当前位置: 仪器信息网 > 行业主题 > >

迟钝爱德华氏菌

仪器信息网迟钝爱德华氏菌专题为您提供2024年最新迟钝爱德华氏菌价格报价、厂家品牌的相关信息, 包括迟钝爱德华氏菌参数、型号等,不管是国产,还是进口品牌的迟钝爱德华氏菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合迟钝爱德华氏菌相关的耗材配件、试剂标物,还有迟钝爱德华氏菌相关的最新资讯、资料,以及迟钝爱德华氏菌相关的解决方案。

迟钝爱德华氏菌相关的资讯

  • 爱德华真空发布EDWARDS涡轮分子泵nEXT 730 & 930新品
    nEXT 730 和nEXT 930是EDWARDS全球销量超过8万台的明星产品——涡轮分子泵nEXT系列的新成员。nEXT 730和nEXT 930将为您带来如下收益:- 更高抽速(氮气)——730 l/s、925 l/s- 360° 任意角度安装- TIC 控制器可同时控制分子泵和三路真空规管- 维护间隔长,用户可自主维护- 设计灵活,满足OEM定制需求更多信息请见下:抽速:尺寸:创新点:更高抽速:730 L/s、925 L/s (N2) 可360° 任意角度安装 TIC控制器可同时控制分子泵和三路真空规管 EDWARDS涡轮分子泵nEXT 730 & 930
  • 电镜核心部件专题|EDWARDS谈“不简单”的真空泵技术
    前记:近五年来,在国家政策支持下,中国电镜产业化发展之路上多点开花,电镜、电镜功能附件装置与设备、电镜制样等方面不断有新的产业化技术涌现。其中不仅包含扫描透射电镜、场发射扫描电镜、聚焦离子束显微镜、透射电镜原位研究系统等重要技术的商品化,也不乏场发射枪、高压电源、光阑等电镜关键部件的攻克。在中国电镜技术产业化呈现百花齐放、国家对电镜设备产业化问题高度重视背景下,仪器信息网也别策划电镜技术系列征稿活动,共同探讨中国电镜产业技术、市场的机遇与挑战。相关投稿将整理至对应专题展示,并在仪器信息网相关渠道推广,欢迎大家投稿,电镜技术、市场相关均可(投稿邮箱:yanglz@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:15311451191,同微信)。本期主题为“电镜核心部件技术”,对应专题如下(点击图片进入专题),相关约稿将陆续上线,欢迎关注。以下为EDWARDS供稿,EDWARDS是百年专注于真空和尾气处理解决方案的制造及供应厂商,服务于半导体、平板显示、可再生和存储能源、科学分析仪器、制药和冶金等先进行业。 EDWARDS与主流分析仪器制造商多年的合作经验,使其对真空技术在电镜分析中的作用有着深刻理解。以下,EDWARDS分享了对真空技术的看法及相应解决方案。--------------------电镜中的真空技术与解决方案供稿:EDWARDS(埃地沃兹)一张漂亮的电镜照片,离不开高真空甚至超高真空环境,不管您留意到它的存在与否。电镜照片的质量与高真空环境之间到底有什么样的神秘关系呢?让我们从电镜的结构和工作原理上一探究竟。无论您在用的是扫描电镜还是透射电镜,它们都是使用一束电子束照射样品上并产生信号,这些信号被检测器检测到,然后被转换成图像,就是我们平常见到的SEM或者TEM照片了。说起来容易,做起来可就没有这么容易了。科研苦不苦,你我最清楚!电镜的测试腔内(见图表1 电镜的内部基本结构),无论是产生电子的电子枪,还是将产生的电子进行聚焦的电子透镜,抑或是控制和微调光束位置的电磁线圈,再或者是检测信号的检测器,都必须位于一个高真空甚至超高真空的腔室(镜筒)内。如果真空压力达不到要求,产生电子的灯丝会烧断;如果真空压力达不到要求,电子束与大量残留的空气分子发生碰撞而产生散射,最终导致电子束中的电子无法达到样品,得到的图像也失去了意义;如果真空压力达不到,将大大降低检测器接收信号的效率。图表1.电镜的内部基本结构(*图片来源于网络)因此,为了使得电子在测试腔内可以畅通无阻地移动,电子显微镜的真空压力需要达到1E-7bar,甚至1E-10mbar的超高真空。正是因为高真空和超高真空环境的存在,使得我们可以把研究对象放大少则几万倍,多则几十万倍。在如此高的放大倍数下,试想一下,如果有些微的震动,拍出的照片“雾里看花”;如果有些微的震动,电子束的定位出现“错乱”,得不到指定位置的信息。因此,在选型真空产品时,不但要满足获得一个高真空或者超高真空环境,同时还要保证所用真空产品能够使得整个系统处于极低振动的环境当中。获得一个高真空和超高真空的环境来之不易,所以,在满足真空压力和低震动的情况下,同时需要确保所选的真空产品质量具有高的可靠性。EDWARDS针对电镜行业的真空解决方案EDWARDS是百年专注于真空和尾气处理解决方案的制造及供应厂商,我们服务于半导体、平板显示、可再生和存储能源、科学分析仪器、制药和冶金等先进行业。EDWARDS与主流分析仪器制造商多年的合作经验,使我们对真空技术在电镜分析中的作用有着深刻理解。EDWARDS针对不同的电镜应用可提供量身定制的解决方案。图表2.全套真空解决方案 真空系统的洁净程度直接决定了电镜照片的质量,因此,前级泵的选择至关重要。EDWARDS率先推出了具有波纹管密封技术的nXDS涡旋干泵,是业内公认可提供洁净真空的前级泵。nXDS具有维护周期长、运行噪音低、极限真空好等多重优点,已经在国内外多家电镜产品上广泛应用。除此之外,还可提供多级罗茨nXRi, 隔膜泵等多种选择以满足客户的定制需求。图表3. nXDS在电镜真空系统中,保证高压系统的正常使用的同时,尽可能降低背景噪音的影响,从而获得一个优质的分子流真空环境是所有厂家追求的目标。分子泵作为最常用的高真空获得设备,也同时承担着多种责任,例如:进样腔、样品腔、电子枪等部位真空要求不一致,这就需要真空泵具有分流的设计,可以提供不同的真空度。同时电镜的超高分辨率也决定了分子泵需要有低振动的属性。EDWARDS推出的nEXT系列分子泵可充分满足以上需求,并已大量应用于不同类型的电镜中,如nEXT85系列在台式电镜中,nEXT240系列在钨灯丝电镜中的应用。图表4. nEXT系列在一些高端电镜中,甚至用到了超高真空,此时,离子泵成为了首选。Edwards提供一列不同抽速,不同应用的离子泵,尤其是电镜专用系列,获得了广泛的认可。电镜版离子泵内置了EXIMO屏蔽罩,有效降低放射电流和离子泵磁场对电子枪的污染和影响;此外,离子泵内部增加了额外的放电柱,大大提高了离子泵在超高真空下的启动能力。图表5. Gamma离子泵真空测量在电镜真空系统中同样不可或缺,Edwards拥有多年真空规管生产经验,可提供全系列真空规,测量范围覆盖1000 mbar到2E-12mbar,满足您各种需求。EDWARDS一直秉承着 “致力于科学,忠实于用户” 的宗旨,今后也将不断突破、不断进取,努力为客户提供更加完善的科学真空解决方案。
  • 42亿美元!碧迪医疗收购爱德华生命科学重症监护业务
    &bull 此次收购将解锁全新的未来价值创造机遇,预计将为碧迪医疗带来即时收益增长、调整后毛利率、调整后运营利润率和调整后每股收益&bull 拓展碧迪医疗智能互联护理解决方案:整合双方的先进医疗监测技术、先进AI临床决策工具及强大的创新研发管线&bull 重症监护将作为碧迪医疗医疗板块的一个独立业务单元运营碧迪医疗(Becton, Dickinson and Company)(纽约证券交易所代码:BDX)和爱德华生命科学(纽约证券交易所代码:EW) 宣布,双方已达成最终协议,碧迪医疗以42亿美元现金收购爱德华兹的重症监护业务(“重症监护”),后者是先进医疗监测解决方案的全球领导者,此次收购将解锁全新的未来价值创造机遇,并增强碧迪医疗在智能互联护理解决方案方面的产品组合。重症监护业务是高增长、创新型的行业领导者,专注于先进的患者监测技术,并借助先进的人工智能算法为全球数百万患者服务。其开创了血流动力学监测这一领域,该解决方案目前在全球超过10,000家医院中应用,旨在更好地实时了解重症患者的循环系统状况,从而帮助改善治疗结果。血流动力学监测与药物管理技术常在手术室或重症监护病房同时使用,为护理全程中的深远创新与系统间兼容性开辟了持久的发展机遇。重症监护业务目前拥有约4,500名员工,其中大多数在位于加利福尼亚州尔湾工作。2023年,该业务创造了超过9亿美元的收入。碧迪医疗全球董事会主席、CEO兼总裁柏乐(Tom Polen) 表示:“重症监护业务凭借其不断增长的领先监测技术、先进的人工智能临床决策工具和强大的创新渠道,扩展了碧迪医疗的智能互联护理解决方案组合,补充了碧迪医疗为手术室和重症监护室服务的现有技术。我们相信,通过碧迪医疗广泛的全球足迹、对新的和现有的医院客户的渗透率提高、数据集和平台的新创新机会以及碧迪医疗卓越操作系统的应用,这一组合开启了多种新的增长和价值创造途径。预计该交易将立即促进所有关键的财务指标,并带来强劲的回报,这突出了我们对创造持续股东价值的持续承诺。重症监护与碧迪医疗的核心创新和商业战略非常一致,是一种强大的文化契合,我们期待着欢迎凯蒂和重症监护的杰出人才加入碧迪医疗。”重症监护产门的产品线包括黄金标准的Swan-Ganz肺动脉导管、微创传感器、无创袖套、组织血氧仪传感器和监视器。其智能技术依托于先进的数据分析,结合机器学习和基于AI的预测与规范性算法,旨在帮助临床医生更全面地理解患者当前及未来的状况,并提供临床决策支持工具。 交易亮点 根据交易条款,碧迪医疗将以42亿美元现金收购重症监护业务。此项交易符合碧迪医疗在增长、盈利能力和回报率方面的所有严格投资标准。预计该交易将即时提升所有关键财务指标,包括收益增长、调整后毛利润率和营业利润率,以及调整后每股收益。重症监护业务的长期财务状况预期将实现约6%至7%的持续收益增长,第一年的调整后毛利率至少为60%,调整后营业利润率至少为25%,且随着时间的推移还将逐步提高。这与BD2025战略相符,促进增长和创造价值的并购仍然是碧迪医疗目标财务结构中的关键组成部分。预计通过适度的协同效应预计将进一步扩大利润率并创造更多价值,这些效应主要源自销售成本、供应链效率提升,以及通过实施碧迪医疗卓越运营系统原则降低一般和行政开支,同时保持重症监护业务的商业运作和创新能力资源。为了筹集收购资金,碧迪医疗计划动用约10亿美元的现金以及32亿美元的新债务。交易完成后,碧迪医疗的预计净负债率为约3倍,并期望在交易完成后12至18个月内,主要通过自由现金流偿还债务的方式,将其净负债率降至长期目标的2.5倍。该笔交易将在本年度末完成,并需经过常规监管审查和满足成交条件。 管理与架构 交易完成后,重症监护将作为碧迪医疗医疗板块内的一个独立业务单元运作,以适应其智能互联护理策略,并将继续保留在加州尔湾的业务总部。自2015年起担任爱德华生命科学重症监护部门副总裁的Katie Szyman,将负责领导碧迪医疗的重症监护业务,并直接向碧迪医疗全球执行副总裁、医疗板块总裁Mike Garrison汇报
  • Michael Edwards博士新任美国海洋光学总裁
    Michael Edwards,博士学位,于2020年7月出任美国海洋光学总裁。Michael Edwards有超过20年的管理经验,曾在赛默飞世尔和西格玛奥德里奇任职。他就公司使命和客户需求的话题分享了一些自己的看法。 问题:之前在高科技与商业领域您已经有了一定建树,是什么吸引你加入海洋光学?回答:我加入海洋光学是被英国豪迈集团(海洋光学母公司)的愿景所吸引,豪迈集团的愿景是为人类创造一个更安全,更干净,更健康的世界。这个对于我来说很有吸引力,特别是当我考虑到这个愿景将会对世界做出的巨大贡献。 问题:在这短短几个月时间中,你看见了“更安全,更干净,更健康”的事例了吗?回答:我们的客户包含很多的领域,比如环保,保健,安保,回收利用等等。海洋光学在所有的领域用我们自己的产品阐述着“更安全,更干净,更健康”的使命。我们正在履行自己的使命-为人类提供一个更安全,更干净,更健康的世界。 问题:除了化学工程的学术背景和领导岗位的工作经历,我们对于Michael Edwards还应该有什么样的了解?回答:我对于数学和科学有与生俱来的热情,当然对于商务和管理也是如此。对于我来说,天生的热情是驱动我的动力,同时它也影响我为人处事的准则和我的言行举止。如果你对一件事富有热情,那热情就会驱使你去做好这件事。就像我小时候,热爱数学,所以我会热衷于解决数学问题。而现在海洋光学也会用科学的技术与方法为我们的客户解决问题与烦恼。 问题:由于新冠病毒等原因,这一年对很多人来说比较困难。这些挑战对于企业和客户来说意味着什么?回答:我们从没有经历过这样一个全球性的流行病,就像我们进入了一个未知的水域,这对我们所有人来说都是从未有过的经历,而我们也在这样的经历中学习与进步。站在客户角度来说我觉得他们有一些担忧,例如产品供应的稳定性,他们会想知道我们的工厂是否稳定且不会影响产品供应。 问题:为什么顾客会选择海洋光学作为供应商?回答:第一,在我们的领域我们做得十分出色。我们是小型光谱仪的先驱者,所以我们在小型光谱仪领域非常专业。目前我们准备发展壮大公司,所以我们会贯彻以客户为中心的思维,因为客户是企业的命脉。 问题:回顾与展望2020,最激励你的是什么?回答:未来最激励我的事情是能够和海洋光学的团队一起工作,和所有优秀的员工一起为公司规划出一条新的道路,并向市场展现公司的潜力。当然这并不是一件简单的工作,同时这也不是我能够独自完成的工作。这将会是一个漫长且荆棘密布的旅程,但是我们终将克服所有的困难。每当我想到我将会和同事们一同踏上这个旅途,我就会很兴奋。因为我们将会共同面对所有的挑战,同时我们也会战胜所有的困难。我将会带领海洋光学向着公司的目标而前进。
  • Edwards收购超高真空泵制造商Gamma
    2013年8月9日,Edwards集团宣布,它已经签订了一项最终协议,收购Gamma Vacuum(以下简称为:Gamma)业务及若干资产。Gamma Vacuum是超高真空(UHV)泵设计、制造和服务的市场领导者。Gamma成立于2003年,在离子泵和钛升华泵制造和分销方面具有很好的声誉。   Gamma的两位创始人将继续留在位于明尼苏达州现有工厂,负责业务和制造。该交易预计将在2013年9月完成。   Gamma的产品范围包括主要适用于研发领域的超高真空泵,如高能物理,及科学和工业应用等。 2012年Gamma的收入超过900万美元,客户超过350个,主要分布在美国和欧洲和日本。这些客户包括范围广泛的政府实验室、大学和专业制造商。(编译:杨娟)
  • 帝肯公司携手波士顿儿童医院为蒙古提供Sunrise酶标仪
