当前位置: 仪器信息网 > 行业主题 > >

解糖假苍白杆菌

仪器信息网解糖假苍白杆菌专题为您提供2024年最新解糖假苍白杆菌价格报价、厂家品牌的相关信息, 包括解糖假苍白杆菌参数、型号等,不管是国产,还是进口品牌的解糖假苍白杆菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合解糖假苍白杆菌相关的耗材配件、试剂标物,还有解糖假苍白杆菌相关的最新资讯、资料,以及解糖假苍白杆菌相关的解决方案。

解糖假苍白杆菌相关的论坛

  • 肉毒梭状杆菌和肉毒素

    鉴于目前恒天然奶粉出肉毒杆菌一事,一起学习一下肉毒杆菌和肉毒素。肉毒杆菌的全名叫肉毒梭状杆菌(也叫肉毒梭菌Clostridium botulinum),是一种革兰氏阳性厌氧杆菌,其生长繁殖及产毒的最适温度为18~30℃。肉毒杆菌广泛分布于土壤、淤泥及动物粪便中,其中土壤是重要污染源,它可借助食品、农作物、水果、海产品、昆虫、禽类等传播到各处。肉毒杆菌家族一共兄弟7个,本身其实没有毒性,但其中有4个能在厌氧环境下(比如肠道、密闭发酵食品)产生肉毒毒素。食品在加工、贮藏过程中被肉毒杆菌污染,食前对带有毒素的食品又未加热或未充分加热,就易引起中毒。在我国的新疆、青海等少数民族地区几乎每年都会出现自制发酵肉制品导致的肉毒中毒、甚至死亡。肉毒毒素(botulinum toxin,AX)是肉毒杆菌产生的含有高分子蛋白的神经毒素,是目前已知在天然毒素和合成毒剂中毒性最强烈的生物毒素,它主要抑制神经末梢释放乙酰胆碱,引起肌肉松弛麻痹,特别是呼吸肌麻痹是致死的主要原因。肉毒毒素真正被大众了解,是因为一些明星注射肉毒来除皱。虽然这个毒素的毒性比较大,一点点就能毒死人,但它本身对热不稳定,煮开几分钟就破坏掉了,真正难解决的是它的芽孢。肉毒杆菌在感觉不舒服的时候就像作茧一样用一些蛋白和糖类物质把自己包起来,然后就能“刀枪不入”,一般的加工手段都杀不死它。等它重新进入合适的环境,比如人的肠道,它又能苏醒过来继续干坏事。成人由于肠道里面的菌群早已站稳了脚跟,少量的肉毒杆菌是斗不过这些“地头蛇”的,因此对成人的危险性相对较小。但婴儿尤其是1岁以下的小宝宝,正常菌群还处于建设阶段,这个时候肉毒杆菌来捣乱的话,有可能对宝宝造成较大影响。  我国乃至全世界都没有乳粉中肉毒杆菌的限量标准,因为肉毒杆菌在乳品中并不是常见的污染物,而标准的管理是要考虑成本的,正因如此,各国都不把它写入标准。但这并不意味着根本不管,比如这次恒天然是在企业的质量控制中发现的问题。用标准管理有限的问题,用过程的控制实现更全面的安全保障,这才是科学的食品安全管理理念。对于负责任的大企业,其质控项目数量和质控要求都是远远高于国家标准要求的。

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽孢杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌污染面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包**头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2。在厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~**5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。

  • 【资源】大肠杆菌发酵经验总结

    大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生:比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。3、 控制葡萄糖的浓度:葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。 恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不 同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。三、培养方式 微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌**面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包或馒头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2**厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~4.5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。**

  • 大肠杆菌乳糖发酵实验

    请问,乳糖发酵大肠杆菌,培养基颜色变黄导管产气,但是培养基是混浊的,请问这样的结果对吗,求大神指点,拜托拜托[img]https://ng1.17img.cn/bbsfiles/images/2019/01/201901180941516446_2797_3545162_3.png[/img]

  • 【求助】为什么测定大肠杆菌时要用双倍和单倍的乳糖培养基进行除发酵呢?

    在GB/T 5750.12-2006微生物大肠杆菌测定中,先取10mL水样于10mL双料乳糖蛋白胨培养液中,取1mL水样接种到10mL单料乳糖蛋白胨培养液中,在取稀释10倍的水样于10mL单料乳糖蛋白胨培养液中,每一稀释度接种管5管。那请教下大家, 为什么要先双倍再单倍、单倍,这样培养的区别在哪里?可不可以都用单倍或都用双倍或三倍?浓度高的培养基中为什么移取的水样要多点呢?请大家多多指教。我是新手。谢谢!

  • 高通量重组蛋白表达技术在大肠杆菌中的应用

    [b][font=宋体]前言[/font][/b][font=宋体]在当今的生物技术领域,高通量重组蛋白表达技术在基础研究和商业应用中扮演着非常重要的角色。随着后基因组时代的到来,研究人员对大规模蛋白表达和纯化的需求日益增长,大肠杆菌因其易于遗传操作、低成本、生长迅速成为生产重组蛋白的首选微生物宿主。本文将综述大肠杆菌中高通量重组蛋白表达的现状和未来展望,探讨从目的基因获取到蛋白表达和纯化的先进技术,并讨论如何克服[/font][url=https://cn.sinobiological.com/resource/protein-review/protein-expression][u][font=宋体][color=#0000ff]重组蛋白表达[/color][/font][/u][/url][font=宋体]过程中的挑战。[/font][font=Calibri] [/font][b][font=宋体]高通量重组蛋白表达技术[/font][/b][font=宋体][font=宋体]高通量研究是一种能够同时检测数千个生物分子,使大规模重复成为可能的研究。[/font][font=Calibri]20[/font][font=宋体]世纪[/font][font=Calibri]90[/font][font=宋体]年代初,第一台[/font][font=Calibri]DNA[/font][font=宋体]测序仪被开发出来,人类基因组计划随之开启,高通量技术在[/font][font=Calibri]DNA[/font][font=宋体]、[/font][font=Calibri]RNA[/font][font=宋体]、蛋白质、脂质和代谢物检测的需求也急剧增加。自该技术提出以来,大肠杆菌中高通量重组蛋白表达和纯化已经得到了广泛的应用。[/font][/font][font=Calibri] [/font][font=Calibri]1. [/font][b][font=宋体]目的基因的制备[/font][/b][font=宋体][font=宋体]获取目的基因是重组蛋白表达的第一步。传统的方法是从[/font][font=Calibri]cDNA[/font][font=宋体]文库中直接克隆基因,但这种方法存在局限性,如从库中筛选基因较为费时以及难以添加融合标签等。高通量[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]技术是目前获取目的基因最常用的技术,设计引物并调整好参数后,即可在[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]仪中自动完成目的基因的制备。[/font][/font][font=Calibri] [/font][font=Calibri] [/font][font=Calibri]2. [/font][b][font=宋体]表达载体的高通量构建[/font][/b][font=宋体][font=宋体]研究人员开发了多种构建表达载体的克隆方法,包括基于限制性内切酶的克隆、重组克隆和不依赖于连接反应的克隆等。这些方法各有优势和局限性,但在近年来都有显著改进。例如,基于限制性内切酶的克隆因其简单、高效、通用和成本效益而备受关注。一个理想的大肠杆菌表达载体应具备选择标记、复制起点、转录启动子、[/font][font=Calibri]5'[/font][font=宋体]非翻译区([/font][font=Calibri]5'UTR[/font][font=宋体])和翻译起始位点。此外,融合标签的添加对于目的基因的转录和蛋白表达同样至关重要。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]3. [/font][b][font=宋体]大肠杆菌表达菌株的选择和细胞培养[/font][/b][font=宋体][font=宋体]为保证蛋白质表达成功及其表达质量,应选择合适的大肠杆菌菌株,如[/font][font=Calibri]BL21[/font][font=宋体]及其衍生菌株是较常用的重组蛋白生产菌株。培养大肠杆菌比较简单的方法是分批培养,但此方法对生长的控制比较有限。近年来,高通量培养技术使研究人员能够在一系列发酵条件下处理大量样品,大大加快了生产时间。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]4. [/font][b][font=宋体]高通量蛋白表达和纯化[/font][/b][font=宋体][font=宋体]高通量平台可以快速克隆基因、挑选菌落、分离质粒[/font][font=Calibri]DNA[/font][font=宋体]、转化细菌、表达和纯化蛋白质。这些平台虽然成本高昂,但为复杂的分子生物学实验操作提供了极大的便利。[/font][/font][font=Calibri] [/font][b][font=宋体]结论与展望[/font][/b][font=宋体]大肠杆菌中的[/font][url=https://cn.sinobiological.com/services/high-throughput-antibody-production-service][u][font=宋体][color=#0000ff]高通量重组蛋白表达技术[/color][/font][/u][/url][font=宋体][font=宋体]极大的推进了重组蛋白的表达进程。尽管存在挑战,但通过不断优化和创新,研究人员正在朝着更高效可靠的蛋白质生产系统改进。未来的发展方向包括进一步优化克隆方法、开发新的融合标签、改进表达载体和菌株,以及利用高通量技术实现从[/font][font=Calibri]DNA[/font][font=宋体]到大规模蛋白质生产的快速转变等。[/font][/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 2016 6(8):160196. doi:10.1098/rsob.160196[/font]

