当前位置: 仪器信息网 > 行业主题 > >

异丁酰基脱氧鸟苷

仪器信息网异丁酰基脱氧鸟苷专题为您提供2024年最新异丁酰基脱氧鸟苷价格报价、厂家品牌的相关信息, 包括异丁酰基脱氧鸟苷参数、型号等,不管是国产,还是进口品牌的异丁酰基脱氧鸟苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异丁酰基脱氧鸟苷相关的耗材配件、试剂标物,还有异丁酰基脱氧鸟苷相关的最新资讯、资料,以及异丁酰基脱氧鸟苷相关的解决方案。

异丁酰基脱氧鸟苷相关的资讯

  • EST发表水生所关于电子垃圾拆解对人体健康影响的文章
    近日,环境科学领域的权威刊物Environmental Science and Technology(简称EST)在网络上率先发表了中科院水生生物研究所生态毒理学学科组组博士研究生闻胜等人关于电子垃圾拆解对人体健康影响的文章“Elevated Levels of Urinary 8-Hydroxy-2´ -deoxyguanosine in Male Electrical and Electronic Equipment Dismantling Workers Exposed to High Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans, Polybrominated Diphenyl Ethers, and Polychlorinated Biphenyls。 该论文以我国某电子垃圾拆解区为试验点,研究了该地区拆解工人工作环境和人体中典型持久性有机污染物,特别是二恶英、多溴联苯醚和多氯联苯的暴露水平。研究发现,在拆解作业区室内的灰尘与拆解工人头发样品中发现了高浓度的二恶英、多溴联苯醚和多氯联苯;两类样品之间的指纹特征高度相似。表明该地区电子垃圾拆解工人处于严重的二恶英,多溴联苯醚和多氯联苯的暴露中。通过对化合物的指纹特征分析,发现这些污染物主要来源于电子垃圾拆解过程中的无序焚烧。通过测定工人上班前和下班后尿液中DNA氧化损伤的生物标志物(8-羟基脱氧鸟苷,8-OHdG),发现下班后工人尿中8-羟基脱氧鸟苷是上班前浓度的四倍,并且两组数据之间具有显著性差异(P 0.05)。尤其值得注意的是下班后的尿液中8-羟基脱氧鸟苷的浓度水平甚至和一些前列腺和膀胱癌症患者的水平相当,表明该试验点拆解工人存在相当高的癌症风险。该研究结果为电子垃圾拆解的无序焚烧释放大量有毒持久性有机污染物,及其给当地环境,尤其是对拆解工人健康的危害提供了直接的科学证据。
  • 技术分享 | 如何准确测试含脱氧剂的包装氧气透过率
    脱氧剂主要应用于食品、饮料和药品等行业,它帮助提高包装的性能及提供所需的保质期。脱氧剂吸收包装中的氧气,使包装内呈无氧状态,因此产品得以保持保鲜。另外脱氧剂可以有效地抑制霉菌和需氧菌的生长,延长产品货架期。作为产品保鲜的材料,脱氧剂与产品装在同一包装中,测试这种状态下的包装材料的透氧性会非常耗时,必须在常规消耗脱氧剂和无脱氧剂两种状态下测量氧气传输率 (OTR),以全面了解产品在整个生命周期内的包装性能。含脱氧剂包装材料检测确保包装性能符合预期的货架期在实践中,脱氧剂可以以多孔小袋、包装内涂层的形式出现,也可以内置于聚合物中,如瓶壁或瓶盖衬里。无论是哪种形式,都必须在消耗脱氧剂之前和之后测试氧气透过率,以确定与没有脱氧剂的原始包装相比的有效脱氧能力。这种类型的渗透测试需要更长的时间来完成,因为他们必须等待脱氧剂完全的被耗尽。这通常会在实验室中造成瓶颈。有三种方法可以帮助缓解这类包装测试的瓶颈。 01.更高的温度下测试高温加速氧气和脱氧剂之间的化学反应。通常温度每升高10°C,估计的OTR就增加一倍,从而减少脱氧剂耗尽所有氧气的总时间。 02.较高的氧气浓度下测试扁平样品如果使用100%的氧气代替室内空气 (20.9% 氧气) 进行测试,则可以消耗更多的氧气分子。与使用室内空气测试所需的时间相比,这将导致测试时间缩短约20%。 03.离线预处理系统以上两种方法都可以“加速”脱氧剂的消耗以减少整体测试时间,在比较不同的涂层、涂层方法或脱氧剂材料层时,它们可以提供有用的数据。但是对于实际产品来说,这两种方法都有实施的限制性。MOCON离线预处理系统提供真实的测试条件,可与仪器同步运行。仪器用于测试,而消耗脱氧剂所需的时间可以离线完成,这提高了实验室的测试效率。MOCON提供可离线预处理的包装测试解决方案离线预处理系统提供了最真实的测试条件,同时缓解了仪器测试瓶颈。可按照下列步骤操作:• 测试完全相同的不含脱氧剂的包装作为参考样品,这将提供基本的OTR水平和测试时间• 对使用脱氧剂的包装进行初始OTR评估。由于包装内含脱氧剂,测试数据可能低于检测限• 当到达参考样品的测试时间时停止测试• 相同条件下开始离线预处理• 定期将包装重新连接到仪器并检查OTR水平• 直到OTR与参考样品测试结果相同或接近(向上滑动可查看)延迟渗透曲线显示脱氧剂的效果注:了解脱氧剂的吸收能力有助于估计离线预处理的时间。另外,许多脱氧剂会被水分激活,在指定的RH条件下进行OTR测试至关重要。 方案优势:• 在没有加速条件的情况下,离线预处理进行真实的脱氧剂包装样品测试• 当样品离线预处理时,仪器可以测试其他样品,提高实验室效率• MOCON OX-TRAN 2/40包装件测试分析仪带有可选的预处理架或PackRack夹具,满足不同形状的包装的离线预处理MOCON OX-TRAN 2/40包装件OTR分析仪带预处理架选项对带有脱氧剂的包装进行渗透测试整个过程需要很长的测试时间。MOCON提供离线预处理的包装测试解决方案:不仅提升仪器测试效率,还满足提供准确和一致的测试结果,提高了实验室的经济效率。
  • 恒创立达发布急速脱氧在线随时膜脱气仪新品
    恒创立达产品介绍: 急速脱氧在线随时膜脱气仪和排液,没有容量限制,最小250ml,主要对纯水、蒸馏水进行脱气。主要特点:1.设计简便界面:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。2.在线加热功能:溶出介质在进行脱气前进行预加热(极限可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。3.高精度供液系统:溶出介质加注体积精度为设定体积的±3%4.可处理多种溶出介质:溶出实验常用的纯水、蒸馏水。6.可变温度设定功能:温度调节范围为室温到45℃7.易于维护和保养,机内所有配件可快速更换及维护。 技术指标:定量分配体积容量:无容积限制,设定精度0.1L体积分配精度值:±3%加热功率:1500W可大加热能力:极限可达45°C的供液温度(视初始温度而定)温度精确度值:±1°C极大真空度:-96.0KPa脱气效果:目标含氧量≤2.8mg/l过滤器:前置40um/25um/20um金属丝网过滤器可选外型尺寸:主机500*340*295( mm)创新点:1.设计简便:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。 2.在线加热:溶出介质在进行脱气前进行预加热(最高可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。 3.高精度供液:溶出介质加注体积精度为设定体积的± 3% 急速脱氧在线随时膜脱气仪
  • 长期超量吃碘盐或诱发高血压
    本核泄露事件发生后,沿海各地出现市民抢购食盐风潮。对此,医学专家明确表示,盲目过多食用碘盐不仅有害自身健康,而且在防辐射方面也起不到针对性作用。每天摄盐6克以上,长此以往可能出现高血压。营养学家建议多吃点新鲜蔬菜和水果,均衡营养,提高免疫力。 “如果盲目过量摄入大量碘盐,还可能引起高血压等疾病。”华东医院营养科主任孙建琴教授分析说,从健康角度而言,每人每天从盐中摄取的碘含量约在100微克左右,每人每天的盐摄入量最好在4至6克左右,过量则可能引起高血压、肺水肿等症状加重,心衰发生率增加。由于碘是水溶性的物质,碘吃多了只会通过尿液排出体外。至于用强化碘的酱油来代替碘盐,则更是没有必要。在天然食品中,像海带、虾皮、海鱼等,碘含量都很高。专家建议,倒不如多吃点新鲜蔬菜和水果,均衡营养,减少抽烟,放松心情,不要盲目恐慌,避免疲劳,提高免疫力。ELISA英文名称 Human 8-iso-Prostaglandin F2a ELISA KIT 人8-异前列腺素F2α(8-ISOPGF2a) 规格: 96T/48T英文名称 Human 8-hydroxy-2-deoxyguanosine ELISA Kit 人8-羟基脱氧鸟苷(8-OHdG) 规格: 96T/48TELISA英文名称 Human 6-keto-prostaglandin elisa kit 人6-酮-前列腺素(6-keto-prostaglandin) 规格: 96T/48T英文名称 Human Serotonin 5-Hydroxytryptamine ELISA Kit 人5-羟色氨(5-HT)ELISA试剂盒 规格: 96T/48T英文名称 Human 25(OH)D3 ELISA Kit 人25羟维生素D3(25(OH)D3)ELISA试剂盒 规格: 96T/48T英文名称 Human 25-HVD ELISA Kit 人25-羟基维生素D(25-HVD) 规格: 96T/48T英文名称 Human17-KS ELISA KIT 人17-酮皮质类固醇(17-KS) 规格: 96T/48T英文名称 Human17-Hydroxycorticosteroids ELISA KIT 人17-羟皮质类固醇(17-OHCS) 规格: 96T/48T英文名称 Human 15-lipoxygenase ELISA Kit 人15-脂加氧酶(15-LO) 规格: 96T/48T英文名称 Human 14-3-3 protein ELISA Kit 人14-3-3蛋白(14-3-3 pro) 规格: 96T/48T英文名称 Human 1,25-dihydroxyvitamin D3 ELISA Kit 人1,25-二羟基维生素D3(1,25(OH)2D3)ELISA Kit 规格: 96T/48T
  • 1月回顾|质谱领域重要科研成果新鲜出炉!
    2023年1月,质谱研究领域的新鲜成果迭出,包括迷你 Orbitrap,一种研究 DNA 甲基化的新方法,Jonathan Sweedler 与 Fan Lam 合作研究阿尔茨海默症,Zare教授团队利用微液滴可裂解标签的解吸电喷雾电离质谱成像表征功能生物大分子,南开大学张新星团队发现微液滴活化转化CO2 新策略等。仪器信息网特别将相关内容进行编译,以飨读者。  mini Orbitrap与太空研究  美国马里兰大学的研究人员推出了一种新的小型化 Orbitrap 分析仪——专为满足 NASA 太空任务的需求而量身定制。他们将这种微型化技术与激光解吸质谱法 (LDMS) 相结合,无需大量样品处理即可对行星材料的有机物含量和化学成分进行原位表征。这种结合可以帮助天体生物学任务——特别是那些专注于生命探测目标和对月球表面的渐进探索的任务。这款新设备拥有与台式仪器相同的优势,但针对太空探索和现场行星材料分析进行了简化。  iDEMS 的强大功能  为了更详细地研究 DNA 甲基化,研究人员开发了一种新的、高度灵敏的基于质谱的方法——称为 iDEMS(简称为“通过 5-乙炔基脱氧尿苷标记 DNA 质谱法”)。 该方法表明,DNA 甲基化水平在复制后稳步增加,超过细胞分裂,并且羟甲基化在姐妹链之间永远不对称,有利于亲本链。这些发现为回答有关 DNA 修饰传播的长期问题奠定了基础。作者希望 iDEMS 可用于“分析不同细胞环境中的甲基化和羟甲基化动力学”——包括衰老和癌症进化。  同位素成像质谱MIMS与肺动脉疾病  肺动脉高压 (PAH) 是一种罕见的肺动脉疾病,可导致瘢痕组织过多和肺血管增厚。为了探索由此产生的生物量增加的起源,研究人员使用多同位素成像质谱 (MIMS) 来检查关键贡献者。MIMS 是一种新的成像模式,它将体内稳定同位素示踪剂方法与纳米级二次离子质谱法相结合——这是它首次用于肺部疾病的研究。 研究结果显示, “对人类 PAH 中的脯氨酸和葡萄糖进行更深入的研究可能会发现抑制生物量形成、防止肺动脉阻塞和降低 PAH 患者心力衰竭几率的机会,”第一作者 Bradley Wertheim 在一份新闻稿中说。  质谱组合技术助力阿尔茨海默症研究  得益于美国国立卫生研究院 300 万美元的资助,磁共振成像 (MRI) 和质谱成像 (MSI) 将以前所未有的规模结合起来开展研究。 Jonathan Sweedler 和 Fan Lam 使用这种独特的技术组合来捕捉阿尔茨海默症动物模型的各种图像。 根据最近的一份新闻稿,研究者提到研究的总体目标是:“了解在阿尔茨海默症小鼠模型中分子水平上发生了什么。”  immuno-DESI-MSI助力药物研发  斯坦福大学化学系Richard N.Zare教授团队基于免疫识别与分子标签的成像策略为DESI-MSI实现生物大分子的检测提供了一种切实可行的思路。标签分子及其裂解方式的设计是其中的核心技术问题。根据已知的微液滴化学研究报道,DESI在正模式高压电下产生的微米级水相液滴,在其气-液界面富含高浓度的质子,因此可以加速酸催化有机反应的进程。本研究设计合成了一系列苯硼酸类标签分子,在碱性条件下,将其与抗体非识别区人工修饰侧链上的半乳糖胺通过苯硼酸酯键共价结合。利用酸性电喷雾溶剂可在微秒时间内快速将苯硼酸酯键断裂的特性,实现了标签分子的在线原位释放,使得DESI-MSI 在单张组织切片上定位多个不同的功能生物大分子成为可能,实现了基于DESI质谱成像的多重免疫组化检测,本研究将这种方法被命名为“immuno-DESI-MSI”。微液滴活化转化CO2新策略  近年来,微液滴化学成为了当下最热门的研究领域之一。现有报道为微液滴气液界面存在的极高电场(109 V/m)提供了证据,该电场可以撕裂氢氧根,生成羟基自由基和自由电子,该电子使某些物质发生自发的还原反应。该文中南开大学张新星研究员团队利用微液滴化学的独特性质,在无需任何催化剂的前提下,还原了五氟碘苯(C6F5I),使其生成阴离子自由基(C6F5I•-),并与CO2反应,快速生成五氟苯甲酸(C6F5CO2H)。
  • 《科学》预测2015年重要突破
    科学是一个移动的标靶。在这个岁末,除了回顾这一年的成就,美国《科学》杂志的编辑们还“冒险”赌了一把在未来几个月可能会成为新闻的科学进展。北极海冰随着全球变暖,研究北极海冰萎缩对全球气候带来的深远影响变得越来越重要。由于辽阔的海洋能够从太阳那里吸收更多的热量,海冰的减少已知能够扩大该地区的受热面积。但是北极变暖对于低纬度地区的气候将造成什么样的影响——及其是否对过去10年中的一些极端气候现象(从亚洲的季风到欧洲的寒冬)负有责任—— 一直是人们热议的一个话题。确定大气环流复杂动力学中的长距离关联绝对不是一件轻松的任务。2014年,科学家提出了几个观测模式,包括大型的罗斯贝波和极地急流。2015年,科学家希望能够努力确定北极变暖如何对几千公里以南地区的天气产生影响。太阳系中的相遇2014年是一个彗星年。但2015年则很有可能是一个矮行星年。明年3月,美国宇航局(NASA)的“黎明”号探测器将飞抵谷神星,后者是小行星带中最大的天体,同时蕴藏着惊人数量的冰。而在4个月后,NASA的“新视野”号探测器将于7月快速掠过冥王星,两者将进行一次短暂而意义非凡的相遇。这两颗冰冻的天体是同一类行星的“双胞胎”。在2006年,国际天文联合会将谷神星从一颗小行星升级为一颗矮行星;而把冥王星从一颗行星降级为一颗矮行星。一些科学家之前曾提出,这两颗天体都是在冰冷的彗星物质于太阳系外围空间碰撞集结的过程中形成的,并且随后被安置在不同的地方,这或许是由于木星的引力“恶作剧”牵引所致。而NASA的这两项空间任务对于梳理此类天体的起源将大有帮助。LHC重启明年春季,位于瑞士日内瓦附近的欧洲粒子物理学实验室中的欧洲核子研究委员会(CERN)的大型强子对撞机(LHC)将在为期两年的整修后重新启动。2012年7月,LHC迸发出希格斯玻色子,后者是物理学家关于已知粒子标准模型的最后一块拼图。但是一些研究人员认为,如果基于加速器的粒子物理学是有希望的,则巨大的机器将能够发现一些超越可靠的标准模型的东西。如今,LHC将进行另一项尝试,即把运行能量调整到首次运行的两倍。接下来,人们将看到LHC最终能否达到其设计运行能量,同时在未来的几年中,这台加速器能否发现新的未知粒子。联合免疫疗法随着临床研究人员积累的证据越来越多,作为《科学》杂志评出的2013年重要突破之一,癌症免疫疗法正在表现出对抗肿瘤的巨大潜力。目前的一个最大焦点便是将多种疗法混合搭配:例如,整合两种新的免疫疗法,或是将一种免疫疗法与一种靶向药物、放射疗法或化学疗法相结合。几十种临床试验正在进行当中——从最近批准的免疫疗法药物依普利姆玛与另一种减缓血管生长的疗法相结合治疗黑色素瘤的一期研究,到测试依普利姆玛与化学疗法相结合是否优于单独依靠化学疗法治疗肺癌的三期临床试验。这些研究结果将使肿瘤学家更容易找到与癌症病人相匹配的治疗方法。但新疗法的潜在毒性依然是一个值得关注的问题。hz-2913R EIF5 真核翻译起始因子5抗体hz-3839R 4EBP2 eIF4E结合蛋白2抗体hz-1440R Cytokeratin 5/CK5 细胞角蛋白5抗体hz-1126R 5-HT 5-羟色胺抗体hz-1597R HRPT2/CDC73/Parafibromin 甲状旁腺功能亢进蛋白2抗体(细胞分裂周期73)hz-1124R 5-HTR1A 5-羟色胺受体1A抗体hz-1663R THOC2 转录因子THOC2抗体hz-1665R VEGF 血管内皮生长因子抗体hz-1677R DNA Ligase IV/LIG4 DNA连接酶4抗体hz-1125R 5-HTR1B 5-羟色胺受体1B抗体hz-1892R 5-HTR2B 5-羟色胺受体2B抗体hz-1056R 5-HTR2A 5-羟色胺受体2A抗体hz-1893R 5-HTT 5-羟色胺转运蛋白抗体hz-2126R 5-HTR3 5-羟色胺受体3抗体hz-2127R 5-HTR4 5-羟色胺受体4抗体hz-0526R 5 lipoxygenase/ALOX5 5-脂氧合酶抗体hz-3251R Phospho-5-Lipoxygenase(Ser271) 磷酸化5-脂氧合酶抗体hz-3252R Phospho-5-Lipoxygenase(Ser663) 磷酸化5-脂氧合酶抗体hz-3874R ALOX12/12 Lipoxygenase 12脂氧合酶抗体hz-2036R Penicillin G 青霉素G抗体hz-1278R 8-OHdG 8-羟基脱氧鸟苷抗体hz-2053R RYBP/APAP1/CD337 凋亡相关蛋白1抗体hz-2054R Nkx2.5/Cardiac-specific homeobox 1 心脏特异性同源盒转录因子NKX2.5抗体hz-4235R ADORA1 腺苷A1A受体抗体hz-2077R AMP deaminase 1 腺苷单磷酸脱氨酶1抗体hz-1456R A2AR/Adenosine A2a receptor 腺苷A2A受体抗体hz-0094R AACT-Alpha1/A1ACT α-1抗胰糜蛋白酶抗体hz-1507R AAK1 AP2关联激酶1抗体hz-2123R Cyp2-j3 细胞色素P450Ⅱj3抗体hz-2128R OST-beta 有机溶质转运蛋白OSTβ抗体hz-3914R AANAT 芳香胺N-乙酰化转移酶抗体hz-2133R AT2R2 血管紧张素Ⅱ受体2抗体hz-2137R Influenza A virus (Duck) 鸭流感病毒抗体hz-2150R TNF-alpha 肿瘤坏死因子-α抗体hz-1603R AARS2 丙氨酰tRNA合成酶2抗体hz-2185R TDRD9/HIG1 缺氧诱导蛋白HIG1抗体hz-2257R SIRT1/sirtuin 1 沉默调节蛋白1抗体hz-2321R Spindly/CCDC99 亚砷盐相关蛋白抗体hz-2354R TBX-5 转录因子Tbx5抗体hz-0096R AAT/Tryptase α-1抗胰蛋白酶抗体hz-1510R AATK AATK细胞凋亡关联酪氨酸激酶抗体hz-2451R NMP-22 核基质蛋白22hz-1229R AATF 拮抗凋亡转录因子抗体hz-1627R ABCA1/ABC1 腺苷三磷酸结合盒转运体A1抗体hz-1761R ABCD1/CCL22 嗜酸粒细胞趋化蛋白22抗体
  • 【干货】数字PCR实验小课堂——模板制备篇
