当前位置: 仪器信息网 > 行业主题 > >

美他己脲标准品

仪器信息网美他己脲标准品专题为您提供2024年最新美他己脲标准品价格报价、厂家品牌的相关信息, 包括美他己脲标准品参数、型号等,不管是国产,还是进口品牌的美他己脲标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合美他己脲标准品相关的耗材配件、试剂标物,还有美他己脲标准品相关的最新资讯、资料,以及美他己脲标准品相关的解决方案。

美他己脲标准品相关的资讯

  • 舌尖上的安全--阿尔塔发布51种农业部例行监测农残标准品
    舌尖上的安全蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法 为确保国民“舌尖上的安全”,农业部建立了农药残留例行监测制度,每年多次检测全国多个城市的蔬菜水果等农产品。在农业部规定的70多种例行监测农残中,有51种农药适用于液质联用 (LC-MS/MS) 分析 ,本方法可用于同时分析蔬菜水果中51种农业部例行监测的农残。 1. 此方法同时分析51种农药,分析时间仅7.5min,大大节省了样品分析时间。2. 样品前处理采用国际通用的QuEChERS (AOAC 2007.1) 方法,样品处理简单、干净。3. 该方法在Triple Quad™ 3500, 4500仪器上,韭菜、豆角和草莓3种基质中经过验证,真正地可用于实际样品的检测。4. 连续分析120个样品15小时,仪器分析结果稳定可靠。5. 现成方法包括所有样品处理,标准曲线配制,数据采集方法, 定量分析和报告模板。 应用于中文Cliquid® 软件中,简单、易上手,客户省去实验方法开发,直接应用方法分析样品,让初学者很快可以得到专家级的结果。 Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯Figure 2. 连续分析15小时典型农药的峰面积变化图Table 1. 在韭菜基质中,典型农药的回收率和线性相关系数 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M 51种农药混标,10ppm订货信息产品名称订货信息产品名称订货信息产品名称1ST21058多菌灵1ST20348氟啶脲1ST20140甲基对硫磷1ST20297啶虫脒1ST25000阿维菌素1ST20111杀螟硫磷1ST20298吡虫啉1ST20167氧乐果1ST20065倍硫磷1ST20001毒死蜱1ST20345除虫脲1ST20173水胺硫磷1ST20350噻虫嗪1ST20127甲基异柳磷1ST20434对硫磷1ST21145烯酰吗啉1ST20097敌敌畏1ST21202三唑酮1ST21189苯醚甲环唑1ST20093甲胺磷1ST20094二嗪磷1ST21226腐霉利1ST20449灭多威1ST20349灭幼脲1ST20305氟虫腈1ST20144乙酰甲胺磷1ST20189亚胺硫磷1ST20438三唑磷1ST21161嘧霉胺1ST20168马拉硫磷1ST20155丙溴磷1ST20277甲萘威1ST25016哒螨灵1ST22249二甲戊灵1ST20273涕灭威亚砜1ST20172伏杀硫磷1ST20271克百威1ST20375涕灭威1ST21157嘧菌酯1ST20170辛硫磷1ST20098乐果1ST25001甲氨基阿维菌素苯甲酸盐1ST21164异菌脲1ST202593-羟基克百威1ST20222甲氰菊酯1ST20182敌百虫1ST20266涕灭威砜1ST20210联苯菊酯1ST21247咪鲜胺1ST20124甲拌磷1ST20396虫螨腈
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 食品及相关产品中的激素检测标准汇总
    本汇总主要是食品及饲料等相关产品中的激素检测标准。   1、GB/T 20741-2006 畜禽肉中地塞米松残留量测定 液相色谱-串联质潜法   2、GB/T 20749-2006 牛尿中β-雌二醇残留量的测定 气相色谱-负化学电离质谱法   3、GB/T 20753-2006 牛和猪脂肪中醋酸美仑孕酮、醋酸氯地孕酮和醋酸甲地孕酮残留量的测定 液相色谱-紫外检测法   4、GB/T 20758-2006 牛肝和牛肉中睾酮、表睾酮、孕酮残留量的测定 液相色谱-串联质谱法   5、GB/T 20760-2006 牛肌肉、肝、肾中的α-群勃龙、β-群勃龙残留量的测定 液相色谱-紫外检测法和液相色谱-串联质谱法   6、GB/T 20761-2006 牛尿中α-群勃龙、β-群勃龙、19-乙烯去甲睾酮和epi-19-乙烯去甲睾酮残留量的测定 液相色谱-串联质谱法   7、GB/T 20766-2006 牛猪肝肾和肌肉组织中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法   8、GB/T 20767-2006 牛尿中玉米赤霉醇、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法   9、GB/T 21981-2008 动物源食品中激素多残留检测方法 液相色谱-质谱/质谱法   10、GB/T 22967-2008 牛奶和奶粉中β-雌二醇残留量的测定 气相色谱-负化学电离质谱法   11、GB/T 22973-2008 牛奶和奶粉中醋酸美仑孕酮、醋酸氯地孕酮和醋酸甲地孕酮残留量的测定 液相色谱-串联质谱法   12、GB/T 22976-2008 牛奶和奶粉中α-群勃龙、β-群勃龙、19-乙烯去甲睾酮和epi-19-乙烯去甲睾酮残留量的测定 液相色谱-串联质谱法   13、GB/T 22978-2008 牛奶和奶粉中地塞米松残留量的测定 液相色谱-串联质谱法   14、GB/T 22986-2008 牛奶和奶粉中氢化泼尼松残留量的测定 液相色谱-串联质谱法   15、GB/T 22992-2008 牛奶和奶粉中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法   16、 NY/T 914-2004 饲料中氢化可的松的测定高效液相色谱法   17、NY/T 918-2004 饲料中雌二醇的测定 高效液相色谱法   18、SC/T 3020-2004 水产品中己烯雌酚残留量的测定 酶联免疫法   19、SC/T 3029-2006 水产品中甲基睾酮残留量的测定 液相色谱法   20、 SN 0210-1993 出口肉及肉制品中己烯雌酚残留量检验方法 分光光度法   21、SN 0664-1997 出口肉及肉制品中雌二醇残留量检验方法 放射免疫法   22、SN 0665-1997 出口肉及肉制品中雌三醇残留量检验方法 放射免疫法   23、SN 0672-1997 出口肉及肉制品中己烯雌酚残留量检验方法 放射免疫法   24、SN 0700-1997 出口乳及乳制品中氢化可的松残留量检验方法   25、SN/T 1625-2005 进出口动物源性食品中甲羟孕酮和醋酸甲羟孕酮残留量的检测方法   26、SN/T 1744-2006 进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法 气相色谱串联质谱法   27、SN/T 1752-2006 进出口动物源性食品中二苯乙烯类激素残留量检验方法 液相色谱串联质谱法   28、SN/T 1826-2006 进出口动物源食品中19-去甲睾酮残留量的测定方法 气相色谱-质谱法   29、SN/T 1955-2007 动物源性食品中二苯乙烯类激素残留量检测方法 酶联免疫法   30、SN/T 1956-2007 肉及肉制品中己烯雌酚残留量检测方法 酶联免疫法   31、SN/T 1959-2007 动物源性食品中醋酸甲羟孕酮残留量的检测方法 酶联免疫法   32、SN/T 1970-2007 进出口动物源性食品中地塞米松、倍他米松、氟羟泼尼松龙和双氟美松残留量测定方法 酶联免疫法   33、SN/T 1980-2007 进出口动物源性食品中孕激素类药物残留量的检测方法 高效液相色谱-质谱/质谱法   34、SN/T 2160-2008 动物源食品中氢化泼尼松残留量检测方法 气相色谱-质谱/质谱法   35、SN/T 2222-2008 进出口动物源性食品中糖皮质激素类兽药残留量检测方法 液相色谱-质谱/质谱法   36、 农业部958号公告-10-2007 水产品中雌二醇残留量的测定 气相色谱-质谱法   37、农业部1031号公告-1-2008 动物源性食品中11种激素残留检测 液相色谱-串联质谱法   38、农业部1031号公告-2-2008 动物源性食品中糖皮质激素类药物多残留检测 液相色谱-串联质谱法   39、农业部1031号公告-4-2008 鸡肉和鸡肝中己烯雌酚残留检测气相色谱-质谱法   40、农业部1063号公告-1-2008 动物尿液中9种糖皮质激素的检测 液相色谱-串联质谱法   41、农业部1063号公告-2-2008 动物尿液中10种同化激素的检测 液相色谱-串联质谱法   42、农业部1063号公告-5-2008 饲料中9种糖皮质激素的检测 液相色谱-串联质谱法   43、农业部1068号公告-2-2008 饲料中5种糖皮质激素的测定 高效液相色谱法   44、农业部1068号公告-3-2008 饲料中10种蛋白同化激素的测定 液相色谱-串联质谱法   45、农业部1163号公告-1-2009 动物性食品中己烯雌酚残留检测 酶联免疫吸附测定法   46、农业部1163号公告-9-2009 水产品中己烯雌酚残留检测 气相色谱-质谱法
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 阿尔塔科技推出51种农药混合标准溶液
    主要用途:此标准溶液完全符合国标《食品中农药最大残留限量》(GB2763-2014)的要求,其中的51种农药均在农业部规定的70多种例行监测农残中,可用于同时分析蔬菜水果中51种农业部例行监测的农残的定性与定量。该产品已应用到SCIEX发布的"51种农药检测软件库和方法包 "中,是例行监测解决方案必备品!订货号1ST27019-10M 产品名51种农药混合标准溶液规格10ppm浓度10ug/ml溶剂甲醇包装??1ml/支成分如下:产品号产品名称英文名称CAS#1ST21058多菌灵Carbendazim10605-21-71ST20297啶虫脒Acetamiprid135410-20-71ST20298吡丙醚Imidacloprid138261-41-31ST20001毒死蜱Chlorpyrifos2921-88-21ST20350噻虫嗪Thiamethoxam153719-23-41ST21145烯酰吗啉Dimethomorph110488-70-51ST21189苯醚甲环唑Difenonazole119446-68-31ST21226腐霉利Procymidone32809-16-8????1ST20305氟虫腈Fipronil120068-37-31ST20438三唑磷Triazophos24017-47-81ST20155丙溴磷Profenofos41198-08-71ST22249二甲戊灵Pendimethalin40487-42-11ST20271克百威Carbofuran1563-66-2??1ST20170?辛硫磷Phoxim14816-18-3??1ST21164异菌脲Iprodione36734-19-7?1ST20182敌百虫Trichlorphon52-68-61ST21247咪鲜胺Prochloraz67747-09-51ST20348氟啶脲Chlorfluazuron71422-67-81ST25000阿维菌素Abamectin71751-41-21ST20167氧乐果Omethoate1113-02-61ST20345除虫脲Diflubenzuron35367-38-51ST20127甲基异柳磷Isofenphos-methyl?99675-03-31ST20097敌敌畏Dichlorvos62-73-71ST20093甲胺磷Methamidophos10265-92-61ST20449灭多威Methomyl16752-77-51ST20144乙酰甲胺磷Acephate30560-19-11ST21161嘧霉胺Pyrimethanil???53112-28-01ST20277甲萘威Carbaryl63-25-21ST20273涕灭威亚砜Aldicarb-sulfoxid?1646-87-31ST20375涕灭威Aldicarb116-06-31ST20098乐果Dimethoate60-51-51ST202593-羟基-呋喃丹 3-羟基克百威Carbofuran-3-hydroxy16655-82-61ST20266涕灭威砜 涕灭氧威Aldicarb sulfone1646-88-41ST20124甲拌磷Phorate298-02-21ST20140甲基对硫磷Parathion-methyl298-00-01ST20111杀螟硫磷Fenitrothion 122-14-51ST20065倍硫磷Fenthion55-38-91ST20173水胺硫磷Isocarbophos24353-61-5??1ST20434对硫磷Parathion56-38-21ST21202三唑酮Triadimefon43121-43-3?1ST20094二嗪磷Diazinon333-41-51ST20349灭幼脲Chlorobenzuron Chlorbenzuron57160-47-11ST20189亚胺硫磷Phosmet732-11-61ST20168马拉硫磷Malathion121-75-5?1ST20406哒螨灵Pyridaben96489-71-31ST20172伏杀硫磷Phosalone2310-17-0??1ST21157嘧菌酯Azoxystrobin131860-33-81ST20288甲氨基阿维菌素苯甲酸盐Emamectin Benzoate155569-91-81ST20222甲氰菊酯Fenpropathrin39515-41-81ST20210联苯菊酯Bifenthrin82657-04-31ST20396虫螨腈Chlorfenapyr122453-73-0附:SCIEX——蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯
  • 我国乳品标准被指倒退 菌落数高欧美20倍
