当前位置: 仪器信息网 > 行业主题 > >

磷酸转乙酰化酶

仪器信息网磷酸转乙酰化酶专题为您提供2024年最新磷酸转乙酰化酶价格报价、厂家品牌的相关信息, 包括磷酸转乙酰化酶参数、型号等,不管是国产,还是进口品牌的磷酸转乙酰化酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磷酸转乙酰化酶相关的耗材配件、试剂标物,还有磷酸转乙酰化酶相关的最新资讯、资料,以及磷酸转乙酰化酶相关的解决方案。

磷酸转乙酰化酶相关的论坛

  • 组蛋白乙酰化

    组蛋白乙酰化组蛋白修饰通过改变组蛋白与DNA的亲和性使染色质结构发生改变,进而影响转录因子与DNA序列的结合和基因表达,包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一,其主要发生在组蛋白H3赖氨酸(Lysine, Lys)的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[11],它受组蛋白乙酰转移酶(Histone acetyl transferase,HAT)和组蛋白去乙酰化酶(Histone deacetylase,HDAC)调控。HDAC可移去Lys残基上的乙酰基,增强组蛋白的正电性,DNA(本身带有负电荷)与组蛋白结合紧密,转录因子不易于DNA结合,抑制抑癌基因的转录,HAT作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。表观遗传学改变通过调控基因转录平衡组蛋白乙酰化和去乙酰化,从而影响细胞周期、凋亡和分化相关蛋白的表达水平[12]。2.1 组蛋白乙酰化水平与SCLC发生发展密切相关 一项实验研究表明,乙酰化组蛋白H3在SCLC和NSCLC细胞中的表达有显著性差异,以前者表达较高。Notch信号通路是SCLC发生发展和化疗耐药的主要调节通路之一[13],具有肿瘤抑制作用。此研究中,Notch1在SCLC细胞系(除H69AR、SBC-3)中失活,其表达水平与组蛋白H3乙酰化有关。Notch1阳性表达的细胞系中乙酰化组蛋白H3富集在Notch1启动子区域,表达水平较高,Notch1阴性表达的细胞系中Notch1启动子周围的乙酰化组蛋白H3水平较低。这说明组蛋白去乙酰化是Notch1基因在SCLC中表观失活的原因[14]915-918。此外,组蛋白H3赖氨酸23(histone 3 lysine 23, H3K23)乙酰转移酶KAT6B在SCLC中失活,若其活性恢复可对SCLC产生抑制作用,它的乙酰化水平降低是SCLC发生的重要标志[15]。由此可见,组蛋白去乙酰化可以调控相关基因的表达从而促进SCLC发生发展。2.2 组蛋白去乙酰化酶抑制剂 HDAC在许多癌症中过表达,干扰其活性、抑制其功能是有效的治疗手段。组蛋白去乙酰化酶抑制剂(Histone deacetylase inhibitor, HDACI)是重要的表观调控药物,高效低毒,通过靶向阻断HDAC去乙酰化、促进组蛋白乙酰化发挥抗肿瘤作用。根据化学结构的不同,HDACIs分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和Sirt抑制剂5类[16]。在单药和/或与传统化疗药物联合使用时,HDACI可阻滞细胞周期,抑制迁移和侵袭[17],诱导癌细胞分化、自噬[18]、凋亡,抗血管生成。当前,伏立诺他(Vorinostat ,SAHA)、罗米地辛(Romidepsin)、帕比司他(Panobinostat)等被批准用于血液系统恶性肿瘤的治疗[19]。丙戊酸(valproic acid ,VPA)作为HDACI可抑制SCLC细胞生长,诱导细胞凋亡,阻滞SCLC细胞周期于G1期。以上抑制作用是通过降低HDAC4表达,增加组蛋白H4乙酰化实现的。同时发现,VPA激活了SCLC中Notch1、Notch靶基因HES1和P21的Notch信号通路。此外,它还可以上调生长抑素受体II(somatostatinreceptor2,SSTR2)并增强受体靶向细胞毒素的抑制作用[20]。在经曲古抑菌素A (Trichostatin A ,TSA)处理后的SCLC细胞系中, Notch1启动子区域H3乙酰化水平增加,从而导致Notch1蛋白表达。此外,经TSA处理后,SCLC细胞黏附增加,上皮间质转化标志物表达减少,细胞增殖减少,细胞凋亡激活,可能与TSA诱导Notch1表达有关[14]916-918。这些研究成果为HDACI在 SCLC治疗中的应用提供了依据。为了达到最好治疗效果,药物用量、联合用药及使用顺序仍需深入研究。

  • 【原创大赛】组蛋白乙酰化

    [size=20px] [/size][size=20px]组蛋白乙酰化[/size][size=16px]组蛋白修饰通过改变组蛋白与[/size][size=16px]DNA[/size][size=16px]的亲和性使染色质结构发生改变,进而影响转录因子与[/size][size=16px]DNA[/size][size=16px]序列的结合和基因表达[/size][size=16px],[/size][size=16px]包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一,其主要发生在组蛋白[/size][size=16px]H3[/size][size=16px]赖氨酸([/size][size=16px]Lysine, Lys[/size][size=16px])的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[/size][font='times new roman'][size=16px][11][/size][/font][size=16px],它受组蛋白乙酰转移酶([/size][size=16px]Histone acetyl transferase[/size][size=16px],[/size][size=16px]HAT[/size][size=16px])和组蛋白去乙酰化酶[/size][size=16px](Histone deacetylase[/size][size=16px],[/size][size=16px]HDAC)[/size][size=16px]调控。[/size][size=16px]HDAC[/size][size=16px]可移去[/size][size=16px]Lys[/size][size=16px]残基上的乙酰基,增强组蛋白的正电性,[/size][size=16px]DNA[/size][size=16px](本身带有负电荷)与组蛋白结合紧密,转录因子不易于[/size][size=16px]DNA[/size][size=16px]结合,抑制抑癌基因的转录,[/size][size=16px]HAT[/size][size=16px]作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。表观遗传学改变通过调控基因转录平衡组蛋白乙酰化和去乙酰化,从而影响细胞周期、凋亡和分化相关蛋白的表达水平[/size][font='times new roman'][size=16px][12][/size][/font][size=16px]。[/size][size=20px]1[/size][size=20px] [/size][size=20px]组蛋白乙酰化水平与[/size][size=20px]SCLC[/size][size=20px]发生发展密切相关[/size][font='黑体'][size=14px] [/size][/font][font='黑体'][size=14px] [/size][/font][size=14px] [/size][size=16px]一项实验研究表明,乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]和[/size][size=16px]NSCLC[/size][size=16px]细胞中的表达有显著性差异,以前者表达较高。[/size][size=16px]Notch[/size][size=16px]信号通路是[/size][size=16px]SCLC[/size][size=16px]发生发展和化疗耐药的主要调节通路之一[/size][font='times new roman'][size=16px][13][/size][/font][size=16px],具有肿瘤抑制作用。此研究中,[/size][size=16px]Notch1[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]细胞系(除[/size][size=16px]H69AR[/size][size=16px]、[/size][size=16px]SBC-3[/size][size=16px])中失活,其表达水平与组蛋白[/size][size=16px]H3[/size][size=16px]乙酰化有关。[/size][size=16px]Notch1[/size][size=16px]阳性表达的细胞系中乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]富集在[/size][size=16px]Notch1[/size][size=16px]启动子区域,表达水平较高,[/size][size=16px]Notch1[/size][size=16px]阴性表达的细胞系中[/size][size=16px]Notch1[/size][size=16px]启动子周围的乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]水平较低。这说明组蛋白去乙酰化是[/size][size=16px]Notch1[/size][size=16px]基因在[/size][size=16px]SCLC[/size][size=16px]中表观失活的原因[/size][font='times new roman'][size=16px][14]915-918[/size][/font][size=16px]。此外,组蛋白[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]23(histone 3 lysine 23, H3K23)[/size][size=16px]乙酰转移酶[/size][size=16px]KAT6B[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]中失活,若其活性恢复可对[/size][size=16px]SCLC[/size][size=16px]产生抑制作用,它的乙酰化水平降低是[/size][size=16px]SCLC[/size][size=16px]发生的重要标志[/size][font='times new roman'][size=16px][15][/size][/font][size=16px]。由此可见,组蛋白去乙酰化可以调控相关基因的表达从而促进[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]2 [/size][size=20px]组蛋白去乙酰化酶抑制剂[/size][font='黑体'][size=14px] [/size][/font][font='黑体'][size=14px] [/size][/font][size=16px]HDAC[/size][size=16px]在许多癌症中过表达,干扰其活性、抑制其功能是有效的治疗手段。组蛋白去乙酰化酶抑制剂([/size][size=16px]Histone deacetylase inhibitor, HDACI[/size][size=16px])是重要的表观调控药物,高效低毒,通过靶向阻断[/size][size=16px]HDAC[/size][size=16px]去乙酰化、促进组蛋白乙[/size][size=16px]酰化发挥抗肿瘤作用。根据化学结构的不同,[/size][size=16px]HDACIs[/size][size=16px]分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和[/size][size=16px]Sirt[/size][size=16px]抑制剂[/size][size=16px]5[/size][size=16px]类[/size][font='times new roman'][size=16px][16][/size][/font][size=16px]。在单药和[/size][size=16px]/[/size][size=16px]或与传统化疗药物联合使用时,[/size][size=16px]HDACI[/size][size=16px]可阻滞细胞周期,抑制迁移和侵袭[/size][font='times new roman'][size=16px][17][/size][/font][size=16px],诱导癌细胞分化、自噬[/size][font='times new roman'][size=16px][18][/size][/font][size=16px]、凋亡,抗血管生成。当前,伏立诺他([/size][size=16px]Vorinostat ,SAHA[/size][size=16px])、罗米地辛([/size][size=16px]Romidepsin[/size][size=16px])、帕比司他([/size][size=16px]Panobinostat[/size][size=16px])等被批准用于血液系统恶性肿瘤的治疗[/size][font='times new roman'][size=16px][19][/size][/font][size=16px]。[/size][size=16px]丙戊酸[/size][size=16px](valproic acid ,VPA)[/size][size=16px]作为[/size][size=16px]HDACI[/size][size=16px]可抑制[/size][size=16px]SCLC[/size][size=16px]细胞生长,诱导细胞凋亡,阻滞[/size][size=16px]SCLC[/size][size=16px]细胞周期于[/size][size=16px]G1[/size][size=16px]期。以上抑制作用是通过降低[/size][size=16px]HDAC4[/size][size=16px]表达,增加组蛋白[/size][size=16px]H4[/size][size=16px]乙酰化实现的。同时发现,[/size][size=16px]VPA[/size][size=16px]激活了[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]Notch1[/size][size=16px]、[/size][size=16px]Notch[/size][size=16px]靶基因[/size][size=16px]HES1[/size][size=16px]和[/size][size=16px]P21[/size][size=16px]的[/size][size=16px]Notch[/size][size=16px]信号通路。此外,它还可以上调生长抑素受体[/size][size=16px]II[/size][size=16px]([/size][size=16px]somatostatinreceptor2[/size][size=16px],[/size][size=16px]SSTR2[/size][size=16px])并增强受体靶向细胞毒素的抑制作用[/size][font='times new roman'][size=16px][20][/size][/font][size=16px]。在经曲古抑菌素[/size][size=16px]A (Trichostatin A ,TSA)[/size][size=16px]处理后的[/size][size=16px]SCLC[/size][size=16px]细胞系中,[/size][size=16px] Notch1[/size][size=16px]启动子区域[/size][size=16px]H3[/size][size=16px]乙酰化水平增加,从而导致[/size][size=16px]Notch1[/size][size=16px]蛋白表达。此外,经[/size][size=16px]TSA[/size][size=16px]处理后,[/size][size=16px]SCLC[/size][size=16px]细胞黏附增加,上皮间质转化标志物表达减少,细胞增殖减少,细胞凋亡激活,可能与[/size][size=16px]TSA[/size][size=16px]诱导[/size][size=16px]Notch1[/size][size=16px]表达有关[/size][font='times new roman'][size=16px][14]916-918[/size][/font][size=16px]。这些研究成果为[/size][size=16px]HDACI[/size][size=16px]在[/size][size=16px] SCLC[/size][size=16px]治疗中的应用提供了依据。为了达到最好治疗效果,药物用量、联合用药及使用顺序仍需深入研究。[/size]