  • 大肠杆菌O157:H7

    一、概述及分类肠杆菌科是由多个菌属组成,生物学性状相似,均为革兰氏阴性杆菌,这些细菌常寄居在人和动物的消化道,并随粪便排出体外,广泛分布在水和土壤中,大多数肠道杆菌属于正常菌群。当机体免疫力降低或侵入肠道外组织时,成为条件致病菌而引起疾病。部分肠道杆菌是致病菌。例如:产毒大肠埃希氏菌、伤寒沙门氏菌、各种志贺氏菌可使人患肠道传染病。肠杆菌科细菌种类繁多,主要根据细菌的形态,生化反应,抗原性质以及核酸相关性进行分类。肠杆菌科的细菌分为20个属。1、 什么是大肠菌群?大肠菌群名称并非细菌分类命名,而是卫生细菌领域的用语,它不代表某一个或某一属细菌,而指的是具有某些特性的一组与粪便污染有关的细菌,这些细菌在生化反应及血清学方面并非完全一致。大肠菌群:需氧及兼性厌氧,在37℃能分解乳糖,产酸,产气的革兰氏染色阴性无芽胞杆菌。一般认为该菌群细菌可包括:大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。目前已被国内外广泛应用于评价食品卫生质量的重要指标之一。2、 什么是大肠杆菌?埃希氏菌属的代表菌种是大肠埃希氏菌。大肠埃希氏菌俗称大肠杆菌,它是人类和动物肠道正常菌群的成员,随粪便排到自然界,并污染食品,本菌是组成水、食品中大肠菌群成员之一,其数目多少代表粪便污染和程度。能引起肠道感染的大肠埃希氏菌有下列五个病原群(1)肠产毒性大肠埃希氏菌(ETEC)产生ST、LT、引起婴儿、旅游者腹泻。(2)肠致病性大肠埃希氏菌(EPEC)寄居十二指肠、回肠、空肠。引起婴儿腹泻。(3)肠侵袭性大肠埃希氏菌(EIEC)有侵袭力,痢疾样症状。(4)肠出血性大肠埃希氏菌(EHEC)引起出血性结肠炎,主要菌型O157。(5)肠粘附性大肠埃希氏菌(EAEC)损害肠细胞外毒素,引起小儿顽固性腹泻。3、 什么是大肠杆菌O157:H7? EHEC O157:H7属于肠杆菌科埃希氏菌属。它是肠出血性大肠杆菌(EHEC)的主要血清型。