    今年6月1号起,由卫生部批准公布的乳品安全国家标准正式实施,其中共包括66项具体标准,涉及生乳、巴氏杀菌乳、灭菌乳等所有乳类和乳制品。这是2008年“三聚氰胺事件”发生后,有关部门对1986年颁布的乳品标准进行的一次重大修订,因此也被称为乳品新国标。然而,正是这个新国标却在行业内外引发了一场激烈争论。   这是2008年“三聚氰胺事件”发生后,有关部门对乳液新标准进行的一次重大修订。然而,新国标从标准正式发布到实施,引发无数争论。争论焦点之一是蛋白质含量,新国标中,蛋白含量每100克含2.8克,这个数字低于国际标准3.0克,也低于1986年旧国标的2.95克 争论焦点之二是每毫升牛奶中的菌落总数,新标准由原来的50万上升到了200万,比美国、欧盟10万的标准高出20倍,被业界惊呼为一夜倒退25年。更有舆论指出,这个乳业新国标让“中国原奶质量降到了全世界最低”。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长王竹天   王竹天:这个标准是适合于我们国家现在的这种养殖方式下的一个标准   中国畜产品加工研究会名誉会长农业部(奶类)顾问 骆承庠   骆承庠:中国的乳品工业恐怕要完了。   中国奶业协会乳品工业委员会副主任、卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:不能像某些领导所讲的,这个标准是相互协调,相互照顾,这样的一个产物。   围绕乳品新国标,我们听到了两种针锋相对的声音。争论第一大焦点就是1986年颁布的生鲜牛乳收购标准和2003年卫生部的鲜乳卫生标准,都要求蛋白质含量为2.95%,新国标却把蛋白质含量降低为2.8%。那么,这项标准究竟是怎么定下来的?能否保证今后原奶的质量呢?我们再来看看专家的分析。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:不是说这个蛋白质的含量从2.95降到2.8以后,这个牛奶就不能喝了,   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛   曾寿瀛 国际上没有一个标准,原料奶、生奶是2.8的,没有。   对于蛋白质标准,支持者和反对者各执一词,记者注意到,我国1986年的“国标”2.95与国际标准已有明显差距,2010年的标准在其基础上为何又降到了2.8呢?参与这次国标制定的中国农科院北京畜牧兽医研究所副所长王加启告诉记者,影响奶蛋白含量的因素很多,饲料是其中最关键的一个因素,而目前中国奶业有76%都是散户养殖,在精饲料投入不足,这不可避免地影响了奶蛋白含量。1986年制定标准时,我国以国营农场为主,奶牛数量少,都是集中养殖,2.95的指标就当时的情况来说并不高。而现在的情况已经大不一样了。   中国农科院北京畜牧兽医研究所 中国奶业协会 副理事长 王加启   王加启:分散饲养、多种模式饲养的这么一个奶业发展的局面,那么这就导致了奶牛的品种,饲养的水平,管理的水平和饲养的环境参差不齐。   中国农业大学的李胜利教授是国家奶牛产业技术体系首席科学家。他告诉我们,新国标中,蛋白质含量的标准,是根据检测部门长期监测得出的数据确定的。此前中国农业大学在全国设立了24个试验站,150个辐射点收集信息,相当一部分企业的奶蛋白含量实际上达不到2.95。这是工作人员在黑龙江省一个国内大型乳制品生产企业监测的数据,我们看到,这家企业在东北地区奶蛋白含量达到2.95以上的比例是75.1%,中南地区是63.7%,西北地区仅为23.6%。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:超过2.95的你看只有多少,它基本上有接近一半都活不了,你算吧。   记者:这也是一个很大的企业吗?   李胜利:很大的企业。   对于新国标把奶蛋白含量标准最终定为2.8, 86岁高龄的中国奶业协会顾问曾寿瀛则有不同的观点。   中国奶业协会顾问曾寿瀛   曾寿瀛:我看到材料上介绍的,内蒙、黑龙江有6%和10%的奶牛达不到2.95,只能达到2.8,那么这些地方的是不是应该分析一下,他为什么达不到。   从1985年开始,曾寿瀛老人作为主要标准制定者和起草人,参与了《消毒牛奶》《酸牛奶》《全脂奶粉》等8项目乳品卫生标准的制定,参与并见证了1986年的乳业国标制定。   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛  曾寿瀛:以前过去中国那时候有一个叫北方奶牛一宗族,中国南方奶牛一宗族,那个资料都充分地显示,都是收购的牛奶在2.95,或者接近2.95,或者高于2.95,2.8是三级品,是等外品,2.95才是正品,现在是次品变正品。   曾寿瀛认为规范养殖和科学饲喂,达到2.95以上并不困难。他给记者拿出了一组数据。这是位于福建南平的一家大型乳制品生产企业,从2007年到2009年生鲜牛乳主要指标中,记者看到,除了个别月份乳蛋白的含量在2.96以上,其他均在3.0以上,2009年4月份的最高数值达到了3.08。   对于目前的乳业生产状况,两方给出了不同的数据,那个数据更接近真实的情况呢?记者选择了双方提供的两个奶牛养殖基地进行了调研,一个位于江苏省常州市,一个位于黑龙江哈尔滨南岗区。   在黑龙江哈尔滨南岗区的红旗满族乡,在这儿呢,奶牛养殖是当地的支柱产业,同时也是农民的主要收入,据了解当地农户都是分散式的小规模养殖,而且每户养殖八到十头,能占到90%以上的比例。   在村子里,我们碰到了几位在路边放牛的奶牛养殖户。他们告诉记者,家里的玉米秸秆喂完了,暂时把牛栓在路上补充些青草。   黑龙江红旗满族乡农民 付明禹   付明禹:现在苞米秸秆一块钱一捆,你算算,啥都是钱,现在工钱都没有,我们俩的工钱都没有。   记者:我们养牛不赚钱吗?   付明禹:赚啥钱,多少年没赚钱,四五年没赚钱了。   养了20多年牛的农户付明禹告诉记者,饲料的连年上涨,奶牛养殖户的利润越来越小。跟去年比,今年的玉米价格,每公斤上涨了四毛多,豆饼每吨上涨了三四百元,配合饲料每吨也上涨了500元,饲养一头牛每月的饲料成本直接增加200多元,而现在每公斤奶的价格是2.7元,一直没有太大的变化。养牛不挣钱,养殖户都喂不起精饲料。   黑龙江红旗满族乡农民 付明禹   付明禹:要是有盈利了就多给点,没有盈利就少给点,我还没有吃饭钱,得给我对付点吃饭钱。   记者在红旗满族乡走访了多户村民,发现这些分散饲养的奶牛的饲料多是玉米秸秆,豆饼,或是混合饲料,每天每头牛的饲料成本都不超过30元。当地的奶牛合作社站长告诉记者,饲料的情况,直接影响了奶蛋白含量,从他们收奶的情况来看,大部分养殖户送来的奶,蛋白含量在2.8-2.9的占50%,2.9以上高指标的奶占50%。   黑龙江浩源奶业合作社站长 关凤春   记者:你们想收高指标的奶吗?   关凤春:想,为啥不想收过指标奶。   记者:收得上来吗?   关凤春:收不上来,因为奶户这一块,牛本身出的奶就稀,就出那个奶。   随后记者又来到了位于双城县幸福乡的庆源牧业,这里是有着900头奶牛的规模牧场。记者主要,这里每头牛每天的饲喂成本达到了40多元,为提高蛋白还添加了每吨1200元的羊草。但是厂长告诉我们,按照DHI来检测的话,还有20%奶蛋白含量达不到2.8。   黑龙江庆源牧业场长 薛英峰   薛英峰:就是增加饲养这块,调整个体牛的营养指标。   薛英峰告诉记者,一定的资金实力和规模至少能保障80%的奶品奶蛋白含量达到2.9以上。但是他们所在的双城县,像他这样具备同等实力的牧场不过三家,对于有着22万头奶牛存栏量的双城县来讲,90%以上的散户小规模养殖,难以达到2.9的标准。   黑龙江奶业协会秘书长 吴和平   吴和平:原因就是这个时间呢,它的一个饲料结构,也就是营养结构,牛体状况和气侯条件所影响的。   吴和平认为2.8的数据符合奶牛泌乳期规律,而北方地区奶牛养殖量占全国的82%,其中70%以上是农户散养,又是一个不得不面对的客观事实。那么农户养牛到底有没有突破?能否养出奶蛋白在2.95以上的奶牛来呢?中国奶业协会乳品工业委员会副主任曾寿瀛告诉我们这并不难,老人带记者来到了江苏省常州市横山镇的这家奶牛合作社进行了调研。   常州横山镇苏农奶牛专业合作社顾春元   顾春元:喂的是玉米粉,还有黄豆、豆粕什么,混合的。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:你要给奶牛吃好,奶牛才能给人吃好,如果你给奶牛天天吃的稻草,水葫芦,水花生,在青饲料里面也克扣它,它怎么能让你牛奶里营养成分好呢?   顾春元告诉记者,他们每天给牛配备的精料有十几种,达九公斤,除此之外每天还要给牛配备青饲料50公斤,分三次喂食。   常州横山镇苏农奶牛专业合作社 张正东   记者:你觉得就高好了还是就低好呢?奶蛋白。   张正东:那肯定高好了。   记者:为什么呢?但是你要增加成本,你高了之后。   张正东:成本是,但是有回报。   陈建国说,奶蛋白含量是2.8,2.9还是3.0,三个数字表面看起来差异不大,但是实际上事关成本大小。按照他们的计算,蛋白含量每提高0.1个百分点,喂饲料成本就得相应增加五块钱左右。这个合作社实行的是按质论价,他们以奶蛋白2.9为标准,以每公斤牛奶3元钱为相应的定价基础,每高出0.1个蛋白含量就会增加5分钱。同样,每低于0.1个百分点会有相应的惩罚性罚款。计算下来,每产一公斤奶,蛋白含量2.95要比2.8,能多卖1.23元左右。   常州横山镇苏农奶牛专业合作社 负责人 陈建国   陈建国:你一头牛(一年),那就算300块钱,一头牛一年它就要相差三百。   曾寿瀛的课题组长期对这个合作社进行质量检测,他们发现,在合作社实施按质论价的体系后,从日常监测数据来看,牛奶蛋白达到2.95的比例占95%以上。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:每天要检测,一个月三十天,他一年下来要多少份数,三年的份数,证实了他的牛奶常年维持到2.95。   在采访中,我们还得到了一组数据,目前发达国家的原奶奶蛋白含量可以达到3.2%,加拿大的奶蛋白含量在3.3%,新西兰能够达到3.8%。显然,只有先进的集中饲养模式才能培育更好的牛,吃上更好的饲料,产出更好的牛奶。但对中国乳品行业来说,完成这个庞大的系统工程不是一朝一夕的事。面对这种困境,国家标准到底应该是就高还是就低呢?   对于中国乳品行业来说,短时间内改变散户养殖占90%的传统模式确实很难,所以很多人认为,新国标如果提高奶蛋白标准,结果只能是纸上谈兵。而反对方的观点是,不能因为发展水平低,就降低标准,以至于整个产业陷入恶行循环,更何况从操作环节看,可以实行优质优价的办法,用市场手段推行高标准。这个两难的问题似乎陷入了无解的尴尬。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:如果采用原来的国标的话,意味着我们有将近20%多比例的奶,都可能成为不合格的。大部分人进不去,可能有一些奶农会出现倒奶的可能性。   李胜利认为,针对目前全国70%以上乳品来自散户养殖的现状,过高的蛋白标准,只能催发更多的倒奶事件发生。   在李胜利看来,过高的标准对提高奶品质量也是有害无益。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:三聚氰胺在发生之前就是因为奶源过剩。   李胜利分析,正是因为达不到企业的收购标准,一些人为了把牛奶卖出去,宁愿铤而走险添加三聚氰胺。但是对于低标准一直持反对态度的曾寿瀛并不认同这个观点。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:三聚氰氨它是这种见利忘义,对不对,怎么会是被迫呢?怎么会是因为2.95的问题?你2.8就不掺假了?   曾寿瀛告诉记者,现在把标准降低,无法遏制不法分子添加三聚氰胺,而且,他认为低标准也会带来另外一种隐患,乃蛋白含量低会影响牛奶固有的香味和脂气味,难以避免一些企业不用添加剂或者脱水奶粉以次充好。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:带来的是你用这个原料奶做出来的所有的成品都要受到影响的问题,   奶蛋白数据的降低,会不会使生产企业为提高口感而使用添加剂呢?低标准对企业加工又会有什么影响呢?带着这样的疑问,我们的记者联系了多家大型乳品企业,最终只有北京三元食品股份有限公司接受了我们的采访。   北京三元食品股份有限公司总经理 钮立平   记者:为了保持以前这个品质,或者口感,会增加其它的添加剂,有没有这样的情况?   钮立平:我们这个企业不存在这个问题,一方面呢就是我刚才说了,一个产品线很丰富,2.8的奶也可以生产出产品,2.95以上也可以生产出自己的产品,   记者:如果要生产我们的极致奶,只有2.8奶蛋白这样的奶,那我们。   钮立平:不能生产,就不能生产。是不能够添加任何东西的,你只能用优质的奶源去生产。   记者:普通的一些中型或小型企业。   钮立平:因为小型企业呢,我觉得它主要是一个,当然它也有成本上的考虑。因为它的脂肪可能低了,为了达到你那个标准去添加一些东西,这个说不好。   看来,奶蛋白含量标准高低对乳品行业究竟会带来什么影响,还有很多未知数。而围绕乳品新国标的争论中还有另一个焦点就是菌落总数。新标准由原来的50万调高到了200万,比美国、欧盟10万的标准高出了20倍,被业界惊呼为一夜倒退25年。那么,这个标准又是如何确定的?   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王竹天:就是如果是真的把它整到50万的话,就会把这一些大量的这些牛奶拒之门外。   中国畜产品加工研究会名誉会长、农业部(奶类)顾问 骆承庠   骆承庠:韩国的(菌落总数)不是7000吗?你们中国的奶200万,这不是开玩笑吗?   参与国标制定工作的中国农科院北京畜牧兽医研究所副所长王加启告诉我们菌落总数定在200万的原因。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:在新的标准里面,菌落总数定的是200万,在1986年的标准里面分了四级,一级是50万,二级是100万,三级是200万,四级是400万,所以说你比较两个标准的话,你会发现新的标准,既没有严格,也没有放松,它相当于原来标准的三级的那种标准。   王加启认为依照中国目前的养殖现状菌落总数如果设置在50万,会有一半牛奶被拒之门外。而曾寿瀛则认为菌落指标过高会直接影响牛奶的安全性。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:你200万的细菌数,我们不可能把所有的细菌杀灭掉,那么牛奶中残存了一定量的数量,这个数量对牛奶在运转的过程中,保质期必然要缩短。   那么菌落值在50万和200万到底对安全性的影响有多大呢?农业部奶及奶制品质量监督检测室王俊博士,向我们展示了菌落总数在50万和200万的照片。照片上白点菌群的分布情况差异很大。   农业部奶及奶制品质量监督检验测试中心检测室主任 王俊博士   王俊:如果是50万的数的话,在这个挤奶的奶站里面,应该大家能觉得,就是说进去一看的话,应该觉得比较干净,地面上没有残余的牛奶。200万的话应该就是比较脏的条件,应该基本上来说夏天苍蝇是满处飞的,然后会有一些残余的牛奶散落在地面上,卫生设备,有些时候可能会闻到一些异味。   王俊认为,菌群数量不同,对乳品的安全性有一定的影响。不过,在国家疾控中心,负责营养与食品安全的王竹天副所长则认为菌落微生物不是致病菌,不会影响乳品安全。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王俊:大的方面来讲的话,菌落总数,不是一个直接的食品安全指标,它和我们人类的致病没有关系。   菌群数量的不同,到底对乳品会有什么影响呢,采访中,我们找到了有20年乳品安全生产经验的王炎场长。   记者:有的人说微生物含量它不是致病菌,而且还有后续的加工,说影响不到这个品质。   王炎:不可能的,不可能的,那是肯定能够影响的。   记者:根据您的经验。   王炎:肯定是影响的,但是因为他消毒,可能说不能够给人致病,但是它的新鲜感,它的口感肯定是要受影响的,   王炎告诉记者,菌落总数体现出牛奶生产的卫生状况,同时也影响着奶制品的保质期。冷链生产控制,牛奶挤下后进入这些储罐中,温度迅速降到4度以下,然后再装冷藏车,运往加工厂。整个过程一直在低温下运行,这样细菌总数可以控制在10万以下。对企业来说,相应设备的投入和改造则需要大笔资金。而很多企业会把成本转移到终端产品上去。   乳品厂管理人员:今年将近三百万投入,光北京地区。   记者:如果全范围内来讲都投入到的话又是多大?   乳品厂管理人员:那得上千万了。   在我们的印象中,社会在进步,技术在提高,消费需求在提升,相关的行业标准似乎也应该芝麻开花节节高。但是,在乳品新国标的制定中,却出现了相反的动向。这种反常的现象背后,到底折射出中国乳品行业的哪些困境?我们也听到了不少声音。   尽管对此次乳业新国标的一直是支持态度的,但是王加启认为,现行乳业新标准确实偏低,他认为这个标准会在一两年的时间内协调改进,而优质优价体系势在必行。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:企业实施真正的优质优价的体系,是推动牛奶品质提高的绝对性力量,其它的都是辅助性力量,因为市场它是一个最大的推动力量。   王加启说,在美国乳制品安全体系中最重要的《A级高温灭菌奶法令》被记录于美国《联邦法规法典》,该法规为美国奶制品的检验检测提供了可靠依据。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:监管的力度和规范,在这一点我们国家比较欠缺。   黑龙江奶协秘书长吴和平同样赞同从事实出发制定新国标,但是针对目前中国奶业的发展,他认为应该用奶粉贮备流转制度和相应的金融服务体系对奶业行业进行保障。   黑龙江奶业协会秘书长 吴和平   吴和平:在我们国内制订一个长期的一个奶粉储备流转的制度,它会对稳定行业高峰低谷这种不断的变化起到一个稳定作用。   作为卫生部原乳品订标组副组长:曾寿瀛,一直坚持用高标准引领行业发展,他告诉我们,乳蛋白含量指标定在2.8,菌落总数定在200万的低标准严重制约了我国乳业的发展。中国乳业发展可以借鉴新西兰,建立第三方检测机构。新西兰拥有全球领先的乳品第三方检测机构-SAITL乳品检测中心。第三方检测实验室的建立可以为奶户和乳制品企业提供公正的交易平台,与按质论价价格体系相结合,保障奶农与企业利益的均衡,促使奶农主动提高生鲜乳质量。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:我们国家对生乳的标准,是不是能够分级,不要实行一个项目只有一个指标,例如蛋白质就是2.8,例如菌落总数就是200万,为什么不可以考虑分级呢?这个分级对消费者来讲是有好处,对乳品企业来讲也有好处,对奶农来讲它也有好处   乳品新国标究竟是订高了还是低了,我们不是专业人士,也很难给出一个定论。这场没有结果的争论里,却让我们看到了乳品行业的窘境。客观地讲,中国乳品行业最近十几年确实取得了跨越式发展,但是很多结构性的缺陷一直被表面繁荣所掩盖。一个很简单的道理,喝上好奶,必须养好奶牛。然而,过去大量投资都集中在乳品生产销售环节,并不缺少先进的技术设备,对行业基础的养殖环节,反倒没有相应规划,以至于产业链前后脱节,养殖水平落后于很多国家,原奶质量不稳。扭曲的产业结构不仅给国家标准怎么制定带来了一系列两难,也对乳制品的安全构成了隐患。不过,我想不管怎么样,安全和品质都应该是一个产业发展始终不渝的目标,作为制定标准的主管部门,在顾及现实利益的同时,千万别忘了这点。