    数字PCR是第三代PCR技术,和qPCR技术相比具有灵敏度高、精准度高、对抑制剂耐受性更强等优势,不依赖于标准品和标准曲线,并可直接对起始核酸进行绝对定量,尤其适用于对低丰度样品的检测。目前,数字PCR在医学、制药、环境、食品检测等多个领域展现出了良好的应用前景。集多重优势于一体的数字PCR实验该如何实施呢?今天呢,我们就一起来看一下数字PCR实验的第一步:模板的制备。图源:gene-π数字PCR学习网站模板制备是数字PCR实验成功的关键一步。模板提取、质量控制、避免污染和保存都是模板制备过程中的重要因素。1、清除环境污染大多数Taq聚合酶的敏感性都比较高,一旦存在污染可能会发生外源DNA扩增并影响整个实验。而外界环境中存在多种污染源,因此必须遵守严格的实验规程并做好清除污染措施。为了避免DNA污染,应遵循以下常规PCR建议:☑ 定期使用3%漂白剂溶液和水/乙醇清洁实验室工作台和设备,或根据应用情况使用DNase/RNase;☑ 尽可能将管盖好;☑ 涡旋后进行离心;☑ 设置无模板对照。2、模板提取数字PCR的DNA和RNA模板提取方法与实验室中各种提取方法是兼容的,包括苯酚氯仿法,各种试剂盒提取方法。☑ 在提取过程中,尽量简化步骤,缩短提取时间;☑ 减少化学因素对核酸的降解;☑ 减少物理因素对核酸的降解,如机械剪切力和高温;☑ 防止核酸的生物降解。3、质量控制模板提取之后,我们需要对模板的纯度和质量进行检测,以保证得到最佳的实验效果。例如分光光度法可以验证提取的DNA溶液的良好吸光度(A260/280)的比例。常用的方法还有PicoGreen荧光染料定量检测、琼脂糖凝胶电泳、毛细管凝胶电泳和3' :5' 分析等,尽量避免污染物和潜在抑制剂的存在。4、保存提取的DNA模板的存储也是一个重要的监控因素。保存时需要避免核酸降解,如胞嘧啶脱氨和8-Oxo-2' -脱氧鸟苷的形成,因为氧化损伤可能导致在PCR扩增过程中的碱基转位。缓冲液和温度条件对样品的质量也有影响,一般提取的DNA模板用TE溶解并-20℃保存。除了上述这些,样本本身固有的其他参数也可能会对数字PCR实验产生影响:A 、富含GC的模板因为GC键非常稳定,如果模板包含富含GC的区域可能导致模板不能完全扩增。因此,为了使模板获得更好的变性,可以尝试在PCR混合物中添加DMSO或甜菜碱。B、高分子量DNA与qPCR一样,模板的复杂性可能会影响检测性能,例如质粒和长片段基因组DNA。对DNA片段进行限制性酶切可以平衡模板差异,并防止对目标分子的低估。但要保证扩增子序列中不能有酶切位点,对已经片段化的DNA(例如来自福尔马林固定、石蜡包埋组织或细胞游离的DNA)进行酶切可能导致信号丢失。通常高分子量的DNA或质粒作为模板可能会影响阴阳性微滴分区,建议在进行数字PCR之前使用化学或酶切方法进行DNA剪切,而且剪切步骤可以直接在PCR mix中进行。C、DNA拷贝数的转换在数字PCR实验中,需要对模板浓度进行检测,以避免浓度过高造成检测结果饱和(全部都是阳性微滴)。当浓度足够高时,常用的方法如荧光法和分光光度法,可用于定量核酸,从而初步预估使用数字PCR的适合测量浓度。值得注意的是,这种方法测量的是组成核酸碱基单位体积的质量。因此,使用测量质量的方法来确定基因组拷贝数,需要进行相应的换算。当以质量为基础的核酸定量与dPCR结果进行比较时,或从任何用于计算分子拷贝数的方法中得出的结果时,必须包括用于计算基因组分子量的清晰描述,以及用于计算该值的方法。在数字PCR中,DNA拷贝数的计算只需要知道被研究基因组的质量,然后应用以下公式即可:反应体积中拷贝数=反应体积DNA质量(ng)/研究基因组质量(ng) 。这里还有在线网站供大家参考:http://cels.uri.edu/gsc/cndna.html详情可参考深蓝云公众号的推文:技术小站 | 浓度到拷贝数的换算。D、逆转录酶在逆转录酶数字PCR (RT-dPCR)中,RNA转录本需通过一步法或者两步法转化为互补DNA (cDNA)进行使用。在一步法中,逆转录和PCR均在同一分区中按顺序排列。即使每个RNA分子产生多个cDNA拷贝,结果也不会被高估。在两步法中,先进行批量转录,然后对cDNA进行微滴分区,在单独的反应中进行dPCR。逆转录酶的步骤可能是一个主要的错误来源,应在实验设计中考虑。通过上述的介绍,大家是不是发现数字PCR的模板制备并没有那么复杂呀,感兴趣的小伙伴可以先把模板制备好,然后联系我们,赶紧来体验一下数字PCR的魅力吧。快速学习网址:足不出户,网页自动翻译让您轻松快速掌握Gene π数字PCR学堂。参考文献:1 Cai, Y., Li, X., Lv, R., Yang, J., Li, J., He, Y., & Pan, L. Quantitative Analysis of Pork and Chicken Products by Droplet Digital PCR. BioMed Research International, 2014, 810209. http://doi.org/10.1155/2014/810209. PMID: 252431842 Pérez-Barrios, C., Nieto-Alcolado, I., Torrente, M., Jiménez-Sánchez, C., Calvo, V., Gutierrez-Sanz, L., Palka, M., Donoso-Navarro, E., Provencio, M., Romero, A. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing. Transl Lung Cancer Res. 2016 Dec 5(6):665-672. doi: 10.21037/tlcr.2016.12.03. PMID: 281497603 Demeke, T., Malabanan, J., Holigroski, M., Eng, M. Effect of Source of DNA on the Quantitative Analysis of Genetically Engineered Traits Using Digital PCR and Real-Time PCR. J AOAC Int. 2017 Mar 1 100(2):492-498. doi: 10.5740/jaoacint.16-0284. Epub 2016 Dec 22. PMID: 281181374 Holmberg, R.C., Gindlesperger, A., Stokes, T., Lopez, D., Hyman, L., Freed, M., Belgrader, P., Harvey, J., Li, Z. Akonni TruTip® and Qiagen® Methods for Extraction of Fetal Circulating DNA-Evaluation by Real-Time and Digital PCR. PLoS One. 2013 Aug 6 8(8):e73068. doi: 10.1371/journal.pone.0073068. Print 2013. PMID: 23936545.5 Rajasekaran, N., Oh, M. R., Kim, S.-S., Kim, S. E., Kim, Y. D., Choi, H.-J., Byum, B., Shin, Y. K. Employing Digital Droplet PCR to Detect BRAF V600E Mutations in Formalin-fixed Paraffin-embedded Reference Standard Cell Lines. Journal of Visualized Experiments : JoVE, 2015, (104), 53190. Advance online publication. http://doi.org/10.3791/53190. PMID: 26484710.6 Devonshire, A. S., Whale, A. S., Gutteridge, A., Jones, G., Cowen, S., Foy, C. A., & Huggett, J. F. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Analytical and Bioanalytical Chemistry, 2014, 406(26), 6499–6512. http://doi.org/10.1007/s00216-014-7835-3. PMID: 24853859.7 Group T D , Huggett J F . The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020[J]. Clinical Chemistry(8):8.
  • BCEIA2023环境分析分会即将召开,聚焦环境与健康
    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 将于2023年9月6-8日在北京 中国国际展览中心(顺义馆)召开。BCEIA作为展示国际新技术、新仪器、新设备的窗口,一直以来受到国内外众多专家、学者、科技人员的关注,同时,学术报告会作为BCEIA重要组成部分,始终面向世界科技前沿。BCEIA 2023将举办大会报告、分会报告、高峰论坛、同期会议、墙报展等多场精彩学术活动,邀请国内外各行业顶尖学者及学术带头人,分享最具前瞻性的研究进展,针对学科关注度最高的技术及应用进行研讨和交流。2023年9月7-8日,BCEIA2023学术报告会——环境分析分会将在学术会议区W-103会议室举行,聚焦“环境与健康”主题,围绕新污染物分析、暴露组学与暴露分析、微纳尺度颗粒物及效应、环境健康研究中的新分析技术与装置、AI和机器学习在环境分析中的应用等主题方向,邀请到21位国内环境领域资深专家带来精彩报告。特邀报告人报告摘要  纳米尺度物质一旦进入生命体系,将面临复杂的多重生物屏障和生理结构,缺乏跨尺度、高灵敏、原位表征的技术手段是制约其发展的瓶颈问题。我们提出了纳米蛋白冠的原位表征、多种同步辐射分析技术和代谢分析方法联合应用的研究策略,通过发展多种同步辐射分析技术(同步辐射微束X射线荧光、X射线近边吸收结构谱学、nanoCT等),实现高灵敏、高分辨地原位解析纳米材料在靶组织、靶细胞内的分布及其化学形态。建立纳米材料与蛋白质、纳米材料与磷脂分子吸附结构的定量分析方法 发展单细胞水平的无损、三维高分辨、元素成像方法,用于观察单细胞内纳米材料空间分布和化学行为 阐明体内纳米材料的生物化学转化过程。 专家简介  陈春英,国家纳米科学中心研究员,国家杰出青年科学基金获得者,国家重点研发计划首席科学家。长期从事纳米蛋白冠的分析方法,进而发现了纳米颗粒体内命运的隐身效应、远端效应、生物可利用效应等生物学重要现象,指导纳米佐剂与药物递送系统等应用研究。研究成果在Nature Nanotechnology、Nature Methods、Nature Communications、Science Advances、PNAS、JACS、Angew Chem等期刊发表论文300余篇。先后获得国家自然科学奖二等奖、全国五一巾帼标兵、IUPAC化学化工杰出女性奖,TWAS 化学奖、RSC Environment Prize、ACS Bioconjugate Chemistry讲座奖、中国青年女科学家奖等。目前担任ACS Nano副主编以及多个期刊的编委。报告摘要  人类暴露于基因毒性试剂可以通过亲电分子和亲核基团间的共价反应形成DNA加合物,如果不能被及时清除或修复,就有可能发生基因突变,从而诱导各种疾病的发生。靶向DNA加合物组学是新一代组学技术的一部分,通过对多种DNA加合物进行定量分析来全面表征DNA共价修饰,从而揭示疾病的重要机制。本研究基于超高效液相色谱-三重四极杆串联质谱(UPLC-QqQ-MS/MS)开发了一种快速、灵敏、覆盖范围广的靶向DNA加合物组学方法,可同时对41种DNA加合物进行绝对定量分析。经过色谱、质谱、前处理条件优化后,本方法具有较好的线性(R2≥0.992)、准确度(81.3%-117.8%)和精密度(RSD%20%),回收率(57.1%-139.4%)也能满足DNA加合物分析的要求。将该方法应用在山西省的一项出生队列中,在2、5、10、20μg孕妇外周血白细胞DNA中,可分别检测到7、13、19、23种DNA加合物。仅需2μg孕妇外周血白细胞DNA即可精确定量5-甲基-2'-脱氧胞苷(5-MedC)、5-羟甲基-2'-脱氧胞苷(5-HmdC)、N6-甲基-2'-脱氧腺苷(N6-MedA)、8-羟基-2'-脱氧鸟苷(8-OHdG)、5-羟基-2'-脱氧胞苷(5-OHdC)、1, N6-乙烯基-2'-脱氧腺苷(1, N6-εdA)、N2-甲基-2'-脱氧鸟苷(N2-MedG)这7种DNA加合物。通过进一步分析孕期孕妇血清中41种金属/类金属浓度与外周血白细胞DNA中DNA加合物浓度的关联,研究发现了多种金属/类金属与多种DNA加合物之间存在显著关联,如孕期砷(As)、银(Ag)、锗(Ge)元素浓度与5-MedC、5-HmdC、8-OHdG、1, N6-εdA浓度显著正相关,与N6-MedA浓度显著负相关。DNA加合物与金属/类金属间的这些关联为进一步表征金属的暴露效应以及在基于效应的暴露评估中应用靶向DNA加合物组提供了新的途径。专家简介  北京大学环境科学与工程学院研究员。主要以生物标志物的开发和测量为手段研究环境污染物暴露对人体的健康效应及生物学机制。研究成果已在环境科学与健康领域的重要国际期刊上发表SCI论文80余篇。承担“国家第二次青藏高原综合科学考察”和国家自然科学基金委面上等项目,曾获得中国环境科学学会青年科学家奖和国家青年人才项目,2021年中国生态环境部十大科技进展主要完成人。现担任中国环境科学学会环境暴露科学专委会秘书长。报告摘要  二次电喷雾离子化技术(Secondary electrospray ionization)是一种由电喷雾技术(Electrospray ionization)衍生而来的大气压离子化技术,通过电喷雾产生的初级电喷雾云离子化醇类、醛酮类、有机酸、酯类、不饱和烃等大多数种类有机组分。本文总结了课题组应用SESI源耦合高分辨质谱(SESI-HRMS)探究呼气分析在疾病生物标志物发现、药物监测、运动代谢监测等生命健康领域的应用基础研究和转化工作,分析了SESI-HRMS呼气分析亟需解决的问题与可能的解决方案。专家简介  李雪,暨南大学研究员、博士生导师。博士毕业于清华大学环境科学与工程专业,曾在瑞士苏黎世联邦理工学院化学和应用生命科学系开展博士后研究工作。  研究方向:聚焦二次电喷雾离子化(SESI)技术及SESI源装置研发、SESI-MS方法开发及应用转化研究十余年,相关研究成果在Nature Protocols、Angewandte Chemie International Edition、Analytical Chemistry、Environmental Science & Technology等SCI期刊发表论文76篇,所开发的新技术、新方法获英国发明专利授权3项、中国发明专利授权7项。  基于上述研究工作,李雪博士主持了国家自然科学基金的优秀青年科学基金项目、重大研究计划培育项目、青年基金项目,以及国家科技部重点研发计划重点专项课题、瑞士联邦政府中瑞科技合作基金项目、“广东特支计划”科技创新青年拔尖人才、广东省国际科技合作项目等国家、省部级基础研究科研项目10余项 作为核心成员参与了国家科技部“创新人才推进计划重点领域创新团队”、“广东特支计划”本土创新创业团队项目。因在大气污染代谢组的质谱方法研发与仪器研制、呼出气挥发性有机物质谱检测新方法开发等方面的贡献荣获了中国化学会青年环境化学奖(两年一次,每次10人)和中国环境科学学会室内环境与健康分会“何兴舟室内环境与健康青年学术奖”(两年一次,每次2人),以及中国环境科学学会的“最美科技工作者”、优秀环境科技工作者奖、青年科技奖和广东省环境科学学会生态环境青年科技奖等荣誉。报告摘要  Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) protein systems are advancing genome editing, measurement sciences, and diagnostic technology. We describe here the development of integrated CRISPR-Cas and isothermal amplification techniques and their applications to biological and environmental analysis. Incorporating CRISPR-Cas systems with various nucleic acid amplification strategies enables the generation of amplified detection signals, improvements in analytical specificity and sensitivity, and development of point-of-care diagnostic assays.1,2 To enable highly sensitive and selective detection of nucleic acids, we integrated CRISPR with two isothermal amplification techniques: loop mediated amplification (LAMP) and recombinase polymerase amplification (RPA). To achieve on-site and point-of-care ability of the assays, we developed simultaneous viral inactivation and RNA preservation approaches compatible with the CRISPR-based techniques. We successfully applied these techniques and the polymerase chain reaction (PCR) assays to the determination of SARS-CoV-2 RNA in human nasal and throat swabs, gargle liquid, saliva, and wastewater/sewage.3-7 The CRISPR systems take advantage of various Cas proteins for their particular features, including RNA-guided endonuclease activity, sequence-specific recognition, and multiple turnover trans-cleavage activity of Cas12 and Cas13. The isothermal amplification and CRISPR technology can be adopted for the determination of other nucleic acid targets and for the analysis of other biological and environmental samples.专家简介  乐晓春(X. Chris Le)是加拿大皇家科学院院士、加拿大阿尔伯塔大学(University of Alberta)杰出教授(Distinguished University Professor)、加拿大生物分析技术和环境健康领域首席科学家(Canada Research Chair)、分析与环境毒理研究室主任。1983年毕业于武汉大学化学系,1986年在中国科学院生态环境研究中心获得硕士学位,1993年在加拿大英属哥伦比亚大学(University of British Columbia)获得博士学位,1995年进入阿尔伯塔大学(University of Alberta)任教。主要从事生命分析化学、环境科学、环境毒理与人体健康、基因损伤与修复、纳米材料与新药物等研究,发表论文三百余篇。获得了加拿大自然科学与工程研究委员会的E.W.R. Steacie Fellowship,加拿大化学学院的W.A.E. McBryde Medal Award、Maxxam Award和Environment Research and Development Award,阿尔伯塔大学的最高荣誉奖杯、Martha Cook Piper研究奖和杰出导师奖等。