  • 【转帖】NusA技术:显著增强大肠杆菌表达可溶、活性蛋白

    70kDa)中的七个得到了可溶性表达,而其它的融合标签(GST,MBP和hexahistidine)系统则只得到了四个可溶性表达的蛋白。表1. 用大量的目标蛋白评估NusA标签对提高融合蛋白可溶性的作用参考文献a目的蛋白数目目的插入序列种属目标蛋白大小范围NusA融合蛋白可溶性比例Shih等(2002)40酵母,哺乳动物,植物,昆虫9-10060Korf等(2005)75人6-12760bKohl等(2008)96人1-11844ca. Korf等和Kohl等的研究中包含了六组氨酸标签。b. 可溶性蛋白量大于等于10%即认为该融合蛋白可溶。c. 纯化后的融合蛋白如果在SDS-PAGE后考染在合适位置出现条带即认为可溶。Korf等的还发现对于定位于真核细胞细胞器,质膜或者骨架的蛋白,相对于其它标签系统来讲,NusA标签是最好的可溶性表达的选择。Kohl等(2008)也发现只要在20-25℃诱导表达,NusA标签能够大大提高难表达的蛋白比如膜蛋白的可溶性。与Korf等的研究结果一致,Kohl等也发现25℃诱导表达比30℃或37℃诱导表达可以纯化得到更多的NusA融合蛋白。切除NusA标签获得后保持活性且正确折叠的蛋白表2总结了16个采用NusA标签成功获得可溶性蛋白,在切除标签后这些蛋白仍有正确折叠结构和活性。大部分这种研究是是关于分子量小于或接近20kDa的目标蛋白。纯化后的目标蛋白产量范围在1.5-100mg/L。趋化因子和细胞因子可以得到高达30-100mg/L的产量。其它关于这些蛋白表达和纯化的有参考价值信息包括:■ 植物磷酸烯醇式丙酮酸—羧化酶激酶(Ermolova 2003)——目标蛋白切除标签后用BDA(蓝色葡聚糖)亲和层析树脂纯化。纯化后蛋白的催化活性比未切除标签的融合蛋白高50倍。■ Xklp3a,Tep3Ag和E8R(De Marco 2004)——用蛋白酶切割后,His-融合的TEV和NusA被Ni2+离子亲和色谱选择性去除。与Ni2+亲和结合的标签被紧密地结合在树脂上,在流出液中则可以得到纯化的目的蛋白。所有这三种蛋白在纯化后都正确折叠且均一分散在溶液中。纯化的膜结合蛋白E8R牛痘病毒蛋白在Tris缓冲液中除去NusA后出现了沉淀,然而加入0.02%的月桂酰基麦芽糖苷和150mM的氯化钠后,蛋白又重新变得可溶。■ 环麦芽糖糊精酶(Turner 2005)——这个蛋白属于α-淀粉酶家族。这个家族的蛋白通常在大肠杆菌中很难以活性形式表达出来。将其与肠激酶混合孵育24小时以上会使其活性逐渐增强,直到达到未经肠激酶处理过的融合蛋白的2倍以上,这也说明标签的存在降低了该酶的活性。可以用固化了Cu2+的亲和层析柱去除切除的融合标签。■ 八种人趋化因子(Magis-trelli 2005)——所有的蛋白都在OrigamiTM B菌株中表达提高它们在胞质中的二硫键形成率。在趋化因子编码序列的C端引入了AviTMTag(亲和素)生物素化序列。切割后的细胞趋化因子可以用单体的亲和素树脂亲和层析与切割下的NusA标签和蛋白酶混合物分离开。所有切割纯化后的蛋白在细胞趋化实验中都显示了活性,而没有一个融合蛋白有这样的活性。■ 蚯蚓血红蛋白(Karlsen 2005)——酶切后,用分子筛分离纯化蚯蚓血红蛋白,纯化后的蛋白通过圆二色谱检测得到的α-螺旋结构与模型预期结果一致,且纯化后的蛋白可以以单体的形式稳定保存。■ 人白介素-29(Li 2006)——用S-蛋白亲和层析比Ni2+亲和层析可以得到更纯的目的蛋白。将融合蛋白N端的NusA/His•Tag®/S•Tag™标签切掉后,用链亲和素琼脂去除生物素标记的凝血酶。用水疱性口膜炎病毒(VSV)处理固定的人羊膜上皮细胞(WISH 细胞)后,通过检测纯化的IL-29对细胞的保护效应来检测其抗病毒活性。■ 人干扰素-λ2(Li 2007)——酶切后,用Novagen提供的EKaptureTM琼脂除去重组的肠激酶。先用纯化后的干扰素-λ2处理WISH细胞,24小时后加入VSV病毒,可以观察到干扰素-λ2可以有效地保护细胞免于病毒介导的病变。表2. 切除NusA标签获得后保持活性且正确折叠的蛋白参考文献目的蛋白目的蛋白分子量(kDa)切割用蛋白酶融合蛋白亲和层析固定介质纯化后目的蛋白产量(mg/L)Ermolova等(2003)植物磷酸烯醇式丙酮酸羧化酶激酶32凝血酶Ni2+1.5De Marco等(2004)Xklp3ATep3AgE8R15NRa32bTEV酶TEV酶TEV酶Ni2+5.02.54.0Turner等(2005)环麦芽糖糊精酶69肠激酶Cu2+1.6Magistrelli等(2005)八种人趋化因子8-21Xa因子Ni2+30-100Karlsen等(2005)蚯蚓血红蛋白15TEV酶Ni2+NRaLi和He(2006)人白介素-2920凝血酶S-蛋白60Li和Huang(2007)人干扰素-λ220肠激酶Ni2+65a. 未报道b. 根据NCBI报道预测的全长蛋白分子量与NusA标签融合且具有活性的蛋白 与这些切除NusA标签后保持活性且正确折叠的蛋白不同,还有很多报道指出目的蛋白在“NusA-目的蛋白”的融合形式时具有很好的活性。比如单链(ScFv)催化活性抗体14D9(Zheng 2003),来自Aequorea victoria的绿色荧光蛋白(Nallamsetty 2006),人二氢叶酸还原酶(Nallamsetty 2006),来自Ensis directus蛏子的精氨酸酶激酶(Compaan 2003),来自B. thuringiensis的修饰δ-内毒素(Kumar 2005),人BCMA跨膜受体(Guan 2006),植物α-双加氧酶1(Liu 2006),以及来自Plasmodium falciparum的b-ketoacyl-acyl载体蛋白合成酶(Lack 2006)等,反映了各种不同背景的蛋白都显示出了与NusA标签融合后的活性。NusA标签提高蛋白可溶性的可能机制 Houry(1999)等揭示NusA蛋白是分子伴侣GroEL在体内的必须底物。而GroEL与其共作用因子GroES是大肠杆菌唯一的在所有生长条件下必需的分子伴侣系统。Douette等(2005)研究了融合蛋白NusA-UCP1(uncoupling protein 1)的可溶产量。UCP1是一种线粒体膜蛋白。这些作者发现16℃培养时,当GroEL共过表达的情况下,融合蛋白的可溶性有更大的提高。这个结果也表明NusA与分子伴侣途径相作用,从而阻止参与蛋白的聚集。总结 已有充分的证据证明NusA标签系统能显著提高多种不同来源蛋白的可溶性表达,而这些蛋白在单独表达时往往形成不可溶的包涵体。在一些研究报告中,用蛋白酶切除NusA标签能使目的蛋白仍保持正确折叠和生物学活性;相反,在另外许多报道中也指出当目的蛋白与NusA融合而非切除时,融合蛋白也同样具有活性。NusA标签系统的成功至少部分地是由于其与大肠杆菌分子伴侣系统相互作用的结果。

  • 双岐杆菌是如何在喷雾干燥中存活的

    [b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]在食品工业中,喷雾干燥是一种生产率高、操作费用低的工艺,是普遍采用的制备干燥、稳定、体积小的食品或食品添加剂的方法之一。此外,还可用用保护和浓缩微生物。[/font][font=微软雅黑]许多人还报道了用喷雾干燥制备发酵用于生产发酵乳制品或作为提高奶酪风味的附加物。然而,微生物对喷雾干燥的温度及脱水很敏感。因此,如果喷雾干燥应用于发酵剂制备注意微生物的存活率。[/font][b][font=微软雅黑]双歧杆菌[/font][/b] [font=微软雅黑]Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌分布在胃肠的数量随年龄阶段的增长而减少,分布多的是母乳营养儿。已经发现,双歧杆菌有32个亚型,含有双歧杆菌的生物制剂多达70种。婴儿双歧杆菌占总肠道菌的百分之六十,60岁以上老人双歧杆菌只占百分之七点九。[/font][b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]形态很不一致的杆菌,0.5~1.3 μm×1.5~8μm,常呈弯、棒状和分支状。单生、成对、V字排列,有时成链,细胞平行成栅栏状,或玫瑰花结状。偶尔呈膨大的球杆状 。[/font][align=center][img]https://img69.chem17.com/9/20190409/636904143730081616114.png[/img][/align][b][font=微软雅黑]双岐杆菌[/font][font=微软雅黑]药理作用:[/font][/b][font=微软雅黑]治疗便秘[/font][font=微软雅黑]、[/font][font=微软雅黑]肿瘤防治[/font][font=微软雅黑]、[/font][font=微软雅黑]保护肝脏[/font][font=微软雅黑]、[/font][font=微软雅黑]防治心血管疾病、改善乳糖消化[/font][font=微软雅黑]等[/font][b][font=微软雅黑]双岐杆菌[/font][color=#000000][font=微软雅黑]营养食品作用[/font][/color][color=#000000][font=微软雅黑]:[/font][/color][/b][font=微软雅黑]促吸收[/font][font=微软雅黑]、[/font][font=微软雅黑]抗衰老[/font][font=微软雅黑]、[/font][font=微软雅黑]防治疾病[/font][font=微软雅黑]。[/font][font=微软雅黑]如此重要的[/font][b][font=微软雅黑]双岐杆菌[/font][/b][font=微软雅黑]是如何在喷雾干燥中存活的呢?[/font][font=微软雅黑]双岐杆菌在喷雾干燥的存活情况和载体有很大的关系;有研究表明,双歧杆菌分别与含有明胶、树胶和可溶性淀粉的载体一起喷雾干燥,结果发现喷雾干燥后双歧杆菌的存活因其载体种类不同而不同。[/font][font=微软雅黑]很大程度上取决于所用的载体。比较不同的载体浓度对存活的影响。发现双歧杆菌在与明胶、树胶或可溶性淀粉喷雾干燥后存活率高。经喷雾干燥后双歧杆菌表现大存活,温度升高则失活升高,然后温度升高引起的失活程度因所用载体不同而不同。已有研究表明,采用可溶性淀粉程度大,采用脱脂乳则小。[/font]

