当前位置: 仪器信息网 > 行业主题 > >

吡啶酰苯胺标准品

仪器信息网吡啶酰苯胺标准品专题为您提供2024年最新吡啶酰苯胺标准品价格报价、厂家品牌的相关信息, 包括吡啶酰苯胺标准品参数、型号等,不管是国产,还是进口品牌的吡啶酰苯胺标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶酰苯胺标准品相关的耗材配件、试剂标物,还有吡啶酰苯胺标准品相关的最新资讯、资料,以及吡啶酰苯胺标准品相关的解决方案。

吡啶酰苯胺标准品相关的资讯

  • 填补土壤苯胺检测空白---LCMSMS苯胺新标准6月正式实施
    HJ 1210-2021《土壤和沉积13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》,主要适用于土壤和沉积物中苯胺和联苯胺化合物的测定,在今年6月1日正式实施。 标准为首次发布标准,标准的发布实施为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准作支撑,并填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,在建设用地土壤风险管控、土壤污染修复在监测上提供强大支持。 作为参与标准制定的验标单位之一,岛津有从前处理到检测方法一系列完善的解决方案。 应用解决方案 在土壤检测上,岛津除了满足新标准检测外,还提供在分析监测上土壤检测解决方案,包括LC、GC、IC、 AA、ICP、ICPMS、XRF、 GCMS、LCMS等丰富完善的色谱、光谱、质谱仪器,还与国家环境分析测试中心的Smart SIM有机物分析数据库,为土壤检测提供更为便利的分析。 岛津秉承着为了人类和地球的健康的公司经营思想,一直致力于土壤检测分析,提供土壤检测整体解决方案,为土壤监测与环境保护提供助力。 本文内容非商业广告,仅供专业人士参考。
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 山西苯胺泄漏事件进展:又发现挥发酚超标
    据中国之声《新闻纵横》1月9日报道,山西长治天脊煤化工集团苯胺泄漏事故发生进入第10天。从事故责任人初步处理意见发布,到环境监测信息公布,直至向公众道歉,这两天,事故应急处理指挥部举动频频。   在山西长治,天脊煤化工集团究竟是一家怎样的企业?公众更想知道,这次污染事故是不是偶发?作为污染的制造者,会为此承担怎样的责任?   沿天脊集团厂区东墙向南,不出两公里,微子镇王都庄村的房屋和玉米地隔河相望。听记者在打听"天脊集团",有村民主动到话筒前说起来。   村民:你看房子上的灰,红瓦都成黑的了。白衣服搭那一会就成黑的衣服了。   村民们说,这些灰都是附近的大型煤化工企业天脊集团带来的,而比灰尘更让他们苦恼的,是水污染给庄稼带来的影响。   村民:庄稼就呛死了,庄稼收影响很大。有的树也死了,很厉害。   经过村民的指点,记者才发现,在村子房屋和玉米地之间的,并不是自然河道,而是一条深达三四米的整齐渠道,下面流淌的水泛着微黄色,站远些也能闻到刺鼻气味。村民们说不清里面排的是什么,但顺着渠道向上走,可以发现它直通天脊集团罐区外墙。村民们说,这就是天脊常年排废水的地方。   村民:"环保事故应急水池"仅为应付检查 污水常年"直达"浊漳河   从村边的渠道向南走,一个方形水泥池显得很醒目,"环保事故应急水池"的牌子挂在朝向路口的方向。正从王都庄村走出来的岳爱斌说起这个池子时笑起来。   岳爱斌:地下管道就是我们修的。秋天上冻后才完工。就是应付领导检查,来了有蓄水池。实际哗哗,每天都流,都是流的臭水,你没见那臭水……等不检查的时候,这些污水就顺着渠道去了黄牛蹄水库,从黄牛蹄水库往下就到辛安村,从辛安村到了浊漳河往河南方向走了。   他解释说,平时这个水池是不用的,无论寒暑,臭水都从村口一泻而下,一路留到浊漳河。尽管在排污渠和浊漳河汇流处已经没有这么明显的气味,但辛安庄村口的人们也对这条排污渠有着类似的抱怨。   记者:化肥厂的水常年在这儿流?   辛安庄村民:对,常年!   记者:是天脊集团的?   辛安庄村民:就是污水嘛!   苯胺泄漏涉事企业仍未停产 2012年废气超标近半年   按照天脊集团公开的阐述,他们的企业环评是合格的,日常排放物是达标的。只是这个24小时机器轰鸣的厂区,想进入也是十分困难的。   天脊集团保安:你们去接待中心,让他们带你们进,接待记者的。其他一般人员车辆都不可以进。   记者:企业还在正常生产是么?   天脊集团保安:是。   但有更多来山西省环保厅发布的公开资料显示,天脊煤化工集团股份有限公司在2012年第一、二季度全省环保不达标生产重点企业名单中都榜上有名,也曾因废气污染物超标排放,被环保部门责令停止违法行为并处罚款。去年第二季度,天脊集团更被发现废气排放超标2.4倍。   在潞城市的东半部,几乎到处都有"天脊"的影子,天脊医院、天脊宾馆、天脊游泳馆,天脊的巨大生产设备日夜运转,似乎也证明着它对这个地方的巨大影响。   媒体曝苯胺泄漏12月26日已发生 山西未主动上报   因为这次苯胺泄漏事故,天脊集团党委书记王俊彦在新闻通气会上公开致歉,但记者再联系他试图采访,又有了另外的说法。   记者:您好,请问是王书记么?   王俊彦:不是吧。   记者:您是王俊彦书记么?   王俊彦:什么事儿?   记者:我是中央人民广播电台的记者。是想请问您一下咱们厂子苯胺泄漏的事情,这两天有什么处理的进展么?   王俊彦:哦,你问这个,这个我们向上面汇报了,上面领导们也下来调查了解了,再一个,情况也越来越好了。   王书记迅速挂断电话,只留下"越来越好"的说法。昨天下午,山西省召开全省安全生产紧急电视电话会议,省政府发布消息说潞安天脊煤化工董事长王光彪、长治市市长张保就本次环境污染事件作刻检查,表示痛定思痛,全面整改,诚恳接受上级部门的处分和处理。   在潞城市中华东大街上,"天脊集团欢迎您"的巨型标语横跨马路上方,到这座小城的记者这几天突然多起来。   山西省代省长李小鹏昨天表示要严格事故问责,无论涉及到哪一层、涉及到什么人,都要依法依纪依规严肃追究责任。 李小鹏代表山西省政府责令潞安天脊煤化工集团全面停产整顿。今天,事故发生已过十天,有媒体说泄漏事故12月26日已经发生,山西并未主动上报,有媒体问,明明泄漏的是苯胺,下游检出的挥发酚从何而来?天脊集团的污染隐患是否能借此根除?公众期待答案。   邯郸主水源地岳城水库检测报告完成 苯胺污染却出现苯胺、挥发酚同时超标   1月5日接到山西方面苯胺泄露事故的通报后,昨天(8日),邯郸市终于完成了主要水源地岳城水库的全面检测报告。经环保部专家论证,岳城水库水质符合饮用水水源标准。   水源地没有被污染,总算让人松了口气。刚才我们的记者也指出,在昨天的检测中,距离岳城水库三四公里外的三个点位,检测出苯胺、挥发酚超标。山西天脊集团发生的是苯胺泄露事故,那么挥发酚是哪来的?目前上游的污染物究竟到了哪里?   邯郸市环保局总工程师侯日升昨天明确:根据检测结果,岳城水库没有检测出目标污染物。   侯日升:最后监测结果是库区内水样中,苯胺、挥发酚未检出,但是上游的三个点位,挥发酚和苯胺都超标,苯胺超标5倍左右,挥发酚超标6到13倍。   与环保局的说法稍有出入,国家环境应急专家组专家张晓健透露,在岳城水库的上游以及水库内的一些点位,检测出了目标污染物之一挥发酚。   张晓健:整个库里边,水库的主体,苯胺所有的点都没有检出,挥发酚有检出,但是属于国家的二类水源,地表水三类都可以作为饮用水水源。   据介绍,1月4日邯郸方面在漳河上游发现死鱼,环保部门立即取样检测,1月5日凌晨,检测结果表明挥发酚严重超标,而山西方面1月5日向邯郸通报泄漏的污染物却是苯胺。   张晓健:当时死鱼肯定是有问题了,但是什么污染物不清楚,所以测了很多,最后发现挥发酚指标超标一百多倍,在跨省界面,所以就跟山西交涉,山西最后就答复了是苯胺。   专家:苯胺污染源确定为山西天脊集团 挥发酚来源尚未找到   一起苯胺泄漏事故,为何检测出挥发酚超标?张晓健分析,苯胺超标的污染源可以确定是山西天脊集团,但特征污染物中挥发酚的来源尚未找到。   张晓健:挥发酚是个指标,测定实际很多中酚都能够表征为挥发酚。这次事故最后的原因还没确定,还有一个挥发酚的排放,是山西天脊,还是有其他排放源?因为这个地方上游有很多焦化企业,都有可能,现在正对所有企业进行排查。   12月31日从上游泄漏的污染物目前到了哪里?经环保部专家论证,污染物主体没有进入岳城水库。   张晓健:第一个,肯定是流到了河北河南的境内了,但是第二点来说,这些污染物大部分,污染物主体没有进入岳城水库。   张晓健认为:山西苯胺泄漏事故符合重大污染事故的标准,可启动赔偿机制,但事故定性还需要最终的调查结论。本次泄漏事件对地下水的影响尚待评估。   张晓健:重大污染事件是这样,一个是跨省边界,这个肯定有了,第二影响到地级市的正常供水,这个也有。地下水和地表水都是水,还互相充,地下水是地表水补充进去的,所以肯定会受到影响,但是这个影响会有多大,后期现在也在开始进行这种评估。   邯郸市自来水公司总工程师胡新春承诺,将采取最严格的水质管理制度,保证居民喝上放心水。   胡新春:举个例子,比如对挥发酚,由原每月一次,改为每四小时一次,另外对铁西水厂的常规检验,由每天一次增至每小时一次。
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 8种苯胺类物质的同时测定
    苯胺类化合物是一种重要的有机化工原料, 环境中所含苯胺类化合物主要来自化工、医药等产生的工业废水,苯胺类物质一般毒性较大,在我国被列为环境重点监测污染物。 此次日立参考国家环境保护标准《 水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》,使用Primaide 高效液相色谱仪配置二极管阵列检测器对8种常见的苯胺类物质进行了测定。8种苯胺类物质实现了良好的分离,方法检出限远低于标准要求值,能够满足测定需要。 图为. 色谱测定条件 图为. 标准品的色谱图(浓度各20 mg/L) 图为. 标准品的色谱图(浓度各20 mg/L) 图为. 苯胺类化合物定量波长仪器配置 : Primaide 1110 泵,1210 自动进样器,1310 柱温箱,1430 二极管阵列检测器■ 线性■重复性(浓度20.0 mg/L,n=6) 在苯胺类化合物浓度为2.0 ~ 100 mg/L范围内,所有成分均得到了R2 ≥ 0.9995的良好线性关系,重复性也得到了良好的结果。■检出限和测定限 与国家标准的结果相比,本方法不仅改善了各成分的分离效果,并且各成分的检出限和测定限均低于标准值,能够满足测定需求,充分体现日立Primaide加二极管阵列检测器的高灵敏度的特性。关于日立Primaide高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm ?