担任Journal of Environmental Sciences期刊主编、Analytical Chemistry期刊副主编、Environmental Health Perspectives期刊副主编,以及十余本期刊的编委。报告摘要  合成抗氧剂(合成酚抗氧剂和亚磷酸酯抗氧剂)是一类大量生产使用的化学品,可延缓材料的氧化,延长材料的使用寿命。此前,关于这类物质环境污染的研究十分匮乏。我们基于灵敏分析方法建立和多介质样品分析,系统研究该类新污染物的环境污染和人体暴露。合成酚抗氧剂在我国的污泥中广泛检出,在中国和加拿大的灰尘中也普遍存在,其中BHT是环境样品中的优势污染物。进一步研究表明,合成酚抗氧剂在人体血清中可被检出。与环境样品类似,BHT是人体血清中的优势污染物。然而,人体内的BHT很难经尿液排出,它会被转化为BHT-COOH,再经尿液排出。与合成酚抗氧剂不同,亚磷酸酯抗氧剂(如AO168)在多数环境样品中未被检出。然而,其氧化产物(AO168O)在室内灰尘和标准参考物质SRM2585(生产于1993-1994年)中的浓度极高,表明亚磷酸酯抗氧剂的氧化产物所造成的室内环境污染已有30年。该系列研究首次证实合成抗氧剂已造成普遍的环境污染与人体暴露。专家简介  刘润增,山东大学环境科学与工程学院教授/博导,环境与健康研究所所长 2016年毕业于中国科学院生态环境研究中心,获得博士学位,2016-2022年在多伦多大学从事博士后研究 国家自然科学基金优秀青年科学基金(海外)和山东省自然科学基金杰出青年科学基金获得者 发表SCI论文40余篇,以第一/通讯作者在环境领域权威期刊发表SCI论文23篇,其中15篇发表于One Earth、Environ Sci Technol和Environ Sci Technol Lett 获得中国分析测试协会科学技术奖CAIA奖特等奖(5/10),美国化学会James J. Morgan青年科学家荣誉奖 担任中国环境科学学会环境化学分会委员和J Environ Sci、Environ Health、《环境化学》等多本中英文期刊的青年编委/客座编辑。报告摘要  In recent years, metabolomics has been increasingly applied in the fields such as clinical medicine, biology, and environmental health, becoming a powerful approach for studying the onset and development of diseases and the mechanisms of substance toxicity. High-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) is the mainstream platform for metabolomics analysis, enabling high-throughput and accurate determination of metabolites. It can sensitively indicate the physiological and pathological state of the body, facilitating discover of metabolic differences between pollutant exposure and disease occurrence and revealing the key metabolic pathway disturbances, thus showing great significance on explaining the mechanism of toxic effects or disease characteristics, and exploration of potential biomarkers.  Base on the above, our group has been focusing on the optimization and application of metabolomics analysis techniques. We have developed the Ref-M metabolomics batch effect elimination strategy, which was applied to the study of serum metabolism in early-stage lung adenocarcinoma. We have also investigated the toxic effects mechanisms of perfluorooctanoic acid (PFOA) and inorganic arsenic using non-targeted metabolomics and metabolic flux techniques. Moreover, by combining high-content analysis with metabolomics technology, We have elucidated the immune toxicity mechanisms of chlorinated polycyclic aromatic hydrocarbons (CIPAHs).  Fig. 1. Application of Ref-M strategy in serum metabolism study of early lung adenocarcinoma and benign nodule报告摘要  多卤代化合物是一类典型的有机污染物,具有生物放大性、环境持久性和毒性,对全球生态系统和人类带来健康危害。本研究针对高环境暴露的多卤代化合物,通过在液相流动相中添加四苯基氯化鏻(Ph4PCl),能普遍显著增强多卤化合物的电离和灵敏度(1-3个数量级),结合卤代化合物分子式的同位素指纹匹配算法,实现了少量人体血液中近700个多卤代化合物的高通量鉴定和扫描,进一步将该试剂用于生物体内该物质的质谱成像分析,并结合空间代谢组分析了典型多卤化合物的代谢干扰效应。专家简介  万祎,教授,北京大学城市与环境学院,2007年获得北京大学博士学位。2008年赴加拿大萨省大学毒理中心从事博士后研究,2009年任毒理中心副研究员。2011年特聘为北京大学城市与环境学院“百人计划”研究员。主要从事微量有毒有害污染物的环境行为及毒理效应研究,在国外学术期刊上发表论文90余篇SCI论文,2015年获国家自然科学二等奖(排名第二)。报告摘要  细菌是最早的生命形式之一,在地球上无处不在。虽然细菌在维持生态系统方面发挥着深远的作用,但是致病菌引起致命的传染性疾病。在这里,我将介绍我们实验室近期发展的单细胞电感耦合等离子体四极杆质谱 (SC-ICP-qMS) 对病原菌进行高度灵敏准确计数的方法。其中,炔基D-丙氨酸通过细菌内在的代谢机制组装到病原菌细胞壁中,可以利用实验室自行设计制备的叠氮-DOTA-镧系元素(Ln)标签进行点击标记。此外,使用相应的镧系元素编码的细菌抗体来识别所检测的细菌种类。另一方面,针对宿主细胞表面的不同糖基化糖单元采用非天然单糖代谢组装或酶选择性催化Ln-tag 标记策略,在SC-ICP-qMS平台上可实现细菌-细胞相互作用的追踪。以这样的策略,我们不仅可以计数与其宿主细胞相互作用的细菌,还可以通过特异性糖苷酶消除方法发现细胞表面糖基化的哪种类型或基序在介导细菌-细胞相互作用中发挥更重要的作用。专家简介  王秋泉,厦门大学化学化工学院教授。1998年3月毕业于日本国立群马大学工学部,获得工学博士学位 在厦门大学化学博士后流动站工作两年后,留校工作至今。在国家自然科学基金重大项目课题、重点项目和面上项目以及科技部重点基础研究项目课题等的支持下,开展:1)原子光谱/质谱原子化/离子化新技术、分析方法学 2)色谱新型固定相材料的设计制备和3)持久性有毒物质的分析和致毒机制等研究工作 至今公开发表研究和综述论文百余篇、获得授权发明专利十余件,培养博士/硕士研究生百余名 受邀在国际国内会议上作大会/邀请报告百余次。  报告摘要  自然资源开发和利用的同时带来一系列的环境污染、生态破坏问题。环境污染物分析技术为建设生态环境安全,促进可持续发展提供理论支撑。传统大型仪器存在专业设备与操作高、时效性低、前处理繁琐、现场分析存在瓶颈等问题,难以满足环境污染物分析的需求。电化学传感器技术作为环境监测与分析的关键手段之一,不断受到关注和研究。针对环境化学与生物要素种类繁多、性质各异,分子、离子污染物含量低、危害大、赋存介质复杂的特点,亟需发展具有高效抗污染性能的新型电化学传感器,并探究其在环境分析中的应用。基于以上背景,我们提出设计具有自由取向的多级抗污染功能的防污涂层,用于复杂废水样品中抗性基因(MecA)的超灵敏、抗污染检测。所制备的防污涂层,可在传感界面形成强水合保护层阻隔其他污染物对传感界面的接触和粘附。通过调节多肽在电极界面上的空间构型,提高电极界面水合层结构的稳定性,制备了兼具抗污染性能和优异电子转移能力的抗污染微纳传感界面。进一步将捕获探针组装在抗污染电极界面上,该防污涂层不仅具有优异的抗污染性能,同时进一步稳定信号捕获探针的结构,从而确保信号放大过程。得益于独特的水合电子传递层,mecA基因可以在0.05-5000 pM的宽线性范围内进行电化学检测,检测限为16.67 fM。在未处理的废水样品中暴露15天后,DNA传感器仍保留了91.8%的初始信号。优异的长期防污能力、优异的电化学响应和令人满意的回收率(95-115%)证明所制备的传感器可实现复杂水样中mecA抗性基因直接检测。这将为复杂水环境介质中简单、快速、超痕量的ARGs检测提供有力的技术支撑。专家简介  王颖,同济大学长聘教授、博士生导师,现任环境科学与工程学院副院长。2007年毕业于武汉大学获学士学位,2012年毕业于清华大学获博士学位。2018年入选上海市青年科技启明星计划,2019年入选国家“万人计划”青年拔尖人才,2022年入选国家“万人计划”科技创新领军人才。从事污染物分析传感、环境电化学与电分析方法等方面的研究,作为项目负责人主持国家自然科学基金项目3项(青年项目1项、面上项目2项),科技部、环保部和上海市等省部级科技项目4项及其他重大横向课题3项。以第一/通讯作者在Nature子刊及环境化学顶级期刊如Nat. Protoc.、Proc. Natl. Acad. Sci. U.S.A.、J. Am. Chem. Soc.、Environ. Sci. Technol.等发表论文50余篇,已发表论文SCI-E他引总计12000余次,单篇论文最高引用1740次 获授权中国发明专利21项,申请美国专利3项 以第一完成人主持制定国家标准1项,省部级标准2项 获国家自然科学二等奖(排名第2)、上海市技术发明一等奖(排名第4)、教育部“霍英东青年教师奖”和第二十届中国国际工业博览会创新银奖。主要研究成果:(1)发现了界面结构选择性特征,开展了基于选择性界面效应的环境污染物分析方法研究 (2)构建了高通量便携快速检测平台,实现了污染物快速高效检测,以第一完成人主持电化学水质检测国家标准1项和行业标准1项 (3)研发了具有高选择性、高灵敏度和快速响应的污染物电化学检测技术,实现了复杂介质中污染物快速传感与在线检测。报告摘要  识别与健康风险相关的高毒性消毒副产物(DBPs)是保障饮用水安全的前提。我们提出氯化核酸可能是氯消毒剂和核酸反应生成的新型致突变性 DBPs。 我们建立了基于超高效液相色谱-质谱(UPLC-MS/MS)的卤代核酸非靶向分析方法,鉴定出113种卤代核苷酸。 含氯核苷酸的活性位点位于核碱基的芳香杂环上,这些氯化核苷酸的形成涉及脱碳、水解、氧化和脱羧。 进一步建立了基于固相萃取(SPE)和UPLC-MS/MS的卤代核碱基和核苷高灵敏度定量方法,检测限在0.04~0.86 ng/L范围。 五种卤代核碱基被确定为饮用水中新型DBP。其中2-氯腺嘌呤显示出最高的细胞毒性(IC50 = 9.4 μM),5-氯尿嘧啶显示出最高的遗传毒性(50% tail DNA = 411 μM)。 这项研究首次证实氯化核苷酸和核碱基为饮用水中的新型诱变DBPs。专家简介  王玮,研究员,博士,国家优秀青年基金获得者。2016年1月于加拿大阿尔伯塔大学获博士学位,2016年2月到2017年5月在美国环境保护署担任助理研究员,2017年6月入职浙江大学环境与资源学院。她目前的研究主要集中在新型环境诱变剂的分析表征及诱变机制,包括抗生素、消毒剂以及消毒副产物。报告摘要  贵金属纳米颗粒,如纳米银(AgNPs)和纳米金(AuNPs),在环境健康和生命医学领域具有非常广泛的应用,包括抗菌消毒、药物递送、靶向治疗等。纳米颗粒的理化性质决定了“纳米—生物作用”过程,进而会影响其体内行为与分布。近期,我们发现贵金属纳米颗粒的形状、粒径与表面修饰等理化性质,均可显著影响其生物效应与健康风险。然而,AgNPs与AuNPs如何在亚器官水平分布,以何种形态存在于体内,都还缺乏研究。  为实现生物组织中贵金属纳米颗粒的原位解析,我们将LA-ICP-MS与HSI-DFM成像技术相结合,探究了AgNPs与AuNPs的体内转运/转化过程与亚器官分布特征。我们的研究结果显示,AgNPs或AuNPs被细胞摄入后,都会发生复杂的体内转化过程,包括聚集和溶解。例如,细胞内形成的AuNPs聚集体,滞留时间更长,难于被细胞外排。相反,AgNPs溶解释放的离子态Ag,更容易被机体吸收,在体内发生累积。上述发现对理解贵金属纳米颗粒的体内行为与健康效应提供了借鉴。专家简介  徐明,中国科学院生态环境研究中心研究员,博士生导师。2006和2011年于厦门大学分别获得化学学士与博士学位,2011至2013年在法国国家科学研究院(CNRS)从事博士后研究,2014年加入中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室。主要从事重金属及人工纳米材料的健康效应与作用机理研究。2019年获国家基金委优秀青年科学基金。2018、2021年分别入选中国科学院青年创新促进会、英国皇家化学会Environmental Science: Nano期刊“Emerging Investigator”。2022年获“北京市自然科学二等奖(第五完成人)” 2021年获“北京医学科技奖二等奖(第三完成人)”。目前,担任中国科学院大学岗位教授、中国毒理学会分析毒理委员会委员、中国仪器仪表学会分析仪器分会原子光谱专业委员会委员、Journal of Environmental Sciences、Environment & Health、Reviews of Environmental Contamination and Toxicology等期刊编委或青年编委。先后主持和参与国家级科研项目8项。已在Angew Chem Int Ed, Adv Mater, Adv Funct Mater, ACS Nano, Environ Sci Technol, Anal Chem等发表论文70余篇,中英文专著章节3个。报告摘要  机器学习(ML)通过提供增强性能和利用多样化的输入特征,彻底改变了环境建模领域。然而,为确保开发出稳健且有意义的ML模型,将专家知识融入到过程中尤为重要,特别是在特征选择和模型解释方面。本演示旨在通过两个引人注目的示例来说明这些原则。在第一个案例研究中,我们进行了广泛的文献回顾,并编制了一个包含叶绿素-a指数作为输出变量的大型数据集。通过采用河流和气象特征的新颖组合作为输入,我们构建了基于机器学习的分类和回归模型,以预测伊利湖中藻华发生的情况。在第二个示例中,我们专注于开发预测模型,用于描述不同有机化合物的非生物还原过程,这些化合物具有各种可还原官能团,以及十种最常见的无机化合物,使用不同的Fe(II)还原剂。为了验证这些模型,我们将预测结果与已知的还原机制进行比较,涵盖了不同的化学群、还原剂类型和反应条件。这种严格的评估过程使我们能够展示模型的有效性及其与既定科学原理的一致性。总体而言,我们的方法将专业知识、精心选择的特征和全面的模型解释相结合,推动了环境领域中的ML建模。专家简介  张慧春(Judy)博士是美国凯斯西储大学土木与环境工程系的弗兰克H尼夫教授。她获得了乔治亚理工学院的博士学位,以及南京大学的学士和硕士学位。她的研究主要集中在自然和工程水环境中环境污染物的命运与转化,以及从受污染水中去除有机污染物。她近期的研究领域还包括使用传统模型和机器学习工具进行污染物反应性和吸附的预测建模。张博士在许多期刊上发表过论文,包括Chemical Reviews, Environmental Science and Technology, Water Research, 和Applied Catalysis B.等。她作为主持人已经获得了美国国家科学基金会的七项竞争性研究拨款。此外,张博士还为许多联邦和州政府机构以及工业界指导研究项目。她是《ACS ES&T Water》的副编辑。她曾获得过Nanova/CAPEES前沿研究奖、CAPEES人工智能/机器学习环境应用奖、ES&T最佳论文奖和ACS Gonter研究论文奖。报告摘要  银纳米颗粒(AgNPs)的普遍存在以及可能产生的AgNP抗性已经引起了重要关注。然而,这种现象背后的机制仍然存在争议。在这项研究中,我们明确了致死剂量的AgNP暴露后的适应性演化中的两个不同阶段。起初,对AgNPs的抗性主要与鞭毛蛋白介导的沉淀和增强的抗氧化活性相关。然而,随着过程的进行,持续细胞形成、生物膜产生和铜(Cu)外泌泵的上调主导了AgNP的耐受性,而没有沉淀发生。在后期阶段,持续存在的细胞水平显著增加,比之前高出1000倍。因此,演化后的细胞对多药物治疗表现出了显著的耐受性。包裹层应激反应(cpx和psp)在演化转变中发挥了关键作用。与普遍观念相反,铜外泌泵和渗透应激反应的表达不能仅归因于Ag+暴露。相反,它们主要受到转向厌氧呼吸和由纳米颗粒诱导的膜变形的影响,这是普遍应激反应的一部分。从仅依赖于纳米颗粒属性的特定机制转向涉及一般应激反应的汇聚演化,突显了细菌用于抗纳米颗粒的潜在适应策略。我们的研究还强调了控制演化转变到致病性和抗生素抗性的潜在时间框架。专家简介  张承东,博士,博士生导师,从事环境污染物的化学过程和生物效应研究。她曾获得“国家杰出青年科学基金”资助,并担任中国环境科学学会环境化学分会第五届和第六届委员。她主持多项国家和省部级重点项目,并发表了70多篇研究论文。张博士还荣获了天津市科技进步奖二等奖。报告摘要  大气气溶胶,又称大气颗粒物,对人类健康、大气环境和全球气候都有重要影响。新粒子形成是大气气溶胶的主要来源,而其成核过程是新粒子形成的关键。因当前实时外场测量的局限性和我国大气环境的复杂性,气溶胶成核过程的详细机制尚不清楚。本报告将从以下三方面进行工作汇报:①建立了同时描述分子物理聚集和化学反应的新粒子成核模拟研究方法,并合作将该方法程序化 ②提出了SO3与酸性/碱性污染物化学反应促进成核的新机制,揭示了高SO2浓度地区新粒子生成高强度频发的成因 ③发现了新的促进成核的无机酸和有机酸类型及其成核机制,并分别得到实验室CLOUD实验与外场观测的验证,明晰了SO2减排后新粒子生成不降反升的关键原因。专家简介  北京理工大学化学与化工学院教授,博士生导师,国家杰出青年科学基金获得者。2007年北京理工大学博士毕业并获全国百篇优秀博士论文提名。近年来主要从事大气颗粒物形成机制的理论研究工作,以通讯或第一作者在J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,Proc. Natl. Acad. Sci. USA等发表SCI论文60余篇。主持多项国家自然科学基金、北京市自然科学基金和教育部基金等项目,并获北京高等学校青年英才计划资助。以第三完成人获教育部自然科学二等奖和国防科工委国防科学技术二等奖。培养的1名博士生获中国颗粒物学会优秀博士论文。