  • 【原创大赛】双歧杆菌 之扫描电镜照片

    【原创大赛】双歧杆菌 之扫描电镜照片

    拍摄时间: 上个月样品名称:双歧杆菌 双歧杆菌 Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌是人体中非常重要的有益菌(见附录)。大豆低聚糖是双歧杆菌的营养物质,还可抑止有害菌的生长,又被称为双歧杆菌增殖因子(双歧因子)。大豆低聚糖还有一个很好的性质,即它不易被胃吸收分解,大部分可进入肠道做为双歧杆菌的营养,因此糖尿病人也可食用。大豆低聚糖市场有卖。酸奶中含双歧杆菌,但绝大部分会被胃酸杀死。市场上还有双歧杆菌药品,也存在同样的问题。据说有些双歧杆菌药品采用特别技术,加上一层保护,使双歧杆菌可通过胃进入肠道。双歧杆菌具有能清除自由基及过氧化脂质的能力,因而能够延缓细胞的衰老,起到延年益寿的作用。除此,双歧杆菌能非特异性地提高机体的免疫力,提高抗感染的能力,也有利于健康和长寿由于细菌的细胞比较小,光镜下很多结构应该是看不太清楚的,鞭毛、芽孢、荚膜正常都看不见适当染色后芽孢和荚膜能看见,鞭毛不行。因为普通光镜的话四十倍之后就是一百倍的油镜了,看动物细胞一般用四十倍的,但是细菌大概是动物细胞的十分之一吧,想看清楚就得用电子显微镜了。、、人眼能分辨的最小长度大约是0.1毫米而细菌的一般直径约0.5微米,长度约0.5~5微米。(1微米=1000纳米) 当然有例外,有一种纳米比亚嗜硫珠菌直径达0.32~1.00毫米(1毫米=1000微米);已知最小的细菌“纳米细菌”直径约50纳米。 0.5微米*200=0.1毫米。也就是说,你将细菌的直径放大200倍大概可以看清了,可是这并不是常见的光学显微镜一、细菌培养:双歧杆菌(实验室自己分离出来一株)将菌种接种在优化以后的GAM液体培养基中,置厌氧工作站(BUG BOXnerobic Workstation)培养。见菌液均勺混浊,涂片。http://ng1.17img.cn/bbsfiles/images/2011/12/201112012058_334696_2019107_3.jpgRuskinn厌氧工作站操作指南及使用注意事项(Bug Box)一、 常规操作1、检查仪器是否正常(温度、气体压力、水槽水位等)。2、若需照明可按下控制面板Chamber Light照明开关或踩下SPOT脚踏。3、温度调节:按FN键→按▲▼调节到所需温度→按FN键直到仪表显示为实际温度和设定温度。4、袖套使用:(1)进入工作腔:涂滑粉→检查气路旋钮(选择单手或双手操作)→将手伸入袖套→踩下VAC脚踏抽气至双手有轻微紧绷感→踩下GAS脚踏充气至适量→逆时针旋转密封盖旋钮至松动→抓住密封盖横杆旋转至水平位置→往里轻推打开密封盖→缓缓伸手将密封盖置于两侧支架上。(2)关闭密封盖:缓缓伸手取下密封盖→将横杆水平方向对准袖套操作口轻轻外拉,旋转至垂直位置,松开横杆→顺时针旋转密封盖旋钮(不可过紧)→确认工作腔已密封,取出双手。5、转移闸使用:(1)放入样品:确认内门已关闭→往里推按钮,打开外门→放入样品架及样品→关闭外门→按下面板Interlock Purge键或踩下LOCK脚踏,Interlock Active指示灯亮,(仪器自动进行转移闸清洁),10秒钟后指示灯熄灭→通过袖套操作口打开内门,放入样品。(2)取出样品:确认外门己关闭→确认转移闸己进行自动清洁(否则按下面板Interlock Purge键或踩下LOCK脚踏清洁转移闸)→打开内门,放入样品→关闭内门,打开外门,取出样品(重复取出样品时,切记每次操作均需进行转移闸清洁)。6、单皿转移系统操作:将密封口螺丝拧松→放下密封板→将平板迅速塞入系统。7、常规操作注意事项:(1)工作腔内操作动作必须轻缓。(2)每天均需确认水槽处于满水位。[siz

  • 【分享】在大肠杆菌中高效表达外源蛋白的策略

    在大肠杆菌中高效表达外源蛋白的策略非常详细地说明了表达载体的构建,转录调控,中止子以及翻译过程中的一些选择。理论性很强,也很详细。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=111861]在大肠杆菌中高效表达外源蛋白的策略[/url]

