当前位置: 仪器信息网 > 行业主题 > >

微晶纤维素标准品

仪器信息网微晶纤维素标准品专题为您提供2024年最新微晶纤维素标准品价格报价、厂家品牌的相关信息, 包括微晶纤维素标准品参数、型号等,不管是国产,还是进口品牌的微晶纤维素标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微晶纤维素标准品相关的耗材配件、试剂标物,还有微晶纤维素标准品相关的最新资讯、资料,以及微晶纤维素标准品相关的解决方案。

微晶纤维素标准品相关的资讯

  • 中国纤维素乙醇技术标准正在制定
    全球最大的工业酶制剂生产商诺维信全球执行副总裁托马斯那奇昨日透露,中国国家标准委已经通过行业协会推进纤维素乙醇技术标准的制定。这无疑是加速中国纤维素乙醇商业化运营的一大利好消息。   那奇昨日在京面对媒体时介绍说,目前中国每年有7亿吨农业废弃物,其中2亿吨将用于纤维素乙醇的制造,若以1/5-1/4的转化比率来讲,中国将具备4000万-5000万吨的产能,但目前中国生物质能源却还处在“襁褓”阶段。专家则指出,2011年第三季度诺维信与中粮和中石化两大央企巨头在华合作运营的乙醇示范工厂能否展示足够商业化可行性才是关键,而标准的建立对大规模的投产更有推动作用和行业意义。
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 如何用乌氏粘度计测纤维素的黏度?
    中旺科技乌氏粘度计可根据标准高精确检测纤维素黏均聚合度、特性黏度数据。纤维素是一类有机化合物,其化学通式(C6H10O5)n,是由葡 萄糖组成的大分子多糖,大量的存在于绿色植物和海洋生物中,是自然界中分布最广、储量最大的天然高分子材料,具有生物相容性好、可再生和可生物降解等优势。常温下,纤维素既不溶于水,又不溶于一般的有机溶剂,如酒精、乙醚、丙酮、苯等,它也不溶于稀碱溶液中,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺[NH2CH2CH2NH2]Cu(OH)2溶液等。目前纤维素及其衍生产品主要被用在包装、涂层、生物医学、废水处理、能源和电子领域等。纤维素也可制成甲基纤维素、乙基纤维素、羧甲基纤维素、聚阴离子纤维素等醚类化学物质,用于原油勘探、食品行业、陶器胎土、日化产品、合成洗涤、石墨制品、中性笔生产加工、电子元器件、工业涂料、建筑建材、设计装饰、蚊香片、烟草、造纸工业、橡胶材料、农业、粘胶剂、塑料、炸药、焊工及科研器材等方面。纤维素的平均聚合度是判断纤维素材料应用的重要参考指标,不同纤维素材料应用聚合度数值也各不相同。有关纤维素的相关国家标准GB_T29305-2012、ASTMD 4243-2016、GB_T 1548-2016等中明确规定测定纤维素粘均聚合度、特性黏度的方式方法。中旺乌氏粘度仪不仅完全符合标准规定的测试要求,有关测试条件精度值还要远远高于标准要求。IVS400全自动粘度仪杭州中旺科技有限公司的IVS400全自动粘度仪采用双模式在线清洗,无需拆下粘度计,可直接在线清洗、排废全智能软件系统。能够精准便捷的测试纤维素的粘均聚合度、特性黏度数据。推进纤维素功能材料的功能化利用,促进天然高分子材料的发展。测试流程称样用万分之一天平称取纤维素样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定铜乙二胺溶剂到溶样瓶中;溶样将溶样瓶放入P12中旺聚合物溶样器中(可多个溶样同时进行溶解),采用磁力搅拌的方式,按照规定的温度、时间溶样;黏度测试打开IVS400粘度仪,设置所需水槽温度(25℃±0.01℃),将溶液加入乌氏粘度计中,打开软件,自动测试,自动计算,电脑端可自动储存测试数据;清洗粘度管自动排废后,加入清洗试剂自动清洗并干燥。
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 木材衍生的纳米纤维素纸半导体制成
    日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创建有用的微观和宏观结构并实现出色的功能和最终用途的多功能性,仍然具有挑战性。  纤维素是一种源自木材的天然且易于获取的材料。纤维素纳米纤维(纳米纤维素)可制成具有与标准A4纸张尺寸相似的柔性纳米纤维素纸(纳米纸)片材。纳米纸不导电,但加热可引入导电特性。不过,这种受热也可能破坏纳米结构。  大阪大学研究人员与东京大学、九州大学和冈山大学合作,设计出一种处理工艺,使纳米纸能够加热,又不会破坏从纳米尺度到宏观尺度的纸结构。  “纳米纸半导体的一个重要特性是可调性,因为这允许为特定应用展开设计。”研究作者古贺博隆副教授解释说,碘处理对保护纳米纸的纳米结构非常有效。将其与空间控制的干燥相结合,意味着热解处理不会显著改变设计的结构,并且可使用选定的温度来控制电性能。  研究人员使用折纸和剪纸技术来提供纳米纸在宏观层面的灵活性。他们将鸟和盒子折叠起来,冲压出苹果和雪花等形状,并通过激光切割产生更复杂的结构。这证明了新工艺可能达到的细节水平,以及热处理没有造成损坏。  成功应用的例子是,纳米纸半导体传感器结合到可穿戴设备中,以检测穿过口罩呼出的水分和皮肤上的水分。纳米纸半导体也被用作葡萄糖生物燃料电池的电极,产生的能量点亮了一个小灯泡。  古贺博隆表示,新研究展现的将纳米材料转化为实际设备的结构维护和可调性非常令人鼓舞,新方法为完全由植物材料制成的可持续电子产品的下一步发展奠定了基础。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • VELP发布意大利VELP全自动纤维素新品
    意大利VELP公司全新推出全自动纤维素分析仪,可以测定粗纤维,酸性洗涤纤维和中性洗涤纤维。具有如下特点:彩色显示手触屏,更便捷:具有内置标准程序和可编辑程序;全自动完成包括试剂预加热,消煮、过滤、排废等操作步骤,自动添加酸,碱,蒸馏水,酶和消泡剂,酸和碱试剂瓶配备液位传感器,液位低时会自动报警提醒。可通过网线或者Wifi连接VELP Ermes云平台,通过手机或者PC端实时监控仪器运行情况,并可以远程操控仪器。消煮时,设置加热强度百分比,以减少浸提时的泡沫产生。创新点:1,实现了全自动运行:包括试剂预加热,消煮、过滤、排废等操作步骤;同时试剂的添加实现全自动,包括自动添加酸,碱,蒸馏水,酶和消泡剂。 2,物联网:可以通过Wifi或者网线和Ermes云平台连接,随时随地和机器进行信息交换。 3,扩展性和数据准确性创新:可以外接扫码器和天平,在称重前扫描坩埚上的条形码可以自动把传输并保存在机器上,避免样本重量和编号出现错误。 意大利VELP全自动纤维素
  • VELP发布意大利VELP全自动纤维素新品
    意大利VELP公司全新推出全自动纤维素分析仪,可以测定粗纤维,酸性洗涤纤维和中性洗涤纤维。具有如下特点:彩色显示手触屏,更便捷:具有内置标准程序和可编辑程序;全自动完成包括试剂预加热,消煮、过滤、排废等操作步骤,自动添加酸,碱,蒸馏水,酶和消泡剂,酸和碱试剂瓶配备液位传感器,液位低时会自动报警提醒。可通过网线或者Wifi连接VELP Ermes云平台,通过手机或者PC端实时监控仪器运行情况,并可以远程操控仪器。消煮时,设置加热强度百分比,以减少浸提时的泡沫产生。创新点:1,实现了全自动运行:包括试剂预加热,消煮、过滤、排废等操作步骤;同时试剂的添加实现全自动,包括自动添加酸,碱,蒸馏水,酶和消泡剂。 2,物联网:可以通过Wifi或者网线和Ermes云平台连接,随时随地和机器进行信息交换。 3,扩展性和数据准确性创新:可以外接扫码器和天平,在称重前扫描坩埚上的条形码可以自动把传输并保存在机器上,避免样本重量和编号出现错误。 意大利VELP全自动纤维素