  • 采用LCMSMS技术分析环境中的苯胺和联苯胺
    苯胺类化合物为芳香胺的代表,指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。苯胺及其衍生物是重要的化工原料和中间体。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定优先控制的污染物。随着现代工农业的发展,苯胺类化合物在环境中排放与残留量日趋增多,对环境以及人们的身体健康所产生的危害日益严重。因此,建立环境样品中苯胺类和联苯胺类化合物的测定方法十分重要。环境标准《HJ 1048-2019 水质17种苯胺类化合物的测定液相色谱-三重四极杆质谱法》,为环境介质中苯胺类化合物的测定提供技术保障和法规依据。珀金埃尔默公司采用QSight LC-MS/MS液质联用系统,建立应对环境样品中苯胺类的分析方案。本方法中,苯胺类、联苯胺类化合物均获得了优异的线性关系(R20.994),该方法的苯胺类和联苯胺类化合物检出限为0.01~0.5μg/L。PerkinElmer LX50 UHPLC-QSight系列三重四级杆液质联用仪欲了解更详细的实验方法,欢迎扫码下载完整的应用报告。扫描上方二维码即可下载资料
  • 沧县地下水苯胺超标70多倍 涉事工厂被拆除
    4月7日,在河北沧县小朱庄建新化工厂,工人在拆除厂房设备。   据央视报道 经过专家组调查,河北沧县小朱庄红色地下水最严重的区域,苯胺含量超标70多倍。   沧县政府邀请了国家环保部、清华大学的环保专家对当地的水质进行了抽样和初步检测,检测结果显示,小朱庄村养鸡厂内井水苯胺为每升7.33毫克,超出饮用水标准每升0.1毫克70多倍。   据现场的专家清华大学环境系教授张晓健说:“排污沟的土和残液,苯胺浓度都很高。肯定是超标排放,这是个多年的老问题。”专家介绍,至于水中是否还含有其他有害物质,需要进一步检测。   目前,企业正在拆除厂区内的生产设备,并表示将全额承担后续的环境污染治理费用。建新化工常务副总陈学为说:“我代表公司,对由此给村民、给社会、给政府造成的影响,给大家道歉。”   当地已经组织人员抽取排污沟里的超标水,并用土筑坝截流。沧县环保部门承认,监管不到位。
  • 山西长治苯胺泄漏事件污染监测数据存矛盾
    1月5日下午,山西省政府接到报告称:2012年12月31日7时40分,位于长治市潞城市的潞安天脊煤化工集团苯胺罐区因输送软管破裂发生泄漏,随浊漳河流出省外,经过初步核查泄漏量约8.7吨。   为何事故发生5天之后才向公众通报?泄漏危害程度如何?污染是否得到控制?本报多路记者赶赴现场进行了调查。   1月6日,记者在天脊集团泄漏苯胺的排污渠看到,河渠已经干涸,渠道上洒满石灰粉,在河口处许多装满活性炭的麻袋筑起了一道“碳坝”。   苯胺库区门口,立有三块蓝色信息警示牌,标明“苯胺:重大危化品,危害等级:二类”。库区保安严阵以待,拒绝记者进入,称“非本单位车辆、人员,没有领导的通知一概不准进入”。   6日晚,记者从事故处置工作组了解到,目前4名直接责任人已被初步处理,天脊方元公司总经理陈建温、安全生产副总经理任勇杰、储运车间主任程新生、副主任宋涛被撤职,待事故调查结束后,再进一步追究相关人员责任。   第一次事故报告与第二次“续报”相差5天   泄漏事故是否存在瞒报迟报?   据天脊化工“12 31”事故处置工作组6日晚8时通报:2012年12月31日事故发生后,长治市政府和企业当即启动应急预案,责令企业立即停产,在浊漳河及支流共设置八道活性炭过滤泄漏物拦截坝,对污染物进行吸附清理,长治市环保局和企业分别在入河口、实会断面、红旗渠、王家庄、青年洞等处设立八个监测点位,每2小时取水1次,对氨氮、化学需氧量、苯胺等项目开展应急监测。   但是,1月5日上午,天脊集团才“续报”了苯胺泄漏的进一步情况。经初步核查,当时泄漏总量约为38.7吨,发现泄漏后,有关方面同时关闭管道入口出口,黄牛蹄干涸水库截留了30吨的苯胺,约有8.7吨苯胺排入浊漳河。   按照相关法规规定,长治市政府立即将续报情况上报山西省政府,省政府第一时间上报国务院。同时,迅速向河北邯郸、河南安阳两市通报了情况。   为何事故发生5日后天脊集团才“续报”泄漏情况?究竟第一次事故报告情况与第二次“续报”之间存在多大差距和水分?该事故是否存在瞒报、迟报情况?   受事故处置工作组委托的山西省环保厅总工程师刘大山表示,对此事故可能存在的瞒报、迟报情况,调查组目前正在调查,并将及时通报调查情况。   山西通报称岳城水库“未发现污染”,安阳监测出部分水体苯胺超标   污染检测数据为何存在矛盾?   据事故应急指挥部介绍,苯胺泄漏后,浊漳河出山西省界的王家庄监测点的苯胺浓度一度达到国家标准的720倍。经全力清理,截至6日2时,王家庄监测点浓度已下降到国家标准的34倍。   6日晚,事故处置工作组表示,国家有关部门已现场对岳城水库入库、库中、坝前、出库断面进行全面采样和检测,结果表明目前岳城水库水质尚未发现苯胺类有机物污染。   截至发稿,记者并未获悉关于邯郸市岳城水库目前水质情况的监测结果。   而安阳市方面的监测结果显示,安阳市境内岳城水库、红旗渠等部分水体有苯胺、挥发酚等因子检出和超标,庆幸的是,安阳市第五水厂岳城水库蓄水口水样各项指标正常。   同样是针对岳城水库的检测,为何河南省对水库苯胺、挥发酚等因子检出和超标,而山西省介绍的国家有关部门检测“尚未发现苯胺类有机物污染”?   对此,6日晚的新闻发布会上,事故处置工作组未能作出解释回答。   泄漏5日后才被告知   流域群众身体安全是否受到影响?   长治市市长张保介绍,此次苯胺泄漏事故,平顺县和潞城市28个村、2万多人受到影响,但由于浊漳河水在当地不是饮用水源,主要用于农田灌溉及牲畜用水,长治市人畜饮水安全并未受到影响,当地也未出现抢购饮用水的情况。   而受此事故影响,造成大面积停水的邯郸市许多居民还是担心水质受影响。1月6日上午,记者联系了邯郸一名市民陈女士,她告诉记者,从6日凌晨开始,家中已恢复供水,但因是污染物排放导致的停水,她表示很担心。   河水中的苯胺是否会对人体造成危害?对此,中国环境科学院院长夏青介绍,一方面是看排放总量,8.7吨苯胺折纯有多少流入了河里 第二,苯胺入水后浓度是不断发生变化的,污染水源能否饮用,一切以水质断面的浓度和取水口测定的浓度值为准。   6日晚的新闻发布会上,事故处置工作组对各媒体提出的问题进行了搜集,表示将在7日根据进一步的调查情况给出详细回答。
  • 新规来了 | 谱育科技 LC-MS/MS助您轻松应对土壤和沉积物中苯胺类和联苯胺类的检测
    苯胺具有较强的生物毒性,大范围使用及违规排放会带来土壤污染、生物累积、环境挥发等严重问题,对生态环境乃至人体健康产生不利的影响。2021年,生态环境部发布《HJ1210-2021 土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》,将于2022年6月1日起实施。相较于以往的GC-MS法,液相色谱-三重四级杆质谱法(LC-MS/MS)具有更优异的灵敏度、更准确的定性定量、更抗基质干扰等优势。 EXPEC 采用谱育科技 EXPEC 5210 LC-MS/MS 液相色谱-三重四极杆质谱联用仪,结合全自动固相萃取仪、氮吹平行浓缩仪等样品前处理设备,建立了从土壤和沉积物中13 种苯胺类和 2 种联苯胺类化合物的应用方案。该方案从前处理到分析仪器检测、数据分析全面涵盖,轻松应对土壤中苯胺检测挑战。EXPEC 5210EXPEC 5210 LC-MS/MS 是谱育科技在"国家重大科学仪器设备开发专项"支持下,研制的具有自主知识产权的三重四极杆串联质谱仪,具有卓越的灵敏度,优异的稳定性,突出的可扩展性和更佳的性价比,广泛应用于食品安全、医学检测、生物医药和环境检测等领域,同时具有数千种化合物标准库和丰富的应用方法库。EXPEC 520 氮吹平行浓缩仪 具有处理样品批量大、无需人员看守、环保、安全等特点,提高实验室人员效率,减少氮气损耗节约实验室成本,而且更大限度地减轻了有毒有害溶剂对实验人员的伤害。EXPEC 570 全自动固相萃取仪 可自动完成固相萃取全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱等),自动完成柱切换等功能,实现批量化样品的处理。实验部分仪器:ULC 510超高效液相色谱仪(具体配有二元超高压输液泵、超高压自动进样器(含冷却功能)、柱温箱)、EXPEC 5210 三重四极杆串联质谱仪。液相和质谱条件:样品前处理:参考标准《HJ1210-2021 土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》的前处理方法进行处理。典型谱图与标准曲线采用上述仪器方法获得15种苯胺色谱图如下:标准对照品的典型谱图13种苯胺及2种联苯胺的线性系数r均在0.999以上。部分物质标准曲线图如下:以标准曲线最低点(其中3-硝基苯胺浓度为1 ng/ml,其余目标物浓度为0.5 ng/ml),计算所得各目标物检出限和定量限,均优于标准检出限要求。小结
  • 快速灵敏,坚实可靠 | QSight LC-MS/MS轻松应对土壤和沉积物中苯胺类和联苯胺类化合物的测定
    GB 36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》于2018年正式实施,是我国开展土壤污染防治的重要支撑技术文件。该标准规定了保护人体健康的建设用地土壤污染风险筛选值和管制值,以及监测、实施与监督要求。其中苯胺作为45项基本项目之一,是建设用地初步调查阶段土壤污染风险筛选的必测项目。Tips:苯胺类化合物是指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定的优先控制污染物。关于苯胺的标准测定问题按照GB36600-2018土壤环境质量标准表3推荐的检测方法,土壤中苯胺按照《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ834)来进行检测,而HJ834方法中并没有“苯胺”参数,给检测工作带来一定困扰。据权威解释:实验室按《合格评定化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600-2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。HJ 1210-2021《土壤和沉积物13种苯胺类和2种联苯胺类化合物的测定液相色谱-三重四极杆质谱法》首次发布,明确规范了土壤和沉积物中苯胺类和联苯胺类化合物的测定方法,并将自2022年6月1日起实施。“土壤或沉积物中苯胺类和联苯胺类目标化合物,在碱性条件下提取,经净化、浓缩、定容后,用液相色谱-三重四极杆质谱仪分离检测。根据保留时间和特征离子定性,内标法定量。”土壤样品成份复杂、基体干扰因素多、调查样品量大,与常规环境样品分析相比更具挑战。珀金埃尔默QSight三重四极杆液质联用仪,灵敏稳定、坚实可靠,该系统具有独特专利的HSID自清洁技术,应对各种复杂的土壤和沉积物基质样品分析时,无需清洗维护,不损失灵敏度,即可完成大量样品的分析,节省维护时间及成本。PerkinElmer LX50 UHPLC-QSight系列三重四级杆质谱仪灵敏稳定,不惧污染同轴高温加热离子源,提高离子化效率创新的加热诱导脱溶剂和层流离子传输技术,提高灵敏度的同时免于维护超快正负模式切换时间,大幅提高工作效率新立式三重四级杆质谱仪,极大节省空间QSight LC-MS/MS应对土壤和沉积物中苯胺和联苯胺类化合物的测定分析解决方案采用QSight LC-MS/MS液质联用系统,成功建立了土壤和沉积物中15种苯胺类和联苯胺类化合物的分析方案,根据保留时间及离子比率进行快速准确定性,其检出限完全满足HJ1210-2021标准中的检测限量要求,轻松应对日常检测分析要求。PerkinElmer LX50 UHPLC参数色谱柱:Quasar SPP C18,2.1×100mm,2.6μm柱温:35℃流速:0.3mL/min进样量:10μLTime/minA/%B/%水(0.01%甲酸)甲醇(0.01%甲酸)0.09552.09555.070307.05959.05959.295512.0955表1 苯胺类和联苯胺类化合物液相色谱梯度洗脱表质谱参数采用PerkinElmer QSight 210三重四极杆液质联用系统进行分析,离子源参数见表2。离子源ESI+喷雾电压120雾化气
