当前位置: 仪器信息网 > 行业主题 > >

甲基苯并屈标准品

仪器信息网甲基苯并屈标准品专题为您提供2024年最新甲基苯并屈标准品价格报价、厂家品牌的相关信息, 包括甲基苯并屈标准品参数、型号等,不管是国产,还是进口品牌的甲基苯并屈标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基苯并屈标准品相关的耗材配件、试剂标物,还有甲基苯并屈标准品相关的最新资讯、资料,以及甲基苯并屈标准品相关的解决方案。

甲基苯并屈标准品相关的论坛

  • 【分享】日本注册氯虫酰胺、氰氟虫腙和甲基碘三种农药,并设定其在食品中的残留标准

    厚生劳动省医药食品局发布食安发0928第2号:部分修改食品、添加剂等的规格标准(2009年厚生劳动省告示第422号),设定农药氯虫酰胺、氰氟虫腙以及甲基碘在食品中的残留标准。根据此通知,厚生劳动省将如下记修改部分食品、添加剂等的规格标准(昭和34年厚生省告示第370号)。第1 修改的摘要根据食品卫生法(昭和22年法律第233号。以下简称“法”。)第11条第1项的规定,设定农药氯虫酰胺、氰氟虫腙以及甲基碘等在食品中的残留标准。第2 实施• 适用日期由公布之日起开始实施第3 应用须知1、此次,在设定了氯虫酰胺标准值的食品中,桃、西瓜以及香瓜是包括果皮的。2、此次,设定了标准值的氰氟虫腙是指:将氰氟虫腙(E-同分异构体)、氰氟虫腙(Z-同分异构体)以及作为氰氟虫腙代谢物的p-[m-(三氟甲基) 苯甲酰甲基] 苯甲腈换算为氰氟虫腙之后的和。第4 其它以残留标准值(根据“法”设定)以及农药取缔法(昭和23年法律第82号)为依据,在农林水产省将氯虫酰胺、氰氟虫腙以及甲基碘注册为农药。关于氯虫酰胺、氰氟虫腙以及甲基碘的检验法将在日后通知。

  • 【分享】日本注册氯虫酰胺、氰氟虫腙和甲基碘三种农药,并设定其在食品中的残留标准

    PONY谱尼测试最新了解到,厚生劳动省医药食品局发布食安发0928第2号:部分修改食品、添加剂等的规格标准(2009年厚生劳动省告示第422号),设定农药氯虫酰胺、氰氟虫腙以及甲基碘在食品中的残留标准。根据此通知,厚生劳动省将如下记修改部分食品、添加剂等的规格标准(昭和34年厚生省告示第370号)。第1 修改的摘要根据食品卫生法(昭和22年法律第233号。以下简称“法”。)第11条第1项的规定,设定农药氯虫酰胺、氰氟虫腙以及甲基碘等在食品中的残留标准。第2 实施• 适用日期由公布之日起开始实施第3 应用须知1、此次,在设定了氯虫酰胺标准值的食品中,桃、西瓜以及香瓜是包括果皮的。2、此次,设定了标准值的氰氟虫腙是指:将氰氟虫腙(E-同分异构体)、氰氟虫腙(Z-同分异构体)以及作为氰氟虫腙代谢物的p-[m-(三氟甲基) 苯甲酰甲基] 苯甲腈换算为氰氟虫腙之后的和。第4 其它以残留标准值(根据“法”设定)以及农药取缔法(昭和23年法律第82号)为依据,在农林水产省将氯虫酰胺、氰氟虫腙以及甲基碘注册为农药。关于氯虫酰胺、氰氟虫腙以及甲基碘的检验法将在日后通知。PONY谱尼测试在农药残留方面具有丰富的经验,可以依据日本肯定列表进行检测。对于这三种农药,企业应该引起重视,PONY谱尼测试将鼎力帮助企业进行检测,顺利出口。

  • 气相色谱萃取后峰面积比标准品峰面积还大

    采用液液萃取的方法测三卤甲烷,做出了标准品的曲线,然后用去离子水做了一个加标的,测了发现加标的峰面积比标准品的峰面积大很多,是不是很不正常?这怎么计算回收率?而且萃取不是会有损失,怎么峰面积还变大了?前处理步骤,就是20ml水样加入比色管中,然后加100ppb的标准品,加4ml的甲基叔丁基醚萃取,再加入8g的无水硫酸钠。也做了个空白,发现空白没有这些出峰,峰面积大小可以忽略不计。加标和测标准品的方法是一样的。请高手解答一下

  • 将过期标准品,亏本甩卖了!!!

