当前位置: 仪器信息网 > 行业主题 > >

亚硝基丙基脲含水

仪器信息网亚硝基丙基脲含水专题为您提供2024年最新亚硝基丙基脲含水价格报价、厂家品牌的相关信息, 包括亚硝基丙基脲含水参数、型号等,不管是国产,还是进口品牌的亚硝基丙基脲含水您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚硝基丙基脲含水相关的耗材配件、试剂标物,还有亚硝基丙基脲含水相关的最新资讯、资料,以及亚硝基丙基脲含水相关的解决方案。

亚硝基丙基脲含水相关的论坛

  • 【求助】丙酮使用KF法测量含水

    如题,使用DL31连接专用打印机,测量丙酮含水的时候DL31经常性的滴定不到终点,这种情况下之后打印出来才可以看出最少有多少含水量;丙酮含水不准确,有什么比较好的方法来调整下么?使得能够更准确的得到丙酮中含水的结果

  • 含致癌物NDMA(亚硝基二甲胺)的检测

    [align=left][font=SimSun]据美国[/font]CNN10月9日的报道,[font=SimSun]印度制药公司[/font]Marksans Pharma Limited正在召回用于治疗2型糖尿病的[font=SimSun]盐酸二甲双胍缓释片剂,因为它们的[/font]NDMA(亚硝基二甲胺,[font=SimSun]一种[/font]“可能的人类致癌物”)水平高于每天可接受的96纳克的每日摄入量限制(根据[font=SimSun]美国食品和药物管理局([/font]FDA)的报道)。[/align][align=left]N-亚硝胺类化合物是国际上公认的一类强致癌物,在食品、饮用水、日常消费品以及受污染的空气中广泛存在,因此对N-亚硝胺类化合物的控制和监测尤为重要。[/align][align=left]GS-Tek根据美国环保局的方法(EPA 521&607) ,检测了方法要求的8种N-亚硝胺类化合物,主要包括:N-二甲基亚硝胺(NDMA)、N-甲基乙基亚硝胺(NMEA)、N-二乙基亚硝胺(NDEA)、N-二丙基亚硝胺(NDPA) 、N-二丁基亚硝胺(NDBA) [font=SimSun]、[/font] N-亚硝基哌啶(NPIP) [font=SimSun]、[/font] N-亚硝基吡咯烷(NPYR) 、N-二苯基亚硝胺(NDPhA) 。由于胺类化合物的活性基团,很可能会吸附在流路中的任何活性位点上,造成峰型拖尾、检出限高。本文优化了不同极性[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱(GsBP- Wax-AQ 、GsBP-5MS 、GsBP-35MS 和GsBP-624)对N-亚硝胺类化合物的分离,列出了对称因子,K值,分离度等详细的参数,满足您的不同分析需求。附件有具体分析的数据结果。[/align][align=left][/align][align=left][/align]

  • 【原创】精轧机润滑系统在线润滑油含水率监测

    一:前言:由于高速线材生产线用大量高压水冷却,冷却水不可避免的进入精轧机润滑系统。油液中含水分(游离水、乳化水、溶解水)会带来如下不利影响:破坏油膜的形成,使润滑效果变差,轴承腐蚀,影响传动设备正常寿命;促使油品氧化变质,加速有机酸对金属的腐蚀:使添加剂发生水解而失效;在低温时使油品流动性变差;高温时汽化,产生气阻,影响循环;导致油品粘度升高;此外由于油中含水量超标,还会导致油箱内含大量气泡,而出现浮动吸油口吸空等故障现象。二:目前的现状目前采取的措施主要是如何减少进水并把已经进入润滑油中的水有效地滤除。一般常用的双润滑油箱配备,一个油箱接入润滑,另一油箱的润滑油就有了足够的停歇时间这样能恢复润滑油中的抗磨、耐热、抗氧化、抗泡防锈等添加剂的稳定性,为沉降分离润滑油中的水分及杂质,提供充分必要的静置时间及外循环过滤分离的条件, 关于油水的分离,从现场使用情况看,水的游离状态或轻度乳化时,油水分离机除水效果较好当油乳化程度严重时,分离效果不理想,此时采用加热真空式油水分离设备,将是更有效的除水办法。因此,不仅要尽可能防止水进入润滑系统中,还要设法防止已进入的水与油形成乳化液。这就要求在发现冷却水进入时,及时采取措施,减少浮化液形成的可能性。测定润滑油中含水率目前则仍是采用离线分析测定方式-蒸馏法取样化验(GB/T260)润滑油的含水率。离线方式由于需要先取样再分析,不仅费力费时,成本高,而且测定结果的返回具有时间滞后性,在许多应用领域已逐渐被在线监测技术所替代。在线准确测定润滑油含水量,监测滑油中水分含量的变化趋势,防止因冷却器泄漏、密封垫漏水等会造成润滑油中水分含量短时间内显著增加这类情况引起设备重大事故的发生对指导生产具有重大的现实意义。三:精轧机润滑油失效机理分析精轧机一般使用的是油膜轴承油 常用的牌号有T100#,壳牌T22O#等。宝钢工业监测中心通过从线材高速轧机润滑系统大量进水后润滑油性能产生的变化、润滑油引起轴承失效原因的分析得出以下结论 1) 弹性流体动力润滑理论(EHD),通过对轴承润滑所需最小油膜厚度的分析讨论,可以发现对于线材高速轧机使用的油膜轴承油,进水后润滑油的密度被水稀释使得润滑油动力粘度η0减小,使最小油膜厚度变小。 2) 据润滑油不同含水量时其四球磨斑实验的结果可以发现,对于线材高速轧机使用的油膜轴承油当含水量超过0.5%时将使轴承产生失效的机率大增,如果含水量超过1%时极有可能在短期内即产生滚动轴承失效。 3) 滑油大量进水后引起轴承失效的形式有表面疲劳点蚀与锈蚀,其中点蚀是由于润滑油膜厚度形成与润滑油极压性能下降引起的,而锈蚀是由于润滑油中的游离水引起的,在这种状态下如果机械设备有一段时间的待机停转将会使锈蚀情况更加严重。三:传感器的选用目前常用的在线监测润滑油含水率主要利用油水介电常数的较大差异,通过测量油水混合后的介电常数的变化来去定油中含水率。目前还普遍存在检测结果精度较低许多方面有待于进一步完善。深圳先波科技研发生产的一种电化学阻抗谱(EIS)在线监测润滑油含水率变化的传感器。体积小,重量轻,结构可靠,使用方便,响应快,价格低。FWD-1机油含水传感器产品技术参数1. 测量方式: 柱塞探头,在线实时测量。2. 测量参数: 含水量 测量范围: 0.05% - 15%WT4. 分 辨 率: 0.05%5.输入电压: 直流5V 0.5A6. 输出信号:直流电压 0—5V7. 响应时间: 小于2秒8. 储存期限: 10年9 环境参数:储存温度:-40℃~120℃,工作温度:-30℃~120℃,本项目采用初步的实验室试验表明,该传感器可以在线准确测定润滑油含水量和其它氧化污染,从而精确测定润滑油质量。传感器采用螺纹连接,可广泛应用于各类大中型动力机械、齿轮箱、机泵和汽轮机的润滑油质量的实时监测中。四:取样位置的设计4.1 取样的原则 a.要有代表性和真实性b.要最大限度的携带设备润滑系统处于平衡状态时的信息c.杜绝被设备润滑系统以外的因素污染。4.2 取样的位置4.2.1

