当前位置: 仪器信息网 > 行业主题 > >

乳酸钾溶液水溶液

仪器信息网乳酸钾溶液水溶液专题为您提供2024年最新乳酸钾溶液水溶液价格报价、厂家品牌的相关信息, 包括乳酸钾溶液水溶液参数、型号等,不管是国产,还是进口品牌的乳酸钾溶液水溶液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乳酸钾溶液水溶液相关的耗材配件、试剂标物,还有乳酸钾溶液水溶液相关的最新资讯、资料,以及乳酸钾溶液水溶液相关的解决方案。

乳酸钾溶液水溶液相关的资讯

  • SPE应用文集004:从稀释水溶液中萃取和浓缩蛋白质
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《从稀释水溶液中萃取和浓缩蛋白质》(Extraction and Concentration of Protein from Dilute Aqueous Solution) 应用领域:生物/生物科技 目标分析物:牛血清白蛋白BSA 样品基质:水 萃取柱:BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 样品制备:配置20mL BSA溶液(1mg/1mL),以0.025M pH=7磷酸缓冲溶液为溶剂 小柱活化:加入10mL甲醇活化,5mL 0.5M pH=7磷酸盐缓冲溶液活化,6mL 0.025M pH=7磷酸盐缓冲溶液平衡,保持过程中小柱始终处于润湿状态 上样与清洗:关闭真空泵,加入5mL 0.025M pH=7磷酸盐缓冲溶液,装上75mL储液器,缓慢抽出20mL的样品,用4mL0.025M pH=7磷酸盐缓冲溶液淋洗,移去储液器 洗脱:用2 X 0.5mL 异丙醇:水:三氟乙酸 60:40:0.1,收集洗脱液 分析方法:UV 以上即为固相萃取步骤,相关产品信息如下: B7216-06 BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL B7120-00 75mL储液器及适配器 B3246-01 磷酸二氢钾, ' BAKER ANALYZED' ® B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B9095-03 异丙醇, ' BAKER ANALYZED' ® HPLC B9470-00 三氟乙酸, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_172268.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 我国科学家在水溶液电解质的锂离子电池研究方面取得重要进展
    在国家自然科学重点项目、杰出青年基金等资助下,复旦大学新能源研究院夏永姚教授课题组多年来一直从事锂离子嵌入化合物在水溶液电解质中特性的研究,近期在这一领域取得重要进展,最新研究成果发表在《Nature Chemistry》上(2010, 2,760-765)。   众所周知,相对于目前广泛用于摄像机、笔记本电脑、移动电话等移动通讯器件的有机电解质溶液锂离子电池,水溶液电解质的锂离子电池具有价格低廉,无环境污染,高安全性能等优点而倍受人们关注,但其循环性能差的问题一直未能解决。夏永姚研究组从理论和实验上证实,在水和氧气存在下,作为电池负极的电极材料会被氧气氧化是造成水系锂离子电池容量衰减的主要原因。他们通过消除氧(电池密封)和选择合适的电极材料,大幅提高了电池的循环性能。这种电池将来可望用于风力、太阳能发电等能量储存、智能电网峰谷调荷和短距离的电动公交车等。该研究成果发表后,得到包括Chemistry World,科技日报、科学时报等媒介的报道。
  • 科学家在水溶液环境中实现单个生物分子磁共振谱探测
    p   中国科学院院士、中国科学技术大学教授杜江峰领衔的研究团队运用量子技术首次在室温水溶液环境中探测到单个DNA分子的磁共振谱,从而向运用单分子磁共振研究生物分子在生理环境中的构像和分子间相互作用迈出了重要一步。该工作发表在2018年9月出版的《自然-方法》上[Nature Methods 15, 697–699 (2018)],并被选为五篇封面标题文章之一。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/617791fb-2bec-4aac-912d-c2facfea4a51.jpg" title=" 1.jpg" alt=" 1.jpg" / br/ span style=" font-size: 14px " strong 基于钻石传感器实现水溶液中的DNA分子探测 /strong /span /p p   磁共振技术能够在溶液环境准确无损地获取物质的组成和结构信息,是目前研究生物分子结构和动力学的最有效的工具之一。然而,传统的磁共振技术受限于探测灵敏度,其研究对象通常为数十亿分子的宏观体系,无法实现单分子的研究。杜江峰团队利用钻石中的氮-空位点缺陷作为量子传感器(以下简称“钻石传感器”),它在绿色激光和特定频率微波脉冲的调制下,形成对磁信号敏感的量子干涉仪,将微弱的磁信号放大为量子相位信号,并利用光学手段进行读出。同时,由于钻石传感器的尺寸在原子量级,可以实现纳米尺度的空间分辨能力。因此,钻石传感器可以实现单个分子探测,并能通过磁共振谱学解析其结构和动力学等信息。 /p p   杜江峰团队此前的研究已经表明,基于钻石传感器能够探测单个蛋白质分子的磁共振谱[Science 347, 1135–1138 (2015)],实现了单分子磁共振的首次突破。该实验中的蛋白质分子被生物胶固定在钻石表面。然而,水溶液环境是生物分子保持生物活性并进行生命活动所必须的环境,在水溶液环境中进行单分子的磁共振探测是研究其生物功能的必经之路。杜江峰团队与南加州大学教授覃智峰合作,以双链DNA分子作为探测对象,此DNA分子被放置在钻石表面并填充水溶液以保持其生理状态。首先,为了防止DNA分子在溶液中的扩散,该团队设计了一套化学反应流程,将DNA分子的一条链(下图红色虚线示意)一端通过氨基修饰,化学键合“拴”在钻石表面,这也保证了DNA分子在钻石表面的均匀分布 同时将一种常用的氮氧自由基顺磁标签标记到DNA的另一条链(下图蓝色实线示意),其可以在水溶液中与键合链自由地复合-解链。其次,得益于钻石微纳技术的发展,加工得到钻石纳米柱,同时改进微波操控技术,使得探测效率大幅提升,能够快速测得单分子磁共振谱,信号获取时间从小时量级缩短到数分钟。最终,该团队成功地获取了水溶液环境下单个DNA分子的磁共振谱,并通过谱分析得到其动力学和环境特征信息。通过谱线展宽和仿真计算得到该DNA分子自由基的运动特征时间信息 通过谱线超精细分裂大小得到该DNA分子所处的疏水性环境信息。 /p p   该工作为在水溶液环境中研究单个生物分子的结构和功能提供一种新的技术方法,是朝向细胞原位单分子研究迈出的重要一步。以此为基础,和扫描探针、梯度磁场等技术相结合,未来可将该技术应用于生命科学领域的单分子成像、结构解析和动力学检测,从单分子层面理解生物特性和生命功能,具有广泛的应用前景。审稿人评述该工作:“单分子技术是当代生命科学的发展至关重要的一项技术,实现单个DNA分子的探测及其动力学行为研究将引起相关领域科学家很大的兴趣”。 /p p   中科院微观磁共振重点实验室石发展、孔飞和赵鹏举为该论文并列第一作者,杜江峰和覃智峰为该文通讯作者。此项研究得到科技部、国家自然科学基金委、中科院和安徽省的资助。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/8766fc73-bfa5-40f0-a81f-a13f1f55aed4.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 551" height=" 621" style=" width: 551px height: 621px " / /p p style=" text-align: justify " span style=" font-size: 14px " strong 实验方案示意图。基底为钻石单晶,为提升光学性质,微纳加工得到圆柱形阵列,钻石传感器位于表面下方数纳米,DNA分子“拴”在圆柱端面上,并置于水溶液中。 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/349bdc77-0cbe-4552-8f10-12277b1fb637.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 551" height=" 555" style=" width: 551px height: 555px " / /p p style=" text-align: center " br/ span style=" font-size: 14px " strong 实验测得的单个DNA分子的磁共振谱,三条峰为氮氧自由基和氮核自旋的超精细耦合所致。 /strong /span br/ /p
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 车用尿素水溶液中的尿素含量测定解决方案 | 德国元素Elementar
    对于重型卡客车来说,由于尾气排放检测日益严格,使用车用尿素是达到国家规定排放标准的关键。而车用尿素的使用不仅净化车内尾气,而且可减少氮氧化物排放。其通过与尾气中的氮氧化物发生化学反应,将这些有害物质转化成无害的氮气和水。这不仅有助于优化发动机性能和降低燃料消耗,还能显著减少柴油消耗,降低成本。当尿素溶液不足时,车辆可能无法启动,因此保持尿素溶液充足是确保车辆正常行驶和环保达标的重要措施。车用尿素为32.5%的高纯尿素和67.5%的去离子水组成的高纯度透明液体。当车用尿素溶液中的尿素含量过高时,会形成结晶造成管路、喷嘴、尿素泵的堵塞。当车用尿素溶液中尿素含量过低时,又会影响氮氧化物的转化效率,无法实现有效转化,达不到环保要求。如何快速、简便测定车用尿素水溶液中的尿素含量显得尤为重要。依据GB/T 29518-2013 柴油发动机氮氧化物还原剂-尿素水溶液(AUS 32中附录A的方法),通过杜马斯定氮法来精确测定水溶液中的氮含量,再换算成尿素含量。德国元素Elementar 在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在全球的应用。德国元素Elementar rapid MAX N exceed与rapid N exceed杜马斯定氮仪均基于Dumas燃烧原理,通过热导检测器 (TCD) 测度氮含量。两种系统均可实现全自动的氮测定,可将单次分析所需的时间缩短至仅 3-4 分钟。且rapid MAX N exceed与rapid N exceed杜马斯定氮仪均满足GB/T 29518-2013 柴油发动机氮氧化物还原剂尿素水溶液(AUS 32中附录A的方法)要求。实验案例一,将尿素水溶液直接称重于不锈钢坩埚或锡囊中:二,自动化进样分析三,实验结果:表中为不同仪器10次测定结果展示。从结果可看出,德国元素Elementar rapid MAX N exceed 与 rapid N exceed 均具有高精准性,且不同分析的氮含量结果完全相同,在 99 % 置信区间的实验误差范围内与理论值完全一致。所有相对标准偏差均低于 0.5%。车用尿素的样品特点决定了测量基质为液体,N元素含量较高。德国元素Elementar 的rapid系列杜马斯氮分析仪在这个应用过程中兼顾了仪器的分析精准性、操作便捷性和使用经济性,能够最大程度上满足各方面的应用需求。rapid N exceed和rapid MAX N exceed两款杜马斯氮元素分析仪均满足标准要求,可快速、准确、便捷的实现车用尿素的质量控制。
  • 我国在两亲性分子水溶液太赫兹光谱研究获最新进展