    将过期标准品,亏本甩卖了!!!

    蛮好的东西,可惜要过期了。近期有做这些实验的老师,赶快联系我司业务员吧,亏本销售,买了就是赚了!产品质量保证,您大可放心。详细信息: 1. C17396150 四环素盐酸盐 标准品 0.25g Tetracycline hydrochloride CAS 有效期 2012/05 价格180RMB2. C10745000 甲基溴硫磷 标准品 0.1g Bromophos-methyl CAS 有效期 2012/05 价格240RMB贴几张图看看,很好的东西,平时这个价格全中国那也买不到呀。http://ng1.17img.cn/bbsfiles/images/2012/02/201202241905_350946_2378824_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/02/201202241907_350947_2378824_3.jpg

  • 农药标准品购买!!!!

    本人系一名在校研究生,现需要采购多种农药标准品,用于科研。标准品浓度需在1000PPM以上或者固体,有意者请把标准品价格、浓度、含量,发到myou@xmu.edu.cn 或者mh_you@126.com氯氰菊酯、醚菌酯腈菌唑杀螟腈二甲戊乐灵氟虫腈乙草胺异菌脲氟丙菊酯丙溴磷异丙甲草胺丙环唑三氯杀螨醇ddv乙拌磷四氯间二甲苯氟乐灵甲拌磷乐果二嗪哝百菌清甲基毒死蜱七氯杀螟松马拉硫磷环氧七氯硫丹1丁草胺稻瘟灵异狄氏剂环氟菌胺硫丹2乙硫磷联苯菊酯甲氰菊酯三氯杀螨砜三氟氯氰菊酯氯菊酯氟氯氰菊酯氰戊菊酯溴氰菊酯三唑磷丙线磷敌敌畏甲胺磷异吸硫磷甲拌磷治螟磷内吸磷二嗪哝乙拌磷稻瘟净久效磷乐果甲基毒死蜱甲基对硫磷倍硫磷马拉硫磷杀螟松对硫磷甲基异柳磷喹硫磷稻丰散丙溴磷乙硫磷苯硫磷

