当前位置: 仪器信息网 > 行业主题 > >

依那普利拉标准品

仪器信息网依那普利拉标准品专题为您提供2024年最新依那普利拉标准品价格报价、厂家品牌的相关信息, 包括依那普利拉标准品参数、型号等,不管是国产,还是进口品牌的依那普利拉标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合依那普利拉标准品相关的耗材配件、试剂标物,还有依那普利拉标准品相关的最新资讯、资料,以及依那普利拉标准品相关的解决方案。

依那普利拉标准品相关的资讯

  • 以标准“撬”市场 拉曼光谱应用拓展能否“快马加鞭”
    对科学仪器及分析测试行业而言,标准的重要性毋庸置疑。相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的意义,特别是对市场活跃度比较高的、正在发展中的仪器类别而言,标准在市场中的指导价值也愈发凸显。  作为分子光谱领域最具发展前景的仪器类别之一,拉曼光谱仪器技术以及相关应用的发展一直是大家非常关注的话题。多年以来,虽然拉曼相关的研究很多,从业群体也在不断壮大,但是由于拉曼光谱相关的仪器评价及应用标准等还不够完善,导致市场上拉曼光谱仪的技术性能和产品质量良莠不齐,相关的应用推广还存在不少困难,这也给拉曼光谱仪的生产、使用和市场推广带来了不利影响,对其进一步的推广和应用造成了一定程度的阻碍。  不过,近年来,拉曼光谱相关的标准已经得到了明显的改观,并有加速的趋势。据不完全统计,目前拉曼光谱相关的国家标准有10项,行业标准有8项,地方标准有4项。另外,一系列的团体标准也已经发布实施。  一方面,相关仪器及分析方法标准出炉,让市场有“规”可寻!  特别值得一提的是,我国首次制定的《拉曼光谱仪通用规范》(GB/T 40219-2021)将于2021年12月1日正式实施。本标准的制定将结束国内外没有拉曼光谱仪标准的历史,其发布实施不仅规范了拉曼光谱仪生产厂家的生产检验标准,使得进入市场的产品品质更有保障,促进国内拉曼光谱仪产业更健康有序的发展,同时也提高了与国际同类产品的整体竞争水平。  2020年10月9日,教育部办公厅印发的30个教育行业标准中,《JY/T 0573-2020激光拉曼光谱分析方法通则》将代替JY/T 002—1996《激光喇曼光谱分析方法通则》,当年12月1日实施,这也是该标准实施20多年来的首次修订,吸引业界很大关注。新《通则》对仪器部分以介绍通用原理为主,不涉及具体型号仪器的结构和技术指标,其中的术语、校准器具与材料、及拉曼光谱定量分析方法借鉴了美国试验与材料协会(ASTM)标准和日本工业标准(JIS)相关条款的部分内容。  此外,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2015年,国家质量监督检验检疫总局还发布了《拉曼光谱仪校准规范》(JJF 1544-2015),为拉曼光谱仪的校准提供了规范准则。  以上相关标准/规范等的发布实施,让拉曼光谱仪器/分析方法有“规”可寻!拉曼相关国家标准序号标准编号标准名称发布日期实施日期1GB/T 40069-2021纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法2021-05-212021-12-012GB/T 40219-2021拉曼光谱仪通用规范2021-05-212021-12-013GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020-11-192021-06-014GB/T 38569-2020工业微生物菌株质量评价 拉曼光谱法2020-03-312020-03-315GB/T 37984-2019纳米技术 用于拉曼光谱校准的频移校正值2019-08-302020-03-016GB/T 36705-2018氮化镓衬底片载流子浓度的测试 拉曼光谱法2018-09-172019-06-017GB/T 36063-2018纳米技术 用于拉曼光谱校准的标准拉曼频移曲线2018-03-152018-10-018GB/T 34899-2017微机电系统(MEMS)技术 基于拉曼光谱法的微结构表面应力测试方法2017-11-012018-05-019GB/T 33252-2016纳米技术 激光共聚焦显微拉曼光谱仪性能测试2016-12-132017-07-0110GB/T 32871-2016单壁碳纳米管表征 拉曼光谱法2016-08-292017-03-01(备注:以“拉曼”为关键词搜索的不完全统计)  另一方面,一系列应用标准发布实施,推动应用深度拓展!  随着仪器技术的进步以及相关应用的深入拓展,拉曼光谱相关的应用标准近年来陆续出台。比如2021年即将实施的《纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法》规定了使用拉曼光谱测量石墨烯相关二维材料层数的方法,为利用拉曼光谱法进行机械剥离方法制备的石墨烯薄片层数测量提供科学可靠的依据以及标准的实验方法,促进拉曼光谱在纳米技术领域及石墨烯相关二维材料产业中的推广应用,并为石墨烯相关二维材料的生产和研究提供技术指导。  激光拉曼光谱法作为气相色谱法后新兴的组成分析方法,具有分析速度快的技术优势,能满足页岩气勘探开发过程中的气质快速分析需求。《页岩气组分快速分析激光拉曼光谱法》(GB/T 39540-2020)将给页岩气的快速检分析提供更为方便的检测方法。  工业菌株是工业生物技术的关键和核心,菌株的质量评价在选育和投料过程中都不可或缺,但目前菌株评价方法大都包括生物量培养累积、目标代谢物提取和检测等繁琐的过程,评价周期长,不仅不利于工业菌株的快速筛选,而且延迟了生产的投料过程。《工业微生物菌株质量评价拉曼光谱法》(GB/T 38569-2020)规定了采用拉曼光谱评价工业微生物菌株质量的标准方法和流程,适用于发酵工业和基于微生物生物制造领域工业微生物(大肠杆菌、酵母等)的质量评价。  制药领域一直是拉曼光谱“攻坚”的领域。《中国药典》于2010年版第一次以指导原则收载拉曼光谱法,2015版中国药典也将拉曼正式以检测方法列入药典附录,提高到了与红外同等的位置 2020年版四部理化分析通则再次修订。参照USP和EP,2020年版中国药典对拉曼光谱法作了一系列修订,更全面地介绍拉曼光谱法的技术,比如增加了方法适用性的表述、对不同仪器波数提出了不同的要求、反映了拉曼光谱法的最新研究和技术进展等。  2020年版中国药典进一步明确了拉曼光谱法在药学中的应用范围,如“拉曼光谱能够脱机、联机、现场或在线用于过程分析,当实用长距离光纤,适用于远距离检测” “拉曼光谱既适合于化学鉴别、结构分析和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制” “拉曼光谱法用于晶型鉴别时,由于一般不需要制样,可以减少或避免研磨、压片等可能造成的转晶现象。波数低至太赫兹光区的特征光谱也可以提供用于多晶型研究和晶型鉴别重要信息”等,进一步明确了拉曼光谱法的作用,有利于推动拉曼光谱法在工艺开发和药品质量控制中的应用。  除此之外,拉曼光谱技术在乳制品、果蔬、纺织、珠宝玉石、法庭科学等领域的应用也取得了一系列的进展,相关国标、行标、团标已经出炉。不过,相对于拉曼光谱仪目前的应用领域和未来亟待拓展的应用方向,相关的标准还不够,期待更多应用标准出台以助力拉曼光谱应用拓展“快马加鞭”!拉曼相关行业标准序号标准编号标准名称行业批准日期实施日期1JY/T 0573-2020激光拉曼光谱分析方法通则教育2020-09-292020-12-012SF/T 0080-2020单根纤维的比对检验 激光显微拉曼光谱法司法2020-05-292020-05-293SY/T 7433-2018天然气的组成分析 激光拉曼光谱法石油天然气2018-10-292019-03-014GA/T 823.4-2018法庭科学油漆物证的检验方法 第4部分:激光拉曼光谱法公共安全2018-06-252018-06-255SN/T 4698-2016出口果蔬中百草枯检测 拉曼光谱法出入境检验检疫2016-12-122017-07-016GA/T 1067-2013基于拉曼光谱技术的液态物品安全检查设备通用技术要求公共安全2013-05-222013-10-017SN/T 3236-2012纺织纤维鉴别试验方法 拉曼光谱法出入境检验检疫2012-10-232013-05-018SN/T 2805-2011出口液态乳中三聚氰胺快速测定 拉曼光谱法出入境检验检疫2011-02-252011-07-01(备注:以“拉曼”为关键词搜索的不完全统计)
  • 标准进程再进一步 两项拉曼光谱相关国家标准即将宣贯
    p   拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。对拉曼光谱而言,相关标准的滞后也在一定程度上限制了该类仪器的推广应用,不过现在情况已经有了一定的改观,一系列的标准制定工作正在加紧进行中。 /p p   比如,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2018年7月26日,国家标准委发文征求意见,拟立项685个国家标准项目中,《拉曼光谱仪通用规范》在列。 /p p   日前,中国计量院发布国家推荐性标准宣贯会的通知,将对GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》及GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》两项国家标准进行宣贯。 /p p   据悉,由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。 /p p   详细内容请见会议通知: /p p    a href=" https://www.instrument.com.cn/news/20180906/470823.shtml" target=" _blank" strong 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知 /strong /a /p p & nbsp /p