    p & nbsp & nbsp & nbsp & nbsp 近日,中国科学院重庆绿色智能技术研究院太赫兹技术研究中心研究团队利用太赫兹光谱技术研究液体环境中两亲性化合物与水相互作用规律,阶段性研究成果以& quot Determination of Critical Micelle Concentrations of Surfactants by Terahertz Time-Domain Spectroscopy & quot 为题在《IEEE Transactions on Terahertz Science and Technology》期刊上发表(DOI: 10.1109/TTHZ.2016.2575450)。 /p p   研究团队以典型两亲性分子为研究对象,利用太赫兹光谱技术分析了表面活性剂分子从单体到胶束变化过程中分子水化层的变化规律:低于临界胶束浓度(CMC)时,溶液太赫兹吸收系数与浓度负相关 高于CMC,溶液太赫兹吸收系数与浓度正相关,并据此提出了一种利用太赫兹光谱技术无标记检测表面活性剂临界胶束浓度(CMC)的方法。在酸溶液环境中,H3O+的增多使得液体环境中水合网络增强而提高了溶液的吸收系数,离子型表面活性剂CMC降低而非离子型表面活性剂CMC升高表明不同两亲性分子与水分子相互作用具有差异。 /p p   生物分子与水相互作用的能级处于太赫兹波段,在此频率范围内表现出较强的吸收和谐振,太赫兹光谱包含其他电磁波段无法探测到的信息是理解生命活动基本物理化学过程的重要基础资料,利用太赫兹光谱获得生物分子信息成为了目前学术界的热点问题。脂类作为天然两亲性物质,是构成了细胞膜系统的主要物质,是所有细胞的重要做成部分,继续利用太赫兹光谱技术研究天然两亲性化合物将为深入理解细胞膜结构的动态变化规律提供理论基础。 /p p & nbsp & nbsp & nbsp & nbsp a href=" http://ieeexplore.ieee.org/xpl/login.jsp?reload=true& amp tp=& amp arnumber=7497010& amp url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7497010" target=" _blank" title=" " 文章链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/0852a761-68ae-4df9-9765-f3d38f33fbea.jpg" title=" W020160728625552060807.png" / /p p style=" text-align: center " 太赫兹光谱技术检测 /p
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • RapiGest SF试剂:促进溶液中蛋白酶解的有利工具
    Ying Qing Yu与Martin Gilar 美国马萨诸塞州米尔福德沃特世公司 简介 本应用纪要中,我们介绍了沃特世专利RapiGest&trade SF试剂的物理化学性质及其应用领域。2002年,我们首次推出RapiGest SF,这一创新产品是帮助酶消解的有利工具,可促进溶液中蛋白的消解,它能够改善样品制备过程中蛋白的溶解度。 RapiGest SF提高酶解速率与完全程度的机理详见图1。温和的蛋白变性可打开蛋白结构并暴露酶切位点,以供酶切。在RapiGest SF溶液中,酶对变性的耐受性优于普通蛋白,并能保持活性。在加入酶之前高温加热RapiGest SF溶液可使球蛋白更为完全变性,之后需将酶与样品一起进行37 ° C的孵育。 图1 蛋白底物在RapiGest SF溶液中变性􀉼 之后对蛋白酶切更为敏感 超过200多家行业内杂志引用了使用RapiGest SF进行样品溶解的案例,大部分为蛋白组学的应用。最近,许多制药实验室使用RapiGest SF用于蛋白药物的确证。因为酶消化的速度的提高并在LC、MS分析前极易清除,RapiGest SF已被多个应用领域广泛接受,其中包括高级序列研究的LC/UV/MS蛋白药物的肽图分析。 讨论 什么是RapiGest SF? RapiGest SF是酸性不稳定表面活性剂,在酸性条件下极易水解。1这种独特的性质,在需要的时候,可用于从溶液中清除表面活性剂。RapiGest SF的结构及其水解副产物见图2。酸性不稳定的性质可在pH2条件下,45分钟内达到完全降解。 该表面活性剂可降解为两个产物:dodeca-2-one和3-(2,3-二羟基丙基)丙磺酸钠。前者与水不能互溶,可通过离心清除。后者在水溶液中溶解度很高,而在反相LC模式下不保留。酶消解后的水溶液可直接进行HPLC、LC/MS或MALDI-TOF MS进行分析。 消解后的清除 样品分析前无需额外去清除表面活性剂(如透析)。在分析前,酶消解后通常经过酸(如甲酸、三氟乙酸(TFA)或盐酸(HCl))的酸化,降解RapiGest SF。建议降解条件pH &le 2。 胰蛋白酶消解的兼容性 胰蛋白酶是最常见的蛋白水解酶,可用于肽图分析和蛋白组学的应用。我们研究了在添加RapiGest SF的情况下胰蛋白酶的活性作用,并与文献中最常见的变性剂的作用做了对比。本检测基于胰蛋白酶诱导N-&alpha -苯甲酰-L-精氨酸乙基乙酯(BAEE)在50 mM重碳酸胺(pH 7.9)中的室温水解。胰蛋白酶活性的变化通过UV 253 nm下测量BAEE水解率进行计算。在选择的变性溶液中,胰蛋白酶活性与对照样品进行对比(非变性剂)。结果见于表1。 表1中的数据说明低浓度下(0.1%) RapiGest SF不抑制胰蛋白酶的活性。这与结构上类似的表面活性剂SDS不同,SDS是很强的变性剂,可会使胰蛋白酶失活。尿素、乙腈或盐酸胍也是胰蛋白酶消化的变性剂。但是乙腈是强洗脱剂会干扰消解样品进行反相LC分析。正如我们所知,尿素可使蛋白共价修饰,盐酸胍也和SDS一样可以使酶失活。 本实验说明蛋白酶的活性受到蛋白溶液中所用变性剂的影响。RapiGest SF在从低到高的浓度下均不改变酶活性,因此,最佳的蛋白消解条件是无需过量酶即可达到酶解的结果。 快速蛋白消解 对蛋白酶解存在抗性的蛋白使用RapiGest SF试剂,可在数分钟内消解完全。完全消解球蛋白、马肌红蛋白只需要5分钟内即可完成。该试剂辅助的消解结果与对照见图3。由于肌红蛋白是球蛋白,众所周知,若没有表面活性剂将难以消解。在对照反应中,与胰蛋白酶孵育9小时后只有少量的蛋白可以消化。使用了RapiGest SF试剂,总体的消解的效率显著提升。 在蛋白药物肽图中的序列覆盖范围更大 RapiGest SF在蛋白组学的样品前处理中广泛使用,是有效的蛋白溶解变性剂。最近越来越多的生物制药实验室在肽图分析中采用了RapiGest SF。一些发表的论文记录了使用RapiGest SF进行蛋白药物消解的优势。4,5经报导的RapiGest SF浓度范围为0.05 -1%,取决于蛋白疏水性与浓度。 我们发现浓度范围为0.05 -1%的RapiGest SF足以使各种大小的蛋白变性,高浓度RapiGest SF适合全细胞蛋白提取的实验。 单抗(mAbs)肽图分析一直以来都因为难以消解这些大疏水蛋白而难以实现。肽图分析的目的是确认蛋白序列并发现所有存在后翻译修饰(PTMs)的蛋白。图4举例说明了RapiGest SF辅助的人单抗消解的实例。样品制备与分析的参数以UPLC® 和四级杆Tof质谱分析的参数已列表作为指导。 图4显示实验中总序列覆盖率为98%。数据分析通过BiopharmaLynx&trade v.1.2软件得到。高序列覆盖率(98%)说明单抗完全消解。LC/MS分析中没有发现错误酶切的多肽或完整未被酶切的蛋白。剩下的2%未确认的序列为少数二个氨基酸的肽或单个氨基酸(R或K),而无法在反相柱上保留。 样品制备 人单抗样品(10 &mu L, 21 mg/mL)在含有0.1% (w/v) RapiGest SF 的50 &mu L 50 mM重碳酸铵中溶解。将2 &mu L 0.1 M的二流苏糖醇(DTT)加入样品,样品在50 ° C加热30分钟,加入4 &mu L 0.1 M的碘代乙酰胺,在样品冷却至室温后样品在黑暗中静至40分钟。 样品中加入8 &mu g胰蛋白酶(胰蛋白酶浓度= 1 &mu g/&mu L),样品在37 ° C孵育过夜。消解样品与1%甲酸与10%乙腈混合(1:1,v:v)。用Milli-Q水(Millipore)稀释至5 pmol/&mu L后进行LC/MS分析。 LC 条件 LC 系统 沃特世 ACQUITY UPLC® 系统 色谱柱 ACQUITY UPLC BEH 300 C18 肽分离专用柱, 2.1 x 100mm (P/N = 186003686) 柱温 40 ° C样品进样 2 &mu L (10 pmol) 溶液A 0.1% 甲酸水溶液 溶液B 0.1% 甲酸乙腈溶液 流速 200 &mu L/min 梯度 0-2分钟:2%B 2 &ndash 92分钟:2 -35% B 92 -102分钟:35 - 50% B 102.1 -105 分钟:90% B 105.1-110分钟:2% B MS条件 MS系统 沃特世SYNAPT&trade MS (V型) 毛细管电压 3.2 kV 源温度 120 ° C 去溶剂温度 350 ° C 去溶剂气 700 L/hr MS 扫描速率 1 秒/次 锁定质量通道 100 fmol/&mu L Glu-Fib多肽(m/z 785.8426, z = 2),流速20 &mu L/min 与其他的蛋白酶合用 我们测试了RapiGest SF与多种蛋白酶的适配性,如Asp-N, Lys-C与Glu-C。在酶解前使用RapiGest SF变性蛋白获得了有效的消解结果。 蛋白去糖基化的用途 RapiGest SF也用于测试其它酶,如PNGase F,该酶用于酶切糖蛋白N-连接的糖基。2图6说明了去糖基化鸡蛋卵清蛋白。在RapiGest SF介质中PNGase F消解2小时后观察到了完全的去糖基化反应。 结论  RapiGest SF促进了蛋白酶解的速度与完全程度,能够得到蛋白药物序列覆盖率很高的肽图分析。  RapiGest SF是适用于蛋白组学、糖蛋白与生物制药应用的领域  几乎无需消解后样品处理,简单样品酸化,足以从溶液中去除RapiGest SF。多种情况下LC/MS分析前只需简单稀释。  RapiGest SF简化了样品制备方法,可提高分析通量;使用该方法提高实验室工作效率并提高数据质量。 参考文献 1. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrom- etry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 2003 75: 6023-6028. 2. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC, A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun.Mass Spectrom. 2004 18: 711-715. 3. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometry characterization of N-linked glycans. Rapid Commun. Mass Spectrom. 2005 19: 2331-2336. 4. Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. A platform for high- throughtput molecular characterization of recombinant monoclonal antibodies, J. Chrom. B. 2005 826: 177-187. 5. Huang HZ, NicholsA, Liu DJ. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest SF assisted digestion. Anal. Chem. 2009 81 (4): 1686-1692.
