当前位置: 仪器信息网 > 行业主题 > >

甲基甲基苯基咪唑

仪器信息网甲基甲基苯基咪唑专题为您提供2024年最新甲基甲基苯基咪唑价格报价、厂家品牌的相关信息, 包括甲基甲基苯基咪唑参数、型号等,不管是国产,还是进口品牌的甲基甲基苯基咪唑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基甲基苯基咪唑相关的耗材配件、试剂标物,还有甲基甲基苯基咪唑相关的最新资讯、资料,以及甲基甲基苯基咪唑相关的解决方案。

甲基甲基苯基咪唑相关的资讯

  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 月旭科技推出饮料中4-甲基咪唑的整体解决方案
    近日,一份源自美国监督机构环境健康中心的报告,再次将百事可乐推至焦糖色素风波中。该报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。焦糖色素是一种允许使用的着色剂,但是,我国现行的食品质量标准中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。 可乐中的4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的,焦糖色素能使可乐饮料变成棕褐色。4-甲基咪唑能导致动物长肿瘤,有可能给人体带来致癌风险。目前,我国国标中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 针对此次事件,月旭科技迅速建立了饮料中4-甲基咪唑的前处理和检测方法。本方法使用月旭Welchrom® P-SCX (60mg/3mL)富集饮料中4-甲基咪唑,所建立的固相萃取方法能够极大程度排除饮料中杂质的干扰,保证检测结果的准确性。 1. 仪器及材料 材料:饮料;超纯水;4-甲基咪唑标准品;月旭Welchrom® SCX 固相萃取小柱(60mg/3mL);玻璃移液管;洗耳球;烧杯,固相萃取装置等。 2. 实验步骤 2.1 SPE净化 SPE柱:Welchrom® SCX(60mg/3mL) 1)活化:3mL甲醇,3mL水; 2)上样:3mL 饮料样品溶液,弃去上样液 3)淋洗:3mL 100%甲醇,弃去淋洗液; 4)洗脱:3mL 10%氨化甲醇;收集洗脱液。挥干定容至0.5mL,进液相分析。 2.2 液相色谱测定 色谱柱:月旭Ultimate® XB-C18(4.6× 250mm, 5µ m) 流动相:缓冲液/甲醇=80/20 缓冲液的配置方法:将6.8g KH2PO4和1g庚烷磺酸钠至900mL,用H3PO4调pH为3.5,再定容至1000mL,即得。 检测波长:210nm 流速:1.0mL/min 进样量:20µ L 图1:4-甲基咪唑标准色谱图 3. 添加回收率试验结果 表1: 10µ g/mL添加回收实验结果(n=5) 次数 1 2 3 4 5 回收率98.2% 92.2% 95.1% 96.4% 93.6%
  • 可口可乐中4-甲基咪唑各国含量标准不一
    据英国《每日邮报》报道,美国某公益组织检测全球多个国家的可口可乐中4-甲基咪唑的含量,发现美国355毫升可口可乐中4-甲基咪唑含量为4微克,中国为56微克,英国为135微克,巴西则高达267微克。中国人什么时候能喝上跟美国相同的可乐?本报就此联系了可口可乐大中华区相关负责人。   对于中国市场上的可乐产品的4-甲基咪唑含量,可口可乐大中华区相关负责人表示他们一直在积极做相关工作,&ldquo 因为这涉及到全球供应商的标准统一问题,所以解决需要时间。&rdquo   这位负责人表示,可口可乐一直努力要在最短的时间内降低中国市场可口可乐产品中的4-甲基咪唑含量,但是目前还不能给记者一个明确的时间点,&ldquo 当然,我们的产品肯定是符合中国所有法律法规的要求的。&rdquo
  • 东西分析高效液相色谱法应对可乐中4-甲基咪唑测定
    美国消费者倡导组织公共利益科学中心(Center for Science in the Public Interest)发布报告称在碳酸饮料可乐中发现了致癌化学物质4-甲基咪唑,一时间舆论哗然。4-甲基咪唑是一种存在于焦糖剂中的化学物质,它是在生产焦糖色素时产生的,主要用于合成大宗胃药西咪替丁,也可用作环氧树脂固化剂和金属表面防护剂等。 国外曾经有几项研究关于4-甲基咪唑,主要都是集中在啮齿类动物身上。TOX-67试验中,2-甲基咪唑、4-甲基咪唑会对老鼠的骨髓、血液微核产生负面影响;2011年,美国加州公布4-甲基咪唑会对老鼠致癌,而且加州据此计算了4-甲基咪唑对人体的&ldquo 无显著风险水平&rdquo 值为16 &mu g/天。而且目前并无任何研究显示这种物质能导致人类患上癌症。 为应对该事件,东西分析应用实验室迅速反应,利用东西分析LC-5510色谱产品,在短时间内研究建立了三氯甲烷-无水乙醇液液萃取提取,旋转蒸发浓缩,C18柱分离,紫外检测器检测的高效液相色谱测定可乐中4-甲基咪唑的方法,得到良好的结果。
  • 集美大学陈全胜教授团队食品顶刊综述: 基于纳米材料的光学传感器检测食品中苯并咪唑类杀菌剂的研究进展
    Introduction苯并咪唑类杀菌剂(BZD)是一类含有苯并咪唑环的内吸性杀菌剂。最常用的BZDs有苯菌灵、多菌灵(CBZ)、甲基硫菌灵(TPM)、噻菌灵(TBZ)、麦穗宁(FBZ)等。在现代农学中,BZDs广泛用于预防水果、蔬菜和其他作物的真菌病害,用于采前和采后处理;此外,它们还被用作广谱的驱虫药物,用于预防和治疗食源性动物体内寄生虫。因此,许多国家和国际权威机构都实施了严格的监管。 最近,基于纳米材料的光学技术,如比色、荧光和SERS技术,通过开发分析纳米技术在农药检测中的潜力,已经成为基于色谱技术一种替代方法。本文综述了近六年来基于纳米技术的光学传感器在水、食品和农产品中BDZ残留检测方面的研究进展。本研究特别强调了比色、荧光、SERS及其集成系统,为当前BZDs的检测现状提供了广泛的覆盖面。基于纳米材料的光学方法用于检测BDZ杀菌剂的示意图如图1所示。 图1 用各种光学方法检测BDZ的不同纳米材料及其综合方法的示意图 基于纳米材料的信号增强策略纳米材料在研究领域被广泛用于促进传感器的修饰。纳米材料由于其独特的性质,如表面修饰,生物相容性,表面等离子体共振,消光系数,催化活性等,可以提高不同传感器的检测效率。一般来说,信号增强的效果主要是因为来自大表面积的强吸附显示出优异的特异性,以及纳米材料的高电子转移速率,从而提高了不同传感器的传感效率。 基于纳米材料的光学传感器迄今为止,已经利用基于纳米材料的光学传感器构建了不同的BDZ传感技术。光学传感器在BDZ的现场检测方面具有很大的潜力和广泛的用途。图2是BDZ在基于纳米材料的光学传感器,特别是比色荧光和SERS及其集成系统的所有已发表论文的总结。图2 柱状图为基于纳米材料的比色(A)、荧光(B)和SERS(C)传感器检测BDZ杀菌剂的发展和发表论文情况比色传感器基于纳米材料的比色传感器因其对包括重金属、农药、真菌毒素、有毒细菌、生物标志物等在内的许多分析物的灵敏和选择性响应而受到了极大的关注。表面等离子体共振(SPR)是纳米材料的一个重要特征,由于纳米材料的聚集或分散,与分析物相互作用后,在可见光区域显示出明亮的颜色变化,并与分析物产生明显的线性或非线性关系。通常,有两种策略可用于制备基于比色的传感器:I)催化或结构变化引起的颜色变化;II)纳米粒子的形态转变或聚集。比色传感器中比色响应的方案如图3所示。表1是基于纳米材料的比色传感器检测食品中BDZ的研究结果。图3 比色传感器的比色响应表1 基于纳米材料的BDZ比色传感器荧光传感器荧光传感器的基本原理是荧光团或纳米粒子产生的光的发射,从激发态返回到基态。