  • 如何计算二异丙基萘异构体的具体含量?

    最近做二异丙基萘含量测定,由于购买的只是一种混合物(含7种异构体),但是只有一个cas登记号,按照标准方法(内标法),确实发现并确定了7种组分流出顺序,根据标准方法只是计算二异丙基萘的总量。但是突然想计算不同异构体的具体含量,这又该如何计算呢?由于异构体中有几种是很难找到(买到)单标的,此时可用面积归一化法计算可以吗?是否需要通过面积归一化法来单独建立不同异构体的标准曲线?这样算出来的结果具有说服力吗?如何不行,该如何计算呢?望老师赐教,谢谢!

  • 测试饮用水中亚硝基二乙胺和二氯异氰尿酸含量

    目前需要建立方法测试饮用水中亚硝基二乙胺和二氯异氰尿酸两个组分的含量,但是好像没有相关标准是针对水中这两个组分的,群里有哪位前辈做过这方面实验的吗?WHO里说明测试二氯异氰尿酸含量是通过测试氰尿酸(三聚氰酸)含量来计算的,那测试水中的氰尿酸有谁做过吗?样品的前处理是怎么样的,微量含量的富集方法?

  • 石油中含水的危害和微量水分的意义

    [font=&][size=18px]水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。[/size][/font][font=&][size=18px] 测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低;轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给;石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标[/size][/font]

  • 石油中含水的危害和测量油品中微量水分的意义

    原油中含水会增大运输量,更重要的是更原油加工带来困难,增加了常减压蒸馏装置的能耗。因水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。 测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低;轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给;石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标。

  • 石油中含水的危害和测量油品中微量水分的意义

    原油中含水会增大运输量,更重要的是更原油加工带来困难,增加了常减压蒸馏装置的能耗。因水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。 测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低;轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给;石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标

  • 【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    2010年版药典(一部)中,对益母草中盐酸水苏碱的测定有如下描述(以丙基酰胺键合硅胶为填充剂):http://ng1.17img.cn/bbsfiles/images/2011/01/201101080907_272670_801_3.jpg那么为什么要用丙基酰胺柱来测盐酸水苏碱呢?丙基酰胺硅胶基质的柱子是什么柱子呢? 首先我们要了解盐酸水苏碱的特性,盐酸水苏碱的极性极大,普通的反相色谱对它的保留分离能力较弱,通常在死时间里流出而无法得到分离,而亲水作用色谱HILIC能为极强性的化合物提供良好的保留,在此类化合物上应用广泛。 目前已有多种商品化的HILIC色谱柱,多为硅胶基质,键合不同极性基团,如丙基酰胺基,酰胺基,聚琥珀亚酰胺等极性基团,氨基键合硅胶柱由于使用寿命较短,键合相容易流失,造成保留 丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量;极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.博纳艾杰尔推出的Venusil HILIC (丙基酰胺键合硅胶),就是一样一款非常适合于益母草中盐酸水苏碱测定的柱子,测定方法及谱图如下:色谱柱:Venusil HILIC (丙基酰胺键合硅胶),4.6×250mm,5µm,100Å(订货号:VH952505-0)流动相:乙腈-0.2%冰醋酸(80:20)流速:0.5mL/min柱温:25℃进样体积:20μL检测器:ELSD蒸发光散射检测器http://ng1.17img.cn/bbsfiles/images/2010/11/201011291710_262707_801_3.jpg益母草供试品含量测定色谱图(主峰保留时间:22.697min)

