当前位置: 仪器信息网 > 行业主题 > >

紫杉醇杂质混合物

仪器信息网紫杉醇杂质混合物专题为您提供2024年最新紫杉醇杂质混合物价格报价、厂家品牌的相关信息, 包括紫杉醇杂质混合物参数、型号等,不管是国产,还是进口品牌的紫杉醇杂质混合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫杉醇杂质混合物相关的耗材配件、试剂标物,还有紫杉醇杂质混合物相关的最新资讯、资料,以及紫杉醇杂质混合物相关的解决方案。

紫杉醇杂质混合物相关的资讯

  • 沃特世经典Symmetry色谱柱适用于中国药典方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治:卵巢癌和乳腺癌及NSCLC的一线和二线治疗;头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 中国药典对紫杉醇[1]以及紫杉醇注射液[2]规定了有关物质检测及含量测定方法。 有关物质检测方法要求使用C18柱,以水-乙腈进行梯度洗脱,检查三杉尖宁碱(杂质I)与7-表-10-去乙酰基紫杉醇(杂质II)等杂质。使用沃特世经典高纯硅胶色谱柱Symmetry C18(5um, 4.6x250mm, PN WAT054275)按药典方法可得如下谱图,充分满足紫杉醇峰与杂质II峰之间的分离度大于1.2的药典方法系统适应性要求: 对于实际样品检测杂质的效果图: 药典方法要求,维持初始流动相乙腈-水(40:60)不变,待紫杉醇主峰洗脱完毕后再进行梯度洗脱,时间较长,使用沃特世UPLC技术可以帮助提高通量效率并节约样品耗量及溶剂消耗量。 含量测定要求使用C18柱,以甲醇-水-乙腈(23:41:36)为流动相等度洗脱。使用同上Symmetry C18柱进行分离,得到谱图如下,充分满足紫杉醇峰与杂质I峰及杂质II峰的分离度均大于1.0的药典方法系统适应性要求。 药代研究参考:中国新药研究者也已经使用UPLC技术开展了对红豆杉属植物根须的代谢轮廓分析[3]以及对紫杉醇衍生物(NPD-103)和紫杉醇脂质体的药物动力学分析[4-5]。 关于沃特世Symmetry系列色谱柱产品: 1994年以来的制药行业内标杆产品,高纯度、高品控,全程依从cGMP生产规范! 质优价中,优惠后仅为三千,帮助您平衡对数据品质和对成本的双重要求! 具有最广泛的文献引用,多达百余个USP方法使用(可垂询),多达170多个应用的应用手册,即索即得 [1][2]中国药典2010版,二部,1007-1008页。 [3] 红豆杉属植物根须的UPLC-ESI-MS代谢轮廓分析。沃特世液相色谱质谱通讯,第47期,23-28页。 葛广波等。 [4] Determination of a novel paclitaxel derivative (NPD-103) in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatograr. 2009 May 23(5): 510-5. Zhang SQ, et al. [5] Clinical pharmacokinetics of paclitaxel liposome with a new route of administration in human based on the analysis with ultra performance liquid chromatography. J Pharm Sci. 2010 Nov 99(11): 4746-52. Wang X, et al.
  • 我国科学家突破“抗癌明星药”紫杉醇生物合成难题
    素有“植物大熊猫”之称的红豆杉是我国一级珍稀濒危保护植物,其生长速度极慢,一般成树需要几十年甚至上百年,人工种植也非常不易。但这一树种却是全球知名抗癌药物紫杉醇的提取来源。中国农业科学院深圳农业基因组研究所闫建斌团队近日牵头发现紫杉醇生物合成途径中关键的未知酶,设计并重构了紫杉醇生物合成新路线,为开发我国自主的紫杉醇提取生产技术提供重要抓手,从而为中国的紫杉醇绿色制造产业化铺平道路。相关研究成果于北京时间1月26日在国际期刊《科学》上发表。中国科学院院士赵国屏对此评价:该研究成功解析了紫杉醇合成途径中尚未被发现的若干关键催化酶,并利用植物底盘实现了合成路线的人工重构,结束了阐明紫杉醇生物合成途径的漫长研究历史,也生动代表着我国一批中青年科学家,在合成生物学领域探索奋斗近二十年所达到的里程碑式新高度。闫建斌研究员介绍,紫杉醇是一种结构异常复杂且独特的四环二萜类天然产物,由红豆杉中提取,在世界上被广泛应用于多种癌症的临床治疗。在我国,紫杉醇原料药主要依靠从人工种植的红豆杉中提取紫杉醇前体分子——巴卡亭Ⅲ,再通过简单的化学合成修饰,实现大规模生产。但这高度依赖于珍稀而有限的红豆杉资源,使得紫杉醇药物生产成本高昂,还可能引发生态破坏和耕地占用等问题。因此,如何提高紫杉醇的生物合成效率、开发绿色可持续的新型生产策略,以替代天然提取,成为亟待解决的焦点、难点问题。长期以来,世界各国都在积极推动紫杉醇相关研究与产业发展。特别是美国,自20世纪60年代开始至今,一直主导着紫杉醇的科技前沿。当前,最先进的紫杉醇前体巴卡亭Ⅲ等的提取技术、核心的红豆杉细胞生产技术和基因工程技术等,依然掌控在欧美制药公司手中。中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)组织国内外多家单位,开展了多年攻关。研究人员从58个关键候选基因中,发现了一个关键的蛋白酶。这种酶的发现与反应机制的阐明,重塑了科学界对于紫杉醇内部独特结构的分子反应机制的理解。随后,研究团队证明了巴卡亭Ⅲ分子可由9个核心基因合成,绘制出了巴卡亭Ⅲ的完整生物合成过程。以上发现突破了合成生物学技术实现紫杉醇绿色可持续生物制造的关键瓶颈,将为紫杉醇合成生物学制造提供关键基因。
  • 沃特世最新PFP(全氟苯基)色谱柱适用于USP方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治卵巢癌和乳腺癌及NSCLC的一线和二线治疗。头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 USP对紫杉醇[1]以及紫杉醇注射液[2]的含量测定系统方法(系统方法参见色谱通则*): 流动相:水-乙腈 11:9(即 55:45),如需要时可适当调整比例。 洗脱:等度,1.5mL/min[1] 色谱柱:5um, 4.6[1] 或 4.0[2] mmID x 250mmL,L43(即:PFP,全氟苯基) 检测:UV227nm 要求:拖尾因子0.7-1.3范围内[1];紫杉醇峰的保留时间在6.0-10.0min范围内[2] *USP Chromatography 允许调整范围如下而仍具有法规依从性: - 色谱柱粒径可减小(但减小程度最多为50%) - 柱长度可调整± 70% - 流速可调整± 50% 使用沃特世最新产品XSelect&trade HSS PFP色谱柱(3.5um, 4.6x150mm, PN186005862),流速1mL/min,可对混标得到如下分离效果,满足对紫杉醇定量分析的要求。沃特世公司也提供更多规格XSelect HSS PFP色谱柱以满足不同应用与需要。 适当调整流动相,如降低乙腈浓度至42%v/v,即可获得更完全可靠的紫杉醇分离度如下: 关于沃特世XSelect&trade HSS PFP柱产品: 是目前市场上稳定性最好的、最具重现性的PFP(全氟苯基)柱 基于沃特世HSS(高强度硅胶)颗粒,有完全对等的ACQUITY UPLC亚二微米柱,可供未来无忧升级至UPLC技术平台 独特的PFP(全氟苯基)键合相对碱性化合物和平面状芳香族化合物具有独特选择性 (产品手册请见:http://www.waters.com/waters/library.htm?cid=511436&lid=134643659,欢迎垂询索取中文资料) [1] USP34, 3798, Assay of Paclitaxel Monograph. [2] USP34, 3799, Assay of Paclitaxel Injection Monograph.