报告摘要  Two typical environment particulate pollutants will be introduced, including microplastic and microdroplet. We have developed methods based on Raman spectroscopy for the detecting and imaging of microplastic and microdroplet. SERS is employed for the detecting of small size microplastic (nanoplastic). Aerosol microdroplets act as microreactors for important atmospheric reactions, with pH playing a significant role in regulating these processes. However, the spatial distribution of pH and chemical species within atmospheric microdroplets is still debated. To address this challenge, we present a non-invasive method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution within microdroplets of varying sizes专家简介  2009年博士毕业于清华大学化学系,2009-2012年在德国汉诺威大学从事博士后研究(洪堡学者),2012-2014年在剑桥大学物理系从事博士后研究(欧盟玛丽居里学者)。主要从事大气污染化学研究,包括颗粒污染物的光谱检测及成像,大气非均相化学过程,大气污染控制等研究方向。在PNAS,Angew,EST等期刊发表论文130余篇,他引总计9000余次。担任英国皇家化学会期刊《Environ Sci: Adv》副主编,英国皇家学会会刊《Proceedings of Royal Society A》(1800年创刊)编委。主持国家级青年人才项目、国家重点研发计划国际合作专项、国家自然科学基金项目、上海市“东方学者”特聘计划等。报告摘要  鉴定大量人工化学品的持久性、迁移性、毒性(Persistent, Bioaccumulation, Toxic, PBT)或持久性、生物蓄积性、毒性与(Persistent, Mobile, Toxic, PMT)属性是当前环境领域一大挑战1, 2。目前亟需构建高通量、精准预测系统。本研究基于图神经网络GCN,构建了高准确性和低假阴性的预测系统(图1),筛选了典型新污染物。进一步围绕有害结局路径(Adverse Outcome Pathway, AOP),采用分子动力学模拟、转录组学、细胞实验、斑马鱼实验、老鼠实验等手段探究了典型新污染物的有害健康效应及毒理机制3-6。部分成果被联合国持久性有机污染物审查委员会引用,为我国新污染物风险管控提供技术支撑。  专家简介  庄树林,男,博士,浙江大学教授、博士生导师,中国毒理学会计算毒理专业委员会副主任委员、国家环境保护新型污染物环境健康影响评价重点实验室学术委员会委员,Ecotoxicology and Environmental Safety期刊编委、《环境化学》期刊编委,浙江大学学生绿之源协会指导教师。2001年本科毕业于曲阜师范大学,2007年博士毕业于浙江大学。2007至2010年在加拿大英属哥伦比亚大学从事博士后研究工作。2010年6月至今在浙江大学环境健康研究所工作,主要借助分子模拟及机器学习研究新污染物的人体健康风险。承担国家重点研发计划课题、国家自然科学基金重大研究计划培育项目、面上项目等,编著《环境数据分析》教材、在编《环境数据分析》第二版,获ES&T Excellence in Review Awards、浙江省科学技术进步奖三等奖、浙江省环境保护科学技术奖一等奖等荣誉称号。以上报告内容由BCEIA2023组委会提供欢迎扫码报名参加BCEIA2023
  • 毒品分析自动化|快速测定尿样中的氯胺酮和脱氢去甲氯胺酮
    导 语 氯胺酮(俗称“K粉”)属于最常见的毒品种类之一。它是苯环己哌啶的衍生物,属于分离性麻醉剂,吸食氯胺酮可能引发对吸食者肺部,心脏和大脑的永久损害,甚至导致死亡。氯胺酮的代谢产物包括去甲氯胺酮和脱氢去甲氯胺酮,大部分由肾脏排出,尿样等生物样本中的氯胺酮及其代谢物的检测可作为判定是否吸食氯胺酮的重要依据。下面小编带您了解面对大量样本,如何通过自动化前处理快速测定尿液中的毒品。 岛津公司开发的全自动在线前处理系统CLAM-2030与LC-MS/MS联用,可实现对全血、血浆、血清、尿液、唾液等生物样品自动进行蛋白质沉淀操作,然后将上清液自动传输至LC-MS/MS进行定量检测。 在系统中简单放置未加盖的血液采集试管(或样品杯)和预处理小瓶,之后只需发出分析请求,系统便可自动执行从预处理到LCMS分析的所有其他流程步骤。通过LCD触摸屏和无需使用说明的用户操作界面,该系统能够提供可靠、便捷的操作方式,并将由人工操作所导致的操作人员误差降低至最少。 CLAM-2030与LC-MS/MS联用检测尿样中的氯胺酮和脱氢去甲氯胺酮 前处理过程 岛津全自动在线前处理系统CLAM-2030自动前处理过程包括吸取样品、吸取沉淀剂、振摇和过滤,时间约为5 min. 在LC-MS/MS进行分析的同时,自动前处理程序也在同时进行,并且CLAM-2030会根据前处理流程同时处理2-3个样品,即对样品的处理进行到振摇这一步骤时,系统会自动开始序列中下一个样品的处理,如此可以进一步的提高样品分析的通量。 图2. CLAM-2030处理流程 样本分析结果 空白尿样加标0.5 ng/mL氯胺酮和脱氢去甲氯胺酮色谱图如图3所示。在0.2-100 ng/mL的加标浓度范围内,加标曲线线性相关系数均不低于0.9995,不同浓度加标样品重复进样6次,保留时间RSD均小于0.1%,峰面积RSD均小于4.5%,质控样本实测浓度在允许波动范围内。实验结果表明:该方法适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮的快速定量检测。 图3. 空白尿样加标0.5 ng/mL氯胺酮(左)和脱氢去甲氯胺酮(右)色谱图 使用岛津全自动在线前处理系统CLAM-2030与LC-MS/MS联用,对尿样进行自动前处理,并将得到的样品溶液自动进样后以质谱进行分析,大大降低了人工操作带来的误差以及潜在的生物危害风险。 该方法重复性和准确性均较好,适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮等毒品的快速定量检测,大大提高实验室运行效率。
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官
    用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官我们知道,器官芯片(Organ-on-Chips, OOC)一般是多层或者多个腔室的结构,例如皮肤芯片、肺芯片。但这次要和你分享的是一种悬滴式的器官芯片,也就是把微组织放在一滴悬着的培养液里培养,这滴培养液可以晃来晃去,但又不会掉下来,也就是你看到的封面图那样,看起来就像是在一滴悬着的水里养了个小器官。左图是胰岛微组织,右图是在悬滴器官芯片里培养微组织的示意图。这可不是什么不靠谱的设计,这项研究由苏黎世联邦理工学院的帕特里克博士(Dr. Patrick Misun)和瑞士InSphero公司布尔卡克博士(Dr. Burcak Yesildag)一同完成,文献链接放在了文末。左为帕特里克博士(Dr. Patrick Misun),右为布尔卡克博士(Dr. Burcak Yesildag)。这个芯片设计简单但很独特,你看下图,它就一个入口一个出口,再加一个半球形的培养区,芯片底部那滴培养液直接正对着显微镜——这根本就不是在一个密闭腔室里面做实验,是一个十分大胆但又很有创意的设计,它看起来好像不稳定,但这种设计又打破现有芯片设计壁垒,谁说芯片一定要设计成密封好的样子?悬滴器官芯片图示,研究人员使用此芯片能让微组织持续保持在悬滴中。帕特里克说,在这种悬滴里做微组织的药物测试,已经被证实是绝对可靠的,并且是可重复的。在他们的实验里,胰腺微组织会“跑”到那滴培养液和空气的交界处,这时往芯片里灌注少量液体,为微组织提供营养的同时,也将其暴露于药物环境中,然后用处于胰腺微组织正下方的显微镜记录数据。咱再来看看实验数据。当胰腺微组织刚开始暴露在高浓度葡萄糖环境中时,胰岛素的分泌会出现一次爆发性增长,然后在之后的几分钟,分泌的胰岛素会稍降低一些,处于一个持续震荡的状态。这和咱们正常人的调节机制是一致的,而糖尿病患者的这些反应机制是受损的。胰岛微组织在不同血糖浓度下的胰岛素分泌情况,先出现一次爆发增长,随后处于震荡状态。现在利用这个悬滴器官芯片平台,可以在高时间分辨率下观察到这些反应细节,这非常有利于研究糖尿病背后的潜在生物学机制。这分辨率有多高呢?帕特里克说,到目前,他们的平台提供了前所未有的高时间分辨率(2020年)。帕特里克:悬滴已被证明为微组织药物测试提供了绝对可靠和可重复的环境。我们将单个微组织放置在单个液滴中,它们在液滴底部的水-空气界面处沉淀(见图 2)。我们直接通过这些悬滴灌注少量液体,为组织提供营养并将其暴露于药物中。与封闭室中的流动相比,悬滴内的流动液体具有独特的流动模式。我们利用这种特定的流动模式来获得高时间分辨率的分泌曲线。你可能有疑问,他们用的微组织从哪来的?是否能反应人体真实情况呢?事实上,他们使用了真正的胰腺微组织。InSphero公司的布尔卡克博士(Dr. Burcak Yesildag),专门负责从供体器官中制备胰腺微组织,分离胰岛(是分泌激素的微器官,比如胰岛素),并把它们拆分为不同大小和成分的胰岛,再重新组装成标准化3D微组织,这样就保留了胰岛微组织对各种刺激的自然反应,从而保证获得真正有生理意义和可重复的数据。帕特里克说,这些微组织样本越规则,实验结果可重复性就越高。这个研究公开后,很快就有人就关心“能否商用”的话题。布尔卡克回答,这个平台很容易和InSphero其他项目达成合作。帕特里克也表示,现在做的虽只是一个平台原型,但已经实现对单个胰岛的高灵敏测量。不管是学术交流还是工业合作,他们都十分愿意一同优化现有平台,希望这项技术进展能帮助糖尿病研究人员找到新药,并更深入地了解胰岛生物学。下一步研究,帕特里克他们暂定了两个目标:一个是提高实验吞吐量,这也是复合测试(Compound testing)的关键要求之一;另一个是降低实验复杂度,让更多人实验人员也能完成此项实验。测试平台,该平台将帮助糖尿病研究人员找到新药并更深入地了解潜在的生物学机制。带有悬滴的器官芯片平台图示模型图——该芯片使研究人员能够将样本组织保持在悬滴中。您在芯片上使用人体细胞?帕特里克:没错。我们建立了在尽可能类似于活体器官的条件下在体外测试药物的平台。我们的目标是获得生理上有意义和可重复的数据。在这种特殊情况下,我们研究了胰腺微组织随时间的胰岛素分泌。对人体胰岛组织和悬滴内的组织进行采样图 2(左)人类胰岛组织样本。(右)悬滴内的组织。营养物质和药物顺利通过悬滴。样本组织来自哪里?Patrick: 这是我在 InSphero 的同事 Burcak 的问题。对于这个项目,我们进行了出色的合作,其中苏黎世联邦理工学院负责芯片上器官测试的工程部分,InSphero 负责制备微组织。Burcak:确实,我们的互补技能会派上用场。在 InSphero,我们从供体器官制备胰腺微组织。我们获得了分离的人类供体胰岛,它们是胰腺中分泌激素(如胰岛素)的微器官,可调节我们体内的血糖水平。我们拆解不同大小和成分的胰岛,并将它们重新组装成标准化的 3D 微组织。样本组织越规则,这些组织的实验结果就越具有可重复性。这些制造的微组织仍然是天然的吗?布尔卡克:我们的胰腺微组织密切模仿原始人类胰岛的结构,并保持其对各种刺激的自然反应。当暴露于高浓度的葡萄糖时,它们会显示出胰岛素分泌的第一次瞬时爆发。几分钟后,随之而来的是强度稍低但持续良好的胰岛素振荡释放(见图 3)。在糖尿病的情况下,这些反应受损,并且有多种策略旨在恢复健康的胰岛素分泌。研究人员希望以高时间分辨率观察这些细节,以便他们能够更好地了解糖尿病的潜在机制并开发用于治疗的化合物。据我们所知,功能强大的胰岛微组织与 Patrick 的悬滴平台相结合,提供了前所未有的时间分辨率。图表显示随时间推移的胰岛素分泌和相应的葡萄糖水平图 3 微组织在暴露于升高的血糖水平时分泌胰岛素。胰岛素分泌遵循一个非常典型的模式:第一次爆发,然后是脉动的第二阶段。最后一个问题:器官芯片平台是否可以商用?Burcak:微组织很容易用于与 InSphero 的合作项目。帕特里克:目前我们有工作平台原型,我们愿意与学术和工业合作伙伴合作以优化我们的平台。我们的原型使我们能够对单个胰岛进行非常灵敏的测量。我们希望这项技术进步将帮助糖尿病研究人员找到新药并更深入地了解胰岛生物学。在下一步中,我们希望提高实验吞吐量,因为这是复合测试的关键要求之一。此外,我们正在进一步降低操作复杂性,目标是使该系统可供不同实验室的研究人员使用。文献链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900291
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/LTris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(1.标准物质分别用甲醇配制成100 m-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。
  • 土壤普查丨谱育科技LC-MS/MS为您解答土壤中磺酰脲类除草剂检测难题
    背景磺酰脲类农药为选择性内吸传导型除草剂,以其高效、低毒、高选择性等特点成为目前世界上使用量最大的一类除草剂。随着该类除草剂使用范围的扩大,其在农作物、环境、土壤和和动物源性食品中的残留对人类健康的危害日益受到关注。2022年2月16日,国务院发布第三次全国土壤普查文件,规定磺酰脲类除草剂纳入普查监管范畴。本文依据农业行业标准《NY/T 1616-2008 土壤中9种磺酰脲类除草剂残留量的测定 液相色谱-质谱法》,使用谱育科技的超高效液相色谱-三重四极杆串联质谱仪,测定土壤中6种磺酰脲类除草剂残留,检出限,定量限,灵敏度等符合标准要求,为普查开展提供强力的国产三重四极杆质谱产品支持。仪器部分参照农业行业标准《NY/T 1616-2008 土壤中6种磺酰脲类除草剂残留量的测定 液相色谱-质谱法》使用氮吹平行浓缩仪和全自动固相萃取仪进行前处理。搭载UHPLC 510超高效液相色谱仪的EXPEC 5210 LC-MS/MS 是谱育科技在“国家重大科学仪器设备开发专项”支持下,创新研制的三重四极杆串联质谱仪。具有卓越的灵敏度,优异的稳定性,集高性价比与可扩展性于一身,广泛应用于食品安全,医学司法检测,生物医药和环境领域。EXPEC 570 全自动固相萃取仪可自动完成固相萃取全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱等),自动完成柱切换等功能,实现批量样品的处理。EXPEC 520 氮吹平行浓缩仪是通过水浴加热及利用氮气的快速流动打破液体上空的气液平衡,从而使液体挥发速度加快,达到快速浓缩溶剂的效果。实验部分液相和质谱条件:典型谱图与标准曲线:15分钟即可获得6种磺酰脲类除草剂的色谱图。6种磺酰脲类除草剂混标的色谱图(1ng/ml)6种磺酰脲类除草剂的线性系数R均在0.999以上,部分物质标准曲线图如下:部分农残化合物峰图结果(2ug/L)以标准曲线最低点计算所得各目标物检出限和定量限,均优于标准检出限要求约50-200倍。6种磺酰脲类除草剂的检出限和定量限总结EXPEC 5210 LC-MS/MS充分发挥高灵敏度,抗污染等优质特性,配合谱育科技高效前处理设备,15分钟内快速分析6种磺酰脲类除草剂残留,灵敏度,定量限,检出限满足农业行业标准要求。
  • 我国科学家揭示特殊DNA的合成机制
    脱氧核糖核酸(DNA)是生命体的遗传物质,决定生物的特征和多样性。生命的遗传信息存储在由腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种碱基组成的DNA序列中。1977年前苏联科学家在感染蓝细菌的一株噬菌体中发现由2,6-二氨基嘌呤(Z)、G、C、T组成的DNA,该类特殊DNA中的Z完全取代了正常的A,且Z与T配对形成更稳定的三个氢键,极大地改变了DNA的物理化学特征。长期以来,特殊DNA的合成机制及存在的普遍性和生理意义一直是未解之谜。  国家重点研发计划“合成生物学”重点专项“新天然与人工产物的定向挖掘和高效合成的平台技术”项目在该特殊DNA的合成机制研究上取得重大进展。天津大学研究团队联合上海科技大学、美国伊利诺伊大学等研究团队,解析了该特殊DNA的合成机制,其中包括关键酶参与的2,6-二氨基嘌呤脱氧核糖核苷酸(dZTP)的生成和脱氧腺苷三磷酸(dATP)的消除,并发现这种特殊DNA遍布全球,大量能感染细菌的噬菌体都含有这种DNA。该研究还发现该特殊DNA可以规避识别位点中含有A的限制性内切酶的切割,因此含有该种特殊DNA的噬菌体可以逃避宿主的免疫防御从而具有进化优势。  该项重大发现对生命起源、物种进化、系统生物学的研究具有重要理论意义,在超级耐药菌感染的治疗、绿色无抗生素畜牧饲料和食品保存技术开发、新型纳米材料制备、DNA信息存贮等领域具有潜在应用价值。该研究成果近期发表在《Science》杂志上。   论文链接:https://science.sciencemag.org/content/372/6541/512.full  注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 海南大学新检测技术将有效预警海洋核污染物
    海南大学南海海洋资源利用国家重点实验室王宁和袁益辉研究团队提出利用DNA结构实现超灵敏和高选择性锶离子检测的方法,可快速有效实现海洋放射性污染物监测,助力核电产业绿色可持续高质量发展。相关成果近日发表在国际学术期刊《自然可持续发展》上。  随着核能的广泛应用,防治放射性核污染成为人们关注的话题。作为235U的裂变产物,90Sr是最常见的放射性核污染元素之一。其化学性质与钙相似,易在环境与生物体内富集,对人体的辐射可引起骨癌、白血病等疾病,此外,因其半衰期长达29年,具有长期危害性,是人类不可忽视的一大隐患。然而,由于锶离子缺乏特征能量射线,使用现有技术无法快速、全面且精准地进行锶元素检测,如何精准检测一直是个行业难题。  鉴于此,王宁和袁益辉研究团队提出了一种以鸟嘌呤-四联体DNA(脱氧核糖核酸)结构实现超灵敏和高选择性检测Sr2+离子的方法。该团队通过利用荧光染料硫黄素T触发DNA折叠,形成鸟嘌呤-四联体DNA结构,并利用Sr2+与该DNA结构的高结合亲和力,取代结构中的荧光染料硫黄素T,从而导致荧光强度衰减。  此项研究提供了一种快速高选择性核污染检测技术的方法,首次实现低至2.11纳摩的检测限,具有超高灵敏度、高选择性、广泛适用性和高可靠性。
  • 质谱技术在肝脏疾病检测中的研究进展