  • 标准溶液与溶液的区别?
    什么是溶液,什么是标准溶液?事实上有很多人经常将两者混淆,常规来说,溶液指的是多种或最少两种物质组成的混合物,而标准溶液则是具有准确已知浓度的试剂溶液,但标准溶液是属溶液,虽然两者有着明显的区别。下面小编来给大家详细介绍一下标准溶液与溶液的区别。  标准溶液与溶液的区别:  溶液是由至少两种物质组成的均一、稳定的混合物,被分散的物质(溶质)以分子或更小的质点分散于另一物质(溶剂)中。物质在常温时有固体、液体和气体三种状态。  溶液的均一性包含密度,组成,性质都一样,除此外,溶液还分为饱和溶液和不饱和溶液。  标准溶液是容量分析中常用的一种滴定溶液,靠它测得待测物的含量。靠它求得未知溶液的浓度。在其他的分析方法中用标准溶液绘制工作曲线或作计算标准。  有些标准溶液由于很不稳定,以至难以配制和使用,因此是不能利用的。  这样的标准溶液包括硫化氢(H2S)、二氧-化氯(ClO2)、溶解氧(DO)和臭氧(O3)。液-氯标准溶液只能配制成高浓度溶液,所以必须加入高纯水进行稀释,并且使用不会消耗液-氯的玻璃器皿。  远慕专注标准物质研发与产,供应标准物质,标准品,标准溶液,对照品,标准样品,滴定标液,单标,混标定制服务。
  • HT4000A自动化标曲溶液的配制
    不久前小编给大家介绍了月旭科技新引进的意大利HTA公司的HT4000A液相色谱样品全自动处理器,有小伙伴想让小编分享一些具体的应用。没问题,从本期开始,小编会陆续安排HT4000A的应用场景!HT4000A液相色谱样品全自动处理器先来看看HT4000A如何自动化标曲溶液的配制过程~标曲溶液配置及自动进样以药典中硫酸卡那霉素的含量测定为例,方法要求将卡那霉素对照品分别用水稀释至每1mL约含卡那霉素0.10mg、0.15mg和0.20mg的溶液,然后取上述溶液20μL分别注入到液相色谱仪中。01准备好1.5mg/mL的卡那霉素标样母液、超纯水和样品瓶;02设置好稀释及进样方法(卡那霉素标样母液吸取量分别设为0.1mL、0.15mL和0.2mL,超纯水吸取量分别设为1.4mL、1.35mL和1.3mL,进样量设为20μL);03仪器自动将对应的样品瓶移动到涡旋模块,然后进行卡那霉素标样母液和超纯水的抽吸添加,旋涡混合后将样品瓶放回原位即完成标曲溶液的配置;04自动进样,得到标曲谱图。
  • 英国 B+S 全新推出车用尿素溶液折光仪,德祥
    英国 B+S 全新推出车用尿素溶液折光仪,德祥 英国Bellingham+Stanley (B+S) 公司是全球专业从事折光仪和旋光仪研制和生产的百年老厂,其生产的各种折光仪和旋光仪质量精良,享誉全球。 当前,我国的机动车保有量已逼近2亿辆,这些机动车排放的尾气所含的主要污染物有氮氧化物、碳氢化合物和碳烟颗粒物,对大气环境和人体健康构成了巨大危害,成为破坏国内城市空气质量的&ldquo 头号杀手&rdquo 。随着机动车尾气排放&ldquo 国Ⅳ&rdquo 标准已在京、沪等部分城市开始实施,&ldquo 国Ⅴ&rdquo 标准也已提上日程,意味着国内车辆尾气的排放控制必须采用更为先进的技术。目前,SCR(选择性氧化还原)技术是最适合重型卡车、客车的&ldquo 国Ⅳ&rdquo 和&ldquo 国Ⅴ&rdquo 排放解决方案。而这项技术必须利用尿素溶液(又称为AUS-32和AdBlue)作为催化剂,对尾气中的氮氧化物进行处理,生成无害的氮气和水。因此,合格的车用尿素溶液成了重型卡车及客车要想达到&ldquo 国Ⅳ&rdquo 和&ldquo 国Ⅴ&rdquo 排放标准的必备产品。 顺应这一需求,B+S隆重推出专用于车用尿素水溶液的折光仪:RFM990-AUS32 台式数显折光仪 和 PRH-DEF32 在线过程折光仪。RFM990-AUS32 和 PRH-DEF32是目前市场上*遵从ISO22241-2规程中关于折光系数和温度测量/控制说明的折光仪,帮助您的产品达到国内外的车用尿素水溶液质量控制标准 &mdash &mdash ISO 22241-1、DIN 70070、JIS K 2247-1、DB11/552-2008等。 RFM990-AUS32台式数显折光仪: 主要用于质量控制和研发实验室。 þ 特有特有尿素标度和尿素温度补偿,您可以直接从仪器上读数得到尿素溶液的浓度,并可在室温下完成测量并得到20℃下的值; þ 内置帕尔贴(Peltier)温度控制装置,精确、稳定控制样品温度; þ 超高精度,达到小数点第5位。 PRH-DEF32 在线过程折光仪: 用于生产线上实时在线监控、连续测量。 þ 温度补偿至20℃; þ 远程控制; þ 不锈钢材质,密封符合IP66标准; þ 超高精度,达到小数点第5位。
  • 号外!坛墨质检新品-水质色度标准溶液 问世了!
    产品名称:水质色度标准溶液产品编号:BW20030-500-C-20技术指标:500度包装规格:20mL(安瓿瓶)应用领域:水质检测中色度指标监测相关国标:GB 11903-89及《水和废水监测分析方法》一 概念普及 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。水的表观颜色,指由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。而水的真实颜色,是指仅由溶解物质产生的颜色,用经0.45μm滤膜过滤器过滤的样品测定。没听过的,自行脑补。 色度的标准单位是度:在每升溶液中含有2mg六水合氯化钴(Ⅱ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。二 产品介绍1.名称及配制 本产品《色度标准溶液》,依据国标GB 11903-89及《水和废水监测分析方法》相关指标,购买昂贵的含铂原料,配制成Pt-Co标准溶液,以供水质监测市场需求。2.应用范围 适用于黄色色调的天然水、饮用水、受工业废水污染的地表水以及纺织、印刷、造纸、食品、有机合成工业的废水等的测定,以满足水质监测领域的需求。不适用于非黄色的其他颜色种类的测定。3.产品特点 本产品为深黄色液体,用20mL安瓿瓶包装,推荐避光冷藏储存,配制所用原料均为溶解性物质,故溶液颜色稳定,透明,为均相体系,均匀性可靠,用户可放心使用。三 测试结果1.仪器与材料 哈希DR3900分光光度计;20mL比色皿;2.测试结果 采用分光光度法测定,使用计量院的色度标准溶液(GBW(E)080345)为参考基准,测试结果相对偏差均在2%以下或1度以下,表明此产品的色度值准确可靠。四 探讨延伸 分光光度法测水质色度准确度高,灵敏度、精密度好,最低适宜测试度数为2.2度,最高测试度数可达70度以上,可以避免因分析人员的视觉差异而带来的误差。用户也可根据情况借鉴引用。 传统的铂钴标准比色法和稀释倍数法,肉眼凡胎直接观察,易造成较大误差,而且不同人员不同环境下观察,误差大小也会有所不同。相对而言,使用仪器比色可以大幅度提高色度测定的灵敏度准确度。 但是,分光光度法测定色度值毕竟只测试单点波长的吸光度,从而计算出色度值,万不能代替人眼的可见光范围,所以国标方法适用范围会更广。如果水样浑浊,或者水样显现其他颜色种类,则不能使用此种方法定值。 此外,笔者查阅大量资料发现,某些学者老师采用紫外可见分光光度计,在350~600nm的波长范围内求出峰面积,然后以峰面积对色度绘制标准曲线,从而得出色度值。据文献介绍,此种方法比最大吸收波长法更为准确,有兴趣的用户也可以试验对比。在分析检测方法中,可使用重铬酸钾来代替氯铂酸钾配制标准色列,但此溶液不宜久存,具体见《水和废水监测分析方法》。故在此寻求讨论学习,望有志之士、有识之师留言交流。请赐教!