  • 2400多种食品添加剂 仅20%有安全限量标准
    国内被允许使用的食品添加剂有2400多种,其中仅有近20%制定了安全限量标准、近40%的有检验标准。近期,九三学社市委科技委员会与九三学社静安区委开展联合课题调研,针对食品安全标准制定中存在的问题进行了梳理,呼吁提高标准科学性,维护人们的健康权益。   食品标准不协调引出问题   馒头能不能使用添加剂?看似并不难回答的问题,却由于在不同的规范中,馒头被分为不同的类别,让行业从业者难以&ldquo 下手&rdquo 。   在《食品安全国家标准食品添加剂使用标准》(GB2760)中,馒头被归为粮食制品,不得添加色素 但在食品安全市场准入(QS)制度的食品分类系统中,馒头却是蒸煮类糕点一类,明确可以使用添加剂。如此的不协调远不止涉及馒头一种,它给食品的生产和监管带来了很大困难。   课题组认为,食品标准不协调主要是多部门、多层级制定和管理造成的。目前,农业部、卫生部、商务部、质检总局以及各相关标准委等都在制定涉及食品且具有强制性要求的国家标准,形成多头管理格局。另外,根据制定主体的层级食品标准又可分为国家、行业、地方和企业标准。于是便出现了同一种食品、同样一种成分和同一技术特性在不同的标准中会有不同的要求和规定的情况。此外,横向的通用标准与垂直的产品标准不配套,也影响了标准的适用性和可操作性。   低糖食品标准几乎空白   我国现有的食品标准有4600多项,一些关键领域缺乏甚至没有标准的覆盖。比如在2400多种食品添加剂中,只有近20%制定了安全限量标准,这就给滥用添加剂提供了便利条件。此外,只有近四成添加剂有检验标准,检测方法标准的缺失直接影响了对食品安全因素的取证和断定,例如&ldquo 地沟油&rdquo ,就是因为没有有效的、有针对性的检测方法和标准,问题始终得不到解决。   课题组指出,虽然我国围绕化学、生物和物理的食品安全危害以及风险,架构了目前的食品卫生标准体系,但一些重要子体系、重要标准或者重要指标仍然不全,标准内容科学性和实用性仍然难以满足保护消费者的需求。比如,一些涉及高风险、特定人群的食品标准仍然不够,糖尿病人无蔗糖食品及低糖食品的标准几乎是空白 食用调和油、寿司、生制即食水产品等食品目前均无标准。   食品安全标准&ldquo 超期服役&rdquo   课题组指出,我国现在大部分食品卫生标准制定于上世纪八九十年代,更新严重滞后。例如,《食品中污染物限量标准》(GB2762)、《食品中农药残留限量标准》(GB2763)系统化的清理整合均在2005年,而兽药残留限量标准,农业部于2002年发布至今已有10年未更新。食品安全标准的&ldquo 超期服役&rdquo 的现状,难以适应高速发展的社会对食品及其安全的需求。   与此同时,我国现行有效的食品相关的4069项标准中,只有一成多采用了国际标准和国外先进标准。许多污染物限量指标低于国际公认标准,例如,黄曲霉毒素B1在谷类中的限量,我国是欧盟的5倍。正因为如此,才引出可口可乐饮料、雀巢婴幼儿食品可能存在重金属过量的争议。   动态修改维护食品安全标准   &ldquo 现有的标准制定方法亟待改变,借鉴国际和国外发达国家成功经验,提高风险监测和评估能力与水平,缩小与国际先进标准的差距。&rdquo 课题组建议,根据最新的科学研究和信息对化学制品的毒理和残留限量进行重新评估,对标准实行动态修改维护。国际组织和主要发达国家均建立了基本的标准(技术法规)动态的维护机制,对旧的残留限量标准进行重新评估和修订或完全用新的标准替代。例如,欧盟于1992年开始对全欧盟范围内在植物保护产品中使用的所有活性成分进行为期12年漫长的重新复审程序。欧盟现有的农药残留限量法规每年都要进行许多次的修改和补充。日本对实施的肯定列表&ldquo 临时残留限量&rdquo 标准规定每5年复审一次。   课题组强调,增强立法过程和标准制定过程的公开性和透明性,让包括消费者在内的所有利益相关方全程参与其中,这样做不但能使制度更加完善、管理更为有效,也能重建公众对食品安全管理的信心。可以建立国家标准信息资源交流平台,鼓励食品生产经营者和消费者通过该平台为食品安全标准的制定、实施、监管提供建议,增强标准制定过程中社会成员的参与程度。
  • 美甲醛检测标准提高5倍 中国木制品产业受冲击
    甲醛,是公认的变态反应源,已被世界卫生组织确定为致癌和致畸形物质。   当前,世界各国均将其列入重要的有毒有害物质控制范围,并作为一项重要的安全指标进行检测,我国也制订了一系列标准进行严格控制。   为提高木制品准入门槛,最近美国签署法案,提高甲醛释放量检测标准,其结果必将导致我市输美木制产品面临严峻挑战。   新标准比原标准提高5倍   根据此前美国总统奥巴马签署的《复合木制品甲醛标准法案》(Formaldehyde Standards for Composite Wood Act)有关规定,进入美国的所有木制产品甲醛含量,必须达到新标准要求。否则,不能进入市场销售。   换言之,就是2011年7月1日以后,在全美销售和批发的刨花板、中纤板、硬木胶合板等木制品的甲醛释放限量,若检测不合格的话,将被拒之门外。   据了解,现行甲醛检测要求相对较低。新标准出来后,输美木制品门槛将大大提高。比如,新标准规定硬木胶合板的甲醛释放量不得超过0.05PPM,而现行标准为≤0.2PPM或≤0.3PPM。两者一相比,新标准严格程度比原标准提高了5倍。   台州木制品或减少输美量   签署生效的新方案,无疑给台州木制品产业发展带来巨大冲击。   有统计数据表明,台州木制品行业每年出口5万多批次,出口金额在9亿美金左右。其中,近30%销往美国市场,产品主要涉及欧式家具、室内装饰产品以及近年来脱颖而出的浴室柜产品。今年1—10月,经台州检验检疫出口的木制品有4.83万批,货值达7.75亿美元,其中1.34万批出口美国(货值达1.67亿美元),共占木制品总出口额21.55%。   “新法案的实施,对企业利润的蚕食将不可避免,最终或许导致台州木制品减少输美量。”台州出入境检验检疫局有关人士表示,新法案中所采取的检测方法与我国目前的检测方法存在较大差异,每个成品的检测费用可能高达数千元,检测周期也相应延长。   相关企业需及时做好应对   那么,台州木制品出口企业该如何应对这场“危机”呢?   笔者以为,这需要相关企业未雨绸缪,及时有效做好出口前各项准备工作。   具体来说,就是建立并完善质量管理体系和出口木制品有毒有害物质自检自控体系 加强对原辅料的管理,规范合格供应商的评定程序,完善溯源管理体系,确保原辅料质量安全 尽快对产品开展第三方认证,取得有资质检测机构(目前国内仅有3家)的合格检测证书。   此外,相关部门也要做好引导工作。比如,密切关注其他国家可能采取的跟进措施,不断提高木制品企业的管理水平和质量控制能力,为企业提供力所能及的帮助。
  • 百灵威农药残留标准品助您鉴别毒茶
    我g作为茶叶生产、消费和输出的大g,有着悠久的茶文化,但是茶叶中农药残留c标却时刻威胁茶文化的传承和人们的身体健康。研究表明,饮用农残c标茶叶,可致癌、损害生育能力和胎儿发育,甚至损害人的神经系统和遗传基因。y边是农残c标质量堪忧的茶叶,y边是浑然不觉、盲目饮用消费,茶叶是否正悄悄成为&ldquo 荼叶&rdquo &mdash &mdash 荼毒生灵之叶?百灵威提供与g家检测标准相符合的农残标准品,帮助各质检单位及时发现有害茶叶,以保障大家饮茶安全与身体健康。 百灵威大型标准品库产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照品都达到或c过美g化学会z新的分析试剂标准。所有分析标准品都符合ISO34以及ISO 17025认证,并可溯源到NIST、BAM或IRMM等g立计量科学研究院,可满足z高质量控制体系要求。每份标准样品均附带原批次质检报告和材料安全数据卡,并且可以为用户提供专业标准品的定制服务。 ■ 茶叶中常检农残标准品 产品编号 产品名称 包装 目录价 P-445N 联苯菊酯 Bifenthrin 10 mg ¥590 P-595N 噻嗪酮 Buprofezin 10 mg ¥450 P-577N 杀螟丹 Cartap 10 mg ¥730 P-447N 苯醚甲环唑 Difenoconazole 10 mg ¥309 P-377N 除虫脲 Diflubenzuron 10 mg ¥169 P-091N &alpha -硫丹 Endosulfan I 10 mg ¥309 P-092N &beta -硫丹 Endosulfan II 10 mg ¥309 P-015N 草甘膦 Glyphosate 10 mg ¥169 P-057N 三氯杀螨醇 Kelthane 10 mg ¥309 P-032S 灭多威 Methomyl 1 mg/mL in MeOH 1 mL ¥518 ■ 其他相关分析耗材产品 产品编号 产品名称 包装 目录价 116481 甲醇, 99.9% [HPLC/ACS] 4 L ¥180 134752 乙腈, 99.9% [HPLC/ACS] 4 L ¥400 187553 水 [HPLC] 4 L ¥375 S02302 J&K C18柱(250 mm× 4.6 mm, 5 &mu m) 1 支 ¥2,800 S010125-3002 AB-1气相柱, 30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13 0.2 &mu m(有机) 100 片/包 ¥150 WKLM-3 微孔滤膜 Ф50 0.45 &mu m(水相) 100 片/包 ¥380 901275 J&K瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥340 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240 以上价格仅供参考,详情请致电400-666-7788!
  • 车用尿素水溶液中的尿素含量测定解决方案 | 德国元素Elementar
    对于重型卡客车来说,由于尾气排放检测日益严格,使用车用尿素是达到国家规定排放标准的关键。而车用尿素的使用不仅净化车内尾气,而且可减少氮氧化物排放。其通过与尾气中的氮氧化物发生化学反应,将这些有害物质转化成无害的氮气和水。这不仅有助于优化发动机性能和降低燃料消耗,还能显著减少柴油消耗,降低成本。当尿素溶液不足时,车辆可能无法启动,因此保持尿素溶液充足是确保车辆正常行驶和环保达标的重要措施。车用尿素为32.5%的高纯尿素和67.5%的去离子水组成的高纯度透明液体。当车用尿素溶液中的尿素含量过高时,会形成结晶造成管路、喷嘴、尿素泵的堵塞。当车用尿素溶液中尿素含量过低时,又会影响氮氧化物的转化效率,无法实现有效转化,达不到环保要求。如何快速、简便测定车用尿素水溶液中的尿素含量显得尤为重要。依据GB/T 29518-2013 柴油发动机氮氧化物还原剂-尿素水溶液(AUS 32中附录A的方法),通过杜马斯定氮法来精确测定水溶液中的氮含量,再换算成尿素含量。德国元素Elementar 在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在全球的应用。德国元素Elementar rapid MAX N exceed与rapid N exceed杜马斯定氮仪均基于Dumas燃烧原理,通过热导检测器 (TCD) 测度氮含量。两种系统均可实现全自动的氮测定,可将单次分析所需的时间缩短至仅 3-4 分钟。且rapid MAX N exceed与rapid N exceed杜马斯定氮仪均满足GB/T 29518-2013 柴油发动机氮氧化物还原剂尿素水溶液(AUS 32中附录A的方法)要求。实验案例一,将尿素水溶液直接称重于不锈钢坩埚或锡囊中:二,自动化进样分析三,实验结果:表中为不同仪器10次测定结果展示。从结果可看出,德国元素Elementar rapid MAX N exceed 与 rapid N exceed 均具有高精准性,且不同分析的氮含量结果完全相同,在 99 % 置信区间的实验误差范围内与理论值完全一致。所有相对标准偏差均低于 0.5%。车用尿素的样品特点决定了测量基质为液体,N元素含量较高。德国元素Elementar 的rapid系列杜马斯氮分析仪在这个应用过程中兼顾了仪器的分析精准性、操作便捷性和使用经济性,能够最大程度上满足各方面的应用需求。rapid N exceed和rapid MAX N exceed两款杜马斯氮元素分析仪均满足标准要求,可快速、准确、便捷的实现车用尿素的质量控制。
  • 中药“有毒”是误读:欧美用食品标准来管中药
    中药重金属超标是个老话题。海外消费者对中药存在误解,西医理念和中医理念不一致。   最近,中药重金属超标问题引起了人们的广泛关注。实际上,这在中药领域是个老话题。盘点这些所谓&ldquo 超标&rdquo 事件,一个最为鲜明的特点是:出口转内销。境外市场发现超标毒中药,经媒体报道后在国内形成轩然大波。香港卫生署发布公告称,一批同仁堂健体五补丸被检测出汞含量超标,另外两款产品牛黄千金散及小儿至宝丸的朱砂成分含量超标。   朱砂所含&ldquo 汞&rdquo 和水银之&ldquo 汞&rdquo 是两回事,此&ldquo 汞&rdquo 非彼&ldquo 汞&rdquo 。国家药典委员会首席专家钱忠直教授认为,汞对人体的毒性,很大程度上取决于它的存在形式,而朱砂的主要成分为硫化汞(HgS),是典型的共价键化合物,化学性质稳定,溶解度极小,甚至不溶于盐酸和硝酸,难以在胃中分解被人体吸收进入体内。因此,对朱砂和含朱砂中成药的毒性评价,不能简单套用&ldquo 汞&rdquo 的毒性数据来进行折算,应区分药物中含有的是什么形态和价态的汞。将汞毒性套在朱砂身上,是不符合化学原理的。在此事件之前,华润三九集团生产的治疗偏头疼中药正天丸在英国被认为可能含有毒性,因为正天丸中含有乌头草,这是一种曾被古希腊人视为&ldquo 毒药之王&rdquo 的药草,可能对心脏或者神经系统有毒性。华润三九集团相关人员表示,正天丸说明书中披露的处方包含的附片为附子的炮制品。附子是毛茛科植物乌头的子根加工品,而乌头为毛茛科植物乌头的母根,附子与乌头入药部位不同。因此,经过炮制后,附子所含乌头类生物碱毒性大大降低。   汉森制药旗下拳头产品四磨汤被曝出含致癌物槟榔。原因是国外2003年有一篇文章,列出槟榔、烟草等118种致癌物质。文章对东南亚、马来西亚、泰国、印度进行了流行病学调查,调查显示长时间咀嚼槟榔的人口腔癌发病率要高一些,结论说长期咀嚼槟榔可能诱发口腔癌。&ldquo 嚼槟榔&rdquo 与&ldquo 槟榔入药&rdquo 有根本区别,此槟榔非彼槟榔。中国工程院院士李连达总结出几点&ldquo 不一样&rdquo :一是所用原料部位不一样。&ldquo 嚼槟榔&rdquo 所用槟榔是&ldquo 幼果&rdquo ,而药用槟榔使用成熟的果仁。二是炮制加工不一样。&ldquo 嚼槟榔&rdquo 用石灰水浸泡,再加上碱性、刺激性很强易引起口腔黏膜损伤。中药槟榔则须经炮制、加工、提取、除杂,有明显的解毒作用。三是入口方式不一样。&ldquo 嚼槟榔&rdquo 有的人一嚼几个小时,而中药槟榔是汤剂口服,不会长时间刺激口腔黏膜。四是用量不一样。&ldquo 嚼槟榔&rdquo 没有限时,属于大量、无限制的使用。而中药用槟榔一天一般是3&mdash 5克。   中国中药协会会长房书亭认为,中药有毒主要是海外消费者对中药存在误解,西医理念和中医理念不一致。如果单纯地把它们作为一个化学分子看待,那药就成了害人的毒药 如果当作一个有机整体看待,它就是治病的良药。中药之害在医不在药。