当前位置: 仪器信息网 > 行业主题 > >

夏至草素对照品

仪器信息网夏至草素对照品专题为您提供2024年最新夏至草素对照品价格报价、厂家品牌的相关信息, 包括夏至草素对照品参数、型号等,不管是国产,还是进口品牌的夏至草素对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合夏至草素对照品相关的耗材配件、试剂标物,还有夏至草素对照品相关的最新资讯、资料,以及夏至草素对照品相关的解决方案。

夏至草素对照品相关的论坛

  • 6月21日夏至,你的家乡有何习俗呢?

    夏至是二十四节气中最早被确定的一个节气。  公元前七世http://p4.qhimg.com/dr/200_200_/t016b7ec219b1e1773f.png纪,先人采用土圭测日影,就确定了夏至。每年的夏至从6月21日(或22日)开始,至7月7日(或8日)结束。据《恪遵宪度抄本》:“日北至,日长之至,日影短至,故曰夏至。至者,极也。”夏至这天,太阳直射地面的位置到达一年的最北端,几乎直射北回归线(北纬23°26\'),北半球的白昼达到最长,且越往北昼越长。如海南的海口市这天的日长约13小时多一点,杭州市为14小时,北京约15小时,而黑龙江的漠河则可达17小时以上。夏至以后,太阳直射地面的位置逐渐南移,北半球的白昼日渐缩短。民间有“吃过夏至面,一天短一线”的说法。而此时南半球正值隆冬。  我国古代将夏至分为三候:“一候鹿角解;二候蝉始鸣;三候半夏生。”糜与鹿虽属同科,但古人认为,二者一属阴一属阳。鹿的角朝前生,所以属阳。夏至日阴气生而阳气始衰,所以阳性的鹿角便开始脱落。而糜因属阴,所以在冬至日角才脱落;雄性的知了在夏至后因感阴气之生便鼓翼而鸣;半夏是一种喜阴的药草,因在仲夏的沼泽地或水田中出生所以得名。由此可见,在炎热的仲夏,一些喜阴的生物开始出现,而阳性的生物却开始衰退了。  我国民间把夏至后的15天分成3“时”,一般头时3天,中时5天,末时7天。这期间我国大部分地区气温较高,日照充足,作物生长很快,生理和生态需水均较多。此时的降水对农业产量影响很大,有“夏至雨点值千金”之说。一般年份,这时长江中下游地区和黄淮地区降水一般可满足作物生长的要求。《荆楚岁时记》中记有:“六月必有三时雨,田家以为甘泽,邑里相贺。”可见在1000多年前人们已对此降雨特点有明确的认识。

  • 夏至到来了

    今日是夏至![img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306210538353721_6707_1642069_3.png[/img]

  • 今日是夏至

    2023年6月21日,农历五月初四,今日夏至。早安![微笑][庆祝][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306210725285702_5953_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306210725287004_7930_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306210725287895_2740_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306210725287856_8994_1642069_3.png[/img]

  • 【求助】木犀草苷对照品

    http://ng1.17img.cn/bbsfiles/images/2012/09/201209272130_393425_2255248_3.gifHPLC测定木犀草苷对照品为什么峰前面有个小峰????

  • 维生素A醋酸酯对照品

    目前我们实验室用的维生素A醋酸酯的对照品的供应商断货了,求问一下大家都用的是哪些供应商的对照品?我们也可以去买。我们试用过Sigma的和USP的发现都不行。Sigma的是实际含量和COA上的含量出入较大。USP的是一个混合物有全反式的和CIS的,由于我们不是用的中国药典附录上测定维生素A的方法,所以我们的液相分不开这2种物质,所以也不能用。

  • 请教对照品正常,样品拖尾的原因

    药典 金钱草含量测定以甲醇一O.4%磷酸溶液(50:50)为流动相;检测波长为360nm,温度30℃。 对照品溶液的制备 取槲皮素对照品、山柰素对照品适量,精密称定,加80%甲醇制成每1ml各含槲皮素4μg、山柰素20μg的溶液,即得 供试品溶液的制备 取本品粉末(过三号筛)约1.5g,精密称定,置具塞锥形瓶中,精密加入80%甲醇50ml,密塞,称定重量,加热回流1小时,放冷,再称定重量,用80%甲醇补足减失的重量,摇匀,滤过。精密量取续滤液25ml,精密加入盐酸5ml,置90℃水浴中加热水解1小时,取出,迅速冷却,转移至50ml量瓶中,用80%甲醇稀释至刻度,摇匀,滤过,取续滤液,即得。 本品按干燥品计算,含槲皮素和山柰素的总量不得少于O.10%。

  • 药物分析核黄素磷酸钠,用核黄素对照品可否?

    样品为复方维生素,其中一项是核黄素磷酸钠,没找到核黄素磷酸钠的对照品,故用的核黄素对照品样品制备:先用水溶,然后用流动相稀释,流动相弱酸性做出的结果比标示量低了很多啊用核黄素对照品代替核黄素磷酸钠对照品,请问结果可信吗?

  • 【求助】没有对照品,如何判定哪些峰为茶皂素???

    [em09509]最近一直在做茶皂素的检测,从某试剂公司买来茶皂素想作为对照品,可是用液相怎么也做不出有紫外吸收的峰来,自己这边的样品就会出一些峰,用蒸发光做也一样。我是用乙腈跟PH3.0的冰醋酸水溶液做的流动相,走梯度,有哪位好心人来指点一下[em09509]

  • 【转帖】USP标准品中英文对照 1

    http://www.greenherbs.com.cn/bbs/dispbbs.asp?boardid=2&Id=7651724918 唑吡坦杂质A CIV Zolpidem Related Compound A CIV 对照品/标准品1724907 酒石酸唑吡坦 CIV Zolpidem Tartrate CIV 对照品/标准品1724893 唑吡坦 CIV Zolpidem CIV 对照品/标准品1724805 盐酸唑拉西泮 Zolazepam Hydrochloride 对照品/标准品1724769 硫酸锌 Zinc Sulfate 对照品/标准品1724747 氧化锌 Zinc Oxide 对照品/标准品1724689 齐留通杂质C Zileuton Related Compound C 对照品/标准品1724678 齐留通杂质B Zileuton Related Compound B 对照品/标准品1724667 齐留通杂质 A Zileuton Related Compound A 对照品/标准品1724656 齐留通  Zileuton 对照品/标准品1724532 齐多夫定杂质C(胸腺嘧啶) Zidovudine Related Compound C (thymine) 对照品/标准品1724521 齐多夫定杂质B Zidovudine Related Compound B 对照品/标准品1724500 齐多夫定  Zidovudine 对照品/标准品1724317 扎西他滨杂质A Zalcitabine Related Compound A 对照品/标准品1724306 扎西他滨 Zalcitabine 对照品/标准品1724000 盐酸育亨宾 Yohimbine Hydrochloride 对照品/标准品1722005 木糖 Xylose 对照品/标准品1721002 盐酸赛洛唑啉 Xylometazoline Hydrochloride 对照品/标准品1720600 木糖醇 Xylitol 对照品/标准品1720429 盐酸赛拉嗪 Xylazine Hydrochloride 对照品/标准品1720407 赛拉嗪 Xylazine 对照品/标准品1720203 呫吨酮 Xanthone 对照品/标准品1720000 呫吨酸 Xanthanoic Acid 对照品/标准品1719102 华法林杂质 A Warfarin Related Compound A 对照品/标准品1719000 华法林  Warfarin 对照品/标准品1717708 牡荆素(牡荆甙)  Vitexin 对照品/标准品1717504 含量测定系统适用性用维生素D Vitamin D Assay System Suitability 对照品/标准品1716002 维生素A Vitamin A 对照品/标准品1715000 硫酸紫霉素 Viomycin Sulfate 对照品/标准品1714528 长春瑞滨杂质A Vinorelbine Related Compound A 对照品/标准品1714506 酒石酸长春瑞滨 Vinorelbine Tartrate 对照品/标准品1714007 硫酸长春新碱 Vincristine Sulfate 对照品/标准品1713004 硫酸长春碱 Vinblastine Sulfate 对照品/标准品1711508 阿糖腺苷 Vidarabine 对照品/标准品1711472 维替泊芬杂质A Verteporfin Related Compound A 对照品/标准品1711461 维替泊芬  Verteporfin 对照品/标准品1711440 维拉帕米杂质F Verapamil Related Compound F 对照品/标准品1711439 维拉帕米杂质E Verapamil Related Compound E 对照品/标准品1711428 维拉帕米杂质D Verapamil Related Compound D 对照品/标准品1711406 维拉帕米杂质B Verapamil Related Compound B 对照品/标准品1711304 维拉帕米杂质A Verapamil Related Compound A 对照品/标准品1711224 维库溴铵杂质F Vecuronium Bromide Related Compound F 对照品/标准品1711202 盐酸维拉帕米 Verapamil Hydrochloride 对照品/标准品1711188 维库溴铵杂质C Vecuronium Bromide Related Compound C 对照品/标准品1711177 维库溴铵杂质B Vecuronium Bromide Related Compound B 对照品/标准品1711166 维库溴铵杂质A Vecuronium Bromide Related Compound A 对照品/标准品1711155 维库溴铵 Vecuronium Bromide 对照品/标准品1711133 赖氨加压素 Lypressin 对照品/标准品1711100 加压素 Vasopressin 对照品/标准品1711009 香草醛熔点标准品 Vanillin Melting Point Standard 对照品/标准品1710006 香草醛  Vanillin 对照品/标准品1709018 Vancomycin B with Monodechlorovancomycin 对照品/标准品1709007 盐酸万古霉素 Vancomycin Hydrochloride 对照品/标准品1708795 缬沙坦杂质 C Valsartan Related Compound C 对照品/标准品1708784 缬沙坦杂质 B Valsartan Related Compound B 对照品/标准品1708773 缬沙坦杂质 A  Valsartan Related Compound A 对照品/标准品1708762 缬沙坦  Valsartan 对照品/标准品1708751 戊柔比星分离度用混合物 Valrubicin Resolution Mixture 对照品/标准品1708730 戊柔比星 Valrubicin 对照品/标准品1708729 丙戊酸杂质A Valproic Acid Related Compound A 对照品/标准品1708718 丙戊酸杂质 B Valproic Acid Related Compound B 对照品/标准品1708707 丙戊酸 Valproic Acid 对照品/标准品1708503 L- 缬氨酸  L-Valine 对照品/标准品1708015 D-缬更昔洛韦 D-Valganciclovir 对照品/标准品1708004 缬更昔洛韦盐酸盐 Valganciclovir Hydrochloride 对照品/标准品1707908 缬草烯酸 Valerenic Acid 对照品/标准品1707894 万乃洛韦杂质G Valacyclovir Related Compound G 对照品/标准品1707883 万乃洛韦杂质F Valacyclovir Related Compound F 对照品/标准品1707872 万乃洛韦杂质E Valacyclovir Related Compound E 对照品/标准品1707861 万乃洛韦杂质D Valacyclovir Related Compound D 对照品/标准品1707855 万乃洛韦杂质C Valacyclovir Related Compound C 对照品/标准品1707839 盐酸万乃洛韦 Valacyclovir Hydrochloride 对照品/标准品1707806 熊去氧胆酸  Ursodiol 对照品/标准品1706701 C13尿素 Urea C 13 对照品/标准品1706698 尿素  Urea 对照品/标准品1706009 乌拉莫司汀  Uracil Mustard 对照品/标准品1705800 阿糖尿苷 Uracil Arabinoside 对照品/标准品1705505 十一烯酸 Undecylenic Acid 对照品/标准品1705323 泛癸利酮杂质A Ubidecarenone Related Compound A 对照品/标准品1705312 系统适用性试验用泛癸利酮 Ubidecarenone for System Suitability 对照品/标准品1705301 泛癸利酮 Ubidecarenone 对照品/标准品1705006 L- 酪氨酸 L-Tyrosine 对照品/标准品1704003 泰洛沙泊 Tyloxapol 对照品/标准品1703850 酒石酸泰洛星 Tylosin Tartrate 对照品/标准品1703805 泰洛星 Tylosin 对照品/标准品1702008 氯筒箭毒碱 Tuboc