表2是基于纳米材料的荧光传感器检测食品中BDZ的研究结果。表2 基于纳米材料的BDZ荧光传感器基于非辐射能量转移的荧光传感器在检测食品和农产品中的有毒化学物质和致病菌方面引起了人们极大的研究兴趣。FRET是一种非辐射距离依赖的能量转移现象,作为一种独特、可靠、灵敏的分析技术被广泛应用于检测各种分析物。碳量子点或碳点是一种新型的发光碳纳米材料,可用于荧光分析法中的定量分析。如图4A所示,Wang课题组基于氮掺杂碳量子点和金纳米簇之间的FRET,通过两个线性响应开发了CBZ的"turnon"比率型荧光传感器,LOD分别为0.83和37.25 μmol/L。相反,考虑到上转换纳米颗粒的优势,有研究开发了一种上转换-二氧化锰发光共振能量转移生物传感器用于UCNPs对CBZ的灵敏检测,如图4B所示。图4 N-GQDs/AuNCs作为CBZ比率荧光开启传感器的示意图(A) CBZ荧光纳米传感器示意图(B) SERS传感器近年来,随着纳米技术的发展,获得了不同形态的纳米结构,它们被用作SERS活性基底,用于无标记和/或靶敏感检测各种分析物,包括农药残留水平。为了提高基于SERS的农药检测的准确度和精密度,研究人员不断致力于开发新型SERS基底、新型检测策略、原位检测系统等。表3总结了SERS技术在BDZ类杀菌剂检测和定量方面的研究进展。表3 BDZ用纳米材料SERS传感器 SERS活性基底的选择SERS活性基底的选择对SERS检测至关重要。为了制备用于BDZ的最佳SERS传感器,需要考虑三个关键点:i)SERS活性底物的拉曼信号增强能力,ii)SERS有源底物的均匀性和稳定性,iii)BDZ对SERS活性基质的亲和力。 SERS光谱的密度泛函理论(DFT)模拟在SERS信号中可以得到分子固有的拉曼信号,这可以通过DFT得到潜在的证实。理论拉曼信号借助高斯程序进行DFT分析,并给出合理的解释。然而,实验测得的拉曼和SERS信号与理论信号存在一定的差异,这可能与农药或基底的分子结构及其相互作用有关。因此,需要更多的研究来了解它们在实验上存在差异的确切原因。化学计量学对SERS传感器的影响化学计量学的关键优势在于能够从低质量的仪器数据中获得合理的检测结果,所得数据具有信号重叠性强、噪声水平高、分辨率低等特点。这种方法常应用于从光学(即比色、荧光、SERS等)、色谱、电化学和其他各种技术中获得的信号的定性和定量处理。有研究将竞争性自适应重加权采样-极限学习机(CARS-ELM)作为非线性化学计量学方法与SERS相结合,实现了苹果中TBZ浓度的快速测定;该方法在TBZ浓度为1、5、10 mg/L的蓄意污染苹果样品中的回收率为83.02%~93.54%;此外,通过PCA在P=0.05水平上的判别图确定了LOD(0.001 mg/L),如图5A所示。图5 利用SERS耦合CARS-ELM确定TBZ的方法示意图(A);SERS传感双杀菌剂界面自组装核壳二维Au@Ag纳米点阵列的制备示意图(B);便携式拉曼分析仪微滴捕获带(C);Ag-Au-IP6-Mil-101 (Fe)的制备示意图及TBZ的SERS测定(D)磁性纳米粒子(MNPs)对SERS传感器的影响磁性纳米粒子与贵金属纳米材料的结合在农药的SERS检测中开辟了新的途径,这归因于以下几个优点:MNPs的有序排列和良好调节的热点提供了完美的增强因子;磁性纳米粒子的磁性允许目标化合物从复杂基质中有效分离和富集;磁性纳米粒子的磁性赋予了SERS纳米复合基底可重复使用性;最后,磁性纳米粒子的生物相容性允许生物识别分子固定在其表面,提高了其对目标分子的特异性生物识别能力和与基质的分离能力。利用贵金属单、双金属SERS基底对BDZ进行无标记检测近年来,利用SERS技术实现痕量分子的无标记检测已成为原位应用的研究热点。如图5B所示,利用金核银壳纳米颗粒设计了一种二维纳米点阵列SERS基底,用于梨、苹果和橙汁中TBZ的可靠和可重复性测定,LOD为0.051 × 10-6。 基于氧化石墨烯(GO)的SERS传感器GO是一种单层碳材料,通过π-π堆积作用或静电作用对芳香分子具有突出的吸附能力;此外,由于电荷转移效应,它提高了拉曼信号,从而支持SERS检测。 硅基SERS传感器根据已发表的多篇文献,金属化硅由于具有大的表面积体积比可用于表面修饰、减少纳米材料之间的相互作用、独特的光学性质和易于制备等优点,已成为制备SERS基底的重要元素。基于聚二甲基硅氧烷(PDMS)的SERS传感器PDMS是柔性基底中备受研究者关注的一种聚合物凝胶,因其具有透明性、良好的拉伸强度、黏结性、无毒性和化学稳定性等优点。此外,它具有较低的拉曼截面,对拉曼信号的影响较小。 基于纸张和胶带的SERS传感器纤维素基纸模板具有三维结构、便携性、柔韧性、多孔性、非均相形貌、极小的SERS信号干扰等优点,是硅或玻璃晶片和多孔氧化铝模板的实际替代品。特别是,它可以通过毛细管作用吸收液体,使目标分析物在传感器纳米材料表面黏附和富集基于金属有机框架的SERS传感器。如图5C所示,通过在导电碳带上沉积Au纳米枝晶,生成了用于TBZSERS检测的创新型POCT装置"微液滴捕获带";作为一个自主的"微容器"用于吸附分析物。基于金属有机框架(MOFs)的SERS传感器MOFs的多孔结构是通过π-π相互作用、氢键或静电作用形成的,它们提供了一个大的比表面积来支持和稳定金属纳米结构,从而获得一种新型的SERS基底。将Au/Ag纳米结构固定到MOFs中作为一种高效的SERS基底近年来受到了广泛的关注。如图5D所示,开发了一种基于MOFs的SERS传感器(Ag-Au-IP6-Mil-101(Fe))检测果汁样品中的TBZ。 基于分子印迹聚合物(MIPs)的SERS传感器考虑到生物识别元件的局限性,MIP作为一种人工识别元件,具有与目标分子亲和力高、化学和机械稳定性好、价格低廉等优点,在检测、催化和固相萃取等领域具有广阔的应用前景;它通过具有酸性或碱性基团的单体聚合,在目标分子存在的情况下形成三维空腔,可以通过互补的形状、大小和官能团选择性地与目标分子结合。基于其他材料的SERS传感器受仿生材料的启发,将植物叶片组装到AuNPs上,产生电磁辐射热点,用于水中CBZ和TBZ的检测。有研究报道了一种用于检测水果样品中TBZ的模板生长磷烯基Au/Ag纳米复合材料SERS基底。另有研究报道了合成的聚氨酯胶束/纳米银簇用于不同果蔬表面TBZ的原位检测。集成传感器近年来,集成不同的技术来提高检测的选择性、准确性和精密度受到了广泛的关注。利用碳化钛MXene/Au-Ag纳米壳开发了一种双功能智能CBZ检测方法,如图6所示。通过电化学和SERS方法,该传感器在茶叶和大米中分别可以检测到低至0.002和0.01 μmol/L的CBZ(表4)。图6 Ti2C MXene/Au-Ag纳米杂化物用于CBZ的电化学和SERS检测表4 基于纳米材料的BDZ集成传感器Conclusion and Perspectives本文综述了基于纳米材料的检测策略,以实现对实际样品中BDZ的高效溯源。尽管这些基于纳米材料的光学及其集成传感器与传统方法相比具有一定的便利性,但在实际样品的检测中仍然存在一些挑战。在本研究中提到的BDZ中,苯菌灵和FBZ还没有被检测到。由于纳米材料与目标分析物结合的活性位点是有限的,因此关注简便和低成本的样品前处理过程是很重要的。也可以集中在芯片、纸张或带状传感器上,用于BDZ的现场检测,这将更有效地用于工业应用。——————————————————————————————————————— 陈全胜:集美大学海洋食品与生物工程学院教授,博士生导师,主要从事食品质量安全快速无损检测与智能化加工装备研发。近年来先后主持国家部省级项目20余项,出版学术英文学术著作1部,中文学术著作3部,以第一/通讯作者发表SCI论文150余篇(其中,IF10论文10余篇,ESI高被引论文15篇,ESI热点论文4篇),论文累计SCI他引6000余次,个人H指数43;累计授权发明专利50余件(含国际专利4件),成果先后获国家技术发明奖二等奖、江苏省科学技术奖一等奖和教育部自然科学奖二等奖等;先后获国家高层次人才、科技部中青年科技创新领军人才、中国高被引学者、ProSPER.Net-Scopus Young Scientist Award、中国青年科学之星和江苏省333中青年科技创新领军人才等国内外奖励和荣誉。为进一步促进动物源食品质量安全的发展,更好的保障人类身体健康和提高生活品质,仪器信息网于2023年11月15-17日举办“动物源性食品质量安全检测技术”主题网络研讨会。陈全胜老师也将在此次网络会中带来精彩报告!点击图片,免费参会