    p   肝脏疾病是严重危害人类健康的疾病,其病因复杂多样,既包括感染、肿瘤等常见因素,也包括自身免疫性、先天性疾病等特殊因素。临床最常见的慢性肝病为乙型肝炎病毒(hepatitisB virus,HBV)和丙型肝炎病毒(hepatitis C virus,HCV)感染所致,在世界范围内分别有3.7亿和1.3亿患者 慢性肝炎通常缓慢进展为肝纤维化和肝硬化,最终可能发展为肝细胞肝癌(hepatocellularcarcinoma,HCC),肝细胞癌死亡率很高,据世卫组织报道,每年全世界死于HCC的患者约为600 000人,而其中一半死亡病例发生在中国[1]。除了病毒感染外,药物和毒物的损害,营养不良和嗜酒,以及代谢异常等因素也是肝脏疾病的主要原因。 p   慢性肝病的诊断对疾病的治疗和预后具有重要的意义,目前对肝炎病毒感染的诊断,通常采用免疫学或分子生物学技术检测病毒的特异性抗原、抗体或核酸片段,而肿瘤标志物及影像学技术对HCC的诊断也有广泛的临床应用。近几年,随着技术的发展和革新,质谱技术也开始广泛应用于各个医学诊断领域,如肿瘤标志物筛选、细菌鉴定、耐药分析以及病毒检测等,成为很多临床实验室的常规检测技术[2]。 /p p   一、质谱分析技术发展状况 /p p   虽然,世界上第一台质谱仪在20世纪早期就已研制成功,但直到20世纪80年代,随着基质辅助激光解析(Matrix–AssistedLaser Desorption/Ionization,MALDI)和电喷雾电离(Electrosprayionization,ESI)等& quot 软电离& quot 技术的发展才使得质谱技术在生物医学领域得到广泛的应用。随后,液质联用技术,如LC–MS/MS的出现,则极大地推动了质谱技术在医学检验领域的发展。目前应用较广泛的质谱技术包括表面增强激光解析电离飞行时间质谱(surface–enhancedlaser desorption/ionization–time of flight,SELDI–TOF–MS)和基质辅助激光解析电离飞行时间质谱(Matrix–AssistedLaser Desorption/Ionization Time of Flight Mass Spectrometry,MALDI–TOF–MS)等,它们是新型的蛋白质组学研究技术,具有高通量和高速度的优势,目前主要用于肿瘤及其他疾病标志物的筛选。但二者的灵敏度和重复性存在一定缺陷,严重制约了它们在临床检测中的应用。而且上述技术只能对目的蛋白或疾病标志物进行定性检测,无法反映疾病的严重程度并对疾病进行预后判断。近年新发展起来的包括核素标记定量(isobarictags for relative and absolute quantitation, iTRAQ)技术可对样品进行蛋白质绝对和相对定量研究,具有分离能力强,分析范围广的特点,但是,对样本要求高,样本处理过程复杂及高试剂成本是该技术的主要缺陷。基于气相色谱–质谱(GasChromatography–Mass Spectrometer,GC/MS)和液相色谱–质谱联用(LiquidChromatography –Mass Spectrometry,LC/MS)技术是目前常用的检测方式,尤其是该技术在代谢组学中的研究价值受到学者的广泛关注,代谢组学的研究对象大都是相对分子质量1 000以内的内源性小分子物质,通常采用核磁共振(nuclearmagnetic resonance,NMR),色谱(high performanceliquid chromatography,HPLC)等技术分离并检测人体尿液或血浆等生物样本中的代谢物谱图,再结合模式识别方法,可以判断出生物体的病理、生理状态,并找出与之相关的生物标志物。相比较蛋白质组研究,代谢物分子检测更加容易,并且种类少,更适合作为疾病的标志物。 /p p   二、质谱技术在病毒性肝炎检测中的应用 /p p   HBV及HCV感染严重威胁着人类健康,目前临床实验室主要采用化学发光和核酸扩增技术进行病毒抗原、抗体和核酸的检测。MassARRAY是基于MALDI–TOF–MS的核酸分析技术,已有学者将该技术用于HBV与HCV的血清分型,该方法的主要优势是快速、廉价。另外,该技术可以检测病毒的变异,区分野生株和突变株,指导临床用药,但缺点是只能用于HBV的B和C型[3]。 /p p   HBV突变可导致拉米夫定耐药,目前主要检测方法是测序,但耗时长,不适合大样本量的检测。Hong SP等采用MALDI–TOF–MS方法进行变异位点的检测,具有更高的灵敏度和特异性,并且可以对HBV感染患者抗病毒药物治疗效果进行监测[4]。另外,对HCV分型的MALDI–TOF–MS方法也有不少文献报道[5,6,7]。MALDI–TOF–MS技术也可用于其他抗病毒药物耐药的检测[8]。 /p p   三、质谱技术在肝纤维化及肝硬化检测中的应用 /p p   肝脏活组织检查是诊断肝纤维化的金标准,但该方法是有创性检查,患者依从性差,因此临床迫切需要寻找简单且易推广的无创性诊断指标用于评估肝纤维化。目前对肝纤维化的无创性诊断方法主要包括影像学和血清学指标,而质谱技术在寻找新的无创性诊断指标中发挥了很大的作用。Poon的研究组应用SELDI–TOF MS技术寻找与肝纤维化分期相关的蛋白指纹峰,并利用差异蛋白峰建立了神经网络(ArtificialNeural Network,ANN)诊断模型,发现了5个蛋白峰(m/z为5905, 5928, 5948,3162,3267)与Ishak纤维化评分显著相关,ANN模型指数与纤维化评分呈显著相关性(r=0.831),并且其对肝硬化的预测正确率可到达89%,对Ishak& gt 4的纤维化患者预测灵敏度可达100%[9]。Marfà 等最近报道采用色谱和SELDI–TOFMS技术发现了一个5.9KDa的多肽具有肝脏早期纤维化的诊断价值,随后证实为纤维蛋白原α链的C末端片段。 /p p   四、质谱技术在酒精性肝病检测中的应用 /p p   酒精性肝病(alcoholicliver disease,ALD)是由于长期大量饮酒所导致的肝脏疾病。ALD的诊断是基于综合临床特征的,包括明确的饮酒史、肝病临床证据和血清异常指标的支持。但常用的实验室检测指标在ALD诊断中的灵敏度和特异度均不能满足临床的需求,因此研究ALD的特异性诊断指标具有重要的现实意义。然而,由于酒精性肝病与其他类型肝病在患者机体生理变化上极其相似,所以寻找ALD特异性的标志物非常困难。Nomura的研究组早在2004年就采用质谱技术进行了这方面的探索,他们的思路是通过对酒精依赖症患者血清中的差异蛋白进行分析,试图找到具有诊断价值的ALD标志物,他们发现在慢性酒精依赖患者血清中纤维蛋白原aE片段和Apo AII以及色素上皮衍生因子(PEDF)都可能成为酒精依赖的特异性标志物]。另一个研究思路是通过对成人酒精摄入前后血清中蛋白质的变化来寻找酒精代谢的标志物,如Liangpunsakul等[13]采用MALDI–TOF–MS技术对16例志愿者饮酒前后的血清蛋白质谱进行比较,发现一个59 000的蛋白质在饮酒后发生了显著改变,经鉴定该差异蛋白为α–纤维蛋白原,并认为该蛋白可以作为ALD的特异性标志物。 /p p   另外,部分学者通过建立酒精依赖的动物模型,通过质谱检测发现了部分具有ALD诊断价值的蛋白质或代谢物分子,如Zhang L等采用蛋白质组学技术对酒精诱导的小鼠模型进行蛋白差异分析,他们提取了肝细胞的胞浆膜,并用双向技术和iTRAQ技术分别进行检测,结果共有15个不同的蛋白被检测出来,其中,角蛋白–8被在两种不同的方法中均被检测出有意义,他们认为该分子可能在酒精对肝脏的损害中发挥一定的作用[14,15,16]。 /p p   五、质谱技术在肝细胞癌检测中的应用 /p p   HCC是常见且致死率高的恶性肿瘤,目前临床使用的甲胎蛋白(alpha–fetalprotein,AFP)一直是HCC诊断的重要指标,但AFP诊断HCC的灵敏度只有39%~65%,无法满足早期诊断和预后判断的要求,因此研究新的血清学标志物具有重要的意义。 /p p   2003年Poon的研究组采用SELDI–TOF–MS技术比较慢性肝病组(chronic liver disease,CLD)和HCC患者的血清蛋白指纹图谱,并根据差异蛋白建立了神经网络预测模型。他们发现m/z为8944和8811的蛋白峰在两组之间具有显著性表达差异,并且与肿瘤转移有关,ANN模型可到达90%的特异性和92%的灵敏度[17]。Liu C等采用MALDI–TOF–MS技术对60例HCC患者,36例其他肝病患者和46名性别年龄匹配的正常人的血清蛋白质谱进行比较,他们发现4471、8936、11670和13752 m/z的蛋白峰具有HCC鉴定的特异性,采用决策树建立诊断模型,其AUC可达到0.927[18]。Xiao等[19]采用超高效亲水性液相色谱与电喷雾四极杆飞行时间串联质谱联用法(PerformanceLiquid Chromatography–Quadrupole Time of Flight–Mass Spectrometry,UPLC–QTOF–MS)技术对HCC患者和肝硬化患者血清小分子代谢产物差异进行比较,最终,甘氨胆酸(glycocholicacid,GCA),甘氨脱氧胆酸(glycodeoxy–cholicacid,GDCA)等代谢产物被发现在HCC组和肝硬化组有显著差异性,有望成为新的HCC诊断标志物。 /p p   六、展 望 /p p   生物质谱技术具有高通量、快速等特点,因此在生物大分子研究领域得到了广泛应用,目前很多具备条件的临床实验室也开始引进质谱仪用于临床样本的检测[20],例如MALDI–TOF–MS已成功进入临床微生物实验室,成为细菌鉴定领域突破性的技术。在肝病的诊断中,生物质谱技术具有很好地发展前景,通过质谱技术有可能发现一些灵敏度高和特异度好的肝病分子标志物,可极大地提高目前的肝病诊断水平。 /p p   (参考文献:略) /p p br/ /p /p
  • 超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂
    超高效液相色谱/电喷雾串联质谱(UPLC/MS/MS)分析16种磺酰脲除草剂 蔡麒、黄静、Yap Swee Lee 沃特世科技(上海)有限公司 介绍 磺酰脲类除草剂品种的开发始于70年代末期。1978年Levitt 等报道,氯磺隆(chlorsulfuron)以极低用量进行苗前土壤处理或苗后茎叶处理,可有效地防治麦类与亚麻田大多数杂草。紧接着开发出甲磺隆,随后又开发出甲嘧磺隆、氯嘧磺隆、苯磺隆、阔叶散、苄嘧磺隆等一系列品种。磺酰脲类除草剂由芳香基、磺酰脲桥和杂环三部分组成,在每一组分上取代基的微小变化都会导致生物活性和选择性的极大变化。 磺酰脲类除草剂的活性极高,属于超高效除草剂。这类除草剂用量很低,其用药量由传统除草剂的公斤级降为以克为单位。此类除草剂发展极快,已在各种作物地使用,有些已成为一些作物田的当家除草剂品种。而且,新的品种还在不断地商品化。 随着除草剂的大量应用和新品种的不断开发,带来了相应的环保问题。主要表现为除草剂的毒性问题、残留问题、生态问题、环境污染等问题。由于磺酰脲类农药的高效性,微量即可产生良好除草效果,但若使用不当就会对环境和其他作物产生危害。有些磺酰脲类除草剂的品种,如氯嘧磺隆、绿磺隆、甲磺隆、胺苯磺隆等在土壤中主要通过酸催化的水解作用及微生物降解而消失,土壤的温度、pH值、湿度、有机质含量对水解作用及微生物降解均有很大影响。 本文介绍了使用沃特世公司超高效液相色谱(UPLC® )和串联质谱(MS/MS)分析16中磺酰脲除草剂的分析方法。 2004年沃特世(Waters® )推出的ACQUITY UPLC® ,使用了具有1.7&mu m 颗粒粒径固定相的色谱柱,可以在高压下使用(最大压力 15,000 psi)。高压与极细颗粒的结合提供了快速、高分离度的分离,提高了灵敏度,减少了基质干扰。 2008年沃特世推出的Xevo TQ MS是新一代的串联四极杆质谱,改进了离子源的设计,改善了离子化效率,提高了灵敏度。Xevo TQ MS由于采用了专利的Scanwave技术和MS、MS/MS快速切换技术,大大改善了传统四极杆在进行MS Scan和Daughter Scan灵敏度低的问题,并且增加了实验选择性。 使用UPLC/Xevo TQ MS分析16种磺酰脲除草剂方法仅需要6分钟,而常规HPLC分析时间需要超过40多分钟的,因此UPLC更快的运行速度不仅提高了仪器的高通量,也减少了方法的开发时间。 超高效液相色谱ACQUITY UPLC 以及新一代串联四极杆质谱仪Xevo TQ MS 实验部分 色谱条件 系统: ACQUITY UPLC 超高效液相色谱系统 色谱柱: ACQUITY UPLC BEH C18,1.7um, 2.1x50mm P/N: 186002577 流动相A: 10mM AcNH4&bull H2O (含0.1%甲酸) 流动相B: 乙腈(含0.1%甲酸) 流速: 0.5mL/min 柱温: 35 ˚ C 进样体积: 5 µ L 分析总周期: 6 min UPLC梯度 质谱条件 MS系统: Xevo TQ MS 串联四极杆质谱仪 离子化模式: ESI+ 毛细管电压: 1.0Kv 源温度: 150 ˚ C 雾化气温度: 450 ˚ C 雾化气流速: 800L/h 锥孔气流速: 50L/h 碰撞气流速: 0.18ml/min 多反应监测条件如表1所示 表1:ES+模式下16种磺酰脲除草剂MRM离子对参数 结果和讨论 图1给出了16种磺酰脲除草剂在UPLC中的分离色谱图。6分钟可以完成16种磺酰脲除草剂的分析,与普通 HPLC 40min-50min 的分析时间相比,缩短了将近7倍,大大增加了实验室样品的通量,同时节约了试剂成本和人力成本。分析时间大大缩短的同时,仍然保留了高效的分离能力。从TIC色谱图上可以得到14种基线分离的色谱峰,另外两种由于极性相似度非常高,没有基线分离,但是通过质谱MRM通道可以完全分开,因此本方法在寻求快速分析的同时,兼顾了色谱分离的要求,降低基质影响的效果。 图1:16种磺酰脲除草剂TIC图 图2,图3给出了具有代表性的卞嘧磺隆(Bensulfuron)和环氧嘧磺隆(Oxasulfuron)在浓度范围1-200ng/mL的标准曲线,本标准曲线是用溶剂空白以及相应浓度标准检测绘制的。图 2. 卞嘧磺隆(Bensulfuron)标准曲线 表 3. 环氧嘧磺隆(Oxasulfuron)标准曲线 表2给出的是16种磺酰脲除草剂1ppb的信噪比(Peak to Peak)和 1,5,10,50,200ng/ml的线性相关系数。 表2. 磺酰脲除草剂的1ppb信噪比和线性相关系数 图4给出的是最低检测限浓度(0.01ng/ml)附近的化合物谱图。从分析结果来看,仪器的标准检测限除苯磺隆外基本可以达到0.01ng/mL甚至更低。 图4. 16种磺酰脲除草剂0.01mg/mL谱图 结论 ACQUITY UPLC系统提高了磺酰脲除草剂分析的选择性和灵敏度,同时运行时间显著缩短。现在科学工作者们已经跨越了传统HPLC限制的障碍,可以使用UPLC将分离化学延伸和扩展到更多应用中。
  • 托普云农作为企业代表参加省制造业“腾笼换鸟、凤凰涅槃”攻坚行动推进大会
    8月30日上午,浙江省新一轮制造业“腾笼换鸟、凤凰涅槃”攻坚行动推进大会在杭州召开,省委书记袁家军批示,省委副书记、省长郑栅洁出席会议并发表讲话。浙江托普云农科技股份有限公司作为第一批专精特新重点“小巨人”企业代表参加分会场会议并受到表彰。浙江省制造业“腾笼换鸟、凤凰涅槃”攻坚行动推进大会召开 袁家军在批示中指出,各级各部门要深入贯彻习近平总书记关于制造强国的重要论述精神,完整、准确、全面贯彻新发展理念,聚焦聚力高质量发展、竞争力提升、现代化先行,全力推进碳达峰碳中和系统性变革,以数字化改革为牵引,坚决打好新一轮制造业“腾笼换鸟、凤凰涅槃”攻坚战,全力建设全球先进制造业基地,为奋力打造“重要窗口”,争创社会主义现代化先行省,高质量发展建设共同富裕示范区作出新的贡献。 郑栅洁指出,实施新一轮制造业“腾笼换鸟、凤凰涅槃”攻坚行动,是推动制造业高质量发展、实现提质扩量增效的关键一招,必须举全省之力打好这场硬仗。各地各部门要提高站位,强化联动协同、要素保障、考核评价和营商环境打造,咬紧牙关、迎难而上,埋头苦干、务求实效,加快汇聚强大合力,确保如期完成三年攻坚目标。 郑栅洁强调,要壮大专精特新中小企业群体,在用好国家奖补政策的基础上,制定精准滴灌的专项政策,推动更多有基础、有潜力的企业进入国家级榜单,为拥有关键核心技术的“好苗子”量身定制培育方案,针对性地帮助他们补齐短板、提升实力。 “专精特新”是国家为引导中小企业走专业化、精细化、特色化、新颖化发展之路,增强自主创新能力和核心竞争力,不断提高中小企业发展质量和水平而实施的重大工程。而专精特新重点“小巨人”企业则是专精特新“小巨人”中的佼佼者,是更专注于细分市场、创新能力强、市场占有率高、掌握关键核心技术、质量效益优的排头兵企业。浙江作为全国中小企业数量最多的省份之一,产业根基深厚、土壤肥沃,是“小巨人”成长的温床。 托普云农作为一家数字农业领域的专精特新重点“小巨人”企业,正是依托浙江雄厚的产业基础、高度的政策支持、有力的机制保障,不断创新发展核心技术,提升行业综合实力的结果。深耕农业领域十余年,托普云农一直以“用科技改变传统农业 用服务缔造美好生活”为使命,坚持自主研发农业智能装备,通过利用人工智能、图像识别、物联网等新兴技术,托普云农研发出了一系列高效、便捷、数据可追溯的农业智能装备。同时凭借在农业领域的探索创新,托普云农科技赋能打造环境监测、病虫害测报、智能传感器等适用于农作物全生命周期的智能装备和智慧应用,为农业科研、农事作业提供更多便利,推动三农领域数字化改革转型,迈向现代化。 省委常委、常务副省长陈金彪,省人大常委会党组副书记、副主任李卫宁,省政府副省长卢山,省政协副主席、党组副书记孙景淼,省政府秘书长陈新等省领导及各省级单位负责人、金融机构、省属国企、省内高校负责人、省内重点企业代表出席本次大会。
  • 香港浸会大学贾伟团队新成果:中药有效阻断胃癌演变
    近日,伴随着香港新冠疫情趋于缓和,人们越来越多的认识到中医药在治疗奥密克戎病毒中发挥的「神奇」功效。日前,一份「世卫组织关于传统中药治疗COVID-19的专家评估会议报告」也对中医药治疗新冠肺炎的有用功效进行了热烈探讨。中医药,这一中华传统文化的瑰宝,再度在国际舞台彰显非凡魅力。以中医药学科优势见长的香港浸会大学,在创新中药领域再有重大突破。凭借发现猪胆酸用于治疗2型糖尿病而出圈的国际知名的代谢组学专家、浸大中医药学院副院长(国际合作)贾伟教授近日携他的另一项重要研究出现在人们的视野。贾伟教授研究团队最新科研成果刊登于知名国际学术期刊Advance Science贾伟教授率领的研究团队首次证实了胆汁酸-微生物的串扰与反流性胃炎引起的胃癌发生机制。该项研究揭示了结合型胆汁酸与致炎性微生物的增殖在促进胃癌病变中的有害作用,证实了中药丹参中的一种有效成分隐丹参酮能有效抑制胆汁酸反流引起的胃癌病变。这一研究成果为针对胆汁反流性胃炎的癌变提供了新的预防和治疗策略,并已刊登于国际科学期刊Advance Science。胆汁反流性胃炎之谜胆汁反流性胃炎是一种非常常见的疾病,它是指十二指肠内的胆汁反流进入胃内,引发胃黏膜炎症、糜烂、出血,进而出现一些上腹部不适的症状。最近的研究发现,胆汁反流性胃炎存在向胃癌演进的可能性。因此,胆汁反流性胃炎引发的胃癌病变越来越受到大家的重视。胆汁反流性胃炎与胃癌前病变相关胆汁反流与胃癌前病变密切相关,但具体的机制尚不清楚。贾伟教授领导的研究团队收集了胆汁反流性胃炎(BRG)及胃癌(GC)患者的胃液样本,通过超高效液相色谱串联三重四级杆质谱分析分析胃液中胆汁酸的水平和成分,结果发现,胆汁反流性胃炎患者胃液中胆汁酸浓度显著高于健康对照组。反流后胃液pH值也显著升高,说明当胆汁反流入胃后,改变了胃内的微环境。研究团队通过相关性分析发现,结合型胆汁酸中的牛磺脱氧胆酸(TDCA)与pH值的相关性最强。过去较长的时间内,因为胃内极酸的环境,人们普遍认为胃内是没有菌可以生存的。直到1983年幽门螺旋杆菌(Helicobacter pylori,Hp)的发现,才纠正了胃内无菌的这一错误认识。在中国,幽门螺旋杆菌的感染率高达60%。越来越多的研究发现,即使利用抗生素根除幽门螺旋杆菌,也不能完全阻止胃癌的发生,这提示了研究团队还有其它因素参与其中。贾伟教授(右上)目前担任浸大中医药学院教学科研部讲座教授、香港中医药表型组学研究中心主任,他的实验室位于香港科学园。贾伟教授的研究团队透过进一步研究发现,结合型胆汁酸增加胃腔内分泌产脂多糖(LPS)的微生物丰度,促进了胃癌的发生。研究团队对胆汁反流性胃炎和胃癌患者的胃液进行16S rRNA三代全长测序以及宏基因组测序分析。结果发现,产脂多糖(LPS)这一类细菌的丰度大幅度升高,其中,有一种名为产黑素普雷沃菌(Prevotella melaninogenica)变化尤为显著,并且该菌与牛磺脱氧胆酸(TDCA)之间存在强正相关的关系。研究人员透过细胞实验和动物实验对胆汁酸回流如何影响胃癌的癌变机制进行了研究。细胞实验中,研究团队发现牛磺脱氧胆酸(TDCA)和产脂多糖(LPS)能够加速胃上皮细胞的繁殖。动物实验中,研究团队发现二者也能促进小鼠的胃炎。实验揭示了牛磺脱氧胆酸(TDCA)和产脂多糖(LPS)通过激活IL-6/JAK1/STAT3炎症通路促进胃部炎症和癌变的重要机制。此通路在包括胃癌在内的多种癌症的发生过程中发挥着较为重要的作用.隐丹参酮:有效阻断胃癌演变丹参首载于《神农本草经》:“主心腹邪气,肠鸣幽幽如走水,寒热积聚,止烦满,益气”。至宋代《证类本草》时,医界对丹参功效又有了新的认识,除之前原有的功效外,《药性论》中记载:“主中恶,治百邪鬼魅,腹痛,气作声音鸣吼,能定精”。隐丹参酮,是中药丹参中一个重要的活性物质,是天然的STAT3抑制剂,具有抗氧化、抗炎、抗菌等活性。贾伟教授领导的研究团队给予胆汁反流模型小鼠隐丹参酮,发现隐丹参酮能够阻断由胆汁酸反流造成的胃癌前病变。研究团队通过构建的胆汁反流手术模型小鼠,进一步验证了胆汁反流长期干预可通过激活IL-6/JAK1/STAT3通路而促进胃癌的发生,而隐丹参酮可以通过抑制STAT3的激活达到预防胆汁反流性胃癌发生的效果。贾伟教授的研究揭示了胆汁酸反流胃炎促进胃癌转变的重要新机制,为胆汁反流导致的炎症治疗和癌症预防找到了有效的中药药物,具有非常重要的临床意义。同时,研究团队建立了更贴近临床表型的小鼠胆汁反流模型,为后续研究其它相关代谢通路在胆汁反流性胃炎中的作用提供了有效的科学研究手段。该项研究与上海交通大学附属第六人民医院科研团队合作完成。隐丹参酮作为中医药的瑰宝,具有抗炎甚至抗癌的效果,希望在不久的将来,可以看到其在癌症治疗中的巨大临床应用价值。
  • 厦大牵头研制!全球首个戊型肝炎病毒抗原尿液检测试剂盒获批上市!