  • 2【讨论】内毒素检查中供试品对照溶液制备的问题

    问题1:内毒素日常检查中:在加入鲎试剂前的供试品对照溶液(0.1ml)药典规定是含内毒素浓度2λ的。假如MVD=2,C=10mg/ml,λ=0.25EU/ml。那么应该用1EU/ml(也就是4λ)的内毒素溶液对半稀释浓度为10mg/ml的供试品溶液,终浓度才是含量为0.5EU/ml(2λ)内毒素、供试品为MVD浓度的供试液的供试品对照液!!! 问题2:还有如果供试品为注射用水,假如L=0.25,那么鲎试剂的灵敏度最少要用λ=0.125的;如果用λ=0.25的,因为供试品液(0.1ml)加入鲎试剂(0.1ml)后,稀释了1倍,假如结果为+,那么说明供试品的内毒素限制大于0.5EU?而不是大于0.25EU吧?

  • 【原创大赛】中风Ⅰ号合剂(医院制剂用药品的原料(药材)和成品的质量标准草案)

    【原创大赛】中风Ⅰ号合剂(医院制剂用药品的原料(药材)和成品的质量标准草案)

    [align=center][b]中风Ⅰ号合剂[/b][/align][align=center][b]医院制剂用药品的原料(药材)和成品的质量标准草案[/b][/align][b]一. 医院制剂用药品的原料(药材)的质量标准草案:[/b](1)大黄:本品为蓼科植物掌叶大黄Rheumpalmatuml.、唐古特大黄Rheumtanguticum.Maxim.exBalf. 或药用大黄RheumoffcihaleBaill. 的干燥根和根茎。秋末茎叶枯萎或次春发芽前采挖,除去细根,刮去外皮,切瓣或段,绳穿成串干燥或直接干燥。应符合中华人民共和国药典2015年版一部23页大黄项下的有关规定。(2)钩藤:为茜草科植物钩藤 [i]Unacaria rhynchophylla[/i](Miq.)Miq.ex Havil.、大叶钩藤[i] Uncaria macrophylla[/i] Wall.、毛钩藤[i]Uncaria hirsuta[/i] Havil.、华钩藤 [i]Uncaria sinensis[/i](Oliv.)Havil.或无柄果钩藤[i]Uncaria sessilifructus[/i] Roxb.的干燥带钩茎枝。秋、冬二季采收,去叶,切段,晒干。主产于[color=#333333]浙江、福建、广东、广西[/color][color=#333333]等省。[/color]应符合中华人民共和国药典2015年版一部257页钩藤项下的有关规定。(3)白芍:为毛莨科植物芍药Paeonia lactiflora PalL.的干燥根。夏、秋二季采挖,洗净,除去头尾和细根,置沸水中煮后除去外皮或去皮后再煮,晒干。主产于[color=#333333]浙江、安徽、四川等省。[/color]应符合中华人民共和国药典2015年版一部105页白芍项下的有关规定。 (4)夏枯草:为唇形科植物夏枯草Prunella vulgarisL.的干燥果穗。夏季果穗呈棕红色时采收,除去杂质,晒干。主产于[color=#333333]江苏、安徽、浙江、河南[/color]等省。应符合中华人民共和国药典2015年版一部280页夏枯草项下的有关规定。(5)浙贝母:为百合科植物浙贝母Fritillariathunbergii Miq.的干燥鱗茎。初夏植株枯萎时采挖,洗净。大小分开,大者除去芯芽,习称“大贝”;小者不去芯芽,习称“珠贝”。分别撞擦,除去外皮,拌以锻过的贝壳粉,吸去擦出的浆汁,干燥;或取鱗茎,大小分开,洗净,除去芯芽,趁鲜切成厚片,洗净,干燥,习称“浙贝片”。主产于[color=#333333]浙江、江苏、湖南[/color]等省。应符合中华人民共和国药典2015年版一部292页浙贝母项下的有关规定。(6)地龙:为钜蚓科动物参环毛蚓Pheretima aspergillum(E.Perrier)、通俗环毛蚓Pheretima vu1garis Chen、威廉环毛蚓Pheretima guillelmi(Michaelsen)或栉盲环毛蚓Pheretima pectinifera Michaelsen的干燥体。前一种习称“广地龙”,后三种习称“沪地龙”。广地龙春季至秋季捕捉,沪地龙夏季捕捉,及时剖开腹部,除去内脏和泥沙,洗净,晒干或低温干燥。[color=#333333]广地龙[/color][i]主产于[/i]广东、海南、广西、福建等省。沪[i]地龙主产于[/i]上海、浙江等省。应符合中华人民共和国药典2015年版一部122页地龙项下的有关规定。(7)石决明:为鲍科动物杂色鲍Haliotis diversicolor Reeve、皱纹盘鲍Haliotis discus hannai Ino、羊鲍Haliotis ovinaGmelin、澳洲鲍Haliotis ruber(Leach)、耳鲍Haliotis asinina Linnaeus或白鲍Haliotislaevigata(Donovan)的贝壳。夏、秋二季捕捞,去肉,洗净,干燥。主产于[color=#333333]浙江、福建、台湾、广东、海南、广西[/color]等省。应符合中华人民共和国药典2015年版一部91页石决明项下的有关规定。(8)鲜竹沥:为禾木科植物粉绿竹Phyllostachys glaucaMcClure、净竹Phyllostachysnuda McClure及同属数种植物的鲜杆经加热后自然沥出的液体,煮沸后,加适量防腐剂制得。主产于四川、江西等省。应符合中华人民共和国卫生部药品标准中药材第一册99页鲜竹沥项下的有关规定。[b]二.医院制剂用药品的成品的质量标准草案:[/b][align=center][b]中风Ⅰ号合剂[/b][/align][align=center][/align][b]【处方】 [/b]大黄60g 钩藤120g 白芍100g 夏枯草150g浙贝母90g 地龙100g 石决明240g 鲜竹沥100ml[b]【制法】 [/b]以上八味药材,除鲜竹沥,其余七味用水浸渍30分钟,煎煮两次,第一次1.5小时,第二次1小时,合并煎液,滤过,滤液静置24小时,取上清液浓缩至约800ml,加入鲜竹沥、甜菊苷、对羟基苯甲酸乙酯和苯甲酸,搅匀,过滤,滤液加水使成1000ml,灌装,灭菌,即得。[b]【性状】 [/b]本品为棕褐色液体,味微苦、甜。[b]【鉴别】 [/b](1)取本品20ml,加盐酸2ml,水浴加热30分钟,放冷,用乙醚振摇提取3次,每次25ml,合并乙醚液,挥干,残渣加甲醇1ml使溶解,作为供试品溶液。取大黄素对照品、大黄酚对照品及大黄酸对照品,加甲醇分别制成每1ml含0.2mg的溶液,作为对照品溶液。照薄层色谱法(中华人民共和国药典2015年版四部 通则0502)试验,吸取上述两种溶液各5μl,分别点于同一硅胶G薄层板上,以石油醚(30〜 60°C)-甲酸乙酯-甲酸(15:5:1)的上层溶液为展开剂,展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。(2)取本品20ml,用乙醚振摇提取2次,每次20ml,弃去乙醚液,水液用水饱和的正丁醇振摇提取2 次,每次20ml,合并正丁醇液,用水20ml洗涤1次,取正丁醇液,蒸干,残渣加甲醇2ml使溶解,作为供试品溶液。另取芍药苷对照品,加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(中华人民共和国药典2015年版四部 通则0502)试验,吸取上述两种溶液各5μl,分别点于同一硅胶G薄层板上,以三氯甲烷-乙酸乙酯-甲醇-甲酸(8:1:2:0.1)为展开剂,展开,取出,晾干,喷以5%香草醛硫酸溶液,在105℃加热至斑点显色清晰。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。[b]【检查】 相对密度[/b] 应不低于1.02(中华人民共和国药典2015年版四部通则0601)。[b] pH值[/b] 应为4.0~6.0(中华人民共和国药典2015年版四部 通则0631)[b] 其他 [/b]应符合合剂项下有关的各项规定(中华人民共和国药典2015年版四部 通则0181)。[b]【含量测定】 [/b]照高效液相色谱法(中华人民共和国药典2015年版四部通则0512)测定[b]色谱条件与系统适应性试验[/b] 以十八烷基硅烷键合硅胶为填充剂,以乙腈-0.1%磷酸(14:86)为流动相,检测波长为230nm。理论塔板数按芍药苷峰计算应不低于3000。[b]对照品溶液的制备 [/b]精密称取芍药苷对照品适量,精密称定,加流动相制成每1ml含芍药苷80μg的对照品溶液,即得。[b]供试品溶液的制备[/b] 精密吸取样品1ml,置25ml量瓶中,用流动相稀释并定容至刻度,即为供试品溶液。[b]测定法[/b] 分别精密吸取对照品溶液与供试品溶液各10μl,注入液相色谱仪,测定,即得。本品含芍药苷(C[sub]23[/sub]H[sub]28[/sub]O[sub]11[/sub])不得少于0.35mg/ml。[b]【功能与主治】 [/b]平肝熄风、化痰通腑。用于各类急性期中风,半身不遂,肢体麻木,口眼喎斜,舌强语蹇。[b]【用法与用量】 [/b]口服,一日2次,一次50ml。或遵守医嘱。[b]【规 格】 [/b] 100ml/瓶。[b]【贮 藏】 [/b] 密封。[b]【有效期】 [/b]2年。[align=center][b]中风Ⅰ号合剂[/b][/align][align=center][b]医院制剂用药品的原料(药材)和成品的[/b][/align][align=center][b]质量标准草案起草说明[/b][/align][b]一.