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之六:氘代咪唑与苯并咪唑类抗菌药物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技陆续推出了五期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的咪唑与苯并咪唑类抗菌药物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。部分咪唑与苯并咪唑类抗菌药物:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 生态环境部发布《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年6月12日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)  3.《水质 苯甲醚和甲基叔丁基醚的测定 吹扫捕集/气相色谱-质谱法(征求意见稿)》编制说明    生态环境部办公厅  2023年5月6日  (此件社会公开)
  • 【好文】牛奶中左旋咪唑残留量测定的前处理方法
    不敢独享!牛奶中左旋咪唑残留量测定的前处理方法坛墨质检标准物质中心 昨天左旋咪唑的危害及检测目的左旋咪唑作为一种广谱型抗线虫药,药源丰富,被广泛应用于畜禽养殖企业,效果良好。但不合理地使用左旋咪唑会造成动物产品中残留,研究表明,人体摄入过量左旋咪唑可引起畸变、癌变等症状,严重危害人类健康。为此我国农业农村部和国家市场监督管理总局2019年发布的gb 31650-2019《食品安全国家标准食品中兽药最/大残留限量》中明确规定了左旋咪唑在动物靶组织中的残留限量,并且规定泌乳期和产蛋期禁用。本文阐述了如何将左旋咪唑从样品基质中分离提取出来,并经过净化后,转化成高效液相色谱仪可以检测的形式。以提取、净化为重点,依据国标gb 29681-2013,为检测人员和相关领域研究人员提供一定的参考。检测项目:左旋咪唑应用范围:牛奶高效液相色谱法方法原理:试料中残留的左旋咪唑,用碳酸盐缓冲液和乙酸乙酯溶液提取,c18柱净化,甲醇洗脱,高效液相色谱测定,外标法定量。前处理仪器:分析天平(感量0.00001 g和0.01 g);均质机;冷冻高速离心机;电热恒温水浴锅;旋涡混合器;茄形瓶(50 ml);离心管;滤膜(0.45 μm)。检测仪器: hplc-pda 试样的制备与保存取适量新鲜或冷藏的空白或供试牛奶,混合均质。取均质后的供试样品,作为供试试料;取均质后的空白样品,作为空白试料;取均质后的空白样品,添加适宜浓度的标准工作液,作为空白添加试料。试料于零下20 ℃以下保存。前处理方法1.提取称取试料5 g± 0.05 g,于离心管中,加碳酸盐缓冲液5 ml,加乙酸乙酯10 ml,混匀,6000 r/min离心10 min,取上清液于茄形瓶中,再加乙酸乙酯10 ml萃取一次,合并两次上清液,于50 ℃水浴旋转蒸发至干,加碳酸盐缓冲液5 ml溶解残余物,备用。2.净化c18柱(3 ml/500 mg)依次用水3 ml、甲醇3 ml和碳酸盐缓冲液3 ml活化,取备用液过柱,用水3 ml淋洗,用甲醇5 ml洗脱,收集洗脱液,于50 ℃水浴氮气吹干,用流动相1.0 ml溶解残余物,滤膜过滤,供高效液相色谱测定。国标解读及注意事项1.左旋咪唑用甲醇配成1 mg/ml的标准储备液,在2 ℃~4 ℃保存,可使用3个月。2.本方法使用碳酸盐缓冲液提取,乙酸乙酯萃取,c18固相萃取柱净化的方式进行目标化合物的提取净化。3.本方法采用两次萃取的方式,提高目标化合物的回收率。4.为保证固相萃取净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。水淋洗后完全抽干小柱,再进行洗脱。5.左旋咪唑也可以使用液质联用仪进行检测,同时添加相对应的盐酸盐同位素内标,进行回收率的校正。参考文献gb 29681-2013 食品安全国家标准 牛奶中左旋咪唑残留量的测定 高效液相色谱法图1 牛奶中左旋咪唑残留量测定的前处理流程图左旋咪唑标准物质信息表我是一个闪光的标题左旋咪唑标准品信息表本文版权归坛墨质检,未经许可请勿转载 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 动物源食品中硝基咪唑残留量测定的前处理方法
    硝基咪唑类药物(nitroimidazole,NMZs)是一类具有抗原虫感染和抗厌氧菌的硝基杂环类抗菌药物,其具有抗菌和抗原虫作用。近年来作为饲料添加剂广泛应用于畜牧业生产中,同时也是一种生长促进剂,以促进畜禽的生长及改善饲料的转换率。由于这类化合物含有的硝基杂环类物质具有潜在致癌、致畸和致突变作用,因此欧美等发达国家已禁止在食源性动物中使用硝基咪唑类药物。我国也对硝基咪唑类药物进行了严格的限制,2020年生效实施的GB 31650-2019《食品安全国家标准 食品中兽药最大残留限量》中仅规定了甲硝唑和地美硝唑两种物质允许作治疗使用,但不得在动物性食品中检出;同年农业农村部公告第250号,将洛硝达唑、替硝唑列入《食品动物中禁止使用的药品及其他化合物清单》中。本文阐述了如何将硝基咪唑类化合物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 21318-2007,为检测人员和相关领域研究人员提供一定的参考。应用范围猪肉/鸡肉/牛肉/猪肝/鸡肝/牛肝/猪肾/牛肾/鱼肉/奶粉/蜂蜜方法原理样品中残留的8种硝基咪唑、2种代谢物用甲醇-丙酮均质或超声波提取,经乙酸乙酯液液分配,以凝胶色谱(GPC)净化,再经固相萃取(SPE)净化,采用液相色谱/串联质谱确证,外标法定量测定。前处理仪器凝胶色谱仪(配有馏份收集浓缩器);组织捣碎机;均质器;超声波发生器;旋转蒸发器;高速离心机;氮吹仪;固相萃取装置;具塞锥形瓶(250 mL);分液漏斗(250 mL);浓缩瓶(50 mL、250 mL)。检测仪器:LC-MS/MS+ESI源01提取肌肉组织、脏器组织样品及水产品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 g硅藻土(80目~120目)与样品充分混匀,再依次加入5 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),高速均质提取3 min。将提取液移入离心管中,于10000 r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。 蜂蜜、乳及乳制品样品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),超声波提取30 min。移入离心管中,于10000r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。02液液分配将提取液于40 ℃水浴中旋转浓缩至只剩水相,并转移至250 mL分液漏斗中,加入50 mL饱和氯化钠水溶液和25 mL乙酸乙酯,振摇3 min,静置分层,收集乙酸乙酯相。