  • 石油中含水的危害和测量油品中微量水分的意义

    原油中含水会增大运输量,更重要的是更原油加工带来困难,增加了常减压蒸馏装置的能耗。因水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。 测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低;轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给;石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标

  • 【原创】高效液相色谱法测定唇膏、雪花膏、化妆品及痱子粉等化妆品中的异丙基甲酚的含量

    HPLC法1 应用范围本法适用于唇膏、雪花膏、化妆品及痱子粉等化妆品中的异丙基甲酚的测定。2 原理样品中的异丙基甲酚在H2SO4介质条件下,用二氯甲烷萃取,然后蒸干萃取液,用乙醇定容。将乙醇溶液注入高效液相色谱仪,以荧光检测器检测,与同样处理的已知标准溶液比较进行定性和定量测定。3 试剂3.1 异丙基甲酚的标准溶液:精确称取异丙基甲酚50.0mg溶于乙醇中定容至50.0ml。取此溶液5.0ml用乙醇稀释至50ml,此液1.0ml含100.0μg异丙基甲酚。3.2 内标准溶液:精确称取百里酚25.0mg溶于水500.0ml乙醇中。3.3 柱填充剂:氨丙基硅烷键合硅胶,十八烷基硅烷键合硅胶。3.4 流动相:已烷 乙醇(9 1) 水 乙腈(1 1)。4 仪器4.1 高效液相色谱仪:具荧光检测器。5 分析步骤5.1 样品的预处理精确称取样品约0.5~2.5g(2),加饱和NaCl溶液50ml,移入分液漏斗中,加10%H2SO4 1ml,30ml二氯甲烷,振摇5min,静置分层.水层再各用20ml二氯甲烷提取二次,合并全部二氯甲烷,用50ml水洗涤,用无水硫酸钠脱水后(3),在旋转蒸发器上(水浴约40℃)蒸去二氯甲烷(4),于残留物中加入内标液5.0ml(5),用乙醇定容至50ml(6)作为待测溶液。5.2 测定5.2.1高效液相色谱条件5.2.1.1色谱柱(7):氨丙基硅烷键合硅胶(内径4.6mm、长250mm)。流动相:己烷一乙醇(9+1)。流速:1.2m1/min。5.2.1.2色谱柱(8):十八烷基硅烷键合硅胶(内径4.6mm、长15Omm)。流动相:水 乙腈(1 1)。流速:1.0ml/min。5.2.2荧光检测器波长:激发波长280nm,荧光波长305nm。5.2.3定性:取5.0ml标准溶液与5.0ml内标溶液于50.0ml容量瓶中,混匀,然后加乙醇至刻度。取此液2.5进行高效液相色谱分析,从得到的色谱图求出内标物对异丙基甲酚的相对保留时间。同样取2.5μl待测溶液,如上述方法操作。从得到的峰求出对内标物的相对保留时间与标准溶液时行比较而定性。5.2.4定量:取2.5μl待测溶液进行高效液相色谱分析。通过异丙基甲酚的峰高(或者峰面积)与内标物质的峰高(或者峰面积)之比,从预先做成的标准曲线中求出待测溶液中异丙基甲酚的浓度A(μg/m1)。5.2.5标准曲线的制备:分别取异丙基甲酚标准溶液0.5、1.0、2.0、3.0、4.0、5.0及6.0ml于50.0ml容量瓶中,分别于每个容量瓶中加入内标准溶液5.0ml,立即加乙醇至50.0m1。分别取2.5μl此溶液进行高效液相色谱分析,求出异丙基甲酚与内标物的峰高(或峰面积)之比值,做标准曲线。6 计算c=A×V/(m×1000×1000)×100式中;c-一样品中异丙基甲酚的含量,%;A――从标准曲线上查得待测溶液中异丙基甲酚浓度,μg/m1。V一-测定用待测溶液的体积,m1;M-一样品质量,g。

  • 【资料】在线油中含水率监测仪

    【资料】在线油中含水率监测仪

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104160833_289139_1826493_3.jpgFWD100型在线润滑油含水率监测装置,在线、连续、实时监测各种工作机械的液压、润滑系统油液的含水率,广泛应用于外部水容易渗入机械内部的轧钢机、造纸机、汽轮机、船舶机械等领域。主要应用包括监视循环油系统是否存在泄漏,如水冷却器等; 监视工作机械的密封元件是否损坏,引起外部水渗入;监视环境空气湿度对润滑液压系统油品品质和含水率的影响,从而精确测定润滑油质量,预测设备故障,是设备润滑油管理中的关键部件。本监测仪表采用的FWD-1在线润滑油电阻抗(含水率)传感器和PT100温度传感器。体积小,重量轻,结构可靠,测量精度高,工作稳定,具有较强的抗电磁干扰性能。封闭型不锈钢外壳具有很好的防水防尘性能。可直接安装于工厂现场液压润滑管道上。本监测仪表采用液晶触摸屏直接显示,显示信息包括含水率,温度,0-5V电压等。RS-485数字信号输出接口则可以用于连接电脑等外围数据处理系统。温度输入端子可用于连接用于测温和温度补偿。具有远程控制和报警。数据存储,积算、传输和控制功能。普遍应用于大中型机械联动机组的液压、润滑循环系统例如:高线轧机和板带轧机润滑油系统、板带轧机和棒线轧机液压传动系统、汽轮发电机组润滑系统、造纸机组润滑系统、船舶机械润滑系统、燃料油库。 技术参数测量方式: 柱塞探头.在线实时测量测量参数 含水率:0.1% - 15%WT 温度 0-150℃分 辨 率 含水率: 0.1% WT温度: ±0.1℃输入电压; 直流24V 1A输出信号:输出信号:液晶显示RS485,Modbus响应时间: 小于2 秒工作温度:-30℃-120℃传感器联结螺纹:M22*1.小巧、美观、坚固 防震、防磁电,耐高温度压和恶劣环境传感器无活动部件,免维护 柱塞探头,三通连接双参数监测 温度补偿 本地读数,远程操作,结果直接录入数据库