    近期,波士顿儿童医院,布里格姆女子医院及Tecan三方合作,向蒙古医学研究人员捐赠了一台Sunrise酶标仪,用以协助他们研究普通人群的维生素D水平。 哈佛大学及布里格姆女子医院副教授Janet Rich‑ Edwards博士对此评价道:&ldquo 在收到Sunrise酶标仪以前,蒙古健康科学研究所的研究员们在研究本地人群维生素D不足的问题上存在着种种困难。由于缺乏设备,他们只能将冷冻样品送去美国检测,这不仅对物流来说是个可怕的噩梦,更是对研究本身的巨大障碍。在此,我要特别感谢一个人,他就是波士顿儿童医院临床和流行病学实验室负责人Gary Bradwin先生,感谢他献出了大量宝贵的时间及精力,帮助蒙古科研工作者建立起自己的维生素D检测平台。&rdquo Gary先生补充道:&ldquo 我来到蒙古,与大家一起研究了各种不同的维生素D检测法,最终选择了ELISA检测法,但苦于实验室设备奇缺----尤其是酶标仪落后,一次只能处理一个8联孔条带;实验结果也错误百出:它不具备内置电脑或外接电脑功能,测定的吸光度仅能够依靠自带的一个小型打印机输出。这增加了数据处理的难度及准确性。后来我想到,我们有一台备用的Sunrise,于是我决定在确认过它能够使用后,赠送给蒙古实验室,显然他们比我们更需要它。而在给这台Sunrise安装Magellan软件时,我遇到了一些小问题,最终联系了Tecan。&rdquo Tecan在得知Gary先生要向蒙古捐赠一台Sunrise以帮助测量蒙古儿童的维生素D水平后,迅速作出回应,不仅免费修理了这台Sunrise,还将这套系统送去澳大利亚做了固件升级。对此,Gary先生总结道:&ldquo Tecan的支持令我十分感动,他们为这台Sunrise做了大换血,一切都变得更好了!现在它正在蒙古的实验室里良好地运作着。&rdquo
  • 软糖中含铝添加剂可致儿童智力下降
    近日,卫生部在其官方网站公布《食品安全国家标准食品添加剂使用标准》征求意见稿编制说明,准备在儿童食品中首先禁用12种含铝添加剂。涉及的合成着色剂品种有:赤藓红、靛蓝、亮蓝、柠檬黄、日落黄、胭脂红、诱惑红及其各类铝色淀。   中国居民膳食铝暴露风险评估结果显示,7-14岁儿童通过膨化食品及糖果摄入的铝相对较高。   昨天记者在市场上调查发现,含铝添加剂因其成本低廉,目前在儿童膨化食品及糖果中大量使用。医生提醒,长期食用含铝添加剂,可导致免疫力下降,增加老年痴呆症发病率。   2元的糖果用了6种染色剂   昨日上午,记者走访了市区多家大型超市,发现这些超市儿童食品专柜规模庞大,薯片、糖果等味道鲜香的食品很受孩子们青睐,许多家长在挑选这类食品时一般都是先看外观,再看价格,很少有人仔细瞅瞅包装后面的配料表。"我感觉大商场卖的糖果应该没有问题吧?"市民赵女士说,孩子们都喜欢色泽鲜亮的糖果,有时自己也会食用。   记者拿起赵女士刚刚购买的一款标价为2元的软糖,翻看配料一栏,诱惑红、柠檬黄、亮蓝……一共6种染色剂。"这些东西不能吃吗?"赵女士满脸疑惑地反问。记者查看该超市全部四十多种糖果,九成产品都有含铝添加剂。在超市散装糕点摊位前,硅铝酸钠和酸性磷酸铝钠是配料表中的"常客",糕点导购员小赵说她也不知道这些东西是用来干什么的。   没配料表的"火炬糖"日销上百个   如果说大超市售卖的正规厂家生产的糖果还能让我们知晓各类添加剂的使用情况,那么在南洪街、华茂街等小商贩集中的零食摊,添加剂的使用情况着实令人担忧。   在道恕街小学旁的几家零食摊点,各种三无廉价食品看着让人忧心。许多色彩鲜艳的商品往往只以"染色剂"和"膨化剂"这样模糊的表达来标注食品添加剂,而食品中究竟用了哪些添加剂我们难以知晓。老板自豪地告诉记者,她光一款火炬糖的零食一天就能卖一百个。对于进货渠道,老板的回答是支支吾吾,只是告诉记者这些东西都是从正规厂家进的,吃了绝对没事,并称自己家孩子每天都吃。记者拿起这款"火炬糖",彩色的糖果直接塞在一个塑料味浓重的壳里,有没有塑化剂咱先不讨论,没有配料表标注就难让人放心。   含铝添加剂成本低廉   在西大街经营糖果DIY生意的崔先生向记者道出实情,他说目前大部分糖果经营企业为了降低成本,一般都会选择向产品里添加各类含铝添加剂,这样可以增加产品的美观度,吸引更多的消费者。"这应该说是所有糖果行业中的一个潜规则。"崔先生也承认自己的糖果店也会向顾客提供这样的着色产品。"没办法,替代产品技术还不成熟,再说价格又高,我们这样的小店不可能采用。"赵先生说,虽然短期内服用含铝的添加剂不会有什么影响,但自己从开店之后就从来没吃过糖果跟薯条。对于使用含铝添加剂到底会降低多少产品成本,赵先生称这是商业秘密,但肯定会降低很多。   食铝过量易得老年痴呆   长时间食用含铝添加剂,会对人体健康产生哪些影响?记者就此问题咨询毓璜顶医院营养科主任宋新娜。宋主任说,从营养学的角度讲,赤藓红及其铝色淀等染色剂对人体都没有任何的营养价值,铝也不是人体所必需的金属元素。而且,经过医学专家研究证实,脑组织对铝元素有亲和性,脑组织中的铝沉积过多,可使人记忆力减退、智力低下、行动迟钝、催人衰老。经过检测发现,老年性痴呆症的患者脑组织中铝含量超过正常人的5到30倍,所以食铝过量是老年性痴呆症的主要原因。   记者查询医学资料得知,胭脂红等染色剂还会使人体的免疫力下降,并且增加癌症的发病率,所以不但孩子要少吃含有这些添加剂的食品,就是成年人也应该尽量少食用含铝添加剂的食物。   禁用铝添加剂有益安全   含铝添加剂是否非用不可?可否找到替代产品?从事食品加工技术的研究员滕飞告诉记者,他天天跟食品添加剂打交道。这些含铝的食品添加剂都是采用工业手段提取的,很多添加剂来自于石油的附属物。作为工业加工的产物,这些添加剂价格非常低廉,染色和改良食品的效果好,性价比高,被食品生产厂家广泛使用。   "其实我国的科研人员早就开始对相关替代产品的研究。"滕飞说,与铝添加剂作用相似的生物制剂目前已陆续投入食品使用,虽然科研成本较高,效果略差,但如果真的能禁止含铝添加剂的使用,长久来看,对消费者的食品安全还是利大于弊的。   北方人摄铝多过南方   记者查阅联合国粮农组织和世界卫生组织下的食品添加剂联合专家委员会(JECFA)第74次大会报告,与会专家将铝的暂定每周耐受摄入量(PTWI)修订为每周每公斤体重2mg.2011年,国家食品安全风险评估中心参考JECFA的最新评价结果,组织对食品中铝进行了风险评估。评估结果显示,我国低年龄组和高食物消费量人群膳食铝摄入量均已超过每周每公斤体重2mg.值得注意的是,北方地区居民,由于面食消费量大,如含铝酵母,有60%北方居民的铝摄入量超过此标准。相比之下,我国膳食铝摄入量高于其他国家。   七种染色剂将下岗   为保护儿童饮食健康,卫生部修订工作组建议撤销所有含铝食品添加剂,其中着色剂成为被禁"大户",在12种被禁的含铝添加剂中,涉及赤藓红及其铝色淀、靛蓝及其铝色淀、亮蓝及其铝色淀、柠檬黄及其铝色淀、日落黄及其铝色淀、胭脂红及其铝色淀、诱惑红及其铝色淀7种着色剂。   除了着色剂外,为了减少含铝食品添加剂的品种,卫生部修订工作组参考国际上含铝食品添加剂的最新规定,结合我国食品工业的实际使用情况,硅铝酸钠和辛烯基琥珀酸铝淀粉在相应的食品类别中可以由其他相同功能的食品添加剂品种替代。
  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style=" text-align: center text-indent: 0em max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " strong 图1 氧化石墨烯结构示意图(a)和HRTEM图(b) /strong /p p style=" text-align: justify text-indent: 2em " 由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 氧化石墨烯粒径调控技术 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下: /p p style=" text-align: justify text-indent: 2em " strong 1)氧化切割法 /strong /p p style=" text-align: justify text-indent: 2em " 在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。 /p p style=" text-align: justify text-indent: 2em " strong 2)离心筛选法 /strong /p p style=" text-align: justify text-indent: 2em " 离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。 /p p style=" text-align: justify text-indent: 2em " 在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。 /p p style=" text-align: justify text-indent: 2em " strong 3)超声细碎法 /strong /p p style=" text-align: justify text-indent: 2em " 采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。 /p p style=" text-align: justify text-indent: 2em " 在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。 /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 氧化石墨烯粒径测试方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下: /p p style=" text-align: justify text-indent: 2em " strong 1)扫描电子显微镜 (Scanning& nbsp Electron Microscopy, SEM)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图2 氧化石墨烯粒径SEM图 span style=" text-indent: 2em " & nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " strong 2)透射电子显微镜 (Transmission Electron Microscope, TEM) /strong /p p style=" text-align: justify text-indent: 2em " TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图3 氧化石墨烯粒径TEM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 3)原子力显微镜 (Atomic Force Microscope, AFM) /strong /p p style=" text-align: justify text-indent: 2em " AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图4 氧化石墨烯粒径AFM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 4)动态光散射 (Dynamic Light Scattering, DLS) /strong /p p style=" text-align: justify text-indent: 2em " 光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。 /p p style=" text-align: justify text-indent: 2em " strong 5)拉曼光谱法 (Raman)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " 拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图6 氧化石墨烯粒径Raman图 /strong /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 总结 /strong /span br/ /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " 参考文献: /p p style=" text-align: justify text-indent: 2em " [1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285. /p p style=" text-align: justify text-indent: 2em " [2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472. /p p style=" text-align: justify text-indent: 2em " [3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6. /p p style=" text-align: justify text-indent: 2em " [4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207. /p p style=" text-align: justify text-indent: 2em " [5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321. /p p style=" text-align: justify text-indent: 2em " [6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55. /p p style=" text-align: justify text-indent: 2em " [7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475. /p p style=" text-align: justify text-indent: 2em " [8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252. /p p style=" text-align: justify text-indent: 2em " [9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49. /p p style=" text-align: justify text-indent: 2em " [10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8. /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " 作者简介: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 150px height: 196px float: left " src=" https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width=" 150" height=" 196" border=" 0" vspace=" 0" / 胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 12月18日,胡学兵教授将亲临由仪器信息网组织的 strong span style=" text-indent: 2em color: rgb(0, 176, 240) " “ a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 第二届‘纳米表征与检测技术’公益网络研讨会 /span /a ” /span /strong ,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 免费报名地址: /span /strong /span a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" text-decoration: underline " strong span style=" text-indent: 2em " https://www.instrument.com.cn/webinar/meetings/nano2/ /span /strong strong span style=" text-indent: 2em " /span /strong /a /p p style=" text-align: center " span style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" img style=" max-width: 100% max-height: 100% width: 664px height: 246px " src=" https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" width=" 664" height=" 246" border=" 0" vspace=" 0" / /a /span /p
