PPAR)等信号通路。其中,肠道脂质代谢的关键通路(fat digestion and absorption)的靶点(ABCG5、ABCG8、NPC1L1)主要涉及CeT-靶点-肠道胆固醇代谢网络的关键网络之一(图5)。并且该网络主要涉及胆固醇排泄的关键途径——TICE途径。 图片 图片 3.2 分子对接分析 CeT与NR1H3(LXRα)结合能为?28.131 4 kJ/mol,可视化显示,匹配度良好,化合物与靶点结合的最优构象以氢键的方式呈现,结合活性良好,见图6。 图片 3.3 体外实验研究 3.3.1 CeT浓度筛选 不同浓度(0.05、0.1、0.2、0.4、0.8 μmol/L)的CeT分别干预IEC-6细胞24、48 h后,如图7所示,干预24 h时随着CeT浓度的增加细胞存活率降低,CeT的半数抑制浓度(half inhibitory concentration,IC50)为0.2 μmol/L。本研究在探索CeT安全浓度调控IEC-6细胞胆固醇代谢活性的同时,为了更进一步研究CeT在IC50时是否较安全浓度的效果更好,因此,选择0.05、0.10、0.20 μmol/L的CeT处理细胞24 h进行后续研究。 图片 3.3.2 CeT对IEC-6细胞内脂质的影响 如图8所示,油红O染色与Bodipy荧光标记结果均显示,与对照组比较,胆固醇胶束干预显著增加脂滴染色和荧光强度(P<0.001),表明造模成功;与模型组比较,各剂量CeT均显著抑制IEC-6细胞中脂质积累(P<0.05、0.01、0.001)。 图片 3.3.3 CeT对TICE途径关键蛋白的影响 NPC1L1是胆固醇吸收的重要蛋白,ABCG5/G8与胆固醇流出密切相关。如图9所示,与对照组比较,模型组NPC1L1蛋白表达水平显著升高(P<0.05),ABCG5和ABCG8蛋白表达水平显著降低(P<0.05、0.01);与模型组比较,CeT(0.2 μmol/L)组NPC1L1蛋白表达水平显著降低(P<0.05),CeT(0.1、0.2 μmol/L)组ABCG5和ABCG8蛋白表达水平显著升高(P<0.05、0.01)。因此,CeT可能通过抑制NPC1L1,促进ABCG5、ABCG8的表达,调控TICE途径介导的胆固醇摄取和流出。 图片 3.3.4 LXRα是CeT调控TICE途径的关键蛋白 如图10所示,与对照组比较,模型组LXRα、ABCG8表达显著降低(P<0.01),NPC1L1表达显著增加(P<0.001);与模型组比较,CeT组LXRα、ABCG8表达显著增加(P<0.001),NPC1L1表达显著降低(P<0.01),LXRα抑制剂GSK2033组ABCG8表达显著降低(P<0.01),NPC1L1表达显著增加(P<0.05);与CeT组比较,CeT+GSK2033组LXRα、ABCG8表达显著降低(P<0.01),NPC1L1表达显著增加(P<0.01)。因此,CeT可能通过促进LXRα的表达,调控TICE途径中的关键蛋白NPC1L1、ABCG8介导的胆固醇摄取和流出。 图片 4 讨论 胆固醇广泛存在于机体中,具有广泛的生理作用,是组织细胞中不可缺少的重要物质,它不仅参与细胞膜的形成,也是合成胆汁酸、维生素D及甾体激素的重要原料,但当其过量时便会导致高胆固醇血症,研究表明,心血管疾病、胆石症和肿瘤与高胆固醇血症密切相关[12-13]。胆固醇在体内不能被降解,机体有效排泄胆固醇是维持胆固醇稳态的重要环节[2]。因此,促进体内胆固醇排泄以维持体内胆固醇的动态平衡可能是治疗胆固醇失衡相关疾病的新策略。 基于此,本研究通过网络药理学方法,探讨CeT通过调控肠上皮细胞胆固醇代谢的潜在靶点及相关机制。PPI网络发现,CeT调控肠上皮细胞胆固醇代谢涉及1个核心子网络。其中,ABCG5/8与NPC1L1为胆固醇摄取与流出相关的核心靶点。本研究通过体外构建和模拟肠上皮细胞高胆固醇环境,探索CeT调控肠上皮细胞胆固醇代谢的机制,油红O和Bodipy结果均显示,CeT能够呈浓度相关性地降低胆固醇胶束干预的肠上皮细胞内的脂质积蓄。进一步通过结合KEGG通路分析发现,该子网络中的核心靶点与肠道脂质代谢的关键通路(fat digestion and absorption)相匹配,通过深度分析该通路发现,其主要涉及肠上皮细胞摄取与流出胆固醇中的TICE途径。已有研究表明,胆固醇从体内排出的唯一途径是通过粪便直接排出或转化为胆汁酸后排出,粪便排泄可通过2种独立途径进行,第1种途径是胆汁分泌,该途径已被广泛描述和研究。第2种途径是通过TICE途径[14]。在2009年Van团队初步研究估计,TICE对野生型小鼠体内排出的粪便中性固醇总量的贡献约为30%[15]。接下来,该团队在2010年通过实验得出在小鼠中TICE途径占粪便中性甾醇排泄的70%[16]。在人体生理情况下,TICE途径排泄的胆固醇占粪便胆固醇排泄总量的35%[2,17]。TICE指由血直接经肠道分泌和排出血浆脂蛋白来源的胆固醇。包括肝源性含载脂蛋白B的脂蛋白被基底膜侧低密度脂蛋白受体(low density lipoprotein receptor,LDLR)和其他可能受体吸收、内化,最终通过ABCG5/G8以及其他可能的转运体从顶端膜流出排泄到肠腔[18]。另有研究发现,利用Ezetimibe抑制NPC1L1介导的胆固醇摄取可显著增强TICE途径[2]。而本研究表明,CeT干预处于高胆固醇环境中的肠上皮细胞后,NPC1L1被抑制,而ABCG5、ABCG8被激活。提示,CeT主要通过抑制NPC1L1减少肠上皮细胞胆固醇摄取和促进ABCG5、ABCG8增加胆固醇流出。 LXRα由于其抗动脉粥样硬化、去除胆固醇和抗炎活性,在胆固醇稳态的转录调控中发挥极其关键作用[19]。研究发现,LXRα可调控NPC1L1在肠上皮细胞中的表达,降低肠道胆固醇的吸收[20]。此外,ABCG5和ABCG8是LXRα的直接靶基因,常形成异二聚体ABCG5/G8发挥作用,负责将细胞内胆固醇泵入肠腔并最终通过粪便排出体外[21]。PPI子网络表明,NPC1L1、ABCG5以及ABCG8主要由LXRα交联。因此,在上述研究的基础上,通过分子对接模拟了CeT与LXRα的对接模式,结合活性良好。采用LXRα抑制剂GSK2033处理,结果显示,NPC1L1和ABCG5/G8主要受LXRα调控。提示,CeT可能通过LXRα/ABCG5/ABCG8和LXRα/ NPC1L1途径分别介导IEC-6细胞胆固醇摄取和流出,进而促进TICE途径介导的胆固醇排泄。 本研究通过网络药理学和相关实验发现,CeT可能通过抑制肠上皮细胞胆固醇摄取和促进胆固醇流出维持机体胆固醇稳态,这一效应与核心靶点LXRα密切相关,本研究拓展了CeT调控体内胆固醇代谢的机制,为维持体内胆固醇稳态和胆固醇失衡相关疾病的新药研发提供了新思路。