  • 不含水的流动相洗脱能力比较如甲醇乙腈乙醇异丙醇等以及分离度问题

    我最近实验发现甲醇乙腈混合的话(不含水),不论什么比例貌似都比纯乙腈洗脱能力强。即洗脱能力:纯甲醇纯乙腈甲醇乙腈混合溶剂 不知大伙对乙醇丙酮的洗脱力有没有研究 还有通常情况下乙腈分离度比甲醇要好(甲醇分不开的情况乙腈可以分开若对此有不同观点我也不反对毕竟甲醇也有其特殊性),我想知道有没有比甲醇乙腈让样品间得到更好分离度的流动相啊?

  • 含水率及含水率计算公式

    含水率既水分含量,土体中自由水的质量在土体总质量中占的百分比可为含水率,含水率不同于回潮率,含水率可以用来表示吸湿性;即材料在潮湿的空气中吸收水分的性质;一般情况下,材料吸水后,会导致自重增加、保温隔热性能降低,强度和耐久性产生不同程度的下降。含水率的计算公式:绝对含水率是用于全干木材的重量计算基础,如果用字母W表示,绝对含水率的计算公式就是:W=(湿材重量-全干材重量)/全干材重量*100%相对含水率是用湿材重量计算基础,用符号Wo表示,相对含水率计算公式就是:Wo=(湿材重量-全干材重量)/湿材重量*100%

  • 【资料】在线监测润滑油含水传感器

    【资料】在线监测润滑油含水传感器

    FWD-1在线监测润滑油含水传感器油液的污染形式通常是金属磨粒、氧化物、油泥、结碳、水分、沉淀物、燃油以及氢、氯、热、电、空气等造成的污染。油液污染后其物理或化学性能都会发生变化,根据同牌号新油与在用油的介电常数的变化,便可综合测定在用油的总体污染程度和质量。由于水的介电常数与油相比差别较大,当润滑油中混入水时 微量的水就会引起混合油液介电常数的明显改变。将不同含水率的润滑油混合液和纯润滑油的介电常数进行比较, 再通过电路信号处理,便可得到润滑油含水率数值。本传感器采用的是综合介电常数法测量方法,在线检测各种工作机械的液压、润滑系统介质的含水率,广泛应用于外部水容易渗入机械内部的轧钢机、造纸机、汽轮机、船舶机械等领域。主要应用包括监视循环油系统是否存在泄漏,如水冷却器等; 监视工作机械的密封元件是否损坏,引起外部水渗入;监视环境空气湿度对润滑液压系统油品品质和含水率的影响,从而精确测定润滑油质量,预测设备故障,是设备润滑油管理中的关键部件。本传感器采用螺纹连接,体积小,重量轻,结构可靠,测量精度高,工作稳定,具有较强的抗电磁干扰性能。封闭型不锈钢&黄铜制外壳具有很好的防水防尘性能。可直接安装于工厂现场液压润滑管道上。是理想的在线水分检测传感器。该传感器还可与控制室中的二次仪表或控制器相连,在线、连续、实时的检测各种低水分油品的含水率。直接显示,远程控制和报警。实现数据存储,积算、传输和控制功能。普遍应用于大中型机械联动机组的液压、润滑循环系统例如:高线轧机和板带轧机润滑油系统、板带轧机和棒线轧机液压传动系统、汽轮发电机组润滑系统、造纸机组润滑系统、船舶机械润滑系统、燃料油库。技术参数测量参数: 介电常数 (总体污染度) 输入电压: 直流5V 0.5 A输出信号: 直流电压 0—5V含水量: 0.05% - 15%WT 分 辨 率 0.05%响应时间: 小于2秒储存温度: -40℃-120℃,工作温度: -30℃-120℃,联结螺纹: M22×1.5mm http://ng1.17img.cn/bbsfiles/images/2011/04/201104160840_289142_1826493_3.jpg

  • 【实战宝典】关于土壤样品的含水率测定问题?

    [font=宋体]发帖人:冰是睡着的水[/font]SS[font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/6859614[font=黑体][b]问题描述:[/b][/font][font=宋体]标准土壤含水率需要测定吗?土壤检测报告一定要附上含水率吗?[/font][b][font=黑体]解答:[/font][/b][font=宋体]土壤标准物质在制备过程中经过风干、烘干去负水的过程,含水量相对很低[/font](1%)[font=宋体],对于土壤中微量元素(组份)的测定是不需要进行测定含水率进行校正,对于测定土壤中如二氧化硅、三氧化二铁、三氧化二铝等常量组份则需要进行测定含水率进行校正或者预先对土壤标准物质在[/font]105 ℃[font=宋体]下烘干除去水分再称样测定。[/font][font=宋体]一般的土壤样品分析预先也是要进行风干、低温烘干、加工至一定的粒度,其含水率对于微量元素(组份)校正的意义不大,可以不需要测定含水率。但对于需要用新鲜土壤样品测定的项目如挥发性、半挥发性有机污染物、氰化物等,含水率是必须要测定校正的。[/font][font=宋体]在检测报告中,给出的土壤样品是换算成干基含量的,并注明是干基结果,含水率结果是可以不用附上的,除非用户需要。如给出的是没有校正成干基的结果,并注明是新鲜土壤样品的结果,含水率是要附上的,用户可以根据提供的含水率结果和新鲜样结果进行换算。[/font]