    25日,记者从厦门大学国家传染病诊断试剂与疫苗工程技术研究中心获悉,近日,由厦门大学、中国食品药品检定研究院和万泰生物联合研制的戊型肝炎病毒抗原尿液检测试剂盒(胶体金法、荧光免疫层析法)获得国家药品监督管理局批准上市。该试剂为全球首个以尿液抗原为靶标的戊肝诊断试剂,填补了相关产品和技术空白,其临床评估结果显示检测准确度为98.58%,对全球戊肝患者的临床诊断与治疗管理具有重大意义。戊型肝炎病毒(hepatitis E virus,HEV)是全球范围内病毒性肝炎最主要的病原体之一。全球每年新发HEV感染2000万例,死亡44000例。在我国,戊肝是急性病毒性肝炎的首要病因,其发病人数正逐年上升。慢性肝病患者、孕妇、老年人是HEV感染的高危人群。慢乙肝患者重叠感染HEV后,与未重叠感染HEV的患者相比,肝衰竭发生风险升高至10.9倍,死亡风险升高至8.54倍。有报道显示孕妇特别是妊娠晚期孕妇,感染HEV后的病死率高达15%~25%,且死胎率、早产率高。老年人感染HEV容易导致重型肝炎,占比达14%。我国现阶段戊肝的临床诊断主要依赖HEV IgM抗体检测(《戊型病毒性肝炎诊疗规范》,2009),但仅依赖血清学检测指标难以判断是否为戊肝现症感染,因此亟需病原学检测方法。作为RNA病毒,HEV的核酸检测存在操作复杂、成本高、易污染等问题,因而未能大规模的推广和使用。HEV抗原检测虽然是更便捷的诊断手段,但此前的抗原试剂存在灵敏度不高、阳性周期短等问题。研究团队以尿液中pORF2抗原为靶标研制了全球首个HEV抗原尿液检测试剂盒,首次在全球范围内将临床肝炎的诊断与治疗指导由血液或者粪便靶标转移至尿液中。据介绍,尿液抗原检测为戊肝临床诊断提供了最有效的手段。同时其采样简便、安全无创、检测快速,将极大提高戊肝临床诊断可及性和诊断效率,尤其是在戊肝主要流行的非洲、东南亚等发展中地区。该试剂具有我国自主知识产权,在戊肝诊断方面实现了重要突破,为全球肝炎防治贡献了中国力量。据悉,该试剂近期将投入市场,未来将出现在医院、疾控中心等场所用于戊肝的快速精准诊断。
  • CFDA:仙灵骨葆口服制剂或致肝损伤
    p   国家食品药品监督管理总局(CFDA)日前发布了第七十二期《药品不良反应信息通报》,提示关注仙灵骨葆口服制剂引起的肝损伤不良反应。 /p p   仙灵骨葆口服制剂是一类补肾壮骨药,具有滋补肝肾、接骨续筋、强身健骨的功效,临床上用于骨质疏松和骨质疏松症、骨折、骨关节炎、骨无菌性坏死等。 /p p   国家药品不良反应监测数据分析结果显示,仙灵骨葆口服制剂可能导致肝损伤风险,临床表现包括乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等,并伴有谷丙转氨酶、谷草转氨酶、胆红素等升高,严重者可出现肝衰竭,长期连续用药、老年患者用药等可能会增加这种风险。 /p p    strong 国家食品药品监督管理总局建议内容如下: /strong /p p   (一)医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品,对有肝病史或肝生化指标异常的患者,应避免使用仙灵骨葆口服制剂。 /p p   (二)患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。 /p p   (三)药品生产企业应当加强药品不良反应监测,及时修订仙灵骨葆口服制剂的药品说明书,更新相关的用药风险信息如不良反应、禁忌、注意事项等,以有效的方式将仙灵骨葆口服制剂的用药风险告知医务人员和患者,加大合理用药宣传,最大程度保障患者的用药安全。 /p p    strong 配发问答 /strong /p p   1、仙灵骨葆口服制剂的主要成份是什么?主要用于治疗什么疾病? /p p   仙灵骨葆口服制剂的成份包括淫羊藿、续断、丹参、知母、补骨脂、地黄。 /p p   该品种具有滋补肝肾,接骨续筋,强身健骨的功效,临床上用于治疗骨质疏松和骨质疏松症,骨折,骨关节炎,骨无菌性坏死等。 /p p   2、仙灵骨葆口服制剂导致的肝损伤有哪些风险因素? /p p   长期连续用药或老年患者出现肝损伤的风险有所升高。肝功能不全或合并使用其他可能导致肝损伤的药物等也可能增加仙灵骨葆口服制剂的肝损伤风险。 /p p   3、如何降低仙灵骨葆口服制剂的肝损伤风险? /p p   医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品。有肝病史或肝生化指标异常的患者应避免使用仙灵骨葆口服制剂。 /p p   患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。 /p p br/ /p
  • 南开大学李功玉:我的质谱前十年,从“菜鸟球员”到“菜鸟教练”的奇妙之旅
    从收到中科大黄光明老师转发的贺老师邀请邮件至今,已过去数月有余。很遗憾没能赶上盛大的CNCP-2020《十年回顾》。思考了很久,也拜读了多篇优秀的CNCPer回顾文章,今天总算在南开园,敲下了《我的质谱前十年》这样一个平淡而真实的题目。一直在想是否用《我的质谱前半生》为题会更有吸引力。2012-2022,从中科大起步,踏入质谱分析的科研殿堂,我用了将近十年的时间,勉强完成了从一个质谱“菜鸟球员”(质谱分析方向的一年级研究生)到“菜鸟教练”(质谱分析方向的特聘研究员)的艰难转身。然而,时至今日,在CNCP中我仍然是一名初学者,每天都在继续学习蛋白质组学及相关技术,争取成为一名合格的CNCPer。很荣幸能成为第三代CNCPer一员,也特别感谢贺老师和黄老师给予这样宝贵的平台与机会,我也得以从繁杂的课题组事务中偷得片刻闲暇,在2022年11月的某个傍晚晚饭过后,关上办公室透着微光的玻璃门,放下《视频会议中///请勿扰》的警示牌,随手开了一瓶“82年”的可乐,开始回顾这十年的点点滴滴与细细碎碎。这篇波澜不惊的流水账,期待能给大家茶余饭后带来些许谈资笑料,足矣。如能给年轻的CNCPer学生朋友们带来些许借鉴或者经验教训,也是我内心深处最大的满足啦。  梦起中科大:初识基础质谱  中科大是一个令人魂牵梦萦的地方。出国率高、理科强校、数不清的第一名,对于一个“菜鸟”研究生来说,这些就是中科大耀眼的标签。由于怀揣一个出国梦,因此选择了考研中科大并最终以专业第一的成绩被录取(后来才知道很多同学是保研进来的,根本就不用跟我们pk)。2012年3月底第一次来到科大见到年轻的黄老师。当时在教学楼与黄老师第一次见面聊了一个多小时,初步印象是,黄老师皮肤很好,人也很好。我感觉自我回答很完美的一个问题是:为什么选择分析化学而不是有机化学等其它方向(是因为分析轻松吗)?我说,分析方向相对绿色环保、无毒无害,但是要想出重要成果,肯定要付出加倍努力才行(多么朴实无华的表态)。在我自己当过好多次面试官以后,我才发现自己当时的回答有多么强烈地抓住一位年轻老板的心(此处手动偷笑中)。自此被黄老师选中,追随着黄老师的脚步,在黄老师入职科大大约半年后,我也顺利成为了Huang Lab的第一届硕士研究生。(其实我第一位联系的是邓兆祥老师,当时官网上还没有出现黄老师的太多信息。现在回想起来也要感谢邓老师的推荐,才得以有机会进入质谱分析行业。)  图1. 在Huang Lab搭建的第一个CE-ESI-MS接口装置图。  在中科大这五年,在黄老师的指导下,在科研课题方面,很惭愧仅干了三件小事:1)第一个课题是关于毛细管电泳-质谱接口开发,近乎失败告终(图1,后来课题转给师妹,共同作者发表1篇RCM) 2)基于非接触式电喷雾离子化技术,提出了In-cell MS的概念(原位细胞蛋白质谱,借鉴了当时很火的in-cell NMR),实现了细胞内高表达蛋白的直接进样质谱分析(图2和图3,发表2篇Anal Chem,其中图3是博士毕业前3个月,拿到了博后offer之后等签证过程中的一个quick publication) 3)发展出毫秒级微电泳理论(可能与第一个失败的电泳课题有关)与毫秒级电磁感应加热理论,并整合离子淌度质谱(访问密西根大学),实现了溶液蛋白高级结构动态变化的在线质谱实时监测(发表1篇Anal Chem)。  图2.在Huang Lab搭建的脉冲高压电源电路图、In-cell MS及高通量非接触式电喷雾装置图图3. 博士毕业前3个月发表的一篇Anal Chem  中科大读博期间,有太多的难忘时刻。正如我的博士毕业论文上青涩的文笔所描绘的那般场景,我们致力于发展一种新型的蛋白质质谱监测方式,力争实现细胞内蛋白质的原位、快速监测与结构分析,核心的解决思路是利用超强抗基质干扰能力的离子化方法,并在活细胞内金属蛋白与配体相互作用等方面做了初步的尝试。至今仍会为尝试了6个月差点放弃的全细胞电喷雾实验而突然看到蛋白信号的那一瞬间所触动,起初黄老师和我自己其实都并不太确定最后能拿到信号。6个月的时间里,我们尝试了除了稀释样品外的几乎所有可能想到的方案,直到有一天,我不小心把细胞稀释液给配稀了3个数量级(“失误”),隐隐约约在杂乱的氯化钠团簇离子背景峰中,看到了几个与众不同的多电荷态峰。虽然那时候的信噪比奇差无比,我顿时就预感了成功就在眼前了。剩下的只是参数优化而已。这个课题当时是和中科大化学系刘扬中老师课题组合作的,翻到当时给刘老师的邮件(图4),当时还起了一个特别诗意的名字,One Spray One Separation。这个课题后来我总结起来,还是自己受限于思维定势了,当时一直想着寄希望提高样品量以此获得信号,不曾想过稀释、降低浓度可以减少干扰、提高离子化效率,毕竟惯性思维(思维定势)告诉我,细胞内的蛋白太少了。可是质谱是一个超高灵敏的检测仪器,甚至可以实现单个分子水平上的离子信号监测。虽然后来我们开复盘会的时候,有朝这个方向思考,不过最终并没有进一步实施,后来Albert Heck等相关课题组在charge detection-mass spectrometry(CDMS)仪器上就实现了类似的设想(发表了一系列高影响力文章)。(欲了解相关可点击:电荷检测质谱技术进展)  总结而言,中科大的这段时光是质谱梦的开端,在黄光明老师的指导下,我学会了基础质谱的相关知识,尤其是离子源方面。在黄老师自由宽松的学术氛围下,一切似乎都是那么从容,我可以做自己想做的课题,可以尝试自己不靠谱的想法,这种和谐的科研环境让我很多时候都觉得博士生活并不是人们宣扬的那样枯燥与无趣。这份心态陪伴我渡过了一个又一个关键的时间节点:2014年4月第一篇文章的发表,2015年6月第一次看到细胞内冷应激蛋白的信号,2015年12月与斯坦福大学Richard Zare教授在南京第一次面谈,2016年3月校青年基金获批,2016年4月成功抵达密歇根大学安娜堡分校Brandon T. Ruotolo教授实验室,2016年10月Anal. Chem.接收,2017年4月提交博士毕业论文。  图4. 2015年6月17日首次看到全细胞喷雾钙调蛋白的信号之后,给合作导师刘扬中老师的邮件  寻梦安娜堡:启蒙结构质谱  安娜堡给人的感觉就像是初恋,砰然心动、短暂相伴却也刻骨铭心。在个人职业发展方面,也特别感谢黄老师的大力支持,成功前往密西根大学进行短期交流。这次作为访问学生的身份前往安娜堡的经历,对我的人生走向起着至关重要的作用,彷佛打开了新世界的大门。我可以把所有的事情写成回忆录、拍成照片视频等共享,然而这种认识新事物的过程与体验,若非本人经历是无法体会的。  作为访问学生,第一次去美国,一切都充满未知,语言、饮食习惯、生活和社会环境,每天都给我带来冲击。当时Brandon刚好过了tenure考核,正在学术休假。因此与他直接面对面的交流机会并不多。大多数时间都是跟着实验室师兄师姐们学习离子淌度质谱。很庆幸在此期间接受了离子淌度理论、非变性质谱样品制备以及质谱数据采集及数据处理等方面的系统训练。短短的四个月时间,太多令人回忆起来觉得温暖的瞬间,报到那天是4月11日,负责帮我办手续的HR上来就是一句happy birthday,随后就拿到了后来失而复得的两张UM校园卡(图5)。2016年参加了人生第一次ASMS会议,一个人感受经济舱(第一次坐那种只有二三十个座位的小型客机)、乘坐灰狗长途汽车、换乘短途Uber穿梭在美国中西部大玉米地之间,安娜堡、普渡、俄亥俄州立以及UIUC香槟多个校区,朝发夕至。  图5. 两张UM校园卡(其中一张属于遗失又找回)  图6. ASMS-2016 Ruotolo课题组圣安东尼奥聚餐  翻看着旧照片,思绪万千。2016年和2019年,两次到访Ruotolo Lab,体验截然不同。图6是第一次访问时随课题组参加当年的ASMS年会,在圣安东尼奥(德州)当地一家牛排店,课题组聚餐前的大合影。那一次会议对我来说突如其来,规模之大、交流之深,完全超出我对学术会议的预期,由于我没有做好充分准备,一切都猝不及防,走马观花、热闹过场,却也收获了一批一面之交的、之后时不时线上交流的学术网友。学术上,我的结构质谱是从这里开始的,Ruotolo Lab教会了我离子淌度质谱的基础知识。在做文献阅读时我被Brandon发表在JACS和Angew上的三篇Hofmeister盐调控蛋白结构的文章所深深吸引。作为一个初学者,最快入门的方式就是模仿与重复别人的代表性实验。当时我对此执念很深,因此就开始动手重复那些让我痴迷的实验。Brandon那三篇文章主要是聚焦在盐本身对蛋白的一级质谱的信号挖掘,包括寡聚体组成以及碰撞横截面积CCS的变化等信息。我当时就很想知道,这些盐如果真的调控了高级结构,是否这些盐也能调控复合物拓扑学组装结构?我当时有一个猜想:有没有可能在特定盐的喷雾条件下,复合物的拓扑学结构能够得到更好的保护?因为在结构质谱领域,一直被人诟病的一个地方,就是我们直接测量的是脱溶剂条件下的结构,与溶液相真实结构之间必然存在差异。而这种差异具体有多少,尚缺乏有效的定量评估方法以及通用的差异缓和措施。  图7. 附带普渡大学Graham Cooks院士真迹的实验记录本  一次实验中我意外地发现,当我在经典的非变性质谱溶液中,加入低浓度的碳酸氢铵时,神奇的现象出现了:血红蛋白四聚体复合物的气相解离路径发生了显著变化。传统条件下,几乎所有文献和实验都会相信,四聚体会解离成单体和三聚体,这种解离路径与其溶液中“二聚的二聚”的结构特点是相矛盾的。而在我调整Hofmeister盐条件之后,这种传统认知被打破,四聚体优先解离为二聚体,而这恰恰是溶液相拓扑学结构的真实情况。在我去Purdue访问Aston Lab以及去Ohio State University访问Wysocki Lab时,分别与Graham和Vicki谈论了我当时引以为傲的新发现,试图从两位SID发明人那里得到机制解析方面的帮助。两位都对这个现象表示感兴趣,Graham还用一张便签纸写下了他从电荷态分布的角度给我的一些猜想建议(图7)。第一次观测到这个新现象是大约在抵达安娜堡一个月内。Brandon对此非常谨慎,为了说服他,我接下来的访问时间里,做了至少十种不同复合物体系,并从各种不同的侧面去试图解释这里到底发生了什么。正如博士导师黄光明老师经常在组会上说的那样,咱们做科研的,没有人会相信魔术。后来经过接近2年的断断续续补充实验(图8),我们发现这可能和pH改变之后邻近的双硫键易发生交联有相关性,最终Brandon选择将文章发表在IJMS的一期结构质谱约稿专刊上(尽管我当时有一万个不愿意,从一个初学者的执拗与不成熟的角度看,这种新奇的发现怎么都可以发到一个影响力更高的杂志上)。  图8. 论“喷针质量对于非变性结构质谱实验成功重要性” ——UM实验记录本  2019年夏天,在美国质谱学会博士后职业发展奖的支持下,我再次来到Ruotolo Lab,再次感受安娜堡夏天的尾巴。只是这次是短暂的两周交流,来之前我就一个一个联系之前一起住在Arbor Village、周末一起打球的好朋友们,包括现在已经回到浙大任教授的优秀结构生物学专家张岩老师(青千、长江、青年973首席科学家),只是大家大都已经搬走离开或已回国。我自己选择住在一个更远的、公交车可以直达的地方,想着进一步感受安娜堡downtown远端的生活。这一次,UM给我重新启用之前的学号,课题组安全培训表上我的两次签名之间竟然还没有翻页(亲切感油然而生!),实验室也仍然沿用之前大家商量安排质谱机时的传统(图9)。这一次我来的主要任务是学习结构质谱指引下的分子模拟方法(图10),然而很遗憾,两周的时间还是太过短暂,我并没有完全掌握分子模拟本身,在课题组成员的帮助下,我只基本掌握了在拿到分子结构后,如何用我们的结构质谱数据去匹配、筛选、构建气相条件下的蛋白结构。而图10是当时我在离开安娜堡之前,为了防止我离开课题组以后就忘了怎么做,带我做模拟的Chae要求我在黑板上写下来的工作流程。这一张照片已经成为了我实验室(LimsLab)分子模拟初学者的第一手教材。看着图5的校园卡,猛然发现,还在有效期内,期待疫情过后,重返安娜堡的画面。  图9. Ruotolo课题组安全培训记录(2016+2019)与质谱实验安排表。  图10. 结构质谱指引下的分子模拟过程(2019年8月,写于安娜堡Ruotolo Lab)。  驻扎麦迪逊:感受定量质谱  麦迪逊的经历印象深刻,酸甜苦辣,受益终生。从2017年8月至2021年1月,我在麦屯过了四个中国年。期间没有回国,后来疫情来了,也就直接放弃了回国休假的打算,直到回南开的那一天。麦屯是全美宜居幸福指数排名第一的城市,也是我人生中待过时间第四长的一个城市,同时也是我在美国待过时间最长的一个城市。难忘的生活细节太多,也认识了超级多好朋友兄弟姐妹。竟然一时间不知从何处下笔。今天回想起来,还是觉得时间过得太快,过去四年的时光历历在目,仿佛一切就在昨天。  图11. 博士后导师Lingjun赠送歌手赵雷亲笔签名CD,2019年3月23日,药学院办公室。  非常荣幸加入李灵军老师课题组Li Lab进行博士后训练。印象中Lingjun一直都非常忙,Li Lab课题组大小事务都要操心,几乎每天都工作到凌晨两三点,在凌晨收到李老师的邮件或者信息也不足为奇,当然如果你的邮件被淹没在茫茫list中也偶有发生。记得当时联系李老师申请博后位置,李老师就是在我发送第二封邮件时才回复。Li Lab课题组的研究兴趣广泛,但是以定量质谱方法开发为核心,Lingjun在这个方向上还获得了美国质谱学会ASMS专门给中青年科学家设立的、一年仅颁发一位的重量级奖项Biemann Medal(李老师获得的荣誉如果全部列出来,将占据我这篇文章一半以上的篇幅,建议感兴趣的读者请自行查阅)。Lingjun最让我佩服的一点是,可以常年不花时间锻炼身体,却似乎从来不感冒不生病,一年365天铁人般坚守在工作岗位上。平时的爱好,主要是追追星(图11,赵雷)以及朋友圈发发美食美景和美图。  犹记得当时,刚好前期主要负责离子淌度相关方向的贾辰熙师兄回国(现任北京蛋白质中心独立PI),而我在Brandon那边有一些离子淌度的训练背景,加上有NIH的基金需要这个方向继续发展,最后顺利进入了Li Lab,成为麦屯定量质谱大团队的一员。李老师备受领域内同行的尊敬与认可,作为李老师的学生与课题组成员,我们也深得其益,每次出去开会提到Madison Li Lab就能得到wow的大声回应,而我自己也得益于Lingjun的reputation,成功申请到ASMS的博士后职业发展奖(Postdoc Career DevelopmentAward)。这对于我的职业生涯确实起着很大的鼓舞作用,并以此为契机,推动着后面的每一步探索。  图12. “快速入门”的一篇文章(手性修饰质谱方法学开发)。  博后期间,协助指导了几名研究生,负责维护管理离子淌度质谱Synapt G2,参与撰写了几份NIH基金并发表了五六篇论文,代表Li Lab在ASMS年会上做了两次口头报告。科研方面,总结起来,很惭愧在Li Lab仅干了以下两件小事:  (1)定量质谱方向,一事无成,只是在最后一年时间里(拿到南开的offer之后回国之前),跟着实验室的小伙伴们,学会了4-plex DiLeu的简单合成与组学定量应用,没有在这个方向上帮助Li Lab做出任何贡献(而我自己到今天还在后悔,如果给我更长的时间,我一定会把蛋白组学样品制备、数据处理、定量测量等方面加强,组学质谱技术太强大了!)。当然,在我现在自己课题组LimsLab,我正在弥补这个遗憾,我的学生们目前也正在DiLeu定量质谱的道路上摸索着前行,争取能将DiLeu探针推广到完整蛋白标记领域中。  图13. “厚积薄发”的一篇文章(纳秒光化学点击反应助力原位蛋白质谱分析)。  (2)结构质谱方向,三年多的时间里,主要在以下三个方面取得一点小的进展:发展了面向蛋白结构微小差异的高通量构象操控新策略AIU(发表1篇AC+1篇JASMS) 借鉴印第安纳大学Clemmer Group多维分离单糖小分子的思路,发展了多维差异放大结构质谱新策略,并成功应用于手性多肽的快速结构拆分(图12,如果没记错,这是Li Lab近年来的第一篇Nat. Commun.) 