医院制剂用药品的原料(药材)的质量标准草案起草说明:[/b](1)大黄:同正文。 (2)钩藤:同正文。 (3)白芍:同正文。(4)夏枯草:同正文。 (5)浙贝母:同正文。 (6)地龙:同正文。(7)石决明:同正文。 (8)鲜竹沥:同正文。[b]二.临床用药品成品的质量标准草案起草说明:【名称】 [/b]中风Ⅰ号合剂 ZhongfengYihao Heji[b]【处方】[/b] 同正文。[b]【制法】 [/b]同正文。[b]【性状】 [/b]同正文。[b]【鉴别】 [/b]处方由8味中药材组成。本标准建立2项薄层色谱鉴别方中2味药材:大黄、白芍。【鉴别】(1)、(2)均试验了三批样品,并分别与对应的阴性样品进行了比较,均无干扰,且薄层色谱斑点清晰,表明方法可行。[b](1)系方中大黄的定性鉴别。[/b]以大黄素、大黄酚、大黄酸对照品鉴别方中大黄,通过阴性对照试验及三批样品的实验观察,阴性无干扰,专属性强,故选大黄素、大黄酚及大黄酸对照品作为鉴别指标,列入正文(见图1)。[img=,596,504]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010912419216_3978_2166779_3.png!w596x504.jpg[/img][b](2)系方中白芍的定性鉴别。[/b]以芍药苷对照品鉴别方中白芍,通过阴性对照试验及三批样品的实验观察,阴性无干扰,专属性强,故选芍药苷对照品作为鉴别指标,列入正文(见图2)。[img=,690,649]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010913524007_844_2166779_3.png!w690x649.jpg[/img][b]【含量测定】[/b]白芍为方中主药,据《本草拾遗》记载,具有[color=#333333]养血柔肝,缓中止痛,敛阴收汗[/color]的作用。本文采用HPLC法测定中风I号合剂中白芍所含有的芍药苷,在测定波长下,阴性无干扰,方法快捷,简便。因此,本文采用HPLC法测定芍药苷的含量,以达到控制中风I号合剂质量的目的。[b](一)方法[/b]照高效液相色谱法(中华人民共和国药典2015年版四部 0512)测定[b]色谱条件与系统适应性试验[/b] 以十八烷基硅烷键合硅胶为填充剂,以乙腈-0.1%磷酸(14:86)为流动相,检测波长为230nm。理论塔板数按芍药苷峰计算应不低于3000。[b]对照品溶液的制备[/b] 精密称取芍药苷对照品适量,精密称定,加流动相制成每1ml含芍药苷80μg的对照品溶液,即得。[b]供试品溶液的制备[/b] 精密吸取样品1ml,置25 ml量瓶中,用流动相稀释并定容至刻度,摇匀,即为供试品溶液。[b]测定法[/b] 分别精密吸取对照品溶液与供试品溶液各10μl,注入液相色谱仪,测定,即得。本品含芍药苷([color=#333333]C[sub]23[/sub]H[sub]28[/sub]O[sub]11[/sub][/color])的量不得少于0.35mg/ml。[b](二)方法学考察1 仪器与试药[/b]戴安U3000高效液相色谱仪;梅特勒XS205DU电子天平;艾科浦超纯水器。中风I号合剂由福建省南平市人民医院制剂室提供。芍药苷对照品(批号110736-201842,含量97.4%)购自中国食品药品生物检定研究院。乙腈为色谱纯;水为超纯水。[b]2 方法与结果2.1 色谱条件[/b]色谱柱:Welch Ultimate XB-C18(4.6mm×250mm,5μm);流动相:乙腈-0.1%磷酸(14:86)检测波长:230nm;流速:1.0mlmin[sup]-1[/sup];柱温:30 ℃;进样量:10μl理论塔板数:按芍药苷峰计算应不低于3000。[b]2.2 提取方法的选择 [/b]在供试品溶液的制备中,进行了直接稀释法、超声法的对比研究,结果两者无显著性差别,从操作简便快捷的角度选择直接稀释法,结果见表2。 表2 芍药苷不同提取方法含量测定结果比较 [table=594][tr][td] [align=center]提取方法[/align] [/td][td] [align=center]芍药苷含量(mg/ml)[/align] [/td][td] [align=center]平均含量(mg/ml)[/align] [/td][/tr][tr][td=1,2] [align=center]稀释法[/align] [/td][td] [align=center]0.6890[/align] [/td][td=1,2] [align=center]0.69[/align] [/td][/tr][tr][td] [align=center]0.6888[/align] [/td][/tr][tr][td=1,2] [align=center]超声法[/align] [/td][td] [align=center]0.6892[/align] [/td][td=1,2] [align=center]0.69[/align] [/td][/tr][tr][td] [align=center]0.6890[/align] [/td][/tr][/table][b]2.3 溶液的制备[/b]2.3.1对照品储备液的制备 精密称取芍药苷对照品10mg,置10ml量瓶中,用甲醇溶解并稀释至刻度,制得对照品储备液(0.974g/L芍药苷)。2.3.2 供试品溶液的制备 精密吸取样品1ml,置25ml量瓶中,用流动相稀释并定容至刻度,摇匀,即为供试品溶液。2.3.3 阴性对照溶液的制备 按处方比例制备不含芍药苷的阴性样品,同2.3.2制备方法制备阴性对照溶液。[b]2.4 线性关系考察[/b]将芍药苷对照品储备液逐步稀释,得到浓度分别为4.87,9.74,24.35,48.70,73.05,97.40μg/ml六个浓度的系列标准溶液,进样测定,结果见表3 [table][tr][td=3,1] [align=center]表3 芍药苷线性关系测定结果[/align] [/td][/tr][tr][td] [align=center]进样体积(μl)[/align] [/td][td] [align=center]芍药苷浓度(μg/ml)[/align] [/td][td] [align=center]峰面积(mAU*min)[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]4.87[/align] [/td][td] [align=center]1.105[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]9.74[/align] [/td][td] [align=center]2.252[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]24.35[/align] [/td][td] [align=center]5.853[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]48.70[/align] [/td][td] [align=center]11.909[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]73.05[/align] [/td][td] [align=center]17.511[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]97.40[/align] [/td][td] [align=center]23.240[/align] [/td][/tr][/table]以峰面积(Y)为纵坐标,以芍药苷浓度(X)为横坐标绘制标准曲线。结果表明,芍药苷在4.87~97.40μg/ml的范围内线性关系良好(见图3)[img=,611,350]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010916394318_5586_2166779_3.png!w611x350.jpg[/img][img=,650,539]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010916445229_4881_2166779_3.png!w650x539.jpg[/img][img=,631,383]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010916515496_9756_2166779_3.png!w631x383.jpg[/img][img=,618,717]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010916572812_7861_2166779_3.png!w618x717.jpg[/img][img=,646,703]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010917032958_603_2166779_3.png!w646x703.jpg[/img][b]【功能与主治】 [/b] 同正文。[b]【用法与用量】 [/b] 同正文。[b]【规 格】 [/b] 同正文。[b] 【贮 藏】 [/b]同正文。[b]【有效期】 [/b]同正文。