  • 邯郸涉县浊漳河水域检测出苯胺超标 未公布超标数额
    6日下午,河北省邯郸市环保局透露,邯郸市环保部门5日在对涉县浊漳河进行水质检测时发现苯胺、挥发酚等因子超标,但邯郸市环保部门未公布具体超标数额。由于涉县紧邻山西长治,此次超标或与长治苯胺泄露有关。   据邯郸市环保局负责人表示,因处理及时得当,浊漳河涉县水域暂未发现死鱼死禽现象。邯郸环保部门将继续开展全天候监控和持续跟踪监测。   涉县位于晋冀豫三省交界处,浊漳河、清漳河在该县合漳乡合流。由于涉县人畜饮用水多为深水井,地下水源供水,所以没有发生断水现象。目前,该县正在加紧对漳河沿线村庄水井、水质情况进行统计、调查。   苯胺是一种被广泛应用的化工原料,可用作染色、生产农药,作为炸药中的稳定剂、汽油中的防爆剂等。对环境有危害,对水体可造成污染。人体若吸入或接触,会造成溶血性贫血和肝、肾损害等。
  • 山西耗资8.5亿监控系统未监测到苯胺泄露
    诸多媒体关注山西苯胺泄露事故   山西8.5亿自动监控系统为何失效   8.68吨有毒化工中间体苯胺,要泄漏到海河水系的浊漳河,威胁到下游邯郸、安阳饮用水水源,至少需要突破分流阀、每2小时一次的例行排查、在线实时监控系统和突发环境事件应急预案这4道软硬件“阀门”。但它做到了。   《第一财经日报》记者探访山西长治“1231”苯胺泄漏事故泄漏源发现,事故之所以酿成并造成较大影响,因为上述四道“阀门”都是松动的。   受污染水源被倾倒山沟   昨日下午,在位于长治市下辖潞城市黄牛蹄乡的事故发生地,本报记者看到,数十名身着蓝色制服的山西省潞安天脊煤化工厂(下称“天脊化工”)工作人员,正在一处通向浊漳河的水渠中,用铁锹和铁镐将已冻结的渠水敲碎,装入编织袋内集中堆放。据工作人员称,会有卡车来把这些被污染的冰体运走,但不清楚运到何处。半米深的水渠里,渠水已全部冰封,而铺设的鹅卵石也使得清理工作变得相当费力。   苯胺的泄漏,在这里留下了相当多的痕迹。渠道内随处可见为了吸附苯胺而喷洒的石灰粉。越接近浊漳河的地方,石灰粉也就越多。   在此次被用来截留受污染水体的黄牛蹄水库,记者看到抽水车不断地将水库内留存的污水抽走,身穿天脊化工母公司——潞安集团工作服的工作人员正用仪器丈量水库受污染的面积。   据长治市官方说法,将对被污染水源做无害化处理,记者采访得知,这些水都被倾倒在距天脊化工排污口不远的山沟里。   在公路旁一个洼地内,工作人员也在清除冰块,这里的冰层甚至比渠道里的还要厚,当地村民称,在事故处置时,这片洼地曾被用作临时蓄水池。   据科普网站科学松鼠会提供的信息,苯胺是一种重要的化工中间体,可用于生产聚氨酯泡沫塑料、农业化学品、合成染料、抗氧化剂、橡胶稳定剂、除草剂、清漆和炸药等。它同时是一种有毒物质,食入、吸入或皮肤接触都可能引起中毒。苯胺会损害在血液中运输氧气的血红蛋白,导致高铁血红蛋白血症等中毒症状。中毒者可能出现头晕、头痛、心跳不规律、抽搐、昏迷甚至死亡。   此次泄漏事故发生后,浊漳河下游安阳市境内岳城水库、红旗渠等部分水体有苯胺、挥发酚等因子检出和超标 主要依赖岳城水库供水的邯郸市出现大面积停水。   浊漳河是山西上党地区最大的河流,流域内不仅有辛安泉饮用水水源二级保护区,还有水上漂流的旅游项目。浊漳河流域面积11196平方公里,与清漳河合流成为漳河干流,其至岳城水库以上流域面积18100平方公里。岳城水库是邯郸市两大水源之一,邯郸市城区人口则超过100万。   排水排污管道仅靠分流阀分隔   调查称,此次苯胺泄漏的直接原因是天脊化工苯胺罐区的一个分流阀未关闭。   据新华社报道,天脊化工的苯胺罐区是一个由两米高的围墙围起来的封闭区域,进出需要通过一座类似天桥的铁架翻越围墙。   在苯胺罐区有一根管道分别与雨水处理池和事故池相连,下雨天,通往雨水处理池的阀门打开,罐区的雨水经由地形引导流入管道进入雨水处理池后排入浊漳河 不下雨时,这道阀门是关闭的,一旦发生苯胺泄漏,苯胺将会通过管道进入事故池。   但2012年12月31日7:40以前,尽管天未下雨,通往雨水处理池的管道阀门却是松开的。这直接导致当日38.68吨苯胺流入通向浊漳河的水渠,后者30吨被成功截留。   天脊化工工作人员对本报称,该公司规定,对苯胺灌区每2小时进行一次例行检查,事故正是于当日7:40排查时被发现的。但该工作人员无法确认具体的泄漏时间,以及其他工作人员此前是否做过检查。   2013年1月6日晚,“1231”苯胺泄漏事故应急指挥部召开媒体通气会,宣布事故的4名直接责任人——天脊方元公司总经理陈建温、安全生产副总经理任勇杰、储运车间主任程新生、副主任宋涛已被撤职。待事故调查结束后,再进一步追究相关人员责任。   耗资8.5亿监控系统无作用?   姑且不论排水和排污管道仅以一个阀门分隔这一设计是否合理,以及例行检查是否存在疏漏,即使是发现泄漏后的有关方面的处置,也存在诸多争议之处。   根据山西省2011年制定的《山西省突发环境事件应急预案》,山西省政府应当在当天就接到报告并上报。   按照官方说法,山西省环保厅直到事故发生后第5天的1月5日才得知情况。但本报记者调查得知,天脊化工已安装了直通山西省环保厅的“在线实时监控系统”,如果这一系统正常工作,山西省环保厅本应能够实时监控到事故的发生。   公开资料显示,山西省环保厅早在2006年就成立了“全省污染源自动监控系统”建设领导组,由环保厅长担任组长。2008年3月,总投资8.5亿多元的全国第一个“监控合一”的省级污染源自动监控中心在山西建成并投入使用。   安装该系统的企业的排污数据,将通过GPRS无线网络VPN专网,实时地发送到山西省环保厅的监控室内,如果数据排放超标或净化设施运行不太正常的时候,监控室设在污染源的在线监控系统控制柜,给企业实施相关的控制功能,如强制停电等。   本报查阅山西省环保厅官网发现,天脊化工恰恰是山西省环保厅负责监管的自动监控企业之一。   在1月7日上午召开的发布会上,长治市市长张保称因对污染危害性估计不足,“未及时向省政府上报有关信息”,并作出道歉。   而本报记者致电山西省环保厅,询问为何在此次事故中,这套总投资8.5亿、号称全国领先的“污染源自动监控系统”未能起到防范并及时发现事故的作用,得到的答复是“此问题须由目前在长治市的厅领导回答”。   新闻背景:山西苯胺泄漏事故致河北邯郸大面积停水
  • 环保部答复:土壤污染状况调查扩大化、苯胺的检测方法等问题
    1.关于土壤现状监测点位如何选择的回复来信:  根据土壤导则要求污染影响型建设项目,二级要求监测柱状样和表层样,三级要求监测表层样。如果建设项目场地已经硬底化,该如何如何选取监测点?是需要把已经硬底化的场地破坏还是另外选取监测点?回复:  根据建设项目实际情况,如果项目场地已经做了防腐防渗(包括硬化)处理无法取样,可不取样监测,但需要详细说明无法取样原因。 2.关于土壤破坏性监测问题的回复来信:  一家木工喷漆企业租用其他厂的部分厂房,一层做木工,二层做喷漆(油性+水性)。按土壤导则规定,起码是土壤二级评价,需要在占地范围内布设3个柱状样,1个表层样。而厂区内部无绿化,场地均采用水泥硬化,请问占地范围内可否不进行土壤监测?回复:  根据建设项目实际情况,如果项目场地已经做了防腐防渗(包括硬化)处理无法取样,可不取样监测,但需要详细说明无法取样原因。 3.关于土壤污染状况调查扩大化问题的回复来信:  郑州市生态环境局在执行《中华人民共和国土壤污染防治法》中的问题,希望得到你的回应。在实际工作中郑州市生态环境局对所有用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查,包括原来是农用地征收为国有土地后只要是规划用途为住宅、公共管理与公共服务用地在土地收储前全部进行土壤污染状况调查,每宗地的调查费用都在几十万元,增加了用地企业的负担。我通过郑州市市长信箱反映这种土壤检测扩大化的问题,郑州市生态环境局回复是:他们与省生态环境厅与部有关单位沟通并咨询法律人士,按照《中华人民共和国土壤污染防治法》第五十九条要求,只要用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查。而我理解对于农用地征收为国有土地不用做土壤污染状况调查,即使需要做土壤污染状况调查也应该是生态环境局组织调查,费用由政府负担。希望部长给个明确的回复:是用途变更为住宅、公共管理与公共服务用地的全部进行土壤污染状况调查,还是只对建设用地土壤污染风险管控和修复名录中的地块和土壤污染重点监管单位生产经营用地用途变更为住宅、公共管理与公共服务用地需要进行土壤污染状况调查。 回复:  一、农用地变更为住宅、公共管理与公共服务用地的,应当开展土壤污染状况调查 根据《中华人民共和国土壤污染防治法》《关于贯彻落实土壤污染防治法 推动解决突出土壤污染问题的实施意见》(环办土壤〔2019〕47号),用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。住宅用地、公共管理与公共服务用地之间相互变更的,原则上不需要进行调查,但公共管理与公共服务用地中环卫设施、污水处理设施用地变更为住宅用地的除外。二、土壤污染状况调查遵循分阶段调查的原则 根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019),土壤污染状况调查分阶段开展。其中,第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上可不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。4.关于请教土壤中苯胺的检测方法的回复来信:  按照新的土壤环境质量标准即《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018),表3推荐的检测方法,土壤中苯胺要按照《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834)来进行检测分析,但HJ834该标准方法中并没有“苯胺”该参数,请问未来是否会有针对这个问题的解决方案? 回复:  为配套《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)实施中苯胺的测定,我部正在组织制订《土壤和沉积物 苯胺类和联苯胺类的测定 液相色谱-三重四极杆质谱法》。目前,该标准已公开征求意见。在该标准发布实施之前,实验室按《合格评定 化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定 气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600—2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。5.关于农用地变更用途是否需要做土壤污染检测问题的回复来信:  非污染和疑似污染的农用地变更为住宅公共管理,公共服务设施的,是否需要开展土壤污染检测。