  • 双歧杆菌高密度培养的补料培养基及补料方法

    双歧杆菌高密度培养的补料培养基及补料方法

    [align=center]双歧杆菌高密度培养的补料培养基及补料方法[/align][align=center]季学猛[/align][align=center](南开大学 医学院, 天津 300071)[/align]摘 要:双歧杆菌在维护宿主健康方面具有重要作用,因此对其高密度培养条件的探索具有重要意义。目前,双歧杆菌的高密度培养主要受到培养基组分和培养条件的优化的影响。这里报道了一种用于双歧杆菌高密度培养的补料培养基及补料方法。该方法使用补料与碱泵耦合的方法进行补料,通过控制发酵培养基的pH值来调节补料培养基的补入量。此外,本研究还进行了补料培养基的优化实验,通过调整氢氧化钠和葡萄糖浓度的比例,比较了不同补料培养基的发酵性能。实验结果表明该补料培养基及补料方法适用于两歧双歧杆菌、青春双歧杆菌、动物双歧杆菌、长双歧杆菌等多种双歧杆菌,而且能够达到较高的活菌密度。本研究提出的补料培养基及补料方法可为双歧杆菌的高密度培养提供有效的解决方案。关键词:双歧杆菌;高密度培养;补料培养基;补料方法;碱泵耦合中图分类号:G482[color=gray] [/color]文献标识码:A[align=center]A supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium[/align]JI Xuemeng(School of Medicine, Nankai University, Tianjin 300071, China)Abstract: Bifidobacterium plays a significant role in maintaining host health, making the exploration of high-density cultivation conditions crucial. Currently, the high-density cultivation of Bifidobacterium is mainly influenced by the optimization of culture medium components and cultivation conditions. Here, we report a supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium. The method utilizes coupling of supplementation with an alkaline pump to control the supplementation rate of the culture medium by adjusting its pH value. Furthermore, optimization experiments of the supplementation culture medium were conducted by varying the ratio of sodium hydroxide to glucose concentrations, comparing the fermentation performance of different supplementation culture media. Experimental results demonstrate that this supplementation culture medium and supplementation method are applicable to various Bifidobacterium strains such as Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium animalis, and Bifidobacterium longum, achieving high viable cell densities. The proposed supplementation culture medium and supplementation method in this study offer an effective solution for high-density cultivation of Bifidobacterium.Key words: Bifidobacterium high-density cultivation supplementary culture medium supplementation method alkaline pump coupling双歧杆菌广泛分布于动物和人类的肠道中,已经发现双歧杆菌在维护宿主健康方面起着极其重要的作用,双歧杆菌作为益生菌的功能特性已经引起了越来越多的关注[sup][back=yellow][1-3][/back][/sup]。双歧杆菌的益生菌制剂有潜力通过选择和加强有益菌群来调节肠道微生物群的组成和微生物平衡,从而更有利于人体健康。双歧杆菌制剂已被报道能改善肥胖相关特征、缓解便秘和增强免疫力[sup][back=yellow][4-6][/back][/sup]。双歧杆菌已经成为国内外正在快速发展的微生态制剂中的主要菌种之一。努力探索双歧杆菌的高密度生长条件,对于提高该菌的生产效率和应用推广具有重要意义。双歧杆菌的高密度培养条件的摸索主要涉及培养基组分和培养条件的优化。目前,MRS培养基是最常用的双歧杆菌等乳酸菌培养基,被广泛地用于双歧杆菌的发酵中[sup][back=yellow][7][/back][/sup]。双歧杆菌的最适生长 pH 值在 6.0-7.0 之间[sup][back=yellow][8][/back][/sup],然而,由于双歧杆菌发酵过程中会产生有机酸等代谢副产物,导致培养过程中培养基的 pH 值不断地降低,限制细菌的生长[sup][back=yellow][9-11][/back][/sup]。为解除酸等代谢副产物对双歧杆菌生长的限制,一些创新型的发酵培养方法已经被提出,比如细胞周期培养、透析培养、细胞固定培养和嵌入法[sup][back=yellow][12-15][/back][/sup]。然而,这些方法在工业应用中受到了各种因素的限制。目前,分批的发酵罐内恒定pH培养方法仍然是主流,在发酵中通过添加碱性溶液来控制培养基的pH值,以减轻酸性生长抑制。在解除酸性生长抑制后,双歧杆菌的生长还受到渗透压和底物不足的限制[sup][back=yellow][16][/back][/sup]。许多营养物在高浓度下导致的高渗透压对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质。因此,为了双歧杆菌培养中有效地利用底物,必须优化培养过程以解决底物浓度和渗透压之间的矛盾。将浓缩营养物以与其消耗速率成比例地加入反应器中是一种有效的解决底物浓度和渗透压之间的矛盾的方法,为此产生了多种形式的补料喂养模型:间歇喂养,恒定喂养和指数喂养[sup][back=yellow][17-19][/back][/sup]。在间歇补料喂养中,通过周期性检查并补充生长基质中的葡萄糖含量达到稳定葡萄糖浓度的目的,然而,这种补料模型决定了必然需要大量人力。而且在对数生长阶段,细菌细胞快速消耗葡萄糖,因此在任何两个测量间隔期间可能发生底物缺乏,可能会导致补料不及时,进而影响细菌的生长。在恒定补料喂养中,饲料介质以恒定的流速持续添加到发酵培养基中。这种方法优点是减少了人力需求。但是,益生菌对葡萄糖的消耗速率不是恒定的,这就导致了低喂养速率可能导致细菌生长的底物不足,而高喂养速率会引起过量底物积累,也会抑制细菌生长。对于指数喂养模型,在益生菌前期生长阶段,指数喂养能够很好的耦合细菌对数生长。然而,在细菌对数生长后期,细菌生长速率趋缓,而流加速率继续指数增加会导致底物浓度迅速增加,进而对细菌菌株的生长能力造成不良影响。因此,指数喂养模型也不是合理的方法。综上所述,在益生菌菌株生长期间,这些方法均不能准确控制生长介质中的葡萄糖含量。目前,针对双歧杆菌等厌氧菌发酵过程中产酸,而且产酸与消耗的碳源成正比的特性[sup][back=yellow][20][/back][/sup],通过将补料与碱泵偶联,可实现了补碱的同时补加碳源。然而,补料与碱泵偶联对于发酵罐技术要求高,该技术仍没有在实验室和工厂中得到广泛推广。1? 补料系统的设计为克服现有技术中的缺陷,这里提出了一种用于双歧杆菌高密度培养的补料培养基及补料方法,技术方案如下:一种用于双歧杆菌高密度培养的补料培养基,该补料培养基包括质量比为1:10的氢氧化钠与葡萄糖。其中氢氧化钠浓度小于等于50 g/L,葡萄糖浓度小于等于500g/L。可减少补料培养基中氢氧化钠、葡萄糖和溶氧氧化还原反应产生的副产物浓度。为了减少补料培养基中氢氧化钠、葡萄糖和溶氧的氧化还原反应,配制补料培养基的水应尽可能减少溶氧。可通过高温灭菌、煮沸、通氮气或通二氧化碳的方法减少溶氧。氢氧化钠和葡萄糖溶液应分别进行灭菌后进行混合。使用所述的补料培养基的补料方法,需将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量即成。碱泵的流速为5-10mL/min;碱泵的每次开启时间小于等于30s;发酵培养基的pH值的检测周期为20s。补料培养基补入后发酵培养基的pH值与补入前发酵培养基的pH值之差小于等于0.1。用于双歧杆菌高密度培养的发酵的方法包括如下步骤:(1)将双歧杆菌种子液接种至发酵培养基中进行发酵;(2)将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量;(3)在发酵过程中,间隔1小时对发酵培养基取样,检测580nm-620nm下的吸光度值,并检测葡萄糖浓度与活菌数目,当吸光度值大于0.5且相邻2次取样的吸光度值相等或降低即为发酵结束。