  • 安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片
    安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片 2011 年6 月6 日,安捷伦科技公司(纽约证交所:A)推出了用于干血斑生物分析的Bond Elut DMS(干基质血斑)样品制备卡片。该专利设计与传统纤维素卡片相比具有诸多优势。 干血斑分析是生物研究领域的一项新兴技术。与液体样品制备程序相比,它能够显著降低成本并减少耗时的步骤,且具有同等的分析精度。 主要应用包括药物代谢和药代动力学研究。 非纤维素型Bond Elut DMS 不用试剂浸渍。这就降低了分析物的非特异性结合,从而能增强质谱响应和改善信噪比。安捷伦的这一新产品可以兼容自动化操作和标准冲孔工具,冲压力仅需纤维素卡片的五分之一。使用该卡片能够加快工作流程、减轻技术人员的疲劳以及使自动化过程更加平稳。 不论血液样本中红细胞的比例多少,Bond Elut DMS都提供形状、大小一致和重现性好的血斑样品。 安捷伦与五家全球制药和合同研究机构携手合作,为制药生物分析市场开发出了Bond Elut DMS。 安捷伦样品制备产品经理Paul Boguszewski 说:&ldquo 目前只有安捷伦能够提供适用于生物分析的如此完整的样品制备技术。安捷伦能够提供固相萃取、蛋白质沉淀/过滤、湿法萃取和干血斑样品制备消耗品。这些产品是我们著名的液相色谱柱和系统以及全面的高灵敏度质谱系列产品的完美补充。&rdquo 了解更多信息,请访问:www.agilent.com/chem/DMS 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 大连化物所制备出基于光子纤维素纳米晶的柔性汗液传感器
    近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。   在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,在电子、生物塑料、能源等领域被广泛的应用,有望加速推进各领域的可持续发展。特别的是,CNC可以自发组织形成手性向列液晶结构,产生绚丽的光子结构色,这对可持续性光学和光学传感的发展非常重要。然而,此类材料在潮湿或液体环境中的功能失效,不可避免地损害了它们在生物医学、膜分离、环境监测和可穿戴设备中的发展。因此,通过简单有效的手段使得CNC在液体环境下稳定存在,并实现功能化的应用非常重要。本工作中,团队发展了一种制造不溶性CNC基水凝胶的简单且有效的方法,利用分子间氢键重构,热脱水使优化的CNC复合光子膜在水溶液中形成一个稳定的水凝胶网络。研究发现,该水凝胶在干湿状态之间可以可逆转换,便于进行特定的功能化处理。团队通过在液体环境下吸附溶胀引入功能化分子,得到了具有抗冻性(–20℃)、强粘附性、良好生物相容性、对Ca2+高灵敏度和高选择性感应的水凝胶。该工作有望促进利用可持续纤维素传感器监测其他代谢物(即葡萄糖、尿素和维生素等)的应用,并为在环境监测、膜分离和可穿戴设备中运行的数控水凝胶系统奠定了基础。   卿光焱团队长期致力于CNC手性功能化相关研究,开展了一系列工作:通过整合CNC自组装工艺和DMF溶剂中的紫外光引发的有机聚合,实现高性能光子材料的合成,从而增强CNC基复合材料的弹性变形概念(Small,2022);将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜(Adv. Funct. Mater,2022)等。   相关研究成果以“Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat”为题,于近日发表在Small上。该工作的第一作者是大连化学物理研究所1824组博士研究生李琼雅。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、大连化学物理研究所创新基金等项目的支持。
  • GE FFHP再生纤维素滤膜全球首发回顾
    GE&BioDot下一代快速体外诊断技术与整体解决方案研讨会暨FFHP滤膜全球首发回顾 近日,GE医疗集团生命科学部在北京向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 9月13日,GE医疗生命科学部在现代尤伦斯艺术中心同BioDot中国联合举办了第二次&ldquo 下一代快速体外诊断技术与整体解决方案研讨会&rdquo 。会议期间,正式向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 此次会议是继今年6月14日上海成功举办第一届后,再一次在北京地区召开,吸引了大量的消费者和用户的兴趣。 &ldquo 我们在美国以及欧洲同BioDot共同举办了一些类似的活动&rdquo ,GE医疗生命科学部商业发展总监Nicola Raw表示,&ldquo 但相比较而言,中国无疑取得了最好的效果,共有237位新老用户和顾客参与了在中国的两次研讨会。&rdquo GE医疗生命科学部消耗品销售总监汪景长说:&ldquo 本次研讨会时一个将我们的用户集合在一起的极佳机会,我们邀请的国内外嘉宾在一起做了出色翔实的报告和有价值的讨论。可以明确的是,我们将会坚定地开发更多诊断方面的应用。&rdquo 北京研讨会中的实际操作演示 超过150名国内外专家参与了本次研讨会,讨论了包括快速体外诊断测试技术、设备、应用程序和POC发展战略在内的相关问题。会议期间,GE医疗生命科学部发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。FFHP 膜的毛细爬升变异系数(CV) 小于10%,具有很低的批内和批间差,可为客户提供更高的检测一致性、更一致的检测限值和更低的检测优化成本。除了发布FFHP之外,会议的亮点还包括一系列以客户为主导的讨论,实际操作演示以及由GE医疗生命科学部Klaus Hochleitner和 Mike Salter所做的报告等活动。
  • 中国化学会纤维素专业委员会完成换届,傅强任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。2022年10月19日,中国化学会纤维素专业委员会(以下简称“委员会”)成立大会在线上召开,来自全国高校、科研院所及企业的46个单位的60位代表参加。傅强教授向与会代表汇报了中国化学会纤维素专业委员会的相关工作报告。经与会代表无记名投票,选举四川大学傅强教授为委员会新一届主任委员,中国科学院化学研究所张军研究员、南京林业大学金永灿教授、华中科技大学杨光教授、武汉大学蔡杰教授为副主任委员。聘任武汉大学常春雨教授为秘书长。共有60人当选新一届委员会委员。中国化学会纤维素专业委员会委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:傅强副主任:张军、金永灿、杨光、蔡杰秘书(长): 常春雨委员:委员姓名工作单位蔡杰武汉大学常春雨武汉大学陈朝吉武汉大学陈礼辉福建农林大学陈文帅东北林业大学邸勇泰安赛露纤维素醚技术研究所段博武汉大学房桂干中国林业科学研究院林产化学工业研究所付时雨华南理工大学傅强四川大学贺盟盐城工学院黄进西南大学化学化工学院、软物质材料化学与功能制造重庆市重点实验室黄翔芬欧汇川(中国)有限公司黄勇中国科学院理化技术研究所蒋兴宇南方科技大学金永灿南京林业大学廖兵广东省科学院刘瑞刚中国科学院化学研究所刘石林华中农业大学刘守新东北林业大学罗晓刚武汉工程大学彭新文华南理工大学祁海松华南理工大学邵自强北京理工大学石志军华中科技大学孙剑北京理工大学孙平川南开大学陶友华中国科学院长春应用化学研究所田卫国中国科学院化学研究所王立军浙江科技学院王林格华南理工大学王莎南京林业大学王天富上海交通大学王小慧华南理工大学王志国南京林业大学吴凯四川大学吴敏中国科学院理化技术研究所伍强贤华中师范大学谢海波贵州大学徐坚深圳大学徐敏华东师范大学许凤北京林业大学闫立峰中国科学技术大学杨光华中科技大学杨桂花齐鲁工业大学杨鹏陕西师范大学杨全岭武汉理工大学应广东山东太阳纸业股份有限公司于海鹏东北林业大学余龙华南理工大学张凤山山东华泰纸业股份有限公司张建明青岛科技大学张军中国科学院化学研究所张振华南师范大学赵大伟沈阳化工大学郑明远中国科学院大连化学物理研究所钟春燕海南椰国食品有限公司周金平武汉大学朱宏伟岳阳林纸股份有限公司朱锦中科院宁波材料技术与工程研究所