  • 细胞培养箱中出现霉菌如何消除

    细胞培养箱中的水盘里出现霉菌,虽然没有污染到细胞,而且也在水盘里加入新洁尔灭,但还是不放心,并且培养箱中现有很多细胞,请问有没有一种方法可以在不移除细胞的情况下能够消灭培养箱中的霉菌?已经长出霉菌,建议把所有细胞移出到其他培养箱。将这个培养箱全面消毒,喷酒精,紫外灭菌至少1个小时。因为我们组细胞染过菌,一旦培养箱不洁净,会导致所有培养细胞都要染菌的,爆发以后很可怕。培养箱出现霉菌很可能是水槽的水不够洁净,一定要用超净水超纯水来填充水槽,避免霉菌生长。要定期更换水槽中的纯水。一个月左右换一次。一个季度到半年要培养箱彻底灭菌一次。

  • 单增李斯特菌检测

    单核细胞增生李斯特氏菌及检验单核细胞增生李斯特氏菌是一种人畜共患病的病原菌。它能引起人畜李氏菌的疾病,感染后主要表现为败血症、脑膜炎和单核细胞增多。它广泛存在于自然界中,食品中存在的单增李氏菌对人类的安全具有危险,该菌在4℃的环境中仍可生长繁殖,是冷藏食品威胁人类健康的主要病原菌之一,因此,在食品卫生微生物检验中,必须加以重视。一、生物学特性1、形态与染色该菌为革兰氏阳性短杆菌,大小约为0.5μmх1.0-2.0μm,直或稍弯,两端钝圆,常呈V字型排列,偶有球状、双球状,兼性厌氧、无芽胞,一般不形成荚膜,但在营养丰富的环境中可形成荚膜,在陈旧培养中的菌体可呈丝状及革兰氏阴性,该菌有4根周毛和1根端毛,但周毛易脱落。2、培养特性该菌营养要求不高,在20--25℃培养有动力,穿刺培养2--5天可见倒立伞状生长,肉汤培养物在显微镜下可见翻跟斗运动。该菌的生长范围为2--42℃(也有报道在0℃能缓慢生长),最适培养温度为35--37℃,在pH中性至弱碱性(pH9.6)、氧分压略低、二氧化碳张力略高的条件下该菌生长良好,在pH3.8--4.4能缓慢生长,在6.5% NaCl 肉汤中生长良好。在固体培养基上,菌落初始很小,透明,边缘整齐,呈露滴状,但随着菌落的增大,变得不透明。在5-7%的血平板上,菌落通常也不大,灰白色,刺种血平板培养后可产生窄小的β-溶血环。在0.6%酵母浸膏胰酪大豆琼脂(TSAYE)和改良Mc Bride(MMA)琼脂上,用45°角入射光照射菌落,通过解剖镜垂直观察,菌落呈兰色、灰色或兰灰色。3、生化反应该菌触酶阳性,氧化酶阴性,能发酵多种糖类,产酸不产气,如发酵葡萄糖、乳糖、水杨素、麦芽糖、鼠李糖、七叶苷、蔗糖(迟发酵)、山梨醇、海藻糖、果糖,不发酵木糖、甘露醇、肌醇、侧金盏花醇、棉子糖、卫矛醇和纤维二糖,不利用枸橼酸盐,40%胆汁不溶解,吲哚、硫化氢、尿素、明胶液化、硝酸盐还原、赖氨酸、鸟氨酸均阴性,VP、甲基红试验和精氨酸水解阳性。4、血清型根据菌体(O)抗原和鞭毛(H)抗原,将单增李氏菌分成13个血清型,分别是1/2a、1/2b、1/2c、3a、3b、3c、4a、4b、4ab、4c、4d、4e 和“7”13 个血清型。致病菌株的血清型一般为1/2b、1/2c、3a、3b、3c、4a、1/2a和4b,后两型尤多。5、抵抗力该菌对理化因素抵抗力较强,在土壤、粪便、青储饲料和干草内能长期存活,对碱和盐抵抗力强,60-70℃经5-20min可杀死,70%酒精5min、2.5%石炭酸、2.5%氢氧化钠、2.5%福尔马林20min 可杀死此菌。该菌对青霉素、氨苄青霉素、四环素、磺胺均敏感。二、流行病学单增李斯特氏菌广泛存在于自然界中,不易被冻融,能耐受较高的渗透压,在土壤、地表水、污水、废水、植物、青储饲料、烂菜中均有该菌存在,所以动物很容易食入该菌,并通过口腔-粪便的途径进行传播。据报道,健康人粪便中单增李氏菌的携带率为0.6-16%,有70%的人可短期带菌,4-8%的水产品、5-10%的奶及其产品、30%以上的肉制品及15%以上的家禽均被该菌污染。人主要通过食入软奶酪、未充分加热的鸡肉、未再次加热的热狗、鲜牛奶、巴氏消毒奶、冰激凌、生牛排、羊排、卷心菜色拉、芹菜、西红柿、法式馅饼、冻猪舌等而感染,约占85-90%的病例是由被污染的食品引起的。该菌可通过眼及破损皮肤、粘膜进入体内而造成感染,孕妇感染后通过胎盘或产道感染胎儿或新生儿,栖居于子宫颈的该菌也引起感染,性接触也是本病传播的可能途径,且有上升趋势。三、致病性单增李氏菌进入人体后是否发病,与菌的毒力和宿主的年龄、免疫状态有关,因为该菌是一种细胞内寄生菌,宿主对它的清除主要靠细胞免疫功能。因此,易感者为新生儿、孕妇及40岁以上的成人,此外,酗酒者、免疫系统损伤或缺陷者、接受免疫抑制剂和皮质激素治疗的患者及器官移植者也易被该菌感染。该病的临床表现,健康成人个体出现轻微类似流感症状,新生儿、孕妇、免疫缺陷患者表现为呼吸急促、呕吐、出血性皮疹、化脓性结膜炎、发热、抽搐、昏迷、自然流产、脑膜炎、败血症直至死亡。