  • 【原创大赛】基于近红外光谱分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究

    【原创大赛】基于近红外光谱分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究

    [align=center][b]基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究[/b][/align][b]中文摘要:目的[/b]实际工业生产工艺中,萃取是一项耗时耗力的过程,萃取终点的确定通常采用离线的HPLC, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]或由熟练工人根据经验判断,这些方法操作较复杂或是不够准确,在实际生产中缺乏一种快速有效的检测手段以判断萃取终点,节省操作时间,避免过分萃取浪费溶剂。利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可以明显改善萃取工艺。[b]方法[/b]本实验针对2,3,5-三甲基苯醌(TMBQ)粗品萃取环节,采用偏最小二乘法(PLS)建立模型,考察了不同预处理方法与变量选择方法对模型的影响以优化模型,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合PLS算法建立TMBQ萃取过程含量快速检测模型,并使用不同预处理方法与波段选择方法对模型进行优化,最终确定使用一阶导数+SG15点平滑预处理结合iPLS选择波段建立PLS模型。[b]结果[/b]建立模型的各项参数为:波普区间4385.33cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup], 5928.11cm[sup]-1[/sup]-6309.94cm[sup]-1[/sup],模型决定系数R[sup]2[/sup]=0.996, RMSEP=0.1350。[b]结论[/b]建立的模型精密度与准确度良好,可以满足含量分析的需要,是TMBQ萃取过程含量快速检测的有效方法,可以快速准确的对三甲基苯醌粗品萃取过程进行在线监测,提供了一种用于该工艺环节的快速检测手段,如果应用于生产,可以节省操作时间,避免溶剂浪费。[b]关键词:[/b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析;2,3,5-三甲基苯醌;萃取 2,3,5-三甲基苯醌是维生素E的主要中间体。2,3,5-三甲基苯醌在国外已有生产, 但国内尚未见文献报道。国内用2,3,5-三甲基苯醌主要依赖进口。因此,开展2,3,5-三甲基苯醌的合成研究对发展国内维生素 E 的生产具有重要意义。TMHQ的合成工艺国内外己有多种报道,较为先进的是TMP法与异佛尔酮法,TN[b]B[/b]Q粗品萃取过程是合成TMBQ的关键环节。在制药领域,NIRS作为一种重要的PAT工具,已成功用于药物的原辅料评价、关键过程的监测和控制、成品的快速放行和质量监测等各个环节,为保证产品质量、降低生产成本、革新生产过程发挥了重要的作用。[b]1实验材料与仪器1.1仪器[/b] Antaris Ⅱ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国Thermo Fisher公司),7890A[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-氢焰离子化检测器(美国Agilent公司),HP-1毛细管色谱柱(美国Agilent公司)BT224S电子分析天平(德国Sartorius公司),容量瓶,100ml圆底烧瓶,分液漏斗,[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url](美国ThermoFisher公司)。RESULT[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]采集软件,TQAnalyst[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析软件,Matlab数据处理软件。[b]1.2试剂[/b] 2,3,6-三甲基苯醌(合成步骤见第二章),石油醚(天津富宇精细化工有限公司,沸程60℃-90℃)。[b]2方法2.1样品制备和处理[/b] 按照第二章步骤合成得TMBQ得其石油醚溶液,萃取水相合并有机相,旋蒸浓缩除去石油醚至橙黄色油状液体,称重,再用石油醚作为溶剂配置1ug/ml~50mg/ml一系列溶液。[b]2.2光谱采集[/b] 波长范围4000 cm[sup]-1[/sup]-10000cm[sup]-1[/sup];扫描次数32;分辨率8 cm[sup]-1[/sup],使用4mm光程的玻璃样品管乘装液体样品,采集样品前采集背景以消除背景干扰,每个样品重复采集三次光谱。光谱采集在恒定室温(24℃)与恒定湿度的条件下进行。[b]2.3样品集划分[/b] 使用K-S分类法将所有66个样品换分为48个校正集与18个验证集。[b]2.4模型建立与优化[/b] 采用导数、平滑等方法对原始光谱进行预处理,应用偏最小二乘法(PLS)建立模型,结合RMSEP等评价参数,通过变量选择方法选择特征波段优化模型。[b]2.5 重复性考察[/b] 选择3个验证集样品,每个样品连续采集10次光谱,使用建立好的模型预测每张光谱,并计算出每个样品十次预测值的均值和标准偏差。是第i个样品的第j张光谱,第i个样品共测定ri个光谱,第i个样品的预测平均值为:[align=center][img=,90,83]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311044_01_1626619_3.png[/img][/align] 复测定的标准偏差为:[align=center][img=,164,102]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311044_02_1626619_3.png[/img][/align] 用c[sup]2[/sup]检验来考察这些重复性标准偏差是否属于同一总体:[align=center][img=,271,245]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311045_01_1626619_3.png[/img][/align] z为需要重复测定的样品数,将所得χ[sup]2[/sup]与自由度(z-1)临界值比较,若χ[sup]2[/sup]在临界值以下,则重复测定的所有方差属于同一总体,标准偏差均值σ可以作为近红外测定的标准偏差,近红外分析方法的重复性为z××σ[sub]max[/sub]。如果χ[sup]2[/sup]大于临界值,近红外分析方法的重复性随样品组分浓度不同而不同,这时,近红外分析方法的重复性不大于z××σ[sub]max[/sub](σ[sub]max[/sub]为σi中的最大值)。[b]2.6[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测[/b] 初始温度180℃恒温5min,以10℃/min的速率升温至240℃。进样口温度:300,检测器温度:300,载气:氮气,载气流速:3ml/min,进样量:0.5ul。[b]3结果3.1校正集与验证计划分[/b] 使用K-S分类法将所有66个样品换分为48个校正集与18个验证集。校正集与验证集的第一第二主成分分布图如图1,其中黑色符号代表校正集样品,红色符号代表验证集样品,验证集均匀分布于校正集中,可见使用该方法分类合理。