  • IEC新标准:拉曼光谱用于石墨烯表征
    石墨烯旗舰标准化委员会率先创建了两项关于石墨烯表征的新国际电工委员会(IEC)标准,这是加速技术转让的基础。新规范将促进石墨烯和层状材料在欧洲主要工业领域的采用。石墨烯旗舰的最终目标是将石墨烯产品商业化,引领欧洲的材料创新。现在,国际电工委员会(IEC)批准了两项技术规范,将促进技术转让,通过最先进的测量技术对石墨烯样品进行更好的质量控制。这些新建议由石墨烯旗舰标准化委员会和法国、德国和英国的石墨烯旗舰专家率先提出。石墨烯表征的标准化方法将形成工业中强大的价值网络。IEC是一个全球性的标准化组织,在电气和电子行业备受推崇。他们的决定和建议反映了国际共识——石墨烯的新技术规范展示了人们对这种材料日益增长的兴趣。通过不同认可的实验室技术,IEC正在推广更好的解决方案来表征石墨烯和层状材料,以确保在质量、功能和性能方面具有出色的可靠性。新的IEC规范之一侧重于拉曼光谱,这是表征石墨烯和其他碳基材料最广泛使用的技术之一。石墨烯在拉曼光谱中产生非常特征的峰——就像材料的独特指纹。这些实验提供了有关石墨烯样品的有价值信息,包括层数、材料的缺陷和“掺杂”剂的浓度,这些信息通常用于定制这种二维物质的特性。确定这些参数以评估材料的质量及其对不同应用的适用性非常重要。该提案由英国剑桥石墨烯中心的石墨烯旗舰专家起草,描述了单层石墨烯中缺陷密度的评估,它直接影响导电性等特性。现在在法国圣路易学院工作的Anna Ott领导了该项目并将其付诸出版。IEC批准的第二个技术规范侧重于使用涡流法表征石墨烯和相关材料。该技术使用电磁场来非接触式和高吞吐量地评估材料的电阻。石墨烯层中的小电流有助于测量感应效应并计算电阻。这种方法的优点之一是它适用于大面积的石墨烯,即使沉积在非导电基板上,从而能够在工业环境中进行质量控制。当前的IEC标准适用于最大5平方厘米的表面;很快将采用其他策略来促进更大的基于石墨烯的设备(如晶圆)的表征。该标准由德国Graphene Flagship Associated Member SUGARUS GmbH的主任Marcus Klein率先制定。石墨烯和层状材料的标准将降低创新、工业化以及最终商业化的障碍。石墨烯旗舰计划标准化委员会致力于在石墨烯及相关材料领域建立基于共识的国际标准,例如这两个IEC规范。石墨烯旗舰标准化委员会主席Thurid Gspann说:“这两个IEC规范有助于实现我们委员会和石墨烯旗舰项目的长期目标。拼图中的新部分肯定会刺激创新,为欧洲和世界各地的工业提供有保障的标准化程序,使用拉曼光谱和涡流法等可靠且可重复的技术来评估石墨烯片的质量。”为了突出这些贡献的价值,石墨烯旗舰标准化委员会授予Anna Ott和Markus Klein标准化证书。“我们要承认这些对该领域的宝贵贡献,因为标准化对于加速石墨烯产品的市场渗透非常重要。”石墨烯旗舰创新负责人Kari Hjelt补充说:“我很高兴看到我们的石墨烯旗舰标准化委员会取得成功,他们通过建立关键标准、规范和建议来真正推动商业化,以保证工业应用。此外,IEC的认可展示了我们项目的国际重要性;石墨烯旗舰已经成为石墨烯和层状材料领域的先驱和领导者,成功地将欧洲置于创新的前沿。”
  • 食品法典委员会为袋装沙拉设立新标准
    食品法典委员会(The Codex Alimentarius Commission)周二对袋装沙拉生产过程设立了新标准,并称婴儿配方奶粉和食品中仅允许有微量的三聚氰胺存在。   路透日内瓦7月6日电(记者 Laura MacInnis)---一家国际食品安全机构周二对袋装沙拉生产过程设立了新标准,并称婴儿配方奶粉和食品中仅允许有微量的三聚氰胺存在。   食品法典委员会(The Codex Alimentarius Commission)在日内瓦召开的会议上做出决定,那就是不应该用动物肥料给“生吃型”新鲜蔬菜产品施肥,以避免食用者患病。   该委员会还规定,未经加热处理的“生吃”袋装农产品不应与受过污染的水接触。这些新规定可能会改变全世界的蔬菜生产标准。   世界卫生组织食品安全、人畜共患病和食源性疾病司司长Jorgen Schlundt说:“这个问题是全球性的。”他把用动物肥料给农作物施肥的做法与美国等地的疾病疫情联系起来。   食品法典委员会由世界卫生组织和世界粮农组织共同建立,职责是为进口商和出口商设立食品安全规则。
  • 上海安谱公司成为美国NSI公司标准品在中国的代理
    2010年5月起,上海安谱公司与美国NSI公司(NSI Solution)达成长期合作意向,并签署了合作协议,成为美国NSI公司在中国的代理商。   上海安谱公司将向广大中国客户提供美国NSI公司生产的各种环境检测能力验证标准品(PT Standards)和质控标准品(QC Standards),适用于水和土壤检测。并可以通过上海安谱公司参加NSI公司开展的能力验证项目(Proficiency Test).   这一合作关系使上海安谱公司标准品产品线进一步扩大,上海安谱作为专业的色谱耗材和实验室小型仪器的生产商和代理商,必将为广大实验室客户提供更多优质产品和服务。欢迎来信来电咨询和订购:021-54890099 shanpel@anpel.com.cn   美国NSI公司介绍:   与CNAS签署相互承认协议的认可机构认可的能力验证计划提供者之一,为环境相关分析实验室提供能力验证服务,能力验证标准品和质控标准品,标准溶液等。超过20年的能力标准物质生产经验,在过去10年内的PT报告从未出现过错误数据。   CNAS能力验证专栏对于NSI的相关介绍:   http://219.238.178.49/PT/Index/P_JG_List2.aspx   8 NSI Solution, Inc.   饮用水、废水及土壤中的金属、矿物质、农药、除草剂、挥发性有机物、半挥发性有机物、PCB等无机、有机项目。   www.nsi-es.com   获A2LA、NVLAP和ISO认可   能力验证介绍:   能力验证(Proficiency Testing)是利用实验室间比对来判定实验室和检查机构能力的活动,也是认可机构加入和维持国际相互承认协议(MRA)的必要条件之一。   中国合格评定国家认可委员会(CNAS)根据国际实验室认可合作组织(ILAC)、亚太实验室认可合作组织 (APLAC)相关要求制定了能力验证政策和要求,组织开展能力验证活动并参加国际能力验证计划。寻求CNAS认可和已获准认可的机构必须满足CNAS的 能力验证相关政策,并按照CNAS能力验证领域、频次要求参加CNAS组织或承认的能力验证活动,包括:能力验证计划、实验室间比对和测量审核活动。   CNAS按照ISO/IEC指南43等国际通行要求开展能力验证活动。实验室和检查机构等可以通过利用能力验证这种外部质量保证(EQA)工具,识别与同 行机构之间的差异,补充其内部质量控制技术,为自身的持续改进和质量管理提供信息 实验室的用户、监督和管理机构、评价机构等可通过利用CNAS能力验证 结果,判断实验室和检查机构等是否具有从事校准/检测活动的能力,以及监控他们能力的持续状况。
  • 中国土壤学会公开征求团体标准《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》意见
    根据团体标准制修订计划和标准起草有关规定,经制订《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》标准项目起草组认真研究、讨论,并开展调研,现已完成征求意见稿编制工作。现在网上公开征求意见,请于2024年5月8日前将修改意见填写在《意见反馈表》中,并将反馈表电子版(PDF签字扫描件和word版)发至联系人邮箱。逾期视为无意见。联系人:王艳华联系电话:13991828224联系邮箱:yhwang930@foxmail.com附件下载:附件.zip附件1 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》征求意见稿.pdf附件2 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》编制说明.pdf附件3 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》意见反馈表.docx中国土壤学会2024年4月8日
  • 河北省检验检疫学会批准发布《食品中非法添加药物非布司他的快速检测 拉曼光谱法》等10项团体标准
    各有关单位:根据《河北省检验检疫学会团体标准管理办法》的相关规定,河北省检验检疫学会批准发布《食品中非法添加药物非布司他的快速检测 拉曼光谱法》(T/HBIQA0002.1-2023)等10项团体标准,自2024年5月1日起正式实施,现予以公告。河北省检验检疫学会2024年3月12日河北省检验检疫学会关于发布《食品中非法添加》等10项团体标准的公告.pdf
  • CATO分析标准品空降Thailand Lab,不小心上了头条