  • 日立实验|紫外可见分光光度法评价纳米纤维素
    紫外可见分光光度法评价纳米纤维素前言:纳米纤维素来源于木材或草等植物纤维,其具有良好的可再生性,力学性能等。为构建脱碳社会,全球各国不断推动纳米纤维素的研发与应用。根据生产工艺,纳米纤维素可分为纤维素纳米纤丝(CNF)和纤维素纳米晶(CNC)等,作为一种新材料,在广泛应用前,对它的安全性评价是必要的,但目前缺乏评价纳米纤维素安全性的统一方法。日本新能源和产业技术开发组织(NEDO)进行了多种纳米纤维素评价方法的开发和评估,本文参考NEDO课题项目“非食用植物源性化学品的制造工艺技术的开发/CNF安全性评价手段的开发”等案例,采用日立紫外-可见-近红外分光光度计UH5700测定了纤维素纳米晶(CNC)。 应用实例:实验样品为使用TEMPO氧化制备的纤维素纳米晶(CNC)和葡萄糖。利用苯酚-硫酸法对样品进行测定1。苯酚-硫酸法的原理是通过对样品进行酸分解,定量分析其分解产物。样品处理过程如图所示。苯酚-硫酸法 由于待测样品量较少,因此需要使用微量样品池,并搭配微量样品池用挡光板,可以测量340~600 µL左右的微量样品。微量样品池及挡光板测定结果如图1所示,在488 nm处获得了特征吸收峰,不同浓度的样品与吸光度的关系如图2所示。图1 样品的吸收光谱图2 样品浓度与吸光度的关系由结果可以看出,使用紫外可见分光光度法可以对纳米纤维素进行定量分析,但测量重现性较低,可能是由于样品不纯,因此,测量过程需要尽可能避免接触纸巾、纺织布等纤维制品。 总结:苯酚-硫酸法不需要特殊的试剂,操作简单,使用日立UH5700能够在488 nm处得到良好的特征峰,能够实现对单一种类纳米纤维素的定量分析。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • 中科院纤维素化学重点实验室2011年开放基金开始申请
    据中国科学院广州化学研究所纤维素化学重点实验室网站消息,该实验室2011年开放基金已经开始申请,截止日期为2010年12月30日。   详情请见:纤维素重点实验室2011年开放基金申请指南
  • Supelco推出纤维素型手性液相色谱柱
    Sigma-Aldrich旗下著名分析品牌Supelco 近日宣布推出Astec Cellulose DMP 纤维素型手性液相色谱柱。Supelco 早先推出的Astec CHIROBIOTIC&mdash &mdash 大环糖肽型、Astec CYCLOBOND&mdash &mdash 环糊精型、Astec P-CAP&mdash &mdash 多环胺基型、Astec CLC (copper ligand exchange)&mdash &mdash 配位交换型和Protein-based&mdash &mdash 蛋白质型 手性HPLC色谱柱,一直深受广大分析工作者的喜爱,特别是Astec CHIROBIOTIC系列和Astec CYCLOBOND系列获得了广泛支持和青睐,许多在其它品牌色谱柱上未能实现的对映体拆分在其上都获得了良好的分离,应用领域非常广泛。 大环糖肽型、环糊精型和纤维素型手性柱是几种常用的手性固定相,具有互补的选择性,Supelco近日推出的 Astec Cellulose DMP 纤维素型手性柱具有如下特点: &bull 5um超高纯全多孔球形硅胶基质 &bull 3,5-二甲苯氨基甲酸酯衍生化的纤维素涂层 &bull 经典的纤维素型手性柱选择性 &bull 正相模式下适合多种手性样品的分离 &bull 高效、高载样量 &bull 分析到制备规模可供选择 &bull 具有竞争力的价格 Astec Cellulose DMP纤维素型手性柱的加入充实了原有的产品线,选择性相互补充,手性分离产品更为齐全,目前,Sigma-Aldrich公司旗下Supelco品牌的手性柱系列有: 手性液相柱 1)Astec CHIROBIOTIC&mdash &mdash 大环糖肽型(Astec CHIROBIOTIC V 、 Astec CHIROBIOTIC V2 、 Astec CHIROBIOTIC T 、 Astec CHIROBIOTIC T2、Astec CHIROBIOTIC TAG 、 Astec CHIROBIOTIC R) 2)Astec CYCLOBOND&mdash &mdash 环糊精型( Astec CYCLOBOND I 2000、Astec CYCLOBOND I 2000 AC、 Astec CYCLOBOND I 2000 DM、Astec CYCLOBOND I 2000 DMP、Astec CYCLOBOND I 2000 DNP、Astec CYCLOBOND II、 Astec CYCLOBOND II AC、Astec CYCLOBOND SP、 Astec CYCLOBOND RSP、 Astec CYCLOBOND HP RSP 3)Astec P-CAP&mdash &mdash 多环胺基手性HPLC柱 4)Astec CLC (copper ligand exchange)&mdash &mdash 配位交换型 5)Protein-based&mdash &mdash 蛋白质型 手性气相柱&mdash &mdash 环糊精型 1)Astec CHIRALDEX 2)Supelco &alpha -, &beta -, g-DEX
  • 上新!赛多利斯推出RC(再生纤维素)膜超滤管
    p style=" text-align: justify text-indent: 2em " 2020年8月31日,上海 —— 国际领先的制药和实验室设备供应商赛多利斯中国公司宣布,推出新一代RC(再生纤维素)膜超滤管Vivaspin& reg Turbo 15 RC。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 529px height: 300px " src=" https://img1.17img.cn/17img/images/202009/uepic/87b21663-7234-43d7-8ea0-c0a5b773a535.jpg" title=" Vivaspin& reg Turbo 15 RC.JPG" alt=" Vivaspin& reg Turbo 15 RC.JPG" width=" 529" height=" 300" / /p p style=" text-align: center " RC(再生纤维素)膜超滤管Vivaspin& reg Turbo 15 RC /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 作为蛋白质相关研究的基础耗材,Vivaspin& reg Turbo 15 RC 超滤管秉承赛多利斯超滤管一贯的高流速、实用、简洁的设计风格,专注于满足实验室蛋白质、病毒等小分子样品的浓缩和缓冲液置换。