  • 诺华赛与instrAction将合作拓展紫杉烷类药物纯化解决方案
    两家公司将开发解决方案来改变新型和仿制抗癌化合物的制造模式   面向生命科学行业提供制造解决方案的领导者诺华赛 (Novasep) 和供活性药物成分 (API) 纯化工艺使用的创新性色谱固定相制造商 instrAction 今天宣布,他们已经拓展了其全球战略联盟,使之囊括了知名抗癌化合物紫杉烷类药物的纯化。   通过这项扩大的合作,诺华赛能开发和操作或提供最优化大规模色谱工艺,实现紫杉烷类活性药物成分及中间体的具有成本效益的纯化。这两家公司于2010年7月公布了一项非手性色谱战略联盟协议。拓展后的协议使诺华赛能通过紫杉醇类产品的工艺能力进一步加强其在生命科学行业广泛制造解决方案的能力。诺华赛的客户将受益于该合作,因为他们将能获得用于其紫杉烷类活性药物成分的经济型一步式纯化解决方案。   instrAction 根据其专有技术,在其拥有的3000种固定相中合成了 API 选择性固定相,该技术展现了对于紫杉烷类化合物纯化的巨大潜力。利用 instrAction 紫杉烷类选择性色谱固定相系列,诺华赛能开发多步式合成并优化纯化步骤。诺华赛接着能扩大优化工艺并生产用于临床和商业用途的活性药物成分。诺华赛还能选择性地向其客户提供具有性能保障、融合了诺华赛领先 Prochrom(R) 高效液相色谱 (HPLC) 柱及系统和 基于instrAction 选择性固定相的成熟工艺。对于成熟药物活性分子或仿制药,诺华赛和 instrAction 能额外提交与许可应用专利,以扩大对其客户产品的保护。   诺华赛在其经过美国食品及药物管理局 (FDA) 检查并获得 SafeBridge 认证的法国勒芒厂址开发并制造紫杉烷类 API 和高级中间体,专注于高效活性药物成分 (HPAPI) 的合成与纯化。   负责诺华赛合成业务开发的执行副总裁 Rene De Vaumas 表示:“由于 instrAction 的高度选择性色谱固定相和诺华赛在紫杉烷类合成与纯化方面20年的经验,我们正是通过这次合作为我们全球客户寻求解决方案的模式转变。”   instrAction GmbH 首席执行官 Thomas Schwarz 博士说:“我们很高兴能与紫杉烷类合成与纯化的领导者诺华赛扩大合作。这是在行业下游工艺中实施 instrAction 技术的另一个重要里程碑。我们坚信它未来将广泛应用于活性药物成分的工业纯化。”   诺华赛简介   诺华赛开发、营销并管理各种创新技术,这些技术使生命科学行业活性分子的制造不仅安全而且具有成本效益。诺华赛在全球提供的制造解决方案包括工艺研发服务、分离纯化设备和系统、合同生产服务以及复杂的活性分子。诺华赛产品的应用范围包括医药、生物制药、食品、功能活性成分和生物技术市场。   instrAction 简介   instrAction 由 Klaus Gottschall 博士于1997年创建,位于路德维希港的巴斯夫 (BASF) 所在地,致力于开发和生产 "InstrAction(R) Receptor Phase",作为新颖的 API-选择性色谱树脂。InstrAction(R) 技术实现了聚合物网络上广泛功能配合物的固定化,这些配合物表面覆盖着大相径庭的多孔骨架材料。小分子以及大分子被高选择性的可逆相互作用分离开来。instrAction 固定相的高选择性通过目标分子和固定相功能配合物之间的多价-多式相互作用实现,原理和锁-钥匙类似。
  • 中山大学在重要工业混合物分离纯化方面取得重要突破
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0efb0394-27e8-4a6b-b92a-cc01c6e37729.jpg" title=" tpxw2017-06-23-10.jpg" / /p p style=" text-align: center " 图. 控制不同柔性客体分子选择性吸附的策略 /p p   在国家自然科学基金项目(项目编号:21225105,21290173,21473260)等资助下,中山大学张杰鹏教授、陈小明院士及其他合作者在重要工业混合物分离纯化方面取得进展,相关研究成果于2017年6月16日以“Controlling guest conformation for efficient purification of butadiene”(控制客体分子构象实现丁二烯的高效分离)为题在线发表在Science上。 /p p   为了使产品或原料达到足够高的纯度,工业界需要花费大量时间与成本对混合物进行分离。对于分子量相似的碳氢化合物,绝大多数多孔材料选择性吸附极性更大、分子更小和具有配位能力的烯烃。因此,通常需要经过耗能较高的萃取分馏过程将1,3-丁二烯从丁烷、丁烯和异丁烯等其他C4碳氢混合物中分离,目前很难利用多孔材料优先分离得到1,3-丁二烯。该研究团队发现常温常压下将C4碳氢化合物的混合物通过亲水性多孔配位聚合物MAF-23填充的固定床吸附装置后,只有1,3-丁二烯的构象发生转变,且构象转变导致很大的构象弯曲能量损失,从而大大减弱与MAF-23的吸附。该团队利用C4碳氢化合物的柔性差别和构象变化引起的能量损失以及由此导致的与多孔材料的吸附性差别,实现了温和条件下选择性达99.5%的1,3-丁二烯的高效纯化,避免了常规蒸馏和吸附纯化过程中因加热而产生的丁二烯自聚问题,实现了反常且最优的C4碳氢化合物吸附分离顺序。 /p p   该团队致力于配位聚合物多孔材料的设计、合成、气体吸附和相关机理研究,近年来取得了系列进展,发展了多种提高二氧化碳捕获效率的策略,实现了常压、烟道气和大气环境中的多个吸附量记录 提出了利用气—固反应机理对多孔框架进行精确修饰的策略,设计合成了兼具拟铜蛋白氧气活化中心和易氧化有机配体的新型多孔配位聚合物MAF-42,可以将材料的吸附选择性改变四个数量级,适于天然气中提纯乙烷和甲烷 提出了“亲水孔道捕获疏水分子”的概念,利用超微孔表面精确排列的氢键受体高效结合极性较低的乙烷分子而非极性较大的乙烯分子,并据此合成了新型多孔配位聚合物MAF-49。常温常压下,将乙烯/乙烷混合物通过MAF-49填充的固定床吸附装置后,乙烷被选择性吸附保留,流出的乙烯纯度很容易超过99.99%。 /p
  • 青岛能源所提出混合物组分分离及结构确证的新方法
    混合物组分分离及结构确证一直是分析化学面临的重要任务。近日,中国科学院青岛生物能源与过程研究所公共实验室黄少华等利用核磁共振(nmr)技术在该领域取得了新进展,提出了一种全新的能够同时实现组分分离和结构确证的简易通行分析方法,相关成果于9月4日在线发表于《德国应用化学》( angewandtechemie)。 传统混合物组分分离及结构确证方法通常利用色谱学工具与波谱学工具进行联用,比如gc-ms、hplc-ms、hplc-nmr等。近年来,nmr方法学家们开发了一种被称之为&ldquo 核磁共振中色谱技术&rdquo 的dosy技术,能够无需进行实际色谱分离就能同时实现混合物组分分离及结构确证,大幅节约了分析时间与成本。但是,纯dosy技术需要在&ldquo 虚拟色谱固定相&rdquo 辅助下,才能在实际应用中显示出其优势。 黄少华带领的研究小组经过两年时间的摸索,发现了一种适用于dosy技术的通用&ldquo 虚拟色谱固定相&rdquo &mdash &mdash 聚二甲基硅氧烷(pdms)。该物质结构简单、成本低廉,并且其nmr信号接近于tms,不干扰其它分析物的信号,是天然的理想&ldquo 虚拟色谱固定相&rdquo ,可广泛应用于分析化学的各个领域。研究表明,pdms拥有强大的分离能力,所分离的化合物类型基本包括了大部分有机化合物类型。例如,pdms能够轻松基线分离氘代氯仿中的苯、萘和蒽混合物,并且能够同时得到每个组分的nmr信号。这些特点使得基于pdms的dosy技术具有重要的理论研究意义和实际应用价值。 在此基础上,合成化学家们可以用该技术部分代替tlc技术,实时跟踪目标化合物,了解化合物的组成与结构信息,而无需进行大量的分离提纯工作。同时,还可利用此技术部分代替经典色谱工具对复杂混合物进行分析,节约大量分析时间和成本。 上述研究得到了国家自然科学基金项目支持。   氘代氯仿溶液(0.6 mL)中苯(5 mg)、萘(5 mg)和蒽(5 mg)的1H DOSY(600 MHz)谱图。左图为溶液中没有添加PDMS的DOSY谱图;右图为溶液中添加PDMS的DOSY谱图。实验温度:298K。
  • 缉毒演习:鉴知手持拉曼光谱仪检测毒品混合物
    在缉毒现场,往往会遇到一些可疑粉末,手持拉曼可以帮助缉毒警察对这些粉末进行快速鉴定,提供处置依据。但普通手持拉曼往往难以正确检出实际毒品,这是因为毒贩常在毒品中添加小苏打、淀粉、葡萄糖等稀释剂,降低了毒品纯度,且稀释剂会干扰拉曼检测结果。因此,只有具备混合物分析功能的高灵敏度手持拉曼,才能准确识别隐藏在稀释剂中的毒品。 经过十余年的技术积累,鉴知手持拉曼具备了强大的混合物分析功能,可以准确识别混合物中的毒品。我们以对乙酰氨基酚作为模拟毒品,小苏打、淀粉作为稀释剂,配置了两种混合毒品模拟物,对鉴知RS1500手持拉曼的混合物分析功能进行验证。毒品模拟物1为80%小苏打+20%对乙酰氨基酚的混合物;毒品模拟物2为小苏打、淀粉、对乙酰氨基酚的1:1:1混合物。 1 、毒品模拟物1的检测 使用RS1500检测毒品模拟物1,混合物分析结果显示小苏打占80.8%,对乙酰氨基酚占19.2%,与混合比例一致,证明RS1500具有较高的灵敏度,其混合物分析算法可以识别出隐藏在稀释剂中的低含量“毒品”。 2 、毒品模拟物2的检测 使用RS1500检测毒品模拟物2,检测结果报出了小苏打、淀粉和对乙酰氨基酚,准确识别出了三种混合物中的“毒品”,证明鉴知手持拉曼具备优秀的混合物识别能力。 由于混合物中多种物质的拉曼信号互相叠加,不具备混合物分析功能的拉曼设备无法检出实际样品中的毒品,甚至无法报出检测结果。不同于普通拉曼,RS1500具备强大的混合物识别算法,结合多年的毒品数据库积累,可以从稀释剂中准确识别出低含量的毒品,满足实际缉毒需求。鉴知手持拉曼已经在多地部署,并取得了良好的使用反馈,例如助力合肥海关查获一类管制精神活性药三唑仑(点击查看)。 我们还使用鉴知RS1000手持拉曼检测了上述毒品模拟物,检测结果与RS1500的结果一致,均可以识别混合物中的“毒品”。 相较于RS1000,RS1500采用1064nm激光波长,抗荧光干扰能力强,在检测芬太尼类物质、含色素掺杂的毒品等强荧光物质时更具优势,同时具备强大的穿透包装能力,可以实现多种半透明及不透明包装内样品的无损检测。往期回顾● 鉴知拉曼与红外设备助力芬太尼的现场快速检测● 鉴知技术1064手持拉曼穿透多种包装的检测合集 欢迎在平台留言或直接联系我们,了解仪器参数和演示申请。