    美国CATO分析标准品—唯有创新方能引领— 作为国际知名标准品品牌,CATO分析标准品此次在泰国曼谷国际实验室设备仪器及技术展会(Thailand Lab)中的出现,以其贴合客户需求的创新性产品引起在场客商高度关注,这一表现也体现出,如今,品牌与客户已不再是简单的供销关系,而是相互提升相互促进的关系。品牌要随时根据客户的需求对自身产品进行创新优化,才能抓住客户的心。?————————————————————————————————————————————关于2018 Thailand Lab 泰国曼谷国际实验室设备仪器及技术展会Thailand Lab(以下简称“泰国实验展”)是由荷兰皇家展览集团VNU Exhibitions联合泰国科学技术贸易协会共同举办,由泰国科学技术部、公共健康部、国家科学技术研究所、科技促进会、药品研究和制造商协会、泰国会议展览局等多部门赞助。展览会一年一届,是东南亚实验室设备仪器的顶级盛会,行业内一个重要的商业交流平台。 而今年的泰国曼谷国际实验室设备仪器及技术展会以30000平米展示面积盛大回归,吸引来自世界各地的895家参展企业,客商数量达到6000人。——————————————————————————————————————此次CATO分析标准品在Thailand Lab上能够受到客户青睐继而登上头条除公司自身的实力外还因相关媒体所总结的以下几点 1、品牌力量 品牌是实力的保障,选择CATO分析标准品,更多是因为相信品质。多年来的匠心经营,赢得全球超过220个国家和地区的客户信赖,是各级企业及买家、科学家、研究学者、分析仪器用户、行业工程师以及业内知名经销商、贸易商等行业人员对CATO品牌的认可。2、产品种类齐全 时代在变,需求在变,不变的是客户对产品的高要求,以及CATO随着检测需求的变化,不断更新产品。CATO至今已有14000+种标准品,其中130种独家品种。业务范围包括药物杂质对照品、工业检测标准品、农药残留检测标准品、兽药残留检测标准品、食品检测标准品、环境检测标准品、天然提取物等,同时还提供原料药、中间体和定制合成服务。 3、品质保证 CATO通过了ISO9001:2015质量管理体系认证,并且拥有ISO17025:2017检测和校准实验室能力认可资质的实验室,每个标准品按照ISO17034:2016标准物质/标准药品生产者要求进行生产管理。 4、证书提供 CATO分析标准品除了可提供分析证书(COA)、GC/LC-MS、HNMR、HPLC,还可以根据客户的要求增加IR、水分、UV、HMBC、CNMR、旋光和三维核磁等检测报告。 5、现货供应亚洲市场(货期更快) CATO针对亚洲市场打造独立仓库,做到90%以上的标准品可以做到现货供应,彻底解决客户在货期问题上的困扰。
  • “标”新立益 | 药物二级标准品CRM上新
    标准物质作为分析测量值溯源与传递的重要载体,在分析、检测等中起着非常重要的作用。尤其是在仪器的校准、分析方法的验证和质量控制(QC)过程中,标准物质很大程度上保障了检测结果的精确性、准确性和一致性。使用准确度更高的仪器和标准物质,有助于提高检测结果的准确性。并且根据ISO 17025 检测和校准实验室的管理,需要使用CRM级别的标准物质,以实现分析测量结果在计量溯源性基础上的可比对性,尤其是测量设备的校准、测量方法/程序的确认、质量控制程序监控检测和校准的有效性。 默克Supelco® 广泛的标准物质产品线,满足您在药品研究和生产过程中整个分析流程的需要。无论是药物二级标准物质CRM,药物杂质标准物质CRM,元素杂质、残留溶剂等CRM,还是可萃取物及浸出物(E&L)及物理性质标准物质如:pH标准溶液CRM,熔点CRM、色度CRM以及能力验证,默克Supelco® 都是您值得信赖的合作伙伴,帮助您实现分析结果的精准性、准确性和一致性,满足法规及监管要求,并且内容丰富的分析证书(COA)符合相关实验室法规要求。 今年默克又已新增200+种药物二级标准品CRM。选择CRM,选择默克Supelco® 。 药物二级标准物质CRM• CRM质量级别• 可溯源至美国药典(USP)以及欧洲药典(EP)和英国药典(BP)• 分析证书内容全面,符合ISO Guide 31要求 内容全面的分析证书溯源性分析方法及谱图杂质分析方法及相关图谱,包括有关物质、残留溶剂、KF水份等结构鉴定及图谱,如红外、质谱图等均匀性及稳定性评价和不确定度说明 药物二级标准品CRM 分析证书节选如下:点击此处或随时联系我们,了解标准物质的不同质量级别。https://www.sigmaaldrich.cn/CN/zh/technical-documents/technical-article/analytical-chemistry/calibration-qualification-and-validation/analytical-standards-selection-guide?utm_campaign=seo - china&utm_source=instrument&utm_medium=news 关于默克Supelco® 标准物质自2015 年,默克收购西格玛奥德里奇(Sigma-Aldrich® ) 后,原Sigma-Aldrich® 、Merck、Cerilliant® 等标准品,均已并入默克Supelco® 分析品牌旗下。标准物质种类超过20,000 种,涵盖分析标准品、标准物质、CRM 等不同级别的标准物质。随着产业升级、法规更新、研究领域拓宽,我们每年新增标准物质超1,000种,应用于制药、食品、环境、诊断、公安法检等领域。
  • 中国土壤学会立项《土壤环境微塑料监测技术规范/标准--激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》团体标准
    各会员及有关单位:根据《中国土壤学会团体标准管理办法(试行)》规定,经自愿申请、专家评审论证,确定《土壤环境微塑料监测技术规范/标准--激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》1项团体标准符合立项要求,准予立项。特此公告。请标准起草单位按照相关要求开展团体标准制定工作,严把标准质量关,确保按时完成相关工作。如对以上标准项目存在异议,请在公告之日起5个工作日内将意见反馈至我会标委会秘书处。联系人:严卫东 蒋宇霞电话:025-86881532Email:sssc@issas.ac.cn中国土壤学会2024年1月8日
  • 中国食品添加剂和配料协会发布《辣椒红中辣椒素的测定 高效液相色谱法》团体标准征求意见稿
    各有关单位及专家:由中国食品添加剂和配料协会组织起草的团体标准《辣椒红中辣椒素的测定 高效液相色谱法》已完成征求意见稿,现公开征求意见。如有意见和建议,请于2024年3月19日之前将《征求意见表》以邮件的形式反馈至中国食品添加剂和配料协会。联系人: 刘捷、田伏锦电 话: 010-53218288转6555邮 箱: ffstandard@163.com、cfaa2022@126.com附件下载附件1 《辣椒红中辣椒素的测定 高效液相色谱法》团体标准征求意见稿附件2 中国食品添加剂和配料协会团体标准征求意见表关于《辣椒红中辣椒素的测定 高效液相色谱法》团体标准征求意见的通知.pdf二〇二四年二月二十日
  • 江苏省分析测试协会发布《食品中非法添加物西布曲明的快速检测 拉曼光谱法》等2项团体标准
    各有关单位:根据《江苏省分析测试协会团体标准管理办法》的规定,T/JSAIA 010-2023《食品中非法添加物西布曲明的快速检测 拉曼光谱法》和 T/JSAIA 011-2023《食品中非法添加物盐酸二甲双肌的快速检测 拉曼光谱法》2 项团体标准已按规定程序审查、审批通过,现予以发布。特此公告。江苏省分析测试协会2023年10月9日关于发布《食品中非法添加西布曲明》等2项团体标准的公告.pdf
  • AB 40台质谱仪助中国推行食品安全新标准
    Applied Biosystems与中国建立合作伙伴关系,将有助于推行食品安全新标准   美国商业资讯美国加利福尼亚州Carlsbad消息——   Life Technologies公司(纳斯达克股票代码:LIFE)下属的美国应用生物系统公司(Applied Biosystems)今日宣布,将协助中国政府在中国推行食品安全的新标准。为了加强对国内食品供应和对外出口的监控能力,中国国家质量监督检验检疫总局(AQSIQ)采用了40台AB SCIEX质谱仪以确保污染物的准确鉴别,这将有助于中国稳固其全球食品供应商的地位。   目前,中国科学家们采用这种质谱技术对各种食品进行比较深入的分析,如大米、玉米、小麦、大豆、水果、蔬菜和肉类等。这种分析对新标准有着至关重要的意义,可以通过Applied Biosystems/MDS Analytical Technologies合资企业生产的质谱仪的高灵敏探测功能来实现。   这些系统能够增强实验室对数量极其微小的污染物的扫描、鉴别与测量能力,使政府与行业人士能够迅速做出反应,防止污染物的传播,而且对控制结果更有信心。因此,中国将有能力确保更严格的食品条例得到执行,能够更好地保护消费者,同时避免费用高昂的食品产品召回行动。   应用生物系统公司的质谱系统业务总裁Laura Lauman   “应用生物系统公司致力于与中国合作,共同改善食品安全状况,从而实现我们的质谱技术的一次最大规模的应用。此举使有关机构能够准确鉴别有害化学物质、防止污染物进入食品供应链,是确保中国食品产品安全的一个关键步骤。   关于应用生物系统公司产品   Life Technologies的应用生物系统品牌是一个全球领先的产品提供商,其产品包括创新、优化的仪器系统,以及有助于加快学术和临床研究、新药研究和开发、病原检测和法医学DNA分析的工作流程。凭借应用生物系统(Applied Biosystems)和英杰(Invitrogen)品牌的试剂、成套设备和台式设备,Life Technologies为市场提供全面的分子和细胞生物解决方案。应用生物系统和英杰产品在全球几乎所有的重要实验室中都得到应用。如欲了解更多信息,请浏览:www.appliedbiosystems.com 和www.invitrogen.com。   关于Life Technologies公司   Life Technologies公司(纳斯达克股票代码:LIFE)是一家全球性的生物技术仪器设备公司,致力于提高人们的生存环境。我们的系统、耗材和服务能帮助研究者加快科学探索的进度,让那些使生活更美好的发现和发展更早到来。Life Technologies公司的客户从事生物技术方面的各类工作,致力于推动定制化医疗、再生科学、分子诊断学、农业与环境研究以及新世纪法医学的发展。该公司2008年销售额逾30亿美元,员工9500人,业务遍及100多个国家,拥有3600多项专利和独家许可证,且知识产权规模正在迅速扩大。Life Technologies公司由英杰公司(Invitrogen Corporation)与应用生物系统公司(Applied Biosystems Inc.)合并而成。如需了解更多,请访问:www.lifetechnologies.com。