单增李氏菌的抗原结构与毒力无关,它的致病性与毒力机理如下:1、寄生物介导的细胞内增生,使它附着及进入肠细胞与巨噬细胞;2、抗活化的巨噬细胞,单增李氏菌有细菌性过氧化物歧化酶,使它能抗活化巨噬细胞内的过氧物(为杀菌的毒性游离基团)分解;3、溶血素,即李氏杆菌素O,可以从培养物上清液中获得,为活化的细胞溶素,有α和β两种,为毒力因子。四、检验1、增菌培养取回的样品应在4℃下处理、存放和运送,如果是冷冻样品,则在检验前要保持冷冻状态。取25mL液体或25g半固体或固体样品放入含有225mL无选择性试剂增菌肉汤(EB)的均质杯中进行均质,然后转入三角瓶中,30℃培养4h,加入选择性试剂吖啶黄素、萘啶酮酸,继续培养20h和44h.。2、分离共培养24h和48h后,取EB培养物分别在OXA和LPM或加七叶苷/Fe3+LPM琼脂平板上划线。PALCAM琼脂可替代LPM琼脂。将OXA和PALCAM平板置于35℃培养24-48h,LPM平板在30℃培养24-48h。然后,把LPM平板放于解剖镜载物台上,以45°角入射光从平板下面照射平板,通过目镜垂直向下观察寻找可疑菌落。李斯特氏菌在LPM平板上呈有光泽的兰色或灰色。用已知阳性菌和阴性菌划线的平板作对照。加入七叶苷和Fe3+的LPM平板不用斜射光系统,选择可疑菌落的方法与在OXA上选择可疑菌落的方法相同。在OXA平板上李斯特氏菌菌落周围有一个黑色环,其它菌也可形成黑色环,但形成时间要在两天以上。李斯特氏菌在PALCAM和OXA平板上的菌落特征相似。在PALCAM和OXA或LPM平板上挑取5个或更多的典型菌落,分别划线于TSAYE平板上以得到更纯、更典型的单个菌落。食品检验中在TSAYE平板上纯化是必须的,因为在PALCAM和OXA或LPM平板上分离菌落时可能沾有不可见的受抑微生物。挑取5个典型菌落的原因是一个样品中可能分离到一种以上的李斯特氏菌。30℃TSAYE平板培养24-48h,如果不用于动力观察,也可在35℃培养。3、鉴定步骤(1)观察TSAYE平板通过斜射光观察,寻找呈兰灰至兰色菌落。在TSAYE上用已知菌作对照。(2)、从30℃或更低温度下培养的TSAYE平板上挑取典型菌落做成湿玻片在油镜下观察。湿玻片用0.85%生理盐水菌悬液制成。如果菌量太少,菌体黏附于载玻片上而呈现非运动性。李斯特氏菌是细短杆菌,可见轻微的旋转及翻滚。与已知的李斯特氏菌的对照相比,球形、大的杆状且快速泳动的都不是李斯特氏菌。(3)挑取典型菌落进行过氧化氢酶实验,李斯特氏菌呈过氧化氢酶阳性反应。(4)取16-24h的培养物进行革兰氏染色,李斯特氏菌呈革兰氏阳性杆菌。但是陈旧培养物革兰氏染色会发生变化,而且菌体可成球形。在染色过重的玻片上菌体有呈栅状排列的趋势,易误认为白喉菌而错判。(5)挑取典型菌落接种于TSBYE肉汤管中,35℃培养24h用做糖类发酵和其它生化项目实验。TSBYE肉汤管在4℃下可存放几天,也可反复接种。(6)在TSAYE平板上挑取典型菌落刺种到5%的绵羊血或马血琼脂平板上,刺种时避免触到平板底部和使琼脂破裂,同时设阳性对照(单核细胞增生李斯特氏菌和绵羊李斯特氏菌)和阴性对照(英诺克李斯特氏菌),35℃培养48h。单核细胞增生李斯特氏菌呈窄小的β-溶血环。(7)在明亮的光照下,观察经穿刺的血琼脂平板,单核细胞增生李斯特氏菌和西尔李斯特氏菌围绕穿刺点产生较清晰的β-溶血环,英诺克李斯特氏菌不产生溶血现象,而绵羊李斯特氏菌产生界限明显的较大溶血环,在此不要试图进行种间的区分,但要记录下溶血反应的特征,CAMP试验可区分它们间的溶血反应。(8)硝酸盐还原试验(选做)。用TSBYE肉汤培养物接种于硝酸盐肉汤中,35℃培养5天后,加入0.2mL试剂A,再加入0.2mL试剂B,混合,出现紫红色为阳性反应,表明硝酸盐已被还原,如无颜色出现,在试管内再加入少量锌粉,放置1h,如出现紫红色,表明硝酸盐仍存在,未被细菌还原。只有默氏李斯特氏菌还原硝酸盐,因此,从格氏李斯特氏菌中区分出默氏李斯特氏菌就必须进行这唯一的试验。本试验还有一等效试验,即加入0.2mL试剂A后,再加入0.2mL试剂C,出现橙色表明硝酸盐已被还原。如未出现颜色反应,也加入少量锌粉,若出现橙色表明硝酸盐未被还原。(9)将TSBYE培养物穿刺到SIM和MTM试管中,室温培养7天,每日观察,李斯特氏菌呈典型伞状生长。在MTM中伞状生长更典型。同时,30℃的TSBYE培养物在油镜下可见细菌作翻转运动。(10 )将TSAYE肉汤培养物分别接种于0.5%(W/V)葡萄糖、麦芽糖、七叶苷、甘露醇、鼠李糖、木糖发酵管内(可选用倒立发酵管),35℃培养7天,呈阳性反应的李斯特氏菌产酸不产气,李斯特氏菌发酵鼠李糖和木糖的情况见下表。所有李斯特氏菌对葡萄糖、七叶苷、麦芽糖均能发酵,除格氏李斯特氏菌均不能发酵甘露醇。如果在OXA、PALCAM或加七叶苷/Fe3+的LPM分离平板上菌落色素很明显,则七叶苷试验可免做。