  • 欧盟拟禁止混合物中添加苯汞化合物
    2012年1月13日欧盟发布通报,欧盟委员会拟修订欧洲议会和理事会关于化学品注册、授权和限制的法规(EC) No 1907/2006(REACH)附件XVII的委员会法规草案。 该法规草案提议禁止五种作为物质或在混合物中的苯汞化合物(在第4点中标示),以及含有一种或多种这些物质的物品或其零部件的生产、使用和投放市场。 如果混合物或物品或其任何零部件中的含汞量按重量计算不超过0.01%,上述涉及混合物和物品的规定就不适用。
  • 欧委会将成立专家小组对化学物质混合物进行评估
    5月31日,欧盟委员会宣布采取行动研究不同化学物质组合的混合物引起的潜在影响。委员会指出日常生活中接触到各种化学物质组成的混合物可能对人体构成的健康危险非单一化学物质可比拟的。欧委会在2月份发布的报告中,总结了化学物质“混合效应”的现状问题:   1、特定的情况下,化学物质可能联合反应,影响毒性的整体水平   2、普通行为模式的化学物质会联合反应产生的组合效应可能高于单一成分产生反应   3、尚无充分的证据表明如果混合物中的单一成分在安全线下,混合物是否在安全阀值内   4、中高剂量水平下联合反应较为明显   5、化学物质混合物组合多不胜数,对人类和环境健康的影响难以逐一确定,考虑设定优先进行风险评估的混合物清单(priority mixtures)   6、对化学物质混合物的评估缺乏暴露数据,目前紧紧掌握了少量化学物质的作用方式信息。   欧盟法规严格限制可用于食品、饮用水、空气和产品生产中的特定化学物质的含量,然后对这些化学品组合产生的混合效应却鲜有研究。当前欧盟立法的一个状况是一门法规通常只针对一个特定的领域,比如植物保护产品、农药、化妆品、药品、兽药等。在不同产品中的同一种(类)化学物质成分受不同的立法监管,这就为协调并使风险评估一致性构成了障碍。   欧委会提出的新方法,将识别一批需要优先评估的混合物,确保这批物质在欧盟不同法规风险评估要求上的一致性,弥补科学数据鸿沟。这个方法论主要与化学物质组合作用的行为方式、暴露数据,将研究控制在可进行正确评估的程度上。从这个方法论出发采取的行动必须基于减少、改善和取代脊椎动物实验的原则。为了推动化学物质累积效应的评估,委员会做了以下承诺:   1、成立一个特别专家小组,小组成员由来自欧洲化学品管理署(ECHA)、欧盟环境署(EEA)、欧盟食品安全署(EFSA)的代表组成,咋欧盟不同的法律条文下综合评价需优先进行风险评估的混合物的对人体和环境暴露的健康风险   2、2014年6月编制出科学技术指引,促进“需优先评估混合物”风险评估方法的一致性   3、帮助理解化学混合物是如何暴露于人类和自然环境的。这个需要从欧盟法规数据监管或者通过欧盟基金支持进行相关研究计划并构建化学监管收据收集的平台   4、增加其他知识空白领域的研究途径,诸如化学物质的组合作用形式、分“类”组物质研究、交叉参照法的应用   5、推动全球范围内化学物质混合效应研究方法的一致性和科学性   详情参见:   http://europa.eu/rapid/pressReleasesAction.do?reference=IP/12/541&format=HTML&aged=0&language=EN&guiLanguage=en
  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC® 系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC® 配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50&mu l的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN 2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 药物中为何有基因毒性杂质?质控技术应怎样保障用药安全
    药物杂质研究贯穿于整个药物质量研究过程,并且对于一些可能具有特殊的生理活性或毒性的杂质,更需要进行结构确证和安全性验证。在此背景下,仪器信息网于2024年7月30日成功举办了“第八届化学药物杂质研究及质控技术”主题网络研讨会,本次会议汇聚了来自各药物研究院所、高校和仪器厂商的专家学者,共同探讨了化学药物杂质研究的最新进展和技术应用。会议内容涵盖了药物杂质研究的新思路、新技术,以及针对基因毒性杂质、元素杂质等特定杂质的分析方法。与会专家分享了他们在药物杂质研究领域的丰富经验和研究成果,并通过实际案例分析展示了新技术和新方法在药物杂质检测中的应用价值。点击看精彩报告回放》》中国医学科学院医药生物技术研究所副研究员山广志针对化学药物杂质研究新思路和新技术,指出对于药物中的杂质研究包括对已知杂质、特定杂质、潜在杂质和毒性杂质研究四种类型。从化学药物杂质研究方法趋势上,需要更全更快的技术对化药杂质进行检测。报告中也有对水苏糖有关物质HPLC-CAD测定、UHPLC-紫杉醇有关物质检测的实例介绍,还有对二维色谱定量基因毒杂质和超临界色谱分析手性异构体实际应用案例的方法开发和优化,展现了新技术新方法助力精准化学药物杂质检测的思路。岛津企业管理(中国)有限公司高级应用工程师孟海涛从液质联用技术在药物杂质分析中应用进行了报告,包括普通杂质定性分析的方法及案例、基因毒性杂质测定的相关方案两个方面。在报告中,展示了Trap-free 2D-LC/MS杂质分析系统、多/单中心捕集环二维杂质鉴定系统和二维捕集柱杂质鉴定系统等的适用范围以及应用案例。对基因遗传毒性杂质中磺酸酯类、亚硝胺类等常见种类检测进行了介绍,并对雷尼替丁、二甲双胍中NDMA的检测进行了实际案例的介绍。最终展示了岛津在药物杂质分析上有着丰富的应用方案以及仪器技术支持。中山大学药学院副教授徐新军依据其团队对罗达那非原料药的研究进行了报告,报告介绍了其团队研究发现罗达那非是一种PDE5抑制剂,可选择性的抑制PDE5,而对其他的亚型磷酸二酯酶没有或具有微弱的抑制作用,主要用于治疗男性勃起功能障碍。同时对罗达那非原料药进行了残留溶剂分析、有关物质分析、杂质谱分析、杂质结构鉴定、含量分析等。最终依据研究结果,制定了罗达那非原料药质量标准草案,建立和验证了罗达那非原料药含量测定和有关物质检查HPLC方法,以及残留溶剂GC检查方法,还初步建立了罗达那非原料药的杂质谱。在研究过程中所展现出的晶型差异、校正因子测定和杂质谱等方面的不足是后续指导该研究推进的方向。安捷伦科技(中国)有限公司原子光谱应用工程师曾梦根据多年原子光谱检测仪器的经验,对ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究进行了报告。曾老师提出在制药行业分析杂质元素时面临的挑战包括有如何快速建立仪器分析方法?高盐样品如何兼顾检出限和稳定性?有机溶剂直接进样?前处理过程如何保证元素的稳定性?元素质谱干扰如何消除/数据准确性如何保证?针对以上无机元素在分析中面临的挑战,展现出ICP-MS在制药行业分析无机元素时所具有的解决方案优势。另外还介绍了ICP-OES在制药行业中针对检测难点,该技术具有其Intelli Quant半定量技术、全谱直读且分析时间最优化、软件的全流程实时监测等优势,能更好的应用于药物杂质元素的检测中。广东省科学院测试分析研究所(中国广州分析测试中心)博士周熙通过高分辨技术、药物杂质、有关物质定性分析和基因毒性杂质定量分析四个部分对高分辨质谱技术在药物杂质分析中的应用进行了报告。报告中详细介绍了杂质研究的重要意义、化学结构鉴定难点,并通过实际案例进行了辅证,最终表明利用高分辨质谱技术是可以实现有关物质的快速定性。同时结合制备液相分离,可以解决液相与质谱流动相不兼容的问题。报告中也体现出高分辨质谱已经越来越广泛的应用于基因毒性杂质的定量分析。本次会议为广大药学工作者和检测人员提提供了药物杂质研究的最新进展和技术应用,有助于推动化学药物安全和质量控制水平的研究进程。会议内容丰富,案例靠实,是一次宝贵的学习和交流机会。相信在新技术和新方法的推动下,化学药物杂质研究能够朝着更全更快的检测趋势发展,为保障公众用药安全做出更大的贡献。
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • MS标记LC紫外色谱图,药物杂质一目了然