2? 补料培养基的优化制备如下5种补料培养基,其中氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值分别为1:2、1:5、1:10、1:20、1:40,以比较发酵性能。发酵培养基组成如下:1000mL蒸馏水、14.3g大豆蛋白胨、16.7g酵母粉,10g葡萄糖,0.5g可溶性淀粉,1g氯化钠,1g磷酸氢二钾,1g磷酸二氢钾,0.01g FeSO4?7H2O,0.005g MnSO4,0.2gMgSO4,0.5g L-半胱氨酸,使用50g/L的氢氧化钠溶液调节pH至6.8;其中L-半胱氨酸配制为50g/L浓度,膜过滤除菌,在发酵培养基灭菌结束后再按照1/100(v/v)加入L-半胱氨酸。发酵罐通气孔中接入氮气,使得溶氧降至1mg/L以下;设置发酵参数:发酵温度设为37.0℃范围内,搅拌转速200r/min,培养基温度达到37.0℃后,在火焰圈的无菌环境下按照5%(v/v)的接种量加入种子液,同时,加入3滴消泡剂;开启发酵罐搅拌器,设置种子液加入后的培养基的当前pH值6.6为发酵设定pH值。补料设置参数:将补料培养基中碱泵利用软管连接,设置碱泵最大流速为10mL/min,设置碱液根据pH自动控制加入,设置碱泵启动参数为pH值小于6.55,设置每隔10秒测定一次pH值,设置每次碱泵开启时间15秒;发酵中,每隔3小时测OD,每隔5小时取样监测培养液葡萄糖浓度,检测到15小时。如[back=yellow]图1[/back]所示,发现在发酵前5小时,各补料培养基都可以维持葡萄糖浓度处于适宜双歧杆菌快速生长的浓度(灰色范围),而从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:2的补料出现了葡萄糖浓度的下降,说明该碱碳比例在发酵后期不足以满足双歧杆菌开始生长对碳源的需求。同样的,从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:40的补料出现了葡萄糖浓度的过高,说明该碱碳比例在发酵后期不足可能产生高渗透压,不适合双歧杆菌的生长。而氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值1:5至1:20补料可以维持发酵过程中葡萄糖浓度的稳定。综合下来,我们发现了补料培养基中氢氧化钠浓度(C碱,g/L)和葡萄糖浓度(C料,g/L)的合适比值为1:5至1:20。[align=center][back=yellow]图1[/back] 不同配比的补料培养对发酵体系葡萄糖浓度的影响的柱状图[/align]3? 补料系统的应用实践3.1? 两歧双歧杆菌高密度培养如[back=yellow]图2[/back]所示,使用本方法,发酵体系中pH值始终保持在6.6±0.1,葡萄糖浓度始终维持在9-13g/L,发酵结束时,发酵液总体积达到4.9L,吸光度达到OD620 12.8,活菌密度最高达到 8.5±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图2[/back] 两歧双歧杆菌的高密度培养的曲线图3.2? 长双歧杆菌高密度培养如[back=yellow]图3[/back]所示,使用本方法,发酵体系中pH值始终保持在6.9±0.1,葡萄糖浓度始终维持在8.5-13g/L,发酵结束时,发酵液总体积达到4.4L,吸光度达到OD[sub]620[/sub] 9.2,活菌密度最高达到 6.4±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图3[/back] 长双歧杆菌的高密度培养的曲线图3.3? 青春双歧杆菌高密度培养如[back=yellow]图4[/back]所示,使用本方法,发酵体系中pH值始终保持在6.7±0.1,葡萄糖浓度始终维持在7-11g/L,发酵结束时,发酵液总体积达到4.6L,吸光度达到OD[sub]620[/sub] 15.3,活菌密度最高达到 1.2±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图4[/back] 青春双歧杆菌的高密度培养的曲线图3.4? 动物双歧杆菌的高密度培养如[back=yellow]图5[/back]所示,使用本方法,发酵体系中pH值始终保持在6.5±0.1,葡萄糖浓度始终维持在7-12g/L,发酵结束时,发酵液总体积达到4.2L,吸光度达到OD[sub]620[/sub] 20.5,活菌密度最高达到 1.7±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图5[/back] 动物双歧杆菌的高密度培养的曲线图4? 结语该研究提供了一种用于双歧杆菌高密度培养的补料培养基及补料方法,补料方法包括如下步骤:将补料培养基通过碱泵与发酵培养基连接,根据发酵培养基的pH值控制补料培养基的补入量即成。通过优化补料培养基及补料方法,无需发酵罐补料偶联技术便实现了根据pH值变化,利用碱泵自动补充碳源和碱液,实现了保持pH值和碳源浓度的稳定;该补料方法对发酵罐的设备技术要求低,操作简单,降低了发酵成本。参考文献(References):[1]杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨.双歧杆菌及其制剂对炎症性肠病作用机制研究进展[J].食品科学,2023,44(05):275-281.[2]马岩,王中江,杨靖瑜,李哲,彭霞,单秀峰,李柏良,马微微.动物双歧杆菌乳亚种XLTG11对克林霉素诱导的抗生素相关性腹泻的改善作用[J].食品科学,2023,44(03):170-178.[3]李虔全,罗京,周江,刘亭,陈于彪,彭霞,杨建,胡闵山.孟鲁司特钠联合双歧杆菌四联活菌治疗儿童过敏性紫癜有效性Meta分析[J].海峡药学,2023,35(01):127-133.[4]石英,拉巴普尺,张丹瑛,翁书强,刘心怡,汪皓琪.双歧杆菌对高脂饮食诱导的C57BL/6小鼠非酒精性脂肪肝的影响[J].中国临床医学,2022,29(03):473-480.[5]陆敏,袁琳,胡娜,钟霄毓,姜逸,林敏,陆雄.双歧杆菌三联活菌对肥胖小鼠慢性低度炎症的影响[J].卫生研究,2022,51(05):797-802.DOI:10.19813/j.cnki.weishengyanjiu.2022.05.020.[6]李亦汉,王琳琳,赵建新,张灏,王刚,陈卫.两歧双歧杆菌CCFM1167通过提升肠道中乙酸水平以抑制炎症从而缓解便秘[J].食品与发酵工业,2023,49(06):35-41.DOI:10.13995/j.cnki.11-1802/ts.031238.[7]Umar Farooq. 小米膳食纤维作为主要碳源对益生菌生长和发酵过程中短链脂肪酸产量的影响研究[D].江南大学,2013.[8]杨玲,张栋,齐世华,马新颖,周帅康,艾连中,王世杰.两歧双歧杆菌TMC3115冻干菌粉生产工艺优化[J].乳业科学与技术,2021,44(05):12-17.DOI:10.15922/j.cnki.jdst.2021.05.003.[9]熊三玉. 两歧双歧杆菌驯化及培养条件优化的研究[D].中国海洋大学,2007.[10]冯诗诗. 长双歧杆菌F16的益生特性及其在酸浆豆腐制备中的应用[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000088.[11]武婷,郭帅,杨阳等. 动物双歧杆菌乳亚种Probio-M8在发酵山羊乳中的应用[C]//中国食品科学技术学会.第十七届益生菌与健康国际研讨会摘要集.[出版者不详],2022:149-150.DOI:10.26914/c.cnkihy.2022.018592.[12]赵春燕,张颖,王丹,刘臻.乳酸菌细胞固定化发酵的研究进展[J].中国酿造,2009(05):11-14.[13]李秀凉,雷虹,张龙丰,周东坡,平文祥.从L-乳酸菌酸菜发酵液中初步分离肽类抑菌物质[J].食品工业科技,2008(07):91-93.DOI:10.13386/j.issn1002-0306.2008.07.022.[14]邓鹏超. 乳酸菌的高密度培养及酸奶冻干发酵剂的研究[D].华中农业大学,2008.[15]于修鑑. 乳酸菌高密度培养及浓缩型发酵剂研究[D].南京工业大学,2004.[16]黄晓英. 传统发酵食品中具有抑菌特性乳酸菌的筛选、抑菌机理及其在泡菜发酵中的应用[D].西南民族大学,2022.DOI:10.27417/d.cnki.gxnmc.2022.000050.[17]彭海芬. 阿维拉霉素高产菌株的选育及其发酵条件优化[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000511.[18]吴斌.罗非鱼无乳链球菌SIP-pET32a基因工程菌高密度发酵工艺及SIP蛋白提取方及SIP蛋白提取方法研究[J].中国水产,2022(11):73-78.[19]熊华仪,陈曦,刘月锋,陈雄,李沛,王志.补料策略优化促进乳球菌HB03发酵合成Nisin[J/OL].食品科学:1-11[2023-05-18].http://kns.cnki.net/kcms/detail/11.2206.ts.20230428.1620.026.html[20]孙东霞,周子安,冯志合,胡修玉,祁光霞,董黎明.pH值调控柠檬酸污泥厌氧发酵产酸及碳源潜力研究[J].中国环境科学,2022,42(11):5198-5207.DOI:10.19674/j.cnki.issn1000-6923.20220620.001.收稿日期:2023-10-19 修改日期:第一作者简历:季学猛,硕士,实验师,研究方向为生物化工、机器学习;生物信息学。E-mail:jixuemeng@nankai.edu.cn。