  • 农业部发布29项色谱质谱食品安全检测标准
    2013年10月16日,农业部网站发布消息称,《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项标准业经食品安全国家标准审评委员会审定通过。并经农业部、卫生和计划生育委员会审查批准,发布为中华人民共和国食品安全国家标准,自2014年1月1日起实施。   附件:《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项兽药残留检测方法标准目录 序号 标准名称 标准编号 1 食品安全国家标准牛奶中左旋咪唑残留量的测定高效液相色谱法 GB 29681-2013 2 食品安全国家标准水产品中青霉素类药物多残留的测定高效液相色谱法 GB 29682-2013 3 食品安全国家标准动物性食品中对乙酰氨基酚残留量的测定高效液相色谱法 GB 29683-2013 4 食品安全国家标准水产品中红霉素残留量的测定液相色谱-串联质谱法 GB 29684-2013 5 食品安全国家标准动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱-质谱法 GB 29685-2013 6 食品安全国家标准猪可食性组织中阿维拉霉素残留量的测定液相色谱-串联质谱法 GB 29686-2013 7 食品安全国家标准水产品中阿苯达唑及其代谢物多残留的测定高效液相色谱法 GB 29687-2013 8 食品安全国家标准牛奶中氯霉素残留量的测定液相色谱-串联质谱法 GB 29688-2013 9 食品安全国家标准牛奶中甲砜霉素残留量的测定高效液相色谱法 GB 29689-2013 10 食品安全国家标准动物性食品中尼卡巴嗪残留标志物残留量的测定液相色谱-串联质谱法 GB 29690-2013 11 食品安全国家标准鸡可食性组织中尼卡巴嗪残留量的测定高效液相色谱法 GB 29691-2013 12 食品安全国家标准牛奶中喹诺酮类药物多残留的测定高效液相色谱法 GB 29692-2013 13食品安全国家标准动物性食品中常山酮残留量的测定高效液相色谱法 GB 29693-2013 14 食品安全国家标准动物性食品中13种磺胺类药物多残留的测定高效液相色谱法 GB 29694-2013 15 食品安全国家标准水产品中阿维菌素和伊维菌素多残留的测定高效液相色谱法 GB 29695-2013 16 食品安全国家标准牛奶中阿维菌素类药物多残留的测定高效液相色谱法 GB 29696-2013 17 食品安全国家标准动物性食品中地西泮和安眠酮多残留的测定气相色谱-质谱法 GB 29697-2013 18 食品安全国家标准奶及奶制品中17&beta -雌二醇、雌三醇、炔雌醇多残留的测定气相色谱-质谱法 GB 29698-2013 19 食品安全国家标准鸡肌肉组织中氯羟吡啶残留量的测定气相色谱-质谱法 GB 29699-2013 20 食品安全国家标准牛奶中氯羟吡啶残留量的测定气相色谱-质谱法 GB 29700-2013 21 食品安全国家标准鸡可食性组织中地克珠利残留量的测定高效液相色谱法 GB 29701-2013 22 食品安全国家标准水产品中甲氧苄啶残留量的测定高效液相色谱法 GB 29702-2013 23 食品安全国家标准动物性食品中呋喃苯烯酸钠残留量的测定液相色谱-串联质谱法 GB 29703-2013 24 食品安全国家标准动物性食品中环丙氨嗪及代谢物三聚氰胺多残留的测定超高效液相色谱-串联质谱法 GB 29704-2013 25 食品安全国家标准水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定气相色谱法 GB 29705-2013 26 食品安全国家标准动物性食品中氨苯砜残留量的测定液相色谱-串联质谱法 GB 29706-2013 27 食品安全国家标准牛奶中双甲脒残留标志物残留量的测定气相色谱法 GB 29707-2013 28 食品安全国家标准动物性食品中五氯酚钠残留量的测定气相色谱-质谱法 GB 29708-2013 29 食品安全国家标准动物性食品中氮哌酮及其代谢物多残留的测定高效液相色谱法 GB 29709-2013
  • 上榜!迪马色谱柱入选多个中药配方颗粒国家药品标准
    中药配方颗粒是由单味中药饮片经水提、分离、浓缩、干燥、制粒而成的颗粒,在中医药理论指导下,按照中医临床处方调配后,供患者冲服使用。中药配方颗粒的质量监管纳入中药饮片管理范畴。按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,国家药典委员会组织相关企业开展中药配方颗粒品种试点统一标准研究,并组织专家开展标准审评工作。 NEWS  2021年4月29日,国家药典委员会发布《关于执行中药配方颗粒国家药品标准有关事项的通知》:   经国家药品监督管理局批准,首批160个中药配方颗粒国家药品标准已正式颁布,将于2021年11月1日正式实施,现在我委网站予以转发,并就有关事项通知如下: 迪马色谱柱入选多个中药品种   在国家药典委员会发布的首批160个中药配方颗粒国家药品标准中,炒牛蒡子、川牛膝、干姜、黄芩、酒黄芩、酒女贞子、牛蒡子、女贞子、山楂(山里红)等多个品种推荐使用迪马科技液相色谱柱,现将部分品种汇总如下,供广大中药配方颗粒分析工作者参考。 160个中药配方颗粒如下:备注:以上红框标注品种推荐使用迪马液相色谱柱。
  • 《橡胶 全硫含量的测定 离子色谱法》——标准上新啦
    《橡胶 全硫含量的测定 离子色谱法》——标准上新啦原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼陈洁 郑洪国1月29日1月29日,国家标准计划《橡胶 全硫含量的测定 离子色谱法》,公示阶段已经结束,距离其正式实施也不远了。 本项标准等同采用国际标准ISO:19242-2015,规定了离子色谱仪测定生胶、硫化胶和非硫化胶中硫含量的检测方法,样品通过管式炉燃烧法或氧瓶燃烧法制备。氧瓶燃烧法无法准确测定硫含量低于0.1%及含有金属盐并形成不溶金属硫酸盐的橡胶样品。针对以上难点,采用更合适的管式炉燃烧方法,扩大了样品测试的范围并且提高了准确性,对产品安全、风险防范及提升橡胶制品的检测能力有着重要作用,该标准将会取代《GB/T 4497.1-2010 橡胶全硫含量的测定》。国家标准计划 各位“实验猿”都很清楚,对于固体样品和高粘度样品中的有机卤素和硫,必须将其处理为溶液状态才能在离子色谱上进行测试。上述样品的前处理方法有传统的氧弹燃烧和在线燃烧炉。氧弹瓶及内部结构在线燃烧炉样品中卤素和硫的前处理方法对比简单、快速、准确的卤素及硫测试方法一直吸引着大家的关注。前处理主要有氧瓶/氧弹燃烧离子色谱法和CIC在线燃烧(管式炉)离子色谱法,在线燃烧离子色谱在操作使用及样品测试上具有明显优势。不同前处理方法对比(点击查看大图)飞飞:CIC在线燃烧离子色谱是什么?赛老师:CIC在线燃烧离子色谱全称为燃烧炉-离子色谱联用技术。 飞飞:它的原理是什么?赛老师在全自动分析过程中,氩气氛围下样品在燃烧炉中高温裂解,随后被氧气氧化,所得气体产物被吸收液吸收,zui后进入离子色谱中分析。 飞飞那它能分析哪些离子?赛老师由于物质经燃烧、氧化及吸收的特殊性,其主要用于分析有机物中卤素和硫。 飞飞燃烧离子色谱具体应用在哪些领域呢?赛老师几乎所有能够燃烧的样品,均可通过燃烧炉离子色谱进行分析,该技术可在环保、电子元件、石油化工、材料、染料及医药等众多领域得到广泛应用。 典型应用一、CIC在线燃烧离子色谱测定石脑油馏分 石化行业作为我国支柱行业,在国民经济的发展中起着举足轻重的作用。原油气中的卤素和硫,会引起生产设备的腐蚀,进而造成环境污染,同时还会向下游产品传递,因此卤素和硫的监测十分必要。CIC燃烧离子色谱仪CIC燃烧流程及原理(点击查看大图) 滑动查看更多 石脑油馏分样品中卤素和硫的分离谱图CIC对于石化行业中卤素和硫的测定具有以下技术优势:1. 一次进样可同时分析样品中总硫和卤素;2. 可选气体、液体或者固体自动进样器,满足不同样品的测试需求;3. 燃烧过程实时监控,可选精细燃烧模式,保证样品充分燃烧,重复性好;4. 仪器自带清洗步骤,保证样品结果的重复性和准确性。 典型应用二、CIC在线燃烧离子色谱-测定OLED有机光电材料中的卤素 作为国家十四五规划新材料发展战略之一,OLED有机发光材料将会迎来广阔的发展前景,但其常为复杂的高纯有机基质,所含的卤素杂质浓度低,样品量小,对分析测试带来极大的挑战。 低浓度卤素标样分离谱图(点击查看大图)典型样品分离谱图(点击查看大图) 滑动查看更多CIC 对于有机光电材料中卤素的测定具有以下技术优势:1.可测定限度低至ppm级的硫和卤素,样品检出限可低至0.038~0.1mg/Kg;2.经充分燃烧后硫和卤素释放彻底,样品基质完全消除;3.赛默飞特色的氢氧根体系及高容量离子交换色谱柱(IonPac AS19),提供高基体样品基质兼容能力,可满足高氮含量有机材料中痕量Br的检测;4.样品及标样均通过同一燃烧通道,确保测定结果的准确性;5.全自动化的燃烧-吸收-分析过程,人工干预少,空白低,满足ASTM现行方法要求。 “只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图 滑动查看更多 总结CIC在线燃烧离子色谱不仅可以满足石油、化工、高分子材料及环境固废中较高含量卤素和硫的分析,对于新型有机光电材料中低浓度卤素测定,也能够提供简单、便捷的操作及准确可靠的实验结果,为新型材料的研究发展及品控提供了可靠的技术保障。
  • 首个便携拉曼快检仪标准通过审定
    2015年12月30日,福建省质监局在福州组织召开了由福建计量院、厦门大学、厦门市普识纳米科技有限公司共同起草的福建省地方标准《便携式拉曼光谱快速检测仪》专家审定会,与会专家一致通过了对该标准的审定。  专家意见认为,该标准为首个针对拉曼光谱快速检测仪的标准,规范了便携式拉曼光谱快速检测仪的要求、试验方法、检验规则、标志、包装、运输及贮存等,为便携式拉曼光谱快速检测仪的生产、使用和检验提供技术依据,性能指标合理,可操作性强,达到国内领先水平。  该标准的实施,将有效推进拉曼光谱技术在食品安全、环境保护、公共与国防安全、生命健康等领域的应用开发,对提升拉曼光谱技术及仪器制造的水平、促进市场规范和行业健康发展,具有重要意义。