回复:  一、农用地变更为住宅、公共管理与公共服务用地的,应当开展土壤污染状况调查 根据《中华人民共和国土壤污染防治法》《关于贯彻落实土壤污染防治法 推动解决突出土壤污染问题的实施意见》(环办土壤〔2019〕47号),用途变更为住宅、公共管理与公共服务用地的,变更前应当按照规定进行土壤污染状况调查。住宅用地、公共管理与公共服务用地之间相互变更的,原则上不需要进行调查,但公共管理与公共服务用地中环卫设施、污水处理设施用地变更为住宅用地的除外。二、土壤污染状况调查遵循分阶段调查的原则 根据《建设用地土壤污染状况调查技术导则》(HJ25.1-2019),土壤污染状况调查分阶段开展。其中,第一阶段土壤污染状况调查是以资料收集、现场踏勘和人员访谈为主的污染识别阶段,原则上可不进行现场采样分析。若第一阶段调查确认地块内及周围区域当前和历史上均无可能的污染源,则认为地块的环境状况可以接受,调查活动可以结束。6.关于农田土壤监测45项因子评价标准怎么选的回复来信:  在环境影响评价中开展土壤环境质量背景监测时,针对调查评价范围内每种土壤类型设定的监测点,应对GB36600表1所列45项因子进行监测。如果环评阶段监测点设置在农田,监测45项因子,但是农用地风险管控标准中因子不全,是只评价标准中所含因子,还是参照建设用地风险管控标准去评价? 回复:  建设项目环境影响评价中开展土壤环境质量现状监测,目的一是了解或掌握调查评价范围内土壤环境现状,为后续相关工作奠定基础,二是确保建设项目用地土壤环境质量符合国家或者地方有关土壤污染风险管控标准。根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018)对现状监测因子的要求,“基本因子为GB 15618、GB 36600中规定的基本项目,分别根据调查评价范围内的土地利用类型选取”。因此,农林之外的其他建设项目开展环境影响评价中的土壤环境现状监测,对于需要监测基本因子的监测点位,其基本因子根据下表所列标准的基本项目选取:7.关于咨询土壤导则里两个问题的回复来信:  咨询一下生态环境部2018年9月13日发布的《环境影响评价技术导则 土壤环境(试行)》里面的两个问题 1、土壤导则中“6.2.2.2 建设项目所在地周边的土壤环境敏感程度分为敏感、较敏感、不敏感,判别依据见表3.”想咨询一下,“建设项目周边”里的“周边”是否指的是项目红线范围内邻近的区域?还是根据“表5”中的现状调查范围确定,还是有其他定义的方法?2、土壤导则中“7.4.3 现状监测点数量要求”中的“表6 现状监测布点类型与数量”里面提到的“柱状样点”怎么理解?1个柱状样点是否包含了分别从0~0.5m、0.5~1.5m、1.5~3m处及3m以下取的样本?回复:  一、土壤导则里中“周边”指建设项目可能影响的范围,应在工程分析基础上,识别建设项目影响类型与污染途径,结合建设项目所在地的气象条件、地形地貌、水文地质条件等判定。二、针对土壤导则表6中的柱状样点为建设项目占地范围内的深层取样,取样深度由建设项目可能影响的垂向深度范围确定,非固定值,表注中的 “b柱状样通常在0-0.5 m、0.5-1.5m、1.5-3 m分别取样,3 m以下每3 m取1个样,可根据基础埋深、土体构型适当调整。”应根据土体构型,选取最具代表性的土层进行取样。
  • 山西苯胺泄漏污染河水-LabTech解决方案
    中广网北京1月6日消息,据中国之声《新闻纵横》报道,昨天(5日)下午5时左右,邯郸市市区突发大面积停水事故。事故原因是邯郸接山西省有关部门通报,漳河上游浊漳河山西境内发生了事故性污染物排放。目前,邯郸市的水质检测报告尚未出炉,政府提醒民众暂时不要饮用漳河水。初步调查的结果是一个装有苯胺的罐发生了泄漏。 苯胺是一种被广泛应用的化工原料,可用作染色、生产农药,作为炸药中的稳定剂、汽油中的防爆剂等。对环境有危害,对水体可造成污染。人体若吸入或接触,会造成溶血性贫血和肝、肾损害等。针对于水(河流、生活饮用水、地表水等)中的苯胺检测,莱伯泰科公司已有成熟的应用文章《利用全自动固相萃取系统实现水中苯胺的萃取》,利用固相萃取SPE-DEX4790和LC600高效液相色谱仪形成整体解决方案。 应用文章点击下载:《利用全自动固相萃取系统实现水中苯胺的萃取》
  • 山西苯胺泄漏事故致河北邯郸大面积停水
    图为邯郸市民在超市抢购矿泉水。 图为因店内饮用水售一空,一邯郸市民只能采购牛奶和苏打水。   河北省邯郸市人民政府5日夜间通报称,接山西省有关部门通报,由于漳河上游浊漳河山西境内发生了事故性污染物排放,该市政府决定停止从岳城水库供水,改为全部由羊角铺地下水源地供水,由于单水源供水管网压力较低,造成部分市区供水困难。   据了解,岳城水库属国家直管的特大型水库,位于磁县境内,水质为国家地表水Ⅱ类水体,水质综合污染指数2.25,水质良好,是邯郸两个水源地之一。铁西水厂水源即取自岳城水库,经过56.5公里输水管线自流进入水厂。供水能力为20万立方米/日。   邯郸市自来水公司一负责人5日晚透露,邯岳(邯郸—岳城)输水管线岳城水库取水口自14时许关闭,造成该市铁西水厂停止运行。该自来水公司另一三堤水厂独自承担起全市的城市供水重担。由于水压偏低等问题,部分区域市民用水受到影响。就此次停水造成停水面积及影响人数正在统计中。   邯郸市人民政府通报称,其他使用岳城水库、东武仕水库及漳河水的地方,人畜不可直接饮用 用于灌溉的,需等到有关部门通知后方可使用。   由于尚未得到恢复供水时间通知,邯郸市民纷纷走出家门购买饮用水。记者在市内光明路“美食林”超市大宗商品销售处了解到,1个小时内该超市卖出80多件19升桶装水。而在邯郸市春风小区,一位高姓居民说,她下来发现小区里的矿泉水早已卖光,只能买牛奶和苏打水备着。记者21时又来到龙湖公园一大型超市,该超市工作人员介绍说,饮用水已销售一空。   邯郸市最大超市“美食林”企划部邓小林介绍说,该超市已经敞开供应饮用水,现在他们已调动全体采购人员联系货源,如发生缺货他们将第一时间从周边县市进货。(马继前)   ★山西苯胺泄漏污染河水 事隔五日才出现报告   2012年12月31日早7时40分,事故发生,山西省环保厅1月5日获知消息,中间间隔了5天时间。根据2012年3月山西通过的《山西省突发事件应对条例》第三十条规定:较大以上和暂时无法判明等级的突发事件发生后,县(市、区)人民政府应当及时报告,设区的市人民政府、省人民政府有关部门和单位应当在两小时内报告省人民政府。【详细】   ★山西长治苯胺泄漏事故初步核查泄漏8.7吨苯胺   记者从山西潞安天脊“1231”应急指挥部了解到,经过初步核查,位于长治市潞城市境内的山西天脊煤化工集团股份有限公司苯胺泄漏事故苯胺泄漏量约为8.7吨。
  • 二苯胺盐酸盐促销
    货号:CFEQ-4-120052-0025 二苯胺盐酸盐,&ge 99.0%,4℃保存 25g 报价:860.00元 促销价: 688元 促销截止日期:2012.3.31 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 欧盟修订二苯胺在部分商品中的最大残留限量
    2013年8月13日,据欧盟网站消息,欧盟发布(EU)No772/2013号委员会条例,就二苯胺(diphenylamine)在部分动植物产品中的最大残留限量修订(EC)No396/2005号法规附录II、III、V。   本法规自发布之日起第20天生效,并于2014年3月2日实施。   更多详情参见:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:217:0001:0027:EN:PDF
  • 赛默飞发布在线固相萃取—双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案
    2014年7月8日,上海 ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布在线固相萃取——双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案。苯胺类化合物是一种重要的有机化工原料和化工产品。环境中所含的苯胺类化合物主要来自于各种化工、染料、制药等工业废水中,一般毒性较高,少量就能引起人体中毒,其对环境的污染一直被人们所关注,美国、日本等国把苯胺类列入主要监测项目或优先监测污染物的黑名单。在我国苯胺类化合物也被列为环境中的重点污染物,并制定了最高容许排放浓度。DGLC双三元液相色谱系统 由于水体中苯胺的含量一般比较低,因此目前常用的苯胺分析方法,如HPLC、GC 和分光光度法等,均需要对大体积的水样进行前处理,后进行检测,操作比较繁琐。《GB/T 5750.8-2006 生活饮用水标准检验方法有机物指标》中采用GC 和重氮偶合分光光度法测定生活饮用水及水源水中的苯胺,其中,GC 方法需前处理10L 水样,对水样中苯胺的最低检测限为20μg/L;分光光度法需处理25 mL 水样,最低检测限为80μg/L。《水和废水监测分析方法(第四版)》中采用分光光度法和HPLC 法分别测定了5 种苯胺类化合物,检测限为0.5 ~ 1.5μg/L。赛默飞新解决方案采用双三元在线固相萃取—液相色谱法,水样只需简单过滤,即可进样。本方法直接进样2.5 mL,检出限即可达0.05 ~ 0.2μg/L。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_331133.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 6月1日起这10项环境标准将实施
    6月1日起这10项环境标准将实施我们从国家生态环境部了解到6月1日起有10项环境标准将实施,主要是水质、空气和土壤相关的环境标准,涉及到空气颗粒物检测仪器、液质联用仪器、气质联用仪器、分光光度计、不溶性微粒检测仪、气相色谱仪器、便携式傅里叶变换红外光谱仪器。HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法该标准为替代标准,替代“HJ 653-2013”。本标准规定了环境空气颗粒物 (PM 10 和 PM 2.5 )连续自动监测系统(以下简称 PM 10 和 PM 2.5 自动 监测系统”)的技术要求、性能指标和检测方法。本次修订的主要内容有:—— 术语和定义中增加了“动态加热系统”“ 挥发性颗粒物补偿系统 ”和“实际状态”,并将本标准性能检测中颗粒物的浓度值由标准状态下浓度值修改为实际状态下浓度值;—— 系统组成中增加了“动态加热系统”和“ 挥发性颗粒物补偿系统 ”的要求,删除了 方法原理”的要求;—— 技术要求中增加了系统铭牌内容和切割器应具有唯一性标识的要求,修订了对数据显示、记录和输出功能要求,增加了对参数的显示、记录和输出要求;—— 性能指标中增加了“检出限”“湿度测量示值误差”“断电影响测试” 3项指标,调整和删除了部分性能指标,适当加严“参比方法比对测试”性能指标要求,将“切割器性能”“加载测试” 2项性 能指标调整至功能要求,检测方法见 HJ 93 的相关要求;—— 检测方法对应修改后的性能指标进行了调整,对“参比方法比对测试”的测试地点、测试程序等提出了更加全面和具体的要求。HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法本标准为首次发布。本标准规定了测定土壤和沉积物中13种苯胺类和2种联苯胺类化合物的液相色谱 - 三重四极杆质谱法 。