  • 五氯苯酚乙酰化实验用分液漏斗做和摇床机做出来响应差很多

    五氯苯酚乙酰化实验,一种做法是用125mL分液漏斗做,一种做法是用60mL的反应瓶做,同浓度点的实验做出来响应差了一倍(125mL分液漏斗的响应高)。理论来说,不是应该摇床机的频率更高,反应越充分,响应会更高吗,但是实际做出来却是分液漏斗做出来的响应高,有人可以解释这个现象吗?关于振摇频率,125mL容量瓶的话大约100下/min,摇15min左右;60mL反应瓶是250转/min,摇30min。

  • 【原创大赛】组蛋白去乙酰化酶(HDAC)在SCLC治疗中的作用

    [font='times new roman'][size=16px][color=#000000]组蛋白去乙酰化酶([/color][/size][/font][font='times new roman'][size=16px][color=#000000]HDAC[/color][/size][/font][font='times new roman'][size=16px][color=#000000])在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]治疗中的作用[/color][/size][/font][font='times new roman'][size=16px][color=#000000]自[/color][/size][/font][font='times new roman'][size=16px][color=#000000]20[/color][/size][/font][font='times new roman'][size=16px][color=#000000]世纪[/color][/size][/font][font='times new roman'][size=16px][color=#000000]80[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年代起,肺癌逐步成为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]威胁人类健康的第一大癌种,其[/color][/size][/font][font='times new roman'][size=16px][color=#000000]发病率和死[/color][/size][/font][font='times new roman'][size=16px][color=#000000]亡[/color][/size][/font][font='times new roman'][size=16px][color=#000000]率[/color][/size][/font][font='times new roman'][size=16px][color=#000000]常年位于第一[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]据[/color][/size][/font][font='times new roman'][size=16px]2020[/size][/font][font='times new roman'][size=16px]年全球癌症报告统计,肺癌新发病例约[/size][/font][font='times new roman'][size=16px]224[/size][/font][font='times new roman'][size=16px]万,占所有新发癌症病例的[/size][/font][font='times new roman'][size=16px]11.7%[/size][/font][font='times new roman'][size=16px],死亡病例约[/size][/font][font='times new roman'][size=16px]180[/size][/font][font='times new roman'][size=16px]万,约占癌症总死亡人数的[/size][/font][font='times new roman'][size=16px]18%[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]SCLC[/size][/font][font='times new roman'][size=16px]约占所有肺癌的[/size][/font][font='times new roman'][size=16px]15%[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px][color=#000000]5[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年生存率仅为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]7%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px]它是一种神经内分泌瘤,具有早期转移、高度侵袭性、遗传不稳定性等特点。[/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]目前的治疗方式主要有手术、化疗、放疗、靶[/color][/size][/font][font='times new roman'][size=16px][color=#000000]向治疗[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和免疫治疗。[/color][/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]初期对放化疗敏感,但易产生耐药,多复发。关于[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]的治疗仍是一个难题。传统的化疗药物因其选择性低而易产生严重的毒副作用,不利于提高患者的生存质量。因此,为[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]找到更多的治疗靶点和高效低毒的靶[/size][/font][font='times new roman'][size=16px]向药物[/size][/font][font='times new roman'][size=16px]成为亟待解决的问题。[/size][/font][font='times new roman'][size=16px]基因突变和调控异常往往导致肿瘤的发生。[/size][/font][font='times new roman'][size=16px]表观遗传学变化是指在细胞分裂中可以遗传的基因表达改变,[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]序列不发生变化[/size][/font][font='times new roman'][size=16px],基因的转录和翻译受到[/size][/font][font='times new roman'][size=16px]调控[/size][/font][font='times new roman'][size=16px],主要[/size][/font][font='times new roman'][size=16px]包括[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]甲基化[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]组蛋白修饰和染色质重塑等。[/size][/font][font='times new roman'][size=16px]组蛋白修饰通过[/size][/font][font='times new roman'][size=16px]改变[/size][/font][font='times new roman'][size=16px]组蛋白与[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]的亲和性[/size][/font][font='times new roman'][size=16px]使[/size][/font][font='times new roman'][size=16px]染色质的结构状态[/size][/font][font='times new roman'][size=16px]紧密或松弛[/size][/font][font='times new roman'][size=16px],进而影响基因表达[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一。组蛋白乙酰化主要发生在组蛋白[/size][/font][font='times new roman'][size=16px]H3 Lys[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]位点[/size][/font][font='times new roman'][size=16px]上,[/size][/font][font='times new roman'][size=16px]在癌症进展中发挥双重作用,[/size][/font][font='times new roman'][size=16px]既[/size][/font][font='times new roman'][size=16px]参与肿瘤抑制基因的沉默,[/size][/font][font='times new roman'][size=16px]又[/size][/font][font='times new roman'][size=16px]增强癌基因的表达[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]它受[/size][/font][font='times new roman'][size=16px]HAT[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]共同调控。[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]去[/size][/font][font='times new roman'][size=16px]除[/size][/font][font='times new roman'][size=16px]Lys[/size][/font][font='times new roman'][size=16px]残基上的乙酰基,[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]本身带有负电荷[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]与组蛋白[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]正电性[/size][/font][font='times new roman'][size=16px]增强)结合更加紧密[/size][/font][font='times new roman'][size=16px],转录调控蛋白不易[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]结合[/size][/font][font='times new roman'][size=16px],从而抑制[/size][/font][font='times new roman'][size=16px]抑癌基因的[/size][/font][font='times new roman'][size=16px]转录[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]AT[/size][/font][font='times new roman'][size=16px]作用则相反,二者动态平衡才能使组蛋白乙酰[/size][/font][font='times new roman'][size=16px]化维持[/size][/font][font='times new roman'][size=16px]在正常水平。[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DAC[/size][/font][font='times new roman'][size=16px]在多种肿瘤中过表达,干扰其活性、抑制其功能[/size][/font][font='times new roman'][size=16px]是有效[/size][/font][font='times new roman'][size=16px]的治疗手段[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]HDACI[/size][/font][font='times new roman'][size=16px]是重要的表观调控[/size][/font][font='times new roman'][size=16px]药物,[/size][/font][font='times new roman'][size=16px]高效低毒,通过靶向阻断[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DAC[/size][/font][font='times new roman'][size=16px]去乙酰化、促进组蛋白乙酰[/size][/font][font='times new roman'][size=16px]化发挥[/size][/font][font='times new roman'][size=16px]抗肿瘤作用。根据化学结构的不同,[/size][/font][font='times new roman'][size=16px]HDACI[/size][/font][font='times new roman'][size=16px]分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]苯甲酰胺和[/size][/font][font='times new roman'][size=16px]Sirt[/size][/font][font='times new roman'][size=16px]抑制剂[/size][/font][font='times new roman'][size=16px]五类。[/size][/font][font='times new roman'][size=16px]在单[/size][/font][font='times new roman'][size=16px]药[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]/[/size][/font][font='times new roman'][size=16px]或与传统化疗药物联合使用时,[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DACI[/size][/font][font='times new roman'][size=16px]可[/size][/font][font='times new roman'][size=16px]阻滞细胞周期[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]抑制迁移和侵袭,诱导癌细胞分化[/size][/font][font='times new roman'][size=16px]、自噬[/size][/font][font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]7][/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]凋亡,[/size][/font][font='times new roman'][size=16px]抗血管生成等,对包括[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]在内的多种肿瘤均有抑制作用。[/size][/font][font='times new roman'][size=16px]VPA[/size][/font][font='times new roman'][size=16px]作为[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]I[/size][/font][font='times new roman'][size=16px]可降低[/size][/font][font='times new roman'][size=16px]HDAC4[/size][/font][font='times new roman'][size=16px]表达[/size][/font][font='times new roman'][size=16px],增加组蛋白[/size][/font][font='times new roman'][size=16px]H4[/size][/font][font='times new roman'][size=16px]乙酰化,激活[/size][/font][font='times new roman'][size=16px]Notch1[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]Notch[/size][/font][font='times new roman'][size=16px]靶基因[/size][/font][font='times new roman'][size=16px]HES1[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]P21[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]Notch[/size][/font][font='times new roman'][size=16px]信号通路,阻滞[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]细胞周期[/size][/font][font='times new roman'][size=16px]于[/size][/font][font='times new roman'][size=16px]G1[/size][/font][font='times new roman'][size=16px]期,抑制细胞生长[/size][/font][font='times new roman'][size=16px],诱导细胞凋亡[/size][/font][font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]8][/size][/font][font='times new roman'][size=16px]。在丁酸钠作用下,[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]细胞系[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]446[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]G1[/size][/font][font='times new roman'][size=16px]期细胞增多[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]而[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]期和[/size][/font][font='times new roman'][size=16px]G[/size][/font][font='times new roman'][size=16px]2/M[/size][/font][font='times new roman'][size=16px]期细胞相对减少[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]出现[/size][/font][font='times new roman'][size=16px]G[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]期阻滞现象[/size][/font][font='times new roman'][size=16px],可能与其上调[/size][/font][font='times new roman'][size=16px]P21[/size][/font][font='times new roman'][size=16px]表达有关[/size][/font][font='times new roman'][size=16px]。当前[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]美国食品药品监督管理局批准[/size][/font][font='times new roman'][size=16px]SAHA[/size][/font][font='times new roman'][size=16px]、罗米地辛、帕[/size][/font][font='times new roman'][size=16px]比司他[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px]用于[/size][/font][font='times new roman'][size=16px]血液系统恶性肿瘤[/size][/font][font='times new roman'][size=16px]的治疗[/size][/font][font='times new roman'][size=16px]。[/size][/font]