  • 【原创大赛】【奥运检测卫士】 永安市熟食中单增李斯特菌污染情况调查分析

    【原创大赛】【奥运检测卫士】  永安市熟食中单增李斯特菌污染情况调查分析

    永安市熟食中单增李斯特菌污染情况调查分析奥运会期间,运动员的身体健康是很重要的哦,所以对于熟肉制品中的被目前国际公认的单增李斯特菌的食源性致病菌检测理所当然,并且必须检测的了,重金属污染显然不会立即使运动员瘫倒,俗话说的好,“好汉禁不住三泡稀”,一旦有了致病菌污染,那么即使强健体魄的运动员,面对拉稀也禁不住哦,这样不但取不得好成绩,就是想站起来也相当困难,因此,借助于第五届原创大赛奥运主题,把去年9月至今年6月抽查本市的检测情况予以分析,至于伦敦奥运会期间的伙食检测,相信伦敦奥组委会做好相应的检测,俺就不关心了,直接为中国奥运健儿加油!随着全球性食品贸易的快速增长,目前微生物污染所引起的食源性疾病作为一个严重的公共卫生问题已引起人们的关注和研究。无论在发达国家或发展中国家都是影响食品安全的最主要原因之一。其中单增李斯特菌是目前国际公认的食源性致病菌,近几年来全球许多国家多次爆发由该致病菌所致的食源性疾病,因此,单增李斯特菌也是进出口食品的必检项目。随着我国食品安全风险监测网络直报系统已经全国性覆盖,李斯特菌属的检测也是微生物项目检测不可或缺的检测项目之一。李斯特菌属为革兰阳性、无芽孢杆菌,其中单增李斯特菌可引起严重的食源性李斯特菌病。该病是一种人畜共患病,主要能引起人与动物的脑炎、菌血症、流产、无败血症性单核细胞增多症等,尤其对免疫力低下,婴幼儿、老年人、孕妇等易受感染而发病,是病死率较高的,可引起爆发性食物中毒的重要病原菌之一(病死率为30% ~70%)。目前国际上公认的李斯特菌属(Listeria)共有7个菌种,即单核细胞增生性李斯特氏菌(L.monocytogenes,)、绵羊李斯特氏菌(L.ivanvii)、英诺克李斯特氏菌(L.innocua)、威尔斯李斯特氏菌(L.welshimeri)、西尔李斯特氏菌(L.seeligeri )、格氏李斯特氏菌(L.grayi)以及默氏李斯特氏菌(L.murrayi)。只有单核细胞增生性李斯特菌(L.moncytogenes,以下简称单增李斯特菌)与人的疾病密切相关。单增李斯特菌在太原市永安市的熟食中污染状况如何尚未报道,为杜绝和预防由单增李斯特菌引起的食物中毒事件在永安市发生,我们对太原市永安市的部分超市及农贸市场所供应的熟食进行了监测检验,为永安市预防李斯特菌病的爆发、流行及追踪污染源提供了科学依据。1 材料与方法1.1 样品来源2011年10月至2012年7月从永安市部分超市和农贸市场分批采样监测检验,共采集样品120份,见表1。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647413_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012102003788_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012102152884_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012102293687_01_2355529_3.jpg1.2 标准菌株单增李斯特菌标准菌株由省中心下拨。1.3主要仪器与设备梅特勒万分之一电子天平、HBM一400B型无菌均质器、法国VITAK全自动微生物生化鉴定系统、电热恒温培养箱。http://ng1.17img.cn/bbsfiles/images/2017/10/20120801210328682_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012103492167_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012104051426_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012104205671_01_2355529_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201208012104389322_01_2355529_3.jpg1.4培养基李氏增菌肉汤LB(LB1、LB2)、TSA-YE、SIM 动力培养基、PALCAM 选择培养基、TSI和其他鉴定用的生化培养基均购自北京陆桥技术有限责任公司。1.5 分离方法1.5.1增菌 以无菌操作取样品25 g加入到含有225 mL LB1 增菌液的均质袋中,在拍击式均质器上连续均质1 min~2 min;于30±1 ℃培养24 h,移取0.1 mL,转种于10 mL LB2 增菌液内,于30±[font=Times New Roman

  • 氨氮能力验证

    老师们,前段时间你们有没有报华测氨氮能力验证,我做出来的数也不知道对不对,有没有哪位老师也做出来了,咱们讨论一下可以吗?

  • 细胞储存液氮罐的保养技巧分享

    [b] 一、定期清洁细胞储存液氮罐[/b]  细胞储存液氮罐在使用过程中会随着时间的推移产生霜冻或冰层,这可能会影响罐内的温度稳定性。因此,定期清洁细胞储存液氮罐是必不可少的保养步骤之一。清洁细胞储存液氮罐的方法有很多种,常见的包括使用软布擦拭罐体内外表面,使用棉签或刷子清理冰层,当然还可以使用专业的清洁剂进行清洗。需要注意的是,在清洁细胞储存液氮罐时要特别小心,避免对罐体造成损坏。[b]  二、定期检查密封性能[/b]  细胞储存液氮罐的密封性能对于保持罐内温度稳定至关重要。因此,定期检查细胞储存液氮罐的密封性能是保养的另一个重要步骤。检查密封性能的方法有很多种,例如可以通过观察罐体是否有冷气逸出或外界空气进入来判断密封性能。如果发现细胞储存液氮罐的密封性能不佳,应及时更换密封件或进行修理。[b]  三、避免频繁开启细胞储存液氮罐[/b]  频繁开启细胞储存液氮罐会导致罐内温度的波动,从而影响样本的质量和活性。因此,为了保护样本并延长细胞储存液氮罐的使用寿命,我们应该尽量避免频繁开启罐盖。当需要取出或放入样本时,最好一次性将所有需要的样本处理完毕,减少开启罐盖的次数。[url=http://www.mvecryoge.com/]金凤液氮罐[/url]  四、注意细胞储存液氮罐的放置位置  细胞储存[url=http://www.cnpetjy.com/]液氮罐[/url]的放置位置也是影响其保养效果的重要因素。首先,细胞储存液氮罐应该远离任何可能产生震动或振动的设备,以避免对罐内样本造成损坏。其次,应将细胞储存液氮罐放置在通风良好、温度稳定的环境中,避免暴露在阳光直射或过高的温度下。这些措施可以有效地保护细胞储存液氮罐,并延长其使用寿命。  总结起来,保养细胞储存液氮罐的关键在于定期清洁、检查密封性能、避免频繁开启和注意放置位置。通过合理使用和保养细胞储存液氮罐,我们可以确保样本的质量和活性,并延长细胞储存液氮罐的使用寿命。希望本文提供的保养技巧能够对读者有所帮助,使其更好地使用和保养细胞储存液氮罐。