  • 极草5X冬虫夏草含片未检出虫草素 厂家称不便回复

    极草5X冬虫夏草含片未检出虫草素  厂家称不便回复

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412051620_526021_2206495_3.jpg12月1日,一家检测机构内,打假人王海向记者展示“极草含片”的检测报告显示:未检出虫草素。新京报记者 王嘉宁 摄http://ng1.17img.cn/bbsfiles/images/2014/12/201412051621_526022_2206495_3.jpg打假人王海送检的青海春天药用资源科技有限公司生产的极草5X经典含片。 实习生 彭子洋 摄 极草含片未检出虫草素遭质疑  专家称冬虫夏草可以调节人体免疫力,但“抗癌”效果不明确,此前并未有明确证据显示其含虫草素  新京报讯 (记者侯润芳)极草5X冬虫夏草,一种宣称可以“含着吃”的冬虫夏草,以其价格昂贵为市民所熟知。近日,打假人士王海将一盒青海春天药用资源科技有限公司(以下简称“青海春天公司”)生产的极草5X经典含片送检,结果显示,该品牌冬虫夏草并不含有虫草素。  对此,青海春天公司回应记者称,“不方便回复”。  从事真菌学研究的中科院一研究机构也表示,此前研究中也并未在采集的野外冬虫夏草中检测出虫草素。负责检测的专家表示,冬虫夏草确实可以调节人体免疫力,但是否有抗癌效果并不明确,公众应理性看待冬虫夏草。  11月17日,打假人士王海携带一盒青海春天公司生产的极草5X经典含片到北京某检测中心检测是否含有虫草素,“冬虫夏草宣传的神奇功效让我产生了质疑。”  “冬虫夏草有效成分中,只有虫草素是冬虫夏草独有,其他成分在别的物质上也有。”王海称,“检测虫草素含量就能知道冬虫夏草的真实功效。”  王海介绍,他送检的结果是“未检出虫草素。”但该检测中心工作人员介绍,检测仪器的检出限是5.63μ克/克,“未检测出极草含有虫草素(不等于完全没有),也可能有,但因为极其微量,无法检测出。”  记者现场看到,王海所选择的这家检测中心属中国合格评定国家认可委员会实验室认可中心,具有食品验证机构资质认定证书和资质认定计量认证证书等认证。

  • 对照品的配制

    请问下大家,对照品配制你们是一次同时配两个浓度,做一下校正因子,还是和以前没用完的校正啊?一般两个对照品的RSD应该控制在多少?

  • 30微克/ml的山奈素对照品溶液跑高液,为什么不出峰啊

    [color=#444444]请问大神们,麻烦大家帮我分析一下,我实在没法了:我用浓度为30微克/ml的山奈素对照品溶液跑高液,色谱条件是甲醇:0.4%磷酸水比例50:50,,流速1ml/min,柱温30℃,检测波长为360nm.进样量为20微升.为什么跑不出来任何峰形啊。。用异鼠李素对照品都能跑出来的,山奈素的出峰位置应该是在异鼠李素之前的。。。[/color][color=#444444][/color]

  • 【讨论】夏枯草具有明确毒性 王老吉没有必要的凉茶

    “王老吉”凉茶据说是广东鹤山人王泽邦(乳名王吉)于1828年开始销售的产品。目前作为植物饮料销售,其标明的成分为“水、白砂糖、仙草、蛋花、布渣叶、菊花、金银花、夏枯草、甘草”,后面的7种都是中草药(“蛋花”不是指鸡蛋,而是夹竹桃科有毒植物缅栀的花)。  和其他广东凉茶一样,“王老吉”自称具有“清热去火”的保健功能,“怕上火就喝王老吉”的广告早已喊遍全国。  夏枯草的明确毒性  王老吉以及许多广东凉茶之所以使用夏枯草,是由于夏枯草据说在夏至后逐渐枯萎,中医理论因此认为它生来有“纯阳之气”,一遇阴气即枯,就可以用它来“补厥阴血脉”。但是,迄今没有任何严格的临床试验证明夏枯草对人体有什么有益功效。  用自身的经历难以确定某种疾病与饮用某种饮料之间存在因果关系,因此,叶征潮认为自己的胃溃疡是由于饮用了王老吉所导致并没有循证依据。然而,王老吉所含的夏枯草成分具有毒副作用,却是有科学证据的。主要的证据来自动物实验。有些人对此很不以为然,认为中草药已用了几百上千年,经验已足以证明它们很安全,不比动物实验更有说服力吗?  这种说法虽然在中国人中很流行,却经不起推敲。一种药物被使用了几百几千年,并不能证明其无毒。如果一种药物的毒性很强很急,吃了以后很快就出现严重反应乃至致命,那是有可能通过经验发现的。但是有的药物,毒性较慢、中毒症状不那么明显,例如要经过几年、十几年才会出现症状的慢性毒,以及能导致癌症、畸胎、肝肾损伤的药物毒性,是很难通过经验摸索出来的。  因此用动物做毒理学实验是必不可少的。我们可以让动物服用大剂量的药物,以此推测长期或大量服用药物所造成的后果。也可以解剖动物的身体、器官,发现药物对器官造成的伤害。这些都是经验不可能发现、也没法拿人体来做实验的。  实际上中医典籍对夏枯草是否有毒,有相互冲突的说法。《神农本草经》将夏枯草归为有毒、不可久服的“下品”药,而《本草纲目》则称其“无毒”。  科学的证据则是明确的。有多项动物实验表明夏枯草能导致不良反应。夏枯草的乙醇提取液能抑制小鼠的细胞和体液免疫反应。皮下注射可使动物胸腺、脾脏明显萎缩,肾上腺明显增大;腹腔注射可使血浆皮质醇水平明显升高,外周血淋巴细胞数量明显减少。这些都表明夏枯草可能是一种免疫抑制剂,长期或大量服用能使机体的免疫功能受到抑制(以上研究见于《山西医药杂志》《甘肃医药》等刊物)。  另外,服用夏枯草水提物能使小鼠的血清丙氨酸基移换酶和血清天门冬氨基移换酶的值都明显升高,说明夏枯草还有肝脏毒性作用。临床上,有幼儿因服用含苍耳子、夏枯草和鸡内金的中草药3个月导致急性重症肝炎而死亡的报道(台湾“张景岳中医药研究中心”2003年通报)。也有报道因服用夏枯草导致过敏,表现为皮肤瘙痒、丘疹,甚至因过敏性休克而昏倒(从1983年开始有多起事故通报,见于《上海中医药杂志》《四川中医》等期刊)。  没有必要的凉茶  有的人承认喝凉茶有可能会让身体出问题,但把这归咎为不懂乱喝。比如,一种说法是“胃寒”的人不宜喝凉茶。“胃寒”是中医术语,是很模糊的描述,大概相当于胃酸分泌过少导致的消化不良。但是夏枯草的不良反应主要发生在免疫系统和肝脏,与消化系统并无关联,所以不管是“胃寒”还是“胃热”的人都有可能出现不良反应。  当然,药物都难免会有不良反应,有时为了治病只好忍受其不良反应,但是前提是不良反应不是特别严重,而且该药物确实是有疗效的。如果一种药物并没有被证明对身体有何益处,却已知会有毒副作用,那么还去服用它,显然是很不明智的。  所以,接下来的问题就是,喝凉茶对身体会有什么特别的益处吗?许多人认为有,“怕上火就喝王老吉”嘛。“上火”也是中医对许多症状的一个笼统、模糊的说法,因素很多,在现代医学中没有对应的称呼。口腔“上火”症状,有的可能是因为缺乏维生素B2导致的唇炎、口角炎,有的可能是缺乏维生素C导致的牙龈、粘膜出血,更常见的可能是细菌、病毒感染引起的炎症(例如口腔炎、口腔溃疡、急性牙周炎、牙龈炎等)。天气炎热、干燥引起的脱水,也会让人觉得“上火”。  针对不同的病因要做不同的治疗。缺维生素引起的要适量补充维生素,细菌感染引起的要使用抗菌、消炎药。病毒感染引起的无特效药,通常几天内会自愈,但是病毒仍然在体内潜伏,在某些情况下(例如精神压力大)会被再次激活,所以这类“上火”不能断根。至于脱水,当然要补充水分。  那么凉茶对上述种种“上火”会有什么疗效吗?没有证据能够证明。你喝了凉茶觉得“火”降下去了,可能是身体的自我康复,也可能是心理作用,还可能是因为凉茶补充了身体欠缺的水分或某种维生素——在这种情况下喝水、茶或果汁显然更为安全。  有人认为广东天气潮湿、气候炎热,所以必须喝凉茶。但世界上生活在“天气潮湿、气候炎热”地方的人多得是,他们不喝凉茶身体也不比广东人差。除非广东人的身体有必须喝凉茶的特殊构造,否则没有任何必须喝凉茶的道理。  因此喝这类可能含有有毒成分的凉茶是一种对身体有害无益的生活习惯。不良的生活习惯很难改变,没有必要也不可能去禁止。但是对于企业为迎合乃至于推广不良生活习惯而生产的产品,却应该加强管理。既然王老吉含有具有毒副作用的草药成分,就不应该作为普通饮料或保健饮料销售——作为食品和保健品的基本要求是必须没有毒副作用,有毒副作用的产品应该作为药品加以管理