受荧光热电泳实验启发,开发了质谱兼容的纳秒光化学点击反应,实现了蛋白原位检测与结构标记分析(图13,如果没记错,应该是Li Lab近年来的第二篇Nat. Commun.)。前两个工作我现在的学生也在follow,似乎他们现在很喜欢使用相关的技术方法,而第三个工作,我当时在Li Lab协助指导的博士生也跟着拓展,应用到小分子代谢物的检测分析中,今年发表了一篇AC。第二个工作我把它标注为“快速入门”,第三个工作则为“厚积薄发”,主要原因在于课题的完成过程截然不同,前者的关键数据是在我抵达麦屯一个多月就拿到了(美国入境签证为证,哈哈哈),而后者则是我构思了很长时间的一个idea(2017年开始构思),经过漫长的摸索调整,才以最终发表的样子呈现在大家面前。  2020年2月,一场突如其来的新冠疫情席卷全球。所有人的生活方式均因此而改变。犹记得最后一次驱车前往UIUC校园,Jonathan Sweedler实验室使用TIMS仪器就是2月底,当时还特别幸运,在大玉米地香槟这座城市遇到了受Jonathan邀请来化学系做特邀报告的Dick Zare(图14,右下倒数第二张)。这也是除了我去斯坦福Zare Lab访问期间与Dick在美国的唯一一次会面。从此之后,大家经历了居家办公、线上组会、带薪休假的艰难岁月,后来给南开投了第一封求职信便很快收到学院回复,再后来就是和Li Lab的各位小伙伴线上告别(图14,Lingjun很贴心地拼贴了我们故事的点点滴滴,包括第一次线下和李老师在海口国际分析化学年会见面的青涩照片,右下,太感动啦)。  图14. 2021年1月,与Li Lab的各位小伙伴们线上告别。  南开再起航:创办LimsLab  南开是一个既熟悉又陌生的全新环境,无限可能、机遇大于挑战,因此充满期待。南开化学在我投递求职信的第二天就给了我面试通知,并在面试后一周内毫不犹豫地通知我通过了学院的面试。我也在随后毫不犹豫地接受了这份来自南开的爽快offer。于是开始筹建实验室,回国前就在构思自己实验室名字,博后实验室叫Li Lab,最后把自己的实验室叫做LimsLab(图15),寓意为Li-MS-Lab或者Li-IMS-Lab。如其名,LimsLab将打造以离子淌度质谱为核心技术的大分子结构质谱分析实验室。  图15. 南开大学大分子结构质谱分析实验室Logo。  2021年2月25日,我第一次来到天津,第一次来到南开,高效完成了各项报到工作。至此,可以算得上是完成了从“菜鸟球员”到“菜鸟教练”的角色转换。虽然之前也曾帮助实验室做过一些相关的服务工作,而只有此次真正完成角色转变之后,我才深刻意识到一位导师所面临的事物有多繁杂,尤其是对一个从毛坯房白手起家的“菜鸟教练”(图16)。每次被要求填写业余爱好时,我都会毫不犹豫地写下“篮球”这两个字。如果把科研事业当成篮球爱好,首先要建好球场,然后要招募球员。而在这些工作之前,最为重要的是,作为这样一个身兼数职的“菜鸟教练”,虽然有学校给提供的start-up启动经费,还需要时时刻刻思考着如何“融资”,而不断构思着说服“资本家们”给你投资的理由。  庆幸的是,在各位同行专家的大力支持与鼓励下,经过快两年的摸爬滚打,LimsLab目前运转逐渐步入正轨,课题组目前拥有操作室(图17)、质谱室(图18)、制样室(图19)、细胞间和学生办公室等多个活动空间,仪器设备有适用于蛋白组学高通量定量分析的Orbitrap Eclipse(依托生科院)、Fusion Lumos(依托药化生国重),有高分辨结构质谱离子淌度仪Cyclic IMS(依托海河实验室)和经典结构质谱仪Synapt G2(依托国重),近期也着手采购非变性大分子结构质谱QE UHMR仪器。同时,实验室的小伙伴们还一起盲盒般开箱了一台适用于离子源等方法开发的Orbitrap二手质谱仪器(图20)。除配套设备外,LimsLab课题组目前经费充足,拥有研究生和科研助理十余名科研人员,现亟需在定量蛋白组学、合成化学和计算模拟化学等方向的博士后研究员加入,以充实、完善LimsLab队伍,尽快提升团队的整体科研素养与综合水平。待遇由你定,要求仅一条,那就是对高水平科研工作有足够的热情与向往。  随附LimsLab课题组网站:https://www.x-mol.com/groups/gongyu_li  同附PI联系方式:李功玉(ligongyu@nankai.edu.cn)  再附PI简介:李功玉,南开大学化学学院,研究员、博士生导师。入选国家高层次青年人才计划(2021)、主持科技部重点研发青年项目(2022)。2017年毕业于中国科学技术大学,获理学博士学位。 2017年至2021年在美国威斯康星大学麦迪逊分校开展博士后研究。2016年和2019年两次前往美国密西根大学安娜堡分校交流访问。2021年2月加入南开大学化学学院,成立LimsLab课题组,研究方向为大分子结构质谱分析。图16. “菜鸟教练”的必修课之毛坯实验室装修(拍摄于2021年3月)。图17. 南开大学LimsLab实验室操作室(拍摄于2022年11月)。图18. 南开大学LimsLab实验室质谱室(拍摄于2022年11月)。 图19. 南开大学LimsLab实验室制样室(拍摄于2022年11月)。  图20. 南开大学LimsLab实验室成功自主拆机(拍摄于2022年11月)。
  • 我国科学家研发出检测DNA中第五种碱基的新技术
    DNA的基本元素包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和脱氧尿嘧啶(dU),然而目前还无法从单碱基分辨率水平上检测dU,严重影响了对dU功能的理解。近期,我国科学家研发出在单碱基分辨率水平上精准检测dU的新技术,研究成果发表在《Journal of the American Chemical Society》期刊,标题为“UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution”。  该方法被命名为Ucaps-seq法(UdgX cross-linking and polymerase stalling sequencing)。研究人员利用从耻垢分枝杆菌中发现的新型糖苷酶UdgX,特异性地识别和切除DNA中的dU,形成的缺口与对应的核糖形成共价键,从而将其捕获。由于DNA高保真聚合酶碰到UdgX标记的dU缺口能原地“停车”,研究人员利用的DNA高保真聚合酶这一特性进一步确认了dU的位置。最后,结合高通量测序技术将“停车”信号放大,从而在单碱基水平上精准定位dU在DNA乃至基因组上的位置。  Ucaps-seq法是国际上第一个酶法检测DNA中的dU碱基的技术,灵敏性好、特异性强、分辨率高,将大大推进核酸序列检测、遗传密码破译和人类对核酸的认知。  注:此研究成果摘自《Journal of the American Chemical Society》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。   论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c11269
  • ACQUITY UPLC XevoTQ-S同时测定猪尿液中21种β-受体激动剂
    今年3月,瘦肉精事件引发全国拉网式排查,瘦肉精事件闹得沸沸扬扬,10年间瘦肉精屡禁不绝,添加瘦肉精喂出来的猪不仅颜色光亮,而且可以增加猪的瘦肉率,现在人们都关注身材,不吃肥腻的肉,这也导致饮食习惯吃瘦肉,而添加瘦肉精的猪肉正好符合当今人们的饮食习惯,瘦肉精事件一出大家都在徘徊这肉还吃不吃? 简介瘦肉精:一类动物用药的统称,任何能够促进瘦肉生长、抑制动物脂肪生长的物质都可以叫做“瘦肉精”。 目前,能够实现这种功能的物质是一类叫做β-兴奋剂的药物。与传统瘦肉精盐酸克伦特罗同属“肾上腺受体激动剂”的莱克多巴胺等同类药物同样也能提高猪的瘦肉率。盐酸克伦特罗的检测方法主要有酶联免疫吸附法(ELISA)、胶体金免疫层析法、高效液相色谱法、气质联用法及液质联用法。国家标准GB/T 5009.192-2003 动物性食品中克伦特罗残留量的测定中规定方法为气相色谱-质谱法(GC-MS)、高效液相色谱法、酶联免疫法,其方法检出限均为0.5ug/kg。SN/T 1924—2007 进出口动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林残留量的检测方法采用LC/MS/MS法,该方法具有高灵敏度等优点被普遍使用。本文使用UPLC/XEVO TQ-S对猪尿液中的β-受体激动剂进行分析。实验方法UPLC条件LC系统: ACQUITY UPLC® 运行时间: 10min色谱柱: ACQUITY® BEH C18 1.7μm,2.1mm x 100mm流动相A: 0.1%甲酸水流动相B: 乙腈流速: 0.40mL/minMS条件MS系统: Xevo TQ-S离子模式: ESI+毛细管电压: 3.5kv源温度: 150℃雾化气温度: 500℃雾化气流速: 900L/hr锥孔气流速: 20 L/hrMRM条件:Quanpedia数据库Quanpedia是沃特世特有的一种可扩展和可搜索的数据库,为您提供LC/MS/MS定量方法信息,目前数据库已有超过1200种化合物,包括色谱方法、质谱方法、定量方法等,您可自由选择其中的任意化合物或化合物种类自动形成您所需的方法,无需再重新进行方法开发过程。下图为数据库得到的方法信息:自动生成MRM方法: 样品制备样品制备参照GB/T 22286-2008《动源性食品中多种β-受体激动剂残留量的测定》进行。■ 量取2.0mL猪尿液样品,加入8mL 0.2M的PH为5.2的乙酸钠缓冲液,充分混匀■ 加入50μLβ-Glucuronidase/aryl sulfatase混匀,于37℃水浴水解过夜■ 水解液振荡15min,在5000r/min条件下离心分离10min后,取4mL上清液中添加100uL 10ng/mL的内标溶液混匀,加入5mL 0.1M高氯酸混合均匀,并调节溶液PH值到1±0.3。以5000r/mim条件下离心分离10min后,移取上清液并用10M的氢氧化钠溶液调节PH值到11。■ 加入10mL饱和氯化钠溶液和10mL异丙醇-乙酸乙酯(6:4)混合溶液,离心分离后取有机相,在40℃水浴下用氮气将其吹干■ 提取残渣中加入5mL 0.2M乙酸钠缓冲液(PH5.2),超声混匀溶解残渣■ 样品净化(如下图所示),使用Oasis MCX(3cc/60mg)小柱■ 净化后的洗脱液用氮气吹干,用流动相溶解定容至1.0mL,过0.22μm滤膜,待进样分析 下图为数据库得到的方法信息: 固相提取净化过程Oasis MCX(3cc/60mg):实验结果与讨论本方法才用一次进样同时监测猪尿液样品中的21种β-受体激动剂进行检测,在灵敏度、分离度方面获得满意的结果。与常规的串联四极杆质谱仪不同的是,Xevo TQ-S为您提供最好的定量数据的同时,还为您提供高质量的光MS/MS信息。对猪尿液中含0.5ug/L的受体激动剂样品,启用PICs(子离子确认扫描)功能,可在不影响MRM定量的同时得到各化合物子离子扫描图,与标样子离子图进行匹配,对样品中阳性结果定性起到帮助判断的作用。 结论本方法采用多离子反应监测(MRM)方式对21种β-受体激动剂进行检测,具有快速、准确、灵敏度高、分析周期短、适用范围广等优点。适用各类动物组织或动源性食品等的测定。IntelliStart技术可以使得开发分析方法过程变成流线型工作流程。这意味着需要更少的时间来开发方法,大大提高工作效率。强大的Quanpedia数据库包含上千种化合物的方法,自动生成方法文件让你轻松简单快速应对各种突发事件。PICs(子离子确认扫描)功能为您提供最好的定量数据的同时,还为您提供高质量的光谱MS/MS信息,对样品中阳性结果定性起到帮助判断的作用。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人:张林海沃特世公司市场部86(21) 61562642lin_hai__zhang@waters.com 周瑞琳 (Grace Chow)泰信策略(PMC)020-83569288grace.chow@pmc.com.cn
  • 长沙清查行动!整楼封锁,逐一尿检!目前毒检方式,你知道几种?
    红网时刻1月14日讯 1月13日晚10点,长沙警方出动300名警力封锁清查了“城市经典”大楼,对楼内所有人员逐一尿检,并在一宾馆里发现一名男子毒 品尿检呈阳性,随即该男子被警方带至坡子街派出所进一步调查。毒 品主要通过刺激人体的中枢神经系统,使吸食者产生兴奋、抑制的一种依赖性麻醉药品或者精神药品。吸食毒 品会引起诸如消化系统、血液系统、呼吸系统、生殖系统等诸多脏器的严重损伤。毒 品种类多种多样,不论哪一种,都在危害着自己、危害着家庭以及社会。随着法庭科学领域及其相关领域的技术不断更新,针对人体内不同生物检材的毒 品检验鉴定技术也在持续发展。在生物检材的选取方面,根据现场情况或检材本身特点越来越向无损性、保护隐私等方向发展。体内摄毒检验中常见的生物检材有血液、尿液、唾液、毛发等,摄毒命案中还可提取针眼皮肤、胃内容物、肝、肾等生物组织进行检验,以完成入体途径、血浓度、死因等体内链条的鉴定。此外,还有指甲、胎粪等非常规检材,也能提供许多有价值信息。当前体内毒 品痕量检测有几种?唾液多应用在毒驾检查中,采集方式安全无创伤,不受时间、地点、性别、隐私的影响。唾液中毒 品来源于摄毒后残留在口腔中的原体,一般在摄毒后12~24h后原体消除,后期有一些来源于经过体内代谢后进入唾液的毒 品原体和代谢物。因此,检验结果可能会出现两个极端,唾液中毒 品浓度较低或极高。血液和尿液是常规检验体内毒 品的检材。毒 品在血液检材中有效检验时间窗一般是几分钟、几小时到几天,血液因不同个体间血容量相近差异性小,则作为毒 品定量、测定中毒量和致死量的最 佳检材。在尿液检材中有效检验时间窗一般是1天到数天。尿液由于含毒 品原体或代谢物浓度高,是应用于筛查鉴定缩小范围的首 选检材。GA510 尿液痕量毒 品快速检测系统,由奥谱天成与中国科学院稀土材料研究所联合研制,尿液毒 品快速检测仪,选配 4G 模块、身份证识别模块和可补光摄像头,可用于公安民警外出现场执法使用,现场对吸毒人员进行拍照和身份验证。设备内置大容量电池,充满电能使用一天(检测 100 人份),并现场打印结果作为公安禁毒民警现场查验处置依据。毛发是近些年来摄毒检验中较为热门的检材,其能反映远期较长时间(1个月前至半年甚至更长时间)的摄毒信息。一般头发的生长速率为 1~1.2cm/ 月,对错过案发时血尿等检材提取期的案件,头发可提供案发当时摄毒信息。一般来说,尿液中的毒 品成分在吸毒后6-10 天就无法检出,而毛发几个月甚至几年都不一定会脱落,忠实地记录着身体里发生过的情况。也就是说,只要头发足够长,毛发就可以反映主人的吸毒情况!例如女性几十厘米长的头发,甚至可以反映几年内的吸毒情况。GA500 智能毛发痕量毒 品检测系统,由奥谱天成与上海市公安局联合研发,手持式毛发毒 品快速检测仪,标配 4G模块和可补光摄像头,并标配身份证识别模块,非常适用于公安民警外出现场执法使用。
  • 国内首个!北大-亚辉龙联合研发出丁型肝炎检测试剂盒
    因为丁型肝炎核酸检测试剂,亚辉龙的名字再次登上了中国最顶尖专业杂志《中华检验医学杂志》!这一次的产品创新,是亚辉龙与北京大学庄辉院士科研团队的最新联合研究成果。5月14日,亚辉龙发布一篇题为《WHO最新指南|慢性乙肝患者的丁肝检测不容忽视》文章,透露出两个重要的内容:一是根据世界卫生组织(WHO)官网发布的最新指南,慢性乙型肝炎(HBsAg阳性)患者可通过使用血清学检测总抗-HDV抗体,然后使用核酸检测(NAT)来检测HDV RNA以及在抗HDV阳性患者的活动性(病毒血症)感染来诊断丁型肝炎;二是宣布北大与亚辉龙联合研发的抗HDV IgG抗体检测试剂盒和HDV RNA核酸定量试剂盒相关成果已申请专利,正在注册当中。作为国内领先的体外诊断行业企业,亚辉龙在自身免疫、生殖健康、糖尿病、感染性疾病、肝病、心血管等诊断领域具有突出优势。经过多年深耕与创新,亚辉龙已拥有全面肝病检测套餐,涵盖肝纤、自免肝、乙肝、丙肝、肝癌等领域诊断项目19项。加上此次的两种丁肝检测试剂盒,该公司肝病检测领域再次扩大。丁型肝炎病毒(HDV)是一种缺陷型RNA病毒,需依赖于HBV等嗜肝DNA病毒进行复制与包装。HDV是迄今为止已知感染人类最小的病毒,有8种基因型,核苷酸序列之间的差异高达40%,我国主要流行的是HDV‑1型。与HBV单独感染比较,慢性HBV/HDV重叠感染会更快、更易进展为肝硬化、肝失代偿和肝细胞癌等不良结局,对患者生命安全具有较大威胁。可以说,丁肝病毒与乙肝病毒关联密切,乙肝病毒患者会有迫切的需求进行HDV筛查。随着研究推进和认知加深,全球对HDV的重视程度不断提升。2024年3月,世界卫生组织(WHO)发布新版《慢性乙型肝炎病毒感染者的预防、诊断、护理和治疗指南》,首次新增两项关于丁肝病毒检测内容,包括对乙肝病毒表面抗原HBsAg阳性患者立即自动检测HBV DNA,以提高慢性乙肝的诊断率和治疗率;以及对HBsAg阳性的慢性乙肝患者和丁肝高危人群,特别是在丁肝高流行率地区,立即自动检测丁肝抗体,丁肝抗体阳性者立即自动检测丁肝病毒核酸。此前世界卫生大会也曾通过“到2030年消除病毒性肝炎公共卫生危害”的决议,HBV感染筛查是减少乙肝危害的关键措施之一。扩大筛查范围,提高诊断率和治疗率的必要性不断提升。而丁肝依托于乙肝,且发病更加严重,丁肝检测试剂的研发愈发刻不容缓。相关研究分析表明,全球HDV感染者约1200万-7200万之间,而只有得到更好的检测才能更加深入地推进相关治疗。与此同时,新批准药物布尔韦肽(BLV)治疗慢性丁型肝炎有较好的安全性和有效性,而有了治疗药物,那么相对应的HDV核酸检测也要被“提上日程”。随着BLV最近在欧洲获得批准,对抗体和核酸的实验室检测也有了更高的要求。近期,北大-亚辉龙感染性疾病分子诊断联合实验室联合北京大学肝炎试剂研究中心等多家科研单位和临床医院在《中华检验医学杂志》发表了《化学发光法丁型肝炎病毒IgG抗体检测试剂性能评价》、《国产丁型肝炎病毒核酸检测试剂的性能评估和初步临床应用》两项研究,对亚辉龙HDV相关产品的性能进行了详细报道。经过研究认证,抗HDV IgG试剂(化学发光法)对临床样本检测的特异度和正确率均为100%,表现出与商品化试剂一致的符合率,可用于HBsAg阳性样本中抗HDV IgG的筛查。同时,HDV RNA定量检测试剂具有灵敏度高、线性范围广、特异性强、精密度好的优点,与国外的商品化试剂性能接近,同时适用于8种基因型HDV的定量检测。两项检测试剂盒的研发对指导HDV感染的临床治疗具有重要意义。据了解,这也是亚辉龙即将推出的首款HDV分子诊断试剂,也意味着其产品平台即将加入一个新的领域。近年来,中国IVD行业发展非常迅速,在竞争进入白热化的现阶段,以亚辉龙为首的一批IVD企业清醒地意识到必须通过技术创新,大力发展产、学、研、用,才能更高效地完成体外诊断产品国产替代的目标。通过公开报道可以发现,亚辉龙非常重视研发,采用以自主研发为主、产学合作为辅的综合研发模式,充分整合公司内外部资源,形成系统化和规模化的研发机制。亚辉龙注重与高等院校、国内知名医疗机构及研究中心、国际体外诊断上下游企业等外部优质资源的合作,加强学术推广力度,为临床提供更加优质的服务,仅公开的就有中国科学院生物物理研究所阎锡蕴院士团队、香港中文大学(深圳)唐本忠院士团队、南方科技大学顾东风院士团队、深圳市第三人民医院卢洪洲院长团队等。丁肝检测试剂盒也正是亚辉龙与行业专家产学研最新进展成果。2021年10月,亚辉龙与北京大学庄辉院士沈弢教授科研团队合作建立北大-亚辉龙感染性疾病分子诊断联合实验室,旨在为创建全球一流的传染性病毒学检测及相关评价技术,以解决病毒性传染病。在HDV检测方面,双方合作研发了抗HDV IgG抗体检测试剂盒及HDV RNA核酸定量检测试剂盒,相关成果已申请专利。目前,亚辉龙的抗HDV IgG抗体检测试剂盒、HDV RNA核酸定量试剂盒已取得相关的检验合格证,正在积极申报注册证。
  • 吃饼干治糖尿病?新研究让口服胰岛素成为可能