  • 实验室家具知名企业Hamilton亮相analytica China 2016
    p style=" text-align: left "   第八届慕尼黑上海分析生化展(analytica China 2016)于2016年10月10日,在上海新国际展览中心隆重展开,此次展会共吸引了来自全球25个国家和地区的848家企业参展,其中有200余家企业为首次亮相analytica China展会。analytica China已成为各厂家争相发布其新产品和展示其新技术的必争之地。在此次展会上,哈弥顿实验室设备(上海)有限公司向现场观众展示了其最新研发的实验室家具系列,吸引了广大用户的关注。 /p p style=" text-align: center " img title=" 11_meitu_2.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/de56ff70-d7a1-4f84-9a22-541f2c5a2e07.jpg" / /p p style=" text-align: center " strong 哈弥顿实验室设备(上海)有限公司通风柜 /strong /p p   日常实验中充满了溢出、腐蚀、高强度使用以及各种各样的侵蚀损害。因此,对于实验室家具来说面临着比较恶劣的使用环境。实验室家具必须坚固耐用以应付各种恶劣的使用环境和要求。Hamilton公司由詹姆斯· 爱德华· 汉密尔顿于1880年成立,总部位于美国曼妮托沃市。Hamilton公司成立之初主要从事实验室通风柜和实验室家具的生产,其用户涵盖了教育、医疗和工业领域等。上世纪90年代,Hamilton被Fisher Scientific收购,成为Fisher Hamilton. 2012年,美国Open Gate Capital公司从Thermo Fisher Scientific购买了LWS(原Fisher Hamilton),改名为Hamilton Scientific LLC。2015年美国Laboratory Solution International公司从Open Gate Capital公司购买了所有Hamilton Scientific LLC的知识产权以及中国的独资企业(哈弥顿实验室设备(上海)有限公司),在美国威斯康星的马尼托沃克重新成立了Hamilton Laboratory Solution LLC。 /p p style=" text-align: center " img title=" 12_meitu_3.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/950fe8f1-6756-49a2-9360-020fd18758ba.jpg" / /p p style=" text-align: center " strong 哈弥顿实验室设备(上海)有限公司展位 /strong /p p   在此次展会上,Hamilton公司向现场用户展示介绍了Hamilton Distinction实验室家具系统、Hamiltor MAX系统和CONTRAST钢木组合系列。Hamilton Distinction实验室家具系统是目前市场上柔性较大,功能较全的实验室工作台体系。每个工作站都能配以能满足实验室快速变换的要求。同时,Hamilton Distinction是行业内第一家UL962认证的实验室家具系统,即在绝缘性,接地阻抗,电线拉拽和强度上,均符合UL962-商用装备的要求。Hamiltor MAX系统适用于工作流程和人员变化的场合。容易的调节和最少的重组时间是其主要的优点。使用模块式,易移动的工作台组件的益处为:可重新使用的组件,节省了成本和时间组件可移动以适应人员,设备和流程的改变。对于残疾人需求的满足是迅速和有效的。增进了操作人员的舒适性从而改进了工作效率。与服务管线的方便连接降低了安装和维护的时间和成本。服务管线排布的结构连接和地面开挖是最低的,从而降低了成本,降低了实验室整个生命周期的成本。 /p p   此外,在此次analytica China 2016期间,Hamilton公司还举办了代理商答谢会,感谢多年来代理商对Hamilton公司的支持,此外也借助此次答谢会代理商也可以与厂商就产品技术等问题进行更好的沟通和交流。 /p p img title=" 10_meitu_1.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/82aa8305-d7c8-40f6-869f-64159f213f9a.jpg" / /p p style=" text-align: center " strong Hamilton公司CEO StevePribek(左一) /strong strong Hamilton公司中国区总经理 崔勤渊(左二) /strong /p
  • 关注小麦粉中毒素,让居家战“疫”美食更安心
    导读一场疫情,让不少网友解锁厨艺技能之余,也感受到了厨房、美食的温暖力量。人们足不出户便可上演一出“疫情下的舌尖”,面包、蛋糕、包子、馒头、油条、披萨… … 只要有一包小麦粉在手,谁还不是厨艺界一颗冉冉升起的新星呢?小编近来查询了国家和省级市场监督管理局自2019年2月~2020年2月发布对小麦粉的质量抽检数据。结果显示,近一年来监管部门共检出33批次不合格小麦粉,不合格原因主要是真菌毒素超标,其中呕吐毒素的不合格率高企。 01 什么是呕吐毒素呕吐毒素(Vomitoxin),又称脱氧雪腐镰刀菌烯醇(DON),属单端孢霉烯族化合物,通常是由生长在谷类物品(如小麦、玉米和大麦)霉菌镰红菌素生成的,可引起猪的呕吐,故得名。当人摄入了被DON污染的食物后,会导致厌食、呕吐、腹泻、发烧、站立不稳、反应迟钝等急性中毒症状,严重时损害造血系统造成死亡。国际癌症研究机构将呕吐毒素被列为3类致癌物。我国食品安全国家标准《GB 2761-2017食品中真菌毒素限量》中规定谷物及其制品中呕吐毒素限量为1000 μg/kg。 02岛津解决方案实验部分 检测仪器本实验使用超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统。图1 岛津超快速三重四极杆液质联用仪 前处理方法参照GB 5009.111-2016《食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》标准中“第一法 同位素稀释液相色谱-串联质谱法”中的样品提取和净化方法。 主要方法参数色谱柱:Shim-pack XR-ODS III(75 mm x 2.0 mmI.D., 1.6 μm)流动相:A相-0.01%氨水,B相-乙腈洗脱方式:梯度洗脱离子化模式:ESI(-) 分析结果 标准品色谱图呕吐毒素(DON)及其乙酰化衍生物15-ADON和3-ADON的标准品色谱图如下图所示。校准曲线配制不同浓度的混合标准工作液,按上述条件进行测定。DON,15-ADON和3-ADON分别以13C-DON、13C-15-ADON和13C-3-ADON为内标物,以浓度比为横坐标,峰面积比为纵坐标,内标法制作校准曲线。回收率考察在空白小麦中添加标准溶液,加标浓度为10 μg/kg,平行测定3次,DON、15-ADON、3-ADON3种毒素回收率均在94.8~110.2%之间,回收率良好。 实际样品分析在某市售小麦粉样品中检出DON和 3-ADON,含量分别为130.85和6.40 μg/kg,低于1000 μg/kg的限值要求。03小结使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用建立了测定小麦粉中呕吐毒素及其衍生物的方法,方法快速、简单,灵敏度高,可适用于谷物及其制品中该类毒素的检测。 岛津公司作为全球著名的分析仪器厂商,长期以来一直关注国内外食品和药品安全,积极应对,及时提供全面、快速有效的整体解决方案或数据库。为了更好地帮助广大用户开展生物毒素残留分析检测,岛津公司已推出了《食品中真菌毒素检测整体解决方案》和《LC-MS/MS生物毒素分析方法包》,供相关用户参考使用。以下为最新版生物毒素分析方法包包含的毒素品种:
  • 生态系统可抵消部分化石燃料碳排放
    p   国际社会公认,当前气候变化主要是由CO sub 2 /sub 浓度升高造成的。而减缓CO sub 2 /sub 浓度升高的主要途径一是节能减排,二是调节自然生态系统固碳。前者效果明显,而后者的作用依然在探索之中。中国科学家通过5年持续观察研究得出结论:中国陆地生态系统在2001年—2010年期间平均年固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1%。《美国科学院院刊》以专辑形式发表了该项目的7篇研究论文。 /p p   当今世界范围最大的野外调查项目 /p p   陆地生态系统可以通过植被的光合作用吸收大气中的大量CO sub 2 /sub 。利用陆地生态系统固碳,是减缓大气CO sub 2 /sub 浓度升高最为经济可行和环境友好的途径。2011年初,中科院启动了“应对气候变化的碳收支认证及相关问题”专项,下设“生态系统固碳”研究,力图通过对中国各类生态系统的碳储量和固碳能力进行系统调查和观测,揭示中国陆地生态系统碳收支特征、时空分布规律以及国家政策的固碳效应。 /p p   项目首席科学家之一方精云院士说,来自中科院及高校、部委所属35个研究院所的350多名科研人员,按照专项统一的实验设计和调查方法,系统调查了中国陆地生态系统(森林、草地、灌丛、农田)碳储量及其分布,调查样方17000多个、累计采集各类植物和土壤样品超过60万份。“这是当今世界范围最大的野外调查项目,为研究中国植被生产力、碳收支以及生物多样性的宏观格局提供了大量野外实测数据,也为我国国土资源规划、保护与利用等提供了重要的本底数据。” /p p   生态工程和秸秆还田均固碳 /p p   自2015年开始,科研人员创新科研组织模式、打破课题间壁垒、实现数据完全共享,在凝练出若干个重大科学问题的基础上,对所有采集数据,统一汇总整理,统一控制数据质量、统一数据挖掘,从多个层面系统深入地分析了中国陆地生态系统碳源汇特征、驱动因素以及相应的生态系统功能,取得了一系列原创性重大成果。 /p p   中国科学家的代表性成果包括:1.中国陆地生态系统在过去几十年一直扮演着重要的碳汇角色。在2001年—2010年期间,陆地生态系统年均固碳2.01亿吨,相当于抵消了同期中国化石燃料碳排放量的14.1% 其中,中国森林生态系统是固碳主体,贡献了约80%的固碳量,而农田和灌丛生态系统分别贡献了12%和8%的固碳量,草地生态系统的碳收支基本处于平衡状态 2.首次在国家尺度上通过直接证据证明人类有效干预能提高陆地生态系统的固碳能力。例如,我国重大生态工程(天然林保护工程、退耕还林工程、退耕还草工程,以及长江和珠江防护林工程等)和秸秆还田管理措施的实施,分别贡献了中国陆地生态系统固碳总量的36.8%(7400万吨)和9.9%(2000万吨) 3.首次在国家尺度上开展了群落层次的植物化学计量学研究,验证了生态系统生产力与植物养分储量间的正相关关系,揭示了植物氮磷元素的生产效率 4.首次揭示了生物多样性与生态系统生产力和土壤碳储量之间的相关关系,证实了增加生物多样性不仅能提高生态系统的生产力,而且可以增加土壤的碳储量。 /p p   审稿人对成果高度评价 /p p   对于中国科学家的论文,美国科学院院士InderM. Verma认为:“该专辑主题不仅在科学上,而且在社会领域都非常重要,应该会在世界上引起广泛的兴趣和产生重大的影响。”“论文为证实生态恢复工程对中国碳汇的影响方面作出了重要贡献。” /p p   另一位审稿人指出:“该研究非常重要。论文提供的翔实、独特的数据库将有助于地理学家、生物地球化学家、植物生态学家、生态生理学家、模型学家在大尺度范围上验证一些以往在小尺度上得到的假说。” /p p   有国内专家指出,这项研究成果也从科学角度有力地宣示了中国在生态文明建设中的成就,不仅提供了人类干预促进生态系统碳吸收的新见解,也为其他发展中国家提供了可借鉴的经验。 /p
  • 美国波士顿大学研究生实验室内感染病菌
    据美国波士顿卫生官员证实,波士顿大学一名研究生近日在做实验时感染脑膜炎奈瑟氏球菌(Neisseria meningitidis)。通过遗传分析表明,从该患病学生血样中分离出的细菌与来自其实验室的样本相匹配。   当地媒体报道称,该学生工作的实验室安全级别相对较低,为生物安全2级水平,而不是高科技的4级水平。2004年,波士顿大学的3名科学家就曾在实验室遭到感染,使得波士顿大学被罚8100美元。   波士顿大学医学校区副教务长Thomas Moore在最新感染事件发生后表示:“众所周知,在实验室里工作要面临被感染的风险。但这并不意味着他们总是会被感染。”
  • 小菲课堂|导致热像仪卡顿,非均匀性校正该如何选择?