  • 【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分酸浆(拉丁文名:Physali alkekengi L.)又名红菇娘、挂金灯、戈力、灯笼草、灯笼果、洛神珠、泡泡草、鬼灯等北方称为菇蔫儿、姑娘儿,以果实供食用。化学成分含酸浆苦素A(Physalin A)、酸浆苦素B、酸浆苦素C、木犀草素(Luteolin)及木犀草素-7-β-D-葡萄糖甙。果实含枸橼酸、草酸、维生素C、酸浆红色素(physalien)、酸浆醇(physanol)A,B。花萼含α胡萝卜素、酸浆黄质(physoxanthin)及叶黄素等,种子油的不皂化物中分得多种4α-甲基甾醇,主要为禾本甾醇(gramisterol)和钝叶醇(obtusifoliol)及4种新甾体。此外尚含多种4-脱甲基甾醇,如胆甾醇和24-乙基胆甾醇等。还含有多种三萜3β-一元醇,其中环木菠萝烷醇(cycloartanol)35%,环木菠萝烯醇(cycloartenol)27%、羊毛脂-8-烯-3β-醇(lanost-8-en-3β-ol)。木犀草素(luteolin)是一种天然黄酮类化合物,存在于多种植物中,具有抗炎、抗肿瘤、抗过敏等方面的作用。化学是如下:http://ng1.17img.cn/bbsfiles/images/2016/08/201608311303_607620_2217446_3.jpg目前,国内传统中药有效成分的提取方法普遍存在提取率低、杂质清除率不高、生产周期过长、能耗高、溶剂用量大等缺点。随着中药现代化进程的不断深入,许多现代高新技术不断地被应用到中药有效成分的提取和分离,使得中药有效成分的提取更高效和简便。超声-微波协同萃取技术直接将超声振动与开放式微波两种作用方式相结合,充分利用超声波振动的空化作用以及微波的高能作用,实现了低温常压条件环境下,对固体样品进行快速、高效、可靠的预处理,与常规提取方法相比,超声-微波协同萃取技术具有快速、节能、节省溶剂、污染小等优点。本实验应用超声-微波协同萃取法提取酸浆中的木犀草素及木犀草素-7-β-D-葡萄糖甙,采用高效液相-二极管阵列检测法(HPLC-DAD)测定提取物中木犀草素及木犀草素-7-β-D-葡萄糖甙的含量,药材中二者成分的含量分别为:1.200mg/g 和0.43mg/g,二个峰,木犀草素-7-β-D-葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素-7-β-D-葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,天麻素二个峰位置都发生了蓝移,样品中二个峰的光谱图与标准品二个峰的光谱图相同,可以进一步确定酸浆中含有木犀草素及木犀草素-7-β-D-葡萄糖甙。主要仪器与试剂主要仪器Agilent1100型四元梯度高效液相色谱仪(美国 Agilent 公司)Agilent TC-C18(ODS)色谱柱(5μm,4.6×250mm,美国 Agilent 公司)CW-2000 超声-微波协同萃取仪(新拓微波溶样测试技术有限公司)DJ-10A 型倾倒式粉碎机(上海隆拓仪器设备有限公司)RE-52AA 型旋转蒸发仪(河南巩义仪器厂)LXJ-IIB 型低速大容量多管离心机(上海安亭科学仪器厂)试剂木犀草素(中检所,含量98%;)木犀草素-7-β-D-葡萄糖甙(中检所,含量98%;)酸浆全草(采于黑龙江)除甲醇、乙腈为色谱纯(国药集团化学试剂有限公司),其余试剂除专门提到外,均为分析醇,实验用水为二次蒸馏水。实验方法供试品溶液的制备 精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,加入50mL70%甲醇,开启超声微波,控制在恒温50℃下提取40min,萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm 的微孔滤膜,取续滤液,即得。提取条件的考察溶剂的选择:精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取40min(n=3),萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm的微孔滤膜,取续滤液,HPLC 测定萃取率。溶剂体积分数的选择:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),方法同上。溶剂用量的选择:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,方法同上。提取时间的选择:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),方法同上。提取温度的选择:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,方法同上。对照品溶液的制备 分别精密称取常温减压干燥12h 的木犀草素及木犀草素-7-β-D-葡萄糖甙对照品适量,加甲醇配制成木犀草素-7-β-D-葡萄糖甙为200μg/mL、木犀草素为100μg/mL 的混合对照品溶液,冷藏备用。色谱条件 色谱柱:Agilent TC-C18柱(5μm,4.6×250mm);流动相:A-0.1%乙酸水溶液;B-甲醇,线性梯度洗脱:0~30 min,3%~5% B;30~35 min,5%~20%B;35~40min,20%~20%B;检测波长:270nm;流速:1mL/min;柱温:30℃;进样量:20μL。结果与讨论提取条件的优化结果溶剂的优化结果:分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取30min(n=3),结果表明70%甲醇提取木犀草素-7-β-D-葡萄糖甙的量较高,而木犀草素的量差异不明显,因此选择70%甲醇提取。溶剂体积分数的优化结果:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),结果表明,在甲醇体积分数70%时,木犀草素-7-β-D-葡萄糖甙和木犀草素的提取率随着甲醇浓度的增加而增加;但当甲醇体积分数在70%以上时,木犀草素葡萄糖甙的提取率呈现下降趋势,木犀草素没有明显的变化。木犀草素葡萄糖甙属于一种苷,分子量小,极性较大,当甲醇体积分数过高时,溶液极性降低,使得极性较强的木犀草素葡萄糖甙不易溶出,而木犀草素极性相对木犀草素葡萄糖甙小,影响不明显,因此实验选择70%甲醇作为提取溶剂。溶剂用量的优化结果:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,结果表明溶剂体积在50mL时木犀草素葡萄糖甙和木犀草素的提取率最高,之后随着溶剂用量的增加,木犀草素葡萄糖甙和木犀草素的提取率趋于稳定,因此溶剂用量选用50mL 进行提取 。提取时间的优化结果:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),结果表明超声-微波协同萃取时间从20~40min的过程中木犀草素葡萄糖甙和木犀草素的提取率逐渐增加;而提取时间超过40min之后,提取率反而逐渐下降。超声-微波协同萃取时间太长,植物中大量细胞细胞破碎,使得大量粘性物质等进入提取液,溶剂杂质增多、粘度增大,影响了有效成分的溶出,有效成分含量反而减少,因此选择提取时间为40min。提取温度的优化结果:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,实验表明,提取温度在50~60℃的范围内,木犀草素葡萄糖甙和木犀草素的提取率没有明显差异,考虑到温度太高容易破坏活性成分,因此选择提取温度为50℃。流动相的考察在实验过程中,流动相首先考察了甲醇-水、乙腈-水等度洗脱对酸浆超声-微波协同萃取样品溶液进行分离,乙腈-水作为流动相时,出峰较快,不能较好地把木犀草素葡萄糖甙和木犀草素与其他杂质成分分离;甲醇-水作为流动相时,出现峰形拖尾现象,分离效果不理想。为改善上述现象,改用0.1%乙酸代替水并采用梯度洗脱,经过反复筛选之后,最终确定流动相组成为 A -0.1%乙酸水溶液, B -甲醇,洗脱程序为0~30 min , 3%~5% B;30~35 min ,5%~20% B ;35~40 min 20%~3% B,木犀草素葡萄糖甙和木犀草素和其他杂质成分能够很好的分离,得到较理想的色谱图。对照品溶液和酸浆萃取样品的HPLC-DAD 分析下图分别显示了在上述的色谱条件下,采用 DAD 进行检测得到的两种混合对照品及酸浆萃取样品的 HPLC 分离色谱图。图1色谱图中木犀草素葡萄糖甙和木犀草素的保留时间分别为18.74min, 26.87min,根据保留时间判断,图2中的 a、b 色谱峰分别初步鉴定为木犀草素葡萄糖甙和木犀草素。图3、4分别显示了混合对照品和酸浆萃取物中保留时间18.74min, 26.87min 的色谱峰进行 DAD 检测后得到的光谱图,木犀草素葡萄糖甙和木犀草素 UV 光谱图形状相似,出现 二个峰,木犀草素葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,木犀草素葡萄糖甙二个峰位置都发生了蓝移,样品中二个峰的光谱图与

  • 【讨论】求教标准品和对照品的区别

    在抗生素类的标准物质使用时,经常会遇到标准品和对照品的概念。关于这二者的区别,现在比较流行的说法是在做HPLC时使用的标准物质应为对照品。摘录典型观点如下:[B]“标准品都是按效价单位(或μg)计,以国际标准品进行标定。标准品的标示量是按生物活性来计算的,不是按纯度来标示,此种标示法对单组分或多组分物质均适用,尤适用于多组分物质,如乙酰螺旋霉素标准品,是由4种有效成分组成,若欲于一个纯度来标示其含量是不可能的,但用效价(即生物活性)来标示是可行的;对照品的标示量则必定是某单一组分的纯度指标。所以日常工作中,标准品和对照品在定量时是不可相互替代的。以罗红霉素为例,现今是国家标准品与对照品并存,以抗生素微生物检定法测其含量时,必须使用罗红霉素标准品;但以HPLC法测定其含量时,又必须使用罗红霉素对照品,不可混淆。”[/B]但是我见过一些行业标准,比方说HPLC测土霉素残留中,在说到标准液的配制时,写得就是“土霉素标准品”。难道这里面的“标准品”是“对照品”的错误用法?[em0716] 请大家发表一下看法

  • 【求助】对照品的配制

    药典上配制对照品的时候有的是称取10毫克,用溶剂溶下,再取几毫升稀释下,它这个不直接一步配制好是不是因为怕称取量太少,怕误差大的原因吗?还有其他的原因吗?

  • 中检所生产的维生素A对照品大家检出几个峰呢?