Vivaspin& reg Turbo 15 RC 系列超滤管将作为PES(聚醚砜)膜和hydrosart膜超滤管的重要补充使赛多利斯成为目前市场上超滤管膜材质最全的供应商,满足生物和医学实验室各种样品的不同需求。 /span /p p style=" text-align: justify text-indent: 2em " 蛋白质的性质多种多样、带电性质不同、缓冲液不同,造成其适用的过滤膜材质也不同。选择合适的膜材质,才能得到最佳的过滤速度和回收率。赛多利斯全面的膜材质和截留分子量选择方案,将帮助用户找到最适合自己珍贵样品的超滤管型号。 /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo 15 RC 超滤管继续采用专利设计的尖角死体积技术,让样品收集更加方便。Turbo优化的膜高度、内部坡度和双片膜设计,保证快速浓缩最后几毫升样品,可以大幅缩短离心时间。此外Turbo的pp外壳和表面处理,保证在极端温度下也不会开裂,并且兼容性优异。 /p p style=" text-align: justify text-indent: 2em " 从事生命科学和医学研究的科学家们,对样品污染问题越来越关注,并且研究的样品也日趋多样化。这就要求超滤管不仅可以节省研究者的时间,还要具有稳定的质量和优异的回收率。正是基于这样的需求,Turbo 系列超滤管将RC膜和PES膜双剑合璧,提供全面且表现优异的超滤解决方案。 /p p style=" text-align: justify text-indent: 2em " strong Vivaspin& reg Turbo 15 RC超滤管的主要特性和优势包括: /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 高流速和绝佳回收率 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC优化的管和膜高度设计,实现了快速的离心过滤速度。同时,秉承Vivaspin& reg Turbo系列膜和外管的平滑融合工艺,在保证过滤速度的同时也能兼顾回收率。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 舒适方便的设计 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC秉承了Vivaspin& reg Turbo系列专利的尖角死体积回收器,让样品的回收更加方便可控。同时,外管上增加的刻度标识,可以更加精确的控制浓缩倍数和样品体积,让样品浓缩和缓冲液置换更加容易控制和记录。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 稳定的质量和安全性 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC革命性的应用了耐腐蚀材料,不易受温度影响,没有胶黏剂,可以有效减少因为保存温度变化而导致的裂管,也大大降低了样品污染的可能性。对于有严格分析测试要求的珍贵生物样品,安全性大为提高。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) background-color: rgb(255, 255, 0) " strong 关于赛多利斯 /strong /span /p p style=" text-align: justify text-indent: 2em " 赛多利斯集团是国际领先的生命科学研究及生物制药行业的合作伙伴,包含两大业务部门:实验室产品与服务事业部和生物工艺事业部。实验室产品与服务事业部通过创新型实验室仪器及耗材,专注于为实验室研究、制药和生物制药的质量保证以及学术研究机构提供产品和服务。生物工艺事业部拥有广泛的产品组合,主要致力于一次性使用解决方案,帮助客户安全有效地生产生物技术药物和疫苗。截止2019年末,集团在全球设有约60个生产和销售基地,拥有9,000多名员工,所服务的客户遍及世界各地。 /p p br/ /p
  • VELP发布FIWE ADVANCE 全自动纤维素测定仪新品
    可对单个或多个样本进行纤维素提取和测定,完成包括沸煮,冲洗和过滤三个步骤。配备RC2 加热板用于预加热试剂。高效的加热元件,节省时间。可以应用于:-粗脂肪测定(依据Weende方法)-中性洗涤剂纤维素和酸性洗涤剂纤维素测定(NDF和ADF,依据Van Soest方法)-酸性洗涤剂木质素测定(ADL, 依据Van Soest方法)-纤维素的不同组分(纤维质,半纤维素和胶质的测定)FIWE可以进行独立的或者连续的提取步骤,包括煮沸,洗涤和过滤。创新点:(1)可通过WIFI或网线可以和V E L P的E r m e s云平台连接,可以在任何时间和任何地点对仪器进行监控和控制; (2)配备彩色图形化手触屏,方便方法设置和操作,可实时图形化显示运行状态; (3)自动化程度高且高效,2个小时完成一批6个样本的测定。 FIWE ADVANCE 全自动纤维素测定仪
  • 富睿捷冻干机水溶剂应用实例-纤维素气凝胶
    客户:浙江理工大学;机器:富睿捷2.5L(-55℃);客户样品:纤维素气凝胶(水溶剂)。
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 全国首个化学纤维大气污染物排放地方标准发布!
    为防治环境污染,改善生态环境质量,保障人体健康,加强浙江省化学纤维工业大气污染物的排放控制,促进企业生产工艺、污染治理技术的进步和可持续发展,浙江省人民政府近日正式印发实施《化学纤维工业大气污染物排放标准》(DB33/2563—2022)(以下简称《标准》)。《标准》规定了化学纤维工业大气污染物排放控制要求、监测和监督管理要求等,据了解,这是全国首个化学纤维工业大气污染物排放地方标准。该《标准》涵盖以下污染物:化学纤维(用天然或合成高分子化合物经化学加工制得的纤维,涵盖GB/T 4754—2017中化学纤维制造业(C28),包括纤维素纤维原料及纤维制造(C 281)、合成纤维制造(C 282)和生物基材料制造(C 283));再生纤维(以天然产物(纤维素、蛋白质等)为原料,经纺丝过程制成的化学纤维);合成纤维(以石油、天然气及煤等产品为原料,用有机合成的方式制成单体,聚合后经纺丝加工制成的纤维。主要产品有聚酯纤维(涤纶)、聚酰胺纤维(锦纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚乙烯醇纤维(维纶)、聚氨酯弹性纤维(氨纶)以及其他芳香族聚酰胺纤维等);生物基化学纤维(以生物质为原料或含有生物质来源单体的聚合物所制成的纤维);循环再利用化学纤维(采用回收的废旧聚合物材料和废旧纺织材料加工制成的纤维);挥发性有机物 VOCs(参与大气光化学反应的有机化合物,或根据有关规定确定的有机化合物。在表征VOCs总体排放情况时,根据行业特征和环境管理要求,采用总挥发性有机物(以TVOC表示)、非甲烷总烃(以NMHC表示)作为污染物控制项目);总挥发性有机物TVOC(采用规定的监测方法,对废气中的单项VOCs物质进行测量,加和得到VOCs物质的总量,以单项VOCs物质的质量浓度之和计。实际过程中,应按预期分析结果,对占总量90%以上的单项VOCs物质进行测量,加和得出);非甲烷总烃NMHC(采用规定的监测方法,氢火焰离子化检测器有响应的除甲烷外的气态有机化合物的总和,以碳的质量浓度计);VOCs 物料(VOCs质量占比大于等于10 %的原辅材料、产品和废料(渣、液),以及有机聚合物原辅材料和废料(渣、液));油雾(工业生产过程中挥发产生的油剂(矿物油、植物油、动物油、合成油等)及其加(受)热分解或裂解产物);工艺废气(生产过程及其辅助配套设施排放的废气。包括浆粕生产、原液制备、酸站、精炼、溶剂回收、聚合、纺丝、后处理、组件等清洗等生产工序)。作为对大气污染物监控的要求,《标准》指出,企业应按照有关法律法规、《环境监测管理办法》和 HJ 1139 等规定,建立企业监测制度,制订监测方案,对大气污染物排放状况开展自行监测,保存原始监测记录。并且,企业安装污染物排放自动监控设备的要求,按有关法律法规和《污染源自动监控管理办法》等规定执行。 大气污染物的分析测定采用表7中所列的方法标准:
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告   2011年 第8号   根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。   特此公告。   附件:1.D-甘露糖醇等58个食品添加剂产品标准目录   2.D-甘露糖醇等58个食品添加剂产品标准.rar   二○一一年三月十八日   附件1   D-甘露糖醇等58个食品添加剂产品标准目录 编号 标准名称 1. D-甘露糖醇 2. 羟丙基甲基纤维素(HPMC) 3. 氢化松香甘油酯 4. 乳酸脂肪酸甘油酯 5. 松香季戊四醇酯 6. 乙二胺四乙酸二钠 7. 乙酰化单、双甘油脂肪酸酯 8. 乙氧基喹 9. 硬脂酸钙 10. 硬脂酸镁 11. 硬脂酰乳酸钙 12. 硬脂酰乳酸钠 13. 月桂酸 14. 羟基硬脂精(氧化硬脂精) 15. 偶氮甲酰胺 16. 抗坏血酸棕榈酸酯 17. 硫代二丙酸二月桂酯 18. 微晶纤维素 19. 丙二醇脂肪酸酯 20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯) 21. 刺云实胶 22. 柠檬酸一钠 23. 巴西棕榈蜡 24. 蜂蜡 25. 乳糖醇 26. 5'胞苷酸二钠 27. d-核糖 28. 3-环己基丙酸烯丙酯 29. 辛酸乙酯 30. 棕榈酸乙酯 31. 甲酸香茅酯 32. 甲酸香叶酯 33. 乙酸香叶酯 34. 乙酸橙花酯 35. 己醛 36. 正癸醛(癸醛) 37. 乙酸丙酯 38. 乙酸2-甲基丁酯 39. 异丁酸乙酯 40. 异戊酸3-己烯酯 41. 2-甲基丁酸3-己烯酯 42. 2-甲基丁酸2-甲基丁酯 43. γ-己内酯 44. γ-庚内酯 45. γ-癸内酯 46. δ-癸内酯 47. γ-十二内酯 48. δ-十二内酯 49. 2,6-二甲基-5-庚烯醛 50. 2-甲基-4-戊烯酸(又名浆果酸) 51. 芳樟醇 52. 乙酸松油酯 53. 二氢香芹醇 54. d-香芹酮 55. l-香芹酮 56. α-紫罗兰酮 57. 罗望子多糖胶 58. 左旋肉碱
  • 重磅!国家卫健委最新发布47项食品安全国家标准!
    关于发布《食品安全国家标准 食品添加剂使用标准》(GB 2760-2024)等47项食品安全国家标准和6项修改单的公告(2024年 第1号)根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准 食品添加剂使用标准》(GB 2760-2024)等47项食品安全国家标准和6项修改单。其编号和名称如下:GB 2760-2024 食品安全国家标准 食品添加剂 使用标准GB 1886.96-2024 食品安全国家标准 食品添加剂 松香季戊四醇酯GB 1886.98-2024 食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D吡喃半乳糖-D-山梨醇)GB 1886.104-2024 食品安全国家标准 食品添加剂 喹啉黄GB 1886.174-2024 食品安全国家标准 食品添加剂 食品工业用酶制剂GB 1886.227-2024 食品安全国家标准 食品添加剂 吗啉脂肪酸盐果蜡GB 1886.256-2024 食品安全国家标准 食品添加剂 甲基纤维素GB 1886.374-2024 食品安全国家标准 食品添加剂 纤维素GB 1886.375-2024 食品安全国家标准 食品添加剂 氢氧化钙GB 1886.376-2024 食品安全国家标准 食品添加剂 5-戊基-3H-呋喃-2-酮GB 1886.377-2024 食品安全国家标准 食品添加剂 爱德万甜GB 1886.378-2024 食品安全国家标准 食品添加剂 茶黄素GB 1886.379-2024 食品安全国家标准 食品添加剂 皂树皮提取物GB 1886.380-2024 食品安全国家标准 食品添加剂 甲酸钠GB 1886.381-2024 食品安全国家标准 食品添加剂 酒石酸铁GB 1903.65-2024  食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)GB 1903.66-2024  食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法)GB 1903.67-2024  食品安全国家标准 食品营养强化剂 植物甲萘醌(维生素K1)GB 1903.68-2024  食品安全国家标准 食品营养强化剂 钼酸铵GB 1903.69-2024  食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷GB 1903.70-2024  食品安全国家标准 食品营养强化剂 电解铁GB 1903.71-2024  食品安全国家标准 食品营养强化剂 全反式视黄醇GB 19644-2024    食品安全国家标准 乳粉和调制乳粉GB 4806.15-2024  食品安全国家标准 食品接触材料及制品用黏合剂GB 5009.2-2024   食品安全国家标准 食品相对密度的测定GB 5009.11-2024  食品安全国家标准 食品中总砷及无机砷的测定GB 5009.138-2024 食品安全国家标准 食品中镍的测定GB 5009.191-2024 食品安全国家标准食品 中氯丙醇及其脂肪酸酯、缩水甘油酯的测定GB 5009.205-2024 食品安全国家标准食品 中二噁英及其类似物毒性当量的测定GB 5009.299-2024 食品安全国家标准食品 中乳铁蛋白的测定GB 31604.60-2024 食品安全国家标准食品 接触材料及制品溶剂残留量的测定GB 4789.4-2024   食品安全国家标准食品 微生物学检验 沙门氏菌检验GB 4789.17-2024  食品安全国家标准食品 微生物学检验 肉与肉制品采样和检样处理GB 4789.18-2024  食品安全国家标准食品 微生物学检验 乳与乳制品采样和检样处理GB 4789.19-2024  食品安全国家标准食品 微生物学检验 蛋与蛋制品采样和检样处理GB 4789.20-2024  食品安全国家标准食品 微生物学检验 水产品及其制品采样和检样处理GB 4789.22-2024  食品安全国家标准食品 微生物学检验 调味品采样和检样处理GB 4789.23-2024  食品安全国家标准食品 微生物学检验 豆制品采样和检样处理GB 4789.24-2024  食品安全国家标准食品 微生物学检验 糖果、巧克力和代可可脂巧克力及其制品、可可制品采样和检样处理GB 4789.25-2024  食品安全国家标准食品 微生物学检验 酒类、饮料、冷冻饮品采样和检样处理GB 4789.28-2024  食品安全国家标准食品 微生物学检验 培养基和试剂的质量要求GB 4789.33-2024  