水相再用20 mL乙酸乙酯重复提取两次,合并乙酸乙酯相。经无水硫酸钠柱脱水,收集于250 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL乙酸乙酯-环己烷(1+1)溶解残渣,并用0.45 μm滤膜过滤,待净化。03净化凝胶色谱(GPC)净化凝胶色谱净化条件如下:净化柱:700 mm×25 mm,Bio Bcads S X3,或相当者;流动相:乙酸乙酯-环己烷(1+1);流速:4.7 mL/min;样品定量环:5.0 mL;预淋洗体积:50 mL;洗脱总体积:210 mL;开始弃去体积:90 mL;收集体积:90 mL;最后弃去体积:30 mL。04凝胶色谱净化步骤如下将5 mL待净化液按照凝胶色谱净化条件进行净化,合并馏份收集器中的收集液于250mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL甲醇以溶解残渣,待净化。05固相萃取(SPE)净化使用前用5 mL甲醇预淋洗C18固相萃取柱(1 g,6 mL),将5 mL溶解液倾入C18固相萃取柱中,以1 mL/min的速度收集流出液,再用10 mL甲醇进行洗脱。收集全部洗脱液于50 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至干。用甲醇溶解并定容至1.0 mL,经0.45 μm滤膜过滤后,供液质测定和确证。国标解读及注意事项1.硝基咪唑标准物质用甲醇配成1000 μg/mL的标准储备液,在0 ~4 ℃条件下避光保存,可使用12个月。2.如果有条件,建议凝胶色谱净化系统中配合使用紫外检测器,准确监测目标化合物及杂质的流出情况。3.固相萃取净化过程中,C18柱作为净化柱使用,注意上样过程中就需要收集流出液,再和洗脱液进行合并。4.国标方法中使用基质添加标准曲线,外标法进行回收率的校正。注意做肉类样品的基质添加标准曲线前,先进行洗涤,然后加标,再进行后续提取净化等流程。5.建议使用硝基咪唑标准物质相对应的同位素内标,进行回收率的校正。参考文献:GB/T 21318-2007 动物源食品中硝基咪唑残留量检验方法图1 肌肉组织、脏器组织样品及水产品中硝基咪唑残留量测定的前处理流程图图2 蜂蜜、乳及乳制品样品中硝基咪唑残留量测定的前处理流程图坛墨相关产品推荐点击图片即可购买
  • 欧盟拟放宽多种作物中咪唑菌酮最大残留限量
    2014年3月31日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就修订大蒜等多种作物中咪唑菌酮(Fenamidone)的最大残留限量(MRL)发布了意见。   据了解,依据欧盟委员会(EC)No 396/2005法规第6章的规定,法国收到一家公司要求修订大蒜等多种作物中咪唑菌酮的申请。为协调咪唑菌酮的最大残留限量(MRL),法国建议对其残留限量进行修订。   依据欧盟委员会(EC)No 396/2005法规第8章的规定,法国起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。检验检疫部门提醒相关生产企业,一是生产过程中科学适量施打咪唑菌酮 二是重视对产品的抽检工作,确保相关残留符合欧盟标准 三是关注口岸相关法规标准变化,及时调整生产工艺,避免通报和退货风险。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 南昌客户通过仪器信息网成功订购远慕甲基红酸钠
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 南昌客户通过仪器信息网成功订购远慕甲基红酸钠,下面是跟客户的聊天记录: 中文名称: 甲基红钠盐 中文别名: 2-[4-(二甲基氨基)苯基偶氮]苯甲酸钠盐; 甲基红钠 英文名称: Methyl Red sodium salt CAS号: 845-10-3 分子式: C15H14N3O2 分子量: 268.2911 熔点: -98℃ 沸点: 479.5°C at 760 mmHg 闪点: 243.8°C 蒸汽压: 5.27E-10mmHg at 25°C 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • Detelogy饲料中兽残抗生素检测前处理解决方案——以硝基咪唑类、硝基呋喃类、硝基喹啉类为例
    据报道“全球每年消耗的抗生素总量90%用在食源动物身上,致使细菌耐药性和药物残留等问题日益突出。”本文以硝基咪唑类、硝基呋喃类、硝基喹啉类为例,针对饲料中兽残抗生素检测提供了高效智能前处理解决方案。本方案适用于饲料中异丙硝唑、甲硝唑、替硝唑、塞克硝唑、卡硝唑、奥硝唑、地美硝唑、罗硝唑8种硝基咪唑类药物,呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林4种硝基呋喃类药物和卡巴氧、喹乙醇、乙酰甲喹、喹烯酮4种喹啉类药物的前处理方案。本方案适用于畜禽配合饲料、浓缩饲料、添加剂预混合饲料和精料补充料中硝基咪唑类、硝基呋喃类和喹啉类药物的前处理方案。本标准的检出限为0.05 mg/kg,定量限为0.10 mg/kg。实验步骤:一、提取称取试样2 g(精确至.01 g)于50 mL离心管中,准确加入200 mL提取液(甲醇V:乙腈V:超纯水V,3:3:4)用MultiVortex多样品涡旋混合器混合后,水浴超声提取10 min,振荡15 min。8000 rpm离心5 min,取1.00 mL上清液于40℃下用FV64全自动智能氮吹仪吹至近干,残余物用0.1 mol/L磷酸二氢钠溶液5.0 mL溶解,超声10 min,备用。二、净化将HLB固相萃取柱固定于iSPE-864全自动智能固相萃取仪上,固相萃取条件如下:将洗脱液用FV64全自动智能氮吹仪吹干。准确加入60%乙腈溶液1.00 mL溶解残余物,使用MultiVortex多样品涡旋混合器混匀后,超声10 min,过0.22 μm微孔滤膜,供液相色谱串联质谱仪测定。注:操作过程中注意避光,试样上机前酌情稀释,避免造成仪器污染。所用Detelogy智能前处理设备建议选型● 高转速搭载3mm圆周振幅,保证每个样品充分混合● 外观灵巧轻便,主机低重心设计,运行噪声低,进阶实现稳健高转速● 5寸高清触屏,支持手动自动双模式,中英文界面自由切换● 64位高通量,氮吹针自动下降● 支持全自动延时氮吹和延时增压● 10.1寸高清触屏控制,可存方法● 8通道,批量处理64位样品● 自动完成活化、上样、淋洗、氮吹、洗脱等固相萃取全流程
  • 河北省精细化工行业协会发布《2-甲基喹啉》等7项团体标准公开征求意稿
    各相关单位、专家:根据河北省精细化工行业团体标准工作安排,《2-甲基喹啉》《α-甲基萘》《工业苊》《工业芴》《氧芴》《吲哚》《茚》7项团体标准征求意见稿已经完成,现面向社会公开征求意见。欢迎广大行业企业和专家提出宝贵意见。征求意见截止时间为2023年5月1日协会标委会联系电话:0311-68072978邮箱:hbjxhg@163.com附件:《对苯基苯酚》《十氢化萘》2项团体标准征求意见稿 河北省精细化工行业协会管理标准化委员会2023年3月30日2-甲基喹啉-征求意见稿.pdf工业苊-征求意见稿.pdfα-甲基萘-征求意见稿.pdf氧芴-征求意见稿.pdf吲哚-征求意见稿.pdf茚-征求意见稿.pdf工业芴-征求意见稿.pdf精细化工协会团体标准征求意见表-2-甲基喹啉.doc精细化工协会团体标准征求意见表-工业苊.doc精细化工协会团体标准征求意见表-工业芴.doc精细化工协会团体标准征求意见表-α-甲基萘.doc精细化工协会团体标准征求意见表-氧芴.doc精细化工协会团体标准征求意见表-茚.doc精细化工协会团体标准征求意见表-吲哚.doc