  • 【讨论】棉酚的乙酰化衍生气质分析

    【讨论】棉酚的乙酰化衍生气质分析

    [size=4][font=KaiTi_GB2312] 游离棉酚是棉籽饼中含有的一种有毒物质,可以杀灭精子,用于男性避孕。因棉籽饼含大量蛋白质,常用作动物饲料,但其所含的棉酚对动物有抑制生长的作用。检测棉酚含量的标准方法一般为紫外分光光度检测和高效液相色谱法,目前也有用LC/MS/MS法进行检测的报道,但尚未见使用GC/MS法检测的报道。 因棉酚挥发性和稳定性较差,分子结构为含双萘环的多羟基化合物,所以我尝试使用衍生化进行检测。首先使用了硅烷化试剂进行衍生,结果出现多个色谱峰,谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061118_204192_1608554_3.jpg[/img] 从图中可以看出在7.48、7.55和11.96min出现了三个峰,峰的质谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061121_204193_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061121_204194_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061123_204196_1608554_3.jpg[/img]第三个峰的谱库检索显示为邻苯二甲酸酯。 其后我又使用乙酰化衍生,色谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061125_204197_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061125_204198_1608554_3.jpg[/img]11.95min的质谱检索显示仍为邻苯二甲酸酯。 而棉酚的分子量为578.6,我非常困惑,这是为什么?这个峰是污染的吗?可是我用纯溶剂并不能跑出这个峰啊![/font][/size]

  • 乙酰化与脲基化壳聚糖衍生物手性固定相的制备与性能

    【序号】:2【作者】:熊金辉【题名】:乙酰化与脲基化壳聚糖衍生物手性固定相的制备与性能【期刊】:武汉工程大学【年、卷、期、起止页码】:2019【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3_cPGLZMhAlxcftlnVDan2L8n7j6j0SmwHyrTM1MSKw_ZnYJXei6bqu5yBYQ-wk_7Lg48Kyz8DwfxC87fgpif4Y_N8j9jkYDunYc1hZJbGxiH-0kl-4a3j9t4P6Lr3dncUH2tVe2fJvlE7sGhsMwzg==&uniplatform=NZKPT&language=CHS

  • 西达本胺促进SCLC细胞系组蛋白乙酰化

    西达本胺促进SCLC细胞系组蛋白乙酰化

    [align=left][size=18px]西达本胺促进[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系组蛋白乙酰化[/size][/align][align=left][size=18px] [/size][size=18px] [/size][size=16px]为验证西达本胺是否上调[/size][size=16px]SCLC[/size][size=16px]细胞系的乙酰化水平,我们使用[/size][size=16px]Western blot[/size][size=16px]检测了不同浓度([/size][size=16px]I[/size][size=16px]C10[/size][size=16px]、[/size][size=16px]IC20[/size][size=16px]、[/size][size=16px]IC50[/size][size=16px])西达本胺处理[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平,并以组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平为对照。结果如图所示。在四种亚型细胞系中,总组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平无变化,乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达量随加药浓度增大而增多,这证明了西达本胺对[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化的促进作用,这种作用呈剂量依赖性。[/size][/align][align=left][size=18px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350400898_8640_5887180_3.png[/img][/align][align=left][/align][align=left][/align][align=left][/align][align=center][/align][align=left][size=18px] [/size][size=18px]西达本胺通过线粒体凋亡途径诱导[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系凋亡[/size][/align][align=left][size=16px]我们的功能实验表明,西达本胺[/size][size=16px]可剂量依赖的[/size][size=16px]促进[/size][size=16px]SCLC[/size][size=16px]细胞[/size][size=16px]系[/size][size=16px]凋亡[/size][size=16px],但其机制尚未明确。[/size][size=16px]依据国内外报道,西达本胺主要通过线粒体凋亡途径诱导细胞凋亡[/size][size=16px]。除此之外,[/size][size=16px]西达本胺[/size][size=16px]能[/size][size=16px]使[/size][size=16px]线粒体[/size][size=16px]DNA[/size][size=16px]双链断裂,发生损伤。[/size][size=16px]为探究其是否通过此途径在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中发挥作用,我们检测了加药[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H[/size][size=16px]446[/size][size=16px]、[/size][size=16px]H[/size][size=16px]526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中由线粒体介导的[/size][size=16px]C[/size][size=16px]aspase[/size][size=16px]信号通路相关蛋白[/size][size=16px]Bcl-2[/size][size=16px],[/size][size=16px]Bax[/size][size=16px],细胞色素[/size][size=16px]C[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved [/size][size=16px]PARP[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 3[/size][size=16px]以及[/size][size=16px]D[/size][size=16px]NA[/size][size=16px]双链断裂标志物[/size][size=16px] [/size][size=16px]γH2AX[/size][size=16px]表达水平。[/size][size=16px]Western blot[/size][size=16px]结果显示,[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px] [/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px]表达水平无明显变化,[/size][size=16px]Bcl-2[/size][size=16px]表达下调,其余蛋白表达均上调。这些结果表明,在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞中,西达本胺可以通过线粒体凋亡途径诱导细胞凋亡。[/size][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][size=16px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350402755_79_5887180_3.png[/img][/align][align=left][size=18px] [/size][size=18px]西达本胺通过抑制[/size][size=18px]C[/size][size=18px]yclin-CDK[/size][size=18px]复合物活性阻滞[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系周期[/size][/align][align=left][font='宋体'][size=16px]据文献报道,[/size][/font][size=16px]不同[/size][size=16px]HDACI[/size][size=16px]对不同细胞阻滞时相不一致。为验证西达本胺对[/size][size=16px]SCLC[/size][size=16px]细胞周期的作用,我们检测了[/size][size=16px]经[/size][size=16px]西达本胺[/size][size=16px]处理[/size][size=16px]48[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H446[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中细胞周期相关蛋白的表达水平,如图所示。[/size][size=16px]在[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]细胞系中[/size][size=16px]P21[/size][size=16px]、[/size][size=16px]P27[/size][size=16px]表达上调,[/size][size=16px]C[/size][size=16px]yclin A2[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK[/size][size=16px]2[/size][size=16px]表达下调[/size][size=16px],[/size][size=16px]说明西达本胺阻滞[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]于[/size][size=16px]S[/size][size=16px]期。在[/size][size=16px]H446[/size][size=16px]细胞系中[/size][size=16px]C[/size][size=16px]yclin E1[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK2[/size][size=16px]表达下调[/size][size=16px],说明西达本胺阻滞其于[/size][size=16px]G[/size][size=16px]1[/size][size=16px]/S[/size][size=16px]期。[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350422585_1956_5887180_3.png[/img][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350405804_8826_5887180_3.png[/img][/align][align=left][size=18px]小结[/size][/align][size=16px]1[/size][size=16px].[/size][size=16px]西达本胺可以增强[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化水平。[/size][size=16px]2.[/size][size=16px]西达本胺诱导[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞凋亡的机制可能与其激活线粒体介导的[/size][size=16px]caspase[/size][size=16px]凋亡途径有关。[/size][size=16px]3[/size][size=16px].[/size][size=16px]西达本胺可阻滞[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞周期,可能与其上调细胞周期蛋白激酶抑制剂表达、从而抑制[/size][size=16px]C[/size][size=16px]yclin-CDK[/size][size=16px]复合物活性有关。[/size]