  • 【分享】高压灭菌锅使用技巧

    高压灭菌锅使用技巧很多实验室的研究生都要自己清洗试验用品并进行高压灭菌,这里有一份高压锅注意事项,希望对大家有用。  WARNING  一.不能使用此高压蒸汽灭菌器消毒任何有破坏性材料和含碱金属成份的物质。消毒这些物品将会导致爆炸或腐蚀内胆和内部管道,以及破坏垫圈。  危险物品清单:  1.爆炸物质  乙二醇二硝酸酯(硝化甘醇),硝酸甘油,硝化纤维素(硝化纤维素滤器)和所有含硝酸根的酯类。  三硝基苯,黄色炸药,苦味酸和所有易燃易爆的硝基衔铩?br/过乙酸,甲烷基,乙基,甲醇,过氧化氢,过氧化物,苯甲酰,苯甲酰基及有机过氧化物。  2.可燃性物质  金属锂、钾、钠、黄磷、磷、硫化物、红磷。  明胶、碳化钙(电石)、氧化钙(石灰),镁粉,连二亚硫酸钠(保险粉)。  3.氧化剂  氯化钾,氯化钠,氯化铵和其他氯化物。(粉剂)  高氯酸钾,高氯酸钠,高氯酸铵和其他高氯化物。  硝酸钾,硝酸钠,硝酸铵和其他硝酸物。  过氧化钾,过氧化钠,过氧化钡和其他无机过氧化物。  亚氯酸钠和其他亚氯化物,次氯酸钙和其他次氯酸物。  4.易燃物质  二乙醚,醚,汽油,乙醛(醋醛),氧化丙稀,环氧丙烷,二硫化碳和其他燃点在-30οC~0οC间的物质。  甲醇,乙醇,二甲苯,苄基,乙酸苄酯,和其他燃点在0οC~30οC之间的物质(醇类)。  灯油,火油,汽油,异戊醇,乙酸(醋酸),和其他燃点在30οC~65οC之间的类似物质。  5.易燃的气体(氢气,乙炔,次乙基,甲烷)  乙烷,丙烷,丁烷和其他在15οC及一个大气压下的气体。  二.含有盐分的液体漏出或溢出时,一定要及时擦干净,沿着盖子的密封圈要彻底擦干,否则会腐蚀容器和管道。  三.在打开盖子前,确认压力已归于“0/npa”以下。  四.绝对不许擅自改造这个产品。  五.不要在爆炸性气体附近使用该仪器。  CAUTION  1.外来的物质或液体进入到排放孔中,在运行仪器时会导致着火或断电。  2.不要随意去动电源线,不要把重物压在电源线上,损坏的电线或金属丝暴露会导致断电或着火。  3.除蒸馏水外,不要倒任何液体于容器内。  4.不要使用此高压蒸汽灭菌器用于其他目的的消毒和高压未溶解的琼脂。(粉剂)  5.检查盖子的垫圈有无异物粘连,如有异物要及时清除,否则会导致蒸汽泄漏。  6.请使用配套的工具,不要使用其他篮筐于灭菌器内。  7.高压时,高压后取物品时注意烫伤。  8.如有异常发生(有声音发出,闻到气味,冒烟),请立即切断电源。联系工程师,排除异常后再继续使用。  9.移动此仪器请将盖子锁上。移动盖子时,不要拉盖子的手柄,否则盖子会变形,难以盖严。