    大家好,中检所的维生素A对照品才开始提供,我们买来做实验后发现维生素A对照品出现三个峰,但是省所提供的数据是只有两个峰。咨询省所,问我们是否有光照破坏峰,对于这个我们不是很明白。药典附录里说如果对照品里有顺式的维生素A醋酸酯就不必做光照破坏,中检所的维生素A对照品说明书里说明其中反式维生素A醋酸酯占96.9%,那么就是有顺式的了吗?有没有做过的同行们,给予我们指导啦,谢谢了。

  • 【金秋计划】木犀草素纳米混悬剂的制备及其体外肠吸收研究

    木犀草素(luteolin),别称草木犀、黄示灵等,大多以糖苷的形式广泛存在于多种中药材、天然药用植物[1]及蔬菜[2]中的一种黄酮类化合物,是一种天然色素成分,可以作为食用色素添加于食品中。木犀草素的化学名为3′,4′,5,7-四羟基黄酮(3′,4′,5,7-tetrahydroxyflavone),物理状态为淡黄色结晶状粉末,熔点为330 ℃,包含4个酚羟基,具有弱酸性,可溶于碱性溶液中,因脂溶性高而难溶于水,从而阻碍了其在体内的吸收与利用[3]。木犀草素具有抗炎和抗菌[4-5]、抗氧化[6]、抗肿瘤[7]、神经保护[8]、抑制肺纤维化[9]及肺癌[10-11]和心血管疾病[12]等多种药理作用。由于水溶性差(仅为6.0 mg/L)、生物利用度率低等原因限制了其成药性和临床应用。针对这一问题,近年来许多学者开展了增加木犀草素溶解度的研究,如微球[13]、纳米胶束[14]、金属配合物[15]、自微乳[16]、脂质体[17]等,并明显提高了其生物利用度,这表明木犀草素的肠道渗透性不是限制其生物利用度的关键因素,其属于生物药剂学系统II类药物。因此,采用制剂技术提高木犀草素的溶解性是可以改善其成药性和生物利用度的,将有利于推广其临床应用。然而上述开发的剂型仍存在诸多的缺点,如工艺复杂、载药量低、生物安全性差、成本高等,难以大范围推广应用。近年来,逐步发展成熟的纳米混悬剂[18]作为一种新剂型,与传统纳米制剂相比,它具有载药量高、溶出度高、添加剂用量少、易于放大生产等优点。因此,本实验尝试将难溶性木犀草素制备成纳米混悬剂以提高其水溶性和生物利用度,改善其成药性和临床优势。 为此,本实验首先采用微沉淀-高压匀质法制备口服木犀草素纳米混悬剂(luteolin nano-suspension,LNS),并以纳米粒的粒径、稳定性、多分散性指数(polydispersity index,PDI)、ζ电位等为考察指标,采用单因素考察法筛选LNS的稳定剂和最优药物-稳定剂比;接着,对LNS的理化性质进行考察,并分析其物理状态和体外溶出行为;最后通过大鼠外翻肠模型考察药物在肠道不同部位的吸收转运情况,探索药物在肠道内的吸收速率和最佳部位,预测纳米混悬剂可能存在的体内吸收行为,既可以用于木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供基础。 1 仪器与材料 1.1 仪器 ZNCL-BS180型恒温磁力搅拌器,北京市永光明医疗仪器有限公司;AL104-1C型精密分析天平,上海鼎科科学仪器有限公司;NS1001L型高压匀质机,意大利GEA [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o Soavi公司;Nanotrac wave II型激光粒度仪型激光粒度仪,美国麦奇克有限公司;LC3100型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],安徽皖仪科技股份有限公司;ZWY-103D型恒温振荡仪,上海智诚分析仪器制造有限公司;H1650-W型医用离心机,湖南湘仪实验室仪器开发公司;DZF-6030型真空干燥箱,上海精宏实验设备有限公司。JEOL 2010型透射电子显微镜(TEM),日本JEOL公司。 1.2 试剂 木犀草素原料药,批号JZ19021403,质量分数97.0%,南京狄格尔医药科技有限公司;木犀草素对照品,批号ps1032-0025,HPLC质量分数≥98%,成都普思生物科技有限公司;十二烷基磺酸钠(sodium dodecyl sulfonate,SDS),医药级,河南圣拓实业有限公司;泊洛沙姆188(Poloxamer 188,Pluronic,F68),医药级,西安天正药用辅料有限公司;维生素E聚乙二醇琥珀酸酯(D-α-tocopherol polyethylene glycol 1000 succinate,TPGS),医药级,上海惠诚生物科技有限公司;二甲基亚砜(dimethyl sulfoxide,DMSO),分析纯,天津市德恩试剂有限公司。 1.3 动物 SD大鼠购买于河南省实验动物中心,体质量(200±20)g,合格证号:SCXK(豫)2017-0001。所有动物实验均经过河南大学动物伦理委员会审核批准(HUSOM2019-216)。 2 方法与结果 2.1 LNS的制备 2.1.1 LNS中稳定剂的选择 将40 mg木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再取等量的稳定剂(SDS、F68、TPGS)溶解于纯水中(作为水相,或称反溶剂相);在室温下,将有机相通过注射器快速注入转速为1 800 r/min的反溶剂相中,继续搅拌10 min,得到预混悬剂;将预混悬剂转移至高压匀质机中,分别以20.0、50.0、80.0 MPa的压力循环匀质5、5、25次,得到LNS。 利用动态光散射仪分别考察LNS的粒径、多分散系数(polydispersity index,PDI)、表面电荷(ζ电位)和稳定性。本实验以不同稳定剂(SDS、F68、TPGS)制备的LNS粒径大小、PDI、ζ电位结果如表1所示。3种稳定剂所制备的粒径均在100~500 nm。以SDS为稳定剂制备的纳米混悬剂粒径最大,以F68为稳定剂制备的纳米混悬剂PDI最大,以TPGS为稳定剂制备的纳米混悬剂ζ电位最大,但是3者没有较大的差异,因此对于预测稳定性来说,上述结果难以判断哪个稳定剂制备的LNS会有良好的贮存稳定性。 因此,本实验又对各种条件的贮存稳定性进行了研究,结果见图1。以SDS、F68为稳定剂制备的纳米混悬剂在1周内粒径呈现持续增长的趋势,而以TPGS为稳定剂制备的LNS粒径未出现明显变动,由此可知,本实验中以TPGS为稳定剂制备的LNS具有较好的物理稳定性。 2.1.2 LNS中药物-稳定剂质量比的筛选 将40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相,再分别按照木犀草素与TPGS的质量比为1∶2、1∶1、2∶1称取TPGS,溶解于水中,得到反溶剂相;再按上述工艺制备LNS,得到不同药物-稳定剂质量比的LNS。利用动态光散射仪分别考察纳米混悬剂的粒径、分布、ζ电位和稳定性。不同药物-稳定剂比制备的LNS的理化性质研究结果见表2和图2。如表2所示,3种不同药物-稳定剂比制备的LNS的粒径分别为(289.3±6.6)、(210.7±2.0)、(34.6±3.7)nm,3种LNS的PDI接近,1∶2时ζ电位最大,2∶1时ζ电位没测到。虽然药物与稳定剂的质量比为2∶1时,其粒径与1∶2、1∶1时相差较大,但是粒径难以反映稳定性情况。因此,接下来考察了1∶2、1∶1、2∶1 3种不同比例下制备的LNS的稳定性,结果如图2所示。当药物-稳定剂比为2∶1和1∶2时,在2周内粒径变化幅度都较为明显,说明其稳定性表现均极差;而当药物-稳定剂比为1∶1时,制备的纳米混悬剂的粒径基本保持稳定,表明其稳定性较好。因此,本实验最终选用药物-稳定剂比为1∶1。 2.1.3 最优制备处方和方法的确定 依照LNS的稳定剂及药物-稳定剂比的筛选结果,初步确定LNS的最优制备处方与方法如下:将精密称取40 mg的木犀草素原料药超声溶解于1 mL的DMSO中作为有机相;将40 mg TPGS搅动溶解于40 mL纯水中作为水相,将有机相快速注入转速为1 800 r/min的水相中,搅动10 min,得到预混悬剂;将制备的预混悬剂倒入高压匀质机的导入槽中,分别以20.0、50.0、80.0 MPa的压力,分别循环匀质5、5、25次,得到LNS。重复制备3批,以粒径、PDI和ζ电位考察制剂处方和制备工艺的稳定性。 2.2 LNS的表征 2.2.1 粒径、ζ电位及形态分析 将最优处方制备的3批LNS分别通过激光粒度分析仪测定其粒径、PDI、ζ电位,结果LNS的粒径为(209.00±3.24)nm(n=3),PDI都低于0.228±0.013(n=3),粒径分布图见图3;ζ电位值为(?16.80±0.27)mV (n=3),较小的PDI和绝对值较大的ζ电位,意味着LNS可能具有较好的长期稳定性[19]。 再取适量的LNS加蒸馏水稀释到适当倍数后,滴在覆有支持膜的铜网上,自然环境下干燥后,通过TEM观察其形态特征及大小,并成像,结果见图4。LNS呈现均匀分散的球形或椭圆形颗粒,粒径约为180 nm,比动态光散射测定结果较小,这可能是由于TEM样品为干燥品,导致粒子外层亲水部分失水而收缩[20]。 2.2.2 储存稳定性 将制备的LNS分别放在4 ℃和室温环境中,在预定的时间点取样,通过激光粒度分析仪测定其粒径和PDI,连续考察14 d,每个样品平行操作3份,结果见表3。LNS在4 ℃和室温下储存2周后,粒径和PDI稍有增加,但变化范围都较小,说明该LNS的储存稳定性较好。 2.2.3 体外胃肠环境中的稳定性 以pH 1.2和pH 6.8的缓冲溶液模拟胃液和肠液,将制备的LNS分别以1∶1与上述2种缓冲溶液混合,并于37 ℃水浴中放置,在预定的时间点0、2、4、6、8、12、24 h时取样,通过激光粒度分析仪测定其粒径,连续考察24 h,每个样品平行操作3份,结果见表4。在2种37 ℃的缓冲溶液中孵育24 h内,LNS的粒径和PDI几乎无变化,表明LNS在2种环境中能保持稳定,这表示LNS口服给药后,在经胃肠道给药时能保持良好的稳定性,这有利于木犀草素到达肠道后仍以纳米晶存在,从而有利于木犀草素的快速释放而获得较高的生物利用度。 2.2.4 纳米混悬剂的物理状态研究 本实验选用DSC来确定LNS中的木犀草素晶型是否发生了改变,测试样品有木犀草素、TPGS、木犀草素与TPGS的物理混合物和LNS。以空铝盘作为空白对照,分别精密称取3~5 mg的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS干粉放于差式扫描量热分析(differential scanning calorimetry,DSC)仪中,N2流(40 mL/min)保护下,以10 ℃/min升温速度持续升温,升温范围设置为40~600 ℃,记录差式扫描量热分析图谱,所有测试样品重复分析3批,结果见图5。木犀草素和LNS、物理混合物均是结晶,其熔融温度为339.38 ℃,稳定剂对木犀草素的熔融温度基本无影响。这表明LNS中的木犀草素仍处于结晶状态,稳定剂的存在不会改变木犀草素的晶型。在木犀草素和LNS中,在50~150 ℃出现了1个宽峰,这可能是由于药物吸收了水分造成的。 再分别称取适量的木犀草素、TPGS、物理混合物(木犀草素+TPGS)、LNS置于X射线粉末衍射(X-ray powder diffraction,XRPD)仪中,以步进测定方式,散射角扫描范围设为5°~60°,电压设为40 kV,电流为30 mA,结果见图6。由图6可知,木犀草素在19.12、23.20、26.32 ℃有3个衍射峰,衍射峰的峰形较为尖锐,峰值较高,表明木犀草素的晶型为结晶型。稳定剂TPGS在15.72、17.48、22.86、25.60、29.26 ℃有衍射特征峰。制备成纳米混悬剂后,虽然LNS图谱中木犀草素的特征峰有所减弱,但与木犀草素相比,在相应位置特征峰均存在,进一步证实制备成LNS后木犀草素并未显著改变晶型,说明稳定剂的加入不会影响木犀草素的晶型,这与DSC分析的结果一致。 