    在小伙伴们使用热像仪的过程中,一定会发现在进行热图像拍摄时,有时会卡顿并且热像仪会发出咔嚓的声音,这时候没必要惊慌,它这是在进行非均匀性校正(NUC),为什么会这样呢,小菲来为你详细解答下~执行非均匀性校正可产生更高质量的图像非均匀性校正(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整增益和偏移,生成更高质量、更精确的图像。在NUC过程中,热像仪快门落在光学和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校正)。1热像仪进行NUC的时间在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,测量精度。热像仪将自动执行一个NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能。这将有助于确保准确性。2控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。3执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校正(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每像素偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。对于非均匀性校正(NUC)菲粉们还有哪些疑问呢?留言给小菲将详细为您解答哦~
  • 膨化食品中脂肪含量的测定
    膨化食品中脂肪含量的测定本方法是一种快速有效的萃取膨化食品中脂肪含量的测定方法,方法过程为先将样品均质后,依照索氏萃取原理使用 E-500 脂肪萃取仪进行萃取,索氏萃取是利用溶剂回流和虹吸原理,使固体物质每一次都能为纯的溶剂所萃取,萃取完成后进行干燥恒重最后通过重量法计算脂肪含量。01相关仪器脂肪萃取仪 E-500均质仪 B-400分析天平(精度± 0.1 mg)烘箱/ 真空干燥箱02实验过程1步骤样品均质, 均质仪 B-400按照索氏萃取的原理, 用萃取仪 E-500 进行萃取计算脂肪含量2样品均质将大约 50g 左右样品放入样品杯(样品高度不要超过 BUCHI 的标志) 将样品杯放入均质仪关闭保护门保持按住开关向右侧 (IN),均质样品 1-2 秒,马上松开开关保持按住开关向左侧 (OUT),使刀头离开样品杯,必要时取出样品杯,轻轻摇动和混匀样品 再次放入样品杯,重复均质样品 3 次将样品降温,待用3脂肪萃取根据脂肪萃取的要求一定要使用干净和干燥的烧杯,将烧杯放到烘箱中,在 102°C 干燥 30min 后在干燥器中干燥 1h 后,进行准确称重同时记录质量。4索氏萃取准确称量样品至萃取纸滤筒,使用钳子将纸滤筒放入萃取腔并用垫圈固定好,调节光学传感器的高度,使刻度线略高于样品的位置。见下图:萃取中索氏萃取腔添加溶剂到烧杯中,放到对应的加热位置后,关闭安全防护门,降低萃取架,激活相应的萃取位置。打开冷凝水或者循环冷却机,根据表 1 设置参数后开始进行萃取:表 1: 萃取仪 E-500 参数设置溶剂石油醚萃取步骤70 min淋洗5 min干燥smart dry(on)溶剂体积120 mL萃取样品干燥,将萃取结束后的烧杯放入烘箱中,在 102 °C 的烘箱中烘干至恒重,再将烘干后的烧杯放入干燥器中冷却至室温 1h,准确记录烧杯质量。5计算%Fat = (m总质量 - m烧杯质量)/m样品质量 *100%03实验结果与讨论步琦脂肪萃取仪完全按照国标法进行萃取,食品中脂肪含的测定结果符合国标法要求的误差范围,同时脂肪含量高和低的样品,均可以获得较为准确的测量结果。具体结果见表 2表2:部分膨化食品中的脂肪含量的测定结果_样品质量msample [g]空杯质量 mbeaker [g]总质量 mtotal [g]脂肪含量 [g/100 g]测定含量 [g/100 g]样品 1(香蕉味酥)1.9895108.3915109.096135.935.4样品 2(脆锅巴)1.9896108.0975108.515120.820.6样品 3(油炸点心)2.0209108.7691109.491135.935.7样品 4(洋葱圈)2.0089110.0226110.484223.123.0样品 5(仙贝)2.0033108.8157109.202819.919.3样品 6(薯条)2.0390110.7188111.171433.433.5本研究选择 BUCHI 公司的 E-500 脂肪萃取仪将膨化食品根据索氏萃取方法进行脂肪萃取,六个萃取位可以同时萃取实验方案,分析物保护功能,高效智能,准确可靠的优点。该方法比标准索式萃取方法相比节省了 2-3h 的萃取时间并且能够获得可靠的脂肪含量结果。
  • 呕吐毒素的危害与检测
    呕吐毒素(vomitoxin),又称脱氧雪腐镰刀菌烯醇(DON),化学名为3α, 7α, 15一三羟基草镰孢菌-9-烯-8-酮,属于单端孢霉烯族化合物,主要由禾谷镰刀菌、尖孢镰刀菌、串珠镰刀菌、拟枝孢镰刀菌、粉红镰刀菌、雪腐镰刀菌等镰刀菌产生。另外,头孢菌属、漆班菌属、木霉属等的菌株都可产生该毒素。单端孢霉烯族毒素共有150多种,是一类强有力免疫抑制剂,所引起典型症状是采食量降低,所以这类毒素又叫饲料拒食毒素。呕吐毒素是其中最重要一种毒素,主要来自镰刀菌属,尤其是禾谷镰刀菌和黄色镰刀菌由于它可以引起猪的呕吐,故又名呕吐毒素。呕吐毒素被列为3类致癌物。它们具有很高的细胞毒素及免疫抑制性质,因此,对人类及动物的健康构成了威胁,特别是对免疫功能具有明显的影响。DON广泛存在于全球,主要污染小麦、大麦、玉米等谷类作物,也污染粮食制品,当人摄入了被DON污染的食物后,会导致厌食、呕吐、腹泻、发烧、站立不稳、反应迟钝等急性中毒症状,严重时损害造血系统造成死亡。由于中国传统饮食习惯中粮谷比例大大高于西方,使得呕吐毒素的危害更为突出。谷物及饲料中DON的含量有严格的限量标准。我国谷物中DON的限量标准为1.0 mg/kg。我国用于检测呕吐毒素的液相色谱法,常常会利用呕吐毒素(脱氧雪腐镰刀菌烯醇)免疫亲和柱,免疫亲和柱可选择性吸附样品液中的脱氧雪腐镰刀菌烯醇,从而对脱氧雪腐镰刀菌烯醇起到非常针对性的纯化作用。利用抗原抗体反应,抗体连接在柱体内,样品经过提取、过滤后,缓慢的通过脱氧雪腐镰刀菌烯酵免疫亲和层析柱,在免疫亲和柱内毒素与抗体结合,之后洗涤免疫亲和柱除去没有被结合的其他无关物质,再用甲醇洗脱,然后用于检测。过净化柱后可直接用于液相脱氧雪腐镰刀菌烯醇含量的检测,可提高检测方法的准确度,达到快速测定的目的。参考标准《GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》 ,月旭呕吐毒素(脱氧雪腐镰刀菌烯醇) DON免疫亲和柱完成符合标准要求。以面粉为样品,采用月旭呕吐毒素(脱氧雪腐镰刀菌烯醇) DON免疫亲和柱净化,然后进行检测。净化步骤回温:将免疫亲和柱从低温条件下取出后,恢复至室温,将柱内液体放出;上样:待净化液全部上样,弃去;淋洗:5mL磷酸盐缓冲液,5mL水,弃去,抽干柱子;洗脱:加入2mL甲醇洗脱,抽干柱子;浓缩:将洗脱液置于 50℃水浴中氮吹至干,用20%甲醇水定容至1mL,用0.22μm滤膜过滤,上机测定。色谱条件色谱柱:月旭Ultimate® XB-C18 4.6×150mm,5μm;流动相:水:甲醇(80:20);流速:1.0mL/min;柱温:30℃;进样量:20μL;波长:218nm 。回收率结果如下图:图一:面粉样品空白图谱
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 美国缅因州修订全氯乙烯干洗机法规
    2013年9月9日消息,美国缅因州环保部(DEP)修订了全氯乙烯((Perc)干洗机法规第125章,指定了Perc排放测量的测试地点,并删除了过时措施。   修改后的法规规定,在离干洗机的洗衣桶3英尺(0.9米)范围内,Perc的排放体积不应该超过100ppm。该法规还将使缅因州法案与美国国家有害空气污染物排放标准(Neshaps)进行协调一致。   DEP表示,使用比色气体分析器管或感官检查的检测和合规措施已经被淘汰或被认为无效 后者的原因是多数干洗系统的所有者或运营者对Perc气味的感觉已逐渐迟钝。   全氯乙烯是一种有害空气污染物,可能会引起癌症或损害人类的神经系统。   修订后的法案已于8月28日生效。
  • 医用原子吸收光谱仪快速检测血铅含量
    近期有关血铅的新闻再次占据了媒体的版面,人们又一次开始关注血铅超标的问题。那么什么是血铅超标?如何界定血铅是否超标?血铅超标有什么症状呢? 血铅超标是指血液中铅元素的含量,超过了血液铅含量的正常值,如果过高,就说明发生了铅中毒。它会引起机体的神经系统、血液系统、消化系统的一系列异常表现,影响人体的正常机能。 中国国家血铅诊断标准:   正常血铅水平:0--99微克/升(L)。 等于或大于100微克/升,为铅中毒。   100--199微克/L为铅中毒。   200--249微克/L为轻度中毒。   250--449微克/为中度中毒。   等于或高于450微克/L为重度中毒。   铅是一种具有神经毒性的重金属元素,在人体内无任何生理功用,其理想的血铅浓度为零。然而,由于环境中铅的普遍存在,绝大多数人体中均存在一定量的铅,铅在体内的量超过一定水平就会对健康引起损害。   国内最新研究成果表示,儿童体内血铅超过100微克/升,智能指数就会下降10~20分。国际消除儿童铅中毒联盟的专家告诫说,中国如果不注意铅中毒的防治,20年后中国人平均智力将比美国人低5%。   血铅症状:   1.神经系统:易激惹、多动、注意力短暂、攻击性行为、反应迟钝、嗜睡、运动失调。严重者有狂躁、谵妄(神志错乱、迷惑、语无伦次、不安宁、激动等特征并时常带有妄想或幻觉的暂时性神经失常)、视觉障碍、颅神经瘫痪等。   2.消化系统:腹痛、便秘、腹泻、恶心、呕吐等。   3.血液系统:小细胞低色素性贫血等。   4.心血管系统:高血压和心律失常。   5.泌尿系统:早期氨基酸尿、糖尿、高磷尿。 据报道,我国儿童铅中毒现象是普遍存在的。主要由于对血铅含量超标不够重视而酿成的大事件越来越多,在社会上的反响也越来越强。我国儿童铅中毒状况已远远超过工业发达的国家。无论是平均血铅水平还是铅中毒的流行率均已明显超过美国儿童。据不完全统计,我国儿童20%以上超过血铅水平最低标准,有一部分已达到严重的铅中毒。 做为国内首家生产医用原子吸收光谱仪的分析仪器企业,北京东西分析仪器有限公司在检测人体微量元素方面积累了丰富的经验,产品已经广泛应用在妇幼保健单位、儿童医院及综合医院等。公司不但提供先进的仪器和试剂,还建立了一套完整的微量元素检测的方案。
  • 小菲课堂|热像仪突然卡顿?别担心,它在进行非均匀性校准
    在我们使用热像仪的过程中一定会发现在进行热图像拍摄时有时会自动频繁地卡顿并且热像仪会发出“咔嚓”的声音这时候没必要惊慌它这是在进行非均匀性校准(NUC—Non-Uniformity-Correction)那为什么会如此呢?非均匀性校准(NUC)非均匀性校准(NUC)是针对场景和环境变化时发生的微小探测器漂移进行调整。一般情况下,热像仪自身的热量会干扰其温度读数,为了提高精度,热像仪会测量自身光学器件的红外辐射,然后根据这些读数来调整图像。NUC为每个像素调整自身热噪声的增益和偏移,生成更高质量、更精确的图像。执行非均匀性校准可产生更高质量的图像在NUC过程中,热像仪快门落在镜头和探测器之间,发出咔哒声,瞬间冻结图像流。快门作为一个平面参考源,用于检测器校准自身和热稳定。这种情况在非制冷红外热像仪中经常发生,但在制冷红外热像仪中也会偶尔发生,它也被称为FFC(平场校准)。热像仪进行NUC的时机在初始启动时,热像仪会频繁地执行NUC。随着热像仪升温并达到稳定的工作温度,NUC将变得不那么频繁。虽然您可以在开机后约20秒获得热成像图,但大多数热像仪需要至少20分钟的预热时间,在稳定的环境下,实现良好的温度测量精度。热像仪将自动执行NUC,但您也可以在测量重要温度或拍摄关键图像之前手动使用NUC功能,这将有助于确保准确性。有效控制NUC的发生如上所述,NUC对于提高温度读数非常重要,如果没有NUC,你就有可能得到不稳定的温度读数。在大多数手持红外热像仪上NUC不能被禁用,但在大多数自动化和科学设备上,NUC可以从自动模式设置为手动模式。这将使您可以通过软件或硬件信号精确控制热像仪执行NUC的时间。执行NUC的关键以手动控制FLIR A35和A65中的非均匀性校准(NUC)为例,在执行时考虑两个因素:当热像仪执行NUC时,禁止其他所有命令这样操作是因为NUC需要使用来自传感器的原始视频输出来计算每个像素自身热噪音的偏移校正。为了正确计算偏移量,所有命令必须在其操作期间被阻止,否则计算可能会受到影响,并且可以正确加载NUC查找表。如何控制NUC的长短在高增益运营模式时,热像仪的核心加热或冷却到大约0℃、40℃或65°C时,需要“长NUC”操作。例如,如果核心动力在-10°C下通电,然后加热到+10°C,则需要长NUC。“长NUC”(~0.5 s)操作比正常的“短NUC”(~0.4 s)操作大约长0.1 s,并允许核心自动加载适合当前工作温度量程的校准项。此外,在高增益和低增益模式之间切换时,必须执行长NUC,以便加载增益开关完成所需的新校准项。主机系统不需要监控上述条件,因为核心有一组NUC标志,将识别何时需要长或短NUC,除非热像仪处于手动NUC模式,在后一种情况下,将按照上面的描述发送一个长NUC命令。红外热像仪执行非均匀性校准可产生更高质量的图像但随着时间的推移电子元件老化会导致校准数据偏移并产生不准确的温度测量值为了保证热像仪的准确性你需把它送到热像仪制造商进行定期实验室标定—Calibration我们建议您一年标定一次关于热像仪和红外热成像技术相关知识如果您想要系统学习和掌握可以报名参加我们的课程ITC红外培训在这里不仅可以学习理论知识还可以上手实操检测