  • 领谱科技:致力于拉曼快检市场的便携化、快速化与精准化
    这两年,拉曼光谱仪一直吸引着业内人士的眼球,各大仪器厂商不断在新产品、新技术、新应用等方面推陈出新,精心布局,不仅如此,新迈入此领域的仪器厂商也层出不穷,可谓热闹非凡。  拉曼光谱如此的蓬勃发展给广大用户提供了更多可选择的空间,那么,当前有哪些主流企业/主流产品?有哪些最新的技术/应用?哪款仪器更适合用户自己的研究工作?  仪器信息网:贵公司拉曼光谱仪的定位?  领谱科技:合肥领谱科技有限公司(以下简称“领谱科技”)成立于2016年3月,专注于光谱技术的研发与应用市场的拓展,是国内为数不多拥有独立自主知识产权的拉曼光谱公司。基于美国LASERLAB 20余年的拉曼光谱制造经验,采用最新的设计理念、高端的制造工艺,并携手中科院合肥创新院科研团队,融合生物、医疗、化学、纳米、大数据等基础学科,创新专业设备,为快检市场提供独有、可靠、领先的便携式拉曼分析仪。  截至目前,拉曼光谱仪系列产品依然是领谱科技的主打产品,本公司致力于拉曼快检市场的便携化、快速化与精准化的发展与研究。根据对应市场以及应用领域,领谱科技分别研发了手持式拉曼快速检测仪、便携式拉曼快速检测仪、显微拉曼光谱仪、激光拉曼光谱仪等一系列拉曼快筛快检设备产品。  仪器信息网:请回顾贵公司拉曼光谱仪的研发及技术进展历史,贵公司在拉曼光谱仪器方面有哪些优势/专利技术?  领谱科技:领谱科技的技术渊源早可追寻到1994年,三位美国普渡大学的教授成立了SPECTRACODE,两年以后推出了RP-1,这是北美市场第一台基于拉曼技术的快检设备,当时的一台拉曼设备足足有一个冰箱的大小,大大限制了使用范围。2003年SPECTRACODE更名为LASERLAB 到了2012年,我们决定把这项技术带回中国,组织本土化的研发团队,进军应用市场,并开发市场所需的应用模式及解决方案。2014年我们发布了便携式拉曼设备(其中包括手持式和显微拉曼)。2016年我们携手中科院合肥创新院在合肥成立了领谱科技,并且更加丰富了我们的产品线和相对应的解决方案。  现在,领谱科技不仅拥有完整的本土化的关于拉曼光谱设备的知识产权及生产能力,更重要的是组织了一个具有开发解决方案的团队。我们坚信这种组合是把一项新技术带向市场并成功的必备条件。领谱科技就手持式拉曼光谱仪推出了五个方向的专业应用设备:毒品-易制毒化学品检测、药品原辅料成品药检测、食品及农产品安全检测、病毒原生物检测和爆炸残留及危化物检测。  仪器信息网:贵公司当前的主流产品和主流技术?有什么样的产品发展计划?  合肥领谱:领谱科技的产品线在往手持式,便携式方向转移,以更好的顺应快检市场的需求。纵观我们的产品线可以总结出三大创新点:  1、 高光通量——全光路设计,我们的手持式设备光通量高达60%,相较于其他产品,我们的检测速度快了3-5倍,更加省电;  2、高适用性——我们所有软件采用JAVA编译开发,以APP模式展示,适用于手机,平板,电脑,服务器,可实现跨平台的数据交换;  3、高拓展性——世界首创的分离式光谱系统,以光谱仪为数据采集终端,手机,平板为智能化信息交互端,云平台为数据存储及分析端。这种方式彻底改变了高端分析仪器的使用模式,为我们最终进军消费市场铺平了道路。  仪器信息网:目前贵公司重点关注的应用领域有哪些?最看好哪个领域?主推的解决方案?  领谱科技:纵观拉曼技术的发展,现在有两个趋势:在中国,拉曼技术在快检领域的应用飞速发展;在国外,拉曼技术被越来越多的应用在产品生产线质量控制领域。作为一个中国本土公司,我们更注重于快检领域的应用开发。  拉曼技术的定性半定量的特点,决定了这项技术的首要应用方向是在解决“有没有”的方面。所以对毒品,危化物的检测,对生化战剂的探测,对食品中的非法添加物的检测是我们公司认为的“Low Hanging Fruit”,也是现阶段领谱科技的重点。比如说我们公司推出的毒品易制毒化学品检测仪,可以检测出200多种毒品、新精神活性物质、易制毒化学品。同时在实战应用中发现百分之一,甚至千分之一浓度的毒品物质。  为了应对拉曼技术检测限比较低的问题,拉曼技术与表面增强技术的融合是必须的。另外领谱科技花费很大资源的方向是在病毒原生物的快筛快检方案,比如说流感病毒。病毒检测的市场太大了,它不仅在对病毒在高密集人群中爆发时的应对措施有着举足轻重的意义,甚至在养殖业,畜牧业中也有很多的应用。  仪器信息网:从整个行业来分析,目前拉曼光谱仪都有哪些先进的技术值得大家期待?同时有哪些问题亟待解决?未来拉曼光谱仪的技术发展趋势?  您认为目前国产与进口的差别?请从零部件、系统、应用等方面阐述。  领谱科技:我想从设备和系统两个方面进行阐述:  1. 从设备本身来看,现在的拉曼光谱仪都是以CCD为感光源。而能生产出针对拉曼光谱范围的CCD厂家就是那么几家日美企业。所以从本质上来说,国产和进口的产品都是大同小异,不存在数量级上的差异。比如说,我们的拉曼光谱仪在灵敏度上是做的最好的,即使和国外的产品来比较。这种成熟的设计迟早会改变的,因为价格是制约拉曼技术发展的重要因素,而定价权还是掌握在一些重要元器件的生产厂家上。我们已经在尝试一些新的技术,比如说使用PMT,或一些新型的基于纳米技术制成的感光器件来代替CCD,甚至光栅。  2. 从系统来看,国产设备在迅速的赶上甚至超越进口设备。因为市场在中国,所以中国的厂家可以更快速的应对市场需求。做为一个完整的检测系统,它包括了光谱仪,自校准,数据库,算法,人机对话,数据检索,通讯,大数据等等,表面增强技术的运用使拉曼技术更加如虎添翼。把这些技术融合在一起,使用户可以简单快捷的得到结果,是现在所有单位的努力方向,也需要比较长时间的经验积累。在这个方面,中国的研发团队做出了卓越的贡献,取得了长足的进步。当然,国外品牌的工业化设计能力,去荧光技术等等也是我们学习的榜样。  总之,我们认为现在拉曼技术已经被广大应用客户所接受,基本完成了“能不能用”的阶段。下一步,我们希望能和广大用户一起,在“好不好用”及“检测方向拓展“方面做更深入的探讨与研究。  仪器信息网:预测未来拉曼光谱仪的市场发展潜力(包括应用方向、方法标准、政策法规等)?  领谱科技:目前拉曼光谱仪市场正在从科研市场向监管市场过渡,这是技术成熟的必然结果。所以从市场规模来看,数量的大爆发正在发生。我们期待着市场在未来的几年内有个连续性的大幅度增长。2015年拉曼技术在药典的阐述是个良好的开端,这项技术在公共安全,食品安全,质量监控上的应用会越来越广泛。  政府部门从行业学会,协会,地方等角度也越来越多的参与到标准,政策法规的工作中。这些规则的制定会加速拉曼技术的推广。我们的唯一希望就是把这些工作更快更好的落实下去。 (内容来源:领谱科技)
  • 3项全国首创农产品质量安全拉曼光谱快速检测团体标准发布
    日前,《果蔬中多菌灵、苯菌灵和噻菌灵的快速检测 拉曼光谱法》(T/FJBS 007-2023)、《水产品中恩诺沙星和环丙沙星的快速检测 拉曼光谱法》(T/FJBR 008-20233)、《豆芽中6-苄氨基嘌呤、6-糠氨基嘌呤、N6-异戊烯腺嘌呤的快速检测 拉曼光谱法》(T/FJBR 006-2023)3项团体标准在全国团体标准信息平台发布,为全国首创。据介绍,这3项标准结合长期以来农产品检测的相关经验,符合技术先进、经济合理、安全可靠、切实可行的制标原则,打破了检测耗时长、假阳性(或阴性)概率高等农产品质量安全快速检测的瓶颈。检测一个样品10分钟之内可获取可靠结果,所用设备轻便、价格不高、操作简单,实现保证农产品新鲜度下的质量安全检测,适用于各种果蔬中相关农药残留项目、水产品中相关兽药残留项目的快速检测。据了解,这3项团体标准均由福建省农科院农业质量标准与检测技术研究所科研人员主持制定,联合厦门瑞德利校准检测技术有限公司、厦门市普识纳米科技有限公司、厦门市质量技术评审服务中心、三明市检验检测中心、一品一码检测(福建)有限公司、厦门泓益检测有限公司、厦门市翰均科检测科技有限公司、厦门大学环境与生态学院共同编制,由福建省标准化与认证认可协会归口立项发布。这3项标准的制定与实施,可实现在超市、批发市场、企业、监管现场等场合实时监测农产品质量安全,为社会、政府部门开展质量监管提供准确、快速、简便的技术标准与技术依据,具有重要的应用前景。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 这项拉曼相关国际标准发布实施 鉴知技术参与起草
    日前,由中、德、日、美、俄五国专家联合起草的IEC 63085:2021《辐射防护仪器-透明和半透明容器中液体的光谱识别系统(拉曼系统)Radiation protection instrumentation – System of spectral identification of liquids in transparent and semitransparent containers (Raman systems)》IEC国际标准正式发布实施。同方威视旗下鉴知技术总经理王红球作为中方技术专家参与起草工作,这是同方威视参与起草的第4项国际标准。此项国际标准自2016年立项,经过近5年的起草、征求意见、审查等阶段,规定了应用于液体检测的拉曼光谱仪器功能、性能以及硬件机械稳定性要求和测试方法。该项国际标准的发布,将填补IEC国际标准在拉曼光谱液体检测技术方面的空白,适用于拉曼在液体安全、药物溶液和其他液体化学品分析领域的应用,对我国拉曼检测技术的发展具有重要意义。鉴知技术源自同方威视与清华大学共建的“清华大学安全检测技术研究院”,是一家以光谱检测技术为核心的设备供应商,产品已广泛应用于缉私缉毒、液体安检、食品安全、化工制药等诸多领域。历经10多年的研发深耕,鉴知技术在拉曼光谱技术领域拥有自主知识产权,申请相关专利200余项,相关科技成果经教育部鉴定达到国际领先水平,曾荣获中国专利优秀奖。
  • 食品安全国家标准,你想要的都在这里!