2.3 平衡溶解度与过饱和溶出度测试 为了测定木犀草素的平衡溶解度与木犀草素纳米混悬剂的过饱和溶出度,本实验参考文献方法[21]建立了HPLC法。 2.3.1色谱条件 色谱柱为Sino Chrom ODS-BP色谱柱(250 mm×4.6 mm,5 μm);流动相为甲醇-0.3%磷酸水溶液(60∶40);柱温30 ℃;检测波长350 nm;体积流量1 mL/min;进样量10 μL。 2.3.2对照品溶液的配制 精密称取木犀草素对照品2.50 mg,放入100 mL棕色量瓶中,以适量色谱甲醇使之完全溶解,并定容至刻度线,摇匀得到质量浓度为25 μg/mL的木犀草素对照品储备液。 2.3.3 线性关系考察 采用色谱甲醇稀释成质量浓度分别为0.5、1.0、2.0、5.0、7.0、10.0 μg/mL系列的木犀草素对照品溶液,按“2.3.1”项下色谱条件进行分析,以对照品质量浓度为横坐标(X)、峰面积为纵坐标(Y)进行线性回归,得线性回归方程为Y=44 670 X-2 498.3,R2=0.999 8,结果表明木犀草素在0.5~10.0 μg/mL线性关系良好。 2.3.4 专属性、精密度和准确度考察 在建立的HPLC色谱条件下,木犀草素色谱峰不会受pH 1.2和pH 6.8的溶出介质、稳定剂TPGS、Tyrode液以及肠吸收液中所有成分的干扰(图7),表明本实验所建立的含量测定方法具有较好的专属性,能够满足体外溶出和肠吸收试验中木犀草素的含量测定要求。另外,其精密度实验的RSD为1.2%,高、中、低3个质量浓度的样品加样回收率在99.67%~101.47%,RSD均小2%,符合《中国药典》2020年版的规定。 2.3.5 平衡溶解度的测定 为了测定木犀草素在pH值为1.2、6.8缓冲溶液中的平衡溶解度,取5 mL 2种缓冲溶液各3份于西林瓶中,加入过量的木犀草素,将西林瓶置于恒温振荡箱中,在温度为37℃,转速为75 r/min条件下振荡24 h。取出各样品,3 000 r/min下离心10 min后取上清液,然后用0.2 μm滤膜滤过,取续滤液于进样瓶中,按照“2.3.1”项下色谱条件进样测定,并计算木犀草素的平衡溶解度,结果可知,木犀草素在pH值为1.2、6.8的缓冲溶液中的平衡溶解度分别为(3.83±0.23)、(7.81±0.13)μg/mL。 2.3.6 过饱和溶出度的测定 为了考察LNS体外溶出行为,参照《中国药典》2020年版中桨法进行。具体操作如下:在智能溶出仪中,以500 mL模拟胃液为溶出介质,温度为37℃,桨旋转速度为75 r/min,将30 mL LNS加入溶出介质中,以相同质量浓度的木犀草素乙醇溶液作为对照,二者均平行操作3份。以药物刚接触溶出介质开始计时,分别于5、15、30、60、120、130、150、180、240、360、480 min时取样4 mL,取完样后立即补充4 mL相应的新鲜溶出介质。另外,于120 min取样后,每个溶出杯中分别加入适量的Na3PO4溶液,调节pH值为6.8,以模拟肠液。将所取样品溶液经0.2 μm微孔滤膜滤过,取续滤液置于进样瓶中,照“2.3.1”项下色谱条件测定,计算累积溶出度,结果见图8。为了测定过饱和溶出水平,在整个实验过程中,介质中药物的质量浓度都应保持远远大于药物的饱和溶解度[22]。结果如图8所示,在pH 1.2和pH 6.8时,木犀草素-原料药的过饱和溶出始终低于对应的平衡溶解度,LNS的过饱和溶出始终高于对应的平衡溶解度,说明制剂的过饱和度高;在溶出介质的pH值调为6.8后,过饱和溶出水平明显下降,在150 min后过饱和溶出水平逐渐稳定,说明LNS能维持较高的过饱和溶出水平。 结果表明,LNS较木犀草素原料药具有明显优势,其饱和溶出度约是木犀草素原料药的15倍,过饱和度高并能维持较长时间,可以延缓药物在体内因析出晶体而沉淀的过程,从而使稳定剂在较小用量下也能保证药物分子成溶解态,提高了原料药的溶解度,有利于增加其生物利用度[23]。 2.4 小肠吸收实验 为了探索LNS对木犀草素在胃肠道的吸收部位和吸收速率的影响,采用外翻肠囊法[24]研究LNS在肠道不同肠段的吸收特征,以探究药物在肠道内的最佳吸收部位。 2.4.1 对照品溶液的制备 精密量取“2.3.1”项下相应体积的储备液,置于50 mL棕色量瓶中,用Tyrode液定容至刻度,摇匀,配制出质量浓度为1、2、4、8、16、32、40 μg/mL木犀草素对照品溶液。 2.4.2 线性关系考察 按照“2.3.1”项下色谱条件测定,以木犀草素对照品质量浓度为横坐标(X),峰面积为纵坐标(Y)进行线性回归,得到回归方程为Y=45 475 X-19 575,R2=0.999 6,结果表明木犀草素在1~40 μg/mL线性关系良好。 2.4.3 供试品溶液的制备 大鼠按实验质量浓度随机分为3组,每组4只,实验前12 h禁食,自由饮水。颈椎脱臼处死,打开腹腔,小心分离出小肠,分别截取十二指肠、空肠、回肠、结肠相应肠段各10 cm,用生理盐水冲洗至无内容物流出。将肠段放入37 ℃ Tyrode液中,冲洗,在不损伤肠管的情况下,小心剥离肠表面的脂肪及血管,取出,用滤纸吸干表面水分。 将肠管一端结扎,用光滑的玻璃棒外翻,用Tyrode液冲洗过后,向不同肠段中注入3 mL的空白Tyrode液后将另一端也进行结扎形成囊状的肠管。将肠管放入盛有Tyrode液的烧杯中,实验中始终保持37 ℃的恒温,并不断通入95% O2/5% CO2的混合气体。平衡5 min后,将烧杯中的液体倒出,分别加入不同质量浓度(0.15、0.30、0.60 mg/mL)的木犀草素及LNS药液。以肠囊和药液接触时开始计时,取样时间点分别为15、30、45、60、75、90、105、120 min,每个时间点从肠囊内取样500 μL,同时补充同温同体积的空白Tyrode液。待试验结束后,将各段肠囊置于空白Tyrode液中孵育1 h,以清除掉肠囊及肠组织中残留的药物;随后将上述用于木犀草素和LNS吸收实验的各肠段互换,再按上述操作同法重复试验,以进行自身对照交叉试验的后段实验。取上述肠吸收液,加入甲醇500 μL,超声混匀,15 898×g离心(离心半径6.32 cm)2次,每次15 min,取上清液用0.2 μm滤膜滤过,取续滤液适量即得。 按照“2.3.1”项下色谱条件测定,并计算药物在各时间点的累积吸收量(Q,μg)和药物吸收速率常数[Ka,μg/(mincm2)],结果见图9。 由公式计算不同质量浓度下木犀草素在各个时间点的累积吸收量(Q)。 Q是每个时间点木犀草素的累积吸收量,Ci是每个时间点的实际检测质量浓度,V1是加入肠囊内的空白Tyrode液,V2是每次取样的体积 由图9可知,通过对比2种制剂在各肠段中不同质量浓度的药物吸收情况,可以发现药物的同一时间点的吸收量表现出质量浓度相关性。相同质量浓度下,在各肠段中2制剂组吸收量相比,LNS组的药物累积吸收量显著大于木犀草素溶液组,表明LNS相比于木犀草素溶液能够促进药物在肠道的吸收。 根据小肠内(4个肠段)的Q值,通过线性拟合,由公式Ka=L(斜率)/A(肠管平铺面积)求得吸收速率常数(Ka)和相关系数(R2),结果见表5。2种制剂中木犀草素在肠道的不同部位中的吸收速率大小顺序均为十二指肠>空肠>回肠>结肠,这可能归因于十二指肠和空肠肠段的吸收面积较大;这一结果还表明LNS并没有改变木犀草素在肠道内的主要吸收部位和机制。对比相同质量浓度、相同肠段中2种制剂的吸收情况可以发现,LNS中木犀草素的吸收速率显著高于木犀草素溶液的情况,尤其是十二指肠和空肠中LNS和木犀草素溶液的木犀草素吸收速率差异更加明显,这表明LNS可以增加木犀草素的肠吸收,且十二指肠和空肠是主要吸收部位。 另外,还可以发现2种制剂在每一肠段中的吸收速率都存在显著的质量浓度相关性(P<0.01),但是2种制剂在同一肠段中的吸收速率随质量浓度增加而提高的程度有明显差异,即木犀草素溶液随质量浓度的增加,各肠段中吸收速率增幅增大,而LNS随质量浓度的增加,各肠段中吸收速率增幅减小,这些结果表明2种制剂在各肠段中的吸收均有质量浓度相关性,但其吸收速率与质量浓度之间均存在非线性关系,且仅在Ka<0.052时,木犀草素的肠吸收过程可能只受木犀草素溶解度限制,而不受吸收速度限制。然而,木犀草素的实际口服吸收情况是否符合上述规律以及其具体吸收机制如何,将有待于后期开展体内外吸收途径探索和体内药动学研究来进一步证实。 3 讨论 3.1 稳定剂的选择及药物-稳定剂比的确定 由于不同的稳定剂中化学基团的差异,导致稳定剂与药物微粒之间的分子间作用力以及胶粒间的作用力都有明显差异,所以稳定剂种类会影响到纳米混悬剂的稳定性[25]。因此,本实验首先以粒径和稳定性为考察指标,通过单因素筛选法优化了LNS的稳定剂种类,并确定了以TPGS作为稳定剂能达到较好的预期效果;考虑到稳定剂用量对稳定效果的影响[26],随后本实验又考察了药物-稳定剂比对纳米混悬剂的粒径、稳定性、PDI、ζ电位的影响,最终确定最佳药物-稳定剂比为1∶1。 3.2 LNS体外分析方法的建立及研究 3.2.1 波长的选择 木犀草素对照品与稳定剂TPGS在紫外波长200~800 nm扫描,结果显示木犀草素在207、254、350 nm 3处波长处有强吸收;而TPGS在219、286 nm显示出强吸收,350 nm处没有显示出强吸收。为了排除稳定剂TPGS对木犀草素测定的干扰,选用350 nm作为木犀草素的测定波长。 3.2.2 Tyrode溶液的配制 在木犀草素的肠吸收情况研究中,虽有文献报道了外翻肠囊模型和在体单向肠灌流模型[27-29],但关于木犀草素及其制剂在大鼠不同肠段中的吸收情况鲜有报道,且大多数文献对其吸收情况所提甚少。 本实验采用离体外翻肠囊法,可操作性强、重复性好;能够保留较为完整的肠道组织和黏膜特性,其实验结果与机体药物吸收水平比较接近,具有说服力;但肠外翻肠囊法也存在缺点,如长时间暴露在体外,肠管没有血管和神经的控制,肠黏膜功能和形态会失去作用。因此,本研究为解决这一问题,利用Tyrode培养液改善肠管的存在环境,具体配制方法如下:将NaCl(8.0 g/L)、KCl(0.2 g/L)、CaCl2(0.2 g/L)、NaHCO3(1 g/L)、NaH2PO4(0.05 g/L)、MgCl2(0.1 g/L)、葡萄糖(1.0 g/L),用蒸馏水定容至1 000 mL,稀盐酸调pH值为7.2~7.4,由于CaCl2不好溶解,应在其他无机盐溶解完全后再加入,葡萄糖于临用前再加入。并且在实验过程中连续通入95% O2/5% CO2,保证了在实验期间肠管上肠黏膜的活性。实验证明用该模型了解药物的离体吸收,其结果可靠。 3.3 LNS的过饱和溶出 药物在纳米混悬剂中所处的物理状态关系着其粒径和溶出稳定性,通常无定形药物微粒具有较高的饱和溶出度,但其属于热力学不稳定状态,因此物理稳定性差,容易引起纳米混悬剂粒径分布发生变化,同时溶出速率和溶出度下降;而结晶型药物具有较好的热力学稳定性,随着其粒径的减小,其饱和溶出度会明显提高[30]。根据本实验对LNS中木犀草素物理状态的研究结果可知,本实验制备的LNS中木犀草素以结晶形式存在,这表明LNS可能存在稳定的粒径和溶出度。 在过饱和溶出实验中发现,相比于木犀草素原料药,LNS具有显著的长期高过饱和溶出水平,这可归因于LNS中药物以粒径远小于原料药的状态存在,正如开尔文定律所描述的小粒径药物具有高溶解度一样[31]。药物的长期高过饱和溶出水平将有助于避免或减少口服给药后因胃肠道pH变化而引起的析晶沉淀现象,从而增加药物的吸收速度和时间,提高药物的口服生物利用度。 综上所述,本实验制备的LNS,分散性和储存稳定性良好,方法也简单易行,本实验建立的木犀草素体外分析方法,经方法学验证可知,该方法快速、可靠、准确度高,适合LNS的体外溶出和外翻肠囊吸收实验研究。 同时,外翻肠实验表面,LNS能促进药物在肠道的吸收,可作为木犀草素口服给药的潜在剂型,也为其进一步加工成其他剂型研究提供坚实基础。同时,在木犀草素肠道吸收的具体机制方面还有很大的研究空间。