本标准适用于土壤和沉积物中联苯胺、苯胺、4-甲基苯胺、 2-甲氧基苯胺、 3-甲基苯胺、 2-甲基苯 胺、 2,4 -二甲 基苯胺、 4-硝基苯胺、 3-硝基苯胺、 4-氯苯胺、 2-萘胺、 2,6 -二甲基苯胺、 3-氯苯胺、 3,3 ' -二氯联苯胺和 N-亚硝基二苯胺共 13 种苯胺类和 2种联苯胺类化合物的测定。HJ 1214-2021水质 可吸附有机卤素(AOX ) 的测定 微库仑法 本标准为替代标准,替代“GB/T 15959—1995”本标准规定了测定水中叠氮化物的分光光度法 。本标准规定了地表水、地下水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准与《水质可吸附有机卤素( AOX)的测定 微库仑法》( GB/T 15959—1995)相比,主要 差异如下:——修改了方法适用范围 、方法原理以及样品的采集和保存条件 ;——删除了样品吹脱步骤 ;——完善了标准核查溶液和试样制备的要求 ;——细化了校准 、样品测定和结果表示等内容 ;——增加了干扰和消除 、质量保证与质量控制等条款 。自本标准实施之日起,原国家环境保护局1995年 12月 21日批准发布的《水质 可吸附有机卤素(AOX)的测定 微库仑法》( GB/T 15959—1995)在相应的国家污染物排放标准实施中停止执行。HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法本标准为首次发布。本标准规定了测定地表水中浮游植物的滤膜 - 显微 镜 计数法 。本标准适用于地表水中浮游植物的快速测定。HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 本标准为首次发布。本标准规定了测定地表水中浮游植物的0.1 ml计数框 - 显微镜计数法 。本标准适用于地表水中浮游植物的密度测定。HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法本标准为首次发布。本标准规定了测定环境空气和废气中吡啶的气相色谱法 。本标准适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定。HJ 1220-2021环境空气 6 种 挥发性羧酸类化合物的测定 气相色谱-质谱法本标准为首次发布。本标准规定了测定环境空气中6种挥发性羧酸类化合物的气相色谱 - 质谱法。本标准适用于环境空气和无组织排放监控点空气中乙酸、丙酸、正丁酸、丙烯酸、异戊酸和正戊酸等6种挥发性羧酸类化合物的测定。HJ 1221-2021环境空气 降尘的测定 重量法本标准规定了测定环境空气中降尘的重量法。本标准与《环境空气降尘的测定重量法》( GB/T 15265 94)相比,主要差异如下——修改了集尘缸的材质要求和实验工具——细化了采样点布设的技术要求 删除了清洁对照点 增加了防鸟措施——明确了样品保存要求 补充完善了质量控制要求和实验记录信息——将降尘总量中可燃物的测定调整至附录自本标准实施之日起,原国家环境保护总局1994年10月26日批准发布的《环境空气降尘的测定重量法》(GB/T 15265—94)在相应的国家生态环境标准实施中停止执行。HJ 1222-2021固体废物 水分和干物质含量的测定 重量法本标准为首次发布。本标准规定了测定固体废物中水分和干物质含量的重量法。本标准适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法本标准为首次发布。本标准规定了测定固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的便携式傅立叶变 换红外光谱法 。本标准适用于固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的测定。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 《食品安全国家标准食品中农药最大残留限量》等107项国标发布(附编号名称)
    根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品中农药最大残留限量》(GB 2763-2016)等107项食品安全国家标准。其编号和名称如下:  GB 2763-2016(代替GB 2763—2014)食品安全国家标准 食品中农药最大残留限量  GB 23200.1-2016食品安全国家标准 除草剂残留量检测方法 第1部分:气相色谱-质谱法测定 粮谷及油籽中酰胺类除草剂残留量  GB 23200.2-2016食品安全国家标准 除草剂残留量检测方法 第2部分:气相色谱-质谱法测定 粮谷及油籽中二苯醚类除草剂残留量  GB 23200.3-2016食品安全国家标准 除草剂残留量检测方法 第3部分:液相色谱-质谱/质谱法测定 食品中环己酮类除草剂残留量  GB 23200.4-2016食品安全国家标准 除草剂残留量检测方法 第4部分:气相色谱-质谱/质谱法测定 食品中芳氧苯氧丙酸酯类除草剂残留量  GB 23200.5-2016食品安全国家标准 除草剂残留量检测方法 第5部分:液相色谱-质谱/质谱法测定 食品中硫代氨基甲酸酯类除草剂残留量  GB 23200.6-2016食品安全国家标准 除草剂残留量检测方法 第6部分:液相色谱-质谱/质谱法测定 食品中杀草强残留量  GB 23200.7-2016食品安全国家标准 蜂蜜、果汁和果酒中497种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.8-2016食品安全国家标准 水果和蔬菜中500种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.9-2016食品安全国家标准 粮谷中475种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.10-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中488种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.11-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中413种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.12-2016食品安全国家标准 食用菌中440种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.13-2016食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.14-2016食品安全国家标准 果蔬汁和果酒中512种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.15-2016食品安全国家标准 食用菌中503种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.16-2016食品安全国家标准 水果和蔬菜中乙烯利残留量的测定液相色谱法  GB 23200.17-2016食品安全国家标准 水果和蔬菜中噻菌灵残留量的测定液相色谱法  GB 23200.18-2016食品安全国家标准 蔬菜中非草隆等15种取代脲类除草剂残留量的测定 液相色谱法  GB 23200.19-2016食品安全国家标准 水果和蔬菜中阿维菌素残留量的测定液相色谱法  GB 23200.20-2016食品安全国家标准 食品中阿维菌素残留量的测定液相色谱-质谱/质谱法  GB 23200.21-2016食品安全国家标准 水果中赤霉酸残留量的测定液相色谱-质谱/质谱法  GB 23200.22-2016食品安全国家标准 坚果及坚果制品中抑芽丹残留量的测定液相色谱法  GB 23200.23-2016食品安全国家标准 食品中地乐酚残留量的测定液相色谱-质谱/质谱法  GB 23200.24-2016食品安全国家标准 粮谷和大豆中11种除草剂残留量的测定 气相色谱-质谱法  GB 23200.25-2016食品安全国家标准 水果中噁草酮残留量的检测方法  GB 23200.26-2016食品安全国家标准 茶叶中9种有机杂环类农药残留量的检测方法  GB 23200.27-2016食品安全国家标准 水果中4,6-二硝基邻甲酚残留量的测定 气相色谱-质谱法  GB 23200.28-2016食品安全国家标准 食品中多种醚类除草剂残留量的测定气相色谱-质谱法  GB 23200.29-2016食品安全国家标准水果和蔬菜中唑螨酯残留量的测定液相色谱法  GB 23200.30-2016食品安全国家标准 食品中环氟菌胺残留量的测定气相色谱-质谱法  GB 23200.31-2016食品安全国家标准 食品中丙炔氟草胺残留量的测定气相色谱-质谱法  GB 23200.32-2016食品安全国家标准 食品中丁酰肼残留量的测定气相色谱-质谱法  GB 23200.33-2016食品安全国家标准 食品中解草嗪、莎稗磷、二丙烯草胺等110种农药残留量的测定 气相色谱-质谱法  GB 23200.34-2016食品安全国家标准 食品中涕灭砜威、吡唑醚菌酯、嘧菌酯等65种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.35-2016食品安全国家标准 植物源性食品中取代脲类农药残留量的测定液相色谱-质谱法  GB 23200.36-2016食品安全国家标准 植物源性食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.37-2016食品安全国家标准 食品中烯啶虫胺、呋虫胺等20种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.38-2016食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.39-2016食品安全国家标准 食品中噻虫嗪及其代谢物噻虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.40-2016食品安全国家标准 可乐饮料中有机磷、有机氯农药残留量的测定气相色谱法  GB 23200.41-2016食品安全国家标准 食品中噻节因残留量的检测方法  GB 23200.42-2016食品安全国家标准 粮谷中氟吡禾灵残留量的检测方法  GB 23200.43-2016食品安全国家标准 粮谷及油籽中二氯喹磷酸残留量的测定气相色谱法  GB 23200.44-2016食品安全国家标准 粮谷中二硫化碳、四氯化碳、二溴乙烷残留量的检测方法  GB 23200.45-2016食品安全国家标准 食品中除虫脲残留量的测定液相色谱-质谱法  GB 23200.46-2016食品安全国家标准 食品中嘧霉胺、嘧菌胺、腈菌唑、嘧菌酯残留量的测定气相色谱-质谱法  GB 23200.47-2016食品安全国家标准 食品中四螨嗪残留量的测定气相色谱-质谱法  GB 23200.48-2016食品安全国家标准 食品中野燕枯残留量的测定气相色谱-质谱法  GB 23200.49-2016食品安全国家标准 食品中苯醚甲环唑残留量的测定气相色谱-质谱法  GB 23200.50-2016食品安全国家标准 食品中吡啶类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.51-2016食品安全国家标准 食品中呋虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.52-2016食品安全国家标准 