  • 在奶牛场生产出体细胞数及细菌含量低的牛奶

    在奶牛场生产出体细胞  数及细菌含量低的牛奶  奶牛场受到污染的牛奶一直会存在于整个生产链之中,虽然其后的生产程序可能会尽量减低牛奶的腐败程序以满足消费者的质量要求,但是品质却永远也比不上刚刚从奶牛乳房产出的牛奶了。因此,为消费者提供卫生乳制品的第一步开始于牛场。  1. 体细胞数  1.1体细胞的来源  动物体抵御一些入侵细菌的措施之一就是将白细胞渗透到受感染区域。白细胞来自动物血液,被称为体细胞。以示与入侵微生物细胞的区别。正常情况下,少数白细胞可经乳腺而进入乳汁,但在病原菌入侵时,机体会向乳腺内释放大量的白细胞。若乳腺受到损害,也会造成乳腺上皮细胞脱落,成为乳汁内的体细胞的一部分,但不超过体细胞总数的百分之几。与细菌不同,体细胞一旦进入乳汁内,其总数是不会发生变化的。白细胞包括巨噬细胞、淋巴细胞和嗜中性细胞。正常乳中含有巨噬细胞,其作用是清除乳腺中的细菌和细胞碎片。淋巴细胞在抵抗感染的机制中起主要作用,此时要占体细胞总数的90%以上。体细胞数是变化的,在完全健康奶牛的乳汁中低于200000/亳升;乳腺感染严重,会高于5000000/毫升。  1.2 高体细胞含量牛奶的缺点  体细胞数偏高,表明牛奶产于受损或受感染的乳腺。细菌污染会极大降低牛奶的质量,而体细胞本身也对牛奶质量不利,特别是对这些用于生产发酵乳制品的牛奶。牛奶变质表现为:①牛奶味道变坏 ②牛奶的贮存期缩短 ③乳清量增加,酪蛋白的收缩性降低,导致奶酪产量下降。  1.3 体细胞数的估测  体细胞数(SCC,单位为:细胞数/亳升)可经显微镜人工测定,但耗费时间,一位技术员每天仅能测定很少的样品。体细胞数常常是由称为细胞计数器的电子仪器来测定,但该仪器较昂贵,不易搬运,这就得把奶样送到实验室去分析。在牛舍内实际上可采用一项简单的技术,即用化学试剂来测定白细胞的数量,其最初称为加州乳房炎测定(CMT),但现有众多地方测定方法,如兰州乳房炎测定法(LMT)。CMT法可把牛奶评为0、T、1、2和3级,其大致相对应的细胞数为:  CMT测试等级 大致体细胞数/毫升  0 100,000  T(=微量) 300,000  1 900,000  2 2,700,000  3 8,100,000  1.4 引起体细胞增高的因素  1.4.1 乳房受到细菌感染。这大概是导致体细胞数增加的主要因素。  1.4.2乳房受到损伤。奶牛的乳房并非不会受到损伤,比如经常由于地滑而摔伤乳房。有些奶牛,特别是那些乳房过度下垂的奶牛,站起来时容易踩到自己的乳房。乳房受到伤害,牛奶中体细胞数会暂时升高,随着伤口的愈合,体细胞数又会恢复正常。  1.4.3 奶牛的年龄和泌乳阶段。老龄奶牛似乎更易患乳房炎,这样,体细胞数常常较高。美国的研究表明,未患乳房炎奶牛乳中的体细胞数并不随年龄的增加而提高。这样,随着年龄的增长,对于那些一生中某一阶段曾患过乳房炎的奶牛,其体细胞数增加的机率会增大。  1.5 降低体细胞数。体细胞数值高常常是由于乳房受到了细菌所至,因此降低体细胞数值的最好方法就是防止感染。  2. 乳中的细菌  牛奶通常是老、幼、病、残者的食品,他们也最需要健康食品。奶牛场是微生物污染牛奶的理想环境,最危险的途径之一就是通过存在于乳房中并引起乳房炎的细菌而污染。这些细菌都是病原菌,对牛和人类都有害。  一旦受到这样的污染,牛奶就成为劣质产品。加热处理可减缓或停止细菌的作用,但不管如何处理,这种牛奶仍就是含有活的或死的微生物及其所产生的生化物质。这些物质有的会降低乳制品的品质,有的对消费者的健康有害。来自粪便的细菌还会产生酶类和耐毒素。因此,防止乳制品被污染,应从提供优质鲜奶开始。  细菌进入乳房引起乳房炎的许多途径与其污染牛奶的方式密切相关,有些细菌可引起乳房炎,随后进入牛奶。  2.1牛奶中细菌的类型  下表为牛奶中常见的微生物,经分离,也许可见到其它类型的微生物。大概有95%的乳房炎是由表中前三种细菌引起的。  微生物 来 源 所产毒素 致病性  奶牛 人类  金黄色葡萄球菌 乳房炎  人类污染  环境  牛粪 肠毒素 致病 致病  无乳链球菌 乳房炎 致病 致病  大肠埃西氏杆菌 乳房炎  环境  牛粪 耐热和不耐热肠毒素 致病 有些致病  空肠弯曲菌 受感染的乳房  牛粪 肠毒素 致病 致病  小肠结肠炎耶尔森菌 牛粪  沙门氏菌群 环境  牛粪 肠毒素 致病 致病  产单核细胞李斯特菌 环境  牛粪  饲料—特别是劣质青贮  乳房炎(少数) 致病 致病  结核分支杆菌 受感染乳房  人类污染 致病  牛分支杆菌 受感染乳房 致病 致病  布鲁氏菌属 受感染乳房  牛粪  环境 致病 致病  伯内特柯克斯体 牛粪  受感染乳房 致病 致病  普通变形杆菌 水  环境  假单包菌属 水  环境  2.2 乳房对乳房炎的抵御  乳房低御感染的部位有两处, 其中之一就是乳头的通道一乳头管,乳头上有良好的括约肌,可使乳头口封闭,阻止异物进入通道。  