  • 【原创大赛】冬虫夏草,你认为虫值钱还是草值钱?

    【原创大赛】冬虫夏草,你认为虫值钱还是草值钱?

    冬虫夏草为麦角菌科真菌冬虫夏草菌Cordyceps sinensis (BerK.) Sacc.寄生在蝙蝠娥科昆虫幼虫上的子座及幼虫尸体的复合体。夏初子座出土、孢子未发散时挖取,晒至六七成干,除去似纤维状的附着物及杂质,晒干或低温干燥。四川玉树是冬虫夏草的主产地之一。冬虫夏草能补肺益肾,止血化痰。用于久咳虚喘,劳嗽咯血,阳痿遗精,腰膝酸痛。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412031804_525768_1621232_3.jpg冬虫夏草是虫与草的混合体,草是真菌的子实体,虫体则是草生长必需的营养培营基,但虫体内一样含有麦角菌丝体,那问题来了,究竟是虫体的有效成分含量高?还是草的有效成分含量高呢?下面,我们用实验来寻找这个答案。实验仪器:安捷伦1200高效液相色谱仪,水浴锅,加热回流装置,针头过滤器,超声仪,电子天平。色谱条件:WATERSC18柱(4.6mm*70mm,2.5um);磷酸盐缓冲液(pH6.5)〔取0.01mol/L磷酸二氢钠68.5ml与0.01mol/L磷酸氢二钠31.5ml,混合(pH6.5)〕-甲醇(17∶3)为流动相;检测波长为260nm。供试液制备:首先,我们把冬虫夏草的虫体和草体分离,粉碎,再精密粉末0.5g,置具塞锥形瓶中,精密加90%甲醇10ml,密塞,摇匀,称定重量,加热回流30分钟,放冷,再称定重量,用90%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。对照液制备:精密称取腺苷对照品适量,加90%甲醇制成每1ml含20μg的溶液,摇匀,即得。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412031804_525769_1621232_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412031805_525772_1621232_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412031805_525773_1621232_3.jpg实验结果表明,同样的取样量,冬虫夏草的草主峰峰面积比虫体的峰面积要大很多,也就是说冬虫夏草的有效成分,主要集中在子实体(草)上面。 http://ng1.17img.cn/bbsfiles/images/2014/12/201412031806_525774_1621232_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412031806_525775_1621232_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412031806_525776_1621232_3.jpg当然了,冬虫夏草的虫体有效成分含量也是比药典要求(0.010%)还高的,一样是好东西。只不过相对于草来说,虫体的含量就差一点了。经计算,虫体的腺苷含量为0.026%,而草的腺苷含量为0.061%,均高出中国药典的要求0.010%。

  • 【求助】关于青霉素的HPLC对照品问题,急求,跪求

    做青霉素发酵液的HPLC检测时,所用的对照品到底应该是什么?我买的是青霉素G钾盐,到底能不能用来做青霉素G的对照品,另外我看到网上卖的青霉素G的标准品是Benzathine penicillin tetrahydrate,难道是苄青霉素?青霉素G和钾盐在反相色谱上的保留行为是一样的还是有差异的?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制