  • 水飞蓟宾靶向HDAC2调控组蛋白乙酰化改善非酒精性脂肪肝

    [size=15px][font=宋体][color=black]水飞蓟宾([/color][/font][font=&][color=black]silybin[/color][/font][font=宋体][color=black])是一种是一种从水飞蓟科植物水飞蓟的果实和种子中分离得到的类黄酮木脂素,它具有保护肝脏、抗氧化、抗肿瘤和维持肝细胞膜稳定等广泛的药理活性,据报道是治疗肝脏疾病,包括非酒精性脂肪性肝病([/color][/font][font=&][color=black]non-alcoholic fatty liver disease[/color][/font][font=宋体][color=black],[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black])的最有效的黄酮类化合物[i][/i],而水飞蓟宾的作用机制仍有待进一步明确。[/color][/font][/size] [size=15px][font=宋体][color=black]口服水飞蓟宾通过直接结合并抑制组蛋白去乙酰化酶[i][/i][/color][/font][font=&][color=black]2[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]HDAC2[/color][/font][font=宋体][color=black])活性,增强[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]启动子区组蛋白乙酰化,促进回肠中[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]的表达,[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]进入循环发挥抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]作用。[/color][/font][font=&][color=black][/color][/font][/size] [img=,690,504]https://ng1.17img.cn/bbsfiles/images/2024/09/202409101438482204_1516_6561489_3.png!w690x504.jpg[/img] [size=15px][b][font=&][color=#4472c4]1[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾通过非肝脏途径缓解小鼠[/color][/font][font=&][color=#4472c4]HFD[/color][/font][font=宋体][color=#4472c4]诱发的[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]作者建立小鼠[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]模型,探讨水飞蓟宾的治疗作用,发现灌胃水飞蓟宾治疗对[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的小鼠肝脏脂质堆积和损伤具有明确的恢复作用。随后采用[/color][/font][font=&][color=black][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/color][/font][font=宋体][color=black]法测定了水飞蓟宾灌胃后的血清药物浓度和组织分布,发现其在肝脏和血清中的暴露量非常低,但在回肠中的暴露量相对较高。肝脏中分布的水飞蓟宾不足以减少肝细胞中的脂质蓄积,因此作者推测口服水飞蓟宾是通过肠道途径而不是吸收发挥抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]作用[/color][/font][/size] [size=15px][b][font=&][color=#4472c4]2[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾促进[/color][/font][font=&][color=#4472c4]HFD[/color][/font][font=宋体][color=#4472c4]诱发的[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=宋体][color=#4472c4]小鼠回肠和结肠中[/color][/font][font=&][color=#4472c4]Fgf-15/19[/color][/font][font=宋体][color=#4472c4]表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]大量数据已证实,一些细胞因子从肠道分泌,包括[/color][/font][font=&][color=black] FGF-15/19[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]GLP-1 [/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black] HGF[/color][/font][font=宋体][color=black],具有预防[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]的潜力,这促使作者探索水飞蓟宾是否能够诱导这些细胞因子的表达。结果显示水飞蓟宾治疗显著上调[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]小鼠回肠和结肠中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]表达[/color][/font][font=宋体][color=black],上调大鼠肠上皮细胞及人结肠上皮细胞[/color][/font][font=&][color=black]FGF-19[/color][/font][font=宋体][color=black]表达[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#4472c4]3[/color][/font][font=宋体][color=#4472c4]、特异性敲低肠道[/color][/font][font=&][color=#4472c4] FGF-15 [/color][/font][font=宋体][color=#4472c4]表达可逆转水飞蓟宾在小鼠体内的抗[/color][/font][font=&][color=#4472c4] NAFLD [/color][/font][font=宋体][color=#4472c4]作用[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了更好地了解[/color][/font][font=&][color=black]FGF-15/19 [/color][/font][font=宋体][color=black]在水飞蓟宾治疗[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]中的作用和重要性,作者特异性地敲低小鼠肠道中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]的表达。结果显示敲低肠道中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]表达后,水飞蓟宾在小鼠体内的抗[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]作用消失,这些发现表明肠道来源的[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]在水飞蓟宾的抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]中起着至关重要的作用[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=&][color=#4472c4]4[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾上调[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=宋体][color=#4472c4]小鼠回肠和结肠中[/color][/font][font=&][color=#4472c4]Fxr[/color][/font][font=宋体][color=#4472c4]([/color][/font][font=&][color=#4472c4]Fgf-15/19 [/color][/font][font=宋体][color=#4472c4]转录因子)表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]转录因子[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]可能参与[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]的表达,作者研究了水飞蓟宾促进回肠和结肠中[/color][/font][font=&][color=black]Fgf-15/19[/color][/font][font=宋体][color=black]表达的作用机制。结果发现水飞蓟宾治疗可增加回肠和结肠中[/color][/font][font=&][color=black] Fxr[/color][/font][font=宋体][color=black]的表达,但不会增加十二指肠、空肠、肝脏和肾脏中的表达。在[/color][/font][font=&][color=black] IEC-6 [/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black] NCM460 [/color][/font][font=宋体][color=black]细胞中,水飞蓟宾也显示出促进[/color][/font][font=&][color=black] FXR[/color][/font][font=宋体][color=black]表达[/color][/font][/size] [size=15px][b][font=&][color=#4472c4]5[/color][/font][font=宋体][color=#4472c4]、[/color][/font][font=&][color=#4472c4]FXR[/color][/font][font=宋体][color=#4472c4]在水飞蓟宾介导的[/color][/font][font=&][color=#4472c4]FGF15/19 [/color][/font][font=宋体][color=#4472c4]表达和抗[/color][/font][font=&][color=#4472c4] NAFLD [/color][/font][font=宋体][color=#4472c4]作用中起重要作用[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了进一步研究[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]在水飞蓟宾诱导肠上皮细胞[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]表达中的作用和重要性,作者用[/color][/font][font=&][color=black]siRNA[/color][/font][font=宋体][color=black]沉默[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]基因,结果显示敲低[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]后,水飞蓟宾促进[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]表达作用几乎消失[/color][/font][font=宋体][color=black],降低了水飞蓟宾对与[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]相关的参数的改善作用[/color][/font][font=宋体][color=black]。 [/color][/font][/size] [size=15px][b][font=&][color=#4472c4]6[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾降低[/color][/font][font=&][color=#4472c4]HDAC2[/color][/font][font=宋体][color=#4472c4]活性促进小肠上皮细胞[/color][/font][font=&][color=#4472c4]FXR[/color][/font][font=宋体][color=#4472c4]和[/color][/font][font=&][color=#4472c4]FGF-15/19[/color][/font][font=宋体][color=#4472c4]的表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]有报道称水飞蓟宾可以通过抑制组蛋白去乙酰化酶([/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black])的活性,促进基因启动子区组蛋白乙酰化,从而上调基因表达。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]作者研究水飞蓟宾上调肠上皮细胞[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]表达的机制,通过[/color][/font][font=&][color=black]ChIP[/color][/font][font=宋体][color=black]发现水飞蓟宾和[/color][/font][font=&][color=black]TSA[i][/i][/color][/font][font=宋体][color=black](泛抑制剂,可抑制[/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black])上调了[/color][/font][font=&][color=black]IEC-6 [/color][/font][font=宋体][color=black]细胞中[/color][/font][font=&][color=black]FXR [/color][/font][font=宋体][color=black]启动子的组蛋白[/color][/font][font=&][color=black] H3K27 [/color][/font][font=宋体][color=black]乙酰化水平。接着研究发现水飞蓟宾处理显著抑制了[/color][/font][font=&][color=black] IEC-6 [/color][/font][font=宋体][color=black]细胞中[/color][/font][font=&][color=black] HDAC [/color][/font][font=宋体][color=black]的活性而不不影响[/color][/font][font=&][color=black] HDAC1-3 [/color][/font][font=宋体][color=black]的蛋白质表达。这些数据表明,水飞蓟宾上调[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]启动子区组蛋白乙酰化,并通过抑制[/color][/font][font=&][color=black] HDAC [/color][/font][font=宋体][color=black]的活性而不是蛋白质表达来促进[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]的转录。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]为了确定水飞蓟宾影响的主要[/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black]亚型([/color][/font][font=&][color=black]HDAC1/2/3[/color][/font][font=宋体][color=black]),作者观察了这三种抑制剂对[/color][/font][font=&][color=black] IEC-6[/color][/font][font=宋体][color=