食品安全国家标准食品 微生物学检验 粮食制品采样和检样处理GB 4789.40-2024  食品安全国家标准食品 微生物学检验 克罗诺杆菌检验GB 4789.46-2024  食品安全国家标准食品 微生物学检验 生鲜果蔬及其制品、食用菌制品、坚果与籽类食品采样和检样处理GB 4789.47-2024  食品安全国家标准食品 微生物学检验 食用油脂制品采样和检样处理GB 4789.48-2024  食品安全国家标准食品 微生物学检验 蜂产品采样和检样处理GB 4789.49-2024  食品安全国家标准食品 微生物学检验 产志贺毒素大肠埃希氏菌检验GB 25531-2010  《食品安全国家标准 食品添加剂 三氯蔗糖》第1号修改单GB 28402-2012  《食品安全国家标准 食品添加剂 普鲁兰多糖》第2号修改单GB 29209-2012  《食品安全国家标准 食品添加剂 硫酸钠》第1号修改单GB 1886.43-2015《食品安全国家标准 食品添加剂 抗坏血酸钙》第1号修改单GB 1886.100-2015《食品安全国家标准 食品添加剂 乙二胺四乙酸二钠》第1号修改单GB 1886.191-2016《食品安全国家标准 食品添加剂 柠檬醛》第1号修改单以上标准文本可在食品安全国家标准数据检索平台(https://sppt.cfsa.net.cn:8086/db)查阅下载。国家卫生健康委市场监管总局2024年2月8日
  • 浙江省农产品质量安全学会批准《婴幼儿谷类辅助食品中真菌毒素污染控制规范》等5项团体标准
    根据《浙江省农产品质量安全学会团体标准管理办法(试行)》的规定,《甘蔗叶纤维素纳米晶体制备技术规程》等5项团体标准业经学会团体标准审查委员会审查通过,现批准发布为浙江省农产品质量安全学会团体标准,自2023年6月11日起实施。特此公告。附件:《甘蔗叶纤维素纳米晶体制备技术规程》等5项团体标准目录浙江省农产品质量安全学会2023年5月11日附件:《甘蔗叶纤维素纳米晶体制备技术规程》等5项团体标准目录序号标准名称标准编号1甘蔗叶纤维素纳米晶体制备技术规程T/ZNZ 185-20232蔬菜“三分六统”生产经营管理规范T/ZNZ 186-20233婴幼儿谷类辅助食品中真菌毒素污染控制规范T/ZNZ 187-20234肉制品中胭脂红、刚果红、酸性橙Ⅱ的测定 高效液相色谱法T/ZNZ 188-20235水产品中生物胺的测定 液相色谱-串联质谱法T/ZNZ 189-2023
  • 2024年8月份有241份标准将实施 ——多项食品安全标准密集发布为食品保驾护航
    2024年8月份有241份标准将实施——多项食品安全标准密集发布为食品保驾护航随着8月的到来,一批新的国家标准、行业标准及地方标准开始实施,涵盖了多个领域,包括农林牧渔食品、环境保护、医药卫生、石油天然气、冶金矿产、化工塑料、轻工纺织、电力半导体、机械车辆等多个领域。这些新标准的实施将进一步推动相关行业的规范化发展,提升产品质量和安全水平。其中,食品安全国家标准占据相当大的比重,涵盖了食品添加剂、营养强化剂、微生物检验等多个方面。环境保护领域的标准聚焦于土地复垦、生态修复、碳循环监测等热点话题。医药卫生方面发布了包括车辆驾驶人员血液酒精含量阈值在内的重要准。此外,本次发布的标准还包括多项与新兴技术相关的内容,如柔性显示器件、纳米材料、燃料电池电动汽车等。值得注意的是绿色制造、数字化治理等领域也有多项标准出台,反映了当前产业发展的趋势。另外还有大量的计量检定规程实施,这为仪器校准提供了依据。这些新标准的实施将对相关行业的规范化发展和技术进步起到重要推动作用,有利于提高产品质量和服务水平,促进经济社会可持续发展。具体2024年8月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓校准规范标准(33份)JJF 633-2024气体容积式流量计 JJF 738-2024出租汽车计价器检定装置 JJF 959-2024光时域反射计 JJF 976-2024透射式烟度计 JJF 1029-2024电子探针定量分析用标准物质研制(生产)技术要求 JJF 1184-2024热电偶检定炉温度场测试技术规范 JJF 2091-2024X、γ辐射个人剂量当量 Hp(10)监测仪型 式评价 大纲 JJF 2092-2024射频与微波衰减器校准规范 JJF 2093-2024高加速寿命和应力筛选试验 系统校准规范 JJF 2094-2024行星式 水泥胶砂搅拌机 校准规范 JJF 2095-2024压力数据采集仪校准规范 JJF 2096-2024软包装件密封性试验仪 校准规范 JJF 2097-2024骨导助听器电声特性校准规范JJF 2098-2024高声强定向声源测试技术规范JJF 2099-2024光学接触角测量仪校准规范 JJF 2100-2024色温表校准规范 JJF 2101-2024血液辐照仪校准规范 JJF 2102-2024X 射线安全检查计算机断层成像装置(CT)校准规范 JJF 2103-2024原子时 标标准 技术要求 JJF 2104-2024海水溶解氧测量仪校准规范 JJF 2105-2024海水温盐测量仪校准规范 JJF 2106-2024基于导航卫星的陆地定向系统校准规范 JJF 2107-2024OIML 证书指定实验室通用规则 JJF 2108-2024OIML 证书试验附加要求 OIML R46(有功电能表) JJF 2109-2024标准物质定值技术要求 有机同位素稀释质谱法 JJF 2110-2024稳定同位素标准物质研制 (生产)技术要求 JJG 633-2024气体容积式流量计检定规程 JJG 643-2024标准表法流量标准装置检定规程 JJG 738-2024出租汽车计价器检定装置 检定规程 JJG 959-2024光时域反射计检定规程 JJG 976-2024透射式烟度计检定规程 JJG 2075-2024电容计量器具检定系统表 JJG 2076-2024电感计量器具检定系统表 农林牧渔食品标准(81份)GB 1886.96-2024 食品安全国家标准 食品添加剂 松香季戊四醇酯 GB 1886.98-2024食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D 吡喃 半乳糖-D-山梨醇) GB 1886.104-2024食品安全国家标准 食品添加剂 喹啉黄 GB 1886.174-2024食品安全国家标准 食品添加剂 食品工业用酶制剂 GB 1886.227-2024食品安全国家标准 食品添加剂 吗 啉 脂肪酸 盐果蜡 GB 1886.256-2024食品安全国家标准 食品添加剂 甲基纤维素 GB 1886.374-2024食品安全国家标准 食品添加剂 纤维素 GB 1886.375-2024食品安全国家标准 食品添加剂 氢氧化钙 GB 1886.376-2024食品安全国家标准 食品添加剂 5- 戊基 -3H-呋喃-2-酮 GB 1886.377-2024食品安全国家标准 食品添加剂 爱 德万甜 GB 1886.378-2024食品安全国家标准 食品添加剂 茶黄素 GB 1886.379-2024食品安全国家标准 食品添加剂 皂树皮提取物 GB 1886.380-2024食品安全国家标准 食品添加剂 甲酸钠 GB 1886.381-2024食品安全国家标准 食品添加剂 酒石酸铁 GB 1903.65-2024食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法) GB 1903.66-2024食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法) GB 