  • 如何使用反向移液技术更精准的移取蛋白溶液
    每支移液器的液程通常都用纯水和正向移液技术校准过。因此我们推荐使用正向移液技术移取水性溶液,如缓冲液,稀释酸或碱。当移取不同于水的液体时,由于具有不同的液体特性,其移液量可能偏离所选的量程。比如一些生物溶液的移液,可能会在移液器尖端或试管中产生气泡或泡沫,这将使移液量产生偏差。在这种情况下,我们推荐使用反向移液技术移取高粘度或者容易产生泡沫的液体。反向移液技术减少了喷溅,泡沫和气泡形成。这种方法尤其适用于移取小体积的液体。 下面先介绍一下正向移液和反向移液技术的操作。 1.将按钮压至第一停点。 2.将吸头浸入液面下1cm处,缓慢释放按钮使其滑回原位。将吸头从液体中移出,接触容器边缘除去多余的液体。 3.排液时,吸头紧贴容器壁先轻按按钮至第一停点,略作停顿后, 将按钮按至第二停点(这个操作会将吸头内的液体彻底排尽),将吸头从容器中沿容器壁移出。 4.松开按钮至准备位置。 1.将按钮压至第二停点。 2.将吸头浸入液面1cm处,缓慢释放按钮使其滑回原位。这将时液体充满吸头。将吸头从液体中取 出,接触容器边缘去掉多余液体。 3.放液到接收容器时平稳地轻按按钮至第一停点。保持在这个位置。一些液体会残留在吸头中不能被放出。 4.残留在吸头内的液体能够被吹回原溶剂中或者同吸头一起丢弃。 5.松开按钮到准备位置。 选择合适的移液器对于微量移液的精准性也很重要,Thermo Scientific F系列移液器的超强吹出设计则满足了微量移液对精准性的需求。低于50&mu l液程的Thermo F系列移液器均采用双活塞设计,与其它普通移液器相比,其空气吹出能力增大50%-60%,因此在小体积的液体吹出时会非常干净完全,大大提高了移液的精准性。 我们使用Thermo Scientific Finnpipette F2 1-10 &mu l移液器,配合Thermo Scientific Finntip Flex 10吸头,同时分别使用正向移液和反向移液,移取1%牛血清白蛋白(BSA,Sigma A7030)进行移液精准性测试。 图1 表明当使用反向移液技术时,移液量的变化比使用正向移液技术处于更狭窄的一个范围。 图2 表明使用两种移液方式的不精确度。不精确度是估量移液的重复性的。反向移液技术可以使不精确度相对于正向移液技术降低50%。 这是因为,BSA溶液含有易被疏水移液器吸头壁吸附的疏水成分。当使用正向移液技术时,每次移液后少量的液体易残留在吸头中。这种趋势会增加吹出液体体积之间的偏差,因为当重复移液时吸头中累积的残余液体可能增加下一次移液的移液量。而反向移液技术中有额外的液体被吸入吸头中,这些额外的液体作用似一个蓄水池它使连续移液的移液量均等。这个蓄水池也能阻止空气在吹出液体的最后从吸头口进入,这样可以降低液体起泡的可能性。这使反向移液技术在移取小液量液体时尤其有用。由此可见,选择Thermo Scientific F2移液器,同时配合反向移液技术,可较好的提高移取蛋白溶液的精确度和重复性。 这是个移液器的王国,每个人都能找到最适合自己的移液器。这是一个富于创新的品牌,传承40年移液器的深厚底蕴。&ldquo 先锋源于创新,全新精准体验&rdquo 是赛默飞世尔科技移液器的真实写照。Thermo Scientific Finnpipette的历史可追溯到1971年,凭借着以人为本的设计理念,坚持不断创新,缔造了许许多多世界&ldquo 第一&rdquo 的记录。我们推出了全球第一支连续可调微量移液器、第一支多道移液器、第一支可整支高压消毒的移液器、第一支彩色标记移液器。Finnpipette特别重视客户反馈,不断努力改善产品。我们始终追求提高性能、精准性和客户满意度。更多Thermo Scientific移液解决方案请查看:Thermo移液器。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 稀释溶液的SAXS测量
    对溶解酵素溶液进行SAXS测试,可计算其回转半径(Rg) 和粒子间距离分布函数(PDDF)。 介绍 小角X射线散射(SAXS)是目前用来研究生物体系和更具体蛋白质溶液的众所周知的技术。SAXS能够测定大分子的形貌结构 ,即通过对所研究的蛋白质进行包膜重建。采集标准溶菌酶蛋白数据,来定义其Rg 和 PDDF。 测量&结果 利用Xenocs毛细管流动样品池测量浓度分别为1.5、3.0 和 5.0 mg/ml样品溶液,缓冲液为40 mM醋酸和50mM pH 4.0的NaCl。 表1. 溶解酵素的回转半径取决于浓度及曝光时间。 利用PRIMUS1软件计算得到结构参数Rg。表1记录了不同曝光时间下得到的各浓度样品的数据。数据与同步辐射得到的Rg = 1.43 nm2高度一致。短短10分钟的曝光时间就足以确定这些基本的结构参数。 PRDF p(r)是使用GNOM1软件计算得到。从图1中可以看到,不同浓度下得到的曲线重叠,这证明了低浓度样品测试可以采集到一致的数据。图1. 浓度为1.5, 3.0和5.0 mg/ml样品的PDDF。曝光时间为30分钟。图2. 浓度为5mg/ml样品的PDDF。曝光时间为10分钟和30分钟。 图2显示了浓度为5mg/ml时两种不同曝光时间的比较结果。这些曲线基本重合,说明了10min的曝光时间足以提供相关数据。 深入研究 Nano-inXider完全集成了Xenocs纯净光技术,可以对高度稀释体系进行精确的生物大分子研究。此外,Xenocs低噪音流动样品池的使用降低了容器散射,进一步推动了BioSAXS在实验室中测量的极限。
  • 碱溶液提取-火焰法测定土壤中的六价铬
    土壤中铬通常以三价铬和六价铬的形式存在,六价铬有剧毒,是一种被公认的致癌物。因此,掌握土壤中的六价铬污染状况势在必行。为贯彻《中华人民共和国环境保护法》和《中华人民共和国土壤污染防治法》,规范土壤和沉积物中六价铬的测定方法,中华人民共和国生态环境部于19年12月发布了HJ 1082-2019.土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法。 本文参考HJ 1082-2019.的方法,使用日立原子吸收分光光度计ZA3000,测定土壤中的六价铬。土壤的碱溶液提取法碱性提取液 :分别称取30 g碳酸钠和20 g氢氧化钠,溶解于纯水中,并定容至1 L。(pH>11.5)磷酸氢二钾?磷酸二氢钾缓冲液 : 分别称取87.1 g磷酸氢二钾和68.0 g磷酸二氢钾,溶解于纯水中,并定容至1 L。■ 操作步骤 通过碱溶液提取法,可以仅提取土壤中的六价铬。土壤碱提取液中的六价铬分析(火焰法)通过碱溶液提取法提取5.00 g样品,定容至100mL,测定出的检出限为0.5mg/kg。使用高盐燃烧头。■测定条件 ■测定结果 对土壤1和土壤2样品进行了测定,测得土壤1中含六价铬的量微1.80±0.04,土壤2并未检测到六价铬。分别对两个样品进行1mg/LCr加标实验,土壤1和土壤2回收率分别为99%和101%,证明实验结果准确可靠。 综上所述,日立原子吸收分光光度计ZA3000采用偏振塞曼校正法,即使对含盐分高的土壤分解液样品,也可以不受共存物质的背景吸收干扰,高精度分析土壤中的六价铬。
  • 如何测量高浓度溶液的荧光光谱?
    1. 前言荧光分析法可用于物质的定量和定性分析,而且灵敏度高,对于稀溶液来说,荧光强度和样品浓度成线性关系。那么如何准确测量高浓度的溶液样品呢?图1和图2分别是使用10mm矩形样品池+标准样品池支架和10mm矩形样品池+固体样品支架的测定示意图。图1 10mm矩形样品池+标准样品池支架图2 10mm矩形样品池+固体样品支架从图中可以看出,使用图1的方式测量高浓度样品时,激发光无法到达样品内部,并且在液体表面更容易产生荧光,这种现象被称为自吸收。由于样品本身对荧光的吸收,造成更短波长处的荧光消失。如果稀释样品不合适,则需要选用图2的方式测量高浓度样品,通过使用固体样品支架,捕捉样品表面的荧光。2. 应用实例-橄榄油的三维荧光光谱在此实验中,我们测量了市售橄榄油和初榨橄榄油的三维荧光光谱,并比较了荧光强度。样品:不同浓度的橄榄油测量附件:固体样品支架 测量结果:四种样品的三维荧光光谱图3 品牌A橄榄油的三维荧光光谱图4 品牌A初榨橄榄油的三维荧光光谱图5 品牌B橄榄油的三维荧光光谱图6 品牌B初榨橄榄油的三维荧光光谱使用日立荧光分光光度计F-7100以60000nm/min的扫描速度,获得了多个样品的高信噪比光谱。在所有测试的橄榄油三维荧光光谱中,在两个区域(i)、(ii)处观察到荧光,计算(ii)/(i)的荧光强度比,可以看出,两个品牌的初榨橄榄油与橄榄油相比,初榨橄榄油的强度比更高。3. 总结使用荧光分光光度计测量高浓度样品溶液时,注意样品自吸收对荧光光谱产生的影响。日立荧光分光光度计搭配固体样品支架,以高通量测量了高浓度橄榄油的三维荧光光谱,测量结果准确。
  • 日立UH5700 | 色素溶液的色度分析
    1. 前言色度分析传统上使用目视比色法,通过人眼比对标准物的颜色来确定,具有较大的主观性。紫外可见近红外分光光度计UH5700中的操作软件UV Solutions Plus标配峰值检测、半峰宽计算和四则运算功能。同时,通过UV Solutions Plus的选配程序包,可以直接进行色度计算。 此次实验,使用UH5700测定5个色素样品的吸收光谱,并依据日本标准JIS Z8781-3等计算色度。2. 应用数据紫外可见近红外分光光度计UH5700的选配程序包可以实现色度计算,包括三刺激值,XYZ表色系统、L*a*b*表色系统、Hunter Lab表色系统、L*u*v表色系统、黄变指数、色差等。图1 紫外可见近红外分光光度计UH5700以甲苯溶液为参比溶液,使用UH5700测定色素溶液的吸收光谱如下图所示。图2 色素溶液的吸收光谱利用 UV Solutions Plus 选配程序包,按照日本产业标准(JIS Z 8781-3:2016)中规定的CIE三刺激值,计算360~830 nm波长的色度。xy色度图如下所示。图3 五种色素溶液在XYZ表色系统中的色度图图中的曲线为光谱曲线,曲线上的每一点为单色波长,曲线中所包围的部分,其中任何一点即对应的颜色。如五种色素溶液在色度图中的位置如图所示。4号色素溶液和5号色素溶液的色调接近。 另外,通过在选配程序包中选择色度计算的波长范围和计算方法,能够同时计算多个样品的色度,并以表格一览显示。表1 色素溶液的色度计算结果3. 结论使用日立台式紫外可见近红外分光光度计UH5700可以根据不同的标准进行各种颜色计算,确保结果的准确性,助力科研人员定量分析物质的色度值和色差。除色度分析之外,UH5700的丰富附件还可满足液体样品的连续和微量分析,以及固体样品的透过率和反射率测定。
  • 合肥研究院利用LIBS-电化学方法实现溶液中Cr(VI)的水下检测