食品中嘧菌环胺残留量的测定气相色谱-质谱法  GB 23200.53-2016食品安全国家标准 食品中氟硅唑残留量的测定气相色谱-质谱法  GB 23200.54-2016食品安全国家标准 食品中甲氧基丙烯酸酯类杀菌剂残留量的测定气相色谱-质谱法  GB 23200.55-2016食品安全国家标准 食品中21种熏蒸剂残留量的测定 顶空气相色谱法  GB 23200.56-2016食品安全国家标准 食品中喹氧灵残留量的检测方法  GB 23200.57-2016食品安全国家标准 食品中乙草胺残留量的检测方法  GB 23200.58-2016食品安全国家标准 食品中氯酯磺草胺残留量的测定液相色谱-质谱/质谱法  GB 23200.59-2016食品安全国家标准 食品中敌草腈残留量的测定气相色谱-质谱法  GB 23200.60-2016食品安全国家标准 食品中炔草酯残留量的检测方法  GB 23200.61-2016食品安全国家标准 食品中苯胺灵残留量的测定气相色谱-质谱法  GB 23200.62-2016食品安全国家标准 食品中氟烯草酸残留量的测定气相色谱-质谱法  GB 23200.63-2016食品安全国家标准 食品中噻酰菌胺残留量的测定液相色谱-质谱/质谱法  GB 23200.64-2016食品安全国家标准 食品中吡丙醚残留量的测定液相色谱-质谱/质谱法  GB 23200.65-2016食品安全国家标准 食品中四氟醚唑残留量的检测方法  GB 23200.66-2016食品安全国家标准 食品中吡螨胺残留量的测定气相色谱-质谱法  GB 23200.67-2016食品安全国家标准 食品中炔苯酰草胺残留量的测定气相色谱-质谱法  GB 23200.68-2016食品安全国家标准 食品中啶酰菌胺残留量的测定气相色谱-质谱法  GB 23200.69-2016食品安全国家标准 食品中二硝基苯胺类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.70-2016食品安全国家标准 食品中三氟羧草醚残留量的测定液相色谱-质谱/质谱法  GB 23200.71-2016食品安全国家标准 食品中二缩甲酰亚胺类农药残留量的测定气相色谱-质谱法  GB 23200.72-2016食品安全国家标准 食品中苯酰胺类农药残留量的测定气相色谱-质谱法  GB 23200.73-2016食品安全国家标准 食品中鱼藤酮和印楝素残留量的测定液相色谱-质谱/质谱法  GB 23200.74-2016食品安全国家标准 食品中井冈霉素残留量的测定液相色谱-质谱/质谱法  GB 23200.75-2016食品安全国家标准 食品中氟啶虫酰胺残留量的检测方法  GB 23200.76-2016食品安全国家标准 食品中氟苯虫酰胺残留量的测定液相色谱-质谱/质谱法  GB 23200.77-2016食品安全国家标准 食品中苄螨醚残留量的检测方法  GB 23200.78-2016食品安全国家标准 肉及肉制品中巴毒磷残留量的测定气相色谱法  GB 23200.79-2016食品安全国家标准 肉及肉制品中吡菌磷残留量的测定气相色谱法  GB 23200.80-2016食品安全国家标准 肉及肉制品中双硫磷残留量的检测方法  GB 23200.81-2016食品安全国家标准 肉及肉制品中西玛津残留量的检测方法  GB 23200.82-2016食品安全国家标准 肉及肉制品中乙烯利残留量的检测方法  GB 23200.83-2016食品安全国家标准 食品中异稻瘟净残留量的检测方法  GB 23200.84-2016食品安全国家标准 肉品中甲氧滴滴涕残留量的测定气相色谱-质谱法  GB 23200.85-2016食品安全国家标准 乳及乳制品中多种拟除虫菊酯农药残留量的测定气相色谱-质谱法  GB 23200.86-2016食品安全国家标准 乳及乳制品中多种有机氯农药残留量的测定气相色谱-质谱/质谱法  GB 23200.87-2016食品安全国家标准 乳及乳制品中噻菌灵残留量的测定荧光分光光度法  GB 23200.88-2016食品安全国家标准 水产品中多种有机氯农药残留量的检测方法  GB 23200.89-2016食品安全国家标准 动物源性食品中乙氧喹啉残留量的测定液相色谱法  GB 23200.90-2016食品安全国家标准 乳及乳制品中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱法  GB 23200.91-2016食品安全国家标准 动物源性食品中9种有机磷农药残留量的测定 气相色谱法  GB 23200.92-2016食品安全国家标准 动物源性食品中五氯酚残留量的测定液相色谱-质谱法  GB 23200.93-2016食品安全国家标准 食品中有机磷农药残留量的测定气相色谱-质谱法  GB 23200.94-2016食品安全国家标准 动物源性食品中敌百虫、敌敌畏、蝇毒磷残留量的测定液相色谱-质谱/质谱法  GB 23200.95-2016食品安全国家标准 蜂产品中氟胺氰菊酯残留量的检测方法  GB 23200.96-2016食品安全国家标准 蜂蜜中杀虫脒及其代谢产物残留量的测定液相色谱-质谱/质谱法  GB 23200.97-2016食品安全国家标准 蜂蜜中5种有机磷农药残留量的测定 气相色谱法  GB 23200.98-2016食品安全国家标准 蜂王浆中11种有机磷农药残留量的测定 气相色谱法  GB 23200.99-2016食品安全国家标准 蜂王浆中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.100-2016食品安全国家标准 蜂王浆中多种菊酯类农药残留量的测定 气相色谱法  GB 23200.101-2016食品安全国家标准 蜂王浆中多种杀螨剂残留量的测定 气相色谱-质谱法  GB 23200.102-2016食品安全国家标准 蜂王浆中杀虫脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.103-2016食品安全国家标准 蜂王浆中双甲脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.104-2016食品安全国家标准 肉及肉制品中2甲4氯及2甲4氯丁酸残留量的测定液相色谱-质谱法  GB 23200.105-2016食品安全国家标准 肉及肉制品中甲萘威残留量的测定 液相色谱-柱后衍生荧光检测法  GB 23200.106-2016食品安全国家标准 肉及肉制品中残杀威残留量的测定 气相色谱法  特此公告。  国家卫生计生委  农业部 食品药品监管总局  2016年12月18日
  • 6月份有188项仪器及检测相关标准将实施 ——质谱检测类仪器领衔
    6月份有188项仪器及检测相关标准将实施——质谱检测类仪器领衔我们通过国家标准信息平台查询到,在2022年6月份将有188项仪器及检测行业的国家标准与行业标准将实施。农林牧渔食品类标准占1/4;化工塑料与医疗卫生紧随其后,分别有19%和15%。除此之外轻工、电子电器、环境等也有新标准将实施。6月份将要实施标准类别图我们简单整理了涉及分析检测仪器的相关标准,在这些标准中使用到质谱仪器检测的标准有29条,液质联用和气质联用仪器几乎平分秋色;使用光谱仪器、色谱仪器、PCR检测的标准也分别都有9条。标准中使用到的仪器类别其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40998-2021 变性淀粉中羟丙基含量的测定 分光光度法 GB/T 40956-2021 食品冷链物流交接规范 GB/T 40963-2021 冻虾仁 GB/T 40962-2021 干鲍鱼 GB/T 40964-2021 桃冷链流通技术操作规程 GB/T 40960-2021 苹果冷链流通技术规程 GB/T 40944-2021 饲料粒度测定 几何平均粒度法 GB/T 13082-2021 饲料中镉的测定 GB/T 40945-2021 畜禽肉质量分级规程 GB/T 40942-2021 畜禽饲料安全评价 肉鸡饲养试验技术规程 GB/T 40943-2021 梅花鹿茸分等质量 GB/T 40941-2021 马鹿茸分等质量 GB/T 40851-2021 食用调和油 GB/T 20980-2021 饼干质量通则 GB/T 10781.8-2021 白酒质量要求 第8部分:浓酱兼香型白酒 GB/T 20981-2021 面包质量通则 GB/T 17204-2021 饮料酒术语和分类 GB/T 15109-2021 白酒工业术语 SN/T 5406-2021 进口食用植物油中转基因成分检测方法 SN/T 5364.8-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第8部分:克罗诺杆菌属(阪崎肠杆菌) SN/T 5364.7-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第7部分:产志贺毒素大肠埃希氏菌 SN/T 5364.6-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第6部分:单核细胞增生李斯特氏菌 SN/T 5364.5-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第5部分:金黄色葡萄球菌 SN/T5364.4-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第4部分:创伤弧菌 SN/T 5364.3-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第3部分:溶藻弧菌 SN/T 5364.2-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第2部分:霍乱弧菌 SN/T 5364.1-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第1部分:副溶血性弧菌 SN/T 5362-2021 出口食品中氟啶虫胺腈残留量的测定 SN/T 5361-2021 出口食品中阪崎克罗诺杆菌检测方法 fusA基因测序法 SN/T 5360-2021 出口动物源食品中万古霉素和去甲万古霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5359-2021 出口动物源食品中阿奇霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5358-2021 出口茶叶中氯噻啉残留量的测定 液相色谱-质谱/质谱法 SN/T 5357-2021 出口保健食品中多类非法添加物的测定 液相色谱-质谱/质谱法 SN/T 5323-2021 食品接触材料 高分子材料 塑料中对羟基苯甲酸酯类物质迁移量的测定 液相色谱串联质谱法 SN/T 5320-2021 食品接触材料 高分子材料 食品模拟物中偏苯三甲酸、间苯二甲酸、对苯二甲酸及邻苯二甲酸的测定 高效液相色谱法 SN/T 5309-2021 食品接触材料 高分子材料 食品模拟物中壬基酚和辛基酚的测定 液相色谱-串联质谱法 SN/T 5308-2021 食品级润滑油中苯、甲苯、氯苯、对二甲苯和邻二甲苯的测定 顶空气相色谱-质谱联用法 SN/T 5407-2021 进境水果预检规程 SN/T 5208-2021 短体线虫(非中国种)检疫鉴定方法 SN/T 4675.32-2021 