  • 三氯生杀菌安全性遭质疑 广泛用于卫生用品
    广泛用于洗手液、肥皂、牙膏等卫生用品 美国两大机构正在调查其安全性   广告里,当洗手液、肥皂、牙膏等卫生用品标榜“能杀死更多细菌”时,是不是更能引起你的注意?不过,杀菌却不一定安全。   美国《纽约时报》今晨报道称,这些卫生用品中的常见活性成分——三氯生的安全性遭到质疑,美国食品药品监督管理局(FDA)正在对其安全性进行审查。   广泛用于洗手液、肥皂、牙膏等卫生用品   报道称,三氯生是洗手液、肥皂、牙膏等卫生用品中常见的活性成分,能有效杀灭细菌等微生物。40多年前,三氯生面世,当时主要用于手术前的清洗。   目前,三氯生被广泛应用于肥皂、厨房砧板,以及牙膏等产品。高露洁全效牙膏就含有该成分。   美国疾病控制和预防中心指出,现在三氯生的使用非常普遍。   报道称,有研究显示,在动物实验中,三氯生可能会改变体内的激素分泌,或导致细菌产生抗药性。因此,一些消费者组织和美国国会议员要求禁止在杀菌产品中添加这种化合物。   此外,FDA曾表示,含三氯生的肥皂和普通的肥皂比起来,功效上没有什么区别。不过,这一结论自然引起制造商的不满。   三氯生安全性 遭美两大机构调查   报道称,几个月前,FDA曾表示,将对三氯生的安全性进行研究。不过FDA表示,研究结果什么时候能出炉尚不确定。   此外,美国环境保护署也正在对三氯生的安全性进行调查。   在美国,整个洗手液市场达到7.5亿美元,其中抗菌剂和抗菌洗手液就占了一半,因此三氯生的调查对这些制造商而言是个相当危险的信号。   其实,几十年前科学家就曾对三氯生的安全性表示过担忧。   去年,马萨诸塞州众议员爱德华马基曾向FDA施压,要求其对三氯生在洗手液等产品中的使用进行管理。   与此同时,爱德华马基呼吁禁止在洗手液、和食品接触以及儿童产品中使用三氯生。   美国第五大畅销洗手液品牌Dial Complete表示,目前并没有确凿证据证明三氯生对人体有害。相反的,研究显示,三氯生确实能有效杀灭细菌。   由于消费者组织已对三氯生发出反对的声音,一些企业已经不再使用该成分。不过,报道称,高露洁仍将继续使用三氯生,因为高露洁全效牙膏已经证明对抵抗牙龈炎有效。   ●记者追访   是否安全需长期研究   上午,朝阳医院职业病与中毒科主任郝凤桐接受本报记者采访时表示,由于三氯生被广泛地应用于生活用品中,它的安全性要根据它可能存在的风险来判断,例如一些日常生活用品可能会污染食品。   不过,它的安全性等问题,需要进行长期的研究,通过一定人群的数据积累,才能进行评价。   三氯生是二氯苯氧氯酚的俗称,是外用高效抗菌消毒剂,可杀灭金黄色葡萄球菌、大肠杆菌等细菌及白色念珠菌等真菌,对病毒(如乙型肝炎病毒等)也有抑止作用。
  • 2022年化石燃料碳排放将创新高
    据《自然》报道,正在埃及沙姆沙伊赫举行的《联合国气候变化框架公约》第二十七次缔约方大会(COP27)上,科学家宣布,预计2022年全球化石燃料带来的二氧化碳排放量将再创新高,增加1%,达到375亿吨。如果这一趋势持续下去,人类向大气中排放的二氧化碳可能在未来9年内就会使全球气温比工业化前水平高1.5摄氏度。2015年达成的《巴黎协定》提出,把全球平均气温较工业化前水平升幅控制在2摄氏度之内,并为把升温控制在1.5摄氏度之内而努力。“9年时间不是很长。”英国东英吉利大学气候科学家、全球碳项目成员Corinne Le Quéré说,目前没有表现出明显的温度下降趋势,即使采取了积极行动,气候模型依然表明,在21世纪30年代某个时期,全球平均气温可能会暂时超过1.5摄氏度这个阈值。欧洲能源危机和新冠肺炎疫情的影响使部分地区煤炭消费激增。据统计,化石燃料带来的二氧化碳排放量增长最快的国家是印度。与2021年相比,印度煤炭和石油消费将增加6%的排放量。而中国排放量将下降近1%。美国智库未来资源研究所负责人Richard Newell表示,COP27公布的最新数据并不令人惊讶,因为世界上80%左右的能源需求仍然依赖化石燃料。经济持续增长,碳排放量必然会增加。尽管如此,能源向清洁化方向转型的迹象正在显现。特别是,许多国家的电力部门正在变得更加“清洁”,部分原因是越来越便宜的风能和太阳能资源的扩张,以及能源需求从煤炭向天然气的转变。
  • 我国每年释放五亿吨多环芳烃? 专家:好比一人一天吃一万顿饭
    近日,有媒体报道称“煤炭挥发分而产生的多环芳烃是PM2.5的原始结构,也是PM量里最广的源头”。报道引用专家说法,认为“一吨燃煤在燃烧过程中会释放300公斤的多环芳烃”。按照2015年我国消耗煤炭量为36.98亿吨计算,“多环芳烃每年的释放量高达约5.55亿吨”。  报道引发了公众的广泛关注,那么真相到底如何?带着这个问题,记者采访了相关专家。  “这个数据无法与我们研究掌握的数据对比,直观感觉就是有人说他一天吃一万顿饭。”中科院院士、北京大学教授陶澍带领的团队长期从事多环芳烃排放清单的研究。对于报道中给出的每年释放5.55亿吨多环芳烃的数据,他这样表示。  查询资料显示,多环芳烃是带有两个以上苯环的碳氢化合物的统称。目前,主要管控的有16种母体多环芳烃。其中,苯并[a]芘是致突变性最强的化合物,环境管理中多采用苯并[a]芘代表多环芳烃实施管控。  陶澍介绍,根据自下而上获得的排放清单数据,基于各类排放源活动强度和排放因子计算得到的数据显示,2014年全球16种多环芳烃排放量为51万吨,而我国的排放量为12.5万吨左右。在我国,燃煤排放的多环芳烃约为5.6万吨,主要来源于民用煤炭、工业炼焦和工业锅炉,分别占比为48%、30%和18%。  “陶澍院士得出的结论与国际经验相符。”环境保护部评估中心石化部副主任崔积山表示,美国燃煤锅炉的排放因子为0.01克/吨煤,有处理设施和无处理设施条件下炼焦炉排放因子分别为1.5和2.1克/吨焦。也就是说,每燃烧一吨煤,炼焦炉产生的多环芳烃大约在2克左右,而燃煤锅炉产生的多环芳烃则约为0.01克。  崔积山进一步解释说,多环芳烃是一种可贵的油品资源,通过加氢工艺,即可获得优质油品,重组分油品中,多环芳烃是最主要的成分。而我国目前最先进的煤制油工艺,转化率也仅为24%,按照文章中一吨燃煤可释放300多千克的多环芳烃,则煤炭燃烧产生的多环芳烃还高于煤制油产率。“按照最好24%的转化率,1吨煤只能产生240千克油品,如果通过直接燃烧就能产生300多千克多环芳烃,煤制油工艺就没有了意义,这显然是不合理的。”崔积山说。  多环芳烃的排放量近年来有哪些变化趋势?陶澍表示,从研究结果和数据分析,我国苯并[a]芘排放量自1996年出现峰值后呈逐年下降趋势,这与上世纪末全面取消土炼焦等有密切关系。  “现在的工业用煤燃烧技术几乎没有多环芳烃排放,少量的排放主要集中在煤的低温干馏过程中。相比之下,民用燃煤的多环芳烃排放相对较大。特别是家庭煤炉在极其恶劣的燃烧条件下会产生较大的排放。”神华集团研究院院长杜铭华表示。  事实上,我国在环境管理中一直重视多环芳烃的排放控制。环境保护部环境标准研究所研究员张国宁介绍,在环境质量标准中,《环境空气质量标准》和《室内空气质量标准》均对苯并[a]芘浓度限值提出了要求。  在污染物排放标准中,《大气污染物综合排放标准》和《铝工业污染物排放标准》、《炼焦化学工业污染物排放标准》、《石油炼制工业污染物排放标准》、《石油化学工业污染物排放标准》等4项多环芳烃主要产生行业的大气污染物排放标准,也将苯并[a]芘列入控制范围,除了铝工业标准外,排放限值均要求为0.0003毫克/立方米,铝工业标准仅对厂界浓度提出要求,限值为0.00001毫克/立方米。“目前看来,我国对于多环芳烃的控制要求,是严于发达国家的。”张国宁表示。
  • 中科院苏州纳米所《RSC Advances》: 利用衣架式挤出模具制备片径长程取向的氧化石墨烯液晶材料
    氧化石墨烯液晶材料由于其片径之间产生取向堆叠而展现出独特的物理性能,让其在光电器件、储能器件和电磁屏蔽领域的应用备受关注。片径取向程度也影响着材料相应的性能。近日,中科院苏州纳米所钱波课题组开发了一种新型氧化石墨烯液晶材料的制备方法,并成功制备了片径具有长程高度取向的氧化石墨烯液晶材料。该方法依据氧化石墨烯分散液的流变参数和衣架式挤出模具的设计,借助摩方精密PμSL 3D打印技术(NanoArch S140),定制化的制备出100 μm狭缝厚度的衣架式挤出模具;随后利用此模具在玻璃衬底上挤出氧化石墨烯液晶材料,成功制备出取向结构的氧化石墨烯液晶材料,并且该材料在偏振显微镜下未观察到明显双折射条纹。该成果以“Preparation of graphene oxide liquid crystals with long-rangehighly-ordered flakes using a coat- hanger die”为题发表在RSCAdvances期刊上。原文链接:https://doi.org/10.1039/D1RA01241J图1 长程取向结构氧化石墨烯液晶材料制备示意图图2 五组不同浓度的氧化石墨烯分散液(2mg/mL~10 mg/mL标记为GO-2~GO-10,片径直径约为50μm)的流变测试结果从流变测试中可以看到,氧化石墨烯分散液的剪切粘度与剪切速率呈非线形关系,是一种典型的非牛顿流体,并且存在剪切变稀现象(shear-thining),这是由于剪切应力使氧化石墨烯片径取向由相互交错趋于相互平行,从而呈现出较低的粘度特性。另外,随着剪切应力的增加,分散液的剪切粘度逐渐降低,这也意味着较大的剪切应力可以使氧化石墨烯片径整体更具有取向性。因此衣架式挤出模具的尺寸和精度对制备长程取向结构的氧化石墨烯液晶材料有着重要的影响。图3 挤出模具的制备实物图和相关设计尺寸图3是通过摩方精密PμSL 3D打印机(NanoArchS140)制备出的衣架式挤出模具实物图,模具实际尺寸与设计保持一致,并且狭缝厚度尺寸十分精确,宽度幅度在2%以内,这也有利于减少材料挤出过程中因尺寸不精确而引起的湍流等副作用的产生。图4 a)未经过挤出模具挤出的氧化石墨烯材料,b)经过挤出模具挤出后的氧化石墨烯材料;尺寸标尺200 μm。从图4对比图中可以看出,经过定制化挤出模具挤出后的材料无明显的双折射条纹,这是由于氧化石墨烯片径高度取向,偏振光无法发生偏振。从偏振显微镜图片可看出,不同浓度的氧化石墨烯分散液经挤出模具挤出后均具有良好的片径长程取向结构。图5 a)经过定制化挤出模具制备的取向结构石墨烯气凝胶;b)未经挤出的无取向结构石墨烯气凝胶;尺寸标尺为200 μm图5为利用定制化挤出模具制备的取向结构石墨烯气凝胶材料,从材料截面电镜图中的红色箭头方向可看出,石墨烯片径具有明显一致的取向结构,并且如黄色箭头所示,氧化石墨烯片径之间相互连接良好,材料整体无明显的纵向空隙。利用此方法制备的片径长程取向结构的石墨烯气凝胶相较于片径无取向的石墨烯气凝胶材料而言,其导电性从32S/m提高到92 S/m,证明片径高度取向的结构能进一步提高气凝胶材料的导电性。 需要指出的是,衣架式挤出模具作为传统高分子液晶的制备工具的研究已开展很多,但受限于模具精度和尺寸多样性,目前未曾有过利用衣架式挤出模具制备氧化石墨烯液晶材料。摩方精密PμSL 3D打印技术因其高精度和高效的制备方法,让定制化的挤出模具应用于长程取向结构氧化石墨烯液晶材料的制备成为可能,并且100 μm的狭缝的厚度是目前衣架式挤出模具制备已知的最小值。依托于摩方精密的3D打印技术,未来对不同片径直径和浓度的氧化石墨烯分散液的液晶制备研究的可能性大大增加,有望能够进一步拓展片径取向结构的石墨烯基材料在众多领域内的应用。
  • 对于NGS,谁是下一个NIPT?