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 欧盟发布首批CORAP物质评估结果
    20日消息,欧洲化学品管理局(ECHA)公布首批欧盟滚动行动计划(CoRAP)物质评估结果,各成员国共完成36个物质的评估。根据评估结果,有环氧乙烷、磷酸三丁酯、甲苯二异氰酸酯、甲苯等4个物质不需要额外提供信息,而对于另外的32个物质评估成员国都已提交决议草案,要求注册人进一步提供危害、暴露等方面的信息以供评估。注册人可以对成员国的要求提出自己的意见。32个需提供进一步信息的物质是四氯化碳、甲醇、氯甲烷、双酚A、铃兰醛、1-萘氨基苯、萘烷、二苯胍、对甲苯甲醚、正己烷、二乙醇胺、1-癸醇、三溴苯酚、1,4-苯二酚、橡胶硫化促进剂PZ、异辛酸、咪唑、亚磷酸二甲酯、N-(1,4-二甲基戊基-N’-苯基对苯二胺、N,N’ (1,4-二甲基戊基)对苯二胺、偏苯三酸三辛酯、三氯生、奥克立林、水杨酸己酯、二氧化硅、异辛烷、苯酚(甲基苯乙烯)、十溴二苯乙烷、C14-17氯代烃、4-甲基-2-(2-甲基丙基-2H-四氢吡喃-4-醇、2-萘酚苄基醚、2,3,3,3-四氟-1-丙烯等。   相关注册人有30天的时间对决议草案中的信息要求给出评议,同一个物质的多个注册人则需要自行协调各方意见并将统一的意见提交给ECHA。   物质的CAS号、EC号、评估成员国等详细资料请登陆http://www.echa.europa.eu/view-article/-/journal_content/title/first-substance-evaluation-results-further-information-needed-on-32-substances查询。
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 国家药监局发布《化妆品中四氢咪唑啉等5种组分的测定》化妆品补充检验方法
    近日,国家药监局根据《化妆品监督管理条例》,国家药监局批准《化妆品中四氢咪唑啉等5种组分的测定》化妆品补充检验方法并发布。方法详情如下:
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 多款化妆品检测不合格,防晒、美白功能成问题
    在2024年国家化妆品抽样检验工作中,经福建省食品药品质量检验研究院等单位检验,产品标签标示为云南贝泰妮生物科技集团股份有限公司生产的薇诺娜清透防晒乳SPF48 PA+++等36批次化妆品不符合规定(见附件)。根据《化妆品监督管理条例》《化妆品生产经营监督管理办法》《化妆品抽样检验管理办法》,国家药品监督管理局要求浙江省、广东省、云南省药品监督管理局对上述不符合规定化妆品涉及的注册人、备案人、受托生产企业等依法立案调查,责令相关企业立即依法采取风险控制措施并开展自查整改。各省(区、市)药品监督管理部门责令相关化妆品经营者立即停止经营上述化妆品,依法调查其进货查验记录等情况,对违法产品进行追根溯源;发现违法行为的,依法严肃查处;涉嫌犯罪的,依法移送公安机关。  特此通告。36批次不符合规定化妆品信息如下:(原文查看附件:国家药品监督管理局2024年第33号附件.doc.doc)序号标示产品名称标示化妆品注册人/备案人、受托生产企业、境内责任人(经销商)等名称特殊化妆品注册证编号/普通化妆品备案编号标示生产许可证号检验机构名称不符合规定项目检验结果规定要求备注1薇诺娜清透防晒乳SPF48 PA+++云南贝泰妮生物科技集团股份有限公司国妆特字G20151938云妆20160004福建省食品药品质量检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:双-乙基己氧苯酚甲氧苯基三嗪、甲氧基肉桂酸乙基己酯、乙基己基三嗪酮、亚甲基双-苯并三唑基四甲基丁基酚产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致云南贝泰妮生物科技集团股份有限公司提出样品真实性异议。经云南省药品监督管理局审查,该企业未生产或者进口过该批次抽检不符合规定产品。2塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695宁夏回族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/3塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695广西壮族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致 /4塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695广西壮族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/5水焕玑防晒霜SPF50+PA+++广东全力医药科技有限公司国妆特字20221913粤妆20200203广西壮族自治区药品检验研究院成分比对(1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:亚甲基双-苯并三唑基四甲基丁基酚。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:二乙氨羟苯甲酰基苯甲酸己酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/6雪佳漾美白防晒喷雾SPF50+PA+++广东全力医药科技有限公司国妆特字20221568粤妆20200203广西壮族自治区药品检验研究院成分比对 (1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:苯基苯并咪唑磺酸。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、甲氧基肉桂酸乙基己酯、胡莫柳酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/胡莫柳酯未检出6.40%(w/w)-9.60%(w/w)甲氧基肉桂酸乙基己酯未检出5.60%(w/w)-8.40%(w/w)水杨酸乙基己酯0.49%3.20%(w/w)-4.80%(w/w)亚甲基双-苯并三唑基四甲基丁基酚0.048%0.80%(w/w)-1.20%(w/w)4-甲基苄亚基樟脑未检出1.60%(w/w)-2.40%(w/w)7安罗拉冰爽防晒喷雾SPF50 PA++++注册人:广州市阿西娜化妆品制造有限公司,生产企业:惠州市宝姿生物科技有限公司国妆特字20221573粤妆20190024广西壮族自治区药品检验研究院4-甲基苄亚基樟脑1.03%2.96%(w/w)-4.00%(w/w)/奥克立林2.03%5.24%(w/w)-7.86%(w/w)(以酸计)丁基甲氧基二苯甲酰基甲烷0.96%3.60%(w/w)-5.00%(w/w)二乙氨羟苯甲酰基苯甲酸己酯1.00%2.64%(w/w)-3.96%(w/w)双-乙基己氧苯酚甲氧苯基三嗪0.92%2.64%(w/w)-3.96%(w/w)乙基己基三嗪酮0.96%3.60%(w/w)-5.00%(w/w)8ANGEYI美白防晒喷雾广州安歌依健康产业有限公司国妆特字20233258粤妆20200166广西壮族自治区药品检验研究院成分比对(1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、甲氧基肉桂酸乙基己酯。