中药临床是否安全的关键,不在于自身是否有毒性,而是在于临床能否合理应用   &ldquo 龙胆泻肝丸事件&rdquo 始于上个世纪90年代至本世纪初。由于外国人不懂中医药、不按中医理论辨证,给病人长期使用含马兜铃酸的中药减肥致使一些人肾脏受损。一些西方国家媒体借机大肆炒作,最终多达70余种中药材遭到株连,酿成了&ldquo 马兜铃酸事件&rdquo 。   中国中医科学院中药研究所研究员梁爱华指出,在国内,中药是遵中医理论、辨证施治,出问题较少。国外用法不同,没有在中医理论指导下使用,出现问题是正常的。不能在国外一出问题,遭到禁用,国内就觉得问题不得了。中西药都有不良反应,关键是要合理使用。   &ldquo 临床中,我从未发现一例患儿因使用朱砂或含有朱砂的中成药出现不良反应。&rdquo 北京东直门中医院儿科教授徐荣谦说,朱砂在临床上主要用于危、急、重病症。中医最著名的、用于急救的&ldquo 成药三宝&rdquo 安宫牛黄丸、局方至宝丸、紫雪丹的配方中都含有朱砂。凤凰卫视主持人刘海若在英国被西医宣布为脑死亡,回国采用中医治疗后,竟然又可以说话、走路了。治疗过程中,起重要作用的就是安宫牛黄丸。   古人说:&ldquo 药之害在医不在药&rdquo 。离开中医的整体观,不懂辨证论治和君臣佐使,乱用或滥用中药,就容易出问题。诚如清代医家徐灵胎所言:&ldquo 虽甘草、人参,误用致害,皆毒药之类也。&rdquo 古来亦有&ldquo 医不三世,不服其药&rdquo 之说,意指中医如果没有深厚的中医药知识,不服其药。   全国政协委员王承德说,中药有毒与无毒,关键是能否对证治疗。只要对证治疗,有毒的也安全。不对证治疗的,无毒的也有毒。他希望正确认识中药的毒性问题。   中国中医科学院柳长华研究员指出,朱砂等含汞中药引发毒性反应的主要原因,是错误地将含汞药物作为保健药物,超量、超时使用。中医服药讲究&ldquo 中病即止&rdquo ,&ldquo 有病病受之,无病体受之&rdquo ,只要在医生指导下,按照安全剂量、用药时间服用,就不会引发毒性反应。   北京市中医局有关负责人表示,含重金属等矿物如朱砂、自然铜、石膏等入药是中医的传统,《神农本草经》就有记载。经过数千年的临床实践,许多老专家临床上应用矿物药治疗病症,常能起到一般药物所没有的积极作用,所以,含重金属矿物药是中医药特色和优势的组成部分。实际上,中药临床是否安全的关键不在于自身是否有毒性,而是在于临床能否合理应用。很多毒性药,只要应用得当,通过复方配伍和辨证论治,就能在临床上起到很好的治疗作用。&ldquo 实际上,毒性不仅仅存在于中药与中成药身上,许多西药也存在对人体脏器的损伤作用。比如使用庆大霉素就存在致聋危险与肾损伤的危险,但是在科学用药、保证剂量的前提下,多数药品的毒副作用对人体不构成威胁。&rdquo 梁爱华说。   钱忠直强调,是药三分毒。所有的药上市批准,找不到一个百分之百安全的药。吃药一点风险都没有,这样的药是找不到的。而医生根据经验指导患者服药,就可以有效地规避药品风险。   欧美国家采用食品标准检测中药。所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。很多国家和地区,包括香港、东南亚国家、日本在内,对于中药重金属的限量标准,采用的是食品标准。特别是在欧美国家,并不承认中药是药。中药是以食品、保健品等名义出口的,欧美国家采用的是食品标准对中药进行检测。钱忠直指出,药品并不像食品一样大量地、经常地食用,是短期内在医生的指导下限量服用。药品重金属的含量,不能简单地用食品的标准来代替,只能是参考。王承德认为,用食品标准来管中药,限制含重金属中药的使用,导致中医大夫不敢使用,许多有特色的中医治疗方法失传,大大降低了中医的治疗效果。李连达不无担心地说,这个有毒应该禁用,那个有毒应该禁用,没完没了,如果这样搞下去,什么中药都不能用了。这不仅仅是一个品种、一味药的问题,而是关系到整个中医药事业的发展。梁爱华说,国际上以某一单一成分是否有毒,来判定中药药材是否有毒,这是欠科学的。   所谓中药&ldquo 超标&rdquo 事件,其实是因标准不同、测量方法不同而导致的评价差异。当朱砂做成中成药时,测定其中有毒的游离可溶性汞,目前国际上采用的方法均是消解破坏法,其结果是,在破坏和消除了有机物干扰的同时,不溶性的朱砂(HgS)分解成了有毒的Hg2+、Hg+。测定的物质和人们服用的物质不是同一种形态。所以,会得出中成药汞超标几十倍、几百倍的报告结论。   柳长华认为,中药讲究用药性治病,而西药根据成分治病。中西医之间存在很大差别,用西医标准来评价中医,本身就是对中医的不尊重。化学测汞采用的是原子吸收法,检测出的是朱砂中所有汞成分,而不仅是游离汞。因此,以此指责中药有毒是不合理的。   钱忠直介绍,含朱砂中成药安全性质量控制的一个关键问题,就是要建立能够选择性测定不同形态和价态汞的方法。这个课题国家药典委员会正委托上海药检所在研究,有望在2015年版中国药典中收载。   推动中药质量评价体系研究,已成为我国中药产业发展面临的重要课题。钱忠直指出,药品重金属限量标准是一项全新的工作,应在保证安全的前提下,综合考虑资源的有效性等多方面因素,不断积累数据,最后形成科学的限量标准。
  • 《动物性食品中10种利尿药残留量的测定液相色谱-串联质谱法》食品安全国家标准
    各相关单位: 根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中10种利尿药残留量的测定液相色谱-串联质谱法》食品安全国家标准。现公开征求意见,如有修改意见,请于2021年12月23日前反馈至全国兽药残留与耐药性控制专家委员会办公室。 联系人:张玉洁联系电话:010-62103930E-mail:syclyny@163.com地址:北京中关村南大街8号科技楼206邮编:100081附件:1. 动物性食品中10种利尿药残留量的测定液相色谱-串联质谱法(征求意见稿)2.兽药残留国家标准征求意见表 全国兽药残留与耐药性控制专家委员会办公室2021年11月23日
  • 填补行业空白 首个化妆品兴奋剂检测团体标准出台
    近日,浙江省健康产品化妆品行业协会发布公告显示,由花西子母公司杭州宜格化妆品有限公司等提出并参与起草,浙江省健康产品化妆品行业协会归口的《化妆品中23种兴奋剂含量的测定 高效液相色谱-串联质谱法》(以下简称团体标准)已完成标准编制工作并正式发布,将于2023年10月15日起实施。如今,兴奋剂已经不单单指能够起到兴奋作用的药物,而是对运动员禁用药物的统称。中国反兴奋剂中心和相关协会曾多次提示化妆品中可能存在的兴奋剂风险,化妆品也被纳入反兴奋剂“五品防控”之中。据浙江省健康产品化妆品行业协会相关负责人介绍,目前,国内外关于兴奋剂的检测研究主要集中于血液、尿液、食品等方面,关于化妆品中兴奋剂检测及相关研究还比较少。国内化妆品标准体系中,与兴奋剂相关的主要是糖皮质激素、士的宁等化妆品禁用原料的检测标准,这些标准涉及的兴奋剂物质多为单类别,覆盖面较窄,且未突出兴奋剂概念,达不到兴奋剂监管的要求。彩妆联合学会会长路军强对记者表示:“目前,兴奋剂检测标准在化妆品领域仍属空白,团体标准的出台,对于配方研发、品质控制、行业监管等具有重要意义。”花西子研究人员在前期调研中发现,化妆品兴奋剂测定的难点在于兴奋剂种类较多,如果针对单一品类兴奋剂分别开发检测方法,则检测效率低下。因此,开发一种能同时检测多品类兴奋剂物质的筛查方法,进一步完善化妆品中禁限用物质检测方法体系,显得尤为必要。据了解,团体标准从前期筹备到审查通过共历时1年零5个月。在保证标准科学性、可操作性、符合技术水平的前提下,团体标准整合现有化妆品中兴奋剂相关物质的检测标准,优化检测条件,确定适宜的定性和定量方法,并结合行业热点,拓宽检测物质品类,建立不少于20种兴奋剂物质的检测方法,能适用于常见化妆品基质类型。“随着功效美妆概念日益火爆,各类含兴奋剂、激素的产品屡屡出现,尽管监管在不断加强,但很多针对违法添加成分的检测办法进程慢、效率低,一定程度上增加了监管的难度和执行速度。团体标准的出台或将改变这一局面,填补行业空白。”参与团体标准审查的行业专家表示,无论从行业端还是消费端来看,团体标准的发布将进一步规范功效产品市场,保障消费者合法权益,助力产业健康发展。
  • ATAGO(爱宕)发布柴油机专用尿素液浓度计PAL-UREA
    随着环保观念的深入,近年来我国的尾气排放标准一年一个台阶。中国将于2010年起强制执行重型柴油机国Ⅳ排放标准。 目前来说SCR(选择性催化还原技术)技术成柴油机国Ⅳ标准首选技术。国内发动机生产商都开始使用SCR技术来达到环保要求。 柴油机尾气处理液(国内俗称为:汽车尿素液,车用尿素溶液,汽车环保尿素液),是SCR技术中必须要用到的消耗品。应用于柴油发动机中。它使用在SCR技术中,用来减少柴油车尾气中的氮氧化物污染的液体。其组成成分为32.5%的高纯尿素和67.5%的去离子水。   SCR系统包括尿素罐(装载柴油机尾气处理液),SCR催化反应罐。SCR系统的运行过程是:当发现排气管中有氮氧化物时,尿素罐自动喷出柴油机尾气处理液,柴油机尾气处理液和氮氧化物在SCR催化反应罐中发生氧化还原反应,生成无污染的氮气和水蒸气排出。 如果不装载柴油机尾气处理液、或纯度不够、或质量伪劣,都会发生车辆发动机自动减速。同时,质量伪劣的柴油机尾气处理液会污染SCR催化反应罐中的催化剂,造成严重后果。 其实在欧洲,2006年就已经开始实施这个政策。欧洲柴油机尾气处理液称为Adblue。在美国,2010年开始,随着EPA2010标准的实施,也全面加大了汽车尿素液的应用实施力度,在美国,柴油机尾气处理液称为DEF(Diesel Exhaust Fluid)。主要代表有BlueDEF等。然而在国内,对于柴油机尾气处理液的生产目前尚属于新兴行业。 日本ATAGO(爱宕)生产的PAL-Urea柴油机专用尿素液(DEF)浓度计是专门针对柴油机行业使用的。在欧洲和美国PAL-Urea 已经被认可为简便且准确测量的唯一可信赖的产品。柴油机专用尿素液(DEF)在32.5%的浓度下才可以发挥其作用。使用 PAL-Urea 保持合适的浓度才可以保证其尿素液的作用。 PAL-Urea 又轻又小,测量方法简便,只要放样品按开始键等3秒钟就可以得到其浓度。它的电源为2个AAA电池,可以测量大约1万1000次。
  • 《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》(GB 1903.65-2024)等7项食品营养强化剂标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。(可点击相关话题:47项食品国家标准解读)本次发布的《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》等7项食品营养强化剂质量规格标准包括2项修订标准和5项制定标准,规定了各类食品营养强化剂的范围(包括生产工艺等)、化学名称、分子式、结构式、相对分子质量、感官要求、理化指标以及配套的检验方法等内容。标准名称检测方法相关仪器GB 1903.65-2024  食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)含量(以 C20H32O2甘油三酯计),w/% ;检验方法采用GB5009.168 食品安全国家标准食品中脂肪酸的测定。匀浆机、气相色谱仪、恒温水浴锅、电子天平、、离心机、旋转蒸发仪。GB 1903.66-2024  食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法)GB 1903.67-2024  食品安全国家标准 食品营养强化剂 植物甲萘醌(维生素K1)含量以总植物甲萘醌和顺式植物甲萘醌计;检测方法采用该标准附录A3方法。电子天平、 液相色谱仪。GB 1903.68-2024  食品安全国家标准 食品营养强化剂 钼酸铵含量以(NH4)6Mo7O244H2O 计],w/%;检测方法采用GB/T657 化学试剂四水合钼酸铵(钼酸铵)中5.3方法。电子天平、烘箱。GB 1903.69-2024  食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷含量以5'-单磷酸尿苷(以干基计),w/%;检测方法采用该标准附录 A 中 A.4方法。电子天平、 紫外分光光度计。液相色谱仪、pH计。GB 1903.70-2024  食品安全国家标准 食品营养强化剂 电解铁含量以铁(Fe),w/%计;检测方法采用该标准附录 A 中 A.4方法。电子天平、 恒温水浴锅GB 1903.71-2024  食品安全国家标准 食品营养强化剂 全反式视黄醇含量以全反式视黄醇计。检测方法采用该标准附录中 A.4方法。电子天平、 液相色谱仪。上述标准均为与《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)配套的食品营养强化剂质量规格标准。标准发布能够更好地适应我国食品营养强化剂生产和使用需求,促进相关行业的健康发展。点击图片获取更多标准解读 》》》》》》
  • 化妆品中41种糖皮质激素测定上升国家标准
    大连质检所多项研发项目上升为国家标准   “激素化妆品”将成“过去时”   近日,从辽宁大连质监所传来喜讯:“滥用激素”、“腐蚀皮肤”——这些困扰化妆品市场的违禁行为不再模棱两可,大连质检所研发的“化妆品中41种糖皮质激素类药物的测定”正式上升为国家标准。这标志市场上的化妆品是否含有违规激素类药物已成“明白账”。   近年来大连质检所针对我国相关检测方法比较落后的状况,重点开展了化妆品功效成分分析和禁限用成分检测方法的科研工作。目前,已有8个项目被列入国家标准制修订计划,而“化妆品中41种糖皮质激素类药物的测定”和“牙膏中二甘醇的测定”已正式上升为国家标准。记者在采访中了解到,这两项“国标”是继“苏丹红检测方法”、“小麦中溴酸盐的测定”、“蜂蜜中淀粉糖浆的测定”等食品检测国家标准后,又一个检测方法国标的“大连制造”。   据大连质检所相关负责人介绍,荣获“2009年度大连市科学技术进步奖”二等奖的“化妆品中41种糖皮质激素类药物的测定”项目,采用了液相色谱/质谱和薄层层析法两种方法,兼顾高精度确证测定和低成本快速高效定性测定,几乎涵盖了目前临床使用的所有糖皮质激素药物,技术水平达到国际领先,具有很高的应用价值。“化妆品中多种糖皮质激素类药物测定方法在全国率先攻关成功,意味着‘激素化妆品’将无所遁形!”   该负责人还告诉记者,大连质检所目前正在攻关的项目继续以化妆品中有毒有害物质及功效成分的检测技术研究作为工作重点,包括了化妆品中铬(禁用成分)、维生素B3(烟酸、烟酰胺)、维生素B5(泛酸、D-泛醇)、维生素C等维生素类成分、曲酸及其衍生物、尿素等常用美白保湿功效成分的测定方法研究,这些方法的研制将为即将实施的化妆品全成分标识提供有力的技术支持。   “经过一年多的积极筹建,以我们大连质检所为依托的‘国家日化产品质量监督检验中心’已经通过中国合格评定国家认可委员会CNAS的初评,并经国家认证与认可监督委员会CNCA授权,即将在我市投入运行。该中心将成为我国日化产品前沿检测研究实验室,为政府、企业和消费者提供化妆品等日化产品的专业检测服务。”大连质检所相关负责人介绍说。   据了解,以大连质检所为依托的“国家日化质检中心”是正在建设中的“大连市检测科技园”的附设项目。中心将建立日化产品功效成分安全性评价实验室,稳步开展化妆品等日化产品功效成分关键检测技术研发,在集群式第三方检验测试科技园区中打造全国一流的日化产品公共检测服务平台和前沿实验室。   据介绍,该中心实验室面积达1500平方米,拥有液相色谱-串级质谱、液相色谱-飞行质谱、电感耦合等离子体质谱等国内一流的检测设备和凝胶净化系统、固相萃取等前处理装置,并已经取得了“国家化妆品市场准入技术委员会委员单位”、“全国化妆品生产许可证的发证检验单位”两项权威资格,其检验能力范围已经覆盖了化妆品、洗涤品、消毒剂等产品领域,检测项目包括了糖皮质激素类药物、防腐剂、去屑剂、抗生素、维生素、微生物、重金属等百余项化妆品卫生化学指标检测及微生物指标检测。   目前,大连质检所已经开展了化妆品质量安全风险监测活动,通过系统和持续地收集化妆品污染以及化妆品中有毒有害物质的监测数据及相关信息,进行综合分析,为大连乃至全国化妆品安全监管和科技进步提供依据,直击化妆品中的潜在危害,确保化妆品消费健康安全。目前,大连质检所已经完成了“牙膏中草药成分安全性检测调研”、“化妆品中石棉检测调研”和“化妆品中禁用物质的生产工艺调查”等风险监测项目。
  • 春茶品茗丨坛墨质检专属茶叶检测标准品套餐来啦!