    谈及NGS(二代基因测序为技术)技术的发展,NIPT(作为无创产前诊断)是绝对绕不开的话题。NIPT作为一种非侵入性的产前检测技术,通过采集孕妇外周血,并从中提取胎儿游离 DNA,以此判断腹中胎儿的基因型和发育状况。在唐筛等疾病领域,NIPT发挥了极大的作用,也成了NGS领域的第一个爆款。华大基因、贝瑞基因等企业都是借助NIPT完成了重要的跃迁。虽然以NGS为技术平台的NIPT市场逐步走向没落,基因测序技术服务的龙头公司已经开始把眼光放到了NIPT以外的领域,但从生殖和遗传健康的延伸,到肿瘤领域的扩展,至今仍没有出现NIPT这样的爆款。从这个角度来说,NIPT为什么成功,仍是一个值得回顾的话题。或者说,下一个爆款,必然脱离不了NIPT爆火的要素。无法脱离的社会价值不管是药物还是诊断工具,能否顺利发展的前提要素,无疑是社会价值。所谓社会价值,医院和医生的压力就小了,社会医疗保健的总开销也就下来了。更健康的人们,能更好地工作和生活,社会的整体经济活力也会提升。虽然任何诊断工具都有极为明确的社会价值,但价值也分大小。只有社会价值更大的产品,才能够得到政策的根本性支持。典型如,针对慢性病的药物,更容易被纳入医保,而一些罕见病的药物,覆盖起来难度就会增加。极为显著的社会价值,正是NIPT能够持续快速壮大发展的核心。实际应用中,NIPT主要筛查包括21三体(Down,唐氏综合征)、18三体(Edward,爱德华氏综合征)和13三体(Patau,帕陶氏综合征)等常染色体整倍体缺陷。其中,最核心的就是“唐筛”。唐氏综合征是发病率极高的一种疾病,并且随着产妇年龄的增加呈现倍数增长。在20到24岁之间,患病率为1/1250,到35岁为1/400,到40岁为 1/106,到45岁为1/25, 49 岁后上升至 1/11。因此,对于高龄产妇而言进行产前诊断的意义显著。相比于唐氏综合征,德华氏综合征、帕陶氏综合征患病率相对较低,但总体都呈现生产年龄增加、患病率增长的趋势。而自从二胎政策放开后,国内高龄产妇的比例从24.5%上升至31%左右,平均年龄也从27岁增长到29岁。即使不考虑二胎政策的影响,随着经济发展和城镇化进一步推进,产妇高龄化也符合国际上的一致趋势,我国未来面对的高龄产妇问题或许会继续加剧。这种情况下,一种行之有效的唐筛手段,对于社会价值的意义是非常大的。也正因此,NIPT能够在最开始的莽荒时期,虽被监管紧急叫停,但随后又放开并鼓励支持,逐步实现了快速的推广。2016年10月27日,卫计委正式废止产前筛查与诊断专业试点机构的有关规定,同时对开展产前筛查和诊断的机构、人员及设备试剂作出了新的要求。“十三五”卫生与健康规划亦提出进一步加强孕期唐氏综合症产前筛查和产前诊断。这一系列政策,为NIPT的进一步发展扫清了障碍。而也正是因为社会价值,不同省市均出台了相应的推广NIPT的政策。例如,在2024年6月5日,广州市卫健委发布下发通知,6月6日起广州市将正式启动NIPT 2024年惠民试点项目:广州市户籍(含配偶为广州市户籍)或持有效《广东省居住证》并常住广州的准妈妈,支付300元即可享受1次孕妇外周血胎儿游离DNA产前筛查。当然,由于经济水平、医保基金收支水平不同,各地对于NIPT的报销政策各有不同。核心在于,医保的首要工作是保基本、量力而行。今年4月份,医保局便表示,当前基本医疗保险制度主要还是立足于“保基本”的功能定位,保障参保人员的基本医疗需求。从现阶段医疗保险基金筹资水平和抗风险能力来看,暂时无法将肿瘤筛查这一类非治疗性的项目纳入医保支付范围。产品价值之问社会价值可以称之为赛道逻辑,NIPT的发展壮大还离不开产品逻辑。后者最为核心的要素,便是技术的可行性。NIPT主要对母体血液循环中的无细胞DNA进行浓缩后分离和测序。其DNA扩增来源为全部血液游离DNA,其中胎儿DNA由于怀孕期间有所增加,一般不低于总量的2.7%。借助NGS技术,NIPT可以对1%级别含量的DNA组分数量进行分析,通过去除母体DNA本底后进行比例比对,与正常组成的差异部分即为大片段染色体异常,再对检验结果进行统计学调整,给出是否进行进一步侵入式检查的判断。除了逻辑上的可行性,产品性能也要足够优秀。根据华大基因的招股说明书,从2009年到2015年中,华大基因已经与全球52个国家近四千家医院进行合作开展NIPT检测服务,检测的样本数已经超过了30万例,检出率和特异性均大于99.99%。加上我国目前 NIPT质控要求较为严格,唐氏综合征检出率一般不低于99%,爱德华氏综合征不低于97%,帕陶氏综合征不低于90%。整体复合假阳性率不高于0.5%,复合阳性预测值不低于50%。简单来说,检出率高,保证不会误诊;而假阳性率相对较低,则保证不会过度浪费社会资源,两者共同让NIPT的产品逻辑无懈可击。综合来看,NIPT的爆发,在于其背后的强大技术支持,高精度的DNA测序技术和先进的生物信息分析手段(技术可行性),以及经过大规模临床验证的卓越性能表现(高检出率、低假阳性率等)。这些因素相互作用,构建了一个既符合市场需求又具有高度科学性和实用性的产品逻辑框架,使得NIPT成为产前遗传病筛查领域的一项革命性技术,并迅速发展壮大。临床价值的三大要素社会价值、产品价值之外,支撑NIPT爆发的另一关键因素,还在于临床价值。如果单纯从检出率来看,NIPT并不是最高的,绒毛取样、羊膜穿刺才是。如下图所示,不管是绒毛取样还是羊膜穿刺,发现率均接近100%,更重要的是误诊率约等于0。也正因此,目前国内外对于唐氏综合征、爱德华氏综合征、帕陶氏综合征的最终判断仍需要羊膜穿刺等方式。在这一背景下,NIPT的胜出正是基于其临床价值。首先,节省了更多的医疗资源。羊水穿刺术操作过程包括术前准备、保持正确体位,超声确定胎盘位置、胎心以及选择合适穿刺点,在穿刺点进行消毒、穿刺、抽液,最后拔出穿刺针,超声下再次确认胎心,而NIPT只需抽血即可。其次,依从性更高,更安全。不管是绒毛取样还是羊膜穿刺,都是侵入性的,存在一定的流产风险,对于患者来说会带来身体、心理的双重不适。而NIPT只需抽血就能完成检测,能够避免上述的痛点。加上其足够高的发现率,因此能够成为“金标准”的前置筛查手段:如果检测结果为阳性,即采用“金标准”进行二次确认;如果检测结果为阴性,则可以继续妊娠。最后,体现临床价值的另一个要素是“价格”。正如海外精密科学大肠卫士放量一样,NIPT不仅在于依从性更高,价格也逐步下降,当然其价格早已经低于羊水穿刺术。这既保证了患者能够省钱,接受度更高;也避免了推广过程中容易存在的灰色地带“争议”。也正是在临床价值的凸显下,虽然性能不是绝对NO.1的NIPT,完成了突围。回看NIPT的发展,也向我们揭示了这样一个道理,无论是生殖和遗传健康还是肿瘤领域,要想找到下一个如同NIPT这样的爆款,自然也离不开社会价值、技术价值和临床价值的三重加持。
  • 卡通玻璃杯含铅量超标1000倍
    11月23日,据英国《每日邮报》报道,中国产卡通玻璃杯含铅量超标1000倍,年幼的儿童摄入过量的铅元素,将直接导致智商下降。11月23日,重庆市质量技术监督局检测研究院表示,重庆市尚未接到消费者反映,市民如果购买了卡通玻璃杯,又担心玻璃杯含铅量超标,可到检测研究院检测。 一小女孩正用卡通图案的彩色玻璃杯喝饮料   家长担心孩子健康受影响   11月24日上午,重庆渝北区花园新村的黄女士给本报热线打来电话说,她在网上看到一条消息,卡通图案彩色玻璃杯大部分是用铅来着色,含铅量严重超标,她6岁的儿子就是用的这种杯子,且已经使用了半年,她十分担心。   和黄女士一样,重庆渝中区的林女士看到这则新闻后,也很着急:“我5岁的女儿特别喜欢喜羊羊的卡通图案玻璃杯,家里的卡通图案玻璃杯多达十多个,会不会有什么问题哟?”   商场没接到撤柜通知   11月24日下午,记者来到重庆朝天门小商品批发市场,发现商场内有很多彩色卡通玻璃杯:有老虎图案的,还有熊猫图案的……款式多达二三十种,价格从5元至30元不等。   “每天我大约可以批发100多只,都是市面上的小零售商来买。”批发玻璃杯的魏老板说。   随后,记者又来到重庆渝北区花园新村永辉超市、解放碑新世纪等多家超市、商场均发现有各种不同图案的卡通玻璃杯销售,价格从6元至32元不等,对于这些杯子是否铅超标,营业员都说不知道,厂家也没标注。永辉超市营业员称,当天有很多顾客都来问杯子是否铅超标,但他们确实不知道,也没接到撤柜通知。   质监部门将抽样检测   重庆市质量技术监督局检测研究院负责人说,目前,重庆市商场销售的卡通图案玻璃杯铅含量是否超标,他们还没有接到反映。不过,质量技术监督部门将联合工商部门对商场销售的卡通图案玻璃杯铅含量进行一次抽测,如果发现问题肯定会停止销售。如果有消费者担心卡通玻璃杯含铅量超标,可以带着玻璃杯到市质量技术监督局检测研究院轻工产品质检中心进行检测。   铅中毒会致智商下降   重庆市第六人民医院职业病科主任王永义表示,儿童很喜欢卡通图案,但如果这些图案是用铅着色,含铅量又超标,家长应该引起注意,因为儿童有可能用手去摸,或用舌头舔,会把铅摄入体内,造成铅中毒。铅中毒会引起智力下降,还会损伤神经系统,可导致小儿烦躁不安,易冲动,腹痛,食欲下降,注意力不集中,性格改变,反应迟钝,智力下降,记忆力下降等。   新闻背景   据英国《每日邮报》23日报道,美国罗德岛州玩具实验室经过检测发现,儿童广泛使用的卡通玻璃杯含铅量达到30%,比美国儿童产品的合法含铅量上限0.03%高出1000倍。医学专家指出,儿童摄入过量铅元素,将直接导致智商下降。报道称,绘有《超人》、《神奇女侠》等电影卡通形象的玻璃杯都由中国生产,在美国加州地区销售。
  • 智能“手套”可增强虚拟现实触觉
    据英国《新科学家》杂志网站14日报道,美国科学家发明出一款智能“手套”,可通过向佩戴者手掌中的神经发送电信号,让佩戴者感觉自己在虚拟现实(VR)中抓住物体。  为配合在VR中拿东西的视觉体验,人们经常会佩戴手套,手套会向手掌提供反馈,比如振动或电信号。但手套也会使佩戴者的手指感觉迟钝,使用户在佩戴VR耳机时更难执行灵巧的任务。  芝加哥大学田中雄大团队开发出了一种设备,使用手背和手指上佩戴的电极网来模拟或增强触觉,使手掌和手指不受阻碍地活动。神经刺激会使单个手指感觉好像在触摸什么东西,因为人类的手掌比手背有更多触摸感受器来接收电极发送的电信号。  研究团队在几种VR体验中测试该设备,比如在虚拟攀爬体验中,该设备可让人们在VR中攀爬时能更敏锐地感觉到手掌中的绳索。  团队认为,这种手套在现实的学习任务中也很有用。他们尝试将其用于打碟,在该场景下,这款智能“手套”可提供反馈,指导某人何时将特定的音乐曲目淡入或淡出。  研究人员指出,因为这款手套不会覆盖整个手,所以可一直佩戴,在VR内外使用。他们在2023年计算机系统人为因素会议上介绍了这一最新研究。
  • 卫生部修订食品添加剂使用标准 膨化食品拟禁铝
    卫生部拟修订食品添加剂使用标准 限制含铝添加剂使用   卫生部15日起就《食品安全国家标准食品添加剂使用标准》修订稿公开征求社会意见。新标准拟进一步限制含铝食品添加剂的使用,以降低我国居民膳食铝摄入过量可能带来的健康风险。我国居民膳食铝暴露风险评估结果显示,7岁至14岁儿童通过膨化食品摄入的铝相对较高,并且随着年龄降低,铝摄入量有增高的趋势,膨化食品是该类人群铝摄入量主要来源之一。   卫生部15日起就《食品安全国家标准食品添加剂使用标准》修订稿公开征求社会意见。新标准拟进一步限制含铝食品添加剂的使用,以降低我国居民膳食铝摄入过量可能带来的健康风险。   国家食品安全风险评估中心评估结果显示,我国低年龄组和高食物消费量人群膳食铝摄入量均已超过联合国粮农组织和世界卫生组织食品添加剂专家联合委员会(JECFA)确定的每周耐受摄入量(2mg/kg体重/周)。面粉及面制品是我国膳食铝的主要来源。   为降低我国居民膳食铝摄入量,新修订的食品添加剂使用标准拟修订9种含铝食品添加剂的使用规定,撤销3种含铝食品添加剂品种及其使用规定,其中包括删除硫酸铝钾和硫酸铝铵作为膨松剂用于发酵面制品的使用规定,以及撤销所有含铝食品添加剂(包括合成着色剂铝色淀)在膨化食品中的使用规定。   我国居民膳食铝暴露风险评估结果显示,7岁至14岁儿童通过膨化食品摄入的铝相对较高,并且随着年龄降低,铝摄入量有增高的趋势,膨化食品是该类人群铝摄入量主要来源之一。   为保护儿童身体健康,新标准拟撤销膨化食品中12种含铝食品添加剂的使用规定,其中涉及的合成着色剂品种有:赤藓红及其铝色淀、靛蓝及其铝色淀、亮蓝及其铝色淀、柠檬黄及其铝色淀、日落黄及其铝色淀、胭脂红及其铝色淀、诱惑红及其铝色淀。   此外,新标准还将撤销含铝食品添加剂酸性磷酸铝钠、硅铝酸钠和辛烯基琥珀酸铝淀粉的品种,并删除其使用规定。   相关报道:卫生部拟撤销14种食品添加剂 膨化食品拟禁铝   15日,卫生部发布《食品安全国家标准食品添加剂使用标准》(征求意见稿),修订含铝食品添加剂规定,以解决我国居民铝摄入量超量问题,其中儿童膨化食品拟禁含铝添加剂。从总体品种上看,卫生部共拟撤销14种食品添加剂。   北方60%居民铝摄入超量   据了解,标准修订在2011年立项,由国家食品安全风险评估中心(以下简称“评估中心”)牵头,中国食品工业协会、国家粮食局标准质量中心等机构参与。其间工作组召开了10多次标准修订会议,完成了食品添加剂的管理范畴、食品添加剂的使用原则等内容修订工作。   据了解,2011年6月,在联合国粮农组织和世界卫生组织下的食品添加剂联合专家委员会第74次大会上,将铝的暂定每周耐受摄入量(PTWI)修订为每公斤体重2mg。参考这一评价结果,我国评估中心2011年组织的对食品中铝的风险评估结果显示,我国全人群平均膳食铝摄入量低于2mg/kg体重/周 但低年龄组和高食物消费量人群膳食铝摄入量均已超量。   面粉及面制品是我国膳食铝的主要来源,北方地区居民由于面食消费量高,有60%居民的铝摄入量超量。相比之下,我国膳食铝摄入量高于其他国家。显示我国需要采取措施降低居民膳食铝摄入量,以降低铝摄入过量可能带来的健康风险。   据此,评估中心研究结果建议修订9种含铝食品添加剂的使用规定,撤销3种含铝食品添加剂品种及其使用规定。   儿童膨化食品拟禁含铝添加剂   我国居民膳食铝暴露风险评估结果显示,7-14岁儿童通过膨化食品摄入的铝相对较高,并且随着年龄降低,铝摄入量有增高的趋势,膨化食品成为儿童铝摄入量主要来源之一。为保护儿童身体健康,新标准拟撤销膨化食品中12种含铝食品添加剂的使用规定,其中涉及的合成着色剂品种有:赤藓红及其铝色淀、靛蓝及其铝色淀、亮蓝及其铝色淀、柠檬黄及其铝色淀、日落黄及其铝色淀、胭脂红及其铝色淀、诱惑红及其铝色淀。   此外,新标准还将撤销含铝食品添加剂酸性磷酸铝钠、硅铝酸钠和辛烯基琥珀酸铝淀粉的品种。   明确油条等含铝添加剂规定   根据评估结果,面食含铝量最高,且面粉、馒头、油条对铝暴露量的贡献率最高,因此新标准中硫酸铝钾和硫酸铝铵两种含铝食品添加剂使用范围由原来的“小麦粉及其制品”修改为“油炸面制品”和“面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉”,并规定了使用量和残留量。这意味着含铝食品添加剂使用范围大大缩小。
  • 多美滋420吨受肉毒杆菌污染乳粉流入中国市场