  • 糖的三氟乙酰化什么情况?

    正在做糖苷,用吡啶和MBTFA(N-甲基双三氟乙酰胺)衍生,GCMS为什么没有出峰的什么情况啊?直接用单糖标准品做了一下,也是这样,只看到了吡啶和N-甲基三氟乙酰胺,是哪里出现问题了的?eg.我过程中没有用到水的,请大神支支招

  • 【寻找隐藏的宝藏:迪马产品——2019年第14周(已完结)】GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定

    【寻找隐藏的宝藏:迪马产品——2019年第14周(已完结)】GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定

    [b]标准名称:GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定1.样品前处理产品[b][b]1.[b]样品前处理产品[/b][/b][/b][/b][img=,633,304]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012148030_8014_3389662_3.png!w633x304.jpg[/img][img=,645,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012279680_8032_3389662_3.png!w645x181.jpg[/img][b][color=#ff0000]答案:68012 ProElut PLS 200 mg / 6 mL 30/pk[/color]2.色谱分析产品[/b][img=,635,217]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012553177_4714_3389662_3.png!w635x217.jpg[/img][color=#ff0000][b]答案:87003 Endeavorsil 1.8μm C18, 100x2.1mm[/b][/color][align=center][color=#ff0000][b]恭喜活到九十 学到一百获得5钻石币[/b][/color][/align] ----------------------------------------------------------------------------------[color=#ff0000]【活动奖励】[/color]-----------------------------------------------------------------------------[color=#ff0000]1、从回答正确者中抽取奖励钻石币。[/color][color=#ff0000]2、每周随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至每周日下午15:00)[/color][color=#ff0000]3、每人奖励5钻石币(抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友)。[/color]

  • 【实验】有机实验之乙酰二茂铁的合成

    乙酰二茂铁的合成目的原理实验目的 1 通过乙酰二茂铁的制备,了解用Friendel-Crafts酰基化反应制备非苯芳酮的原理和方法。2 学习柱色谱分离提纯产品和薄层色谱跟踪反应进程的原理和操作方法。实验原理 二茂铁又名双环戊二烯基铁,是由2个环戊二烯负离子和一个二价铁离子键合而成。一般认为,以乙酸酐为酰化剂,三氟化硼,氢氟酸,磷酸为催化剂,主要生成一元取代物;如用无水三氯化铝为催化剂,酰氯或酸酐为酰化剂,当酰化剂与二茂铁的摩尔比为2∶1时,反应产物以1,1′-二元取代物为主。二茂铁及其衍生物的分离最好是用层析法。本实验用柱色谱分离提纯产品,可用薄层色谱法跟踪反应进程,柱色谱和薄层色谱均属于吸附色谱,柱色谱分离提纯是根据二茂铁,乙酰二茂铁和1,1′-二乙酰基二茂铁对活性氧化铝吸附能力的差异而进行分离提纯。用薄层色谱跟踪反应进程,根据二茂铁和乙酰二茂铁的斑点大小可以了解乙酰化反应的进程。仪器药品 5ml圆底烧瓶,克莱森接头,干燥管,电磁加热搅拌器,30cm色谱柱(自制),30×100mm载玻片,离心试管50ml烧杯,玻璃钉漏斗,吸滤瓶,锥形瓶,氮气袋,250ml烧杯二茂铁,乙酸酐,85%H3PO4,25%NaOH,二氯甲烷,棉花,洗净的砂,Ⅲ级活性氧化铝,己烷,醇,硅胶,0.5%羚甲基纤维素,干燥氮气。过程步骤 一、乙酰二茂铁的制备称取100mg(0.54mmol)二茂铁,放入5ml圆底烧瓶中,加入2.0ml醋酸酐。装上带有干燥管的克莱森接头。水浴温热并搅拌使二茂铁溶解。移去水浴,打开塞子迅速加入3ml 85% H3PO4,使反应液变成深红色,室温下搅拌1.5h,在反应期间定期用毛细管在液面上吸取2滴左右反应液放入具塞小试管中,假如10滴二氯甲烷,所得溶液用薄层色谱法展开,以了解反应进程。当二茂铁的斑点很浅时,表示反应基本完成。将反应液滴入盛有1g碎冰5ml烧杯中,滴加25%NaOH中和恰至碱性,得到大量桔黄色沉淀。充分冷却后抽滤,1ml冷水分几次洗涤沉淀,抽干,干燥后称重约110~120mg。二、乙酰基二茂铁的柱色谱法分离(1)干法装柱将粗产品溶于0.5ml二氯甲烷加入300mgⅢ级活性氧化铝,振荡均匀得浆状物。在通风橱中,在干燥氮气下除去溶剂至恒重,得到松散的颗粒状物,精确称取1/2用作柱色谱分离。将自制的1.5×30cm色谱柱洗净,干燥,柱底铺一层玻璃棉或脱脂棉,再铺一层约5~8mm厚的砂,填平。称取5gⅢ级活性的中性氧化铝(60~80目),通过漏斗将氧化铝装入柱管内,轻敲柱管,使之填均匀。将精确称得含有1/2产品重的氧化铝装入柱内,顶部盖一层约5mm厚的砂子,使氧化铝顶端和砂子上层保持水平。(2)洗脱用己烷作洗脱剂从柱顶加入,缓慢滴入己烷逐渐展开得到黄色、橙色分离的色谱带。黄色的二茂铁带首先从柱下流出,用己称重的锥形瓶收集洗脱溶液。当黄色谱带完全洗脱下来时,改用体积比为1∶1的二氯甲烷己烷混合物洗脱,同时橙色带往下移动,逐渐改变溶剂的比例到体积比9∶1二氯甲烷己烷混合溶剂时,则将橙色色谱带完全洗脱下来,用另一只已称重的锥形瓶收集洗脱液。最后改用体积比为9∶1二氯甲烷甲醇洗脱时,可以看到很淡的,很少量的,棕色色带向下移动,将该洗脱液另行收集。(3)收集产品在通风橱内,各组分洗脱液分别在水浴上蒸馏,回收溶剂。浓缩后的溶液放置冷却析出结晶,将产品放在盛有石蜡片的干燥器内至恒重。可回收到未反应的二茂铁20~22mg;得到乙酰二茂铁80~90mg 1,1′-二乙酰基二茂铁少于2mg。分别测定熔点。注意事项1.二茂铁需经升华或用石油醚(30~60℃)重结晶纯化。2.仪器应是充分干燥的。3.乙酸酐是临用前经重新蒸馏的。4.吸附剂的活性与其含水量的关,含水量越低,活性越高。氧化铝放入高温炉中(300~400℃)烘3h得无水物即Ⅰ级氧化铝。Ⅲ级氧化铝可用Ⅰ级活性氧化铝加入重量的6%的水而得到。如所用氧化铝活性过强会使产品不易洗脱,浪费较多的溶剂。5.这里是考虑到柱色谱的容器。一般粗产品重75mg以上都仅取1/2作柱色谱分离。6.二茂铁易升华,故测熔点时要封管。熔点的文献值:二茂铁为173℃,乙酰二茂铁为85℃,1,1ˊ-乙酰基二茂铁为130℃。分析思考1. 二茂铁乙酰化反应的机理怎样?2. 怎样利用薄层层析判断乙酰化反应的进程?3. 乙酰二茂铁在石油醚和乙醚中溶解度哪个更大?为什么?4. 柱层析分离二茂铁衍生物时,如何选择展开的溶剂? [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52002_1632583_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52003_1632583_3.gif[/img]