    p   近期,中国科学院合肥物质科学研究院智能机械研究所研究员黄行九和安徽光学精密机械研究所研究员赵南京从电化学、激光诱导击穿光谱(LIBS)检测水溶液中Cr(VI)存在的问题出发,通过将电化学方法与激光诱导击穿光谱(LIBS)联用并结合微区液体排空装置实现对水中微污染物Cr(VI)的原位水下检测。该工作在利用光谱-电化学方法联用实现水下原位重金属离子的准确检测方面具有重要的科学意义,相关研究成果已发表在美国化学会《分析化学》上(Analytical Chemistry 2017, DOI:10.1021/acs.analchem.7b00629)。 /p p   激光诱导击穿光谱(LIBS)作为一种元素分析方法已被用于环境样品中重金属离子的检测研究。但LIBS直接检测液体样品时往往伴随着溶液对激光能量和等离子体信号的吸收,对激光的散射与折射等现象,致使其检测灵敏度低、检测限较高。为克服以上问题,常需通过富集方式将溶液样品中的待测物转移到固体基底上,而后在空气环境中进行LIBS检测。但这种样品预处理和检测分开进行的分析方式可能会带来样品成分的变化,从而影响检测的准确性。 /p p   研究人员将微区液体排空装置、电吸附富集方法与传统LIBS结合实现溶液中Cr(VI)的原位水下检测。为了克服LIBS检测水样品时存在的一系列问题,研究者研发了微区液体排空装置,其工作原理为:当系统采集LIBS信号时,通过引入气流使得仪器的激光传输通道和等离子体激发与收集腔内的溶液排出,以在这两个区域及电极表面形成短暂的空气环境,借此避免激光传输过程中能量的损耗、等离子体激化点处的溶液溅射等来自周围水环境的干扰问题,提高光谱信号的稳定性。为了改善LIBS的检测下限并提高检测的选择性,电吸附方法被用于富集溶液中Cr(VI),壳聚糖修饰的石墨烯作为吸附剂,同时电吸附富集过程中形成的正电场避免了来自共存阳离子的干扰。不仅如此,该原位水下LIBS体系在真实水样品环境中Cr(VI)也表现出较好的检测性能。该研究成果还可以扩展到原位定量检测水环境中其他带电离子污染物方面。 /p p   该研究工作得到了国家重大科学研究计划项目、国家自然科学基金和中科院创新交叉团队等项目的支持。 /p p    a title=" " href=" http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b00629" target=" _blank" 文章链接 /a /p p style=" text-align: center " img title=" W020170505330906105809.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/8efe9116-7d60-49fe-beb2-2196747ea515.jpg" / p style=" text-align: center " 微区液体排空装置辅助原位水下电吸附-LIBS体系的实验装置图。(a)原位光谱电化学LIBS设备原理图 微区液体排空装置设备的分解图(b)和剖面图(c) /p p /p p /p /p
  • 标准品标准溶液配制过程中常见问题汇总
    标准溶液配制常见问题 1、能否直接将溶剂加入标准品的瓶子中进行溶解,再转移到容量瓶中定容?不能。一般除非特别指明,所有标准品厂商给出的产品质量和体积都不是精确数值,比如10mg的标准品,其瓶中的产品重量可能大于10mg,如10.5mg或11mg。如果产品的重量为精确数值,厂家一般会特别注明。 2、溶剂选择:根据已有的方法或者物质的相关理化性质选择合适溶剂。不适当的溶剂可能造成无法溶解或者产品降解。 3、称量方法: 请根据您需要称量的重量和容许误差选择合适的天平。如使用十万分之一的天平,建议称量值不小于10mg。在购买产品时也请注意产品的重量能否满足您的需求。 一般采用增量法或减量法进行称量,以下是一些建议供您参考:a、称量前:建议冷冻或者冷藏的产品先放置到室温,并将产品直立放置一段时间,使产品全部集中至底部,便于取用。尤其是粘稠状物质,可以倾斜至与竖直方向呈45度,使产品集中在瓶底边缘。如果担心瓶盖上有粘附,可以在未打开瓶盖前甩动瓶身,使产品集中至瓶底。 b、粉末或晶体:建议采用增量法称量,准备合适的干燥容器,归零后将产品倾倒在容器内,得出容器中用于配制标准溶液的物质重量。 c、粘稠状或液体:建议采用减量法称量,先称量原产品连瓶一起的重量,再用适当器具移取所需样品至配制容器中,称量移取后的产品连瓶重量,其差值为实际用于配制标准溶液的重量。 d、其他如果瓶盖上粘有物质,可以在减量法称量时连瓶盖一起称量,移取产品时注意使用干燥的器具。 4、溶液配制: 标准品和溶剂在配制过程中产生放热或吸热现象时进行定容,未等标准溶液冷却到室温,会引起溶液体积偏差,使所配溶液浓度出现误差。 5、配制标准溶液时,容量瓶能否溶解固体物质? 不能。固体标准品应先称量在合适的烧杯中进行溶解,再通过玻璃棒引流至容量瓶中。 6、容量品能否存放配制好的标准溶液? 不能。容量瓶是量器不是容器,应选择合适的试剂瓶存放配制好的标准溶液。
  • 质谱技术进展:低温CE-MS应用于溶液内标记氢氘交换质谱
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry1,文章的通讯作者为乌普萨拉大学的Erik T. Jansson博士。  氢氘交换质谱(HDX-MS)适用于研究蛋白质在溶液中的动力学和相互作用,其能够快速分析非变性蛋白中位于蛋白表面的氨基酸序列,广泛应用于蛋白动态表位、活性位点的表征。HDX-MS平台通过低温UPLC分离提供自动化、在线的样品处理和分析。目前,HDX-MS装置的工作流程主要基于Peltier冷却的超高效液相色谱(UPLC)模块的LC-MS方法,但该系统价格昂贵,成本较高,并且在低温条件下,流动相粘度增加导致高背压(可达-20,000 psi),降低了LC的分离效率。而毛细管电泳(CE)在HDX领域有着更好的应用潜力。CE是一种成熟的分离多种类型分子的方法,在蛋白质组学研究中具有独特的价值。CE基于分析物在电场中的不同迁移率进行分离,分离速度取决于分析物的尺寸和电荷。20世纪90年代初,CE-MS开始应用于肽段水平的蛋白质和蛋白质复合物的分析。自此,CE-MS在多肽和蛋白异质体的检测中就显示出比反相LC-MS高10~100倍的灵敏度。近年来,HDX-MS领域的研究人员也聚焦于探究CE用于HDX-MS工作中的潜在优势。本文利用熔融硅毛细管电泳在零摄氏度下完成了氘代肽段和蛋白的淬灭、酶切和分离,该平台具有较好的成本效益,易于装配于任何MS。  CE装置的主要配件包括丙烯酸气密匣(图1A)、毛细管液相分离装置(图1C)和P-727聚醚醚酮三通组件(图1D)。丙烯酸气密匣用于接收N2,内部放有一个不锈钢小瓶装纳氘代背景电解液,能够允许高电压传导到分离毛细管。P-727聚醚醚酮三通组件联通高压电源和N2源,提供分离电压和N2,在毛细管出口产生离子。  图1.Peltier冷却CE外壳+进样槽的结构。(A) 丙烯酸气密匣。(B) Peltier冷却单元所粘附的铝壳体的截面。(C) 毛细管液相分离装置。(D) 同轴三通阀nano电喷雾针。  完成该毛细管平台(图1)的加工和组装后,作者评估了其性能,并将其与先前在微芯片电泳装置上发表的报道进行了比较。首先是峰值容量的评估。使用血管紧张素II(ATII)和甲硫啡肽(ME)作为分离标记的淬灭肽标准品,在0 ℃下,以1 % FA、25% ACN (BFS毛细管)和10% HAc(LPA毛细管)组成的氘代背景电解液(BGE)计算峰容量。与BFS毛细管相比,LPA毛细管除了峰容量值增加外,其序列覆盖率也明显增加。作者比较了0 ℃ CE到0 ℃ LC和微芯片电泳的峰容量值。结果显示,CE的上峰容量虽小于微芯片电泳方法,但序列覆盖率更高。而与LC相比,CE的峰值容量大大提高。  氘质子在淬灭时和分析时中的回交(BE)也是HDX实验重点考察的因素之一。作者使用缓激肽(BK)、ATII和ME作为肽标准品对BE进行了评估。在0 ℃、20 kV的条件下对BFS毛细管和LPA毛细管分别进行测试。结果表明,ATII在BFS和LPA毛细血管上的BE分别为20 %和34 %。ATII在LPA毛细管上的BE值与已报道的商业和实验室改装的UPLC平台的数据(28~36 %)相似,而在BFS毛细管上则接近直接进样完全氘代标准品达到的BE水平。此外,由于注入到毛细管中的样品量与LC所使用的样品量相比很低,在检测的质谱中没有出现任何残留的迹象。  作者对溶液中牛血红蛋白(Hb)进行了HDX,随后又进行了淬灭、胃蛋白酶酶切、低温毛细管电泳分离与质谱(MS)检测。图2显示了根据Kyte-Doolittle疏水性指数选择的6个肽段在不同分离条件下相应的电泳图谱和氘代速率。从图中可以看出,LPA毛细管上分离的肽段峰形更对称,信号强度比BFS毛细管上高一个数量级左右。与BFS毛细管相比,LPA涂层的毛细管整体的氘标记保留绝对值较低,但氘代速率没有检测到差异。虽然BFS毛细管迁移时间更快,但由于BFS毛细管在样品进样之间需要更多的冲洗步骤,因此分析时间比使用LPA毛细管要长。  图2.强度归一化的提取离子电泳图谱,显示了BFS和LPA毛细血管之间迁移时间的差异,以及标记Hb的消化性中的6个代表性肽的HDX动力学图。橙色的迹线显示了使用BFS毛细管分离的结果,紫色的迹线显示了使用LPA涂层毛细管分离的结果。肽段序列的注释及其对应的Kyte-Doolittle疏水性指数显示在右方。(左)在500 s标记时间点显示了代表性的峰形和迁移时间。(右)BFS毛细管中的氘代保留更高。误差棒表示一个标准差,每个时间点n = 3。有些多肽在所有孵育时间内只存在于LPA涂层中,因此上述六个面板其中的两个面板没有在BFS毛细管中的痕迹。α 136 - 141在BFS毛细管上分离的特定样品在500 s时间点显示,但在以后的时间点没有足够的质量,从最终的数据集中省略,因此HDX动力学图不包括该肽段。β 35 - 40没有被检测到,也未被包括在HDX动力学图中。  最后,本文研究了HDX CE-MS平台在表征结构相关信息方面的作用。作者比较了非变性条件下的Hb样品与用6 M尿素置于变性条件下的Hb样品的相对氘代值。研究发现,在非变性状态下更容易受到HDX保护的位点与Hb亚基的相互作用位点相吻合。具体来说,α-Hb上的R32-Y43和L92-D127以及β- Hb上的R29-E42和D98-Q130与这两个单体相互结合的位置相吻合。数据显示(图3),与局部区域的尿素暴露状态相比,Hb的非变性状态对HDX的敏感度降低。这一发现验证了该方法可作为结构蛋白质组学研究的潜在工具——能够表征分子结合和构象动力学,如蛋白质-配体相互作用中遇到的问题。  图3. Hb的HDX数据在PDB 1FSX上的映射。在非变性条件下用D2O标记的Hb与用6 M尿素变性后标记的Hb进行比较。颜色刻度表示50,000 s氘掺入后,天然/尿素D吸收量的比值。  总的来说,本研究提供了低温CE - MS应用于溶液内标记HDX的理论证明。尽管BFS毛细管提供了快速的肽段分离和标记肽段的最小氘损失,但研究结果表明LPA涂层的毛细管在HDX CE - MS中更有优势。有很多途径能够实现该平台的进一步优化,包括但不限于BGE优化(pH、有机质含量、浓度)、浓缩/脱盐步骤、固定化/嵌入式蛋白酶消化、升级Peltier元件以实现更低温的分离、集成无鞘电喷雾界面、交替毛细管涂层和评估更长或更短的毛细管。进一步研究蛋白质化学中常见的盐和溶质分离的耐受性也将是未来优化的一个重点。  撰稿:陈凤平  编辑:李惠琳,罗宇翔  文章引用:Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry  参考文献  1. Aerts, J. T. Andren, P. E. Jansson, E. T., Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Anal. Chem. 2022.