出口葡萄酒中氮稳定同位素比值测定方法 SN/T 4233-2021 进境牛羊指定隔离检疫场建设规范 SN/T 2523-2021 进境水生动物指定隔离检疫场建设规范 SN/T 2231-2021 出口食品中呋虫胺及其代谢物残留量的测定 液相色谱-质谱/质谱法 SN/T 2210-2021 出口食品中六价铬的测定 SN/T 2203-2021 食品接触材料 木制品类 食品模拟物中多环芳烃的测定 SN/T 0494-2021 出口粮谷中克瘟散检验方法 SN/T 2032-2021 进境种猪指定隔离检疫场建设规范 冶金标准(8个)SN/T 5402-2021 进出口合金钢初级产品检验规程 SN/T 5401-2021 进出口不锈钢初级产品检验规程 SN/T 5400-2021 进出口铁及非合金钢初级产品检验规程 SN/T 5399-2021 进出口生铁检验规程 SN/T 5351-2021 铝和铝合金中氢的测定 惰性气体熔融-红外吸收法 SN/T 5347.2-2021 铬矿石中铅、锌、磷、钛和镍含量的测定 电感耦合等离子体发射光谱法 SN/T 5347.1-2021 铬矿石中碳和硫含量的测定 高频红外吸收法 GB/T 40883-2021 微合金钢锻件 通用技术条件 环境标准(10个)HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法 HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法 HJ 1214-2021水质 可吸附有机卤素(AOX)的测定 微库仑法 HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法 HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法 HJ 1220-2021环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法 HJ 1221-2021环境空气 降尘的测定 重量法 HJ 1222-2021固体废物 水分和干物质含量的测定 重量法 HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅 立叶变换红外光谱法 医疗卫生生物标准(28个)WS/T 798—2022 消毒剂消毒效果定性试验标准 应用稀释法 WS/T 797-2022 现场消毒评价标准 WS/T 796—2022 围手术期患者血液管理指南 WS/T 795—2022 儿科输血指南 WS/T 794-2022 输血相容性检测标准 WS/T 793-2022 妇幼保健机构医用设备配备标准 GB/T 22576.4-2021 医学实验室 质量和能力的要求 第4部分:临床化学检验领域的要求 GB/T 22576.7-2021 医学实验室 质量和能力的要求 第7部分:输血医学领域的要求 GB/T 22576.6-2021 医学实验室 质量和能力的要求 第6部分:临床微生物学检验领域的要求 GB/T 22576.5-2021 医学实验室 质量和能力的要求 第5部分:临床免疫学检验领域的要求 GB/T 22576.3-2021 医学实验室 质量和能力的要求 第3部分:尿液检验领域的要求 GB/T 22576.2-2021 医学实验室 质量和能力的要求 第2部分:临床血液学检验领域的要求 GB/T 39367.1-2020 体外诊断检验系统 病原微生物检测和鉴定用核酸定性体外检验程序 第1部分:通用要求、术语和定义 GB 8369.2-2020 一次性使用输血器 第2部分:压力输血设备用 GB/T 41008-2021 生物降解饮用吸管 GB/T 41010-2021 生物降解塑料与制品降解性能及标识要求 GB/T 40980-2021 生化制品中还原糖的测定 柱前衍生高效液相色谱法 GB/T 40974-2021 核酸样本质量评价方法 GB/T 28842-2021 药品冷链物流运作规范 GB/T 40939-2021 低温医用冷库通用技术要求 GB/Z 12414-2021 药用玻璃管 YY/T 1733-2020 医疗器械辐射灭菌 辐照装置剂量分布测试指南 YY/T 1713-2020 胶体金免疫层析法检测试剂盒 YY 0341.2—2020 无源外科植入物 骨接合与脊柱植入物 第2部分:脊柱植入物特殊要求 YY 0341.1—2020 无源外科植入物 骨接合与脊柱植入物 第1部分:骨接合植入物特殊要求 YY 1727-2020 口腔黏膜渗出液人类免疫缺陷病毒抗体检测试剂盒(胶体金免疫层析法 )YY/T 1711-2020 放射治疗用门控接口 YY 0899—2020 医用微波设备附件的通用要求 化工橡胶塑料标准(36个)GB/T 40934-2021 滚塑成型 粉末流动性的试验方法 GB/T 41000-2021 聚碳酸酯(PC)饮水罐质量通则 GB/T 41001-2021 密胺塑料餐饮具 GB/T 40640.3-2021 化学品管理信息化 第3部分:电子标签应用 GB/T 40970-2021 化妆品中氨含量的测定 滴定法 GB/T 40955-2021 化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法 GB/T 40950-2021 化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法 GB/T 40891-2021 化妆品中新铃兰醛的测定 气相色谱-质谱法 GB/T 40899-2021 化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法 GB/T 40901-2021 化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法 GB/T 40900-2021 化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法 GB/T 40896-2021 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 GB/T 40897-2021 化妆品中碱金属硫化物和碱土金属硫化物的测定 亚甲基蓝分光光度法GB/T 40898-2021 化妆品中禁用物质贝美格及其盐类的测定 高效液相色谱法 GB/T 40894-2021 化妆品中禁用物质甲巯咪唑的测定 高效液相色谱法 GB/T 40895-2021 化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法 GB/T 40935-2021 青贮牧草膜 GB/T 40937-2021 塑料管道系统 塑料复合管材和管件长期强度的测定方法 GB/T 40933-2021 塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南 GB/T 40919-2021 管道系统用聚乙烯材料 与慢速裂纹增长相关的应变硬化模量的测定 GB/T 40921-2021 发泡聚丙烯(PP-E)珠粒 GB/T 40918-2021 聚苯乙烯户外仿木板材通用技术要求 GB/T 40911.2-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材 GB/T 40916-2021液化气储运用高强度聚氨酯泡沫塑料 GB/T 40911.3-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材 GB/T 1037-2021 塑料薄膜与薄片水蒸气透过性能测定 杯式增重与减重法 GB/T 14455.1-2021 精油 命名原则 SN/T 5403-2021 进口烟花检验规程 SN/T 5350.2-2021 硫磺 砷含量的测定 原子荧光光谱法 SN/T 5350.1-2021 硫磺 酸度的测定 自动电位滴定法 SN/T 5349-2021 硅胶耐热材料中硅氧烷类化合物的测定 气相色谱-质谱/质谱法 SN/T 5348-2021 工业壬醇含量的测定 气相色谱法 SN/T 5346-2021 粉末涂料 挥发性有机化合物(VOC)的测定 SN/T 5345-2021 PET塑料中间苯二甲基异氰酸酯含量的测定 气相色谱-质谱法 SN/T 5322-2021 再生皮革的鉴别方法 SN/T 5310-2021 涂料中4-叔戊基苯酚和对特辛基苯酚含量的测定 气相色谱法 石油地质矿产标准(5个)GB 41022-2021 煤矿瓦斯抽采基本指标 GB/T 40961-2021 岩石三轴试验仪校验方法 SN/T 5311-2021 原油及燃油中硫化氢的测定 快速液相萃取法 SN/T 4763.2-2021 煤中汞含量的测定 氧弹燃烧-原子荧光光谱法 SN/T 3125-2021 液态烃燃料燃烧热的测定 弹式量热计法 玻璃陶瓷建材标准(5个)SN/T 5356-2021 卫生洁具表面耐磨性能试验方法SN/T 5355-2021 陶瓷地砖防滑性能测试方法 动摩擦系数法SN/T 5354.2-2021 地面材料防滑性能测试方法 第2部分:倾斜平台法SN/T 5354.1-2021 地面材料防滑性能测试方法 第1部分:摆锤法SN/T 5315-2021 光催化自洁陶瓷性能测试方法 荧光探针法 轻工标准(19个)GB/T 40969-2021 纸和纸板 颜色的测定(D50/2°漫反射法) SN/T 5352-2021 纸制耐热材料中全氟和多氟化合物的测定 GB/T 40968-2021乐器产品中多环芳烃的测试方法
  • 上海发布新版《污水综合排放标准》新增多项有机污染物
    p   日前,上海市环境保护局和上海市质量技术监督局联合发布《DB31/199-2018 污水综合排放标准》。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/9af60654-9254-4d87-b33f-9ade95f712b8.jpg" title=" 上海标准.png" alt=" 上海标准.png" / /p p   与2009年上海地标相比,此次标准调整了污染物控制项目 增加了总锑、总铊、总铁、二氯甲烷、硝基酚、硫氰酸盐、多氯联苯、滴滴涕、六六六、壬基酚、六氯代-1,3-环戊二烯、苯胺和多环芳烃、苯系物总量共14项污染物控制项目 取消元素磷污染物控制项目 将现行标准的可溶性钡、五氯酚及五氯酚钠(以五氯酚计)、硝基苯类(以硝基苯计)、总大肠菌群(仅针对涉及生物安全性的废水)等4项指标分别调整为总钡、五氯酚及五氯酚盐(以五氯酚计)、硝基苯类、粪大肠菌群 将现行标准的二甲苯总量调整为1,2-二甲苯、1,3-二甲苯、和1,4-二甲苯3个项目 /p p   与现行国家标准《GB 8978-1996 污水综合排放标准》相比,第一类污染物增加了总钒、总钴和总锡 第二类污染物增加了溶解性总固体、总磷、总氮、硫化物、总铁、总钡、总锑、总铊、总硼、甲醇、二氯甲烷、1,2-二氯乙烷、苯系物总量、异丙苯、苯乙烯、三氯苯、苯胺、硝基酚、壬基酚、多环芳烃、乙腈、肼、水合肼、一甲基肼、偏二甲基肼、吡啶、二硫化碳、丁基黄原酸、丙烯醛、氯化物、二氧化氯、氯乙烯、三乙胺、二乙烯三胺、硫氰酸盐、鱼类急性毒性、多氯联苯、滴滴涕、六六六、六氯代-1,3-环戊二烯。 /p p   其中,值得注意的是,壬基酚和六氯代-1,3-环戊二烯两个污染物还没有相应的监测标准,未来是工作重点。 /p p   壬基酚是一种重要的精细化工原料和中间体,主要用于生产非离子表面活性剂,润滑油添加剂等,但进入环境中后,是一种内分泌干扰物,有“精子杀手”之称。 /p p 标准全文: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201812/attachment/ebefe05b-3d39-402d-8411-88d586c0d4c0.pdf" title=" 上海市地方排放标准.pdf" style=" font-size: 12px color: rgb(0, 102, 204) " DB31/199-2018 污水综合排放标准.pdf /a /p