    昨日,劲松京客隆超市货架上,可口可乐果粒奶优仍在售。可口可乐公司昨日发表声明称,已使用25公斤可能受到肉毒杆菌污染的乳粉,用于生产个别批次的美汁源果粒奶优。新京报记韩萌 摄   多美滋、娃哈哈、可口可乐确认使用恒天然问题乳粉 食药总局约谈负责人,要求召回问题食品。   新京报讯 8月3日,新西兰初级产业部通报,新西兰恒天然公司一工厂发现,其去年5月份生产的浓缩乳清蛋白粉检出肉毒杆菌,部分原料销往中国。昨天,经国家质检总局确认,杭州娃哈哈保健食品有限公司、可口可乐中国公司、多美滋婴幼儿食品有限公司,使用了可能受到肉毒杆菌污染的浓缩乳清蛋白粉。   当天,涉事企业均发表声明表示,对涉及的问题产品采取追溯、召回等措施。其中多美滋发布声明表示,已查明部分优阶贝护和多领加二阶段产品有可能受到影响,共涉及12个批次,将对以上产品实施预防性召回。   上海糖酒进口乳粉卖给可口可乐   昨天上午,国家质检总局在其官网公布,经中新双方核查,现初步确定有4家中国境内进口商,进口了可能受到肉毒杆菌污染的新西兰恒天然集团产品。分别为:杭州娃哈哈保健食品有限公司和杭州娃哈哈进出口有限公司,进口浓缩乳清蛋白14.475吨 上海市糖业烟酒(集团)有限公司,进口浓缩乳清蛋白4.800吨 多美滋婴幼儿食品有限公司,进口原料乳粉208.550吨。   昨日,上海市糖业烟酒(集团)有限公司表示,公司进口的产品全部供给了可口可乐饮料(上海)有限公司。   食药总局约谈涉事企业负责人   昨天上午,国家食品药品监督管理总局约谈杭州娃哈哈保健食品有限公司、可口可乐中国公司、多美滋婴幼儿食品有限公司3家企业相关负责人,要求三企业尽快查明受污染原料乳粉生产了哪些食品,涉及多少个批次,并迅速采取措施,立即停止销售并召回问题原料加工的全部食品。   国家食药总局表示,将密切关注肉毒杆菌污染乳粉事件的发展,有关情况将及时向社会公布。相关负责人表示,若企业对问题食品召回不及时、召回不报告,国家食药总局将采取严厉的监管惩处措施,直至该企业产品停止在华生产销售。   上海封存多美滋问题产品   据新华社电 记者4日晚间从上海市质监部门了解到,由新西兰恒天然集团受肉毒杆菌污染乳粉制成的多美滋奶粉流入市场达420.188吨。   目前,上海质监部门已经全部封存多美滋公司现场涉及问题乳粉的原料及成品,并要求公司立即启动召回程序,通知其经销商扣置相关批次产品,并发布声明。   上海质监部门查实,多美滋公司采购新西兰恒天然问题乳粉7批次,共计208.55吨,用于较大婴儿及幼儿配方乳粉的生产,其中已使用105.45吨,库存103.1吨。问题乳粉已制成较大婴儿配方乳粉成品664.118吨(其中已售420.188吨,库存243.93吨)以及幼儿配方乳粉成品62.434吨(尚未售出)。   昨日下午,上海多家超市已开始下架多美滋涉事产品。   中国暂停进口新西兰奶粉   据外媒报道,新西兰贸易部长8月4日宣布,受此次事件影响,中国已经暂停了从新西兰、澳大利亚进口奶粉。澳大利亚也牵涉其中,是因为部分受污染的浓缩乳清蛋白出口到澳大利亚后,又被销往中国和其他各地。   对于中国暂停从新西兰进口奶粉,新西兰贸易部长蒂姆格罗瑟认为&ldquo 完全恰当&rdquo ,他还称,此类贸易问题并不独见于中新贸易之间,新西兰正和包括中国在内的各国监管机构进行紧密配合,&ldquo 进口叫停对新西兰是一个严重的问题,严重性取决于问题的延伸及持续程度。&rdquo   提醒   质检总局:勿食三批次新西兰乳粉   国家质检总局昨日在官网发文,表示接到新西兰政府有关部门通报,称新西兰纽迪西亚公司发布召回公告,召回其在新西兰市场上销售的3个批次婴幼儿配方乳粉。该决定基于恒天然公司8月3日晚上通知,该公司为纽迪西亚提供的一批原料可能受到污染。   召回产品为&ldquo 可瑞康&rdquo 1段(批次为3169、3170)和&ldquo 可瑞康&rdquo 金装版2段(批次为D3183)婴儿配方奶粉。保质期分别为2016年6月17日、2016年6月18日和2014年12月13日。   国家质检总局表示,经查,上述产品未以一般贸易方式进口。国家质检总局紧急提示消费者,如有以个人携带、邮寄或网购等方式购买了上述批号产品,请勿食用。
  • 袁钧瑛——从上海女孩到美国院士
    p   “您还记得美国国家科学院公布您当选美国科学院院士的那天,您在忙什么吗?” /p p   问起这事,袁钧瑛院士笑了起来,“那天,美国科学院开始怎么也找不到我,因为我把手机关了。后来他们电话打到我家里,是我先生俞强接的电话。但他也没法打通我的电话,只能在微信中留言。” /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " img alt=" " src=" http://img1.17img.cn/17img/images/201708/uepic/377f187d-4e93-4155-b819-c0355b1be84d.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 袁钧瑛在中科院实验室 /strong /span span style=" color: rgb(153, 153, 153) " /span /p p   这一天是今年的5月2日,作为哈佛医学院终身教授的袁钧瑛正在匹兹堡大学做学术报告。按惯例,报告者要在大会报告前与主办方的多位同行学术交流,为此她关了手机。 /p p   “您事先没有得到任何今年可能成为美国科学院院士的信息?” /p p   “没有,绝对没有。美国科学院的保密工作做得非常好。在今年新院士名单公布后,参加院士投票的丘成桐院士才对我说,他看到我在新院士候选人名单上的排名很靠前,他非常高兴。” /p p   “被评选为美国科学院院士后,美国科学院或者哈佛大学给院士什么福利吗?” /p p   她想了想:“什么福利和待遇都没有啊。美国科学院祝贺信中通知我要交400美元的院士会费。” /p p   袁钧瑛,1958年出生于上海,是今年美国科学院当选的院士中唯一出生于中国大陆的科学家。她是世界细胞凋亡研究领域的开拓者之一,也是世界上第一个细胞凋亡基因的发现者。 /p p   当她第一次从空中俯瞰纽约哈德逊湾时,纽约、以及后来毁于“9· 11”事件的双子塔,这些和她后来研究了三十多年的细胞一样,都是陌生而神秘的。那是1982年的5月。 /p p   那时,美国选拔国外留学生的GRE和TOFEL考试,还未获准在中国大陆进行。中美联合培养生物化学类研究生计划(CUSBEA)项目为中美学子架起了跨越大洋的桥梁。该计划的发起人吴瑞先生是美国康奈尔大学的教授,他早在20世纪70年代早期就建立了DNA测序技术,曾因此获得诺贝尔奖的提名。当他得知李政道教授发起了为中国培养物理类研究生的项目(CUSPEA)后,也向中国政府提出了为中国培养生物化学类研究生的这一计划,并理所当然地得到了决心奋起直追世界先进科技水平的中国政府的大力支持。 /p p   袁钧瑛就是首届CUSBEA的博士生。 /p p   科学研究要从经典、原始的文献开始 /p p   尽管哈佛大学还在放假,但袁钧瑛的博士生导师保罗· 帕德森教授仍亲自去波士顿车站接她,并开车将她送到宿舍,还给她买了一盘盛着香蕉、苹果的水果盘和一份蔬菜沙拉作午餐。 /p p   “那个时候的波士顿正在放暑假,帕德森教授走了以后,我看着蔬菜沙拉吃不下去,心想美国人怎么跟兔子一样的,吃生的菜叶子? 因为那时听说美国有多危险,我也不敢一个人出去,结果只能一个人在房间里吃水果。”袁钧瑛笑着回忆刚到美国时的种种不适。 /p p   她就靠那一盘水果撑了三天。到了第三天晚上,她忽然想起,来之前妈妈给了她一张纸条,让她把一包东西带给一位朋友。于是,她就赶紧跑到拐角的电话亭里面给妈妈的朋友打电话。对方一接到电话就问:“你吃了吗?”一听这句话,她的眼泪就流下来了。她这时才体会到,中国人从生活里提炼出来的这句问候语,真的是最亲切最实在不过了。这家人听说袁钧瑛竟然饿了三天,立即开车来接她到家里吃饭。 /p p   比蔬菜沙拉的挑战要严峻得多的,无疑是美国博士生的课程。袁钧瑛记得她在复旦大学生物系读本科的时候,最苦恼的是看不到国外最新出版的科技文献。 /p p   但在哈佛读博就完全不一样了:教授每天给学生发一大堆科技文献回去看,然后第二天上课讨论。 /p p   “那时我们读的都是研究领域最经典、最原创的文献。就是看它最原始的发现是怎么开始的,后来的研究又是怎么一点一点深入的。科学家最重要的本领,就是能做到最原创性的发现。现在学生的注意力都集中到如何才能在高影响因子的核心期刊上发表论文去了。要知道科学上的很多重要的原创性的发现,最初不一定发表在核心期刊上。去年获得诺贝尔生理学和医学奖的日本科学家大隅良典,他最初有关细胞‘自噬作用’的几篇研究论文,都不是发表在很重要的核心期刊上。”袁钧瑛说。 /p p   在研究原创性文献的过程中,袁钧瑛注意到,此前的学者只是观察到了细胞死亡。比如,在人体胚胎的正常发育过程中,胎儿最初的手掌如同一个圆盘,尚未分出5个手指。随着生长发育进程,手指间的细胞渐渐死亡,最初的“圆盘”才出现了5个手指。如果在发育的过程中出现遗传基因的突变,有的应该死亡的细胞没有死亡,就会出现两个手指连在一起的“并指”现象。但她发现,并没有人对此进行研究:细胞死亡本身是怎么发生的?为什么在疾病中有的应该死亡的细胞没有死亡,而有的不应该死亡的细胞却死亡了? /p p   促使袁钧瑛把“细胞死亡的机理”作为科研主攻方向的,还有一件事:教授在讲述帕金森综合症、老年痴呆等神经退化性疾病时,将几位病人带到课堂上,这让袁钧瑛的触动很大。这些病人有的竟然像非洲饥民一样瘦得皮包骨,还有的患了“舞蹈症”,坐在轮椅上完全不受自己神经控制地舞动。这些神经退化性疾病的共性都是因为不同的神经细胞死亡了。上完这节课,袁钧瑛不禁产生一个疑惑:为什么在这些病人中不同的神经细胞会选择死亡呢? /p p   她从神经生物学课上获悉,在完全正常的发育过程中,大约50%的神经细胞会死亡。当时学界对神经细胞死亡原因的解释是:“这些细胞是饿死的。”袁钧瑛认为这个解释不合逻辑,因为发育是一个很程序化的过程,被动地饿死和发育的程序性之间有矛盾。 /p p   为此,袁钧瑛特地去请教一位有名的教授。这个教授回答说:“细胞死亡是因为它们不重要才饿死的。” /p p   多年后,俩人再次笑谈起当初的问答。那位教授坦诚说:“我错了。”如今,他也在研究细胞死亡。 /p p   在哈佛读博的第二年需要选实验室了。袁钧瑛找了半天,也没有在哈佛找到一个专门研究细胞死亡的实验室。于是,她去找研究生部主任说:“我找不到一个感兴趣的实验室。” /p p   “现在回想起来,我当初说这话的胆子也真是够大的。也许人家会想:你一个中国学生,英文都不怎么好,敢说哈佛没有一个实验室让你感兴趣?但哈佛有一个非常好的传统,就是特别尊重学生的创造性思维。研究生部主任就说,那你可以到剑桥、到麻省理工去找啊。听了这话,我特别高兴,因为我知道麻省理工有个实验室正在做细胞研究。” /p p   直到她当教授多年后才知道,当时哈佛的研究生部内部对此也进行了激烈的争论。因为如果她作为哈佛的博士生去麻省理工的实验室,哈佛必须出一笔钱给麻省理工。哈佛研究生部主任爱德华· 克尔维茲后来对她说:“事实证明,我们哈佛这么做也没有吃亏:因为我们还是把你要回来做教授了!” /p p   她的发现证明了导师的猜想 /p p   袁钧瑛在麻省理工的导师鲍勃· 霍维茨教授,是一个研究小线虫发育的专家。小线虫通体透明,用显微镜可以观察到它发育过程中细胞的变化。一条线虫有900多个细胞,其中131个会在发育过程中死亡。有趣的是,这131个细胞死亡的时间在不同的小线虫的发育过程中是相同的,这说明这131个细胞的死亡是受遗传基因控制的。 /p p   细胞不为人知的生死,蕴含了生命无穷的奥秘。 /p p   袁钧瑛也由此进入细胞死亡研究领域,在哈佛和麻省理工这两所世界一流的大学里,她得到了最严格的科学训练。“我们那时很拼命,每天总是要把可以做的实验全部做完才回去,”袁钧瑛说。在鲍勃领导的实验室中,袁钧瑛发现了线虫细胞的死亡基因,这是在所有的生物中发现的第一个控制细胞死亡的基因。 /p p   1989年,袁钧瑛哈佛博士毕业。博士毕业后的袁钧瑛,曾打算申请做博士后,以继续研究细胞凋亡在人类、老鼠中有没有类似的情况。因为当时科学界对线虫细胞死亡基因的发现有严重的争议:线虫只有900多个细胞,而哺乳动物、人的细胞要多得多,线虫细胞死亡机理的发现,对哺乳动物和人来说究竟有没有价值? /p p   这时,正巧麻省总医院要建一个心脏研究中心,研究包括“减少心肌梗死后心肌细胞死亡”等课题,听说袁钧瑛有志于人的细胞凋亡机理的研究,于是聘请她成立一个实验室。没有做过博士后,就有一个自己的实验室,这在科学家的成长过程中也是非常少见的。 /p p   3年后,袁钧瑛领导的实验室就发表了两篇重要的研究论文,其中一篇是《线虫的细胞死亡同源基因在调控哺乳动物细胞凋亡中的作用》。这一发现证明了她在导师鲍勃领导的实验室中完成的博士论文关于发现线虫细胞死亡机理的广泛意义。这一研究成果也引起了诺贝尔奖基金委员会的关注。当时,年仅35岁的她应邀去诺贝尔基金委员的论坛作学术报告。 /p p   1996年,她成为哈佛医学院的副教授。2000年升为哈佛大学医学院的终身教授。哈佛升正教授的程序是极为严格的:首先,本系的所有教授要讨论通过:再要征询全世界同一领域的10多名顶级专家学者的意见,这些专家学者必须书面回信充分肯定被推荐人的工作价值以及在行业中的领先地位,并听取10多位哈佛大学外系教授的意见,最后才提交校董会批准。这一评审办法,确实保证了哈佛教授鲜有滥竽充数的“南郭先生”。 /p p   仅仅8年,袁钧瑛就从一名助理教授升为终身教职的正教授,并且成了哈佛医学院第一位亚裔的女性正教授。 /p p   从细胞分子层面上攻克阿尔茨海默病 /p p   “阿尔茨海默病(老年痴呆症)简单来说可以分为两种:一种是发病年龄在四五十岁左右的早老性痴呆症 另一种是人真的进入老年期后患上的老年痴呆症。统计显示,不同种族的人在年过85岁以后,都会有三分之一的人患老年痴呆症。”袁钧瑛告诉记者,“过去,医药界认为这两种老年痴呆症是一样的,但至今未能成功研制出治疗老年痴呆症的新药。