    岛津的工程师在新发布的模块化单四极杆液质上开了一种新型数据处理算法“Mass-it”,可生成MS标记的紫外色谱图,以方便使用单四极杆LC-MS进行药物杂质分析。 在制药CMC中,化学家通常使用LC和或LC-MS来鉴定和定量合成产品中的组分,其中许多组分仅使用LC的紫外检测器进行分析。LC-MS的优点包括灵敏度高和定性能力好。然而,数据分析的复杂性,低耐用性以及电离方法对目标化合物的限制阻碍了LC-MS的引入。 岛津开发的新型质谱,从三个方面提升质谱仪器的性能:1)“Mass-it”新型解卷积算法辅助对MS数据进行解析,2)更好的耐用性,以及3)应用范围更广的离子源。 本次研究的对象是阿托伐他汀、普萘洛尔、西草净、五氯硝基苯,使用岛津Nexera LC-40 XR液相色谱系统进行分析,该系统配置SPD-M40二极管阵列检测器和LCMS-2050模块化质谱仪(图1),该质谱仪与液相色谱仪的自动进样器模块大小相当。 图1 岛津LCMS-2050集成到HPLC/UHPLC中 实验使用ESI / APCI双离子源(DUIS),扫描质量范围(m/z 100-1000)并以正负离子同时扫描模式进行分析。Mass-it处理TIC色谱图峰并生成检测到的质量信号列表,其保留时间通过提取的离子色谱图确定。XIC保留时间使算法能够区分多个共洗脱成分信号和来自单个成分的一组相关离子信号。 图2 阿托伐他汀的紫外色谱图 按Mass-it列出的组分的m / z被标记在UV 色谱图上。图2所示的示例是高纯度阿托伐他汀样品的代表性数据,显示为单一组分。对于实际样品,算法会在检测到多个杂质组分时对其进行标记,图3展示了Mass-it在阿托伐他汀杂质检测中的应用(图3)。 图3 用Mass-it标记的阿托伐他汀多个杂质 那么该系统的耐用性究竟如何呢?工程师做了系统性实验,10000次连续进样中引入30mg化合物来测试(一次注入1μL的3种药物的混合物,每种药物的浓度为1000 ng/μL)。在MS扫描模式下的进行实验,每隔一段时间检查LC-MS的性能,图4数据显示普萘洛尔的峰面积重复性为8.5%RSD。结果表明,即使重复分析高浓度样品,也可以获得稳定的结果。 图4 LCMS-2050的长期稳定性研究显示了对高浓度样品的耐用性 LCMS-2050配备了DUIS离子源, 可通过ESI和APCI组合方式生成离子,扩大了可离子化的化合物的范围。图5展示了使用由ESI和APCI特征电离的化合物评估DUIS离子源的电离能力。DUIS(+)对西草净(Simetryn)的离子化效率与单独使用ESI(+)相当,表明APCI功能的添加仅略微影响了DUIS配置中的ESI功能。而五氯硝基苯(Quintozene)的ESI(-)离子化效果不佳,但在使用DUIS(-)离子化时,灵敏度显著得到提升(10倍)。因此,DUIS是一种多功能且通用的离子源,可以在单次分析中兼顾ESI和APCI离子化方式。 图5 西草净(上)和五氯硝基苯(下)的ESI和DUIS离子化效率对比 LCMS-2050非常坚固耐用,并配备了强大的软件功能,即使对于首次使用MS的用户,LC-MS数据也更易于理解。这些功能有望增加更多的LC-MS用于药物杂质分析。 本文内容非商业广告,仅供专业人士参考。
  • Nicolet iN10 MX 红外成像显微镜可获得超快速可靠的混合物分析
    Madison, WI., (2008年8月19日) &mdash &mdash 作为服务科学领域的全球领导者,赛默飞世尔科技宣布,其最新推出的赛默科技Nicolet iN10 MX红外成像显微镜能使分析工作者在显微尺度下于复杂结构和随机混合物中快速鉴定各种化学物质及其分布。专为超快速数据获取而设计的新型Nicolet iN10 MX 红外成像显微镜,能提供快速准确的材料分析,从法庭科学直至高科技的聚合物材料。 与OMNIC Picta 软件配套使用的Nicolet iN10 MX 红外成像显微镜提供全新的用户体验,只需鼠标点击几次,即可引导操作者完成从样品装载到最终报告的整个分析过程。此系统的高度整合设计将机器视觉和光谱鉴定技术有机的结合起来,极大地方便了数据获取和样品分析。 高效的光学效率使得系统可获得高散射能力样品的化学图像,比如纸张和固体制剂,从而使得Nicolet iN10 MX 红外成像显微镜成为伪造检测强有力的工具。 为获取最佳的数据,此系统最多可装备三个检测器。一个室温检测器无需液氮即可进行&ldquo 对准就拍&rdquo 式分析,与高效的插入式ATR物镜配合使用,使得Nicolet iN10 MX红外成像显微镜像常规的红外分光光度计一样快捷易用。为提高检测灵敏度并获得最小样品的数据,可使用单元素MCT检测器。作为可选配件的阵列检测器使得此红外成像显微镜以更快的数据采集速度来获得大尺寸图像,分析5mm× 5mm样品只需5分钟。另外,系统的Micro-ATR所获图像的空间分辨率优于3微米。 由于难以通过认证,红外显微镜在管制环境中的应用一直受到限制。只有Nicolet iN10 MX红外成像显微镜可在反射,透射和ATR测试模式下进行验证,因此简化了仪器的认证过程。这为红外显微镜在高度管制环境中的应用创造了良好的机会。 想要了解更多赛默科技Nicolet iN10 MX红外成像显微镜的详细信息,请拨打电话800-810-5118, 400-650-5118, E-mail至sales.china@thermofisher.com或登录www.thermo.com/FT-IR。 Thermo Scientific 是服务科学领域全球领导者赛默飞世尔科技的一部分。 关于Thermo Fisher Scientific(赛默飞世尔科技) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • Nicolet iN10 MX红外成像显微镜可获得超快速可靠的混合物分析
    Madison, WI., (2008年8月19日) &mdash &mdash 作为服务科学领域的全球领导者,赛默飞世尔科技宣布,其最新推出的Nicolet iN10 MX红外成像显微镜能使分析工作者在显微尺度下于复杂结构和随机混合物中快速鉴定各种化学物质及其分布。专为超快速数据获取而设计的新型Nicolet iN10 MX 红外成像显微镜,能提供快速准确的材料分析,从法庭科学直至高科技的聚合物材料。 与OMNIC Picta 软件配套使用的Nicolet iN10 MX 红外成像显微镜提供全新的用户体验,只需鼠标点击几次,即可引导操作者完成从样品装载到最终报告的整个分析过程。此系统的高度整合设计将机器视觉和光谱鉴定技术有机的结合起来,极大地方便了数据获取和样品分析。 高效的光学效率使得系统可获得高散射能力样品的化学图像,比如纸张和固体制剂,从而使得Nicolet iN10 MX 红外成像显微镜成为伪造检测强有力的工具。 为获取最佳的数据,此系统最多可装备三个检测器。一个室温检测器无需液氮即可进行&ldquo 对准就拍&rdquo 式分析,与高效的插入式ATR物镜配合使用,使得Nicolet iN10 MX红外成像显微镜像常规的红外分光光度计一样快捷易用。为提高检测灵敏度并获得最小样品的数据,可使用单元素MCT检测器。作为可选配件的阵列检测器使得此红外成像显微镜以更快的数据采集速度来获得大尺寸图像,分析5mm× 5mm样品只需5分钟。另外,系统的Micro-ATR所获图像的空间分辨率优于3微米。 由于难以通过认证,红外显微镜在管制环境中的应用一直受到限制。只有Nicolet iN10 MX红外成像显微镜可在反射,透射和ATR测试模式下进行验证,因此简化了仪器的认证过程。这为红外显微镜在高度管制环境中的应用创造了良好的机会。 想要了解更多赛默科技Nicolet iN10 MX红外成像显微镜的详细信息,请拨打电话800-810-5118, 400-650-5118, E-mail至sales.china@thermofisher.com 或登录www.thermo.com/FT-IR。 Thermo Scientific是服务科学领域全球领导者赛默飞世尔科技的一部分。 ---------------------------------------------------------------------------------- 关于赛默飞世尔科技(Thermo Fisher Scientific) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 使用超高效合相色谱系统分析微量的对映体杂质
    目的 使用沃特世ACQUITY UPC2&trade 系统证明杏仁酸苄酯(benzyl mandelate)的快速手性分离和0.02%杂质含量下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种药品又包含单一对映体活性成分。单一对映体型手性药物被认为是改善了的化学实体,它能提供更高的药效、更好的药理学数据和更为有利的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其它有机杂质。人用药品注册技术国际协调会(ICH)已对鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPC2系统的高检测灵敏度实现了对药用物质中对映体杂质的鉴别和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用UltraPerformance Convergence Chromatography&trade ( UPC2&trade )进行分离,其色谱图如图2所示。主要实验参数列于表1。总分析时间不到1.5分钟。平均峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。 如表2所示,是5次连续进样的保留时间和峰面积的重现性数据。在0.20 mg/mL的浓度下,保留时间的重现性RSD值优于0.23% ,峰面积重现性RSD值优于0.5%。 图3显示了浓度为2 mg/mL的R-杏仁酸苄酯的UPC2色谱图。经紫外光谱确认(结果未显示),1.30min处的小峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检测限),根据峰面积计算相当于主峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPC2系统,其中包括经改进的泵系统和经优化的检测器设计。本例中对映体过量(e.e.)值为99.96%。 总结 使用ACQUITY UPC2系统在不到1.5分钟时间内,成功完成R-和S-杏仁酸苄酯的UPC2手性分离。在每种对映体浓度均为0.20 mg/mL条件下,可获得优异的重现性(保留时间的重现性RSD优于0.23%,峰面积RSD优于0.5%)。新型泵系统和检测器优化设计带来更高的检测灵敏度,使测定0.02%对映体杂质和对映体过量成为可能。AQUITY UPC2系统适用于微量对映体杂质的分析、对映体过量测定和QA/QC分析。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 便携离子阱质谱仪现场快速鉴定混合毒品研究取得新进展