    截至2021年9月的食品安全国家标准目录,大体可分为12类:通用标准(13项)食品产品标准(70项)特殊膳食食品标准(9项)微生物检验方法标准(32项)理化检验方法标准(229项)毒理学检验方法及规程标准(28项)兽药残留检测方法标准(40项)农药残留检测方法标准(119项)食品添加剂质量规格及相关标准(639项)食品营养强化剂质量规格标准(50项)食品相关产品标准(15项)生产经营规范标准(30项)一、通用标准GB 2763-2021 食品安全国家标准 食品中农药最大残留限量GB 2761-2017 食品安全国家标准 食品中真菌毒素限量GB 2762-2017 食品安全国家标准 食品中污染物限量GB 29921-2013 食品安全国家标准 食品中致病菌限量GB 2760-2014 食品安全国家标准 食品添加剂使用标准GB 9685-2016 食品安全国家标准 食品接触材料及制品用添加剂使用标准GB 14880-2012 食品安全国家标准 食品营养强化剂使用标准GB 7718-2011 食品安全国家标准 预包装食品标签通则GB 28050-2011 食品安全国家标准 预包装食品营养标签通则GB 13432-2013 食品安全国家标准 预包装特殊膳食用食品标签GB 29924-2013 食品安全国家标准 食品添加剂标识通则GB 31650-2019 食品安全国家标准 食品中兽药最大残留限量GB 31607-2021 食品安全国家标准 散装即食食品中致病菌限量(待颁布)二、食品产品标准GB 5420-2010 食品安全国家标准 干酪GB 11674-2010 食品安全国家标准 乳清粉和乳清蛋白粉GB 13102-2010 食品安全国家标准 炼乳GB 19301-2010 食品安全国家标准 生乳GB 19302-2010 食品安全国家标准 发酵乳GB 19644-2010 食品安全国家标准 乳粉GB 19645-2010 食品安全国家标准 巴氏杀菌乳GB 19646-2010 食品安全国家标准 稀奶油、奶油和无水奶油GB 25190-2010 食品安全国家标准 灭菌乳GB 25191-2010 食品安全国家标准 调制乳GB 25192-2010 食品安全国家标准 再制干酪GB 14963-2011 食品安全国家标准 蜂蜜GB 19295-2011 食品安全国家标准 速冻面米制品GB 26878-2011 食品安全国家标准 食用盐碘含量GB 2757-2012 食品安全国家标准 蒸馏酒及其配制酒GB 2758-2012 食品安全国家标准 发酵酒及其配制酒GB 2711-2014 食品安全国家标准 面筋制品GB 2712-2014 食品安全国家标准 豆制品GB 2718-2014 食品安全国家标准 酿造酱GB 7096-2014 食品安全国家标准 食用菌及其制品GB 9678.2-2014 食品安全国家标准 巧克力、代可可脂巧克力及其制品GB 10133-2014 食品安全国家标准 水产调味品GB 13104-2014 食品安全国家标准 食糖GB 15203-2014 食品安全国家标准 淀粉糖GB 16740-2014 食品安全国家标准 保健食品GB 17401-2014 食品安全国家标准 膨化食品GB 19298-2014 食品安全国家标准 包装饮用水GB 19300-2014 食品安全国家标准 坚果与籽类食品GB 2713-2015 食品安全国家标准 淀粉制品GB 2714-2015 食品安全国家标准 酱腌菜GB 2720-2015 食品安全国家标准 味精GB 2721-2015 食品安全国家标准 食用盐GB 2730-2015 食品安全国家标准 腌腊肉制品GB 2733-2015 食品安全国家标准 鲜、冻动物性水产品GB 2749-2015 食品安全国家标准 蛋与蛋制品GB 2759-2015 食品安全国家标准 冷冻饮品和制作料GB 7098-2015 食品安全国家标准 罐头食品GB 7099-2015 食品安全国家标准 糕点、面包GB 7100-2015 食品安全国家标准 饼干GB 7101-2015 食品安全国家标准 饮料GB 10136-2015 食品安全国家标准 动物性水产制品GB 10146-2015 食品安全国家标准 食用动物油脂GB 14967-2015 食品安全国家标准 胶原蛋白肠衣GB 15196-2015 食品安全国家标准 食用油脂制品GB 17325-2015 食品安全国家标准 食品工业用浓缩液(汁、浆)GB 17400-2015 食品安全国家标准 方便面GB 19299-2015 食品安全国家标准 果冻GB 19641-2015 食品安全国家标准 食用植物油料GB 31602-2015 食品安全国家标准 干海参GB 2707-2016 食品安全国家标准 鲜(冻)畜、禽产品GB 2715-2016 食品安全国家标准 粮食GB 2726-2016 食品安全国家标准 熟肉制品GB 14884-2016 食品安全国家标准 蜜饯GB 14932-2016 食品安全国家标准 食品加工用粕类GB 17399-2016 食品安全国家标准 糖果GB 19640-2016 食品安全国家标准 冲调谷物制品GB 19643-2016 食品安全国家标准 藻类及其制品GB 20371-2016 食品安全国家标准 食品加工用植物蛋白GB 31636-2016 食品安全国家标准 花粉GB 31637-2016 食品安全国家标准 食用淀粉GB 31638-2016 食品安全国家标准 酪蛋白GB 31639-2016 食品安全国家标准 食品加工用酵母GB 31640-2016 食品安全国家标准 食用酒精GB 2716-2018 食品安全国家标准 植物油GB 2717-2018 食品安全国家标准 酱油GB 2719-2018 食品安全国家标准 食醋GB 8537-2018 食品安全国家标准 饮用天然矿泉水GB 25595-2018 食品安全国家标准 乳糖GB 31644-2018 食品安全国家标准 复合调味料GB 31645-2018 食品安全国家标准 胶原蛋白肽三、特殊膳食食品标准GB 10765-2010 食品安全国家标准 婴儿配方食品(GB 10765-2021 食品安全国家标准 婴儿配方食品 2023.02.22正式实施)GB 10767-2010 食品安全国家标准 较大婴儿和幼儿配方食品(GB 10767-2021 食品安全国家标准 婴儿配方食品 2023.02.22正式实施)GB 10769-2010 食品安全国家标准 婴幼儿谷类辅助食品GB 10770-2010 食品安全国家标准 婴幼儿罐装辅助食品GB 25596-2010 食品安全国家标准 特殊医学用途婴儿配方食品通则GB 29922-2013 食品安全国家标准 特殊医学用途配方食品通则GB 22570-2014 食品安全国家标准 辅食营养补充品GB 24154-2015 食品安全国家标准 运动营养食品通则GB 31601-2015 食品安全国家标准 孕妇及乳母营养补充食品四、微生物检验方法标准GB 4789.1-2016 食品安全国家标准 食品微生物学检验 总则GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定GB 4789.3-2016 食品安全国家标准 食品微生物学检验 大肠菌群计数GB 4789.4-2016 食品安全国家标准 食品微生物学检验 沙门氏菌检验GB 4789.5-2012 食品安全国家标准 食品微生物学检验 志贺氏菌检验GB 4789.6-2016 食品安全国家标准 食品微生物学检验 致泻大肠埃希氏菌检验GB 4789.7-2013 食品安全国家标准 食品微生物学检验 副溶血性弧菌检验GB 4789.8-2016 食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验GB 4789.9-2014 食品安全国家标准 食品微生物学检验 空肠弯曲菌检验GB 4789.10-2016 食品安全国家标准 食品微生物学检验 金黄色葡萄球菌检验GB 4789.11-2014 食品安全国家标准 食品微生物学检验 β型溶血性链球菌检验GB 4789.12-2016 食品安全国家标准 食品微生物学检验 肉毒梭菌及肉毒毒素检验GB 4789.13-2012 食品安全国家标准 食品微生物学检验 产气荚膜梭菌检验GB 4789.14-2014 食品安全国家标准 食品微生物学检验 蜡样芽胞杆菌检验GB 4789.15-2016 食品安全国家标准 食品微生物学检验 霉菌和酵母计数GB 4789.16-2016 食品安全国家标准 食品微生物学检验 常见产毒霉菌的形态学鉴定GB 4789.18-2010 食品安全国家标准 食品微生物学检验 乳与乳制品检验GB 4789.26-2013 食品安全国家标准 食品微生物学检验 商业无菌检验GB 4789.28-2013 食品安全国家标准 食品微生物学检验 培养基和试剂的质量要求GB 4789.29-2020 食品安全国家标准 食品微生物学检验 唐菖蒲伯克霍尔德氏菌(椰毒假单胞菌酵米面亚种)检验GB 4789.30-2016 食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验GB 4789.31-2013 食品安全国家标准 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验GB 4789.34-2016 食品安全国家标准 食品微生物学检验 双歧杆菌检验GB 4789.35-2016 食品安全国家标准 食品微生物学检验 乳酸菌检验
  • 相约魅力蓉城,感受标准品之奇妙世界
    2016年5月17日,聚光科技子公司安谱实验作为英国LGC旗下国际知名品牌DR.E标准品在华最大的代理商,应西南地区众多客户的呼声,安谱实验携手英国政府化学家实验室LGC专家团队,带着DR.E标准品培训讲堂走进了“天府之国”—成都。一场标准品与魅力蓉城的相约就此拉开了帷幕。培训现场 说到标准品,每个实验室或多或少都有用到,用到就会有这样或者那样的疑问,这一培训的目的就是要解决这些实际的疑问。 回顾本次活动,讲师的专业与激情历历在目,而听众的认真与积极参与也令人难以忘怀。 那么讲师都带来了哪些内容呢? 1. 从标准品生产商的角度,讲解了标准品的三大核心要素:稳定性,均匀性,不确定度,以及如何对其做出评价。了解了这些,可以帮助用户加深对于标准品的理解,对用户选择正确的标准品至关重要; 2. 从标准品生产的角度,讲述了一个生产标准品的故事,要经历哪些过程,譬如计划,制备,再到定值方法,表征等等,这个故事带给用户更多的是,对于标准品的感性认识; 3. 从实验室质量控制的角度,分享了标准品以及能力验证对于实验室的意义,实验室又该如何选择合适的方法开展内部质量控制; 4. 从未来发展的角度,介绍了内标以及基质标准物质的选择和作用,并结合了一些实际的应用分享,这对实验室未来的规划和产品的选择提供了更多的思路和参考价值; 5. 从实际应用的角度,成都市疾控的王炼博士带来了其关于乳制品中多种抗生素检测的研究。专家对话 除了讲师团队的分享,活动还特设了轻松活跃的与专家对话的环节,到场的听众提出了 很多实际工作中遇到的问题,很好地利用了此次宝贵的机会,进行了一次充分的沟通和交流,在对话中找到各自疑惑的答案。 然而,美好的事物总是短暂的,为期一天的培训,尽管那么的专业,既有广度也不乏深度,但是我们依然感受到了听众的热情和饱满的参与度。无奈一天的时间太过匆匆,不能将标准品的种种,完美、完整地诠释,我们的听众也还听的不够尽兴。所以,请您持续关注安谱,另外,除了标准品的培训,安谱实验还提供有更多的培训题目,后期,或许您将收到意外惊喜呢~~~ 最后,安谱实验再次感谢众多到场听众的到来和参与,也非常感谢LGC团队的大力支持,以及北京吉天(聚光科技旗下子公司)的支持和协助。这一场标准品之行到此结束了,而安谱为客户服务,为客户创造价值的脚步不止,安谱期待与您再次相约!合照留影