  • 土壤农杆菌

    在自然界存在一种叫做土壤杆菌的细菌,它能感染植物的受伤组织,特别是根茎交接处的受伤组织,引起冠瘿瘤。冠瘿病损害为数众多的双子叶植物,特别是葡萄、核果类树木和观赏植物。冠瘿细胞是植物肿瘤细胞,在许多方面与动物肿瘤细胞类似。它们只有无限生长的能力,把一小块冠瘿组织放入不含植物激素的培养基中培养,能长成大的细胞团块(愈伤组织),而正常植物细胞在不加植物激素的培养基中则不能生长。冠瘤拥胞能制造一类叫做冠瘿碱(opine)的氨基酸衍生物(如章鱼碱和蓝曙红),供根癌土壤杆菌作为养料使用,在正常植物细胞中从未发现过这类物质。 根癌土壤杆菌能把植物细胞转化为肿瘤细胞,是由于它含有一种肿瘤诱导质粒,简称Ti质粒。当细菌感染植物时,Ti质粒中大约占这个质粒l/10的DNA片段(称为转移DNA或T—DNA)进入植物细胞,并整合到植物的染色体上,随染色体一起复制。随后T—DNA携带的细菌基因(致瘤基因和合成冠瘿碱的基因)使在植物细胞中表达,使植物细胞转化成肿瘤细胞,并合成冠瘿碱。由于根癌土壤杆菌能把细菌基因引入植物细胞,并在那里表达出蛋白质来,所以人们称它为天然的“遗传工程师”。这给人们以启示。能否用重组DNA技术把与高产、优质、抗病、抗旱和抗盐碱等优良件状有关的基因循人到T—DNA中,然后再通过根癌土壤杆菌的感染把这些基因引入植物细胞呢?最近几年的研究进展表明,这是完全可能的。 Ti质粒是独立复制的环状DNA分子。由大约1.5—2xl05碱基对组成,相当于细菌染色体的3—5%。它有两个主要类型:一类叫章鱼碱质粒,含有这种质粒的细菌能以章鱼碱为氮源和碳源生长;另一类叫蓝署红质粒,含有这种质粒的细菌能利用蓝曙红。每一种根癌土壤杆菌只含有一种Ti质粒,或者是章鱼碱质粒,或者是蓝曙红质粒。这两种质拉的DNA同源性很低,一般为12—16%,说明它们可能具有不同的进化史。T—DNA是Ti质粒中最重要的组成部分.它所携带的基因主要有两个功能:一是决定肿瘤的形成和肿瘤的形态;二是控制冠瘿碱的合成。如果T—DNA中的致瘤基因发生突变,可能出现三种表型:一是产生比正常肿瘤个大的肿瘤;二是使肿瘤长出许多根;三是使肿瘤长出许多芽。在T—DNA区域以外也有一些基因已被定位,其中毒性基因的功能是决定根癌土壤杆菌对植物的感染以及T—DNA的进入和整合;章鱼碱代谢基因和蓝曙红代谢基因分别编码代谢这两种冠瘿碱的酶;质粒转移基因控制细菌的接合作用;不相容性基因控制Ti质粒与其它质粒的不相容性。 Ti质粒之所以能成为把外源基因引入植物的良好载体有两方面的原因。第一,携带质粒的根癌土壤杆菌的寄主范围很广,实际上它能转化所有的双子叶植物。第二,整合到植物染色休上的T—DNA能随种子遗传,而且T—DNA有自己的启动基因,可以启动与其连接的外源基因的转录。此外,也有人研究以植物病毒DNA为载体转移目的基因,或者直接把DNA注射到植物的花粉管和子房中。Ti质粒直接用作基因载体有两个困难:一是它的分子量太大,内切酶位点很多,不容易进行体外重组DNA操作;二是被T—DNA转化的植物细胞成为肿瘤细胞,不能再生成植株。克服第一个困难的办法是先把T—DNA克隆到大肠杆菌的小质粒上,把目的基因插入到小质粒的T—DNA中,然后再设法转移到天然的Ti质粒中。克服第二个困难的办法是在T—DNA的特殊位点中插入目的基因和供筛选用的抗药基因,一方面使致瘤基因发生插入突变,从而使转化细胞能再生成植株,另一方面使目的基因正好位于T—DNA的启动基因的下游,以便启动目的基因的转录。有人经过研究发现了这样一种作用模型:大多数双子叶植物受伤后会产生一种叫丁香酮(acetosyringone)的物质,这时土壤农杆菌感染后,丁香酮在Ti质粒上Vir A的产物A的协同作用下促进了Vir G产物G的活化(即磷酸化),然后产物G相继激活Vir B、V ir c、Vir D、Vir E等操纵子,特别是Vir D和Vir E。前者产生两种蛋白,D1为缺刻酶(nickase),它能特异性地在T—DNA两端产生缺刻;D2则是一种蛋白复合物,它粘在已断开的T—DNA的两端,具“导航”的功能,有人认为它是Rec A,起重组的作用。后者产生单链结分蛋白(SSB),有保护缺刻产生后的T—DNA的功能。T—DNA在诸多蛋白的导航、保护下重组进核基因组。这种转比方法优点是方便,不需分离原生质,且插入的基因拷贝数目少,比较稳定。但它的缺点是土壤农杆菌主要只适于侵染双子叶植物,单子叶植物能被侵染的较少,这就在一定程度上影响了这种方法的推广。有人发现单子叶植物受伤后很少产生丁香酮,这是否是侵染的关键呢?目的许多实验室都在作这方面的探索,以期望能克服这种方法的局限性。http://hiphotos.baidu.com/wfvcshengwu/abpic/item/629fdb39539824d63b87ce6e.jpg

  • 【求助】大肠杆菌的鉴别问题

    做大肠杆菌(确定是大肠杆菌)的生化鉴别,其他项目都出结果了,就是乳糖发酵的那项总是阴性,阳性对照也很好,各位高手能不能帮忙分析下是什么原因呢?[em53] [em53] [em53] ,已经做了三次了,还是一样的结果[em53] [em53]

  • 芽袍杆菌类微生态制剂

    芽袍杆菌类微生态制剂

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701091458_620587_676_3.jpg通常市面上常见乳酸菌的营养食品,今天在一篇文章中发现还有芽袍杆菌类微生态制剂,除具有营养价质外,还有耐高温的性能与大家分享一下。根据菌种类型不同,微生态制剂可分为单一菌种微生态制剂、复合微生态制剂。单一菌种微生态制剂又可分成乳酸菌类、芽孢杆菌类、酵母菌类、霉菌类和光合细菌等。芽孢杆菌在逆境下可以产生芽孢来抵抗不良生长环境的影响,因此是很好的微生态制剂生产菌种,人们对芽抱杆菌的研究也越来越多。利用芽孢杆菌生产微生态制剂具有很多的优点:一当芽孢杆菌以芽抱的形式存在时,进入人或动物胃肠道时可以耐受胃酸和胆盐且保持高活性。二由于芽孢的存在可以耐受100℃的高温,在生产制剂制粒的过程中损失率比较小,活性高,保存时间长。三,芽孢杆菌类可以产生活性很强的淀粉酶、蛋白酶、脂肪酶、纤维素酶等多种酶类物质,还可以产生某些小环肤类细菌素或者一些多肤类物质,其对肠道中的致病均有拮抗作用。

  • 大肠杆菌加标

    我们这边做大肠埃希氏菌的加标,就是在测试过程中,用泵将大肠杆菌打入到过滤设备(膜)中,看它的去除效率,那在这个过程中这个泵啊,盛含有大肠杆菌加标水样的桶啊,管子啊这些设备加标后要不要灭菌的啊,还是是说用什么消毒剂冲两遍就好了?