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:丁基甲氧基二苯甲酰基甲烷、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/9OEANHUT水感透亮美白防晒乳SPF50+广州雅升生物科技有限公司 国妆特字20221486粤妆20180244广西壮族自治区药品检验研究院4-甲基苄亚基樟脑1.94%3.2%(w/w)-4%(w/w)/甲氧基肉桂酸乙基己酯4.98%8%(w/w)-10%(w/w)水杨酸乙基己酯2.32%4%(w/w)-5%(w/w)10海圣美白隔离防晒乳SPF50+PA+++注册人/生产企业:广州姿采化妆品厂,品牌商:广州仟色生物科技有限公司国妆特字G20212375粤妆20160994广东省药品检验所成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/11雪媚格舒缓防晒乳经销商/境内负责人:广州雪媚格医学美容科技有限公司,生产商:克里斯廷施拉默克医学博士美容有限及两合公司国妆特进字J20200017/广东省药品检验所成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:甲氧基肉桂酸乙基己酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/12YIMIAOSI美白防晒乳广州函美诗生物科技有限公司国妆特字20234456粤妆20190245四川省药品检验研究院(四川省医疗器械检测中心)成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:双-乙基己氧苯酚甲氧苯基三嗪、二乙氨羟苯甲酰基苯甲酸己酯、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯、乙基己基三嗪酮、亚甲基双-苯并三唑基四甲基丁基酚、苯基苯并咪唑磺酸产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/13摩肯樱桃花润泽BB霜21号境内责任人:杭州喆仁贸易有限公司,备案人:玥之秘株式会社,生产企业:COSMAX,INC国妆网备进字(浙)2019000160/初检机构:江苏省食品药品监督检验研究院,复检机构:上海市食品药品检验研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:甲氧基肉桂酸乙基己酯(复检结果)产品检出成分应当与该产品备案资料载明的技术要求一致/14颜乐滋轻润隔离防护乳广东人和国妆生物科技有限公司粤G妆网备字2023134498粤妆20210257贵州省食品药品检验所成分比对检出备案资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、丁基甲氧基二苯甲酰基甲烷、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯、奥克立林产品检出成分应当与该产品备案资料载明的技术要求一致/15尚惠鱼子酱精华轻垫粉底液备案人/生产企业:广州市巧迪精细化工有限公司,授权:尚惠国际集团有限公司粤G妆网备字2021573800粤妆20160591重庆市食品药品检验检测研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:甲氧基肉桂酸乙基己酯产品检出成分应当与该产品备案资料载明的技术要求一致/16贝丽贝拉水润修颜隔离霜 02#清新绿广州市露琪化妆品有限公司粤G妆网备字2023395933粤妆20170202初检机构:陕西省食品药品检验研究院,复检机构:浙江省食品药品检验研究院铅934mg/kg(复检结果)≤10mg/kg/17克璐丝清爽净透隔离乳东莞市国丰化妆品有限公司 粤G妆网备字2022127019粤妆20161795广西壮族自治区药品检验研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、丁基甲氧基二苯甲酰基甲烷、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯产品检出成分应当与该产品备案资料载明的技术要求一致/18鲜比淡斑净白精华液广东芭薇生物科技股份有限公司国妆特字G20202950粤妆20160687初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/19鲜比焕采透白亮肤霜广东芭薇生物科技股份有限公司国妆特字G20202516粤妆20160687初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/20衡美肤焕彩臻白乳广州青岚生物科技有限公司国妆特字G20190229粤妆20160605初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/21肤研美白祛斑霜广州市爱莲化妆品有限公司国妆特字G20191511粤妆20170506上海市食品药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的祛斑美白剂:α-熊果苷产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/22景颜堂染发膏(棕黑色)广州市绮妆化妆品有限公司国妆特字20233703粤妆20161398安徽省食品药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:4-氨基-2-羟基甲苯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/23红鑫龙染发膏(栗棕色)广州红鑫龙化妆品有限公司国妆特字20223599粤妆20170252广东省药品检验所成分比对检出产品标签及注册资料载明的技术要求未标示染发剂:对氨基苯酚产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/24凯维斯染发霜(酒红色)广州市凯维斯化妆品有限公司国妆特字G20202055粤妆20161261初检机构:湖北省药品监督检验研究院,复检机构:广东省药品检验所成分比对 检出产品标签及注册资料载明的技术要求未标示的染发剂:1-萘酚(复检结果) 产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/25澳亿染发膏-棕黑色注册人:广州市澳亿化妆品有限公司,生产企业:广州市贝嘉欣化妆品有限公司国妆特字20222929粤妆20170041宁夏回族自治区药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:苯基甲基吡唑啉酮产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/26益孝堂炫彩染发膏(栗棕色 5.4)广东益孝堂医药科技有限公司国妆特字20222051粤妆20210101广西壮族自治区药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:对氨基苯酚、甲苯-2,5-二胺硫酸盐、2-氨基-3-羟基吡啶产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/27寇之肤玫瑰籽海藻面膜佛山市诗曼诺化妆品有限公司 粤G妆网备字2023490719粤妆20220134贵州省食品药品检验所菌落总数1.2×103CFU/g≤1000CFU/g/28凯秀野生小颗粒海藻面膜广州市凯秀化妆品有限公司 