    春茶品茗 茶是世界三大饮品之一,全球产茶国和地区达到60多个,茶叶年产量近600万吨,贸易量超过200万吨,饮茶人口超过20亿。 年前,联合国大会第74届会议通过决议确定每年5月21日为国际茶日,2020年4月7日农村农业部于发布通知将于今年5月18-24日举行首个国际茶日。 恰逢gb 2763-2019《食品安全国家标准 食品中农药最大残留限量》实施,对茶叶中农药残留要求增至65项。为帮助茶叶企业排查产品风险、确保符合gb 2763-2019和国家食品安全监督抽检实施细则(2020年版),符合内销及出口规定,坛墨质检严格按照国家标准要求特别推出茶叶检测相关标准品,助力春茶上市。检测项目农药残留百草枯、百菌清、苯醚甲环唑、吡虫啉、吡蚜酮、吡唑醚菌酯、丙溴磷、草铵膦、草甘膦、虫螨腈、除虫脲、哒螨灵、敌百虫、丁醚脲、啶虫脒、毒死蜱、多菌灵、呋虫胺、氟虫脲、氟氯氰菊酯和高效氟氯氰菊酯、氟氰戊菊酯、甲氨基阿维菌素苯甲酸盐、甲胺磷、甲拌磷、甲基对硫磷、甲基硫环磷、甲萘威、甲氰菊酯、克百威、喹螨醚、联苯菊酯、硫丹、硫环磷、氯氟氰菊酯和高效氯氟氰菊酯、氯菊酯、氯氰菊酯和高效氯氰菊酯、氯噻啉、氯唑磷、醚菊酯、灭多威、灭线磷、内吸磷、氰戊菊酯和s-氰戊菊酯、噻虫胺、噻虫啉、噻虫嗪、噻嗪酮、三氯杀螨醇、杀螟丹、杀螟硫磷、水胺硫磷、特丁硫磷、西玛津、辛硫磷、溴氰菊酯、氧乐果、乙螨唑、乙酰甲胺磷、印楝素、茚虫威、莠去津、唑虫酰胺、滴滴涕、六六六等gb 2763-2019茶叶中65种农残和其它国内外标准中的农残检测要求。元素铅、砷、汞、铬、镉、氟、铁、镁、锰、锌、硒、铜、稀土以及其他微量元素42种。其它污染物蒽醌、高氯酸盐、多环芳烃(16种)、邻苯二甲酸酯(16种)、二氧化硫。微生物霉菌和酵母、菌落总数、大肠菌群。真菌毒素黄曲霉毒素(4种)、伏马毒素(3种)、赭曲霉毒素(1种)、呕吐毒素(3种)。添加剂茶叶中违规使用的着色剂(5种)和甜味剂(6种)。理化成分粉末、碎茶、水分、水浸出物、总灰分、水溶性灰分、酸不溶性灰分、水溶性灰分碱度、粗纤维、咖啡碱、茶多酚、游离氨基酸、儿茶素组成、氨基酸组成、茶色素组成、叶绿素、花青素、黄酮、水溶性碳水化合物、维生素c、蛋白质、茶梗、非茶类夹杂物、茉莉花干、非茶非花类物质。香气成分茶叶中的香气物质(70种)。感官品质外形,汤色,香气,滋味,叶底等5个要素,分等级判定、评语描述、评语加打分3种。茶叶检测相关标准gb 2763-2019 食品安全国家标准 食品中农药最大残留限量gb 23200.13-2016 食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法gb/t 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法gb/t 23193-2017 茶叶中茶氨酸的测定 高效液相色谱法gb/t 30376-2013 茶叶中铁、锰、铜、锌、钙、镁、钾、钠、磷、硫的测定-电感耦合等离子体原子发射光谱法gb/t 23204-2008 茶叶中519种农药及相关化学品残留量的测定 气相色谱-质谱法 gb/t 23376-2009 茶叶中农药多残留测定 气相色谱/质谱法gb/t 23379-2009 水果、蔬菜及茶叶中吡虫啉残留的测定 高效液相色谱法gb/t 30483-2013 茶叶中茶黄素的测定-高效液相色谱法gb/t 5009.57-2003 茶叶卫生标准的分析方法ny 659-2003 茶叶中铬、镉、汞、砷及氟化物限量sn 0497-1995 出口茶叶中多种有机氯农药残留量检验方法sn/t 4582-2016 出口茶叶中10种吡唑、吡咯类农药残留量的测定方法 气相色谱-质谱/质谱法sn/t 4850-2017 出口食品中草铵膦及其代谢物残留量的测定 液相色谱-质谱/质谱法gb/z 21722-2008 出口茶叶质量安全控制规范sn/t 0147-2016 出口茶叶中六六六、滴滴涕残留量的检测方法sn/t 0711-2011 进出口茶叶中二硫代氨基甲酸酯(盐)类农药残留量的检测方法 液相色谱-质谱/质谱法sn/t 0348.1-2010 进出口茶叶中三氯杀螨醇残留量检测方法sn/t 1950-2007 进出口茶叶中多种有机磷农药残留量的检测方法 气相色谱法茶叶检测相关标准品咨询北方地区王宏姝:13671388957南方地区汪丽红:135011019292020年坛墨质检十三周年邀您共品常州天目湖白茶活动时间即日起至5月20日敬请留言活动期间,请在本文下留言 写出对坛墨质检的发展意见和建议参与有礼本文精选留言前100名将送出春茶体验包一份温馨提示2020年坛墨质检十三周年届时将有更多惊喜2点击填写地址,春茶包邮到家
  • ATAGO全自动折光仪RX-5000 α成功应用于尿素含量的测定
    尿素是常用的氮肥品种。在尿素的生产和使用中,均要求能快速、准确地测定尿素的含量。目前,虽已有多种测定尿素含量的方法,但各有自己的优点和使用范围,因此测定标准并没有统一。根据现存尿素的测定过程,可分为间接测定和直接测定。间接测定通过脲酶将尿素分解为氨、硝酸盐或氮气,然后利用现有标准方法测定含氮物质的量,并据此计算出尿素的浓度;直接测定则是通过加入某些能够和尿素反应生成带色产物的物质,通过比色等方法进行测定。目前间接测定溶液中尿素含量的方法以H2SO4消化比色法为代表;直接测定法以二甲氨基苯甲醛(PDAB)比色法应用最广。 华南农业大学资源环境学院郑丽行、樊小林教授与上海化工院国家化肥检测中心刘刚,杨一合作,采用ATAGO 折光仪RX-5000 &alpha 直接测定纯尿素溶液中尿素的含量,并与二甲氨基苯甲醛(PDAB)比色法以及H2SO4消化比色法的测定结果进行比较。结果发现,折光率与溶液中尿素含量呈极显著线性相关,相关性曲线为Y=7025.7X-9361.7 (25℃)最小检出限位0.5g/Kg,最大检出限为600g/Kg。 他们的研究建立了测定尿素含量的折光率法,此方法具有检测范围广,准确度高、精度高、测量速度快,工作效率高、简单易行等特点。另外,该法测定过程不需要任何化学药品,在节约成本的同时,还避免了化学试剂可能造成的环境污染。 此方法既可作为尿素企业及缓/控释尿素企业尿素释放率质量控制的检验方法,也可以作为教学、科研部门测定尿素含量的方法。 技术指标: 1.能够快速且高精度地测量各种液体的折射率,Brix,浓度; 2.具有内置的恒温装置,无需外接水浴,实现温度控制; 3.测量范围:折射指数(nD):1.32700 至 1.58000; 4.分辨率:折射指数(nD):0.00001;温度:0.01° C; 5.测量精度:折射指数(nD):± 0.00004; 6.重复性:折射指数(nD):± 0.00002; 7.※可根据用户需求,自定义60个样本曲线; 8.SUS316不锈钢样品槽提高耐蚀性和耐伤性,蓝宝石棱镜精准耐用。 Atago全自动折光仪Rx5000a
  • 偶氮甲酰胺(增筋剂)尚无检测标准无法处罚
    中国人在自己的餐桌上又一次普及了化学知识,我们从奶粉里知道了三聚氰胺,从红心鸭蛋时知道了苏丹红,从地沟油中知道了黄曲霉素,从白酒中知道了塑化剂,现在我们又从面粉中知道了偶氮甲酰胺,俗称增筋剂。   自从一个多月前,星巴克、赛百味等国际餐饮连锁品牌被曝食物含有偶氮甲酰胺后,中粮、古船、中裕等多款知名品牌面粉被曝含有面粉增筋剂&ldquo 偶氮甲酰胺&rdquo ,而这种增筋剂被认为有潜在的致癌风险,在欧盟、澳大利亚、新加坡和日本,偶氮甲酰胺和三聚氰胺、苏丹红一样都被列为非法添加物。   对此,中粮方面表示:偶氮甲酰胺作为面粉处理剂,允许作为食品添加剂在中国使用,我司下属面粉加工企业在&ldquo 香雪&rdquo 面包粉产品中使用该食品添加剂,添加量均在国家标准允许范围内,添加过程严格控制,无超量添加情况。   &ldquo 中国允许限量使用却没有检测标准,也没列入检测项目,因此很多小企业都在过量使用偶氮甲酰胺,还不标注。&rdquo 著名食品安全专家、国际食品包装协会秘书长董金狮告诉时代周报记者。   偶氮甲酰胺究竟是什么物质?它究竟对人体有没有危害?为何在美国和中国可以合法使用,在欧洲却被认为是非法添加剂?   隐秘增筋剂有致癌风险   &ldquo 偶氮甲酰胺真的安全吗?我以后还敢买面包吗?&rdquo 在时代周报记者采访过程中,多名消费者反复询问。   据了解,偶氮甲酰胺是一种黄色至橘红色结晶性粉末,也被称为AC发泡剂,具有漂白和氧化双重作用,是一种速效面粉增筋剂,也适用于塑料发泡。   而中投顾问食品行业研究员向健军告诉时代周报记者,小麦粉常见的添加剂有三大类:增白剂、品质改良剂和营养强化剂,当前引起社会广泛关注的偶氮甲酰胺也是其中的一种。   偶氮甲酰胺能使面粉筋度增加,提高面团气体保留量,增加烘焙制品弹性和韧性,改善面团的可操作性和调理性,因此成为面粉添加剂界的新宠。目前比较普遍使用的增筋剂有两种,一种是偶氮甲酰胺,反应速度属于快速的增筋剂 另一种是维生素C型增筋剂,反应速度属于中速。   尽管在中国被广泛使用,但是关于偶氮甲酰胺安全性问题的争论,却一直没有停过。   世界卫生组织食品添加剂联合专家委员会于1966年对偶氮二甲酰胺作出了评估,结论就是&ldquo 很安全&rdquo ,并给出安全剂量为0-45毫克/千克。   中国也参照了这一标准,《食品安全国家标准&mdash 食品添加剂使用标准》中规定,偶氮甲酰胺属于面粉处理剂,只允许使用小麦粉中添加,最大使用量是0.045克/千克,但没有规定偶氮甲酰胺的检测方法。   但是,随着科学技术的发展,半个多世纪之前的标准已经显得落后。近年来,学界认为,偶氮甲酰胺存在致癌嫌疑:偶氮甲酰胺水解后产生氨基脲,而实验证实氨基脲有潜在的动物致癌性。   由于氨基脲的潜在致癌性,能够产生氨基脲代谢物的兽药呋喃西林已经被欧盟禁止使用,同样能够产生氨基脲的面粉处理剂偶氮甲酰胺也被欧盟禁用多年。2005年,欧洲食品安全委员会调查发现,氨基脲很可能从广口瓶盖的塑料垫圈儿中迁移到食品当中,于是又禁止在食品包装中使用偶氮甲酰胺。   国家粮食局标准质量中心原高级工程师谢华民曾对媒体表示,&ldquo 即使是儿童使用的塑料地垫里,法国等国也不允许生产商添加这一成分。而我们却可以随意添加到每天食用的主食里。&rdquo   在台湾并没有对偶氮甲酰胺有相应的禁令,但出于安全考虑,台湾食品行业普遍选择了用中速、但相对更可靠的维生素C型增筋剂。   成本低廉成泛滥内因   事实上,面粉中使用的偶氮甲酰胺并不是&ldquo 刚需&rdquo ,主要是为了满足人们口感方面的需求,添加其可以提高面粉的筋度,在制作中可以降低断损率,卖相好,吃起来口感好。   面粉按照筋度来分有三种,即高筋粉、低筋粉和中筋粉,面粉厂对小麦的原料挑选非常精细,针对小麦的不同种类、产地等因素制成高筋粉、低筋粉和中筋粉。为使面包筋度高、有嚼劲,应使用高筋小麦粉,但使用高筋小麦粉每吨成本高出普通小麦粉600元左右。   &ldquo 国家规定其最大使用量为0.045g/kg,而偶氮甲酰胺的价格在38元/千克左右,因此添加其占据的成本较小,但是带给消费者的口感大不一样。&rdquo 向建军表示。   全国工商联烘焙业公会副秘书长单志明也表示,完全可以通过添加食盐、增加醒发时间达到增加面团筋度的效果。   由此看来,偶氮甲酰胺的使用纯粹是企业为了&ldquo 省钱&rdquo 又&ldquo 省力&rdquo 才选择的。   但是,&ldquo 我们只是引进了别人的产品和标准,但在检测环节处于真空状态,因此很多企业都在使用偶氮甲酰胺,但你不知道他用没用,也不知道他用了多少,因此安全性无从谈起。&rdquo 董金狮告诉记者。   此前,北京粮食集团(京粮集团)古船食品有限公司品研部经理李巍也曾对媒体直言,希望国家能严格控制偶氮甲酰胺的使用,&ldquo 很多不正规的小企业、小作坊,他们如何使用无人监管。现在最重要的是没有检测方法。他们使用了,我们不用,他们的产品口感、外观上都会比我们好,这样就会导致我们的市场竞争力降低。&rdquo   据了解,美国是目前批准使用添加剂最多的国家,有3000多种,但是美国会对添加剂做详细标注,并提示其可能存在的风险,由消费者选择要不要购买 欧盟等国家对添加剂则严格得多,欧盟立法采用&ldquo 预警原则&rdquo ,还规定所有食品添加剂必须置于永久观察,随着使用条件的变化及新科技信息的出现,要对食品添加剂进行重新评估。   我国目前批准使用的食品添加剂有23类约2400种,但是既没有像美国一样严格检测标准、工具和方法,也没有如欧盟一般加强准入门槛。   &ldquo 除了用而不标之外,还有企业标而不用,为了节约成本,有的企业使用了更劣质的物质,但是却标成偶氮甲酰胺,反正都查不出。&rdquo 董金狮对记者表达着担忧。   因此,谢华民认为,面粉增筋剂和之前的面粉增白剂一样,都不是食品的必要添加物,却长时间被使用在老百姓的日常饮食之中,因此应该禁止在食品中使用偶氮甲酰胺。   复合型添加剂之祸   对于偶氮甲酰胺的安全性,很多中国专家还是表示认可,中国农业大学[微博]食品科学与营养工程学院教授、食品毒理学专家景浩表示,虽然欧盟提供了很多资料,但只能证明偶氮甲酰胺对动物的毒性,美国等允许使用的国家认为,这些资料是不足以作为禁用偶氮甲酰胺的明确证据的。   一位不愿具名的专家对时代周报记者表示,食品添加剂和药品不同,前者不要求做人体试验,因此更要慎重使用。   事实上,很多曾经被认为对人体无害而被广泛使用的物质,最终都被证明是危险的。比如溴酸钾,溴酸钾在100年前开始在美国用于面包烘焙,由于成本低廉,溴酸钾在世界范围内被广泛应用。   然而随着检测技术和设备的进步,大量实验表明溴酸钾是一种毒害基因的致癌物质,可导致动物的肾脏、甲状腺及其它组织发生癌变。   1992年,联合国[微博]粮农组织和世界卫生组织食品添加剂联合专业委员会的第39号报告中指出,使用溴酸钾作为面粉处理剂是不恰当的,并且撤消了先前自1989年以来60ppm的添加限量 2005年7月1日中国全面禁止溴酸钾在面粉中使用。   而后偶氮甲酰胺才作为溴酸钾的替代品,而广泛用于面粉行业。   类似这样的事情还有很多,过氧化苯甲酰(BPO)作为面粉增白剂也在全世界范围内被广泛使用,但目前包括中国在内的大部分国家也都禁止使用过氧化苯甲酰。   奥美定,在上世纪90年代,也曾作为无毒、环保、低排异性的新人造脂肪被整形界大量使用,但后来证明其注入到人体内后,会分解产生剧毒,毒害神经系统,损伤肾脏,世界卫生组织已将这种物质列为可疑致癌物之一。   除此之外,不同添加剂叠加、混合使用的潜在危机也慢慢浮出水面。   《食品添加剂》的作者、韶关学院英东食品科学与工程学院彭珊珊教授告诉时代周报记者,尽管国家对每种合法食品添加剂的含量都有规定,但这种安全性是基于单一毒理实验得出的,也就是说动物实验中,都是测试某一种单一添加剂,得出是否安全以及安全的临界值。   但是目前几乎在每一种包装食品中,都同时有多种添加剂存在,比如防腐剂、增稠剂、甜味剂、色素等,就算每一种都在安全范围内,但是谁也不知道这么多种添加剂叠加使用,总量会超标多少,谁也不知道这些添加剂相互作用,会有什么后果。添加剂叠加标准目前还是个空白,这方面的具体规定亟待出台。
  • 计量标准对药物和诊断试剂产业发展意义重大——访中国计量科学研究院化学所李红梅研究员