  • 织物湿摩擦测试中不同含水率测试比对

    织物湿摩擦测试中不同含水率测试比对

    织物湿摩擦测试中不同含水率测试比对织物摩擦测试是纺织品测试中一个非常重要测试项目,也能很直观的反映出纺织品的内在质量,随着现在的纺织品花色越来越多,色牢度的检测也就更为重要,摩擦色牢度就是模拟在使用过程中摩擦沾色的情况摩擦色牢度属于纺织品检测中的物理检测项目,检测较简单,但在实际的检测过程中,并不是想象的那么简单,就是一个摩擦色牢度湿摩擦就让我为难,甚至烦躁!纺织品湿摩擦有一个含水率的要求为95%-100%,看似很好控制,其实不然,因为摩擦布重量很轻,在0.26G左右,湿摩擦测试的小白布要求要含湿均匀,还要保证含水率在95%-100%,确实很难控制,那么我想到能不能试验一下含水率到底对其测试结果影响大不大,能不能把湿摩擦的含水率范围扩大一些呢!接下来我就对其进行了测试对比!过程如下1.引用标准GB/T3920-2008《纺织品色牢度试验,耐摩擦色牢度》2.设备和材料3.1耐摩擦色牢度试验仪3.2标准棉摩擦布尺寸3.3耐水细砂纸4.仪器准备 4.1打开电源开关,电源指示灯亮,显示窗显示000,微机默认次数值为10次。在这种状态下可改变默认值次数。5.试样准备5.1取样:在温度20±1℃、湿度65%±2%的 标准大气下调湿4小时以上的试样上进行取样,共五个试样,每个试样取样三份,对单个颜色分别进行评定,并区分经向和纬向,分别进行试验。5.2摩擦布:棉的梭织小白布,尺寸6.测试程序6.1干摩擦:摩擦布的经向与摩擦头的运动方向一致,然后裹在摩擦头上并用夹头夹紧,松开支承,放下包裹试布的摩擦头,按启动按钮,摩擦头在电机的驱动下经过减速器,由曲柄连杆带动摩擦头以1秒/次的速度作往复摩擦循环,摩擦结束后松开试样,取下摩擦布,并去除摩擦布上可能影响评级的任何多余纤维。6.2湿摩擦:称量调湿后的摩擦布,将其完全浸入蒸馏水中,重新称量摩擦布以确保其含水率达到90%,100,110%三种含水率;将试样置于标准衬垫上并铺平整,转动手柄偏心夹紧试样。将摩擦布平放在摩擦头上,使摩擦布的经向与摩擦头的运动方向一致,然后裹在摩擦头上并用夹头夹紧,松开支承,放下包裹试布的摩擦头,按启动按钮,摩擦头在电机的驱动下经过减速器,由曲柄连杆带动摩擦头以1秒/次的速度作往复摩擦循环,摩擦结束后松开试样,取下摩擦布。6.3如果摩擦布上有沾色不均匀或有晕圈现象,此次摩擦无效,必须进行重新测试6.4干燥:将湿摩擦布在室温下晾干http://ng1.17img.cn/bbsfiles/images/2014/06/201406191517_502528_2154459_3.jpg小结:1.摩擦色牢度的湿摩擦测试中,摩擦小白布的含水率对测试结果理论上肯定有影响,因为摩擦的原理就是在一定摩擦力下进行标准摩擦试验,含水率高的摩擦布反而在理论上减少了摩擦力,测试结果就比较好,但也有特殊的情况2.在此次实验中,轻微的水分偏差,对其这几个样品没有影响,在以后的时间内可以找更多的标准样品进行对比测试,希望能找到相关性,使摩擦色牢度检测更加方便,易于控制

  • 乳品添加剂-增稠剂-1 2羟丙基二淀粉磷酸酯

    中文名称: 羟丙基二淀粉磷酸酯   中文商品名称:羟丙基磷酸双淀粉   英文名称: Hydroxypropyl distarch phosphate   别名: HPDSP   详情: 理化性质:白色粉末,无臭,无味,易溶于水,不溶于有机溶剂。在醚化的基础上,适当地交联所得到的HPDSP,其膨润力、透明度仍显著高于原淀粉。糊液对温度、酸度和剪切力的稳定性高。   来源与制法: 淀粉与三偏磷酸钠或磷酰氯(≤0.1%)与环氧丙烷(≤10%)伴同酯化而成。 编辑本段毒理学依据  1、ADI:无须规定(FAO/WHO,1994)。   2、可安全用于食品(FDA,§172.892,1994)。   质量要求:质量标准(FAO/WHO,1990;CXAS,1991)   羟丙基含量/% 7.0   氯丙醇/(mg/kg)≤ 1   土豆或小麦类淀粉/% ≤ 0.14   其他类淀粉/5 ≤ 0.04   二氧化硫   谷物类/(mg/kg)≤50   其他类/(mg/kg)≤10   砷(以As计)(mg/kg) ≤ 3   重金属(以Pb计)(mg/kg) ≤ 40   铅/(mg/kg)≤ 2 编辑本段用途与注意事项  我国《食品添加剂使用卫生标准》(GB2760―2007)表A.3(可在各类食品中按生产需要适量使用的添加剂名单)第46为羟丙基二淀粉磷酸酯,功能为增稠剂。未限定最高用量,可按需添加。   FAO/WHO规定:可单独使用或与其他增稠剂合用。用于蛋黄酱,5 FAO/WHO;罐装胡萝卜(产品含有奶油或其他油脂)、发酵后经加热处理的调味酸奶及其制品,10 g/kg;冷饮制品,30 g/kg;罐装沙丁鱼和沙丁鱼类产品,20 g/kg;罐装鲐鱼和竹荚鱼,60 g/kg(仅用于填料);速冻鱼条和鱼块(仅指用面包粉和面包拖料包裹),以GMP为限。羟丙基二淀粉磷酸酯Hydroxypropyl Distarch Phosphate编码 GB 20.016;INS 1442性状 白色粉末,无臭,无味,易溶于水,不溶于有机溶剂。在醚化的基础上,适当地交联所得到的HPDSP,其膨润力、透明度仍显著高于原淀粉。制法 由淀粉在碱性条件下,与环氧丙烷进行醚化,再与磷酸交联剂进行酯化反应制得。质量标准 参见羟丙基淀粉。鉴别方法 本品呈一般食变性淀粉反应和磷酸盐反应。1.一般食用变性淀粉反应 同羟丙基淀粉鉴别方法1、2、3。2.磷酸盐反应 参见磷酸三钙。毒理学依据1.GRAS FDA-21CF