粤G妆网备字2019016812粤妆20161740贵州省食品药品检验所菌落总数1.8×104CFU/g≤1000CFU/g/霉菌和酵母菌总数1.0×103CFU/g≤100CFU/g29花芝语石斛润颜海藻面膜广州柏美生物医药科技有限公司 粤G妆网备字2022217325粤妆20180036贵州省食品药品检验所菌落总数2.0×105CFU/g≤1000CFU/g /30NUDUUN植物香氛润肤露汕头市嘉华日化有限公司粤G妆网备字2021768262粤妆20210379广西壮族自治区药品检验研究院菌落总数48000CFU/ml≤1000CFU/ml /31NUDUUN植物香氛润肤露汕头市嘉华日化有限公司粤G妆网备字2021768262粤妆20210379广西壮族自治区药品检验研究院菌落总数82000CFU/ml≤1000CFU/ml/32肤秘堂明魅眼部喷雾精华液广州天新生物科技有限公司粤G妆网备字2023387747粤妆20160270广西壮族自治区药品检验研究院菌落总数12000CFU/ml≤500CFU/ml/33伊露莹赋颜抗皱嫩滑霜兴富生物科技(广东)有限公司粤G妆网备字2023328730粤妆20230009上海市食品药品检验研究院菌落总数2.1×104CFU/g ≤1000CFU/g /34上官博士紧致抗皱盈润面霜广州欧丽雅生物科技有限公司粤G妆网备字2023291329粤妆20190191福建省食品药品质量检验研究院菌落总数3.0×103CFU/g≤1000CFU/g/35瓷龄堂洋甘菊修护精华水广州市皇熙化妆品有限公司粤G妆网备字2020239775粤妆20190051广西壮族自治区药品检验研究院菌落总数71000CFU/ml≤1000CFU/ml/36KOUQI蔻琦B5保湿舒缓喷雾广东艾琪生物科技有限公司粤G妆网备字2023263566粤妆20200032云南省食品药品监督检验研究院菌落总数7.9×103CFU/ml≤1000CFU/ml/霉菌和酵母菌总数3×103CFU/ml≤100CFU/ml
  • 王家海团队最新成果:开发纳米孔计数器检测甲基化基因方法 检测限达到1aM以下
    近日,化学化工学院王家海教授团队开发了基于纳米孔计数器检测甲基化基因的方法,成果以“Nanopore counter for highly sensitive evaluation of DNA methylation and application for in vitro diagnostics”为题发表在国际知名学术期刊Analyst上。1、研究背景 DNA甲基化是一种重要的表观遗传修饰,在维持正常细胞功能、染色体结构、胚胎发育和衰老方面发挥着重要作用。因此,DNA异常的甲基化水平被认为是重要的恶性肿瘤生物标记物之一,开发一种简单而灵敏的DNA甲基化水平检测方法是必要的。固态纳米孔是纳米孔技术中重要的组成部分,其对双链DNA(dsDNA)的检测具有无标记和超高灵敏度的特性。将DNA甲基化程度通过合适的转换机制,变换成特定长度双链DNA的浓度,有助于开发信号读出良好,灵敏度高的甲基化传感器。2、研究内容受此思路启发,王家海教授团队提出了一种过程简单,条件温和的甲基化监测方案——即通过纳米孔计数器对双链的读出能力,结合双限制性内切酶(BstUI/HhaI)消化策略和聚合酶链式反应(PCR)扩增将DNA甲基化转换为PCR扩增物的数量来评估DNA甲基化的程度。相比于传统亚硫酸氢盐转化方法,基于双甲基化敏感内切酶的消化策略结合纳米孔是更好的选择。首先,基于甲基化敏感的核酸内切酶的消化策略可以在更加温和的条件下特异性地消化未甲基化的DNA,这对于开发简单、通用的甲基化检测方法至关重要;此外,基于甲基化敏感的核酸内切酶消化策略的可以将非甲基化的DNA切碎,这可以大大减少背景信号,从而显著简化纳米孔传感器的数据分析,使得信号更加规整、好读。而加入PCR策略,是将信号灵敏度和选择性进一步提升,使其达到临床所需。图1 技术原理图:(a) 双内切酶系统可以消化未甲基化的DNA,但保留甲基化的完整DNA,完整的甲基化DNA可以通过PCR反应扩增并产生大量固定长度的双链DNA扩增子。(b) 通过玻璃纳米孔计数器直接检测PCR扩增子。由于PCR扩增子的规律性,信号是非常均匀、好读出的。3、工作亮点在本工作中,我们根据PCR扩增的效率以及产生信号的信号比优化了PCR产物的长度,使得传感器兼顾灵敏度以及读出信号的方便性。结合PCR技术产生固定长度扩增子后,该传感技术对DNA甲基化的检测达到了1aM以下的检测限,并且具有1aM~100pM之间(109倍)的超宽传感器线性区间:图2 PCR扩增子长度的优化。(a)扩增子的引物的位置。(b)凝胶电泳图,说明经过反应后,只有甲基化SEPT7基因可以保持完整,并成功产生不同长度的产物条带。(c)三种长度的PCR扩增子的易位信号,可以看出随着扩增子长度的增加,信噪比提升。(d) 317、406和806bp扩增子的信号幅度分布直方图,可以看到扩增子越长,信号率下降,传感器灵敏度下降。图3 纳米孔传感器对甲基化DNA的定量测试。(a)甲基化PUC57-SEPT9浓度范围为1 aM至100 pM时的校准曲线。(b)传感器的对数校准曲线。对数校准曲线的分段线性范围为1 aM至100 aM(c)和100 aM至100pM(d)。(e) 传感器在5秒内对不同浓度的甲基化PUC57-SEPT9的易位信号。此外,传感器具备优秀的选择性,能在大量非甲基化的基因中检测出仅有0.01%的甲基化基因。与其他现存技术相比,我们的技术在检测限及监测范围中有足够的优势。图4 传感器对DNA甲基化水平的测试。(a)用不同甲基化水平的DNA测试时的事件率。(b)测量的甲基化水平与实际输入甲基化水平之间的关系。结果显示即使在低至0.01%的浓度水平下也具有良好的一致性。表1 本文结果与其他甲基化检测方法的性能比较方法扩增手段检测范围检测下限fluorescenceOxidation damage base-based amplification100 fM-100 nM34.58fMelectrochemistryElectrochemical strategies for tetrahedral RCA amplification1 fM-1 nM100 aMchemiluminescenceSynergistic in situ assemblies of G-quadruplex DNAzyme nanowires1 aM-100 pM0.565 aMfluorescenceDual endonucleases digestion coupled with RPA-based CRISPR/Cas13a200 aM-20 pM86.4 aMfluorescenceFluorescence nanosensor based on Fe3O4/Au core/shell nanoparticles3.2 fM-800 fM310 aMNanopore(this work)Dual endonucleases digestion combined with PCR-based nanopore1 aM-100 pM0.61 aM4、研究相关 王家海教授为论文第一作者,团队成员陈达奇(广州大学讲师)为论文通讯作者,广州大学为第一通讯单位。文章链接: https://pubs.rsc.org/en/content/articlelanding/2023/an/d3an00035d
  • 岛津推出塑料及环境中苯并三唑类紫外吸收剂的测定方案