    吃块饼干,治糖尿病。这个很多“糖友”梦寐以求的成果出现在11月16日的国际顶刊《自然化学生物学》上。北京大学药学院刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞。在他们的研究中,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降糖。“这是首次将基因密码扩展技术用于细胞治疗。”论文通讯作者之一、北京大学药学院教授刘涛告诉科技日报记者,吃下饼干的小鼠只需要90分钟就能降糖,和注射胰岛素起效时间相当。创造胰岛素微型“无人工厂”在“糖友”体内产生胰岛素,光靠饼干就可以吗?其实不是,“饼干”只是一把钥匙,真正生产胰岛素的是一座微型“无人工厂”。胰岛素作为人体的一种蛋白要求极高,胰岛素水平高了会发生低血糖、低了或者无效危害更大。细胞能做到精准的控制吗?“我们有一套独特的控制系统,控制的核心是一种人造的密码子。” 论文通讯作者之一、华东师范大学生命学院、上海市调控生物学重点实验室研究员叶海峰解释,自然界里有3个不编码氨基酸的密码子(终止子,功能是终止蛋白质翻译),通过人为改造可以让其中一个只听“饼干”的命令。饼干里的特殊氨基酸在自然界找不到,所以平时不会开启。经过改造的密码子就此有了双重身份。人工氨基酸一来,密码子配对,开启胰岛素的翻译过程,人工氨基酸一走,密码子还是“终止子”,整个流水线关闭。这才有了“吃饼干”合成胰岛素的完整治疗过程。给饼干开通一个专线快递前面说了,饼干里的氨基酸在自然界里找不到,那自然也找不到匹配的运送系统。“原来负责转运氨基酸的信使RNA都有自己的密码子,就像京东快递是负责这几个密码子、顺丰快递负责另外几个密码子、圆通也有自己要负责的密码子,现在多出来一个非天然的快递单怎么办呢?”刘涛打了一个很形象的比方,为了解决这个问题,合成生物学又出手了。“我们给‘饼干’开通了一个专线快递。”刘涛说,一种人工的合成酶能够把非天然的氨基酸送到快递员手上,即通过氨酰化的生化反应,把非天然氨基酸与特定的转运RNA连接起来,让它直送到胰岛素的装配生产线上。经过一系列“神操作”,饼干里的非天然氨基酸有如神助地直接成为生物体内胰岛素的重要组成部分。这种“专线快递”特点的正规名称叫“生物正交”,是指人造反应不会被机体内源的元件识别,也不干扰内源的生物化学过程。也就是说,胰岛素的整个制造过程不会干扰到其他生命活动。更具临床实用价值“利用我们的技术,只需要纳摩尔每升级别浓度的非天然氨基酸,给药1分钟就足以激活系统,表达释放胰岛素 。”刘涛说,这种非天然氨基酸与很多功能饮料中添加的成分类似,对人体非常友好。动物试验研究显示,将改造过的工程细胞经材料包埋后植入小鼠皮下,给小鼠喂食含有非天然氨基酸的饼干,可以在一个月内稳定且有效地降低小鼠血糖。一系列动物安全性实验也表明,服用一个月有效剂量的非天然氨基酸后,小鼠并未表现出明显的体重减低或其它生化指标的改变。“或许某一天,只需要每天饭前服用一粒非天然氨基酸药物,或含有非天然氨基酸成分适合糖尿病患者的食物,就可以控制血糖了。”刘涛说。浙江大学药学院院长顾臻教授在论文同期刊发的评论中认为,通过合成生物学方法创建工程细胞,进而产生治疗性蛋白质是解决包括胰岛素在内的蛋白质分子稳定性差、生物半衰期短及其不受控释放等挑战的极具吸引力的替代方法。据介绍,该研究获得国家“重大新药创制”专项、科技部合成生物学重点专项、国家自然科学优秀青年基金、北京市杰出青年基金、上海市科委等项目的支持。
  • 院士领衔,大咖云集!BCEIA2023学术报告会开幕
    仪器信息网讯 金秋九月,两年一度的行业盛会,第二十届北京分析测试学术报告会暨展览会(简称BCEIA2023)于2023年9月6日在北京中国国际展览中心(天竺新馆)隆重开幕。作为BCEIA的重要组成部分,学术报告会邀请了全球知名科学家介绍DNA存储、纳米毒理学等前沿科学技术,分享球差电镜、微型化双光子显微镜等高端仪器的研究进展,同时就质谱法和核磁共振法等研究生物大分子结构及功能、新型分离介质制备及蛋白药物、疫苗纯化等最新应用进行了探讨和展望。会议现场BCEIA 2023开幕式由柴之芳院士主持,BCEIA 2023大会主席江桂斌院士和BCEIA 2023学委会主席张玉奎院士分别致辞。中国科学院高能物理研究所柴之芳院士 主持开幕式及学术会议中华人民共和国科学技术部副秘书长贺德方 致辞BCEIA 2023大会主席江桂斌院士 致辞BCEIA 2023学委会主席张玉奎院士 致辞致辞结束后,学术报告会进入大会报告环节。大会报告由中国科学院高能物理研究所柴之芳院士、中国科学院长春应用化学研究所杨秀荣院士、中国科学院精密测量科学与技术创新研究院刘买利院士和清华大学李景虹院士主持。南方科技大学校长薛其坤院士、加拿大温莎大学K.W.Michael SIU教授、上海交通大学化学化工学院院长樊春海院士、中国科学院过程工程研究所马光辉院士、英国帝国理工学院Jeremy K NICHOLSON教授、军事科学院军事医学研究院杨瑞馥研究员、国家十三五重大科技设施“多模态跨尺度生物医学成像设施”首席科学家程和平院士、美国亚利桑那州立大学Paul WESTERHOFF教授、德国杜伊斯堡-埃森大学Oliver J. SCHMITZ教授、国际计量局化学部主任Robert WIELGOSZ博士、Breiten Associates LLC, CEO Paul BREITENBECHER先生分享了精彩的学术前沿进展报告。中国科学院长春应用化学研究所杨秀荣院士主持会议中国科学院精密测量科学与技术创新研究院刘买利院士主持会议清华大学李景虹院士主持会议报告人:南方科技大学校长 薛其坤院士报告题目:On the Pairing Mechanism of High Temperature Superconductivity自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十多年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题比如配对对称性上也尚未达成共识。薛其坤院士团队长期致力于高温超导机理实验研究,在超导配对对称性探测上独辟蹊径,率先利用范德瓦尔斯堆垛技术制备出了原子级平整、角度精确可控的转角铜氧化物约瑟夫森结,开展了直接判定超导配对波函数相位部分的实验,推动了这一方向理论和实验上的快速发展。超导作为一种宏观量子现象,其量子态的波函数在理论上可以分为s波、p波和d波等。与氢原子波函数的空间分布相似,s波超导各向同性,角动量量子数为0,而p波和d波的超导波函数具有空间各向异性。薛其坤院士在报告中指出,在铜酸盐超导的微观机制中应考虑S波配对;STM、TEM等在揭示高温超导秘密方面已经发挥并将继续发挥重要作用。报告人:加拿大温莎大学 K.W.Michael SIU教授报告题目:Linkage between the Environment and Health: Impact of Environmental Factors on Individual’s Health and Expressed in Changes in their Proteome根据世界卫生组织(世界卫生组织)的数据,癌症90%以上的发病率与环境污染密切相关。致癌转化通常是一个多步骤的过程,细胞从正常状态发展到癌前阶段,最后发展到癌症阶段。这一进展反映了由于基因和污染物之间的相互作用,细胞内的分子变化。常见的病毒,包括人类疱疹病毒(EBV)和人乳头瘤病毒(HPV),是影响特定癌症发病率的环境因素。值得注意的是,世界癌症的发病率表现出国家和地区差异,这可能反映了遗传因素和环境因素之间的相互作用。在美国,口腔癌症是迄今为止最突出的癌症;鼻咽癌的发病率仅为口腔癌的8%。相比之下,在中国,鼻咽癌的发病率超过口腔癌的200%。即使在国内,鼻咽癌也主要集中于包括广东和香港在内的东南地区。鼻咽癌的高发病率的区域分布凸显了环境影响的重要性。报告中,K.W.Michael SIU教授探索和讨论这对蛋白组学的贡献和影响。报告人:上海交通大学化学化工学院院长 樊春海院士报告题目:《核酸信息材料》作为生命体遗传物质的DNA(脱氧核糖核酸)分子其固有的双螺旋结构广为人知。通过AGCT 碱基的精确配对与接近无限的排列组合承载了海量的生命遗传信息。然而DNA 不仅是一种遗传信息的载体,而且可以被视为一种分子信息材料。将 DNA 分子作为一种基础的分子砌块,通过精确的碱基编码,能够产生很多自然界不存在的核酸形态核酸信息材料已越来越多地被用于生物成像、药物载运、微纳制造等方向。在本报告中,樊春海院士介绍了基于核酸信息材料发展的分子机器和大数据存储。报告人:中国科学院过程工程研究所 马光辉院士报告题目:《新型分离介质的制备和蛋白药/疫苗纯化应用》琼脂糖颗粒等多糖颗粒已被生物科学家和工业界广泛用作蛋白质分离和纯化的色谱填料。然而,传统琼脂糖颗粒的局限性在于,由于其广泛的尺寸分布,分离分辨率受到限制。此外,大尺寸颗粒通常用于工业分离和纯化,以避免背压的增加,这也限制了分离分辨率。另一方面,颗粒疫苗如病毒样颗粒(VLP)引起了越来越多的关注,传统的小孔琼脂糖颗粒不仅限制了VLP的吸附,而且增强了VLP分解,导致VLP的活性回收率非常低。马光辉院士团队开发了一种新的膜工艺来制备均匀的琼脂糖颗粒。通过该技术,可以将代表尺寸分布的CV(变异系数)值控制在15%左右,并且可以制备具有高琼脂糖浓度的均匀小颗粒。因此,可以用小颗粒代替大颗粒,提高色谱的分离分辨率和流速。此外,团队还开发了一种新的工艺来制备孔径可控制在100nm至500nm之间的巨型多孔颗粒,发现它不仅增加了VLP的负载量,而且避免了VLP分解。这是因为大孔径削弱了VLP和孔隙之间的多位点相互作用。这种新型颗粒代替超高速离心技术用于生产颗粒疫苗,获得了更高的回收率。报告人:英国帝国理工学院 Jeremy K NICHOLSON教授报告题目:Molecular Spectroscopy in Precision Medicine表型学是对整个生命周期中基因与环境相互作用的连续性的系统研究,以及对这些相互作用产生的新兴物理和化学特性的测量,并定义了健康和疾病中的个体和群体表型。在分子表型组学中,我们关注细胞和生物流体的化学和生物化学特征(代谢物、蛋白质、转录物等),以及这些特征在疾病发作、发展和康复过程中如何发生变化。LC-MS和NMR光谱等先进技术为各种代谢物提供了方便的多变量特征,是分子表型数据的丰富来源。Jeremy K NICHOLSON教授使用来自世界各地多个人群的样本,说明多种表型技术在研究新冠肺炎患者行程中的综合应用,并展示人群水平监测和评估长期COVID和疾病功能性生化恢复的转化分析策略,以及新的诊断模型和标志物用于临床部署。在未来几十年里,新出现的人畜共患威胁可能会主导世界,这里开发和使用的分析和信息策略也适用于帮助未来的大流行准备。报告人:北京大学未来技术学院 程和平院士报告题目:《科技铸器,开启脑科学研究新范式》脑科学研究包括“读、释、写、仿”四个方面,是一门高度交叉的新兴前沿学科。程和平院士团队为开发“读、释、写、仿”工具,多年来先后研发成功2.2克微型化双光子显微镜、第二代微型化双光子显微镜和2.17克的微型化三光子显微镜等仪器,开启脑科学研究新范式。为支撑中国的“脑计划”,我国建设了“南京脑观象台”,由相关领域专家领衔,正在开展脑科学“探索计划”项目,主题涉及皮质工作记忆、睡眠、自闭症、抑郁症、神经药理学和神经元再生等。作为国之重器,“多模态跨尺度生物医学成像设施”(国家十三五重大科技基础设施)的建设正在如火如荼地展开,预期于今年底投入试运行,2024年完成国家验收。依托此成像大设施,已启动“早鸟项目”,面向全国科技界滚动征集合作立项建议,计划在未来3-5年内发起生命科学包括脑科学领域的大科学计划,充分发挥“科技航母”的战略价值。大科学时代的生命科学特别需要新的工具,需要新型的研究平台。未来,更多新工具的开发以及新范式的探索,特别是大科学时代有组织科研的新范式,将为提升我国生物医学研究的整体水平,尤其是原始创新能力,实现高端生物医学仪器装备的“中国创造”提供强有力的战略支撑和保障。报告人:军事科学院军事医学研究院 杨瑞馥研究员报告题目:《病原溯源:基因组发育到痕量元素分析》近年来,新发突发疫情不断涌现,生物安全事故和生物恐怖事件也偶有发生,对于病原的精准溯源的要求也越来越迫切。尤其是美国发生的白色粉末邮件的恐怖事件后,催生了微生物法医学这个新学科。对于病原的溯源,目前很大程度上依赖于基因组测序与生物信息学分析,但是,对于生物事故或生物恐怖袭击的溯源,还要分析生物剂中的其他微量成分,如培养基成分,生物剂表面修饰(如硅分子),稳定同位素等,溯源过程从采样、分析到出报告都要符合法律程序,才能使溯源结果具有法律支撑。杨瑞馥研究员在报告中讨论了这些分析技术,分享溯源分析的研究进展。报告人:美国亚利桑那州立大学 Paul WESTERHOFF教授报告题目:Analytical Strategies to Assess PFAS Removal and Lifecycle Fate during Adsorption or Transformative Water Treatment Processes全氟烷基和多氟烷基物质(PFAS)存在于全球的地下水和地表水源中,拟议的饮用水法规正在推动PFAS处理技术的开发和实施。报告中,Paul WESTERHOFF教授首先介绍当前的处理技术,这些技术利用吸附(液-固相转化)、膜(液-液分离)或转化(氧化或还原)过程。举例说明了如何提高“真实水域”的处理过程效率,以及这些过程如何挑战分析方法。其次,该报告涉及含有全氟辛烷磺酸的残留物(如活性炭)的报废问题,这将需要焚烧。在焚烧过程中跟踪全氟辛烷磺酸需要独特的分析方法来跟踪氟化的水、气和固相物质。总体而言,该报告展示了如何将PFAS分析策略与PFAS饮用水处理过程相匹配。报告人:德国杜伊斯堡-埃森大学 Oliver J. SCHMITZ教授报告题目:Development of a New Ionization Source for Single Cell Metabolome Analysis尽管细胞异质性的揭示限制了对癌症研究中复杂过程的理解,例如其对转移过程的影响,但目前的研究仍然依赖于批量分析技术,因为还没有建立可靠的方法来进行真正的单细胞代谢组分析。Oliver J. SCHMITZ教授详细讨论了这种单细胞代谢组分析方法在检测限、样品量和特异性方面所需的必要分析要求。此外,尚未解决的问题也将得到解决和讨论。随后,Oliver J. SCHMITZ教授介绍了目前在离子源方面的工作,该离子源应该能够破坏细胞,从而释放分析物并通过介质阻挡放电将其电离。报告人:国际计量局化学部主任 Robert WIELGOSZ博士报告题目:Certified Reference Materials for a Global Greenhouse Gas Monitoring Infrastructure了解温室气体的来源和汇以及减排政策的影响,为应对气候变化提供了一个关键工具。GHG排放和吸收可以通过测量系统来确定,该测量系统包括在不同空间分布水平上对GHG浓度的原位测量。这些测量值与风速测量值、数值天气预测和扩散模型一起可用于确定空间和时间分辨的温室气体排放和汇。如气象组织关于协调全球温室气体监测基础设施的倡议所设想的那样,维持一个全球此类测量系统,需要密切注意不同地点测量的质量保证和等效性。显著的排放可能导致GHG浓度的微小变化,需要在不同的测量点采用高度一致的校准标准。该报告介绍了将涵盖温室气体测量网络所需的用于测量浓度和同位素比率的空气中二氧化碳标准的建立和表征,用于源分配。要对空气中的二氧化碳进行最高精度的测量,就需要采用计量可追溯性,即所谓的比例法。空气中CO2含量分数值从一个刻度转换到另一个刻度需要众所周知的刻度关系,注意一个刻度(如WMO-CO2-X2019刻度)内标准的内部一致性要求为0.01μmol/mol,不同刻度之间的一致性不应超过0.02μmol/mol。Robert WIELGOSZ描述了校准基于原位光学/激光的GHG量和同位素比率测量以及基于质谱实验室的同位素比率测量所需的认证参考材料,以及正在进行的比较,以验证其等效性。这些比较支持国家计量研究所和气象组织中央校准实验室确保其标准的等效性,以及测量点满足其数据质量目标的能力。报告人:Breiten Associates LLC, CEO Paul BREITENBECHER先生报告题目:False positive, negative, and unexpected Drug Testing Results in the Urine Toxicology Laboratory尿液毒理学实验室中出现了假阳性、假阴性和意外的患者尿液药物检测结果。如何研究这些结果并帮助临床医生帮助评估这些结果以治疗患者?在测试过程的任何阶段都可能出现意外的尿液药物测试结果;然而,最常见的结果发生在分析前或患者采集阶段。在这一阶段,患者可以提供“假”尿液,服用可能影响检测方法的物质,或者在尿液样本中掺假/稀释。根据所使用的筛选测试方法,测试方法可能会受到各种物质的影响,这些物质可能会产生假阴性、假阳性或通常的结果。筛查结果也可能与确认结果不同,这使得对患者结果的解释更加混乱。在本报告中,Paul BREITENBECHER先生回顾了一种基本的筛选测试方法和确认方法。并讨论一些意想不到的尿液药物测试结果。大会同期还安排了电子显微学及材料科学、质谱学、光谱学、色谱学、磁共振波谱学、电分析化学、生命科学中的分析技术、环境分析、化学计量与标准物质、标记免疫分析、微全分析等11个分会报告会。国内外专家学者以及仪器设备厂商深入开展了国际间分析测试的新方法,新技术的交流,充分展示了国内外先进技术设备和检验检测技术的新进展。
  • 国际臭氧层保护日丨亦敌亦友,你了解臭氧吗?
    不同位置的臭氧身份迥异臭氧是一种有鱼腥味的淡蓝色气体,通常存在于距离地面30公里左右的高层大气中,能有效阻挡紫外线,保护人类健康。“公众常常混淆大气平流层的臭氧层和对流层近地面层臭氧的区别。”长安大学水利与环境学院教授邓顺熙说,在距地面20千米至50千米高度的平流层有一个臭氧层,它能吸收太阳光中的绝大部分紫外线,使地球上的生物免受伤害。但当人类生活区周边的臭氧浓度超过一定限值,就将造成灰疆和光化学烟雾等污染,很容易引起上呼吸道炎症,出现咳嗽、头疼等症状,还会对皮肤、眼睛、鼻黏膜产生刺激。严重影响正常生产与生活。臭氧大部分集中在距地面10~30千米的平流层,仅有10%左右存在于距地面较近的对流层。从天上到地下、从低浓度到高浓度,臭氧的身份从“地球卫士”急转到“隐形反派”。一张面积约2500平方米的世界最大明信片在瑞士少女峰下亮相,旨在唤起人们对全球气候变化的关注。 新华社记者 徐金泉摄平流层中“地球保护伞”孕育生命在平流层中臭氧层的庇护下,地球生命的基础物质——脱氧核糖核酸与核糖核酸逃脱了紫外线辐射的“魔爪”,才有了人类出现和发展。可以说,亿万年以前,臭氧层就开始充当地球生物进化的“保护伞”“护航者”。与此同时,臭氧一直是人们的好帮手,在消毒杀菌、抗炎抗感染、止疼镇痛、提高机体免疫力、向缺血组织供氧等为代表的临床应用中均有大作用。甚至,它还有些清新意味——雷雨天后,那沁人心脾的青草气息,也是部分因为少许氧气在遭雷击后转变为了臭氧。这种低浓度臭氧不仅无害,还令人精神振奋。对流层中成为夏季污染的头号元凶而到了对流层,除部分从平流层到对流层“漫游”的臭氧,以及森林植被生物贡献的臭氧外,绝大部分臭氧是“人造的二次转化产物”,如氮氧化物NOx、VOCs挥发性有机物等,它们是经过复杂光化学反应产生的二次污染物。当日臭氧浓度最大8小时均值超过每立方米160微克,即成为臭氧污染。臭氧污染究竟对人体有哪些影响?可以说,从中枢神经系统到呼吸系统,从血液到骨骼,均会被它损害。夏季阳光灿烂,却在城市地区暗藏“杀机”。当你在室外闻到特殊的鱼腥味儿,可能就是臭氧超标的手笔。发生光化学反应需要强紫外辐射、高温、低湿与静稳大气环境,光照条件最好的夏季就成了臭氧污染的催化剂——日照越强,光化学反应越剧烈,反应生成的臭氧越浓。打赢臭氧攻坚战,关键在源头替代大力推进源头替代,有效减少污染前体物产生量。浙江省生态环境厅大气环境处副处长史一峰说,以工业污染源为例,溶剂型涂料的挥发性有机物重量占40%~80%,而作为绿色涂料的粉末涂料仅为不超过2%,推进源头替代是减少臭氧污染最有效的方法。为鼓励企业采用符合国家有关低挥发性有机物含量产品,生态环境部印发的《2020年挥发性有机物治理攻坚方案》提出,排放浓度稳定达标且排放速率满足相关规定的,相应生产企业可不要求建设末端治理设施。中国行动表明臭氧治理的决心2020年6月,《2020年挥发性有机物治理攻坚方案》发布,表明了我国对臭氧治理的决心;2020年7月1日,《挥发性有机物无组织排放控制标准》实施,打赢蓝天保卫战,我们在行动。在2021年7月26日生态环境部例行新闻发布会上,生态环境部新闻发言人刘友宾就氢氟碳化物(HFCs)管控回答记者提问时表示,中国将把HFCs管控纳入国内法律法规体系。刘友宾表示,HFCs是消耗臭氧层物质(ODS)的常用替代品,虽然本身不是ODS,但HFCs是温室气体。《基加利修正案》的实施,将对保护臭氧层和应对气候变化带来显著的环境效益,作为发展中的大国,我国在未来《基加利修正案》实施过程中,将付出艰辛的努力。但同时也给产业发展带来了新的契机。作为国际社会负责任一员,我们将严格履行国际承诺,与各缔约方开展务实、透明、深入的国际合作,为全球环境治理贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制