  • 无机溶液标准物质是否需要前处理?
    问题:无机溶液标准物质是否需要前处理?解答:部分无机标准溶液需要前处理:1.标准物质都是匹配国标使用的,使用时需要完全按照国标方法操作,保证标准物质的处理方法和样品相同;2.特别注意砷标准溶液用原子荧光法检测时必选按照国标方法处理后才能使用,标准物质证书也有明确备注;3.总氰化物需要按照国标方法操作,蒸馏后使用;4.浊度标准溶液使用前必须充分混匀,保准溶液均匀后使用;5.有些客户将高浓度化学需氧量标样冷藏后会有晶体析出,属于正常情况,试用前将溶液恢复室温后摇晃复溶正常使用。文章来源:国家标准物质中心
  • 上海兰博发布Venus重量法溶液配制仪新品
    ◆消除人为误差,比传统容量瓶方法更加准确,提升工作效率,数据可以溯源。◆自动与梅特勒、赛多利斯等品牌天平联机,读取数据,数据信息自动保存到数据库中。◆自动加液,根据目标浓度,自动添加溶液,自动停止,自动记录保存数据。◆智能化软件,在称量固体粉末或者母液过程中,实时提示稀释液体积,并过载保护。◆具有常规溶液密度库、质量数信息库、配液人信息库、历史记录数据库等◆标签自动打印,配液完成自动打印试剂信息,如配液人、时间、保质期、浓度、名称等。为什么选择重量法配液前言实验室经常使用移液管、移液器等设备定量添加、转移一定体积的溶剂,使用容量瓶、量筒、传感器定位等方法定容一定体积的溶液,这些传统方法通常用于样品前处理过程中和标准溶液准备中。在这些化学方法的操作过程中,通常对实验室人员的要求比较高,需要规范化的GMP/GLP,严格培训后才能上岗,即便如此,操作规范的严格执行也是实验室管理者需要面对的问题,任何人为的失误都将影响实验结果的数据偏差。现在,我们向您推荐一种基于重量法配制溶液的设备---Venus Gravimetric Diluter重量法溶液配制仪,能够消除所有人为误差,比传统容量瓶方法数据更加准确,同时提升实验室工作效率,数据可以溯源,任何时候都不会出现错误数据。一、必要性在很多实验室里面的定量分析过程中,样品的准备和标准溶液的配制,对实验结果至关重要,直接影响到实验数据的准确度。在样品准备的步骤中,有很多影响因素,过程中任何一个不规范,都可能产生偏差,需要花费大量的时间和劳动力来纠正。在大量的常规实验中,流程的规范化管理,降低人为因素,尤其重要。在所有定量分析中,都需要准备标准试剂--储备液、中间液、内标液、标准溶液等,Labhands向您提供了一种快速、准确、规范化的配液装置。二、实验过程不确定因素分析常规分析实验室一直都是追求数据的准确和可靠,为此也制定了很多操作规程,尤其是一些通过认证的实验室,数据都可溯源。然而,在日常工作中,不管是否按着标准方法执行,操作流程是否规范,都有可能产生实验结果偏差,即使实验人员很努力的按着GMP/GLP规程要求操作,也会产生数据偏差。在一个实验过程中,我们一般可能要花费平均60%的时间在样品准备上,前处理的过程是产生偏差的重要原因,其中人为的不确定性因素也占据了很大一部分。所以减少人为操作流程,增加实验室的自动化流程,提高过程的规范化管理,将有效的提高实验结果的准确性。三、传统容量瓶定容方法以及不确定因素常规方法通常通过试纸或容器称量固体样品,然后转移到容量瓶中,或者直接将固体样品加入到容量瓶中称量,操作人员手工记录天平读书,这里会有一个人为记录错误的不确定性,而且这个错误是无法溯源查找的,将伴随整个实验,直接影响实验结果。传统方法操作流程如下: 四、Venus重量法溶液配制仪将在这些方面帮您优化1、 自动称量传统容量瓶方法配制目标浓度溶液,首先选择合适体积的容量瓶,然后称量样品无限接近到目标重量,然后将样品转移到容量瓶中。称量目标重量一直都是一个挑战,而且转移过程中会有试剂丢失,Venus 重量法溶液配制仪能够很好的解决这个问题,选择合适体积的溶剂瓶,样品直接加到溶剂瓶内,接近目标值就可以,多一些或少一些都没有关系,根据实测试剂重量自动计算加液体积,并自动完成溶液添加,过程轻松、快捷。2、 定容体积的判断传统方法容量瓶定容需要根据刻度线与凹液面下划线对齐来判断定容体积,这个过程人为因素影响非常大,Venus重量法配液仪直接根据液体密度,通过称重来计算体积,天平实测溶液体积,不确定度远远优于常规方法。3、 玻璃仪器的标准实验室大部分移液管和容量瓶都要求A级,根据NIST统计数据,50%以上的移液管和容量瓶生产出来的时候达不到A级标准,使用Venus重量法溶液配制仪不需要容量瓶,可以选择任何合适的容器或溶液瓶,非常轻松、方便。4、 温度的影响常规容量瓶检定是按着20度温度标定定容体积,然而在实验室内很多时候很难控制好合适的温度,这将给所配溶液浓度值带来一定的偏差。Venus重量法溶液配制仪不需要容量瓶,所以没有这方面的问题。5、 可能的交叉污染大部分实验室的容量瓶是重复使用的,虽然经过了严格的清洗,但是再次使用的时候不可避免带来交叉污染,这也是影响实验结果的偏差因素之一。Venus重量法溶液配制仪选用一次性溶剂瓶,不存在交叉污染的影响。6、 混合更方便、均匀常规实验方法在容量瓶定容后,需要手工摇匀、静置,确保溶液混合均匀。Venus重量法溶液配制仪采用带盖的溶剂瓶,称量、加液完成后加盖,可以选择涡旋混合器或者震荡混合器自动混合,溶液既均匀又省时省力。7、 记录优化,方便溯源常规方法中实验人员手工记录称量数据,根据容量瓶定容体积计算溶液浓度,手工书写标签贴于每个容量瓶上,记录信息有限,步骤多,容易混淆。Venus重量法溶液配制仪让这一切都变得非常轻松,自动打印标签,内容包括:实验员名称、配液日期、溶液名称、溶液浓度、保质期等重要信息,并且自动保存到数据库中,随时可溯源。8、 节省试剂常规容量瓶方法,为了配制一定浓度的溶液,必须选取合适体积的容量瓶,为了提升配液的准确度,通常增大称样量,选取大体积的容量瓶,溶液还没有用完就已经过了保质期。Venus重量法溶液配制仪省去了选择不同体积容量瓶的烦恼,同时也可以根据实验的需要配制合适体积的目标溶液,用多少配多少,节约试剂。创新点:1、自动记录天平上的配液过程,包括母试剂称量重量,添加溶液的体积,以及最后的定容体积。 2、根据天平母试剂重量自动计算加液体积,并完成加液,最终生成数据报告,自动打印记录。 3、重量法配制溶液比常规容量瓶方法更加准确。 4、产品软件具有多个数据库:人员库、密度库、试剂名称库、质量数库等Venus重量法溶液配制仪
  • ATAGO爱拓全新推出2款数显酸度计 助力乳酸浓度检测
    ATAGO(爱拓)(简称:爱拓)公司是一家著名的旋光仪和折光仪的专业制造厂家。该公司成立于1940年,从1940年开始生产精确折射仪、折光仪、旋光仪起,至今已有上七十多年的历史。其生产的旋光仪及折光仪作为行业的领导者一直享誉全世界,主要产品包括各型号旋光仪、折光仪、盐度计、浓度计、糖度计等。近日爱拓公司全新推出2款数显酸度计,为咸菜、乳酸菌饮料中的乳酸浓度检测提供新的选择。 PAL-ACID3 酸度计测试箱(乳酸) PAL-ACID3 迷你数显酸度计用于测量咸菜、乳酸菌饮料中的乳酸浓度。 PAL-ACID3 迷你数显酸度计测量样品的总酸度,并将之转换为乳酸含量。 型号 PAL-ACID3 酸度计测试箱(乳酸) Cat.No. 4652 测量范围 乳酸含量1.0 to 45.0(g/l) (以乳酸为标度[g/l]) 分辨率 0.1(g/l) 重复性 1.0 to 20.0(g/l) ± 0.5(g/l) 20.1 to 40.0(g/l) ± 1.0(g/l) 测量温度 10 to 40° C (自动温度补偿) 环境温度 10 to 40° C 选件 &bull 校正溶液: RE-130002 &bull 反应试剂 10 pcs : RE-99432 &bull 反应试剂 20 pcs : RE-99430 &bull 反应试剂 50 pcs : RE-99431 电源 2 × AAA 电池 规格 55(W)× 31(D)× 109(H)mm, 100g (仅主机) PAL-ACID3 迷你数显酸度计(乳酸) 此货号仅为主机,不包含附件。 型号 PAL-ACID3(乳酸) Cat.No. 4642 测量范围 乳酸含量1.0 to 45.0(g/l) (以乳酸为标度[g/l])分辨率 0.1(g/l) 重复性 1.0 to 20.0(g/l) ± 0.5(g/l) 20.1 to 40.0(g/l) ± 1.0(g/l) 测量温度 10 to 40° C (自动温度补偿) 环境温度 10 to 40° C 选件 &bull 微量移液器 : RE-79401 &bull 校正溶液: RE-130002 &bull 反应试剂 10 pcs : RE-99432 &bull 反应试剂 20 pcs : RE-99430 &bull 反应试剂 50 pcs : RE-99431 电源 2 × AAA 电池 规格 55(W)× 31(D)× 109(H)mm, 100g (仅主机) MASTER-53S 手持式折射计乳白色样品首选 此产品克服了一直以来测试乳白色样品时,常会出现的界线不清的现象。 非常适合用于测试乳白色样品。 例如奶制调味品、酸奶、加奶咖啡、蛋黄酱、切削油等。 Model MASTER-53S 型号 2355 标度范围 Brix 0.0 至 53.0% (自动温度补偿型) 最小标度 Brix 0.5% 测量准确度 Brix ± 0.5%(10 至 30℃) 重复性 ± 0.25% 尺寸重量 3.2× 3.4× 16.8cm, 130g 欲知详细资料,请关注:http://www.atago-china.com 或者致电联系我们:020-38106065/38108256
  • 定制标准溶液专家——美国Inorganic Ventures公司中文网页重磅推出
    作为全球知名的无机标准溶液生产商,美国Inorganic Ventures公司(以下简称IV公司)在业界已享受盛名,不仅为客户提供固定的标准溶液,更可以根据客户的要求,进行定制服务,无论多少元素,多大浓度,都可以轻松为客户实现。在进入中国市场4年后今天,IV公司与作为中国区总代理的上海凯来实验设备有限公司联合推出中文版网页,以更饱满的诚意和信心为中国区的客户服务。 www.inorganicventures-cn.com 在IV中文版网页上,不仅可以直接浏览到IV的无机标准溶液产品,IV的公司资质等信息,更可以获取技术方面的各种信息,其中就包括: · 交互式元素分析周期表 对于分析化学工作者来说是*的在线工具,包括70多种元素的化学兼容性,更好的分析灵敏线,主要干扰物和其他数据。 · ICP操作指导 为每个人对样品制备和ICP标准操作进行16步在线指导,内容涵盖了所有操作人员日程所要求的工作。 · 可靠的检测指导 对化学分析人员进行重要的17步在线指导,几乎涵盖了所有知识,包括样品收集、前处理、检测以及数据分析指导。 · 样品前处理指导 扩充了数十种元素的在线指导,每个部分都包括了针对样品中感兴趣的具体前处理和化学溶解方法。 · 标准溶液的各种知识 作为标准溶液使用者的您需要知道的信息,包括如何考察标准溶液制造商的资质,标准溶液的保质期、储存时间、标准溶液如何储存等等。 · &hellip &hellip 想要探索更多的内容吗?请访问我们的网站www.inorganicventures-cn.com。 如果您对网站有更好的建议和意见,请与上海凯来市场部联系,021-58955731,58955762/63,届时我们会有小礼品相赠,以感谢大家对我们网站的关注。
  • 中/美/欧/日四大药典溶液颜色检查规范 --参考与比较