1903.67-2024食品安全国家标准 食品营养强化剂 植物甲 萘醌 (维生素K1) GB 1903.68-2024食品安全国家标准 食品营养强化剂 钼酸铵 GB 1903.69-2024食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷 GB 1903.70-2024食品安全国家标准 食品营养强化剂 电解铁 GB 1903.71-2024食品安全国家标准 食品营养强化剂 全反式视黄 醇 GB 4789.4-2024食品安全国家标准 食品微生物学检验 沙门氏菌检验 GB 4789.17-2024食品安全国家标准 食品微生物学检验 肉与肉制品采样和 检样 处理 GB 4789.18-2024食品安全国家标准食品 微生物学检验 乳与乳制品采样和 检样 处理 GB 4789.19-2024食品安全国家标准食品 微生物学检验 蛋与蛋制品采样和 检样 处理 GB 4789.20-2024食品安全国家标准食品 微生物学检验 水产品及其制品采样和 检样 处理 GB 4789.22-2024食品安全国家标准食品 微生物学检验 调味品采样和 检样 处理 GB 4789.23-2024食品安全国家标准食品 微生物学检验 豆制品采样和 检样 处理 GB 4789.24-2024食品安全国家标准食品 微生物学检验 糖果、巧克力和代可可脂巧克力及其制品、可可制品采样和 检样 处理 GB 4789.25-2024食品安全国家标准食品 微生物学检验 酒类、饮料、冷冻饮品采样和 检样 处理 GB 4789.28-2024食品安全国家标准食品 微生物学检验 培养基和试剂的质量要求 GB 4789.33-2024食品安全国家标准食品 微生物学检验 粮食制品采样和 检样 处理 GB 4789.40-2024食品安全国家标准 食品微生物学检验 克罗诺杆菌 检验 GB 4789.46-2024食品安全国家标准食品 微生物学检验 生鲜果 蔬 及其制品、食用菌制品、坚果 与籽类食品 采样和 检样 处理 GB 4789.47-2024食品安全国家标准食品 微生物学检验 食用油脂制品采样和 检样 处理 GB 4789.48-2024食品安全国家标准 食品微生物学检验 蜂产品采样和 检样 处理 GB 4789.49-2024食品安全国家标准食品 微生物学检验 产志贺 毒素大肠埃希氏菌检验 GB 5009.2-2024食品安全国家标准 食品相对密度的测定 GB 5009.11-2024食品安全国家标准 食品中 总砷及无机 砷的测定 GB 5009.138-2024食品安全国家标准 食品中镍的测定 GB 5009.191-2024食品安全国家标准食品 中氯丙醇及其脂肪酸酯、缩水甘油酯的测定 GB 5009.205-2024食品安全国家标准食品 中二噁英及其类似物毒性当量的测定 GB 5009.299-2024食品安全国家标准食品 中乳铁蛋白的测定 GB/T 51461-2024农业工程术语标准 DB63/T 2299-2024 高海拔城镇针叶树种养护规范 DB63/T 2298-2024 草 畜平衡 核算及评价技术 DB63/T 2297-2024 蕨麻良种繁育技术规范DB63/T 2296-2024 黄 帚橐 吾防治技术规范 DB5306/T 132-2024柑橘实蝇为害调查及为害程度评价规程 DB41/T 613-2024 地理标志产品 淮阳黄花菜 DB41/T 2675-2024 月季苗木质量分级规程 DB41/T 2674-2024 芝麻种质资源表型性状精准鉴定技术规程 DB41/T 2673-2024 牛至栽培技术规程 DB41/T 2672-2024 白花蛇舌草栽培技术规程 DB14/T 3022—2024 地方习用对照药材制备通用技术要求 DB14/T 3021—2024 中药材产地加工技术规程 射干 DB14/T 3020—2024 中药材产地加工技术规程 小秦艽 DB14/T 3019—2024 中药材产地加工技术规程 苦参 DB14/T 3018—2024 中药材产地加工技术规程 北苍术 DB14/T 3017—2024 中药材产地加工技术规程 药用山楂 DB14/T 3016—2024 中药材产地加工技术规程 山桃仁 DB5227/T 130-2024 病死畜禽及病害畜禽产品收运 贮 技术规范 DB44/T 2516—2024 猪牛鸡生理、生产与环境数据采集技术规范 DB35/T 2176-2024 海峡两岸共通 中式插花技艺通用要求 DB35/T 2182-2024 茶园栽培管理技术农事导则
  • 国家卫生健康委发布50项新食品安全国家标准
    近日,根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2021年第3号公告,发布50项新食品安全国家标准和4项修改单。本次公布的标准主要包括:《婴儿配方食品》(GB10765-2021)等3项营养与特膳食品标准、《干酪》(GB5420-2021)1项食品产品标准、《食品添加剂碳酸钠》(GB1886.1-2021)等38项食品添加剂质量规格标准、《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准、《食品中总酸的测定》(GB12456-2021)等4项检验方法与规程标准,以及《食品中污染物限量》(GB2762-2017)第1号修改单等4项修改单。上述食品安全国家标准的制定、修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,为食品安全监管所需,标准制定、修订过程充分征求了社会各方意见并向世贸组织通报。为保障婴幼儿特殊人群健康,本次还修订了《婴儿配方食品》(GB10765-2021)《较大婴儿配方食品》(GB10766-2021)《幼儿配方食品》(GB10767-2021)等3项营养与特膳食品标准。制定修订并实施婴幼儿配方食品系列标准,是保障婴幼儿配方食品安全性、营养充足性的重要手段,是指导和规范食品生产企业科学生产的技术要求,是监管部门开展监管执法的重要依据。为做好标准实施解读,同时发布婴幼儿配方食品标准问答。 为加强食品安全全程控制,我委组织制定了《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准。其中,《餐(饮)具集中消毒卫生规范》(GB31651-2021)制定以规范餐饮具集中消毒服务单位生产经营行为,保证餐饮具卫生满足人民群众健康需求为目的,为加强餐饮具集中消毒的监督执法提供科学的技术依据。《即食鲜切果蔬加工卫生规范》(GB31652-2021)将进一步规范即食鲜切果蔬加工过程,促进行业健康发展,确保此类产品安全卫生,满足消费者对健康、便利生活的追求。《餐饮服务通用卫生规范》(GB31654-2021)是我国首部餐饮服务行业规范类食品安全国家标准,对于提升我国餐饮业安全水平,保障消费者饮食安全、适应人民群众日益增长的餐饮消费需求具有重要意义。《食品中黄曲霉毒素污染控制规范》(GB31653-2021)重点关注食品链中黄曲霉毒素的产生、消除、降低、控制等措施,对于加强黄曲霉毒素的过程控制,确保原料及下游产品食用安全具有重要意义。