  • 中国计量测试学会发布《益生菌活菌计数及代谢活力检测 拉曼光谱法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由青岛星赛生物科技有限公司等单位牵头起草的《益生菌活菌计数及代谢活力检测拉曼光谱法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年3月28日前将《征求意见反馈表》反馈至以下联系方式。联 系 人:周玭 电 话:17196019888地 址:山东省青岛市崂山区株洲路187-1号崂山智慧产业园2号楼1101邮 编:266000 电子邮箱:zhoupin@singlecellbiotech.com 1.《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿2.《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明3.征求意见反馈表 中国计量测试学会2024年2月27日附件1 《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿.pdf附件2 《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明.pdf附件3 征求意见反馈表.doc
  • 《工业微生物菌株质量评价 拉曼光谱法》国家标准拟立项制定
    p   7月26日,国际标准委发布关于对《蒸压加气混凝土板》等266项拟立项国家标准项目征求意见的通知,其中包括多项仪器检测方法标准: a title=" " href=" http://www.instrument.com.cn/news/20170726/225293.shtml" target=" _blank" strong 又一大波仪器分析方法标准即将制定 涉及光谱、色谱、质谱等 /strong /a 。 /p p   值得注意的是《工业微生物菌株质量评价 拉曼光谱法》即将制定,资料显示,该项标准主管部门是国家质量监督检验检疫总局,起草单位为中科院青岛生物能源与过程研究所、清华大学、中国标准化研究院等,归口单位是中国标准化研究院。 /p p   工业菌株是工业生物技术的关键和核心,菌株的质量评价在选育和投料过程中都不可或缺,但目前菌株评价方法大都包括生物量培养累积、目标代谢物提取和检测等繁琐的过程,评价周期长, 不仅不利于工业菌株的快速筛选,而且延迟了生产的投料过程。本标准建立一种快速无损的活体工业微生物菌株质量评估标准方法,能较好地反映细胞的生理状态,而且不会影响细胞活性,可以在不破环细胞的条件下快速测量单个细胞内的代谢物含量。 /p p   本标准规定了采用拉曼光谱评价工业微生物菌株质量的标准方法和流程,适用于发酵工业和基于微生物生物制造领域工业微生物(大肠杆菌、酵母等)的质量评价。 /p p   据悉,目前国内外均没有较好的方法来快速评价工业菌株 /p p & nbsp /p
  • 永春县香制品同业公会立项《燃香类产品颗粒物中多环芳烃的测定 气相色谱-质谱法》 等2项团体标准
    各会员单位:根据《中华人民共和国标准化法》、《团体标准管理规定》的文件精神,按照《永春县香制品同业公会团体标准管理办法(试行)》的相关规定,结合市场需求,经我会认真研究和审查,同意《燃香类产品颗粒物中多环芳烃的测定 气相色谱-质谱法》和《永春香地理标志证明商标使用管理规范》两项团体标准立项,现予以公示。我会将牵头开展标准的制定工作,同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入标准的起草编制工作。有意参与标准起草工作的请于公会秘书处联系。联系人:曾志彬电话:18120607888邮箱:fjxj007@163.com 永春县香制品同业公会2023年5月18日
  • 标准品样品免费申请,先到先得!晒单更有奖励!
    ??????????????????? 好消息!好消息!为感谢一直以来关注阿尔塔科技的伙伴们,我们特选出以下几种有代表性的标准溶液作为样品,免费试用!免费领取!数量有限,赠完为止。First Standard?好不好,试一试才知道!????????????订货信息中文名称英文名称CAS#浓度包装????1ST20005-10H4, 4’-滴滴伊溶液,10ppm4,4’-DDE solution, 10ppm72-55-910ppm1ml1ST20022-10Mγ -六六六溶液,10ppmgamma-HCH solution, 10ppm58-89-910ppm1ml1ST20008-10H2, 4’-滴滴涕溶液, 10ppm2,4’-DDT solution, 10ppm789-02-610ppm1ml??1ST20508-100H??2, 4' -滴滴滴溶液, 100ppm2,4' -DDD solution, 100ppm53-19-0100ppm1ml1ST20111-100B杀螟硫磷溶液, 100ppmFenitrothion solution, 100ppm122-14-5100ppm1ml1ST20094-100B?二嗪磷溶液, 100ppmDiazinon solution, 100ppm333-41-5100ppm1ml???1ST20210-100H联苯菊酯溶液, 100ppmBifenthrin solution, 100ppm82657-04-3100ppm1ml1ST20271-100M克百威溶液, 100ppmCarbofuran solution, 100ppm1563-66-2100ppm1ml??1ST4017-100M磺胺嘧啶 (SDZ)溶液, 100ppmSulfadiazine solution, 100ppm68-35-9100ppm1ml1ST5738-100M诺氟沙星溶液, 100ppmNorfloxacin solution, 100ppm70458-96-7100ppm1ml??1ST4102-100A四环素溶液, 100ppmTetracycline solution, 100ppm60-54-8100ppm1ml1ST1114-100H邻苯二甲酸二丁酯溶液, 100ppmDibutyl phthalate solution, 100ppm84-74-2100ppm1ml1ST1114-10H邻苯二甲酸二丁酯溶液, 10ppmDibutyl phthalate solution, 10ppm84-74-210ppm1ml领取方式:您可以通过以下两种方式领取1. 网站申请请点击阿尔塔网站http://www.altascientific.cn/y/web/ 填写相关信息并提交2. 手机申请请关注阿尔塔微信公共平台(微信号Alta-Scientific),在底部的标准品商城中找到您希望申请的标准品(价格为1元),点击“立即购买”,在卖家留言中按以下格式填写您的信息并点击购买您所在的公司/单位:EmailQQ申请理由请注意:*无论何种申请方式,本次活动的样品运费由阿尔塔科技有限公司承担,但是因为手机商城系统要求,所有样品的价格设置为1元,您可以联系卖家,索取1元优惠码,实现0元领取,如果您愿意,直接壕掷1元购买也是可以的!*请在收货地址及手机联系方式中填写真实有效信息,便于我们发货*每个单位/公司限领一个样品 晒单有奖手机购买结束后,请在我的记录中找到您的订单记录,点击右下角的“我要晒订单”,将您的购买记录分享到朋友圈,还可以获得抽绳背包一个!礼品将随免费样品同时发放到您手中!填写试用反馈表可继续领取!第一次领取后,我们将给您发放样品试用反馈表,详细填写此表格并Email给阿尔塔市场部,您将获得第二次免费申请样品的机会!????????????????
  • 药品审批新政下研发遇瓶颈? 还有三条捷径
    p   新政策环境下,除了高难度的全球首创新药,针对未满足临床需求的其它途径同样可行。 br/ /p p   5.27注册费用大幅上调、7.22公告临床自查、7.31祭出大招解决审评积压、8.18印发了图文并茂的《关于改革药品医疗器械审评审批制度的意见》(国发文),8.25又开了个“特急”的审评审批制度改革工作会,说要给药品设立红黄绿无“四区”。 /p p   一套组合拳下来,8月药品申报数量直降31%,甚者有些公司陷入了“报不敢报、立不敢立”的窘境。在一些行业人眼里,一个集中审评就能让“抢首仿”的游戏瞬间结束,不知道接下来政策风往哪吹的情况下,“不动”或许是一种最安全的方式。 /p p   看上去没错!李嘉诚先生也说过,真正赚钱的公司不是能赚的时候赚得比别人多,而是赔的时候赔的比别人少。俗语也教导我们“不要埋头只拉车,也要抬头看看路”。 /p p   笔者作为一名注册人员,跟踪与解读政策是本职工作,已经落地的、征求意见的、开会宣称的、甚至一些所谓的“小道消息”,统统都不放过,逐字逐句、前后关联,生怕一点不到位理解错了。但立项呢?研发呢?真的要完全被政策牵着走吗?说好的“解决未满足的临床需求”呢?我们是否是已经走得太远,以至于忘了为什么而出发? /p p   鲁迅先生说,世上本没有路,走的人多了也便成了路。但是,制药业本就有“研发是根本、解决患者需求是终极目标”的路,除了高难度的“全球首创新药”之路,其它途径同样也可以走。 /p p   “老树”可以开新花 /p p   用个专业点的词汇叫“二次开发”。上市不是一个药品生命周期的终点,而应该是其开发的新起点。因为理论是不断发展的,对药物的认知同样也是随着用药与临床实践不断加深。 /p p   如果上市之后只专注于不断扩大销售队伍,那么阿达木、阿瓦斯汀、依鲁替尼们也不是今天看到的抗疾病谱,更不用说死而复生的沙利度胺、齐多夫定、奥拉帕尼们了,连上市百余年的阿司匹林还在探索是否可以预防癌症。就在9月9日,阿司匹林24h缓释胶囊还被批准用于二级预防中风和急性心脏事件(包括心肌梗死)。老药都有如此大的研发空间,更何况是新药。 /p p   另外,罕见病用药是否可以充分借鉴“二次开发”的思路呢?受众小、研发难度高、国内扶持政策不明确,让很多有志于此的厂家望而却步,迟迟不敢行动。但是,国外许多制药公司为了加快产品的上市,却往往从孤儿药做起,然后再扩大应用,开发更多适应症,先上市,再谋求更大的利益。 /p p   据统计,被FDA批准的孤儿药有三四成属于肿瘤领域。因此,对于一些常见病如肿瘤和血液病,其中的一些亚型或许可以考虑“先行罕见病再二次开发”的思路。 /p p   销售榜TOP10的阿达木单抗也因为治疗中度至重度化脓性汗腺炎(赫尔利第Ⅱ和Ⅲ期病变)的适应症,被认定为“孤儿药”。 /p p   还有一个类似的案例,是登上新闻联播的西达苯胺。CDE审评概述里指出:支持西达苯胺在中国注册的关键临床数据来自一项多中心、单臂、非随机、开放的Ⅱ期临床试验(n=83)。虽然没有明确说明其属于“罕见病”用药,但83例的Ⅱ期相比于本土创新的埃克替尼、阿帕替尼的Ⅲ期都属于特例。而西达苯胺用于非小细胞肺癌、乳腺癌、甚至作为HIV激活剂的适应症拓展研究都在探索之中,期待创造更大的价值、造福更多的患者。 /p p   联合/复方也有春天 /p p   全球药厂间的联合在近两年内可谓发展到了新阶段。以往鲜见联手的BigPharma,现在频频牵手研发。