  • 【转帖】科学家发现神经系统“交警”

    自然》:科学家发现神经系统“交警”蛋白质MEC-17帮助维持大脑细胞内的“交通秩序”美国研究人员发现一种蛋白质帮助维持大脑细胞内的“交通秩序”,“指挥”细胞内营养物质和废弃物何去何从。这一发现有助研究帕金森氏症和阿尔茨海默氏症(早老性痴呆症)等神经系统疾病的治疗方法。“交警”这种蛋白质名为MEC-17。它的发现纯属好奇结果。美国趣味科学网站9月8日援引佐治亚大学富兰克林艺术和科学学院细胞生物学系教授亚采克·格蒂希的话报道:“这一项目没有任何医学或科学驱动,纯粹是因为好奇细胞内运输机制,但看起来我们确定了神经系统内发挥重要作用的一种酶。”格蒂希说,细胞内有一个管道网,称为微管,这些微管由蛋白质组成,承担细胞内部物质运输,还在细胞生长、细胞间发送信号等方面发挥重要作用。而这个管道网内的交通信号指示就是一种名为“乙酰化标记”的化学添加剂,明确指示微管将何种蛋白质运往大脑细胞内何处。研究人员发现,乙酰化标记存在于大脑负责发送信号的神经细胞内的微管,而负责接收信号的神经细胞内的微管没有这一标记。催化事实上,研究人员早在1983年就发现了乙酰化标记,但直到近期才了解它的作用在于系统管理微管内运输物质的动力蛋白。不过,研究人员一直不清楚乙酰化标记形成的细胞过程,换句话说,哪一种酶决定这一“交通信号”在何地发挥作用。格蒂希和同事分别研究了原生动物四膜虫、线虫、斑马鱼和人体癌细胞后发现,MEC-17就是负责微管乙酰化的“交警”。研究人员发现,MEC-17在微管乙酰化反应中起到催化作用。具体到线虫,这种酶与它的触感有关;在斑马鱼身上,MEC-17损耗会导致神经肌肉缺陷。研究结果由权威期刊《自然》杂志发表。运用先前一些研究结果显示,亨廷顿氏症、帕金森氏症和阿尔茨海默氏症等神经退化性疾病患者的微管乙酰化标记水平发生改变。格蒂希说,确认MEC-17这种酶,了解它的工作机制之后,制药企业就可以开发药物抑制或提高它的活性,从而治疗神经退化性疾病。格蒂希的研究小组由多家实验室成员组成。他将这项研究成果归功于大家精诚合作,“一起努力才让我们能够使用各种模型,结果发现MEC-17参与的微管乙酰化过程是一种***性保留作用。没有亲密合作,那不可能实现”。新华网

  • 【原创大赛】增塑剂乙酰柠檬酸三丁酯的生产及研发工艺设计

    【原创大赛】增塑剂乙酰柠檬酸三丁酯的生产及研发工艺设计

    1.产品情况介绍 乙酸柠檬酸三丁酯,学名2-乙酰基-1,2,3丙烷三正丁酯,英文名称,Actyl Tri-n-ButylCitrate,简称ATBC,分子式C20H34O8,分子量402.472,为无色或微黄色油状液体,.相对密度1.046(25℃),粘度0.0427Pa·s(25℃),凝固点-80℃1沸173℃(133.3Pa),343℃(101324.72Pa),闪点(开杯法)20℃,折射率1.4408(25.5℃),挥发速度0.000009g/(cm·h)(105℃),水解速度=5%的溶液中和残余的酸性物质,并将中和后的物料送至静置釜内以除去大量的水及生成的盐(ATBC在水中溶解度极小)。为尽可能除去中和生成的盐,将中和后的物料送入水洗釜,用物料量1.2倍的水分三次洗涤,水洗后的物料送入水洗静置釜,分离出废水和盐分后,再次进入水洗釜水洗,反复三次,随后将ATBC送入干燥塔脱去残余的微量水分,干燥后的产品经脱色釜用活性炭脱去其中大部分杂质后,经过滤机除去活性炭,即可得成品ATBC. 合成乙酯柠檬酸三丁酯的工艺流程框图如图2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609051953_608497_3005330_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609051955_608503_3005330_3.png3 可行性分析3工艺可行性分析 通过对乙酰柠檬酸三丁酯性质、用途及应用前景的分析,看到了无毒增塑剂乙酰柠檬酸三丁酯的发展前景。综合比较目前国内外研究乙酰柠檬酸三丁酯的各种方法,在考虑了工艺成熟程度、产品收率、环境保护与安全生产等因素的基础上,确定了以浓硫酸为酯化和乙酰化催化剂的工艺设计。在考虑设计方案时,考虑到中小企业的需要,确定了年产500吨的设计规模,具有投资少、见效快的优点。而且在设计酯化与乙酰化工序中,兼顾未来改用固体酸催化剂时,留有一定改造余地。 通过物料衡算,确定了各操作单元的进出物料量及原料消耗定额,其中主要原料消耗定额(每吨乙酰柠檬酸三丁lb)如下:无水柠檬酸510kg,正丁醇617kg,酯酸-f248.2kg,硫酸4kg,碳酸钠86.5kg,活性炭50.9kg。同时也确定了工艺用水量和废水排放量。 通过热量衡算解决了加热蒸气消耗量及最大消耗量,冷却水、冷冻水用量及最大用量,并确定了各换热器的换热面积。 在物料衡算和热量衡算的基础上选择了主要设备,结合所输送介质的特性确定了各设备的材质,根据各设备所储存或处理物料量,确定了各设备的型号,规格。 结合各设备所控制的温度和压力,为使操作控制方便,在考虑经济、实用的基础上对所用仪表进行了选型。 通过工艺流程图设计,解决了各个设备的前后顺序,各设备的相对位置,各个管路上阀门的控制方式,各操作参数的控制方式等问题,并在设计中考虑了各工艺管道的规格、材质。 结合带控制点工艺流程工艺流程和设备布置,对第三层的管道也进行了布置设计。 考虑到安全生产和环境保护,对危险性较大的场所按要求采取相应防护措施,减少对人的伤害和财产损失,对于排放的废物,在经过处理后尽可能达到国家排放标准。 本设计工艺与传统生产方法相比,具有下列优点:①乙酰柠檬酸三丁酯的传统生产工艺是将精制的柠檬酸三丁酯作为乙酰化的原料经乙酰化反应而制得,该工艺路线与传统工艺路线相比缩短了工艺路线,省去了脱醇前的碱洗、水洗等工序,减少了设备投资和加工费用。②该工艺与传统工艺相比,采用非精制的柠檬酸三丁酯作为乙酰化的原料,同时乙酰化过程不需再添加催化剂,即可生产出合格产品,降低了生产成本。③该工艺省去了碱洗、水洗等工序,减少的柠檬酸三丁酯的损失,提高了乙酰柠檬酸三丁酯的收率,降低了原料的消耗,并减少了废水的排放,降低了废水处理的难度。

  • 【金秋计划】常见的蛋白质修饰总结

    [font=system-ui, -apple-system, &][size=16px][color=#333333](1)磷酸化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化是由蛋白激酶催化的磷酸基转移反应,是最常见、最重要的蛋白质修饰方式之一。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化修饰的具体生物效应包括:改变被修饰蛋白质的活性、改变蛋白的亚细胞内定位、改变蛋白与其他蛋白或其他生物分子的相互作用。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①催化蛋白质磷酸化的蛋白激酶,根据底物的磷酸化位点可分为三大类,蛋白质丝氨酸/苏氨酸激酶、蛋白质酪氨酸激酶、双专一性蛋白激酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质去磷酸化的蛋白磷酸酶,根据磷酸化的氨基酸残基不同可分为两类,蛋白质丝氨酸/苏氨酸磷酸酶和蛋白质酪氨酸磷酸酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](2)甲基化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化是指在甲基转移酶催化下,甲基基团由S-腺苷甲硫氨酸转移至相应蛋白质的过程。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化修饰可产生多种不同的生物效应,包括影响蛋白质间的相互作用、蛋白质和RNA间的相互作用、蛋白质的定位、RNA加工、细胞信号转导等。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质甲基化的酶:甲基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](3)乙酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质乙酰化是指在乙酰基转移酶的催化下,在蛋白质特定的位置添加乙酰基的过程。蛋白质乙酰化修饰所产生的生物效应,主要包括促进基因转录、诱导细胞自噬、调节代谢酶的活性及代谢通路。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质乙酰化的酶:组蛋白乙酰基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](4)类泛素化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]小泛素相关修饰物(SUMO)是类泛素蛋白家族的重要成员之一,可与多种蛋白结合发挥相应的功能。SUMO化修饰可参与转录调节、核转运、维持基因组完整性及信号转导等多种细胞内活动。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①SUMO的分类:SUMO蛋白分布广泛,人类基因组编码了4种不同SUMO蛋白,分别为:SUMO1、SUMO2、SUMO3和SUMO4。其中,SUMO1-3在各种组织中均有表达,而SUMO4则主要在肾脏、淋巴结和脾脏中表达。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质SUMO化修饰的酶。SUMO化修饰需要一系列酶的参与,包括E1活化酶,E2结合酶以及E3连接酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](5)巴豆酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]作为一种新型组蛋白翻译后修饰方式,蛋白质巴豆酰化是一种进化上高度保守,且在细胞生物学功能上完全不同于组蛋白赖氨酸乙酰化的蛋白质修饰方式。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质巴豆酰化是指在巴豆酰基转移酶的催化下,在蛋白质特定的位置添加巴豆酰基的过程。组蛋白赖氨酸巴豆酰化修饰与基因的活化密切相关。此外,催化蛋白质巴豆酰化的酶是巴豆酰基转移酶。[/color][/size][/font]

  • 【求助】糖腈乙酰化衍生物能用hp-1毛细管柱分离吗?