  • 【讨论】H-HPC和HPC的含量(高取代羟丙基纤维素)

    查找了中国药典,没有找到H-HPC的标准,如果用HPC的方法去测定其含量,对结果会产生什么影响?谁家可进行此项检测,比如什么样的机构或实验室,谢谢。[color=#00FFFF][size=4]H-HPC高取代羟丙基纤维素[/size][/color]

  • 含水率的问题

    挥发性有机物的含水率定义和常规定义不一样,有人帮忙解释下吗?挥发性有机物含水率定义是烘干前后质量差值除以烘干前样品的质量常规含水率定义是烘干前后质量差值除以烘干后的质量

  • 土壤含水率

    请问各位老师,经冻干机冻干的土壤还用再做含水率吗,如果要做的话怎么计算呢?

  • 全面解析原油、石油中水分含水率检测的作用

    原油含水率是石油开采、石油化工行业中的一个重要参数,是油田生产和油品交易中的关键数据,对原油的开采、脱水、储运销售及原油炼制加工等都具有重要的意义。若原油含水量检测不准,则对于确定油井出水、出油层位,估计原油产量,预测油井的开发寿命等将直接造成影响。一、石油产品中水分的来源1、在运输和储存过程中,进入石油产品中的水。2、石油产品有一定程度的吸水性,能从大气中或与水接触时,吸收和溶解一部分水。汽油、煤油几乎不与水混合,但可溶有不超过0.01%的水。把这为数极少的溶解水除去是较困难的。二、石油产品中存在的状态1、悬浮状:水分以水滴形态悬浮于油中。多发生于粘度较大的重油。2、浮化状:水分以极细小的水滴状均匀分散于油中。这种分散很细的乳浊液,由于水滴微粒极小,比悬浮状水更难从石油中分出。3、溶解状:水分溶解于油中。其能溶解在油中的量,决定于石油产品化学成分和温度。通常,烷烃、环烷烃及烯烃溶解水的能力较弱,芳香烃能溶解较多的水分。温度越高,水能溶解于油品的数量越多。一般汽油、煤油、柴油和某些轻润滑油溶解水的数量很少,用GB/T260无法测出,可忽略不计。三、水分检测对原油、石油中生产和应用的作用1、轻质油品中的水分会使燃烧过程恶化。并能将溶解的盐带入汽缸内,生成积碳,增加气缸的磨损。2、在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,妨碍发动机燃料系统的燃料供给。3、石油产品中有水时,会加速油品的氧化和胶化。4、润滑油有水时不但会引起发动机零件的腐蚀,而且水和高于100度的金属零件接触时会形成蒸汽,破坏润滑油膜。5、加速有机酸对金属的腐蚀,造成锈蚀。使添加剂失效,低温流动性变差,堵塞油路,妨碍油的循环及供油。6、还能使油品乳化加剧,使变压器油的耐电压下降。测定原油含水率有何意义a、在原油产出且还未经过初步处理时,测定含水率有利于掌握注水情况。调整后续生产性注水的计划,有利于提高产量。b、在经过初步处理时(不是炼厂处理,是油气未销售前的终端初步处理),测定含水率是销售上商务考量的一个标准