2.3 防止乳房暴露于细菌之中  防止乳房炎最理想的方法首先是防止细菌接触乳房,这就涉及到奶牛管理的各个方面。  2.3.1养牛设施。奶牛舍的设计标准与良好的人类住房的设计原则是相近的,其可归纳如下:  ① 尽量减少疾病的传播。  ② 奶牛拥有一个舒适和较干燥的环境。  ③ 应具备有效地消除废物的设施。  ④ 奶牛容易获得饲料以满足产奶的需要。  ⑤ 奶牛的环境条件不得发生急剧变化。  ⑥ 温度、太阳辐谢、湿度应尽量接近奶牛的“舒适区”。  ⑦ 奶牛易于接近饮水。  ⑧ 易于观察成母牛、育成牛的行为变化,特别是发情鉴定,还有牛群健康观测。  ⑨ 便于将奶牛从主要的饲养区域赶至一些特殊的地点,如挤奶台、配种架等。  ⑩ 整体设计应考虑到尽量节省劳动力。  前三点直接涉及到奶牛所处的环境,但饲料也可成为传播微生物的潜在因素(见2.3.1.3)。  2.3.1.1 栓系式牛舍。中国的许多奶农都采用了栓系式牛舍饲养奶牛,这种牛舍的设计对奶牛的环境卫生有很大的影响。设计原则之一就是既简便又能及时地将粪、尿与奶牛分开。再勤快的奶农也不可能整天在那儿清粪以避免奶牛卧下时弄脏牛体。奶牛是站立排粪尿的,因此,设计上就必须让粪尿直接排入粪尿沟内。荷斯坦牛舍牛床的尺寸应设计为:从饲槽后沿至粪尿沟前沿的长度为1.55-1.65米,而中国奶牛舍内的尺寸一般都为1.8—1.9米, 这样牛粪常被排泄于奶牛躺卧之处,常常污染牛腿、肋部和乳房。  如果奶牛可直接将粪便排入粪尿沟内,说明其站立位置正对饲槽,如果奶牛斜向站立,粪尿将会排在牛床上。但可设置分隔栏,分隔出独立的牛床,以使奶牛保持正确的姿势。不一定一牛一隔栏,可两牛一隔。  牛床应有某种铺垫,以保证栓系式牛舍奶牛肢蹄的健康。铺垫物应清洁、干燥。常采用的有秸秆、沙子、锯末,也可使用专用的橡胶垫。目前中国可生产这种橡胶垫,也买得到。使用时最重要的一点是不要太频繁冲洗橡胶垫。以免潮湿。  2.3.1.2运动场。 在讨论牛奶质量时不宜过多叙述运动场设计的各个方面,必须强调的一点就是干燥。也就是说,如果是土地面,排水应通畅。在许多奶牛场之中,这与生产卫生牛奶是完全不相适应的。水泥运动场应铺成2-3的坡度,以便尽快排走雨水。若水泥地表地设计成沟槽状以增加牛蹄阻力,其方向应顺坡向而走。  2.3.1.3饲养。有人奇怪为什么麽将饲养作为病菌传播的因素之一,但在中国它确实是紧密相关的。李斯特菌对动物和人类都是致病菌。在霉菌适宜的类似环境,特别是发酵度不足的青贮饲料,特别适宜李斯物菌增殖  2.3.2 挤奶  农业生产的挤奶过程是十分独特的,因为在充满了潜在有害微生物污染的环境中获得人类食品。正常的卫生标准应依据食品业的,而非农业的标准。在挤奶的过程中,存在着微生物对奶牛和牛奶污染的极大危险,其过程可分为三步:乳房准备、挤奶和乳房的后处理。  2.3.2.1乳房准备。乳房准备基于以下三个原因:  -刺激奶牛的泌乳反射。  -保证泌乳过程中不受微生物的侵袭。  -保证乳房上的污物不会污染牛奶。  就象野生祖先母牛看到犊牛、闻到犊牛的气味、乳房受到犊牛碰撞而产生的反应一样,品种化的奶牛对擦洗和按摩乳房也产生同样的反应。奶牛对热水冲洗和按摩会习惯性地产生泌乳反应。但擦洗乳房的毛巾和挤乳工的手都会将细菌从一头奶牛传染到另一头奶牛,这是对奶牛健康最大的危险。正确操作的要求是:每头牛分别用洁净水冲洗。现代化的挤奶台采用软管和喷嘴冲洗乳房。用一桶水洗多头牛简直就是在奶牛之间传播病菌,这是不可原谅的错误。即使按照乳品厂的标准加入消毒剂,从一头奶牛到另一头奶牛的挤奶间隔时间也保证不了化学药品的消毒作用。如果增加消毒剂的浓度,乳房细薄的皮肤受到损害的程度就会加大,这也就促进了乳房内部微生物感染的机会。如果不具备软管、喷头这些条件,那麽,用一只手提喷水器也就足够冲洗乳房了。用于擦干乳房的毛巾是微生物的主要载体,再也找不到什麽比这更有效的东西在牛群中传播病原菌了。奶业发达国家主要采用一牛一纸擦试方法,也可采用洁净的报纸替代,虽然效果不如纸巾,但便宜,起码比反复使用毛巾要好的多。  有些专家建议