从BMS与AbbVie联合开发用于复发难治性多发性骨髓瘤的elotuzumab,到诺华与安进联盟布局中枢系统药物开发,再到勃林格与礼来的糖尿病用药开发联盟,还有“是真爱”的赛诺菲与再生元。甚至给国内制药界增光添彩的“恒瑞出售PD-1抗体SHR-1210海外权益给Incyte”事件,应该也与SHR-1210可以联合Incyte自家的IDO抑制剂有着密切的关系。 /p p   大药厂间联合的原因,众所周知是因为成本在增加、风险在增加,“me-too”的回报也在降低,开发新靶点即使巨头们也没底,报团取暖是抵御严寒的有效策略。 /p p   其实,联合不但是企业发展策略的问题,也是出于科学的角度。尤其是肿瘤这种机理还在探索、未能治愈的疾病,从化疗药到现在热到发烫的免疫治疗,技术在进步,联合用药始终存在。所以,联合的“根”还是患者需求! /p p   复方制剂的开发也是一样,热到爆的LCZ696就是个典型例子,“老药”缬沙坦搭上AHU377焕发出新的生机,击败标准疗法依那普利,底气十足地宣称要改变标准,要开辟心血管领域的大时代。 /p p   关于长效DPP-4抑制剂omarigliptin,权威组织欧洲糖尿病研究协会年会(EASD)有一篇文章点评其可与西格列汀媲美,但质疑市场上是否真需要一周一次的DPP-4抑制剂?其中有一条理由是:每周一次用药,阻断了与二甲双胍或者SGLT2抑制剂复方开发的可能性,因为复方制剂可以提高患者用药便利性与顺应性,所以在纷繁的制药界一直占有一席之地。 /p p   再拓展一下,复方制剂是不是可以避开没有明确定义的“专利”问题呢?如果仅限制化合物专利,那么复方简直就是宝藏。 /p p   等一等再“仿制” /p p   注册分类、新药证书也许没那么重要。在现行的28号令条件下,有的企业因为“要占位置”而按1类立项按3类申报,有的怕“被72条”的按3类申报按6类准备。而到了临床,更是会发现审评结果出现各种“不按常规出牌”:比如要求做生物等效试验的1.1类药物 比如明确要求做验证性临床即“PK+100对”(药代动力学实验和200例临床试验)的“现”3.1类,更是千差万别,最终要求的临床试验会有免的、有减的,也有加的。 /p p   造成这种多样化的原因是什么呢?疾病谱也就是患者需求是不可忽视的原因,药政监管当局尊重这一原因的合理审评审批也很重要,CDE并非“霸道总裁”说一不二,合理的立题与研发是会被接受的。 /p p   所以,根据pipeline布局,扎实做好仿制药的研发和推广,一样能收获制药人的成就感和经济效益。但是,如果硬要说6类纯研发单位不能申报而3类可以,公司就是抢抢抢、卖卖卖的企业“文化”,不想建厂也没想找固定合作厂家,谁给钱卖谁,笔者只能说“找马云商量下看看”吧。 /p p   另外,国外刚上市就“仿”(不管高仿低仿)合理吗?尤其很多慢性病用药,安全性、有效性并不是几百或几千例特定人群的临床试验能够反映完全的。而数字的大小未必就是成功的保障。 /p p   恩格列净临床前用了1万多病例,在上市一年多后被初步证明是第一个降低心血管系统疾病的糖尿病药物。同样是口服降糖的DPP-4抑制剂,上市7年,整个品类累积使用患者百万起计,但因为33例严重关节疼痛被FDA群体警告,未给任何解释机会。 /p p   当然,数字的意义也不能夸大。笔者只是想说,药物的生命周期很长,等一等再仿制也很好,市场上也有销售成绩很棒的“现6类”仿制药。至于因为一再招标降价导致无力维持、停产断供,这事药监部门也很无辜,笔者也无法做延伸评价。笔者仍然认为,策略定得好,“仿制”也可以是小棉袄。 /p p   只要存在未满足的临床需求,制药人就永远有存在的价值。作为一名制药人,感受着研发的艰辛,也能感受到成功的荣耀! /p p br/ /p
  • AACCI通过溶剂保持力—肖邦法(SRC-Chopin)标准
    p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 日前,美国谷物化学家协会AACCI批准溶剂保持力—肖邦法(SRC-Chopin),标准号为56-15.01。溶剂保持力-肖邦法(SRC-Chopin)又称“全自动仪器法”。此方法经AACCI软麦及面粉产品委员会和批准方法技术委员会审核,由AACCI正式颁行。 /span br/ /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 溶剂保持力(Solvent Retention Capacity, SRC)由小麦粉及烘焙专家Slade和Levine 于1994 年提出,手工检测。SRC值可以清晰完整地解释面粉主要功能组分(面筋蛋白、淀粉和戊聚糖)与加工品质的关系。所以SRC检测非常重要,1999年就成为AACC标准,编号56-11.02。但由于SRC手工法过程复杂、人为影响因素多,时至今日,SRC依然受制于手工法检测结果的再现性差,而未能广泛使用。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " /span /p p style=" text-align: center" img title=" 肖邦_副本.jpg" style=" max-width:100% max-height:100% " alt=" 肖邦_副本.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/7289d807-129a-4c70-9c99-7730189b9bb5.jpg" / br/ /p p /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 2014年,法国肖邦技术公司与SRC发明者密切合作,创新地发明了全自动仪器法,研制出了自动化检测系统:SRC-Chopin型全自动溶剂保持力仪。所以,全自动仪器法,业界也通称为:溶剂保持力-肖邦法(SRC-Chopin)。仪器消除了操作人员对实验的潜在影响,实现了整个检测过程完全自动化,操作简便,结果精确。因此,全自动仪器法一经推出,即受到广泛认可,成为溶剂保持力检测的优先选择。AACCI在SRC-Chopin推出后不到4年,即开始全自动仪器法标准起草立项工作。 /span br/ /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " AACCI通过澳大利亚、智利、中国、印度、泰国、英国和美国等全球12个实验室的环形实验,双盲样4种溶剂(水、蔗糖、碳酸钠和乳酸)对比分析面粉样品。结果表明,SRC-Chopin法具有很高的重复性和复现性。全自动仪器法比手工法有更大的检测量程,因此不仅可以评价低蛋白含量的软麦,还能用来评价高蛋白含量的硬麦。 /span br/ /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 现在,与面筋检测有手洗法和机洗法一样,溶剂保持力检测也有了手工法和全自动仪器法。机洗面筋仪推广普及后,手洗面筋就越来越少使用(只在某些特定情况使用)。同样道理,今后SRC-Chopin法检测溶剂保持力会越来越多,更多谷物科研工作者和工业用户会因此技术进步而受益。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " & nbsp /span /p p br/ /p
  • 标准解读|化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法
    液相色谱-串联质谱法是一种集高效分离和多组分定性、定量于一体的方法,对高沸点、不挥发和热不稳定化合物的分离和鉴定具有独特优势,成为近年来化学分析中一种重要的检测技术。与高效液相色谱法、气相色谱法相比,高效液相色谱一中联质谱法前处理方法相对简单,基质干扰小,方法灵敏度高,定量和定性(分子结构信息)于一体,因而特别适用化妆品成分测定。 液相色谱-串联质谱法在化妆品行业中测定方法的汇总标准编号标准名称1GB/T 30926-2014化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法2GB/T 30939-2014化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法3GB/T 30937-2014化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法4GB/T 32986-2016化妆品中多西拉敏等9种抗过敏药物的测定 液相色谱-串联质谱法5GB/T 30930-2014化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法6GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法7GB/T 41710-2022化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法8GB/T 32121-2015牙膏中4-氨甲基环己甲酸(凝血酸)的测定 高效液相色谱-串联质谱法9GB/T 34918-2017化妆品中七种性激素的测定 超高效液相色谱-串联质谱法10GB/T 35956-2018化妆品中N-亚硝基二乙醇胺(NDELA)的测定 高效液相色谱-串联质谱法11GB/T 35951-2018化妆品中螺旋霉素等8种大环内酯类抗生素的测定 液相色谱-串联质谱法12GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法13GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法14GB/T 37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定 液相色谱-串联质谱法 GB/T 41710-2022《化妆品中禁用物质林可霉素和克林霉素的测定 液相色谱-串联质谱法》标准规定了化妆品中林可霉素和克林霉素的液相色谱-串联质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本文件适用于水剂类、非蜡基膏霜类、乳液类化妆品中林可霉素和克林霉素的测定。 本文件中林可霉素和克林霉素的方法检出限和定量限:检出限均为0.1mg/kg,定量限均为0.3 mg/kg。 制定背景 林可霉素和克林霉素属于大环内酯类抗生素,由于其抗菌活性高,临床应用相当广泛。国家对化妆品中的林可霉素和克林霉素也做了详细规定,林可霉素和克林霉素禁止在化妆品中检出,部分不法商家为了追求产品短期功效,非法添加抗生素,导致抗生素滥用产生耐药性。 本标准中的林可霉素和克林霉素是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 现状分析标准编号分析方法应用范围1SN/T 3585-2013液相色谱、液相色谱串联质谱海产品2GB 29685-2013气相色谱-质谱法动物性食品3GB/T 22946-2008液相色谱-串联质谱法蜂王浆和蜂王浆冻干粉4GB/T 20762-2006液相色谱-串联质谱法畜禽肉5GB/T 22941-2008液相色谱-串联质谱法蜂蜜 在现行的标准中,林可霉素和克林霉素的分析方法有液相色谱、液相色谱串联质谱和气相色谱-质谱法,液相色谱-串联质谱法前处理方法相对简单,基质干扰小,因而特别适用于基质成分复杂物质的测定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制