    新手请教:各位专家,请问单糖做成糖腈乙酰衍生物后能用hp-1毛细管柱分离开吗?我查过一些文献有用hp-1的,但是hp-1是非极性的柱子,能分离吗?还有文献是用ov-1701的,这是中极性 的柱子啊,搞不懂,头大。。。。[em0808] 各位前辈给些意见,不胜感激!!![em0818]

  • HDAC通过信号通路调节与SCLC的关系

    HDAC通过信号通路调节与SCLC的关系自20世纪80年代起,肺癌逐步成为威胁人类健康的第一大癌种,其发病率和死亡率常年位于第一。据2020年全球癌症报告统计,肺癌新发病例约224万,占所有新发癌症病例的11.7%,死亡病例约180万,约占癌症总死亡人数的18%。SCLC约占所有肺癌的15%,5年生存率仅为7%。它是一种神经内分泌瘤,具有早期转移、高度侵袭性、遗传不稳定性等特点。SCLC目前的治疗方式主要有手术、化疗、放疗、靶向治疗和免疫治疗[3]。SCLC初期对放化疗敏感,但易产生耐药,多复发。关于SCLC的治疗仍是一个难题。传统的化疗药物因其选择性低而易产生严重的毒副作用,不利于提高患者的生存质量。因此,为SCLC找到更多的治疗靶点和高效低毒的靶向药物成为亟待解决的问题。基因突变和调控异常往往导致肿瘤的发生。表观遗传学变化是指在细胞分裂中可以遗传的基因表达改变,DNA序列不发生变化,基因的转录和翻译受到调控,主要包括DNA甲基化、组蛋白修饰和染色质重塑等。组蛋白修饰通过改变组蛋白与DNA的亲和性使染色质的结构状态紧密或松弛,进而影响基因表达,包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一。组蛋白乙酰化主要发生在组蛋白H3 Lys的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[4],它受HAT和HDAC共同调控。HDAC去除Lys残基上的乙酰基,DNA(本身带有负电荷)与组蛋白(正电性增强)结合更加紧密,转录调控蛋白不易与DNA结合,从而抑制抑癌基因的转录,HAT作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。HDAC在多种肿瘤中过表达,干扰其活性、抑制其功能是有效的治疗手段。HDACI是重要的表观调控药物,高效低毒,通过靶向阻断HDAC去乙酰化、促进组蛋白乙酰化发挥抗肿瘤作用。根据化学结构的不同,HDACI分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和Sirt抑制剂五类。在单药和/或与传统化疗药物联合使用时,HDACI可阻滞细胞周期,抑制迁移和侵袭,诱导癌细胞分化、自噬[7]、凋亡,抗血管生成等,对包括SCLC在内的多种肿瘤均有抑制作用。VPA作为HDACI可降低HDAC4表达,增加组蛋白H4乙酰化,激活Notch1、Notch靶基因HES1和P21的Notch信号通路,阻滞SCLC细胞周期于G1期,抑制细胞生长,诱导细胞凋亡。在丁酸钠作用下,SCLC细胞系H446的G1期细胞增多,而S期和G2/M期细胞相对减少,出现G1期阻滞现象,可能与其上调P21表达有关[9]。当前,美国食品药品监督管理局批准SAHA、罗米地辛、帕比司他等用于血液系统恶性肿瘤的治疗。

  • 【转帖】药物代谢动力学(影响药物代谢的因素)

    [size=4](一)药物代谢的遗传多态性[/size][size=4]由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:弱代谢者(poor metabolizer)或PM-表型1,而强代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P4502C的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表2-4)。P4501A1,P4501A2是芳香碳氢化合物羟化酶,激活某些致癌原,其遗传变异与某些癌的易患性有关。[/size][align=center][size=4]表2-4 遗传多态性与药物代谢[/size][/align][table][tr][td=1,1,126][size=4]代谢途径[/size][/td][td=1,1,158][size=4]药物举例[/size][/td][td=1,1,142][size=4]人群中的频率(%)[/size][/td][td=1,1,142][size=4]酶[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]异喹胍,金雀花碱,右旋甲吗喃,阿片类[/size][/td][td=1,1,142][size=4]白种人5-10[/size][/td][td=1,1,142][size=4]CYP4502D6[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]β-肾上腺受体拮抗剂,乙妥英,甲苯巴比士[/size][/td][td=1,1,142][size=4]白种人4[/size][/td][td=1,1,142][size=4]CYP4502C[/size][/td][/tr][tr][td=1,1,126][size=4]乙酰化[/size][/td][td=1,1,158][size=4]环已巴比土,异烟肼,磺胺二甲嘧啶,咖啡因[/size][/td][td=1,1,142][size=4]日本人10[/size][/td][td=1,1,142][size=4]N-乙酰基转移酶白种人30-70[/size][/td][/tr][/table]

  • 文献检索任务九十二(92.1-92.10)

    文献检索任务九十二(92.1-92.10)

    92.1 HPLC测定叶酸-青霉素G酰化酶对N-苯乙酰化阿霉素的催化活性【作者】 张奇; 项光亚; 龙娜; 吴继洲; 【Author】 ZHANG Qi,XIANG Guang-Ya,LONG Na,WU Ji-Zhou(School of Pharmacy,Tongji Medical College of Huazhong University of Science & Technology,Wuhan 430030,China)【机构】 华中科技大学同济医学院药学院; 华中科技大学同济医学院药学院 武汉430030; 武汉430030; 【摘要】 目的:利用高效液相色谱法测定叶酸-青霉素G酰化酶(PGA)对N-苯乙酰化阿霉素(DOXP)的催化活性,为叶酸导向的酶催化前体药物的肿瘤治疗(FDEPT)研究奠定理论基础。方法:色谱柱为Diamonsil C18(250 mm×4.6 mm,5μm);流动相为乙腈-水,用85%磷酸调节pH至2.4;梯度程序:0~3 min为24%乙腈,3~15min为80%乙腈;紫外检测波长:495 nm;流速:1 mL/min。结果:DOXP和酶解产物阿霉素的tR分别为5.5 min和12.3 min,原酶PGA和叶酸-PGA偶联酶对DOXP的Km和vmax分别为15μmol/mL,0.094μmol/(min.mg)和19μmol/mL,0.086μmol/(min.mg)。结论:DOXP为PGA的较好底物,叶酸与PGA偶联对酶的催化活性的影响较小。 更多还原【Abstract】 AIM:To investigate enzymatic hydrolysis of N-(phenylacetyl) doxorubicin(DOXP) catalyzed by folate-conjugated penicillin-G acylase(PGA).METHODS:The determination of prodrug DOXP and cleavage product doxorubicin was monitored by HPLC.A Diamonsil C18 column(250 mm×4.6 mm,5 μm) was used with 1 mL/min flow rate of 85% phosphoric acid in water(pH 2.4) with a gradient of acetonitrile created according to the following scheme:24% for 3 min and then constant at 80% for 12 min.RESULTS:PGA effec... 更多还原【关键词】 叶酸; 青霉素G酰化酶; N-苯乙酰化阿霉素; 催化活性; 高效液相色谱法; 【Key words】 Folate; Penicillin-G acylase; N-(Phenylacetyl) doxorubicin; Catalytic activity; HPLC; 【基金】 国家自然科学基金资助项目(No.30300430)~~http://ng1.17img.cn/bbsfiles/images/2012/09/201209181022_391640_2352694_3.jpg