  • 【原创大赛】羟丙基透明质酸质量标准的建立

    【原创大赛】羟丙基透明质酸质量标准的建立

    [align=center][b]羟丙基透明质酸质量标准的建立[/b][/align][align=center]杨桂兰,臧恒昌[b][/b][/align][b]摘要:[/b]透明质酸(HA)具有保湿、润滑、营养、修复和预防损伤等生理功能,在维持组织完整性方面和促进感染、损伤、胚胎发育过程中组织形成和重塑方面发挥重要作用。在化妆品、食品及医药领域的应用越来越广泛。但HA容易被体内透明质酸酶降解,体内留存时间短。研究者们期望通过对其进行修饰,得到抗酶解的HA衍生物,延长体内保留时间。修饰HA的衍生物近年来主要致力于将其修饰为两亲性衍生物,对抗酶解活性也有研究;这种亲油亲水性使其不仅能够降低降解速率,而且能够降低表面张力。其次,两亲性HA可以解决美容填充时HA分子量过大,黏度过高,注射困难的问题,修饰后的两亲性HA具有黏度降低(相同分子量相同浓度)的优点。HA两亲性衍生物也可作为生物可降解性的药物载体。 本文参考羟丙基淀粉取代度测定方法,建立了采用分光光度法测定羟丙基透明质酸(HHA)取代度的方法。同时摸索了HHA的抗酶解活性检测法、干燥失重、pH、蛋白含量及微生物等关键指标的测定方法。[b]关键词:[/b]透明质酸;羟丙基透明质酸[align=left] 本研究为确保自制羟丙基透明质酸的质量,特制定一系列产品的质量检验标准。[b]1分子量测定1.1材料[/b] NaCl(AR),NaN[sub]3[/sub] (CP) ,BSA(Roch);高效液相色谱仪,(美国Agilent);多角度激光光散射仪,DAWNEOS,美国Wyatt。[b]1.2方法[/b] 测定条件:流动相:0.2mol/L NaCl (包含0.02% NaN[sub]3[/sub]);流速:0.6ml/min,样品浓度:0.05 mg/ml;柱温:35 ℃,进样体积:500 μl。按照仪器操作规程进行操作。[b]2取代度测定2.1原理[/b][/align][align=center][b][img=,497,113]http://ng1.17img.cn/bbsfiles/images/2018/07/201807251603456954_6718_3389662_3.png!w497x113.jpg[/img][/b][/align][align=left][b]2.2材料[/b] HHA;水合茚三酮、1,2-丙二醇、浓硫酸、亚硫酸氢钠、可见分光光度计、具塞比色管(25 ml),容量瓶(100 ml、1000 ml)[b]2.3方法 [/b] 丙二醇标准溶液的配制:准确称量1.0g丙二醇溶液于1000 ml容量瓶中,加纯化水稀释至刻度,然后分别取2、4、6、8、10 ml于100 ml容量瓶中,定容至刻度,得到丙二醇含量分别为20、40、60、80、100 mg/ml的溶液。[b]2.3.1丙二醇标准曲线的制备[/b] 分别吸取上述丙二醇溶液0.5 ml于25 ml具塞比色试管中,置于冰浴中,逐滴加入4 ml浓硫酸(不宜加入过快,并不时震荡)混合均匀后置100 ℃的水中加热3 min(秒表控制),取出后立即放入冰浴中,冷却至15℃,沿管壁加入水合茚三酮试剂0.3 ml,边加边摇匀;在25 ℃的水浴中放置80 min,再用浓硫酸稀释至12.5ml(约7.7 ml浓硫酸)。缓慢倾倒混匀后(不要用混合器震荡),静置5 min,用1 cm比色皿于590 nm波长处测定溶液的吸光度,绘制吸光度—浓度曲线,拟合丙二醇标准曲线方程。 空白:以相同条件下不加丙二醇溶液作空白。[b]2.3.2试样的测定[/b] 分别称取0.05 g~0.1 gHHA及制备该批HHA所用HA粉末于100ml的量瓶中,量取25 ml的0.5 mol/L的硫酸,缓缓加入量瓶中。置于100℃水浴中加热,缓缓摇动,至试样完全溶解,冷却,用纯水定容,量取0.5ml此溶液置25ml比色管中,其余如上述丙二醇的配制方法。羟丙基含量和取代度算法分别如公式1、2所示。[/align][align=center][img=,411,64]http://ng1.17img.cn/bbsfiles/images/2018/07/201807251608249134_5590_3389662_3.png!w411x64.jpg[/img][/align][align=center]注: C:试样中丙二醇含量,由吸光度计算得出; m:取样量;0.7763:转换系数;[/align][align=center][img=,387,58]http://ng1.17img.cn/bbsfiles/images/2018/07/201807251610349286_9676_3389662_3.png!w387x58.jpg[/img][/align][align=center]注:6.9190:HA分子量/环氧丙烷分子量[/align][align=left][b]3抗HAase降解特性3.1材料[/b] 注射用透明质酸酶(HAase)(上海第一生化药业有限公司、1500单位/瓶);缓冲液(磷酸二氢钠:0.0057 g、磷酸氢二钠:0.0230 g、氯化钠:9.0 g、纯化水:1.0 kg);平氏黏度计,Φ1.0 mm、Φ2.0 mm;恒温水槽,上海仪表仪器厂; DK-8D数显恒温水浴锅,金坛市医疗器械厂。[b]3.2方法[/b] 称取HHA和对照HA各 0.5 g份于150 ml肖特瓶中,加入50 ml缓冲液,震荡至完全溶解。用氢氧化钠溶液或HCl溶液调节pH值6.0~7.2,取溶解液10.0 g,纯水稀释5倍;作为起始样品测黏度。取1500单位的酶用缓冲液稀释10倍,分别吸取40单位加入上述HA和HHA溶液中,摇匀,放入37℃的水浴中降解,24 h取样:称取10.0gHA溶液于50 ml容量瓶中,加入纯化水稀释至刻度线,加热煮沸2min,冷却至室温,测其在25℃下的运动黏度,算法如公式3所示。