  • 拟柱胞藻毒素的检测

    蓝藻(也称蓝细菌)是地球上最早出现的光合自养生物,它们利用水作为电子供体,利用太阳能将二氧化碳还原成有机化合物,并释放出自由氧。蓝藻广泛分布于淡水、咸淡水、海水和陆生环境。蓝藻能产生一系列毒性很强的天然毒素(称为蓝藻毒素,Cyanotoxin),根据化学结构可分为三类:环肽、生物碱和脂多糖内毒素。当湖泊、河流等蓝藻大量繁殖而形成水华时,其中的鞘丝藻、束丝藻、Umezakia、拟柱胞藻,主要是拟柱胞藻(Clindrospermopsis)细胞破裂,产生拟柱胞藻毒素(又称筒胞藻毒素Cylindrosperm opsin),简称CYN,分子式是C15H21N5O7S,分子量415.4,易溶于水、甲醇、二甲亚砜;是具有细胞毒性、肝毒性、神经毒性和遗传毒性的生物碱毒素,拟柱胞藻毒素是蛋白质合成的抑制剂,可能通过抑制蛋白质合成能导致肠胃炎、肝损伤、肾损伤、肠损伤,可能危及人体的健康。WHO《饮用水水质准则》对拟柱孢藻毒素表示了关注,暂时没有提出健康指导值。 我们已经完成该检测方法的确认,开始进行该藻毒素的检测了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制