    p   近日,中国科学院大连化学物理研究所快速分析与检测研究组研究员李海洋和侯可勇团队与云南警官学院毒品分析及禁毒技术公安部重点实验室合作,研制了一种可以快速同时检出易挥发和难挥发毒品混合物的离子阱质谱仪,该仪器对于芬太尼类等难挥发毒品的检测灵敏度达到了50pg,相关研究成果以全文的形式发表于《美国分析化学》(Anal.Chem,2019)杂志上。 /p p   打击毒品滥用长期以来一直是全球重点关注问题。近年来,制毒者为了提升毒品的“快感”,同时降低毒品的成本,经常将多种毒品进行混合,配置成混合药效新型毒品,这类不同毒品相互掺杂促进药效的混合毒品危害性很大。2017年,北美地区因吸食毒品过量造成的死亡人数超过5000人,其中大部分是因为吸食海洛因中掺入了廉价芬太尼毒品所致。2017年,我国云南省临近金三角地区缴获毒品达到89.2吨,严峻的禁毒形势对毒品现场快速识别技术提出了更高的要求,但是目前传统的检测仪器包括光谱、色质联用、免疫反应等无法适用于现场快速、准确检测的要求。 /p p   研究人员一直致力于发展基于真空紫外灯和丙酮辅助光化学电离-热解析的便携式离子阱质谱仪(Anal.Chem,2019)。由于各类毒品沸点差异较大,混合毒品检测中难挥发毒品灵敏度低,而易挥发毒品出峰时间短,导致混合毒品全成分检测难度较大。为解决该问题,该研究设计了一种新型光闪热解析系统,3s内可将解析池内焦点附近的毒品加热至290℃,实现了难挥发性毒品的快速汽化。相比于过去,该仪器对难挥发毒品那可汀的检测灵敏度提高了60倍以上。此外,该设计中还加入了脉冲吹扫装置,可以将热解析池内挥发出来的难挥发和易挥发样品在20ms内同时吹入质谱,减小了因为连续气流传输而造成的进样损失,样品的利用率提高了5倍以上。沸点差异达到300℃的10种毒品混合物通过光闪热解析结合脉冲吹扫进样后,可实现样品同时检测,且分析时间仅为3s。 /p p   该离子阱质谱仪在示范应用阶段曾多次深入云南禁毒一线,不断根据现场试验的结果对仪器进行细节的改进,先后在玉溪市青龙场检查站、德宏州木康边防检查站、腾冲市、保山市、墨江市等地点进行了实地应用,成功对现场缴获的疑似鸦片、大麻、芬太尼胶囊等混合毒品进行了准确的鉴定,离子阱质谱仪毒品检测指认的毒品达到37种。 /p p   该研究得到国家自然科学基金、大连化物所自主部署基金等的支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/5705bfd7-d628-47fa-9a7a-1bfa2a9fd172.jpg" title=" 0820-1.jpg" alt=" 0820-1.jpg" / /p p br/ /p
  • 向“RNA世界”假说发起挑战,地球首个生命由RNA-DNA混合产生
    DNA示意图。  图片来源:《每日科学》杂志  近日,美国斯克里普斯研究所科学家在化学研究领域核心期刊《德国应用化学》上发表论文称,一种名为苯基磷二酰胺(DAP)的简单化合物在生命出现之前可能就已存在于地球上,它可以通过化学手段将名为脱氧核苷酸的微小DNA结构单元编织在一起,形成原始的DNA链。  该发现指出了DNA与RNA作为相似化学反应的产物一起出现的可能性,而第一批自我复制的分子,即地球上第一批生命的形式,正是这两种分子的混合体。近几十年来,“RNA世界”假说在生命化学领域一直占据主导地位,认为早期生命分子完全基于RNA,而DNA仅在后来作为RNA进化的产物才出现。而本次发现对该假说提出了挑战,进一步解释了地球生命是如何起源的这一古老问题。  一条RNA链可以吸引其他单个RNA结构单元,粘附在RNA链上形成一种镜像链。如果新链可以脱离模板链,并开始通过相同的过程作为模板结合其他新链,那么它就实现了构成生命的自我复制的“壮举”。  然而RNA链可能擅长结合互补链,但却不太擅长与这些链分离。现代生物体产生的酶可迫使RNA(或DNA)双链分开成两条,从而实现复制,但目前尚不清楚在没有酶的世界里如何做到这一点。  该研究资深作者、斯克里普斯研究所化学副教授克里希纳穆尔蒂指出,部分DNA和部分RNA的“嵌合”分子链或解决了这个问题,因为它们可以一种粘性较小的方式结合互补链,从而使它们相对容易分离。  在过去的研究中,科学家们已经发现,简单的核糖核苷酸和脱氧核糖核苷酸(分别是RNA和DNA的构成单元),可能是在早期地球非常相似的化学条件下产生的。有机化合物DAP起到了修饰核糖核苷酸,并将它们串在一起形成第一条RNA链的关键作用。而此次研究表明,在类似条件下,DAP也可以对DNA起到同样作用。  这一发现为更广泛地研究自我复制的DNA-RNA混合物如何在原始地球上进化和传播,构建更完善的现代生物学铺平道路。  RNA真的独自完成了生命起源的关键任务吗?近些年来,大量证据表明RNA和DNA可能几乎同时出现在最初的生命形式中,随后很快,二者又凭借各自的优势和缺陷进行了合理又明确的“分工”:DNA负责遗传信息长期稳定的存储,RNA则负责遗传信息的短期储存和运输,以及制造蛋白质——就像人们今天在细胞中看到的那样。而在“零”的起点上,或许仍是RNA和DNA两个必不可少的因素共同协作,才有了今天地球上的生机勃勃、生命不息。
  • 超高纯气体、标准混合气体技术研讨会邀请函
    超高纯气体、标准混合气体在分析行业的应用和未来发展趋势技术研讨会邀请函   跟过去相比,现在的生产过程和分析更加依赖于严格的控制。用户期望越来越高,法规要求日益严格,价格竞争压力日益增大,从而使得高生产精度并不是值得炫耀的资本,而是必须满足的基本要求。无论生产或分析哪种产品,都可能在其中某个阶段直接使用到特种混合气体。实验室、在线生产或空气和水污染物的监控过程中所使用的校准分析仪和其他测量仪器,都几乎需要间接用到气体,而这些气体和分析仪器的质量和可靠性非常关键。   举办此次技术研讨会的目的即是为解决上面提及的分析工作者所面临的诸多挑战。研讨会由在全球为工业,能源,科技,医疗等领域提供气体产品的空气产品公司主办,中国分析测试协会协办, 并且联合中国计量科学研究院标准物质中心——权威的国家标准物质机构,具有世界领先技术的分析仪器的生产厂家——安捷伦公司、瓦里安公司。会议主题为超高纯气体和标准混合气体在分析行业的应用和未来发展趋势。时间为2008年3月13日星期四,在第六届中国国际科学仪器及实验室装备展览会期间举行。   在这个研讨会上,来自空气产品公司欧洲总部的Gary Yates 博士,将要演讲超高纯气体在工业气体中的发展方向以及杂质在分析结果中的影响。安捷伦公司、瓦里安公司、中国计量科学研究院标准物质中心将分别做相关专题学术报告,介绍气相色谱仪器、气质联用、质谱的最新技术进展,国家标准物质的溯源体系,交流分析应用技术和经验。   研讨会结束后,将邀请您参观空气产品公司在北京的工厂——位于美丽的西山脚下的北京氦普北分气体工业有限公司。我们将展示一些世界最新  的气体生产设备, 演示高质量的超高纯气体和标准气体的生产工艺过程,您将看到非常罕有的,全国首屈一指的世界一流技术水平的气体工厂,它拥有欧洲同步的气体配制和检验技术水平。   在这个展览会上, 您也会看到空气产品公司的各种气体产品介绍,还会看到空气产品公司独有的BIP® 超高纯气体和 Experis® 系列标准混合气体新产品。   有关研讨会座位预定和欲了解更多信息, 请联系毕媛媛或王长玲,电话:010-62459280-220, 或326, 手机:13801214241 或13501132348,传真:010-62451440 电子邮件:bijy@airproducts.com 或wangc3@airproducts.com。 日 程 安 排   日期: 2008年3月13日星期四   地点: 二楼会议室, 北京展览馆, 西直门外大街 135号   议程:9:00 -9:30 入场 签到   9:30-10:00气相色谱仪器和气质联用仪器的发展趋势   分析仪器使用中气体的选择和要求   微板流路控制在复杂分析中的应用   吴华博士——安捷伦科技有限公司   10:05-10:35气体中不纯物质对于分析质量和结果的影响   Gary Yates博士,分析和实验室 产品经理 空气产品公司   10:40-11:10国家气体标准物质溯源体系及气体的生产,检验偏差  周泽义博士——中国计量科学研究院 标准物质中心   11:15-11:45 复杂化学物质中的痕量检测和分析及快速炼厂气分析   李运勇博士——美国瓦里安技术中国有限公司   12:00-1:30 集体午餐,午餐后集体乘车至北京工厂   1:30-4:30 工厂参观: 超高纯气体和Experis® 系列标准气体生产演示   海淀区温泉北清路160号 北京氦普北分气体工业有限公司   4:30-5:30 集体乘车返回市中心 空气化工产品(中国)有限公司 2008年1月 超高纯气体,标准混合气体 在分析行业的应用和未来发展趋势研讨会报名回执表 单位名称:     所属行业      地址:       邮编     姓名: 性别 职位 电话 传真 手机号 E-mail                                           仪器使用 气相色谱 是____否___   台 气质联用 是____否___   台 参观工厂 是____否___ 人
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 实例解析:如何防止混合溶剂“碰撞”导致的样品损失?