    苯并三唑类物质是种较好的紫外光吸收剂,具有性能稳定、毒性低、吸收紫外线的能力强、能够抑制或减弱光降解作用、提高合成材料的耐光性能和与高分子材料相容性好的特点。所以广泛地应用于聚烯烃、聚酯树脂、涂料、食品包装、感光材料等各种合成材料制品中。但是苯并三唑遇明火可燃,并产生有毒气体一氧化碳和氮氧化物。如吸入环境中的苯并三唑类化和物,可引起鼻炎、支气管炎、发热以及由于气管炎症而引起的迷走神经紧张等症状,所以需对其在塑料及水质、土壤等环境基质中的含量进行限制。我国2007版《化妆品卫生规范》对亚甲基双苯并三唑基四甲基丁基酚的用量作了详细限制。欧盟76/768EEC标准、美国食品和药物管理局(Food and Drug Administration,FDA)规定辛普紫外线AB全波段防晒剂UVAB480-P(亚甲基双苯并三唑四甲基丁基苯酚)用于防晒化妆品的最大用量不得超过百分之十。 岛津公司作为全球著名的分析仪器厂商,进入中国已经30多年,长期以来一致关注国内外各行业标准法规的颁布与实施,积极应对,及时提供全面、有效的解决方案。岛津公司拥有完整的仪器产品线,并与国家环境分析测试中心、研究院所共建实验室开展了环境保护相关的多项工作。&ldquo 十二五&rdquo 国家环境保护标准修订期间,岛津公司分析中心先后与中日友好环境监测中心,江苏省环境监测站、上海市浦东新区环境监测站、上海市普陀区环境监测站、沈阳市环境监测站等环境部门合作,在各项环境标准的制定及验证过程中取得了丰硕的成果。本应用方案采用岛津公司GCMS-QP2010 Ultra气相色谱质谱联用仪,对塑料及环境中的苯并三唑类紫外吸收剂进行了检测。汇编成了《塑料及环境中苯并三唑类紫外吸收剂的测定》应用方案,以帮助更多的客户解决塑料、水质和土壤等突出的环境检测问题。主要内容包括: 1 相关法规 2 苯并三唑类物质的理化性质 3 检测流程 4 检测步骤 5 主要前处理样品流程图片 6 技术数据 了解详情,请点击下载最近解决方案:《塑料及环境中苯并三唑类紫外吸收剂的测定》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 全球防晒产品法规差异:出海必备指南
    近年来随着防晒化妆品市场需求不断增加,越来越多的国货防晒产品进入国际市场。如不了解拟出口国家或地区对防晒剂的监管规定,可能面临产品扣留、被拒绝入境、召回等问题。中贸合规中心在此总结中国、欧盟、美国、东盟以及中国台湾地区对防晒剂的监管规定,对比防晒剂使用限制,帮助企业防晒产品顺利出海。1 中国 防晒产品在中国属于特殊化妆品,所用的防晒剂成分需满足《化妆品安全技术规范》(2015年版)化妆品准用防晒剂(表5)的规定要求。其中,当二氧化钛或氧化锌用作防晒剂又用作着色剂时,防晒类化妆品中该物质的总使用量不应超过25%。《化妆品安全技术规范》(2015年版)收录了27种化妆品准用防晒剂,但需要注意的是,早在2021年5月,国家药监局发布了关于更新化妆品禁用原料目录的公告(2021年第74号),将“3-亚苄基樟脑”列为禁用组分,因此目前我国共有26种化妆品准用防晒剂。2 欧盟防晒产品在欧盟属于化妆品,在管理方式上与其它化妆品不做区分。产品中的防晒剂须满足欧盟化妆品法规EC 1223/2009附录VI《化妆品准用防晒剂清单》中的限制要求。欧盟委员会根据欧盟消费者安全科学委员会(SCCS)发布的防晒剂评估意见,对防晒剂清单进行修订和更新。目前,欧盟《化妆品准用防晒剂清单》所列防晒剂共有34种,其中5种原料的纳米形式也被收录在内。2021年12月,欧盟委员会对胡莫柳酯在化妆品中的安全用量重新修订,由之前的最大安全用量10%降至7.34%,并限制仅应用于“除推进剂喷雾产品外的面部产品”。相关法规规定,不符合该要求的化妆品,自2025年1月1日起禁止在欧盟市场上市,自2025年7月1日起禁止在欧盟市场销售。3 美国美国将防晒产品作为药品进行监管。如符合相应非处方药(OTC)专论的要求,则不需要美国食品药品监管局(FDA)批准即可投放市场,但应按要求进行通报。如使用了未被收录在专论中的防晒剂,则作为新药管理,需要经FDA审查批准方可投放市场。美国联邦法规第352.10条及非处方药(OTC)专论规定了16种可接受的防晒剂及其最大允许使用浓度。需要注意的是,美国不同州对防晒剂的管理存在差异,例如美国夏威夷、佛罗里达等部分地区禁止在州内销售含有二苯酮-3和甲氧基肉桂酸乙基己酯的防晒产品。4 东盟防晒化妆品在东盟属于化妆品,在管理方式上与其它化妆品不做区分。产品中使用的防晒剂须满足《东盟化妆品指令》附录VII 《化妆品准用防晒剂清单》限制要求。东盟化妆品委员会(ACC)参考欧盟化妆品法规、SCCS评估意见结论,通过召开会议,动态调整化妆品防晒剂及其限制要求。东盟化妆品防晒剂清单中共有35种防晒剂,其中5种原料的纳米形式也被收录在内。与欧盟准用防晒清单相似,但也存在差异之处,例如“薄荷醇邻氨基苯甲酸酯”在东盟可作为防晒剂,但未被纳入欧盟准用防晒剂清单中。需要注意的是,东盟各成员国的防晒剂清单也存在差异,例如二苯酮-3、甲氧基肉桂酸乙基己酯、4-甲基亚苄基樟脑在泰国禁止用于防晒产品中,但在新加坡、马来西亚等国家均属于准用防晒剂。5 中国台湾地区2024年5月30日,中国台湾地区卫生福利部发布公告,为保障消费者的化妆品使用安全,参考国际间的化妆品管理规范,并根据《化妆品卫生安全管理法》规定,有关特定用途化妆品的规定于2024年7月1日停止适用,所有化妆品统一按照登录制进行管理。在中国台湾地区,防晒剂的使用需满足《化妆品防晒剂成分使用限制表》要求,该表由原《特定用途化妆品成分名称及使用限值表》中防晒剂部分及《化妆品成分使用限制表》中的二氧化钛相关规定合并而成,共计27个成分,已于2024年7月1日生效。6 总结由上文可知,不同国家地区对防晒剂的监管方式不同,准用防晒剂清单也存在很多差异:①从数量上来看,欧盟、东盟的防晒剂数量最多,而美国的防晒剂最少。对于有出口美国市场需求的国内企业,需注意防晒产品使用的防晒剂是否已收录于非处方药(OTC)专论中。②同一防晒剂,INCI名称可能不同。例如乙基己基三嗪酮在中国和欧盟的INIC名称均为“Ethylhexyl triazone”,但在东盟为“Octyl triazone”。③欧盟禁用成分在中国仍作为防晒剂使用。例如,4-甲基苄亚基樟脑在欧盟属于禁用原料,但在中国仍作为防晒剂使用,最大安全浓度为4%。④防晒剂使用限制条件不同,例如,胡莫柳酯在欧盟的限用浓度为7.34%,并限制仅应用于“除推进剂喷雾产品外的面部产品”,但在美国为15%,中国和东盟为10%,且未限制应用的产品类型。不同国家或地区的部分防晒剂在化妆品使用时的最大允许浓度对应汇总梳理如下。从表中可以看出,目前我国的防晒剂清单与其他国家及地区有一定的差异。故企业应了解拟出口国家或地区相关法规,关注产品处罚通报案例,并对产品及时进行自查,在产品进入市场前做好合规,以减少由于产品不合规造成的产品召回、销毁等经济和品牌声誉损失。序号中文名称化妆品使用时的最大允许浓度中国欧盟美国东盟台湾地区14-甲基苄亚基樟脑4%禁用/4%4%2二苯酮-310%(a)面部产品、手部产品和唇部产品,不包括推进剂和泵喷雾产品:6%(b)身体产品包括推进剂和泵 喷产品:2.2%(c)其他产品:0.5%6%(夏威夷、弗罗里达州禁用于防晒产品)(a)面部产品、手部产品和唇部产品,不包括推进剂和泵喷雾产品:6%(b)身体产品包括推进剂和泵 喷产品:2.2%(c)其他产品:0.5%6%(作为保护剂用途,限量≤0.5%)3丁基甲氧基二苯甲酰基甲烷5%5%3%5%5%4甲氧基肉桂酸乙基己酯10%10%7.50%10%10%5胡莫柳酯10%7.34%(仅限除气雾剂产品外的面部产品)15%10%10%6奥克立林10%(以酸计)(a)气雾剂:9%(b)其他产品:10%10%(a)气雾剂:9%(b)其他产品:10%10%(以酸计)7苯基苯并咪唑磺酸及其钾、钠和三乙醇铵盐8%(以酸计)8%(以酸计)苯基苯并咪唑磺酸4%8%(以酸计)8%(以酸计)(表格来源:中贸合规中心)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制