    中/美/欧/日四大药典澄清度检查规范-中英双译中国药典20200902 澄清度检查法澄清度检查法系将药品溶液与规定的浊度标准液相比较,用以检查溶液的澄清度。除另有规定外,应采用第一法进行检测。品种项下规定的“澄清”,系指供试品溶液的澄清度与所用溶剂相同,或不超过0.5号浊度标准。“几乎澄清”,系指供试品溶液的浊度介于0.5号至1号浊度标准液的浊度之间。第一法(目视法)除另有规定外,按各品种项下规定的浓度要求,在室温条件下将用水稀释至一定浓度的供试品溶液与等量的浊度标准液分别置于配对的比浊用玻璃管(内径15-16 mm,平底,具塞,以无色、透明、中性硬质玻璃制成)中,在浊度标准液制备5 分钟后,在暗室内垂直置于伞棚灯下,照度为1000 lx,从水平方向观察、比较。除另有规定外外,供试品溶解后应立即检视。第一法无法准确判定两者的澄清度差异时,改用第二法进行测定,并以其测定结果进行判定。浊度标准存贮液的制备 称取于105℃干燥至恒重的硫酸肼1.00 g,置于100 ml量瓶中,加水适量使溶解,必要时可在40℃的水浴中温热溶解,并用水稀释至刻度,摇匀,放置4-6小时;取此溶液于等容量的10%乌洛托品溶液混合,摇匀,于25℃避光静置24小时,即得。该溶液置冷处避光保存,可在2个月内使用,用前摇匀。浊度标准原液的制备 取浊度标准贮备液15.0 ml,置1000 ml量瓶中,加水稀释至刻度,摇匀,取适量,置1 cm吸收池中,照紫外-可见分光光度法(通则0401),在550 nm的波长处测定,其吸光度在0.12-0.15范围内,该溶液应在48小时内使用,用前摇匀。浊度标准液制备 取浊度标准原液与水,按照下表配置,即得。浊度标准液应临用时制备,使用前充分摇匀。 第二法(浊度仪法)供试品的浊度可采用浊度仪测定。溶液中不同大小、不同特性的微粒物质包括有色物质均可使入射光产生散射,通过测定透射光或者散射光的强度,可以检查供试品的浊度。仪器测定模式通常有三种类型,透射光式、散射光式和透射光-散射光比较测量模式(比率浊度模式)。1.仪器的一般要求采用散射光式浊度仪时,光源峰值波长为860 nm;测量范围应包含0.01-100ntu。在0-10ntu范围内分辨率应为0.01ntu;在10-100ntu范围内分辨率应为0.1ntu.2.适用范围及检测原理本法采用散射光式浊度仪,适用于低、中浊度无色供试品溶液的浊度测定(浊度值为100ntu以下的供试品。)因为高浊度的供试品会造成多次散射现象,时散射光强度迅速下降,导致散射光强度不能正确反映供试品的浊度值。0.5-4号浊度标准液的浊度值范围约为0-40ntu。采用散射光式浊度仪测定时,入射光和测定的散射光呈90℃夹角,入射光强度和散射光强度关系式如下。i=k’t i0式中 i为散射光强度,单位为cd; i0 为入射光强度,单位为cd; k’为散射系数; t为供试品溶液的浊度值,单位为ntu(ntu是基于福尔马肼浊度标准液液测定的散射浊度单位,福尔马肼浊度标准液即为第一法中的浊度标准贮备液)。在入射光i0不变的情况下,散射光强度i与浊度值成正比。因此,可以将浊度测量转化为散射光强度的测量。3.系统的适用性试验仪器应定期(一般每月一次)对浊度标准液的线性和重复性进行考察,采用0.5号至4号浊度标准液进行浊度值测定,浊度标准液的测定解果(单位ntu)与浓度间应呈线性关系,线性方程的相关系数应不低于0.999;取0.5号至4号浊度标准液,重复测定5次,0.5号和1号浊度标准液测量浊度值的相对标准偏差应不大于5%,2-4号浊度标准液测量浊度值的相对标准偏差不大于2%。4.测定法按照仪器说明书要求并采用规定的浊度液进行仪器校正。溶液剂直接取样测定;原料药或者其它剂型按照个论项下的标准规定制备供试品溶液,临用时制备。分别取供试品溶液和相应浊度标准液进行测定,测定前应摇匀,并避免产生气泡,读取浊度值。供试品溶液浊度值不得大于相应浊度标准液的浊度值。 美国药典usp44 visual comparison 视觉比较the purpose of this test is to provide the details for the visual comparison of the color and/or turbidance of sample solutions of certain concentration to a standard solution or a series of standard solutions of known concentration. where a color or turbidity comparison is directed, follow the procedures and conditions outlined below for performing these tests.本试验的目的是提供特定浓度的样品溶液与已知浓度的标准溶液或一系列标准溶液的颜色和/或浊度的视觉比较细节。如果需要进行颜色或浊度比较,请遵循以下程序和条件进行这些测试 comparison vessels: color-comparison tubes matched as closely as possible in internal diameter, in depth of sample solution, and in all other respects should be used.对比容器:应使用内径、样品溶液深度和所有其他方面尽可能匹配的颜色对比管。 viewing conditions for turbidity comparison: tubes should be viewed horizontally against a dark background with the aid of a light source directed fromthe sides of the tubes.浊度比较的观察条件:应在黑暗背景下,借助从管子侧面发出的光源水平观察管子。 viewing conditions for color comparison: tubes should be viewed downward against a white background. most of the time, common room lighting is sufficient to perform the assessment. a light source directed from beneath the bottoms of the tubes may be used if needed and if the practice is consistent between the materials under comparison.颜色比较的观察条件:管子应在白色背景下向下观察。大多数情况下,公共空间照明足以进行评估。如果需要,并且对比材料之间的实践一致,可以使用从管底部下方引导的光源 nephelometry and turbidimetry 散射光浊度法和透射光比浊法1. introduction 介绍nephelometry and turbidimetry are analytical techniques that are based on the principles of light-scattering phenomena. light scattering is the physical phenomenon in which a beam of light changes its direction of propagation (known as deflection) as a result of interaction with sufficiently small matter particles. it has been established from the maxwell electromagnetic theory that a prerequisite for scattering to occur is that the refractive indexes of the suspended particles must be different from those of the suspending liquid. the larger the difference, the more intense the scattering becomes. there are two types of light scattering: 1) elastic scattering, in which the wavelength of the scattered light and incident light are the same and 2) inelastic light scattering, in which the wavelength of the scattered light and incident light are different. only the first type of light scattering (elastic) is relevant to nephelometry and turbidimetry.散射光浊度法和透射光比浊法是基于光散射现象原理的分析技术。光散射是一种物理现象,其中光束由于与足够小的物质粒子相互作用而改变其传播方向(称为偏转)。根据麦克斯韦电磁理论,散射发生的先决条件是悬浮颗粒的折射率必须不同于悬浮液体的折射率。差异越大,散射越强烈。光散射有两种类型:1)弹性散射,其中散射光和入射光的波长相同;2)非弹性光散射,其中散射光和入射光的波长不同。只有前一种光散射(弹性)与散射光浊度法和透射光比浊法有关。 in turbidimetry, the intensity of the transmitted light is measured and the attenuation of the intensity of incident light as a result of scattering is measured at the direction of incident light (i.e., 0°) and compared to the intensity of incident light (blank measurement). the measured property is an indirect measurement of the scattering effect of the suspended particles and is referred to as turbidance. any absorbance of light by the suspended sample will result in additional attenuation of light intensity (see ultraviolet-visible spectroscopy and ultraviolet-visible spectroscopy—theory and practice ). hence, it is important to ensure that the material being measured does not absorb light at the measurement wavelength. indeed the equations governing absorption and turbidimetry are the same (albeit with different values for the attenuation constants). in nephelometric techniques, the intensity of the scattered light at a 90° angle from the propagation direction of the incident light is measured. therefore, a nephelometric measurement is a direct measurement of the scattering effect of suspended matter.在透射光比浊法中,测量透射光的强度,并在入射光方向(即0°)测量散射导致的入射光强度的衰减,并与入射光强度进行比较(空白测量)。被测特性是悬浮颗粒散射效应的间接测量,称为浊度。悬浮样品对光的任何吸收都会导致光强度的额外衰减(参见 ultraviolet-visible spectroscopy和 ultraviolet-visible spectroscopy—theory and practice)。因此,确保被测材料不会吸收测量波长处的光非常重要。实际上,控制吸收和浊度测定的方程式是相同的(尽管衰减常数的值不同)。在散射光浊度法中,测量与入射光传播方向成90°角的散射光强度。因此,散射光浊度法浊度测量是对悬浮物散射效应的直接测量。 2. terms and definitions 术语和定义terms commonly used in describing turbidimetric and nephelometric techniques are:• turbidance (symbol, s): a measure of the decrease of the transmitted incident light beam intensity as a result of the light-scattering effect of suspended particles. the amount of suspendedmatter may be measured by observation of either the transmitted light (turbidimetry) or the scattered light (nephelometry).log i0/it = kbc = ti0 = intensity of incident lightit = intensity of transmitted lightk = molar turbidity coefficientb = cell path lengthc = concentrationt = turbidance• turbidity (symbol, τ): in turbidimetric measurements, the turbidity is the measure of the decrease in incident beam intensity/unit length of a given suspension. the international organization for standardization defines turbidity as “the reduction of transparency of a liquid caused by the presence of undissolved matter”.