    计量是研究测量的科学,是科学和工程技术赖以发展的重要支柱之一。对于一个国家而言,计量科学发展水平在一定程度上反映其工业发展水平。11月,在南京召开的“药物及诊断试剂研发与质控—测量与标准,质量与安全国际研讨会”(简称 “TD-MSQS研讨会”),仪器信息网专访了中国计量科学研究院(以下简称“中国计量院”)化学所所长李红梅研究员,就我国药物和诊断试剂计量工作与相关产业发展等话题进行了深入的交谈。李红梅 中国计量科学研究院化学所所长/研究员从实现高纯试剂的进口替代 到支撑生命科学产业发展李红梅早期从有机小分子的计量研究做起,在高纯有机溶剂几乎完全依赖进口的年代,中国计量院化学所承担并圆满完成了国家十一五的支撑计划任务,支撑了一批国产企业的高纯试剂进口替代。她介绍说:“这是先前数十年一直没有得到解决的问题,通过此次联合攻关,满足重点需求的高纯试剂问题解决了,超痕量精确测量的基础就有了。”随着经济水平的不断提升,健康问题越来越受到人们重视。在试剂难题解决后,李红梅团队研究方向逐步推向与国民健康密切相关的临床诊断试剂和大分子生物药物。李红梅讲到 :“药物和诊断试剂计量标准对于国民健康意义十分重大。诊断试剂在疾病诊断和治疗效果中起到关键性作用,要保证诊断结果准确有效,需用标准物质作为标尺,给临床诊断试剂赋值。”我国的临床领域计量标准研究和国际比对始于上世纪90年代末,现行国际标准明确规定体外诊断试剂(IVD)量值溯源路径,通过标准物质或参考方法,最终溯源至SI基本单位。中美贸易战背景下,诊断试剂大量依赖于进口,存在被垄断的情况,而原材料的进口依赖使其研发生产成为“卡脖子”的事情。在此背景下,李红梅团队依托于国家质量技术专项,与多家诊断试剂上市企业开展项目研发合作,她表示:“我们的目标,是打造一批中国诊断试剂行业的龙头企业,让计量技术落地于企业的产品并支撑产业发展。”我国生物药物计量研究起步相对较晚,只有不足10年的时间。对此,李红梅解释道,“这与我国工业发展水平密切相关,我国先前以仿制药为主,生物药的创新研发也是相对较晚的,随着经济和技术水平的不断发展,我们已成为全球第二大经济体,生物制药行业迅猛发展,生物药物的合成、工艺过程控制和改进是核心技术,而计量表征就像高清眼睛,可以看到更精确、更真实的物质及其特征信息,以实现精准的过程控制和工艺改进。因此,计量研究急需持续加大投入,通过计量标准来支撑生物药物研发。”关于计量研究与生物医药产业之间的相互促进的关系,李红梅举例2008年美国的肝素事件:因在肝素药物生产中采用了一种比较劣质的原材料,导致产物中出现相应的杂质,而这类杂质的含量很低,大约在千分之一左右,但却使药物产生较大副作用,最终导致几十甚至上百人死亡。肝素事件直接促使美国药典对限量标准要求的提升,而更加严格和精确的计量标准的产生,反过来又可以指导药物研发,这是计量标准和药物研发相互支撑的典型案例。“这样的事件给了我们很大的启示,痕量杂质质量控制的技术水平和能力在药物研发中十分关键。通过精准计量和计量标准,去提升产品研发的质量,实现精准工艺控制,从而提升药物研发的产业竞争力,这是基本的手段。在单抗类药物、多肽类药物等研究领域我们有更多类似案例。”李红梅讲到。大分子药物计量三大挑战:分子量大、结构复杂、基质复杂针对生物医药领域,团队目前重点开展多糖、多肽和单抗三大类生物药的计量研究。由于相关计量研究工作开展时间相对较短,大分子药物的计量技术还存在诸多挑战。首先,因生物药分子量大,定性和定量分析复杂,所以其杂质的定性定量分析是一大挑战。例如C肽的杂质分析,肽类物质的分子量并不算很大,但相较于小分子药,其杂质研究也十分复杂。目前,团队研制的C肽纯度标准物质中共有63个杂质,要确认单个杂质对药品的功效是否有影响,首先要一一定性和定量每一个杂质。C肽是直链,没有糖基和二硫键,而许多更大的蛋白分子在键合方式上更加复杂,如二硫键、磷酸化、糖基化等,这些复杂结构在解析过程中不稳定,真实的位点也会有变动,这些问题使得在揭示大分子物质结构变化和功效活性关系时增加了技术挑战。例如,通过质谱仪器分析时得到的信息量很大,其中可能产生较多的赝信号,因此,保证分析测量的准确性和可靠性,以支撑产业发展,这是第二大挑战。第三是复杂基质和痕量分析带来的技术挑战。生命科学研究,许多大分子是在血清、全血或尿液基质中,这些基质特性十分复杂,给目标物的分析带来难度;此外,目标物在基质中往往是痕量的,这又带来了新的技术挑战。正如李红梅讲到:“以前我们1年可以完成1-2个小分子的计量,现在我们可以实现3-5年完成一个单抗、C肽等大分子的标准物质和计量技术的研究,这速度已经比较快了。为应对目前大分子药物计量分析中的技术挑战,中国计量院在资金和人员方面加大了投入,同时对团队技术人员的能力提出了更高的要求。成立联盟 促进解决产业发展中的计量难点为了更加高效的解决IVD和生物药物产业发展中的计量测试难点和痛点,在今年的TD-MSQS研讨会开幕式上,成立了“全国药物及诊断试剂产业计量测试联盟”,30家高校、科研院所、制药企业、诊断试剂企业等作为首批单位在会议开幕式上签署入盟协议。李红梅讲道:“联盟成立属于顺势而为,源于企业自身发展需求,在前期良好合作的铺垫下最终成立。”企业早期多是求生存,接下来是扩大规模,再然后是要做大做强。制药和IVD企业通常发展到第二阶段就有了十分明确的行业和产品标准的需求,而要发展成为引领行业发展的龙头企业,则要求在标准建立时与国际接轨,以便在国际平台上打造自己的品牌,如此,产业发展需求就对联盟成立产生推动力。李红梅介绍道:“目前联盟还没有对外广泛征集会员,但已经有很多的企业加入进来。现在我国IVD龙头企业在几十亿规模的比较多,我们需要打造一批百亿规模的世界级龙头企业。”谈到联盟成立后的运作机制,李红梅介绍到,“我们计划将一批国内有较强生产、服务能力以及明确计量需求的单位,同具有高端计量技术能力和前沿研发技术团队联合,以持续稳定的合作机制,形成紧密合作“大团队”,把原来量值传递较长的纵向链条模式进行扁平化发展,进一步推进前沿科技和计量标准研究对接产业化,保持与产业需求同步,这样形成有产品就有标准支撑的格局,最终可快速推进产品和产业发展。”她还表示:“未来,我们还会持续组织每两年一次的国际会议,以跟踪国际最新动态,参与更多国际标准的制定,让更多企业和科研院所联合参与,将我国企业推向国际大平台。”联盟成立后记:采访是在李红梅主持间隙进行的,作为组织该国际会议的秘书长,李红梅被称为“全场最忙的人”。有人曾形象地比喻,计量就像空气一样,与人类生产生活密切相连,但往往又不被人们注意。从关键技术攻克到推进国际合作,李红梅的奔波,无非是希望中国的计量科学获得更多的支持和更好的发展。采访中,李红梅谈到,对于我们举办的国际研讨会,许多国际专家态度发生了很大转变,由对第一届会议的不以为然转为对第三届会议大力支持。有一位重量级外国专家因同期有另一个大型国际组织会议,特别向李红梅说明:“请务必协调好时间,我一定要参加你们的会议。”我问:“您觉得是什么让他们的态度发生转变?”李红梅回答:“一方面,这是在IVD和生物药物的巨大跨界交流,全球很少有的同时聚集了政-产-学-研-用一体的平台,国际专家可利用该平台进行良好互动,充分讨论,所以他们特别珍惜这样的平台;另一方面,他们看到了我国在该领域的显著进步,他们期待中国将来为国际临床化学和国际计量委员会做出更多重要贡献。”
  • 卫生部公布27个食品添加剂产品标准
    根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,我部组织中国疾病预防控制中心参照国际标准,指定亚硝酸钾等27个食品添加剂产品标准。   特此公告。   附件1. 亚硝酸钾等27个食品添加剂产品标准目录 序号 标准名称 1. 亚硝酸钾 2. 铵磷脂 3. 二氧化硫 4. 喹啉黄 5. 辣椒橙 6. 阿力甜 7. 乙酸钠 8. 硬脂酸(十八烷酸) 9. 聚甘油蓖麻醇酯 10. 5'肌苷酸二钠 11. 琥珀酸单甘油酯 12. 对羟基苯甲酸甲酯钠 13. 5'尿苷酸二钠 14. 5'腺苷酸 15. 二甲基二碳酸盐 16. 乳化硅油 17. 肌醇 18. 苯氧乙酸烯丙酯 19. 二氢-β-紫罗兰酮 20. 二氢香豆素 21. 氧化芳樟醇 22. L-硒-甲基硒代半胱氨酸 23. 冰乙酸(低压羰基化法) 24. 番茄红素(合成) 25. 富马酸一钠 26. 硅酸钙 27. 乙二胺四乙酸二钠 二〇一一年七月二十二日   原文请见:卫生部关于亚硝酸钾等27个食品添加剂产品标准的公告
  • 相约魅力蓉城,感受标准品之奇妙世界
    2016年5月17日,聚光科技子公司安谱实验作为英国LGC旗下国际知名品牌DR.E标准品在华最大的代理商,应西南地区众多客户的呼声,安谱实验携手英国政府化学家实验室LGC专家团队,带着DR.E标准品培训讲堂走进了“天府之国”—成都。一场标准品与魅力蓉城的相约就此拉开了帷幕。培训现场 说到标准品,每个实验室或多或少都有用到,用到就会有这样或者那样的疑问,这一培训的目的就是要解决这些实际的疑问。 回顾本次活动,讲师的专业与激情历历在目,而听众的认真与积极参与也令人难以忘怀。 那么讲师都带来了哪些内容呢? 1. 从标准品生产商的角度,讲解了标准品的三大核心要素:稳定性,均匀性,不确定度,以及如何对其做出评价。了解了这些,可以帮助用户加深对于标准品的理解,对用户选择正确的标准品至关重要; 2. 从标准品生产的角度,讲述了一个生产标准品的故事,要经历哪些过程,譬如计划,制备,再到定值方法,表征等等,这个故事带给用户更多的是,对于标准品的感性认识; 3. 从实验室质量控制的角度,分享了标准品以及能力验证对于实验室的意义,实验室又该如何选择合适的方法开展内部质量控制; 4. 从未来发展的角度,介绍了内标以及基质标准物质的选择和作用,并结合了一些实际的应用分享,这对实验室未来的规划和产品的选择提供了更多的思路和参考价值; 5. 从实际应用的角度,成都市疾控的王炼博士带来了其关于乳制品中多种抗生素检测的研究。专家对话 除了讲师团队的分享,活动还特设了轻松活跃的与专家对话的环节,到场的听众提出了 很多实际工作中遇到的问题,很好地利用了此次宝贵的机会,进行了一次充分的沟通和交流,在对话中找到各自疑惑的答案。 然而,美好的事物总是短暂的,为期一天的培训,尽管那么的专业,既有广度也不乏深度,但是我们依然感受到了听众的热情和饱满的参与度。无奈一天的时间太过匆匆,不能将标准品的种种,完美、完整地诠释,我们的听众也还听的不够尽兴。所以,请您持续关注安谱,另外,除了标准品的培训,安谱实验还提供有更多的培训题目,后期,或许您将收到意外惊喜呢~~~ 最后,安谱实验再次感谢众多到场听众的到来和参与,也非常感谢LGC团队的大力支持,以及北京吉天(聚光科技旗下子公司)的支持和协助。这一场标准品之行到此结束了,而安谱为客户服务,为客户创造价值的脚步不止,安谱期待与您再次相约!合照留影
  • 继血碘尿碘之后,食品中碘元素再次启动ICPMS方法
    继血碘尿碘之后,食品中碘元素再次启动ICPMS方法关注我们,更多干货和惊喜好礼● 碘的检测 ●iCAP RQ ICPMS碘元素是人体必需的微量元素,90%以上来源于食物,由消化系统进入血液循环到达在人体各个组织器官,碘的代谢主要通过肾脏由尿液排出。碘元素在人体处于动态平衡状态,缺乏或过量均会导致相关疾病,可通过检测血液尿液中的碘元素判断个体对碘元素的需求,从而精确选择含碘食物的摄入。ICPMS作为元素分析利器之一,很早就被广大分析工作者应用于血液尿液中碘的测定。此前WS/T 107.2-2016《尿中碘的测定》第2部分便将电感耦合等离子体质谱法作为尿液中碘元素分析方法之一,近日发布的最xin食品标准GB5009.267-2020《食品中碘的测定》再一次新增ICPMS方法,将ICPMS测定碘的方法推广至食品安全领域。ICPMS测定碘元素 关于ICPMS测定碘元素方法,赛默飞具有丰富的经验,很早之前便采用iCAP Q和RQ ICPMS实现血液尿液中碘元素的精确分析。WS/T 107.2-2016《尿中碘的测定》第2部分采用的稀释剂为0.25%四甲基氢氧化铵(TMAH)和0.02%曲拉通X-100混合溶液,方法检出限为0.4μg/L(换算至上机溶液检出限为0.04μg/L),可以直接测定碘含量为0 μg/L~1000 μg/L的尿样。本次GB5009.267-2020《食品中碘的测定》中ICPMS方法采用的稀释剂为0.5%TMAH,方法检出限为0.01mg/kg(换算至上机溶液为0.1μg/L),两个方法难度相当。为了消除同学们对新标准实施忧虑,我们采用赛默飞iCAP RQ ICPMS对GB5009.267-2020中ICPMS方法进行验证,实验证明iCAP RQ ICPMS具有极高的灵敏度,对于碘元素的检出限可达0.014 μg/L(实验中所用TMAH为分析纯试剂,碘的背景较高,若使用纯度更高的TMAH可获得更低检出限),按照0.5g取样量,定容至50mL计算,可获得0.0014mg/kg方法检出限,远低于标准要求。0.5% TMAH为碱性试剂,属于高基体样品,对仪器的基体耐受性提出挑战,下图为对0.5% TMAH连续分析4h以上内标(Re、In和Rh)回收情况,内标回收率均稳定在90%~110%之间。 iCAP RQ ICPMS之所以长期测试0.5% TMAH仍能保持出色的稳定性,有赖于其稳健的等离子性能和专利嵌片耐盐技术,对于0.5% TMAH无需气体稀释,采用标配进样系统即可获得稳定的测试效果。针对碘元素,赛默飞不仅具有成熟的元素总量分析方案,还有丰富的碘形态分析案例,更多精彩敬请关注!飞飞祝大家圣诞快乐!MERRY CHRISTMAS“码”上下载填写表单即刻获取【ICPMS应用文集】 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 美拒不符节能或标签标准产品入境
    美国海关与边境保护局近日公布一项最终规定,藉此修订该局规例,拒绝不符合1975年《能源政策与节约法》及其实施规例的消费品及工业设备入境。为执行这些法定要求,自8月5日起,美国海关与边境保护局若接获美国能源部或美国联邦贸易委员会的书面通知,指某些进口货物不符合《能源政策与节约法》的有关规定,该局将拒绝该等货物入境。即使没有获接美国能源部或美国联邦贸易委员会的预先通知,该局亦有权判断某些产品不符合有关规定,并与有关部门商讨该等货物的处置方法。   根据最终规定,受法例涵盖的进口货物是指已经申报作进口消费之用的产品及设备、从仓库取出作消费用途的产品及设备或是来自外贸区作消费用途的外国商品。   下列是必须符合美国能源部能源标准的主要家庭电器:冷藏箱及冷藏冷冻箱、冷冻箱、洗碗碟机、干衣机、热水器、室内空气调节机、无排气口家用加热设备、厨房炉灶、洗衣机、中央空气调节机及热泵、熔炉及锅炉、有排气口家用加热设备、泳池加热器、萤光灯镇流器、一般用途萤光灯及白炽灯、水龙头、花洒头、水厕、尿厕、吊扇、吊扇灯具、中型基座节能灯、除湿器、充电器以及外部电源供应器。   此外,若干类电器必须贴附标签以显示预期能耗或能效,包括冷藏箱及冷藏冷冻箱、冷冻箱、洗碗碟机、热水器、室内空气调节机、洗衣机、熔炉及锅炉、中央空气调节机、热泵、萤光灯镇流器及灯具、一般用途灯具(包括中型基座节能灯、一般用途白炽灯及一般用途发光二极管灯)、金属卤化物灯具及金属卤化物镇流器、花洒头、水龙头、水厕、尿厕、泳池加热器、吊扇及电视机。
  • 50项食品安全国际标准即将出台
    p   由联合国粮农组织和世界卫生组织在1963年创建的“食品法典委员会”于17日至22日在日内瓦举行第四十届会议,与会成员考虑通过一系列新的国际食品标准,以保护消费者健康并促进开展公平的食品贸易。 /p p   粮农组织与世卫组织发表媒体通报称,来自120多个国家的600多名代表此次齐聚日内瓦,参加“食品法典委员会”第四十届会议,将对50项国际食品安全标准以及30多项新的工作建议进行讨论,并对现行法典的文本进行更新。 /p p   据介绍,大会当天首先通过了有关“动物性食品中兽药最大残留限量”的最新标准,分别对牛肉中的伊维菌素、鸡肉等禽类食品中的拉沙洛西钠以及三文鱼中的氟苯脲的残留量进行了明确设定。同时,各国代表同意对《新鲜水果和蔬菜卫生操作规范》进行修订,强调所有食品的生产、处理和准备过程都涉及各种风险,但可以通过遵循良好的农业和卫生措施来减少,以帮助控制微生物、化学和物理危害,最大限度地减少食源性疾病影响消费者或对公共卫生造成负面影响的可能性。 /p p   “食品法典委员会”还通过了有关《营养标签准则》的编辑修改,其中包括维生素D和E的营养参考值修订,并批准了有关“预防和减少大米砷污染操作规范”的拟议草案。此外,依据《2014—2019年战略计划》,食典委将对一系列新工作提案进行审议,其中包括鱼类中甲基汞最高含量、修订《最大限度减少和控制抗菌素耐药性操作规范》、食品中不经意出现的低水平化学物风险分析准则、减少精炼油及相关产品中化学污染物的操作规范,并修订《特定植物油标准》,其中将涉及核桃油、杏仁油、榛子油、阿月浑子油、亚麻籽油和鳄梨油等。 /p p   自1963年以来,在联合国粮农组织和世卫组织的推动下,《食品法典》已经成为消费者、食品生产者和加工者、各国食品管理机构和国际食品贸易的全球参照标准。 /p
  • 为何近半食品添加剂没检测标准?