[/align][align=center] [img=,449,41]http://ng1.17img.cn/bbsfiles/images/2018/07/201807251629104708_3045_3389662_3.png!w449x41.jpg[/img][/align] 24小时黏度下降率Δη低于75%。[align=left][b]4透光率的测定4.1材料[/b] 紫外-可见分光光度计、电子天平(精度0.01g)[b]4.2方法[/b][/align][align=left] 取本品0.50g至盛有100 ml水的锥形瓶中,在冰箱中放置过夜,溶解后,纯水作为空白,参考紫外-可见分光光度计操作规程,550 nm波长处测定溶液的透光率。[/align][align=left][b]5pH的测定5.1材料[/b][/align][align=left] 电子天平(精度0.01g)、pH计、磁力搅拌器、磁子、100 ml锥形瓶、100 ml量筒、新沸放冷的纯化水。[/align][align=left][b]5.2方法[/b][/align][align=left][b]5.2.1 溶解[/b][/align][align=left] 称取供试品0.10 g,置锥形瓶中。加新沸放冷的水100 ml和磁子,将锥形瓶用封口膜封口,将锥形瓶置磁力搅拌器上搅拌约4小时,完全溶解,目测为均一透明溶液。[b]5.2.2 测定[/b][/align][align=left] 按照所用pH计的操作规程,先对pH计进行校准,之后将电极和温度探头深入被测溶液中,缓慢搅拌,读取pH值。[b]6运动黏度的测定6.1材料[/b][/align][align=left] 电子天平(精度0.1 mg);平氏黏度计(毛细管内径为1.0 mm ± 0.05 mm);恒温水浴:控温精度±0.01 ℃;秒表:分度0.01秒;振荡器。[b]6.2方法[/b] 称量样品0.1 g(折干),置100 ml容量瓶中,加水振荡至溶解后作为供试液。取毛细管内径为1.0mm ± 0.05 mm的平氏黏度计,加入5 ml供试液,置水浴中,25 ℃下放置15分钟后,秒表测定供试液流过黏度计两条线之间的时间,取两次测定的平均值按下式计算,即为供试品的运动黏度,计算方法如公式4所示。[/align][align=left] 运动黏度ν(mm[sup]2[/sup]/s)=[i]Kt [/i]公式(4)[/align][align=center]式中 [i]K[/i]为用已知黏度的标准液测得的黏度计常数,mm[sup]2[/sup]/s[sup]2[/sup];[/align][align=center][i]t[/i]为测得的平均流出时间,s;[/align][b]7干燥失重7.1材料[/b] 卤素水份测定仪,HHA样品;[b]7.2方法[/b][align=left] 取本品约1.0g,置HG53 型卤素水分测定仪托盘内。110 ℃测定15分钟,记录测定结果。[b]8细菌、霉菌及酵母菌测定8.1供试液制备 [/b][/align][align=left] 取34ml无菌磷酸盐缓冲液1瓶,将1500U HAase加入其中,用吸量管各吸取1ml分别加入至4个平皿中,作为阴性对照。再取样品1.5 g,加入到做完阴性对照的含有HAase的30 ml磷酸盐缓冲液中,42℃下振荡溶解,制得 1﹕20的供试品溶液。[b]8.2 细菌总数测定[/b](1)阴性对照试验将温度低于45℃溶化的营养培养基分别注入上述2个含有1 ml的磷酸盐缓冲液的平皿中,每个平皿约15~20 ml左右,凝固,倒置培养。均不得有菌生长。(2)样品测定用吸量管准确吸取上述1∶20的供试液2ml加入至8 ml的磷酸盐缓冲溶液中,混匀,作为1∶100的稀释级。向平皿中分别加入1∶20、1∶100的供试液各1 ml,向每个平皿注入温度低于45℃的事先溶化的营养琼脂约15~20 ml,待凝固后倒置放入培养箱中。每个稀释级均制备2个平板。[b]8.3 霉菌及酵母菌数测定[/b](1)阴性对照试验 分别注入向2个含有1ml的上述磷酸盐缓冲液的平皿中将温度低于45℃溶化的玫瑰红钠琼脂培养基,每个平皿约15~20 ml左右,凝固,倒置培养,均不得有菌生长。(2)样品测定 用吸量管准确吸取上述1∶20供试液2ml加入至8 ml的磷酸盐缓冲溶液中,混匀,作为1∶100的稀释级。各吸取1∶20、1∶100的稀释级的供试液1 ml加入至平皿中,注入温度不超过45 ℃的溶化玫瑰红钠琼脂培养基,每个平皿约15~20 ml,待凝固后,倒置培养。每个稀释级均制备2个平板。[b]8.4 结果[/b] 将营养琼脂培养基和玫瑰红钠琼脂培养基平板分别倒置于30~35℃、23~28℃生化培养箱中,营养琼脂平板培养3天,用于细菌计数;玫瑰红钠琼脂培养平板培养5天,用于霉菌、酵母菌计数,按照稀释比例,计算出每克样品中的微生物数。[b]9 结论[/b] 采用制定的质量标准对产品检验,结果表明,HHA能保持HA的润滑性和流动性,也具有明显的抗HAase降解的特性;克服了HA衍生物抗酶解但缺少润滑性的缺点,预期用途是开发成骨关节注射液或皮下注射填充剂用于美容,期望能够延长体内保留时间起到长效治疗的作用,减少患者注射次数,减轻患者痛苦。[/align][align=center]参考文献[/align] 赵凯, 刘丽艳, 刘婧婷. 分光光度法测定羟丙基淀粉取代度. 食品科学,2011, 32(22) : 201-203.[align=center][b][/b][/align][align=center][b][/b][/align]

  • 海洋沉积物测定金属是否不需要含水率

    公式:W=C×V×D/Mw:沉积物干样中的砷含量v:样品消化液体积d:消化液稀释倍数m:试样取样量一般我们做的土壤标准中都会有(1-f)的含水率公式从公式上看,海洋沉积物测定金属是否不需要含水率?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制