  • 【转帖】周廷冲——帮助诺贝尔奖金获得者辨析迷津的人

    【转帖】周廷冲——帮助诺贝尔奖金获得者辨析迷津的人

    周廷冲——帮助诺贝尔奖金获得者辨析迷津的人[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707082125_57617_1634962_3.jpg[/img]周廷冲,生化药理学家。多年以来,一直从事生物活性因子的分子生物学研究,首次阐明梭曼膦酰化乙酰胆碱酯酶的老化机制,证明梭曼膦酰化酶老化的实质是毒剂残基上特己氧基的去烷基反应,从而为毒剂防治中的药物设计指明了方向。周廷冲,1917年3月4日出生于浙江省富阳县。1935年,在上海医学院求学时,与学校的一批进步同学及我党在上海医学院的地下组织有密切联系。1940年,大学最后一年在中国红十字会救护总队附属医院实习,他曾和计苏华(地下党支部书记)参加中国红十字会救护队,任小队长,到前线做医疗救护工作。1942~1944年,在重庆歌乐山中央卫生实验院药理学室工作期间,曾为八路军办事处完成“食盐安全”化验工作。1945年4月,在英国牛津大学贝利奥学院进修,获药理学博士学位。1948年,在美国康乃尔大学酶化实验室从,事酶学研究。并在芝加哥参加了中国共产党的外围组织“中华自然科学工作者协会”。1949年,在美国波斯顿麻省医院从事生物化学研究。   中华人民共和国成立后,他和妻子黄翠芬怀着满腔的爱国热情,放弃在美国的优厚待遇,谢绝导师及亲友的挽留以及新加坡的高薪聘请,毅然决定回国为建设祖国贡献力量。   回国前,周廷冲拒绝到协和医学院当教授,而宁愿到山东白求恩医学院工作。这件事引起了美国联邦调查局的注意,其回国受到美国移民局的阻挠和刁难。他求助于导师李普曼,向他表明自己回国参加祖国建设的迫切心情。在李普曼教授的帮助下,他携同妻子购买了由美国旧金山开往天津的货船散票,冒着被移民局搜捕的危险,漂洋过海历时56天回到了祖国。   周廷冲回国后,立即到山东白求恩医学院工作,积极筹建药理教研室并编写药理学讲义。1953年,他被调到成立不久的军事医学科学院组建药理系,领导血吸虫病防治研究工作。他与苏联专家A.凯林(KEЛЦH)共建毒理学实验室,并举办我军第一期“防化毒理训练班”,为我军培养了第一批军事防化毒理学专业人才。1956年,他以中国军事医学代表团团员身份赴苏联考察访问。军事医学科学院迁京后,药理系、药物系及化学系合并扩大,成立药理毒理研究所(又名毒物药物研究所)。他先后任第二大组(相当于研究室)组长等职。   当时他领导开展了芥子气的预防与治疗及火箭推进剂的毒理学及防治研究、神经性毒剂生化作用机理研究、抗疟药研究等军事医学中的迫切课题。但是,由于极左思潮的影响,周廷冲长期受到“任务与学科的矛盾”、“理论脱离实际”等狭隘偏见的困扰,以及行政对具体科研工作的干涉,并多次受到批判。“文化大革命”期间,他又遭受极端错误的批斗,1979年才得以平反恢复名誉。   1970年周廷冲被调往国防科委十三院四所任副所长。由于没有实验室,他只得教授英语和在药理学学习班教课,这样渡过了大约7个年头。直到1978年他才重新回到军事医学科学院药理毒理研究所,继续中断已久的科研工作。这时,已届花甲之年的周廷冲痛感所剩时间不多,决心以有生之年为“四化”加倍拼搏,积极为军事医学科学院的科研和建设出谋划策。他复职药理毒理研究所副所长后,着手恢复学科专业实验室,配备研究班子,开展对外学术交流。1979年他又受命组建基础医学研究所,任第一任所长。1979年、1984年,曾出访法国、比利时及日本,两次参加李普曼学术讨论会。1981年赴美,参加美国毒理学会第20届会议及有机磷中毒防治专题讨论会,并在美做短期考察。1984年心脏病发作,由于健康原因不再担任所长职务,而专门从事科研工作。   周廷冲是中国科学院生物学学部委员,军事医学科学院学术委员会主任,国家生物膜和膜工程开放实验室学术委员,国家北京生物大分子开放实验室学术委员,吉林大学酶工程开放实验室学术委员,还是卫生部福格地(Forgaty)基金会评选委员会委员,总后勤部医学科技委员会副主任委员,总后勤部医学科技成果评审委员会委员,第四军医大学兼职教授,国务院学位委员会第一届、第二届学科评议组成员,河北省水产研究所学术顾问。   周廷冲曾担任过中国药学会副理事长,中国药理学会常务理事及副主任委员,北京生物化学会副理事长,中国生化学会理事,《中国药理学报》、《中国科学》、《科学通报》及《生物化学与生物物理学报》编委,《生物化学杂志》副主编。   周廷冲领导的研究室因在梭曼(Soman)磷酰化乙酰胆碱酯酶老化机理研究中做出显著成绩,1963年,被军事医学科学院授予集体三等功。1987年,周廷冲因培养研究生成绩显著荣立三等功,1987年,他的《梭曼与乙酰胆碱酯酶作用的生化机理》成果获国家自然科学奖二等奖及军队科技大会二等奖,他于1989年荣立二等功。   周廷冲是中华人民共和国第一代有成就的科学家之一。他在美国博士后研究阶段,在诺贝尔奖金获得者生物化学大师、辅酶A的发现者李普曼教授的实验室里做出了出色的成绩。1949年3月,周廷冲进入李普曼教授的实验室时,正值一个轰动整个生化界的划时代成就的形成时期——一个新的辅酶(CoA)刚被发现和命名。但这时对辅酶A作为乙酰基载体的机制尚未充分研究,对辅酶A在中间代谢中的通用性也不甚了解。周廷冲的任务是证实李普曼的预测,进行与辅酶A有关的供体酶和接受体酶的研究。他分离了乙酰硫激酶,成功地证明了细菌的供体酶系统(乙酰基活化酶和辅酶A及乙酰磷酸)可以代替三磷酸腺苷——辅酶A——乙酸盐——乙酰硫激酶供体系统,与鸽肝接受体酶系统杂交,完成了芳香胺的乙酰化反应。并与M.苏达克(Soodak)首先发现了氨基葡萄糖的乙酰化反应。他阐明了乙酰基活化的两步酶催化反应,即先在供体酶系统催化下,将供体的乙酰基转移给辅酶A,生成乙酰辅酶A,再在接受体酶系统催化下,将乙酰辅酶A的乙酰基转移到接受体上,从而完成乙酰比反应。杂交实验的成功说明乙酸的活化及利用是由两个独立的酶系统完成的。细菌中活化反应的酶系统和动物中利用乙酰辅酶A的酶系统间可以偶联。生物界乙酰载体反应系统具有通用性。李普曼对他的这一工作曾给予了很高的评价。李普曼逝世前半年在《崛起时代的漫长生活》一文的首页上,写到:“赠给周廷冲,您曾帮助我辨析中间代谢的迷津。”

  • 急求:1-乙酰基咪唑纯度检测方法!!!!!!!!!!

    CAS:2466-76-4分子式:C5H6N2O分子质量:110.11熔点:93-96℃中文名称:1-乙酰咪唑英文名称:1-acetyl-imidazol;1-acetyl-1h-imidazol;n-acetylimidazole;1-acetylimidazole性状描述:无色结晶。熔点103-105℃。极易水解。生产方法:咪唑与乙酸异丙烯酯反应在50毫升圆烧瓶中,加入0.2g(0.03mol)咪唑,20ml乙酸异丙烯酯和几滴浓硫酸。将混合物在60℃保温1h。蒸馏除去少量的乙酸异丙烯酯和丙酮。剩余物用水碳酸钠处理。倾出液体。在空气浴中蒸发至干。得粗品3.1g,产率94%,熔点93-96℃。现经乙酸异丙烯酯重结晶,熔点达到101.5102.5℃。用途:作乙酰化试剂,供生化研究用。提示:大部分词条有不同角度的多个解释,欲全面了解请查看下面的“更多相关内容”。 结构式:http://www.chemyq.com/xz/img/img2/2466-76-4.gif

  • 纺织品PCP测试问题

    GB 18414.1纺织品含氯苯酚的测定,乙酰化过程,乙酸酐与碳酸钾振摇过程会有气体产生,会顶开分液漏斗瓶盖,导致液体漏出,要怎么处理好? 另标准曲线是否一定要乙酰化?不乙酰化能都做出曲线?乙酰化后曲线系数很差,不知道是不是操作问题。

  • 解秘男女有别的人类诱导多能干细胞

    7月6日,Cell Stem Cell杂志报道,来源于男性和女性的人类诱导多能干细胞,在表观遗传稳定性和癌基因的表达方面均有较大的差异。  虽然人类诱导多能干细胞(hiPSCs)在再生医学中具有巨大潜力,他们的表观遗传变异性表明,有些hiPSCs细胞系可能不适合人类治疗。目前对hiPSCs进行质量评估的基准很有限。  本研究表明,X染色体失活标记可以用来将表观遗传学上独特的hiPSCs和表型上独特的hiPSCs区分开来。XIST(X-inactive specific transcript)是一个X染色体上的胎盘哺乳动物的X染色体失活过程中发挥主要效应的RNA基因。Xist表达的缺失与X-连锁癌基因的表达上调、细胞在体外加速增长,在体内较差的分化密切相关。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。推荐关注:磷酸化特异性ELISA试剂盒 反义寡核苷酸类  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  据此,研究者得出这样的结论:在培养条件下,女性hiPSCs的表观遗传稳定性比男性的较差;Xist的丢失可能导致质量不理想的干细胞系。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制