其编号和名称如下: GB5420-2021食品安全国家标准干酪 GB10765-2021食品安全国家标准婴儿配方食品 GB10766-2021食品安全国家标准较大婴儿配方食品 GB10767-2021食品安全国家标准幼儿配方食品 GB1886.1-2021食品安全国家标准食品添加剂碳酸钠 GB1886.3-2021食品安全国家标准食品添加剂磷酸氢钙 GB1886.302-2021食品安全国家标准食品添加剂聚乙二醇 GB1886.303-2021食品安全国家标准食品添加剂食用单宁 GB1886.315-2021食品安全国家标准食品添加剂胭脂虫红及其铝色淀 GB1886.316-2021食品安全国家标准 食品添加剂 胭脂树橙 GB1886.317-2021食品安全国家标准食品添加剂β- 胡萝卜素(盐藻来源) GB1886.318-2021食品安全国家标准食品添加剂 玉米黄 GB1886.319-2021食品安全国家标准食品添加剂沙棘黄 GB1886.320-2021食品安全国家标准食品添加剂葡萄糖酸钠 GB1886.321-2021食品安全国家标准食品添加剂索马甜 GB1886.322-2021食品安全国家标准食品添加剂可溶性大豆多糖 GB1886.323-2021食品安全国家标准 食品添加剂 花生衣红 GB1886.324-2021食品安全国家标准 食品添加剂 偏酒石酸 GB1886.325-2021食品安全国家标准食品添加剂聚偏磷酸钾 GB1886.326-2021食品安全国家标准食品添加剂酸式焦磷酸钙 GB1886.327-2021食品安全国家标准食品添加剂 磷酸三钾  GB1886.328-2021食品安全国家标准食品添加剂 焦磷酸二氢二钠 GB1886.329-2021食品安全国家标准食品添加剂 磷酸氢二钠 GB 1886.330-2021食品安全国家标准食品添加剂 磷酸二氢铵 GB1886.331-2021食品安全国家标准食品添加剂 磷酸氢二铵 GB1886.332-2021食品安全国家标准食品添加剂 磷酸三钙 GB1886.333-2021食品安全国家标准食品添加剂 磷酸二氢钙 GB1886.334-2021食品安全国家标准食品添加剂 磷酸氢二钾 GB1886.335-2021食品安全国家标准食品添加剂 三聚磷酸钠 GB1886.336-2021食品安全国家标准食品添加剂 磷酸二氢钠 GB1886.337-2021食品安全国家标准食品添加剂 磷酸二氢钾 GB1886.338-2021食品安全国家标准食品添加剂 磷酸三钠 GB1886.339-2021食品安全国家标准食品添加剂 焦磷酸钠 GB1886.340-2021食品安全国家标准食品添加剂 焦磷酸四钾 GB1886.341-2021食品安全国家标准食品添加剂 二氧化钛 GB1886.342-2021食品安全国家标准食品添加剂 硫酸铝铵 GB1886.343-2021食品安全国家标准 食品添加剂 L-苏氨酸 GB1886.344-2021食品安全国家标准食品添加剂DL-丙氨酸 GB1886.345-2021食品安全国家标准食品添加剂桑椹红 GB1886.346-2021食品安全国家标准食品添加剂柑橘黄 GB1886.347-2021食品安全国家标准食品添加剂4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB1886.348-2021食品安全国家标准食品添加剂焦磷酸一氢三钠 GB31651-2021食品安全国家标准 餐(饮)具集中消毒卫生规范 GB31652-2021食品安全国家标准 即食鲜切果蔬加工卫生规范 GB31653-2021食品安全国家标准 食品中黄曲霉毒素污染控制规范 GB31654-2021食品安全国家标准 餐饮服务通用卫生规范 GB12456-2021食品安全国家标准 食品中总酸的测定 GB31604.51-2021食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定 GB31604.52-2021食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定 GB31655-2021食品安全国家标准 哺乳动物体内碱性彗星试验 GB1886.47-2016《食品安全国家标准食品添加剂天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)》第1号修改单 GB 1886.103-2015《食品安全国家标准食品添加剂微晶纤维素》第1号修改单 GB1886.169-2016《食品安全国家标准食品添加剂卡拉胶》第1号修改单 GB2762-2017《食品安全国家标准食品中污染物限量》第1号修改单
  • 国家标准《絮用纤维制品异味的测定》通过审定
    很多人在选购服装、床上用品的时候都有闻一闻气味的习惯,很多纺织品和絮用纤维制品的国家标准也对异味检验项目提出要求,但是均没有具体的检测方法标准对异味项目进行检测。日前通过审定的《絮用纤维制品异味的测定》国家标准将填补这个领域的空白。   据了解,我国的强制性国家标准《国家纺织产品基本安全技术规范》、《絮用纤维制品通用技术要求》和《生态纺织品技术要求》等标准均要求检验异味,种类包括霉味、高沸程石油味(汽油味、煤油味、柴油味等)、鱼腥味、芳香烃味、未洗净动物纤维膻味、臊味等。对于异味这项反映纤维及纤维制品质量的重要技术指标,是以人工感官检验的方法进行检验的。在这类主观性检验中,检验人员对异味种类的正确理解、熟悉程度、对检验方法的掌握以及个体的因素,对检验结果均会产生较大的影响。尽管标准中对检验人员提出了须经培训的要求,但由于异味检验在国内开展时间不长,检验人员的实践经验相对不足,异味检验存在着一些问题。   标准的霉味、鱼腥味等都是什么味道?2009年2月发布的《纤维及纤维制品异味标准样品》就是标准的“异味”样品的国家标准。检验人员闻一闻标准样品,按相关要求,再去闻一闻检验的样品,就可以判定是否有异味。当然不是每次检验都需要闻一闻标准样品,但是需要按要求用标准样品对嗅觉进行校准。   据中国纤维检验局技术管理处处长冯平介绍,正常情况下,纺织纤维都会带有一些纤维自身固有的气味。絮用纤维制品在生产及加工过程中会产生化学物质的残留,这些残留物在纺织产品的使用过程中逐渐挥发或氧化分解会产生特殊气味 絮用纤维制品被微生物污染后,微生物的繁殖以及微生物对纤维和其上残留有机物的分解也会产生气味。有些异味达到一定程度,就会对人体健康产生不利影响,所以国内外纺织产品标准中均对异味提出了检验要求。随着《纤维及纤维制品异味标准样品》的使用越来越广泛,中国纤维检验局又联合其他实验室完成了《絮用纤维制品异味的测定》国家标准,填补了检测领域的空白。   据介绍,这项标准由国家纤维质量监督检验中心、广州市纤维产品检测院、重庆市纤维织品检验所共同完成。调查显示,异味检验的问题主要是同一个样品在同一个实验室检测,不同人员的检测结果不同 同一个样品在不同实验室检测,也会出现不同结果。其原因一是部分检验人员对异味了解不深、辨别不清 二是不同人员对气味的敏感程度不同,对气味的强度的掌握上尺度不一 三是对于异味的检验方法尚无详尽的描述,对检测的环境条件也无严格限定,而异味是由纤维及其制品中的某些物质挥发到空气中产生的,不同温度下,物质挥发的程度不同,异味的严重程度也就不同。   据标准主要起草人、国家纤维质量监督检验中心周硕介绍,标准对实验室的设备和材料、检测环境、试样准备、检验程序等方面的要求都是感官检验准确性的重要前提。尤其对检测人员进行了详尽的要求,其中包括身体健康,嗅觉正常,不吸烟,不酗酒 检测当天不使用带气味化妆品或护肤品,检测前洗手并用清水漱口去除口腔气味。并且规定了进入检测环境内需要进行2~3次深呼吸,然后静待10秒以适应检测环境。并且对检测人员的嗅觉校准提出了要求,规定了长期从事该项目检测的试验人员一个月进行一次嗅觉校准,试验人员发生变化、疾病或长期未从事该项目检测时应缩短嗅觉校准时间为一周等要求。   这项标准结合《纤维及纤维制品异味标准样品》可提高检验人员对絮用纤维制品包括纺织品中规定的异味种类的辨别,统一把握异味的强度,提高异味检验的准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制