  • 【原创大赛】新西兰乳粉惊现肉毒杆菌

    http://ng1.17img.cn/bbsfiles/images/2013/08/201308050854_456024_2762510_3.bmp新西兰初级产业部3日宣布,新西兰乳制品巨头恒天然集团旗下部分产品可能含有肉毒杆菌毒素。可能受污染的产品被用于婴儿配方奶粉和运动饮料的生产。 国家质检总局对此高度重视,立即与新西兰驻华使馆取得联系,要求新方立即采取措施,防止问题产品影响中国消费者健康,同时要求进口商立即召回可能受污染产品。 综合新华社 现代快报记者 吴怡  恒天然集团声明  38吨浓缩乳清蛋白受污染  涉事产品或达900吨,已提醒8家客户  恒天然集团3日举行新闻发布会,恒天然集团新西兰奶制品公司执行董事加里·罗马诺说,有3批浓缩乳清蛋白出现质量问题,这些产品是去年5月在新西兰本地一家工厂生产的,涉嫌被污染的产品总量为38吨。污染源是该公司在北岛怀卡托地区豪塔普工厂的一根受污染的管道。  据悉,这些可能造成服食者中毒的受污染浓缩乳清蛋白粉被提供给8家制造商,用作生产婴儿奶粉、儿童成长奶粉和运动饮料的原料,涉事产品估计达到900吨。  恒天然集团表示,检测结果显示,这些浓缩乳清蛋白可能含有肉毒杆菌的菌株,有可能造成食用者中毒。据介绍,这种浓缩乳清蛋白被广泛用于婴儿奶粉、儿童成长奶粉和运动饮料中。但一般的乳制品如鲜奶、奶酪、酸奶和经过超高温消毒的牛奶产品,则不会受到影响。目前,还没有收到问题产品引发的健康问题报告。2日,恒天然集团已将情况向包含3个中国客户在内的8家客户进行了通报。目前,这些客户已紧急展开调查。如有必要,将召回产品。该集团发言人表示,目前不能透露这8家公司和相关产品的名称,也不能透露这些产品销往哪些国家。但新西兰初级产业部表示,受影响国家包括澳大利亚、中国、马来西亚、泰国、越南和沙特阿拉伯。  恒天然集团全球首席执行官西奥·史毕根斯定于3日从欧洲前往中国,向相关机构和客户通报最新情况。史毕根斯表示,集团将尽全力协助这8家客户进行检查,确保受污染的产品从市场收回,同时让公众知情,如果已经卖出就退货。  今年1月被查出含微量双氰氨  今年1月,新西兰初级产业部宣布,恒天然集团生产的奶粉中曾被检测出含有微量双氰氨。  新西兰政府建议  暂停向宝宝喂食可瑞康2段奶粉  新西兰初级产业部3日发表声明,建议新西兰父母暂停为6个月以上宝宝喂食“可瑞康”牌2段婴儿配方奶粉,因为这种奶粉可能使用含有肉毒杆菌的浓缩乳清蛋白粉。  新西兰初级产业部负责食品安全事务的代理局长斯科特·加拉赫当天表示,目前已经确定5个批次“可瑞康”牌2段婴儿配方奶粉使用含有肉毒杆菌的浓缩乳清蛋白粉。其中3个批次在奥克兰仓库中,1个批次在货轮上,另1个批次在澳大利亚。这些“问题奶粉”不会被投放到市场销售。  反应  国家质检总局要求立即召回  针对新西兰企业在浓缩乳清蛋白粉中检出肉毒杆菌一事,国家质检总局对此高度重视,立即与新西兰驻华使馆取得联系,要求新方立即采取措施,防止问题产品影响中国消费者健康。  国家质检总局要求进口商立即召回可能受污染产品,并要求各地检验检疫机构进一步加强新西兰输华乳制品的检验监管。  调查  网购平台仍在销售据了解,新西兰恒天然集团是全球最大的乳品出口企业,也是世界上第6大乳品生产商。目前,恒天然在中国的上海、北京、广州设有分公司。昨天,记者来到位于新街口和进香河的几家大型超市,在进口乳制品货架上,并没有见到这款蛋白粉及恒天然旗下的乳制品品牌。“我们这里的进口乳制品主要来自美国、法国等地,而进口的乳清蛋白粉只有来自美国的一个牌子。”一位售货员告诉记者。  虽然在部分超市里未见到被爆出的这款恒天然浓缩乳清蛋白粉,但在网购平台上搜索,这款蛋白粉在多家网店都有销售。在产品描述信息中,都写着“奶源世界第一,零污染”的口号。现代快报记者联系上其中一家店主,询问查出肉毒杆菌的消息,店主表示并未听说。【多美滋问题乳粉流入市场400多吨 上海卖场开始下架】由新西兰恒天然受肉毒杆菌污染乳粉制成的多美滋奶粉流入市场达420吨。目前,上海质监部门已经全部封存多美滋公司现场涉及问题乳粉的原料及成品,并要求公司立即启动召回程序。4日下午起上海多家超市已开始下架多美滋涉事产品http://ng1.17img.cn/bbsfiles/images/2013/08/201308050900_456025_2762510_3.bmp

  • 【转帖】贝因美进口乳清粉检出阪崎杆菌

    昨天,国家质检总局公布了最新一批截至去年12月进境不合格食品和化妆品的名单,有159批次的产品上了黑名单,当中不乏知名品牌。不合格批次列表包括了乳制品、糖果、饼干、葡萄酒等多种进口食品或食品原料(主要不合格产品见下表)。 多批进口乳清蛋白粉检出阪崎杆菌。据悉,阪崎杆菌在一般情况下不会对人体健康产生危害,但对于新生儿可能致病,严重者可引起坏死性小肠结肠炎、败血症、脑膜炎等。国家质检总局强调,不合格的产品已经依法做退货、销毁或改作他用处理。这些不合格食品、化妆品未在国内市场销售。

  • 【原创大赛】乳品中阪崎肠杆菌的培养过程

    【原创大赛】乳品中阪崎肠杆菌的培养过程

    【生活中的仪器分析】食品安全——饮品卫生大检测检测项目:阪崎杆菌检测目的:阪崎肠杆菌感染的大多数病例都是婴儿,奶粉中含有会导致,婴幼儿脑膜炎新生儿菌血 症新生儿坏死性小肠结肠 炎成人菌血症或局部感染。所以在乳粉出厂前必须对其进行全面检测。检测工艺阶段:成品乳粉检验方法参照:GB 4789.40-20101.实验部分:1.1仪器及试剂 1.1.1仪器:恒温培养箱振荡器天平 无菌锥形瓶无菌培养皿 无菌操作工作台 红外线高温灭菌装置 接种环 1.1.2试剂:缓冲蛋白胨(BPW) 阪崎肠杆菌显色培养基 改良月桂基硫酸盐胰蛋白胨肉汤-万古霉素(mlST-Vm) 1.2 样品的处理 1.2.1 称取待检测样品100g,加入已预热至44℃900mlBPW稀释液的锥形瓶中。轻轻摇匀至充分溶 解,进入36℃培养箱中培养18-20h。http://ng1.17img.cn/bbsfiles/images/2013/11/201311251430_479137_2227357_3.png1.2.2移取1ml样品,转种于10ml mlST-Vm肉汤中,44℃培养24-26h。http://ng1.17img.cn/bbsfiles/images/2013/11/201311251431_479139_2227357_3.png1.2.3制备培养平板,并待其冷却。http://ng1.17img.cn/bbsfiles/images/2013/11/201311251431_479142_2227357_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/11/201311251432_479144_2227357_3.png1.2.4划线接种于两个阪崎肠杆菌显色培养基平板上http://ng1.17img.cn/bbsfiles/images/2013/11/201311251432_479145_2227357_3.png1.2.5每次接种前,接种环必须经过高温消毒灭菌。http://ng1.17img.cn/bbsfiles/images/2013/11/201311251433_479149_2227357_3.png1.2.5将划线后平板通过传递窗传递,将其转移至生化培养箱中培养(36℃ 培养24h)http://ng1.17img.cn/bbsfiles/images/2013/11/201311251432_479145_2227357_3.png1.2.6试验后的剩余样品 工器具 垃圾,必须统一灭菌处理http://ng1.

  • 【求助】微生物大肠杆菌测定为什么要先双倍再单倍、单倍?

    在GB/T 5750.12-2006微生物大肠杆菌测定中,先取10mL水样于10mL双料乳糖蛋白胨培养液中,取1mL水样接种到10mL单料乳糖蛋白胨培养液中,在取稀释10倍的水样于10mL单料乳糖蛋白胨培养液中,每一稀释度接种管5管。那请教下大家, 为什么要先双倍再单倍、单倍,这样培养的区别在哪里?可不可以都用单倍或都用双倍或三倍?浓度高的培养基中为什么移取的水样要多点呢?请大家多多指教。我是新手。谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制