我认为这两种老年痴呆症的细胞凋亡机理是不一样的,所以我们正在研制新药。” /p p   希望能从细胞分子的最基本的层面上,对治疗阿尔茨海默病、帕金森病、肌萎缩性脊髓侧索硬化症等有所突破,是袁钧瑛现在全力攻克的科研难关。二十多年来,袁钧瑛以化学生物学的方法,首次发现了调控细胞坏死的关键蛋白RIPK1及其小分子抑制剂,并在国际上首次为程序性细胞坏死命名。这一发现颠覆了坏死作为被动型死亡的传统观念,其命名得到了国际生物学界的广泛认同。迄今为止,她在国际科技顶级期刊发表了200多篇论文,被国际同行的引用超过7万次,引用指数为106,即每篇论文至少被106篇文章引用,这是国际顶级科学家的引用数。 /p p   2012年,袁钧瑛接受中组部邀请以“顶尖千人”身份,领衔组建了中国科学院生物与化学交叉研究中心并出任中心主任。上月,记者采访她时,正赶上交叉中心举办新招聘的研究生夏令营。“我希望能把我们当初哈佛神经生物系的学习研究氛围带到这里来,让这些从世界上顶级实验室来的年轻人能思维碰撞,激发出发明的火花。”她说。 /p p   让中国的年轻学子尽快地赶上世界的先进水平,是袁钧瑛的一大心愿。 /p p   “在我自己的成长道路上,就受惠于很多人的帮助。中学时期陆载阳老师就是其中一个,”袁钧瑛说。1977年,她从上海五十四中学毕业后分到上海一家纺织机械厂当工人,陆载阳认定她要上大学,不仅提前4个月告诉她国家要恢复高考,而且从贴着封条的学校图书馆为她“偷”出数理化教科书来学习。全凭自学,她4个月里做了教科书上所有的习题,成为1977年高考上海理科状元。 /p p   复旦毕业后,她又一次以第一名的成绩考取了上海第一医学院的研究生。 /p p   袁钧瑛的母亲是一医的中药植物分类教授,她父亲是一医的解剖学教授,而她爷爷是一医的二级教授。做个医生,曾是她母亲对女儿最大的心愿。 /p p   袁钧瑛10岁那年,正是“文革”动乱时期。一天,学校要批斗“反动学术权威”———她的爷爷,还勒令她的父亲去批斗会上发言。结果,她父亲走到半路,因过度紧张而晕厥在地。送到中山医院病房,又正赶上所有的医生被打成“牛鬼蛇神”,只能打扫卫生,由原来的护士“造反”给病人看病,结果把她父亲的药配错了。 /p p   “我父亲躺在病床上,看见中山医院院长拿着扫帚簸箕进病房,父亲已经感觉人很不好,就求院长说:‘你给我看看病吧’。中山医院当时是一医的附属医院,两人都认识,但院长是‘靠边站’的‘走资派’和‘反动学术权威’,怎么敢当着押解他的‘造反派’再为他看病? 只能摇摇头一言不发地走了。” /p p   两周后,年仅40岁的父亲就因医院用错药而不幸辞世。 /p p   今天,她愿意为中科院培养青年才俊,从情感深处来说,就是不希望悲剧重演。 /p p   “如果要让我重新选择一遍学术生涯,我还是会选择研究生物医学。因为做生物医学领域的科学家实在太有趣了:你要发现一个别人没有发现过的有趣的问题,然后自己来寻找最合理的答案。就像大自然在森林里为人类预设了很多谜语,你先要在森林里找到谜语,然后再全力以赴地寻求谜底。当你历尽千辛万苦走出森林时,谜底就在前方闪耀,而这个谜底可以帮助到世界不同国家和地区的所有人。”袁钧瑛说。 /p p   培养学生的科学理想比什么都重要 /p p   对话院士 /p p   美国科学院院士:优先泊车? /p p   文汇报:美国科学院通知您新晋院士这个好消息的同时,还让您交了400美元的会费? /p p   袁钧瑛:前几年,美国科学院院士的会费好像是每年200美元,现在也“涨价”了,每年400美元。美国科学院的院士主要分为三类:院士、荣誉院士和外籍院士。院士拥有推荐和选举新院士的选举权,以及被推举担任美国科学院公职的被选举权。如果院士3年没有缴纳会费的,就会被自动转为荣誉退休院士。而在美国国家工程院,只要拖欠会费4个月以上,理事会就会将其转为非活动院士,在其将拖欠的会费缴清后可以转回活跃院士 而连续缴纳会费10年以上的活跃院士,在年龄达到75岁以上的,可以申请转为荣誉退休院士。 /p p   文汇报:作为美国科学院的院士,有什么待遇吗? 今后拿项目或者申请科研经费是不是更容易了? /p p   袁钧瑛:好像没有什么特别的待遇。我记得最经典的例子是著名华裔科学家李远哲的故事,他是1979年被选为美国科学院院士的,1986年他又获得了诺贝尔化学奖。获奖之后,加州伯克利大学在学校停车场给他立了一块牌子“此车位由李远哲教授优先使用”,并不是给他一个车位,仅仅是“优先使用”而已,车位的产权还是学校的。科学院院士在美国是学术界的最高荣誉,但它和拿项目、申请科研经费并没有关系。申请科研基金,最关键的还是要看你项目本身的质量如何。在成为院士之前,我申请经费也从来没有遇到过问题。当然,如果你是院士,说明你过去的科研工作得到了学术界较为广泛的承认,也许别人可能会比较尊重你的意见。 /p p   高分成绩单,未必能反映学生的科学理想 /p p   文汇报:5年前,您就回国领衔组建了中科院生物与化学交叉研究中心,并出任中心主任,您对国内科研的发展有何评价和建议? /p p   袁钧瑛:这几年,中国的科学事业发展得非常快。我相信再这样锲而不舍地坚持发展二三十年,中国的科学事业,尤其是基础科学一定会有很大的飞跃。但从目前的情况而言,中国从事科学研究的团队与世界上科技领先的国家相比,还是远远不够的。以哈佛为例,在哈佛医学研究中心为圆心的1-2平方公里之内,有5家大医院,汇聚了大约1-2万名科学家在从事研究工作。这样的规模,我们国内相比还有不小的差距。 /p p   文汇报:您认为怎样才能有效地增强中国科学家的团队? /p p   袁钧瑛:我们的大学要培养年轻人的科学理想,他必须真的热爱科学,这是最重要的。据我所知,哈佛生物医学专业大约每年在中国顶级的大学招2-3名博士生,二十多年来至少也招了四五十名了吧。但他们现在留在哈佛做生物教授的只剩两三个人。这几十个生物学博士去哪里了? 除了去制药公司以外,很大一部分去了华尔街。华尔街的收入可能是在哈佛做教授的两三倍啊。一个学生的科学兴趣和科学理想,学校给的成绩单是未必能反映出来的。但学校最重要的,恰恰是要培养一个人献身科学的理想、有强烈的科学发现的兴趣,但这无疑比教会学生背公式、背定理要难多了。 /p p   其次,还应加大对科学家团队的投入。举个例子,我们现在规定科学基金用于人力成本的比例是10%,也就是一个投入1000万元的科研项目,用于科学家的收入只能100万元,其余的只能用于购买设备、开会等等。收入太低了,怎么可能把一流的科学人才吸引回来呢? 科学发现、科学创造的最主要的动力源是科学家啊! /p
  • 浙江大学高超团队今日《Science》:再次在氧化石墨烯纤维领域取得重大突破
    长期以来,材料科学家们都在寻找一种类似肌肉和其他天然纤维的合成结构材料。该材料可以在外界刺激响应下进行可逆的融合和裂变,从而可以用于开发动态可变形系统和具有可定制化纤维的结构材料,在航空、电子和太空探索等领域具有重大的应用前景。大家颇为熟悉的一个例子便是碳纤维。碳纤维作为一种具有极高机械强度和模量的高性能纤维,在承重和复合材料等领域发挥着重要的作用。为满足不同的应用需求,碳纤维往往需要经过分层组装(如揉捻等),以形成复杂程度不同的线、纱、绳和织物。由于现代纤维组装技术需要复杂的机械和高能量输入,因此简化和探索可逆的纤维组装过程是目前人造纤维面临的主要挑战之一。此外,在重复融合和裂变过程中具有结构和性质持久性的系统的设计仍然具有挑战性。石墨烯纤维是由石墨烯片沿一维方向宏观组装而成的新型碳纤维。不同于以往的碳质纤维,石墨烯纤维的构筑基元是具有良好的导电、导热、机械强度等性能的二维石墨烯,纤维的内部结构三维有序、致密均一,可以在多功能织物、轻质导线、能量收集及转换、可穿戴储能装备、柔性电子器件、神经信号记录微电极等多个领域发挥功能。因而被材料科学家们寄予厚望。2011年,浙江大学高超教授首次利用氧化石墨烯液晶法湿法纺丝的技术制备出宏观连续的石墨烯纤维。从制备技术上看,石墨烯纤维具有独特的四大优势:可以批量生产的氧化石墨烯原料;氧化石墨烯自发形成的液晶结构;氧化石墨烯原丝的自融合和自愈合能力;种类多样且成本低廉的还原方法。2019年6月6日,由高超教授团队成果转化并建设的全球首条纺丝级单层氧化石墨烯十吨生产线试车成功。随即,国际石墨烯产品认证中心当日为该生产线生产的单层氧化石墨烯及其应用产品多功能石墨烯复合纤维分别颁发了全球首个产品认证。5月7日,高超教授团队再次在氧化石墨烯纤维领域取得重大突破,团队首次发现:湿法纺丝制备的氧化石墨烯(GO)纤维在溶剂的触发下会发生动态可逆的融合和裂变行为(图1)。研究成果以“Reversible fusion and fission of graphene oxide–based fibers”为题,发表在《Science》上。图1. 高超团队发现氧化石墨烯(GO)纤维在溶剂的触发下会发生动态可逆的融合和裂变行为具体来说,融合过程(C1-C4)就是n条单根GO纤维在溶剂中溶胀而自适应变形,形成核壳结构。其中核为GO纤维,壳为紧密堆积排列的类皮肤状GO片,呈宏观的圆柱形结构,具有微观尺度的波纹(图2A);随后在空气干燥的过程中,在表面张力的驱动下,GO纤维粘结在一起,并随着纤维素壳的自适应收缩而发生融合,形成较粗的熔融GO纤维(FuF-n)。而裂变(E1-F4)则指的是将熔融之后的GO粗纤维重新浸入溶剂溶胀,其裂变始于均匀的溶胀,随着溶胀的持续,纤维间界面处会出现小缝隙。随后缝隙的快速传播以及整个纤维组件的体积膨胀导致了整个裂变,重新变成了n条单根GO纤维(FiF-n)。作者发现,在水诱导的融合和裂变过程中,融合后的FuF-100纤维中紧密堆积GO片层的层间间距为0.84 nm,密度为1.51 g cm-3,FuF-100纤维的拉伸强度为281 MPa;裂变后的FiFs-100的GO片之间的层间距为0.84 nm,密度为1.54 g cm-3,拉伸强度为259 MPa,几乎与FuF-100一致。这充分说明了该融合和裂变过程的精准动态可逆。图2. 水诱导触发的GO纤维的精确可逆的自融合和自裂变过程GO可逆融合和裂变的变形机制研究团队在两个GO纤维的融合和裂变过程中对它们的横截面进行的原位光学显微镜和偏振光学显微镜观察,发现:溶胀和再溶胀时纤维壳的可逆地起皱和展开对GO可逆融合和裂变起着至关重要的作用(图3)。由于纤维壳与相邻纤维的边界接触,提供了GO纤维间的粘结和脱粘作用,并保护了内部的纤维GO片材不扩散,从而表现出溶剂触发的大体积变化和弹性变形能力。在溶剂的表面张力和压差(Pc)驱动下,GO纤维间通过π-π相互作用和氢键作用促进了纤维壳的进一步粘合,随后GO片材起皱并压实了整个粗纤维束。在熔合过程中,溶剂响应性纤维壳充当弹性屏障,防止薄片在瞬态界面上相互扩散。而在裂变过程中,GO单根纤维会受纤维壳之间的圆柱形几何形状的驱动而分离。由于FuF浸入了GO的良好溶剂中,溶剂渗透会削弱单个纤维之间的粘合强度。当单个纤维的溶胀率超过一定值时,壳的弯曲几何形状会产生应力,并迫使相邻的纤维彼此分离。图3. 可逆融合和裂变的动态地形变形机制潜在应用最后,研究团队展示了GO纤维动态可逆融合和裂变行为的潜在应用。首先,由于可以在各种纤维基的组装结构之间灵活转换,这允许开发具有特定性能需求的不同场景中自适应应用GO基光纤系统。例如,GO纤维组件可通过裂变和融合在3D刚性杆和2D柔性网之间可逆转换(图4 A-D)。研究团队将多达13500根具有微米级直径和厘米级长度的纤维融合到一根1.2毫米厚的杆中,该杆足以支撑其重量的680倍。随后通过局部裂变和融合在1D熔融GO光纤与各种1D和2D复杂光纤组件之间进行切换(图4 E- F)。第二个应用是,通过融合和裂变,GO纤维束将能够实现包含和排除客体材料的功能,以在动态系统中表现出可控交付的功能。不同材料,大小和形状的各种客体,例如聚丙烯腈短切纤维,聚苯乙烯微球和亚毫米级的玻璃珠,均可以在熔化过程中被吸收到FuF中,然后在裂变过程中被排出(图4 G-J)。第三个应用是通过GO涂层赋予普通纤维以可逆的融合和裂变特性。传统的聚合物,金属和陶瓷纤维通过简单地涂覆GO外层而具有可逆的熔裂能力,进一步扩展了相应应用领域的覆盖范围。图4. GO纤维可逆的融合和裂变行为的应用简而言之,GO纤维的可逆融合和裂变使得纤维组装系统具有动态特性,从而实现了结构之间的转换和响应性的致动。同时, 该概念通过GO涂层进一步扩展到了常规纤维,为未来功能响应材料的设计提供了一个通用的策略。石墨烯检测技术及应用进展为促进石墨烯研发和产业化快速发展,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程时间报告主题报告人09:30-10:00待定孙立涛(东南大学)10:00-10:30石墨膜导热测试技巧方法李金艳(德国耐驰仪器制造有限公司)10:30-11:00绝缘衬底表面石墨烯晶圆生长研究进展王浩敏(中国科学院上海微系统与信息技术研究所)11:00-11:30石墨烯材料检测方法介绍刘峥(国家石墨烯产品质量监督检验中心)11:30-14:00午休14:00-14:30待定谭平恒(中国科学院半导体研究所)14:30-15:00石墨烯导热增强复合材料与热界面材料林正得(中国科学院宁波材料技术与工程研究所)15:00-15:30二维半导体及异质结的生长与光电性能调控肖少庆(江南大学)15:30-16:00石墨烯结构表征及其在环保领域的应用胡学兵(景德镇陶瓷大学)16:00-16:30石墨烯等低维纳米材料的标准化动态和展望丁荣(全国纳标委低维纳米结构与性能工作组)报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/)报名参会加入会议交流群,随时掌握会议动态
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制