    之前聊过关于不同沸点的单一溶剂在蒸发过程可能产生的暴沸以及浓缩过程中可能产生的暴沸都可以用Dri-Pure技术解决。最糟糕的混合溶剂“碰撞”问题是否也能解决呢?1、“容易碰撞”的溶剂类型下面列举的一些“容易碰撞”的溶剂类型,看看是否你也遇到过:● 极易挥发的溶剂;● 含有可溶性气体的溶液(e.g.一水合氨);● 两种溶剂混合,容易蒸发的溶剂密度更大(倒置);● 两种溶剂的密度非常接近,但溶液可能不能很好地混合;● 溶剂或溶剂混合物中有导致碰撞的溶质(e.g.HPLC馏分);● 干燥后的化合物会在溶液表层形成覆盖物的溶液。 典型例子一个典型的例子是二氯甲烷(又称DCM)和甲醇。由于DCM的密度更大但比甲醇更容易蒸发,这意味着DCM会下沉到底部但理论上应该先沸腾,我们称之为倒置。这种混合溶液特别容易发生碰撞,底部溶剂暴沸会导致样品飞溅。(即使是完全混溶的溶剂,在高离心力下也能发生一些分离)2、如何解决溶剂暴沸?通过使用GeneVac系统,你完全不需要担心这些,只需要选择相应的溶剂类型,一键开启。 GeneVac S3 HT GeneVac 4.0 EZ-2实例说明——DCM和甲醇例如:有一个混合溶液(离心后)在1cm DCM的顶部分离出1cm甲醇,在500g离心力作用下,管中1cm深的甲醇受到压力比表面高出近400mbar(比重为0.79)。 我们设定从25℃开始,压力先下降到550mbar,而DCM的沸点是25℃,如果不是因为上面的甲醇,DCM现在就可以蒸发了。但因为有Dri-Pure技术存在,即使腔体内的气压是550mbar,DCM实际上受到的压强是950mbar,所以还无法沸腾。因此,压力继续下降到160mbar时,甲醇的沸点是25℃,所以甲醇开始在表面沸腾。当下降到150mbar时,DCM将受到总压力为550mbar开始沸腾。此时甲醇层可能已经变浅了,所以实际上400mbar的压力差会由于甲醇的蒸发一直在减少,但是蒸发会带走热量,所以整个溶液也会冷却一点,降低温度从而进一步延迟DCM沸腾的时间。 未采用Dri-Pure 防暴沸技术 Dri-Pure 防暴沸的效果确切的数字在不同的情况下会有所不同,但需要注意的是,仍然存在一个节点会有大量的甲醇层,但它下面的DCM想要开始沸腾。另外,机器内置Sample Guard功能会通过红外探温器来探测支架和样品温度,防止温度过高引起溶剂沸腾,并且不直接接触样品,避免样品的污染与损坏。 3、GeneVac助力加速研发效率 GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载特有的Dri-Pure技术,能够轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。 同时,有上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,很大程度上保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,并且,该系列还具备更多高端功能,详细可拨打热线400-006-9696或者点击填写表单进行咨询。
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节从2013年8月开始正式生效,它参考了 USP关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 和),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
  • 使用ACQUITY UPSFC系统分析微量的对映体杂质
    目标 使用沃特世ACQUITY UPSFC™ 系统证明杏仁酸苄酯的快速手性分离和0.02%杂质水平下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种又包含单对映体活性成分。单对映体型手性药物被认为是改善了的化学实体,可提供更高的药效、更好的药理学数据和更为有用的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其他有机杂质。国际协调会议(ICH)已对关于鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPSFC系统的高灵敏度实现了对药用物质中对映体杂质的鉴定和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用ACQUITY UPSFC系统进行分离,其色谱图如图2所示。主要试验参数在表1中列出。 总分析时间不到1.5分钟。平均基峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。保留时间和峰面积的重复性测定基于五次重复进样,结果汇总于表2。在0.20 mg/mL的浓度下,保留时间的重复性RSD小于0.23%,峰面积响应RSD优于0.5%。 图3显示了2 mg/mL R-杏仁酸苄酯的UPSFC色谱图。经紫外光谱确认(结果未显示),1.30分钟处的次要峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检出限),根据峰面积判断相当于主要峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPSFC系统,其中包括改进的泵系统和优化设计的检测器。本例中对映体过量(e.e.)百分比为99.96%。总结 使用ACQUITY UPSFC系统在不到1.5分钟成功完成R-和S-杏仁酸苄酯的UPSFC手性分离。当每种对映体浓度均为0.20 mg/mL时,所得到的重复性极佳(保留时间的可重复性RSD小于0.23%,峰面积RSD小于0.5%)。新型泵系统和优化设计的检测器所带来的更高检测灵敏度使测定0.02%对映体杂质和对映体过量成为可能。ACQUITY UPSFC系统适用于低浓度对映体杂质的分析、对映体过量测定和QA/QC分析。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • C8+SCX混合床固相萃取柱使用方法解析
    众所周知固相萃取柱广泛应用在药物代谢及动力学、药物分析、生物检测、毒品和兴奋剂检测、食品安全分析、环境分析等众多领域,这导致固相萃取型号各异、种类繁多,但是以硅胶基质的C8+SCX混合床固相萃取柱是所有固相萃取产品中应用最为广泛的,就像液相色谱中C18一样,C8+SCX混合床固相萃取柱占有统治地位.   Chrom-Matrix 公司生产的硅胶基质的C8+SCX混合床固相萃取柱及SCX固相萃取柱拥有其他固相萃取柱(包括聚合物固相萃取柱例如MCX)不可比的许多优点: (1)Chrom-Matrix 公司研发出 C8+SCX混合床固相萃取柱及SCX固相萃取柱有通用的应用方法, 针对具体的应用, 客户不必要在方法研发上花费大量的时间。(2) 对碱性化合物萃取级分背景清除效果最好。(3) C8+SCX混合床固相萃取柱特别适用在“全盲”条件下对血样、尿样、组织等生物介质萃取后全部小分子化合物(碱性、中性、酸性及两性化合物)"无一遗漏"的捕获, 以用作进一步的GC-MS或LC-MS/MS等分析。(4) 硅胶基质的C8+SCX混合床固相萃取柱和硅胶基质的C8+SAX混合床固相萃取柱搭配使用, 构建了“全盲”条件下预临床药物代谢研究, 临床药物代谢研究, 兴奋剂检测、刑侦、国际禁毒组织及海关毒品检测、赛马、食品安全分析、未知样品的成分分析、中草药有效成分分析等非常完全、清晰的图象。(5) 彻底消除LC/MS或LC-MS/MS分析中的介质效应(这一应用为Chrom-Matrix公司PCT专利保护)。   针对不同的应用,硅胶基质的C8+SCX混合床固相萃取柱有三套完整的使用方法:   第一套:“全盲”条件下的全扫描   应用范围:兴奋剂检测、刑侦、国际禁毒组织及海关毒品检测、赛马、食品安全分析、药物代谢研究、未知样品的成分分析、中草药有效成分分析等。   第一步: 1克/6毫升C8+SCX固相萃取柱先用6毫升甲醇再用6毫升0.1M HCl活化   第二步:将血浆、尿样和0.1M HCl等体积混合上样(组织样品或食品等须先以有机溶剂萃取)   第三步:用6毫升0.1M HCl洗涤至干   第四步:用6毫升甲醇洗涤,收集酸性和中性化合物成分, 吹干后供测试。   第五步:用6毫升甲醇-氨水(95:5)洗涤,收集碱性和两性化合物成分,吹干后供分析测试。   第二套: LC-MS或LC-MS/MS或GC-MS定量分析(Chrom-Matrix公司PCT专利保护)   应用范围:大多数碱性和两性化合物。   第一步: 300毫克/3毫升或100毫克/1毫升Chrom-Matrix C8+SCX固相萃取柱或100毫克96-well固相萃取板。先用3毫升甲醇再用3毫升10mM醋酸铵(pH4-6)活化(注:100毫克体积仅用1毫升甲醇,1毫升醋酸铵)   第二步:将血浆、尿样和10mM醋酸铵(pH4-6)等体积混合上样(组织样品或食品等须先用有机溶剂萃取,萃取液与10mM醋酸铵混合)   第三步:用3mL10mM醋酸铵(pH 4-6)、3mL 0.1M醋酸、3mL甲醇先后洗脱杂质(注:100毫克体积用1mL醋酸铵,1mL醋酸,1mL甲醇)   第四步:用3mL甲醇-氨水(95:5)洗涤(注:100毫克体积用1mL甲醇-氨水(95:5)洗涤,吹干后供分析测试。   第三套:LC-MS或LC-MS/MS或GC-MS定量分析(Chrom-Matrix公司PCT专利保护)   应用范围:极性两性化合物、极性或弱碱性化合物,在pH4时, 如果化合物回收率低, 应该使用第三套方法:   第一步: 300毫克/3毫升或100毫克/1毫升Chrom-Matrix C8+SCX固相萃取柱或100毫克96-well固相萃取板。先用3毫升甲醇再用0.1M醋酸(pH 3) 或0.1M盐酸活化(注:100毫克体积仅用1毫升甲醇,1毫升酸)。   第二步:将血浆、尿样和0.1M醋酸或0.1M盐酸等体积混合上样(组织样品或食品等须先用有机溶剂萃取,萃取液与0.1M醋酸或0.1M盐酸混合)   第三步:用3mL0.1M醋酸或0.1M盐酸,3mL甲醇先后洗脱杂质(注:100毫克体积用1mL醋酸或盐酸,1mL甲醇)。   第四步:用3mL甲醇-氨水(95:5)洗涤(注:100毫克体积用1mL甲醇-氨水(95:5)洗涤,吹干后供分析测试。