    从三聚氰胺、苏丹红、工业明胶到牛肉膏、羊肉精,非法食品添加事件是当下食品安全监管的难点和盲点。日前,上海市人大常委会组织部分代表前往浦东开展食品安全监管体制调研时,部分来自基层的代表反映,目前卫生部门公布的非法食品添加剂目录中,近半缺乏检测标准。   近几年,食品安全的&ldquo 亡羊&rdquo 不少,我们的&ldquo 牢&rdquo 虽然也不断地补了起来,比如,加强了监管力量,成立了国家食品药品监督管理总局 修正了刑法,食品安全犯罪最低将被判处有期徒刑,直至死刑等。但是,我们的食品检测标准,依然没有与时俱进。卫生部门发布的 《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》公告中,对非食用物质和食品添加剂种类有了明确规定,但禁止添加的物质中近一半没有相关检测标准,令人担忧。   正因为食品没有检测标准,导致食品难以监管,执法缺乏依据。近日,上海浦东新区市场监管局检查中发现某市场销售的水产品甲醛含量较高,因缺乏标准,无法认定该物质是否为人为添加,对甲醛含量较高食品如何处理又缺乏明确的法律法规规定,导致至今还难以定性处罚。   食品检测标准,应当与时俱进。首先,食品检测标准的制定权,必须归到权威部门。相关部门也应该加强制定食品安全标准的工作,严格规范使用食品添加剂,从源头上根治&ldquo 标准&rdquo 问题。   其次,建立严密的食品安全标准检测机制。食品检测标准,应当随时更新。规定禁用的添加剂,体现出对公众食品安全的应有担当,而且要随时查实风险,修订检测标准,出台禁用规定。   再次,改事后监管为主动检测。这要加强检测能力,比如,日本能对四百种农药残留物进行检测,而我国只有检测数十种农残的设备能力,这种现象应该改变。   民以食为天,食以安为先。在食品安全问题上,我们已经付出了不少代价,今后,必须构筑食品安全&ldquo 防火墙&rdquo 。首当其冲的是,要尽快制定更完善的食品检测标准,从传统的偏重事后监管变为事前预防,从临时检测变为注重日常检测。若能落实,当可缓解老百姓当下的食品安全焦虑。不然,食品没有检测标准,谁还敢吃?
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表: 食品添加剂品种名称 标准名称 备注 1.食品添加剂 柠檬酸 GB 1987-2007 食品添加剂 柠檬酸   2.食品添加剂 乳酸 GB 2023-2003 食品添加剂 乳酸   3.食品添加剂 dl-酒石酸 GB 15358-2008 食品添加剂 dl-酒石酸   4.食品添加剂 L(+)-酒石酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 卫生部公告2010年第19号 5.食品添加剂 L-苹果酸 GB 13737-2008 食品添加剂 L-苹果酸   6.食品添加剂 DL-苹果酸 GB 25544-2010 食品添加剂 DL-苹果酸 卫生部公告2010年第19号 7.食品添加剂 冰乙酸(冰醋酸) GB 1903-2008 食品添加剂 冰乙酸(冰醋酸)   8.食品添加剂 碳酸钾 GB 25588-2010 食品添加剂 碳酸钾 卫生部公告2010年第19号 9.食品添加剂 柠檬酸钾 GB 14889-1994 食品添加剂 柠檬酸钾   10.食品添加剂 柠檬酸钠 GB 6782-2009 食品添加剂 柠檬酸钠   11.食品添加剂 富马酸 GB 25546-2010 食品添加剂 富马酸 卫生部公告2010年第19号 12.食品添加剂 磷酸三钾 GB 25563-2010 食品添加剂 磷酸三钾 卫生部公告2010年第19号 13.食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) 卫生部公告2010年第19号 14.食品添加剂 盐酸 GB 1897-2008 食品添加剂 盐酸   15.食品添加剂 氢氧化钠 GB 5175-2008 食品添加剂 氢氧化钠   16.食品添加剂 碳酸钠 GB 1886-2008 食品添加剂 碳酸钠   17.食品添加剂 氢氧化钙 GB 25572-2010 食品添加剂 氢氧化钙 卫生部公告2010年第19号 18.食品添加剂 氢氧化钾 GB 25575-2010 食品添加剂 氢氧化钾 卫生部公告2010年第19号 19.食品添加剂 碳酸氢钾 GB 25589-2010 食品添加剂 碳酸氢钾 卫生部公告2010年第19号 20.食品添加剂 磷酸二氢钾 GB 25560-2010 食品添加剂 磷酸二氢钾 卫生部公告2010年第19号 21.食品添加剂 磷酸三钠 GB 25565-2010 食品添加剂 磷酸三钠 卫生部公告2010年第19号 22.食品添加剂 磷酸二氢钙 GB 25559-2010 食品添加剂 磷酸二氢钙 卫生部公告2010年第19号 23.食品添加剂 磷酸氢钙 GB 1889-2004食品添加剂 磷酸氢钙   24.食品添加剂 焦磷酸二氢二钠 GB 25567-2010 食品添加剂 焦磷酸二氢二钠 卫生部公告2010年第19号 25.食品添加剂 焦磷酸钠 GB 25557-2010 食品添加剂 焦磷酸钠 卫生部公告2010年第19号 26.食品添加剂 乳酸钠(溶液) GB 25537-2010 食品添加剂 乳酸钠(溶液) 卫生部公告2010年第19号 27.食品添加剂 磷酸 GB 3149-2004 食品添加剂 磷酸   28.食品添加剂 六偏磷酸钠 GB 1890-2005 食品添加剂 六偏磷酸钠   29.食品添加剂 硫酸钙 GB 1892-2007 食品添加剂 硫酸钙   30.食品添加剂 乳酸钙 GB 6226-2005 食品添加剂 乳酸钙   31.食品添加剂 L-乳酸钙 GB 25555-2010 食品添加剂 L-乳酸钙 卫生部公告2010年第19号 32.食品添加剂 磷酸三钙 GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号 33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠 卫生部公告2011年第8号指定标准 34.食品添加剂 亚铁氰化钾(黄血盐钾) GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) 卫生部公告2010年第19号 35.食品添加剂 二氧化硅 GB 25576-2010 食品添加剂 二氧化硅 卫生部公告2010年第19号 36.食品添加剂 硅铝酸钠 GB 25583-2010 食品添加剂 硅铝酸钠 卫生部公告2010年第19号 37.食品添加剂 滑石粉 GB 25578-2010 食品添加剂 滑石粉 卫生部公告2010年第19号 38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素 卫生部公告2011年第8号指定标准 39.食品添加剂 叔丁基-4-羟基茴香醚 GB1916-2008 食品添加剂 叔丁基-4-羟基茴香醚   40.食品添加剂 二丁基羟基甲苯(BHT) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) 卫生部公告2010年第19号 41.食品添加剂 没食子酸丙酯 GB 3263-2008食品添加剂 没食子酸丙酯   42.食品添加剂 茶多酚 QB 2154-1995(2009)食品添加剂 茶多酚   43.食品添加剂 植酸(肌醇六磷酸) HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸)   44.食品添加剂 特丁基对苯二酚 GB 26403-2011食品添加剂 特丁基对苯二酚 卫生部公告2011年第7号 45.食品添加剂 甘草抗氧物 QB 2078-1995(2009)食品添加剂 甘草抗氧物   46.食品添加剂 抗坏血酸钙 GB 15809-1995食品添加剂 抗坏血酸钙   47.食品添加剂 L-抗坏血酸棕榈酸酯 GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准 48.食品添加剂 迷迭香提取物 QB/T 2817-2006食品添加剂 迷迭香提取物   49.食品添加剂 D-异抗坏血酸钠 GB 8273-2008食品添加剂 D-异抗坏血酸钠   50.食品添加剂 D-异抗坏血酸 GB 22558-2008食品添加剂 D-异抗坏血酸   51.食品添加剂 抗坏血酸钠 GB 16313-1996食品添加剂 抗坏血酸钠   52.食品添加剂 维生素E(dl-a-醋酸生育酚) GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚) 卫生部公告2010年第19号 53.食品添加剂 山梨酸 GB 1905-2000食品添加剂 山梨酸   54.食品添加剂 山梨酸钾 GB 13736-2008食品添加剂 山梨酸钾   55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精) 卫生部公告2011年第8号指定标准 56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯 卫生部公告2011年第8号指定标准 57.食品添加剂 连二亚硫酸钠(保险粉) GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉)   58.食品添加剂 焦亚硫酸钠 GB 1893-2008食品添加剂 焦亚硫酸钠   59.食品添加剂 无水亚硫酸钠 GB 1894-2005食品添加剂 无水亚硫酸钠   60.食品添加剂 焦亚硫酸钾 GB 25570-2010 食品添加剂 焦亚硫酸钾 卫生部公告2010年第19号 61.食品添加剂 亚硫酸氢钠 GB 25590-2010 食品添加剂 亚硫酸氢钠 卫生部公告2010年第19号 62.食品添加剂 硫磺 GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号 63.食品添加剂 碳酸氢铵 GB 1888-2008食品添加剂 碳酸氢铵   64.食品添加剂 酒石酸氢钾 GB 25556-2010 食品添加剂 酒石酸氢钾 卫生部公告2010年第19号 65.食品添加剂 复合膨松剂 GB 25591-2010 食品添加剂 复合膨松剂 卫生部公告2010年第19号 66.食品添加剂 硫酸铝钾 GB 1895-2004食品添加剂 硫酸铝钾   67.食品添加剂 硫酸铝铵 GB 25592-2010 食品添加剂 硫酸铝铵 卫生部公告2010年第19号 68.食品添加剂 羟丙基淀粉醚 QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚   69.食品添加剂 山梨糖醇液 GB 7658-2005食品添加剂 山梨糖醇液   70.食品添加剂 聚葡萄糖 GB 25541-2010 食品添加剂 聚葡萄糖 卫生部公告2010年第19号 71.食品添加剂 碳酸氢钠 GB 1887-2007食品添加剂 碳酸氢钠   72.食品添加剂 碳酸钙 GB 1898-2007食品添加剂 碳酸钙   73.食品添加剂 碳酸镁 GB 25587-2010 食品添加剂 碳酸镁 卫生部公告2010年第19号 74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺 卫生部公告2011年第8号指定标准 75.食品添加剂 苋菜红 GB 4479.1—2010 食品添加剂 苋菜红 卫生部公告2010年第19号 76.食品添加剂 苋菜红铝色淀 GB 4479.2-2005食品添加剂 苋菜红铝色淀   77.食品添加剂 胭脂红 GB 4480.1-2001食品添加剂 胭脂红   78.食品添加剂 胭脂红铝色淀 GB 4480.2-2001食品添加剂 胭脂红铝色淀   79.食品添加剂 柠檬黄 GB 4481.1—2010 食品添加剂 柠檬黄 卫生部公告2010年第19号 80.食品添加剂 柠檬黄铝色淀 GB 4481.2—2010 食品添加剂 柠檬黄铝色淀 卫生部公告2010年第19号 81.食品添加剂 日落黄 GB 6227.1—2010 食品添加剂 日落黄 卫生部公告2010年第19号 82.食品添加剂 日落黄铝色淀 GB 6227.2-2005食品添加剂 日落黄铝色淀   83.食品添加剂 亮蓝 GB 7655.1-2005食品添加剂 亮蓝   84.食品添加剂 亮蓝铝色淀 GB 7655.2-2005食品添加剂 亮蓝铝色淀   85.食品添加剂 新红 GB 14888.1-2010 食品添加剂 新红 卫生部公告2010年第19号 86.食品添加剂 新红铝色淀 GB 14888.2-2010 食品添加剂 新红铝色淀 卫生部公告2010年第19号 87.食品添加剂 诱惑红 GB 17511.1-2008食品添加剂 诱惑红   88.食品添加剂 诱惑红铝色淀 GB 17511.2-2008食品添加剂 诱惑红铝色淀   89.食品添加剂 赤藓红 GB 17512.1-2010 食品添加剂 赤藓红 卫生部公告2010年第19号 90.食品添加剂 赤藓红铝色淀 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 卫生部公告2010年第19号 91.食品添加剂 β-胡萝卜素 GB 8821—2010 食品添加剂 β-胡萝卜素 卫生部公告2010年第19号 92.食品添加剂 天然β-胡萝卜素 QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素   93.食品添加剂 甜菜红 QB/T 3791-1999(2009)食品添加剂 甜菜红   94.食品添加剂 紫胶红色素 GB 4571—1996食品添加剂 紫胶红色素   95.食品添加剂 辣椒红 GB 10783-2008食品添加剂 辣椒红   96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   97.食品添加剂 红米红 GB 25534-2010 食品添加剂 红米红 卫生部公告2010年第19号 98.食品添加剂 栀子黄 GB 7912-2010 食品添加剂 栀子黄 卫生部公告2010年第19号 99.食品添加剂 菊花黄 QB 3792-1999(2009)食品添加剂 菊花黄   100.食品添加剂 黑豆红 QB 3793-1999(2009)食品添加剂 黑豆红   101.食品添加剂 高粱红 GB 9993-2005食品添加剂 高粱红   102.食品添加剂 可可壳色素 GB 8818-2008食品添加剂 可可壳色素   103.食品添加剂 红曲米(粉) GB 4926-2008食品添加剂 红曲米(粉)   104.食品添加剂 红曲红 GB 15961-2005食品添加剂 红曲红   105.食品添加剂 天然苋菜红 QB 1227-1991(2009)食品添加剂 天然苋菜红   106.食品添加剂 姜黄色素 QB 1415-1991(2009)食品添加剂 姜黄色素   107.食品添加剂 叶绿素铜钠盐 GB 26406-2011 食品添加剂 叶绿素铜钠盐 卫生部公告2011年第7号 108.食品添加剂 萝卜红 GB 25536-2010 食品添加剂 萝卜红 卫生部公告2010年第19号 109.食品添加剂 二氧化钛 GB 25577-2010 食品添加剂 二氧化钛 卫生部公告2010年第19号 110.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯 GB 8272-2009食品添加剂 蔗糖脂肪酸酯   食品添加剂 蔗糖脂肪酸酯(丙二醇法) GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法)   食品添加剂 蔗糖脂肪酸酯(无溶剂法) QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法)   111.食品添加剂 酪蛋白酸钠 QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89)   112.食品添加剂 蒸馏单硬脂酸甘油酯 GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯   113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) 卫生部公告2010年第19号 114.