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 染发剂问题多多 对苯二胺标准我国最低
    据《联合早报》消息,不要小看染发剂过敏,虽然一般只会造成头皮红肿搔痒,但现在有严重的死亡案例出现。英国38岁女子麦卡比,去年10月染发后,出现心脏衰竭、呼吸困难等症状,随即陷入昏迷,利用仪器辅助呼吸13个月后,11月22日仍不治过世。 麦卡比原本习惯每6周染发一次,从未对染剂过敏,但去年10月她用了欧莱雅染发剂后不久,身体就感到不适送院,其间心跳还一度停止。经过抢救后,麦卡比变成了植物人,脑部永久受损,至上周四不治。   另据台湾媒体报道,医生强烈怀疑,经常在头发上大胆染色的艺人高凌风,近日很有可能就是因为染发过度而罹患血癌。   因为不管是任何品牌的染发剂,只要其中含有对苯二胺(PPD),就必须要特别小心。对苯二胺可以让色彩更持久,经常被加在黑色的染发剂当中,是一种经过确认的过敏原和致癌物。它会破坏血球、阻碍代谢,甚至会导致贫血、乳癌、膀胱癌,德国和法国早就全面禁用,而台湾规定不可以超过2%,内地则是在《化妆品卫生规范》(2007年版)规定对苯二胺限量标准为6%。
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 24种偶氮染料混标 标准品 大促销
    货号:CYCT-LA18000376AL 名称:24种偶氮染料混标 标准品 品牌:Dr 批号:批号90331AL 有效期到2010.4.16 浓度:各10 ng/ul于乙腈,1ml 数量:2瓶 价格:600/瓶 应用范围:适用于纺织品、皮革中偶氮染料的检测。 数量有限,预购从速。 联系方式:021-54890099 顾君 成分: 1 对氨基偶氮苯 4-Aminoazobenzene [60-09-3] 24-氨基联苯 4-Aminobiphenyl [92-67-1] 3 邻氨基偶氮甲苯 4-Amino-2',3-dimethylazobenzene[97-56-3] 4 2-萘胺 2-Aminonaphthalene [91-59-8] 5 2-氨基-4-硝基甲苯 2-Amino-4-nitrotoluene [99-55-8] 6 4,4-二氨基联苯醚 4-Aminophenylether (4,4'-Oxydianiline) [101-80-4] 7 4,4-二氨基二苯硫醚 4-Aminophenylthioether [139-65-1] 8 邻甲氧基苯胺2-Anisidine (2-Methoxyaniline) [90-04-0] 9 联苯胺 4,4&rsquo -Benzidine [92-87-5] 10 4,4'-二氨基二苯基甲烷 Bis-(4-aminophenyl)methane [101-77-9] 11 对氯苯胺 4-Chloroaniline [106-47-8] 12 4-氯邻甲苯胺 4-Chloro-2-methylaniline [95-69-2] 13 3,3'-二甲基-4,4'-二氨基二苯基甲烷 4,4'-Diamino-3,3'-dimethyldiphenyl methane [838-88-0]14 2,4-二氨基甲苯 2,4-Diaminotoluene [95-80-7] 15 3,3'-二氯联苯胺 3,3'-Dichlorobenzidine [91-94-1]16 3,3'-二甲氧基联苯胺 3,3'-Dimethoxybenzidine [119-90-4] 17 3,3'-二甲基联苯胺 3,3&rsquo -Dimethylbenzidine (o-Tolidine) [119-93-7] 18 2-甲氧基-5-甲基苯胺 2-Methoxy-5-methylaniline (Cresidine) [120-71-8] 19 4-甲氧基-1,3-苯二胺/2,4-二氨基苯甲醚 4-Methoxy-1,3-phenylenediamine [615-05-4] 20 4,4'-二氨基-3,3'-二氯二苯甲烷 4,4&rsquo -Methylene-bis(2-chloroaniline) [101-14-4] 21 o-甲苯胺 o-Toluidine [95-53-4] 22 2,4,5-三甲基苯胺 2,4,5-Trimethylaniline [137-17-7] 23 2,4-二甲基苯胺 2,4-Dimethylaniline (2,4-Xylidine)[95-68-1] 24 2,6-二甲基苯胺 2,6-Dimethylaniline (2,6-Xylidine) [87-62-7]
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 浙江省市场监督管理局批准发布 《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准
    2022年4月16日,浙江省市场监督管理局批准发布了DB33/T 2481-2022《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准,2022年5月16日起实施。 1 范围本标准规定了畜禽排泄物中磺胺醋酰、磺胺吡啶、磺胺嘧啶、磺胺甲噁唑、磺胺噻唑、磺胺甲基嘧啶、磺胺二甲噁唑、磺胺异噁唑、磺胺甲噻二唑、苯甲酰磺胺、磺胺二甲嘧啶、磺胺异嘧啶、磺胺对甲氧嘧啶、磺胺甲氧哒嗪、磺胺间甲氧嘧啶、磺胺氯哒嗪、磺胺喹噁啉、磺胺邻二甲氧嘧啶、磺胺间二甲氧嘧啶、磺胺苯吡唑的液相色谱-串联质谱测定方法。本标准适用于畜禽排泄物中上述20种磺胺类药物残留量的测定。本标准的检出限为2 mg/kg,定量限为5 mg/kg。 注: 畜禽排泄物包括畜禽排泄的粪便或粪便和尿液的混合物。2 规范性引用文件下列文件中的内容通过规范性文件的引用而构成本标准必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本标准;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB/T 6682 分析实验室用水规格和试验方法GB/T 25169 畜禽监测技术规范3 术语和定义本标准没有需要界定的术语和定义。4 原理试样中残留的磺胺类药物经酸化乙腈溶液提取,氮气吹干后用磷酸盐溶液复溶,固相萃取柱净化, 液相色谱-串联质谱仪测定,基质匹配标准曲线校准,外标法定量。5 试剂或材料除非另有规定,均使用分析纯试剂。5.1 水:GB/T 6682,一级。 5.2 甲醇(CH3OH):色谱纯。5.3 正己烷(C6H14)。 5.4 90 %酸化乙腈溶液:取 900 mL 乙腈,加冰乙酸 10 mL,加水稀释至 1 000 mL,混匀。5.5 0.05 mol/L 磷酸盐溶液:取 1.48 g 磷酸二氢钠和 14.50 g 磷酸氢二钠,加水溶解稀释至 1 000 mL, 混匀。 5.6 5 %甲醇溶液:取 50 mL 甲醇,加水稀释至 1 000 mL,混匀。 5.7 5 %氨化甲醇:取 5 mL 氨水,加甲醇稀释至 100 mL,混匀。 5.8 0.1 %甲酸溶液:取 1.0 mL 甲酸,加水稀释至 1 000 mL,混匀。 5.9 乙腈甲酸溶液:取 10 mL 乙腈,用 0.1 %甲酸溶液稀释至 100 mL,混匀。 5.10 0.1%甲酸甲醇溶液:取 1.0 mL 甲酸,加甲醇稀释至 1 000 mL,混匀。 5.11 磺胺类标准品:各标准品信息见附录 A,纯度≥95 %。5.12 标准贮备溶液(1 mg/mL):分别称取磺胺类标准品(5.11)约 10 mg(准确至 0.01 mg),分别置 10 mL 棕色容量瓶中,用甲醇(5.2)溶解并定容至刻度,混匀。-20 ℃以下保存,有效期 6 个月。 5.13 混合标准中间溶液Ⅰ(10 mg/mL):分别吸取标准贮备溶液(5.12)各 1.00 mL,置于 100 mL 棕色容量瓶中,用甲醇(5.2)稀释至刻度,混匀,-20 ℃以下保存,有效期 1 个月。 5.14 混合标准中间溶液Ⅱ(250 ng/mL):准确吸取混合标准中间溶液Ⅰ(5.13)250 mL,置于 10 mL 棕色容量瓶中,用乙腈甲酸溶液(5.9)稀释至刻度,混匀,现用现配。 5.15 系列混合标准工作溶液:准确吸取混合标准中间溶液Ⅱ(5.14)适量,用乙腈甲酸溶液(5.9) 稀释成浓度为 2.0 ng/mL、5.0 ng/mL、25.0 ng/mL、50.0 ng/mL、100.0 ng/mL、250.0 ng/mL 的系列标准工作溶液,现用现配。 5.16 N-乙烯吡咯烷酮和二乙烯基苯混合固相萃取柱(HLB):60 mg/3 mL 或性能相当者。5.17 微孔滤膜:0.22 mm,水系。6 仪器设备6.1 液相色谱-串联质谱仪:配有电喷雾离子源。 6.2 分析天平:感量 0.01 mg、0.01 g。 6.3 真空冷冻干燥机:冷阱温度-50 ℃,真空度 10 Pa。 6.4 离心机:转速不低于 10 000 r/min。 6.5 氮吹仪。 6.6 固相萃取装置。 6.7 振荡仪。 6.8 涡旋混合器。 6.9 超声提取仪。 6.10 样品粉碎设备。 6.11 分析筛:0.5 mm 孔径。7 样品制备与保存按照GB/T 25169采集畜禽排泄物,用四分法缩减至约200 g,-40 ℃以下真空冷冻干燥24 h,使样品中的水分在10 %以下,粉碎,过0.5 mm孔径的分析筛(6.11),装入密闭容器中,于-20 ℃以下保存备用。取不含待测磺胺类药物的样品适量,按上述方法制备,作为空白试样。
  • 标准解读|化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法
    基本情况 深圳海关食品检验检疫技术中心和深圳市检验检疫科学研究院一同起草了GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法,此标准将在5月1日起正式实施。 标准背景 秋水仙碱大多是由百合科秋水仙属植物秋水仙的鳞茎中提取出的生物碱,生物碱属于生物里面常见有机化合物,其中很多是具有毒性的,部分还会对人体的神经系统,消化系统等产生危害。国家对化妆品中的生物碱也做了详细规定,秋水仙碱及其衍生物秋水仙胺禁止在化妆品中检出。 本标准中的秋水仙碱及其衍生物秋水仙胺是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 标准范围 本标准规定了化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的高效液相色谱-质谱/质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本标准适用于水基、乳液、膏霜、凝胶、蜡基、粉基类等化妆品中秋水仙碱及其衍生物秋水仙胺的测定,并对多种基质类样品前处理进行了规定。 本标准秋水仙碱及其衍生物秋水仙胺的方法检出限均为10.0 μg/kg。GBT 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制