  • 培安公司成功举办“微波技术和压力循环技术在中药提取和制备中的应用”研讨会
    美国培安公司携手美国CEM公司和美国PBI公司,将于2008年11月20日在中国计量科学研究院举办&ldquo 建造微波、高压与中药现代化的桥梁&mdash 开发微波技术和压力循环技术在中药提取和制备中的应用&rdquo 研讨会。世界知名微波化学应用专家Dr. GIORGIO MARINI和高压生物科技应用专家Dr. Tao Feng 现场演讲,并邀请国内中医药界知名专家、学者现场讨论。本研讨会旨在探讨中药提取与制备的新技术、新方法,以及如何对这些新技术、新方法加以利用以期共同推动我国中药现代化进程。美国培安公司、美国CEM公司和美国PBI公司真诚地邀请您参加本次研讨会。 1.美国CEM公司(CEM Corporation,U.S.A., CEM)作为全球最大的微波化学仪器生产商,其在微波萃取(Microwave Extraction)和微波合成(Microwave Synthesis)方面研制出性能卓绝的仪器,可成为小分子有机合成和天然药物萃取研发的有力工具,已在国际上获得广泛应用。自动聚焦耦合微波萃取利用其聚焦微波的超强耦合能力,智能化系统和温压推升控制反应过程,实现了快速完全精确的有机合成和溶剂萃取样品制备。DR.GIORGIO MARINI在报告中将重点介绍CEM的CoolMate低温微波化学合成系统(Low-Temperature Microwave Synthesis System),对于那些温度敏感的化学反应和天然分子萃取,包括天然动植物成分萃取,以及糖化学、负碳离子构成和其他活性中间体反应,其特殊的低温高能量耦合技术具有令人惊讶的性能和结果。系统操作简单而且可控,可以安全完成那些在普通方法中不能进行的合成和萃取反应,保持天然生物分子形态的完整性和活性。 CoolMate超低温微波化学合成系统 2. Voyager中试放大微波合成系统(Microwave Synthesis System for Scale Up & Process Development),是第一套为放大反应设计的单模微波流动合成和萃取反应系统,它能满足在安全、可控、一致性条件下采用微波能量进行合成和萃取的放大反应,Voyager的灵活放大技术可用于实验室中有重要价值的有机合成反应和中药物质的放大提取,填补了药物研发过程所遇到的制备困难和小量物质产物的瓶颈,使实验室中研究阶段的合成和萃取量具备直接从毫克级到千克级的飞跃。 Voyager 间歇流动微波放大合成系统 3. 美国PBI公司开发的PCT脉冲式压力循环样品制备系统(Pressure Cycling Technology Sample Preparation System, PCT SPS),通过往复多次的常压和超高液压(35,000PSI或更高)之间快速循环实现精确地控制分子间相互作用。能够快速、安全、有效地从植物组织、动物组织、真菌等多种类型样品中提取核酸、蛋白、及小分子等成分。该系统已经在分析生物化学、基因组学、蛋白质组学、脂质学、代谢组学等众多领域有崭新的应用。其超强的成分提取能力使哈佛科学家用PCT从恐龙化石中成功提取了蛋白和DNA,进而发现鸡和霸王龙是近亲。通过在低温或常温下的PCT处理,生物大分子(比如蛋白、膜和生物分子复合体)和细胞中的其他分子,可在保证分子完整性的条件下释放出来。近年来,随着操作简单、通用性强、价格低廉的高压仪器的上市,超高液压在生命科学中的应用不断增加。PCT SPS用于提取中药中的有机物分子和蛋白分子均有良好的应用空间。特别是在中药有效成分提取、制备,及质量控制的应用研究方面有广阔的前景。 压力循环样品制备系统 4.CEM第一次把环形耦合微波技术应用到多肽合成上来,开辟一个多肽合成的新纪元。合成速度比传统提高20倍。Liberty运用特殊环形微波腔使多肽分子充分展开,促使样品接受到最佳配比的微波能量提高合成效率。Liberty大大缩短反应时间,获得前所未有的多肽产物纯度及产量,使得许多合成反应都可免去纯化步骤。Liberty能够防止长链多肽聚合,消除双重耦合,消除外消旋现象,降低树脂的要求,破记录的合成目前世界上最长的人工多肽&mdash 111个氨基酸。标准的10肽ACP序列的合成纯度竟达到98%,美国多肽协会认为Liberty优异的性能令人惊讶。2004年荣获美国应用科学R&D100奖,并被美国纽黑文国家实验室等世界一流实验室应用于艾滋病和SARS病毒的药物研究。 Liberty 高效微波多肽合成系统(多肽合成仪) 5. 近年来随着人们对天然产物的研究的不断深入,经常需要从大量或少量的混合物中以有效、快速、低成本的方法分离提纯化合物。因此,如何选择正确的分离方法无疑变得非常重要。培安推荐的Analogix快速制备色谱,具有全自动、快速高精度等优点,而且其分离能力最大高达5Kg,覆盖了从实验室研究、中试到小规模生产等各个领域,被广泛应用于组合化合物纯化、天然药物的分离纯化,以及天然药物单体如紫杉醇和银杏内脂、药物制剂如磷脂、中药注射剂如人参和丹参、功能保健食品(包括食品填加剂)等的产品制备与分析。目前世界知名的制药公司如罗氏、GSk、诺华、LILLY等都在使用其产品。Intelliflash 310 快速纯化制备色谱系统 有关详情请浏览培安公司的网站www.pynnco.com,电子邮件:sales@pynnco.com, 电话:010-65528800。
  • 高纯金属基体的ICP-OES分析 | 强大的干扰消除能力:Avio ICP-OES分析金属镍中的杂质
    伦敦金属交易所(London Metal Exchange,LME)是世界上最大的有色金属交易所,成立于 1876 年,于 2012 年被香港证券交易所英镑收购,成为其全资附属公司。伦敦金属交易所的交易品种主要有铜、铝、铅、锌、镍和铝等,发布的成交价格被广泛作为世界金属贸易的基准价格,其价格和库存对世界范围的有色金属生产和销售有着重要的影响。如同 24K 金与 18K 金的差价一样,不同纯度金属的价格差异明显。因此,伦敦金属交易所对交易金属的纯度有着严格的分级和要求,对检测手段也有着严格的规范。从本文开始,我们将陆续推出伦敦金属交易所有色金属质量控制系列 —— 高纯基体金属的 ICP-OES 分析,以镍、铅、铝等为例,让大家了解电感耦合等离子体发射光谱(ICP-OES)技术在分析高纯度金属基体中的杂质元素的应用,以及珀金埃尔默 Avio 系列 ICP-OES 在此领域应用的技术特点和优势。ICP-OES 的英文为 Inductively Coupled Plasma Optical Emission Spectrometer,基本原理简单说来就是元素的原子或离子受热或电激发后,发生电子层跃迁,随后从激发态回到基态时发射出具有特征波长和强度不同的电磁辐射,从而进行元素的定性和定量。ICP-OES 系统的组成如下图所示。ICP-OES 技术具有高效稳定,连续快速多元素同时测定,精确度高,检测线性宽等特点,能够进行 70 多种金属元素和部分非金属元素的分析,多数元素的检出限能达到 ppb 级,在地质、冶金、环保、化工、生物、医药、食品、农业等方面用途广泛。那么,让我们先从用途最为广泛的合金材料之一金属镍中的杂质检测开始说起吧!金属镍中的杂质检测金属镍(Ni)由于其具备高温和低温下的高耐腐蚀性和高强度,成为合金材料生产制备中最广泛使用的金属材料之一。伦敦金属交易所发布了不同规格的金属镍的杂质要求,表 1 列举了99.80% 纯度金属镍标准规范中的杂质要求。表1.伦敦金属交易所 99.80% 纯度金属镍(镍标准规范)众所周知,谱线干扰是使用 ICP-OES 检测高纯基体金属样品中的杂质时常常遇到的难题。我们看看珀金埃尔默如何使用 Avio 500 电感耦合等离子体光谱仪(ICP-OES),并利用多谱拟合专利技术(MSF)解析谱线,成功消除主体元素 Ni 对 某些杂质元素如 Bi 和 Sn 的测定干扰,准确检测高纯度金属镍中的杂质元素。样品样品以 5% 硝酸(v/v)消解。按照“99.80% 纯度金属镍标准规范”的要求,所有分析在 1% Ni 溶液中进行,并按照其对杂质元素含量的规定进行加标回收实验。标准工作曲线用 5% 硝酸(v/v)溶液配制浓度水平为 0.25,0.5 和 1.0 ppm 的混合标准溶液。仪器珀金埃尔默 Avio 500 ICP-OES,仪器参数、实验条件设置见表 2,各杂质元素的测定波长见表 3。表2. Avio 500 ICP-OES 仪器参数和实验条件表3. 各杂质元素的测定波长回收率混合标准溶液加到 1% Ni 溶液中的回收率均在 ±10% 以内,结果如图 1 所示,表明能够准确检测低浓度的杂质元素。图1. 各杂质元素在 1% 浓度 Ni 溶液中的加标回收率干扰消除在检测中,Bi 和 Sn 的测定会明显受到 Ni 基体的光谱干扰。使用珀金埃尔默多谱线拟合(MSF)专利技术(原理如图 2 所示),建立模型,可以消除 Ni 谱线干扰。图2. 珀金埃尔默多谱线拟合(MSF)专利技术方法检出限方法检出限定义为连续 7 次测量 1% Ni 溶液中各杂质元素为 0.25 ppm 的测量值的标准偏差的 3 倍,结果如图 3 所示,表明方法的检出限符合金属镍标准规范要求。图3. 1% Ni 溶液中各杂质元素的检出限(蓝色)和金属镍标准规范要求(红色,按100倍稀释99.80%纯 Ni 计算)仪器稳定性通过 6 小时连续分析 1% Ni 溶液中内标物 钪(Sc)的光谱信号强度的变化考察仪器的稳定性,结果见图 4,信号强度的变化在 ±10% 以内,表明仪器有着良好的稳定性 。图 4. 1% Ni 溶液中内标物钪(Sc)的光谱信号强度变化本文证明了珀金埃尔默 Avio ICP-OES 可以对高纯 Ni 中的杂质元素进行准确分析,符合伦敦金属交易所对高纯金属 Ni 的要求。通过使用多谱线拟合(MSF)技术解析谱线, 成功消除了主体元素 Ni 对 Bi 和 Sn 的测定干扰。 Avio 200 ICP-OESAvio 500 ICP-OES 扫描下方二维码,即可下载珀金埃尔默ICP-OES相关应用资料。下期预告伦敦金属交易所有色金属质量控制系列(2),高纯金属基体的ICP-OES分析:Avio 500 分析金属铅中的杂质,将介绍伦敦金属交易所对金属铅的标准规范,以及Avio 系列ICP-OES在其分析中,特别是在成本控制方面的表现,敬请期待。
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • 半导体杂质检测难?半导体专用ICP-MS来帮你!