食品添加剂 山梨醇酐单油酸酯(司盘80) GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80) 卫生部公告2010年第19号 115.食品添加剂 单、双硬脂酸甘油酯 GB 1986-2007食品添加剂 单、双硬脂酸甘油酯   116.食品添加剂 辛癸酸甘油酯 QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯   117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂   118.食品添加剂 木糖醇酐单硬脂酸酯 QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯   119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90)   120.食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) 卫生部公告2010年第19号 121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) 卫生部公告2010年第19号 122.食品添加剂 双乙酰酒石酸单双甘油酯 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 卫生部公告2010年第19号 123.食品添加剂 三聚甘油单硬脂酸酯 GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯   124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) 卫生部公告2010年第19号 125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) 卫生部公告2010年第19号 126.食品添加剂 果胶 GB 25533-2010 食品添加剂 果胶 卫生部公告2010年第19号 127.食品添加剂 卡拉胶 GB 15044-2009食品添加剂 卡拉胶   128.食品添加剂 藻酸丙二醇酯 GB 10616-2004食品添加剂 藻酸丙二醇酯   129.食品添加剂 松香甘油酯和氢化松香甘油酯 GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准 130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯 卫生部公告2011年第8号指定标准 131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯 卫生部公告2011年第8号指定标准 132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙 卫生部公告2011年第8号指定标准 133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁 卫生部公告2011年第8号指定标准 134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙 卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠 卫生部公告2011年第8号指定标准 136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯 卫生部公告2011年第8号指定标准 137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯 卫生部公告2011年第8号指定标准 138.食品添加剂 乳糖醇 食品添加剂 乳糖醇 卫生部公告2011年第8号指定标准 139.食品添加剂 α-淀粉酶制剂 GB 8275-2009食品添加剂 α-淀粉酶制剂   140.食品添加剂 糖化酶制剂 GB 8276-2006食品添加剂 糖化酶制剂   141.食品添加剂 果胶酶制剂 QB 1502-1992(2009)食品添加剂 果胶酶制剂   142.食品添加剂 真菌α-淀粉酶 QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶   143.食品添加剂 α-葡萄糖转苷酶 QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶   144.食品添加剂 a-乙酰乳酸脱羧酶制剂 GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂   145.食品添加剂 纤维素酶制剂 QB 2583-2003 纤维素酶制剂   146.食品工业用酶制剂 GB 25594-2010 食品添加剂 食品工业用酶制剂 卫生部公告2010年第19号 147.食品添加剂 5'-鸟苷酸二钠 QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠   148.食品添加剂 呈味核苷酸二钠 QB/T 2845-2007食品添加剂 呈味核苷酸二钠   149.食品添加剂 甘氨酸(氨基乙酸) GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) 卫生部公告2010年第19号 150.食品添加剂 L-丙氨酸 GB 25543-2010 食品添加剂 L-丙氨酸 卫生部公告2010年第19号 151.食品用石蜡 GB 7189-1994食品用石蜡   152.食品级白油 GB 4853-2008食品级白油   153.食品添加剂 吗啉脂肪酸盐果蜡 GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 卫生部公告2010年第19号 154.食品添加剂 紫胶(虫胶) LY 1193—1996 食品添加剂 紫胶(虫胶)   155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯 卫生部公告2011年第8号指定标准 156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡 卫生部公告2011年第8号指定标准 157.食品添加剂 蜂蜡 食品添加剂 蜂蜡 卫生部公告2011年第8号指定标准 158.食品添加剂 三聚磷酸钠 GB 25566-2010 食品添加剂 三聚磷酸钠 卫生部公告2010年第19号 159.食品添加剂 磷酸氢二钾 GB 25561-2010 食品添加剂 磷酸氢二钾 卫生部公告2010年第19号 160.食品添加剂 磷酸二氢铵 GB 25569-2010 食品添加剂 磷酸二氢铵 卫生部公告2010年第19号 161.食品添加剂 磷酸氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 卫生部公告2010年第19号 162.食品添加剂 磷酸二氢钠 GB 25564-2010 食品添加剂 磷酸二氢钠 卫生部公告2010年第19号 163.食品添加剂 L-赖氨酸盐酸盐 GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐   164.食品添加剂 牛磺酸 GB 14759-2010食品添加剂 牛磺酸 卫生部公告2010年第19号 165.食品添加剂 左旋肉碱 GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准 166.食品添加剂 维生素A GB 14750-2010 食品添加剂 维生素A 卫生部公告2010年第19号 167.食品添加剂 维生素B1(盐酸硫胺) GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) 卫生部公告2010年第19号 168.食品添加剂 维生素B2(核黄素) GB 14752-2010 食品添加剂 维生素B2(核黄素) 卫生部公告2010年第19号 169.食品添加剂 维生素B6(盐酸吡哆醇) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) 卫生部公告2010年第19号 170.食品添加剂 维生素C(抗坏血酸) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) 卫生部公告2010年第19号 171.食品添加剂 维生素D2(麦角钙化醇) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) 卫生部公告2010年第19号 172.食品添加剂 烟酸 GB 14757-2010 食品添加剂 烟酸 卫生部公告2010年第19号 173.食品添加剂 叶酸 GB 15570-2010 食品添加剂 叶酸 卫生部公告2010年第19号 174.食品添加剂 乳酸亚铁 GB 6781-2007 食品添加剂 乳酸亚铁   175.食品添加剂 柠檬酸钙 GB 17203-1998 食品添加剂 柠檬酸钙   176.食品添加剂 葡萄糖酸钙 GB 15571-2010食品添加剂 葡萄糖酸钙 卫生部公告2010年第19号 177.食品添加剂 生物碳酸钙 QB 1413-1999(2009)食品添加剂 生物碳酸钙   178.食品营养强化剂 煅烧钙 GB 9990-2009 食品营养强化剂 煅烧钙   179.食品添加剂 L-苏糖酸钙 GB17779-2010 食品添加剂 L-苏糖酸钙 卫生部公告2010年第19号 180.食品添加剂 乙酸钙 GB 15572-1995 食品添加剂 乙酸钙及第1号修改单   181.食品添加剂 葡萄糖酸锌 GB 8820-2010 食品添加剂 葡萄糖酸锌 卫生部公告2010年第19号 182.食品添加剂 天然维
  • 卫生部职责调整,将负责食品安全标准
    12月10日,卫生部举行例行新闻发布会。卫生部发言人毛群安通报,卫生部各司局职责调整已完成,今后承担管理国家食品药品监督管理局的职责。同时,根据专家预测,今年发生动物禽流感的可能性比较大。   职责   负责管理国家食品药监局   毛群安介绍,卫生部今后承担管理国家食品药品监督管理局的职责。卫生部和药监局的具体职能进行了调整和交接。卫生部还初步完成了新设立的医疗服务监管司、药物政策与基本药物制度司的组建和食品安全综合协调与卫生监督局职能的调整工作。其中,食品安全综合协调与卫生监督局增加了组织拟订食品安全标准、组织查处食品安全重大事故等职责。   预测   发生动物禽流感可能性较大   针对香港有鸡养殖场发现禽流感,毛群安在发布会上表示,根据专家预测,今年发生动物禽流感的可能性比较大。如果有动物疫情,也有可能发生个别人感染的病例。毛群安提醒公众,特别是与家禽有接触的工作人员,要尽量减少与家禽,特别是病死家禽的接触机会,一旦发现异常情况,应当及时向卫生和农业部门报告。   澄清   “反对取消面粉添加剂”属捏造   最近有媒体报道称,卫生部反对取消面粉添加剂,因为这样会导致生产添加剂的企业倒闭破产。对此,毛群安表示,这是有些媒体在没有采访卫生部的情况下编造的一个观点。事实上,因为部门职责明确了卫生部要对一些食品添加剂进行风险评估,并最后决定添加剂能不能使用。“我们将提请全国食品添加剂标准化委员会,按照有关规则进行讨论,最后做出决定,并报国家标准委进一步修订面粉的标准。”毛群安表示。   “问题奶粉”事件赔偿方案正论证   问题奶粉婴幼儿的筛查工作已经基本结束,对极个别患儿仍设有定点医疗机构进行检查和治疗。卫生部新闻发言人毛群安在昨天举行的例行新闻发布会上透露,相关部门正在就三鹿牌婴幼儿奶粉事件的赔偿方案进行论证,为下一步采取的赔偿做准备。   据卫生部通报,截至11月27日8时,全国累计报告因食用三鹿牌奶粉和其他个别问题奶粉导致泌尿系统出现异常的患儿29万余人。
  • 西湖大学新发现:尿液中的蛋白可作为新冠轻重型的分类标准
    过去两年来,新冠的爆发让全人类措手不及。截至今天,新冠病毒仍然在地球上大部分地区肆虐。凛冬已至,温度骤降,现在已经进入了感冒等流行病毒的高发季节。随着新的突变株奥密克戎(Omicron)的出现,世界上已经有不少国家对此警戒万分,全球人类也需要共同协作,以控制新一轮新冠的爆发。不管是哪一变株流行,其背后的基础研究都是迫切和必要的。尿液分子表型的研究有重大意义。近日,西湖大学西湖实验室郭天南课题组等在 Cell Reports 发表了题为:Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19 的研究论文。该研究表明新冠肺炎病人的尿液作为一种完全无创的生物样本,从尿液中获取的生物分子可以灵敏地反映机体的病理状态。这项研究从尿液中筛选出 20 个蛋白质标志物并建立模型,成功实现了对新冠患者进行分类预测的目的;该研究同时针对性地提出了新冠患者存在潜在肾损伤的证据。尿液来源于外周循环,无需专业采集手段即可获得(相比较血清、组织等),完全可以满足日常实时健康监测的要求。利用尿液中的生物分子对人体健康状态进行监测,对于未来精准医学、精准抗疫具有重要的实用价值和现实意义。该研究对 COVID-19 患者组以及健康对照组的共计 115 个尿液、血清样本进行了系统研究。运用蛋白组学和代谢组学的分析手段,对各组病人进行了研究对比。从蛋白层面分析,单位体积的尿液蛋白表达量在轻、重型 COVID-19 组中与健康组相比明显升高,这个结果提示尿液可能会更灵敏地反应机体疾病水平的变化。该研究共定量了 1494 个血清蛋白,3854 个尿液蛋白,903 个血清代谢物和 1033 个尿液代谢物。研究发现尿液中的蛋白分子量分布与全人类蛋白组的蛋白分子量分布一致,这说明尿液样本不会漏掉某一类蛋白而导致信息丢失。血清和尿液蛋白质组学和代谢组学数据汇总分析那么尿液蛋白能否体现出新冠肺炎引起的分子变化呢?机器学习结果显示,尿液蛋白对于轻重型新冠肺炎的区分能力与血清蛋白基本一致。该研究在此基础上,建立了基于 20 个尿液蛋白的机器学习模型。在重型 COVID-19 患者的转归过程中,该模型的预测值随着时间的延长逐渐降低;而在轻型的恢复患者中,预测值趋于平缓并无明显变化。这些结果进一步证实了这 20 个尿液蛋白具备对 COVID-19 轻重型进行分类预测的潜力。在蛋白质组学水平上区分轻型和重型 COVID-19 患者该研究接下来探索了 COVID-19 患者血清和尿液之间的相关性。随着疾病进程加重(健康-轻型-重型),有 301 个蛋白的相对丰度在尿液和血清中呈现出相反的表达模式。研究发现两种参与肾小管重吸收的重要调节因子,megalin (LRP2) 和 cubilin (CUBN),在 COVID-19 患者尿液中的含量均呈现下降趋势。COVID-19 患者的肾小管再吸收过程可能出现了紊乱失调,导致尿液中某些蛋白质变化呈现出与血液中不同的表达模式。这种现象可能也存在于其他疾病中,还有待进一步研究。301 个血清和尿液蛋白显示出相反的表达模式不受控制的先天性炎症反应引起的细胞因子风暴,是导致 COVID-19 患者高死亡率的主要原因,因此该研究还着重关注了细胞因子在血清和尿液中的表达情况。该研究在血清中定量到了 124 个细胞因子,在尿液中定量到了 197 个。在尿液中,CXCL14 与 COVID-19 患者的淋巴细胞计数具有显著的相关性,或可能用于指示 COVID-19 病情的严重程度。尿液和血清中的细胞因子特征此外,该研究还在尿液蛋白组中特异性地发现了一些与病毒出芽相关的蛋白,它们在 COVDI-19 患者的尿液中呈现显著的下调趋势,且未在血清中检测到。以上结果表明
  • 加拿大拟准许使用一种新型食品酶
    近日,加拿大发布G/SPS/N/CAN/657号通报,加拿大卫生部食品司针对一项关于一种新型食品添加剂准许使用要求的提案进行了详细的安全评估。最终该评估并未发现任何安全相关问题,故加拿大卫生部拟批准该添加剂按该提案所规定进行使用,并对现行准许使用的食品酶名单进行修改,以许可该新型添加剂脲酶作为一种食品酶使用于葡萄酒和清酒内。目前该通报正在征求意见中。   检验检疫机构在此提醒相关出口酒类企业:目前国内常将脲酶用于分解葡萄酒中残存的脲,而随着该公告的发布,企业在日后出口至加拿大的葡萄酒和清酒中也将可以放心使用。但由于目前该通报尚处于征求意见中,企业应密切关注,特别是注意加方是否会出台有关脲酶的添加限量方面的要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制