• turbidity measurement units: the turbidity units are stated using a descriptor which indicates the method of measurement.• nephelometric turbidity units (ntus): when the turbidity is measured using a nephelometer, which measures the scattered light at a 90° angle from the direction of propagation of incident light, the units of turbidity are called nephelometric turbidity units (ntus). the magnitude of ntu is defined based on the turbidity generated by primary formazin standard (a suspension made by mixing solutions of hydrazine sulfate and hexamethylenetetramine in water). safer polymer-bead suspensions are now commercially available and are recognized as an acceptable alternative. however, all those standards are traced to formazin. the primary formazin standard solution has been assigned a turbidity of 4000 ntus.other recognized units for turbidity include the formazin turbidity unit (ftu) and the formazin nephelometric unit (fnu). these units are equivalent to ntu for the range from 0–40 ntus.描述浊度法和浊度法的常用术语包括:• 浊度(符号s):由于悬浮颗粒的光散射效应,透射入射光束强度降低的一种度量。悬浮物的量可以通过观察透射光(比浊法)或散射光(浊度法)来测量。log i0/it = kbc = ti0=入射光强度it=透射光强度k=摩尔浊度系数b=样品池路径长度c=浓度t=浊度• 浊度(符号,τ):在透射光浊度测量中,浊度是给定悬浮液的入射光束强度/单位长度减少的量度。国际标准化组织将浊度定义为“由于存在未溶解物质而导致液体透明度降低”。• 浊度测量单位:浑浊度单位用一个描述符表示,该描述符指示测量方法。• 散射光浊度计浊度单位(ntu):当使用散射光浊度法测量浊度时,浊度计以与入射光传播方向成90°角的角度测量散射光,浊度单位称为散射光浊度法浊度单位(ntu)。ntu的大小是根据初级福尔马肼标准品(一种将硫酸肼和六亚甲基四胺溶液混合在水中制成的悬浮液)产生的浊度定义的。更安全的聚合物微珠悬浮液现已上市,并被公认为可接受的替代品。然而,所有这些标准都可以追溯到福尔马肼。初级福尔马肼标准溶液的浊度为4000 ntu。其他公认的浊度单位包括福尔马肼比浊法单位(ftu)和福尔马肼浊度法单位(fnu)。这些单位相当于0-40 ntu范围内的ntu。3. applications 应用turbidimetric and nephelometric techniques have applications that include 1) concentration determination of solutions and/or suspensions (determination of several cations and anions by precipitating and suspending the resulting precipitate at well-controlled reaction parameters) 2) measurement of the degree of turbidity of turbid solutions or suspensions 3) determination of weight-average molecular weights and dimensions of polydisperse systems in the molecular weight range from 1000 to several hundred million 4) measurement of immunoassays’ reaction kinetics or kinetics of immunoprecipitations (rate nephelometry) 5) monitoring of cell and bacteria growth and 6) particle size distribution determination of suspended material, particle counting, etc.透射光比浊法和散射光浊度法技术的sfer 50 ml of primary formazin standard to a 200-ml volumetric flask, and dilute with particle-free water to volume and mix. the resulting suspension has a turbidity of 1000 ntus.• formazin reference suspensions: prepare by mixing in a 100-ml volumetric flask, portions of the respective formazin stock standard suspension and particle-free water according to table 1.[注:以下所有的程序必须在20±2°的条件下进行(参见)]• 硫酸肼溶液:将1.000 g acs级硫酸肼(n2h4h2so4)溶解在100 ml 的a类容量瓶中中,并用无颗粒水稀释至刻度。让该溶液静置4-6
  • TOPAS发布ATM 240S KCL盐溶液气溶胶发生器新品
    ATM-240S 盐溶液(KCL)气溶胶发生器——Aerosol generators一、仪器描述ATM-240S适用于发出盐溶液气溶胶颗粒,尤其适合于用盐溶液颗粒评价过滤性能中,包括KCL气溶胶颗粒。根据最新的国际标准ISO 16890,需用0.3~10.0μm的KCL气溶胶颗粒对一般通风的滤材和过滤器进行过滤性能的评价,应用ATM-240S,可将KCL溶液雾化从而产生所需的KCL颗粒。 二、仪器应用l 持续产生高度稳定的气溶胶【VDI 3491 Part 2】l 可产生大粒径盐颗粒 最大10μml 颗粒物产生速率在较大的范围内l 产生气溶胶盐颗粒含较少的水分,无需配置干燥装置l 易操作、易清理、易维护l 预热时间较短l 满足ISO 16890的测试要求 三、仪器规格参数型号ATM-240S 流量为50m3/h,试验时间为30s时的KCL颗粒分布压缩空气5 bar, 0.5 m3/h,无油洁净压缩空气体积流量200-300 L/h储液量100~300 ml颗粒粒径0.1~10.0 μm颗粒物产生速率3*103~1.3*105个/cm3设备尺寸900x400x300 mm气溶胶出口直径 13 mm颗粒类型KCL溶液或蒸馏水ATM-240S原理图简介盐溶液通过内置泵被吸入发生装置中,并通过喷嘴雾化成气溶胶颗粒,较大液体颗粒通过重力作用重新回到溶液中,较小颗粒则通过细管被输出,盐固体颗粒通过去除水分而得到,为了干燥,额外的干燥空气被送入细管中,由于喷嘴的特殊设计,使得非常小的KCl溶液就可以得到较高的颗粒输出量。创新点:1.满足国际最新标准ISO 16890的要求,可产生0.1~10微米的KCL颗粒,完全满足测试要求 2.产生的气溶胶颗粒携带少量水分,无需配置干燥装置就能满足要求 3.设备具有易操作、易维护保养的优势 ATM 240S KCL盐溶液气溶胶发生器
  • 新品上市:醛、酮-DNPH溶液
    醛酮类化合物具有毒性,对人体有很大危害。由于许多醛酮类化合物化学性质不稳定,直接配置标准溶液稳定性差,尤其是甲醛,甲醛在溶液中容易发生聚合、歧化等反应;用分光光度法分析醛酮类混合物选择性差,本标准推荐使用2,4-二硝基苯肼(DNPH)对醛酮类化合物进行原位衍生化后,用高效液相色谱法或气相色谱法进行分离检测;此方法用于检测多种醛酮类化合物的混合样品,具有选择性好,灵敏度高等特点。一、方法原理:使用填充了涂渍2,4-二硝基苯肼(DNPH)的硅胶柱采集空气样品,在酸性条件下,空气中的醛、酮类化合物与DNPH发生反应,生成稳定的2,4-二硝基苯腙类衍生物,用乙腈洗脱后,用具紫外检测器的高效液相色谱仪(HPLC-UV)或具有电子捕获检测器的气相色谱仪(GC-ECD)分离、检测。 醛酮类 2,4-二硝基苯肼 稳定有色的腙类衍生物注1:R和R1是烷基或芳香基团(酮)或是氢原子(醛)二、参见国标:HJ/T400-2007《车内挥发性有机物和醛酮类物质采样测定方法》HJ 683-2014 《空气 醛、酮类化合物的测定 高效液相色谱法》GBT 18204.26-2000 《公共场所空气中甲醛测定方法》三、产品信息:我司配置了乙腈中甲醛-2,4-二硝基苯腙、乙醛-2,4-二硝基苯腙和丙烯醛-2,4-二硝基苯腙等三种标准溶液(具体见下表),下一步将配置其他醛酮类标准溶液及其混标。四、高效液相色谱检测方法及色谱图:乙腈中甲醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=60:40波 长:360nm流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中乙醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:363nm 流 速:1.0ml/min进样量:2μL 2.色谱图:乙腈中丙烯醛-2,4-二硝基苯腙1.分析条件: 检测器:HPLC-DAD色谱柱:Inert sustain C18 (4.6mm×250mm,5μm )流动相:乙腈:水=70:30波 长:374nm流 速:1.0ml/min进样量:2μL 2.色谱图:
  • 【小坛微课】以土壤中六价铬为例!揭秘标准溶液和标准样品的区别和使用
    本期视频以土壤中的六价铬的检测为例,讲解了标准溶液和标准样品的区别和使用。视频内容包括标准溶液和标准样品的区别、标准曲线绘制、样品检测分析过程、样品测定步骤等。下面就让我们一起来学习吧。 课程老师介绍 课程老师坛墨质检化学产品部技术总监谢英梅 2021年3月加入坛墨质检,担任化学产品部技术总监,主要负责环境、职业卫生、食品等领域基质标物项目的研发工作。负责项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。 讲解老师坛墨质检基质研发工程师董慧莹 2021年4月加入坛墨质检,担任基质研发工程师,主要负责基质产品的研发。基质产品涵盖环境、职业卫生、食品等领域。参与项目《土壤污染监测及溯源技术产品的开发》获2021年常州市创新创业大赛三等奖。课程列表 标准溶液和标准样品的区别标准曲线绘制样品检测分析过程样品测定步骤
  • 钡(Ba)AAS标准溶液促销
    产品货号:AA-060056-02-01 产品名称:钡(Ba)AAS标准溶液,1000mg/L溶于1% HNO3 报价:180.00元/瓶 促销价:126.00元/瓶 促销日期截止2012年10月29日-2012年12月31日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制