    对Fab工厂而言,控制晶圆、电子化学品、电子特气和靶材等原材料中的无机元素杂质含量至关重要,即便是超痕量的杂质都有可能造成器件缺陷。然而半导体杂质含量通常在ppt级,ICP-MS分析时用到的氩气及样品基体都很容易产生多原子离子干扰,标准模式、碰撞模式下很难在高本底干扰的情况下分析痕量的目标元素。珀金埃尔默NexION系列半导体专用ICP-MS,凭借其独特的以动态反应池技术为基础的UCT(通用池)技术,既能实现标准模式、碰撞模式,也可以通过反应模式消除干扰,从根本上成功解决了多原子干扰的技术难题。晶圆中的金属杂质分析(UCT-ICP-MS)晶圆等半导体材料中的主要成分是硅。高硅基体的样品在传统的冷等离子体条件下分析,其中的耐高温元素硅极易形成氧化物。这些氧化物沉积在锥口表面后,会造成明显的信号漂移。NexION系列半导体专用ICP-MS在高硅基体的样品分析中采用强劲的高温等离子体,大大降低了信号漂移。通过通入纯氨气作为反应气,在DRC 模式下,有效消除了40Ar+ 对40Ca+、40Ar19F+ 对59Co+、40Ar16O+ 对56Fe+ 等的干扰。通过调节动态带通调谐参数消除不希望生成的反应副产物,克服了过去冷等离子体的局限,有效去除多原子离子的干扰。在实际检测中实现了10 ng/L 等级的精确定量,同时表现出良好的长期稳定性。基质耐受性:Si 基质浓度为100ppm 到5000ppm 样品100ppt 加标回收稳定性:连续进样分析多元素加标浓度为100ppt 的硅样品溶液(硅浓度为2000ppm)《NexION 300S ICP-MS 测定硅晶片中的杂质》NexION ICP-MS 测定半导体级盐酸中的金属杂质在半导体设备的生产过程中,许多流程中都要用到各种酸类试剂。其中最重要的是盐酸(HCl),其主要用途是与过氧化氢和水配制成混合物用来清洁硅晶片的表面。由于半导体设备尺寸不断缩小,其生产中使用的试剂纯度变得越来越重要。ICP-MS具备精确测定纳克/升(ng/L,ppt)甚至更低浓度元素含量的能力,是最适合测量痕量及超痕量金属的技术。然而,常规的测定条件下,氩、氧、氢离子会与酸基体相结合,对待测元素产生多原子离子干扰。如,对V+(51) 进行检测时去除 ClO+ 的干扰。虽然在常规条件下氨气与ClO+ 的反应很迅速,但如果需要使反应完全、干扰被去除干净,则需要在通用池内使用纯氨气。NexION系列半导体专用ICP-MS的通用池为四级杆,具备精准可控的质量筛选功能,可以调节RPq 参数以控制化学反应,防止形成新的干扰,有效应对使用高活性反应气体的应用。20% HCl 中各元素的检出限、背景等效浓度、10 ng/L 的加标回收率20% HCl 中典型元素ppt 水平标准曲线20% HCl 中加标50 ng/L 待测元素,连续分析10 小时的稳定性《利用NexION 2000 ICP-MS 对半导体级盐酸中的杂质分析》电子特气直接进样分析技术(GDI-ICP-MS)半导体所使用的特殊气体分析传统方法有两种:一种是使用酸溶液或纯水对气体进行鼓泡法吸收,然后导入ICP-MS进行分析;另一种是使用滤膜对气体中颗粒物进行收集,然后对滤膜消解后上机。然而无论是鼓泡法吸收还是滤膜过滤收集、消解,都存在样品制备过程容易被污染、鼓泡时间难以确定、不同元素在酸中溶解度不一样等各种问题,分析结果的可靠性和重现性都难以保证。GDI-ICP-MS系统可以将气体直接导入到等离子中进行激发,避免了额外的前处理步骤,具有方便、高效、不容易受污染等特点,从根本上解决传统方法的一系列问题。GDI-ICPMS气体直接进样技术GDI-ICPMS 直接定量分析气体中金属杂质GDI-ICP-MS法绘制的校准曲线(标准气体产生方式:在氩气中雾化标准溶液,这些标气对所有待测元素的线性都在0.9999以上)《使用气体扩散和置换反应直接分析气体中金属杂质》半导体有机试剂中纳米颗粒的分析(Single particle-ICP-MS)单颗粒ICP-MS(SP-ICP-MS)技术已成为纳米颗粒分析的一种常规手段,采用不同的进样系统,能在100~1000 颗粒数每毫升的极低浓度下对纳米颗粒进行检测、计数和表征。除了颗粒信息,单颗粒ICP-MS 还可以在未经前级分离的情况下检测溶解态元素浓度,可检测到ppb级含量的纳米颗粒,实现TEM、DLS等纳米粒径表征技术无法完成的痕量检测。用ICP-MS分析铁离子(56Fe+)时会受到氩气产生的40Ar16O+的严重干扰。利用纯氨气作反应气的动态反应池技术是消除40Ar16O+对铁离子最高丰度同位素56Fe+干扰最有效的途径,而只有对56Fe+的分析才能获得含铁纳米颗粒分析最低的检出限。90% 环己烷/10% 丙二醇甲醚混合液测定图谱,有含铁纳米颗粒检出TMAH 中含铁纳米颗粒结果图谱:(a)粒径分布;(b)单个含铁纳米颗粒实时信号TMAH 中含铁纳米颗粒粒径和浓度由Fe(OH)2 到总铁的质量换算《利用单颗粒ICP-MS在反应模式下测定半导体有机溶剂中的含铁纳米颗粒 》SP-ICP-MS技术测定化学-机械整平(CMP)中使用的元素氧化物纳米颗粒悬浮物的特性氧化铝和氧化铈纳米颗粒常用于纳米电子学和半导体制造行业中化学-机械 (CMP)半导体表面的平整。CMP悬浮物纳米粒子的尺寸分布特征以及大颗粒的辨别,是光刻过程质量控制的重要方面,会影响到硅晶片的质量。既可以测量可溶分析物浓度、又能测定单个纳米粒子的单颗粒模式ICP-MS(SP-ICP-MS)是分析金属纳米粒子的最有前途的技术。SP-ICP-MS技术具有高灵敏度、易操作、分析速度快的特点,纳米粒子引入等离子体中被完全电离,随后离子被质谱仪检测,信号强度与颗粒尺寸有关。因此SP-ICP-MS可为用户提供颗粒浓度(颗/mL),尺寸大小和尺寸分布。为确保一次只检测一个单颗粒,必须稀释样品以实现分辨的目的。这就要求质谱仪必须能够有很快的测量速度,以确保能够检测到在50nm纳米颗粒的瞬时信号(该信号变化的平均时间为300~500μs)。珀金埃尔默NexION系列半导体专用ICP-MS单颗粒操作模式能够采集连续数据,无需设置定位时间,每秒钟获取高达100 000个数据点。结合纳米颗粒分析软件模块,可以实现单颗粒纳米颗粒的准确分析。采集数据比瞬时信号更快的纳米信号积分图悬浮物1~4归一化颗粒尺寸分布频次图《使用单颗粒电感耦合等离子体质谱法(SP-ICP-MS)分析CeO2 化学机械抛光化浆料》On-line ICP-OES 在线监控磷酸中的硅含量在最新的立式3D NAND 闪存的生产工艺中,需要使用磷酸进行湿法刻蚀。在生产过程中,必须监控这种特殊的、高选择性氮化的磷酸中硅的含量,以控制工艺质量。当磷酸中硅含量发生改变时,必须排空并更换磷酸。在线ICP-OES技术响应迅速,可实现7天*24小时不间断检测,是最适合磷酸中硅含量监控的方法。而Avio500 紧凑的体积非常适合空间有限的Fab 厂;垂直炬管配合独特的切割尾焰技术,不需要任何维护也能获得最佳的数据稳定性。在线监控系统可实现:自动配制校准曲线7天*24小时全自动运行质控功能(超出线性范围则重新校准)可同时监控5个模块(多达20个采样点)允许ICP-OES在线或离线分析间切换点击链接获取文中提到的解决方案和更多半导体相关资料:http://e86.me/4qfk7N关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制