[align=center][img=,553,217]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311047_01_1626619_3.png[/img][/align][align=center]图1 所有样品主成分分布图[/align][b]3.2预处理方法的选择[/b] 考察无预处理、一阶导数+SG5点平滑、一阶导数加SG9点平滑、一阶导数+SG15点平滑、二阶导数加15点平滑这几种方式的建模结果,以RMSEC、RMSECV、RMSEP以及R[sup]2[/sup]作为评价指标,结果见表1。[align=center]表1 预处理方法评价参数[/align][align=center][img=,566,164]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311104_01_1626619_3.png[/img][/align] 无预处理的模型结果最差,说明噪声对模型结果有较大影响,原始光谱如图2。SG15点平滑+一阶导数的预处理结果RMSEC、RMSECV以及RMSEP最小,R[sup]2[/sup]最高。因此选择SG15点平滑+一阶导数作为模型的预处理方法,预处理后光谱如图3。[align=center][img=,524,224]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311048_01_1626619_3.png[/img][/align][align=center]图2 原始光谱图[/align][align=center][img=,532,210]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311049_01_1626619_3.png[/img][/align][align=center]图3 一阶导数+SG15点平滑预处理光谱图[/align][b]3.2异常样本的剔除[/b] 图4为校正集样品在学生残差-杠杆值图中的分布。图中5号(红色方框标记)样品学生残差值与杠杆值都非常高,判定为异常样品,猜测为溶液配制错误或者在光谱采集过程中出现错误,因此在后期模型优化中剔除这一异常值。[align=center][img=,563,217]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311050_01_1626619_3.png[/img][/align][align=center]图4 学生残差-杠杆值关系图[/align][b]3.3波段选择结果[/b] 以一阶导数+SG15点平滑为最优预处理方法进行波段选择,主要考察ForwardiPLS、SPA、相关系数法三种方法。[b]3.3.1iPLS波段选择结果[/b] 设定20为最大主成分数,分别考察以50、100、200个变量为波段基础的建模效果。红色虚线是全波段建模的RMSECV,红色与绿色条带的高度代表以此条带的变量建模所得RMSECV,从图5中可见,绿色条带的RMSECV值最小,因此绿色条带是被选择用于建模的波段,红色条带则表示不被选择的区域。表2为各变量基础的模型参数。[align=center][img=,558,268]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311051_01_1626619_3.png[/img][/align][align=center]图5 以50个变量为基础的iPLS法波段选择效果图[/align][align=center][img=,572,266]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311052_01_1626619_3.png[/img][/align][align=center]图6 以100个变量为基础的iPLS法波段选择效果图[/align][align=center][img=,618,262]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311052_02_1626619_3.png[/img][/align][align=center]图7 以200个变量为基础的iPLS法波段选择效果图[/align][align=center]表2 不同变量基础的建模结果[/align][align=center][img=,646,111]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311053_01_1626619_3.png[/img][/align][b]3.3.2 SPA法波段选择结果[/b] SPA算法首先通过完成n个波长分组各M个波长选择,然后通过多元定量校正模型完成m(1£m£M)个最优波长的选定。图8为SPA法选择变量的效果图。 运行SPA算法共选择3个变量,对应波数为4188.65cm[sup]-1[/sup],4885.50cm[sup]-1[/sup],7503.50cm[sup]-1[/sup],为图中红色方框标注,以此3个变量建立PLS模型,结果如表 所示,RMSECV与RMSEP均有所增加,R[sup]2[/sup]降低,表明模型预测能力与线性都有所降低。分析原因可能是此方法在选择波段过程中由1557个变量减少到3个,光谱变量删除过多,去除大量无关变量的同时导致许多有价值信息的丢失。[align=center][img=,501,246]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311053_02_1626619_3.png[/img][/align][align=center]图8 SPA算法变量选择结果图[/align][b]3.3.3相关系数法波段选择结果[/b] 将相关系数阈值设定为0.6、0.7、0.8,使用相关系数法计算出TMBQ含量值与波数的相关系数图,如图9,图中虚线为设定的相关系数阈值,虚线以上及以及的部分代表相关系数大于阈值的波段,阈值越高,被选择的波段越少,当阈值设为0.8时,大于阈值的波段已经较少。以超过阈值的波段建立PLS模型。模型结果如表3,可见将阈值设为0.6时模型结果最好。[align=center] a[img=,402,175]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311055_01_1626619_3.png[/img][/align][align=center] b[img=,409,187]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311056_01_1626619_3.png[/img][/align][align=center] c[img=,409,176]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311056_02_1626619_3.png[/img][/align][align=center]图9 不同阈值的波数相关图(a阈值设为0.6,b阈值设为0.7,c阈值设为0.8)[/align][align=center]表3 相关系数法建模参数[/align][align=center][img=,496,105]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311058_01_1626619_3.png[/img][/align][b]3.4 小结[/b] 综合比较全波段建模与三种波段选择方法建模结果,参数如表。其中使用iPLS法选取600个变量,波段区间为4385.33cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup],5928.11cm[sup]-1[/sup]-6309.94 cm[sup]-1[/sup],分别对应双键上C-H第一组合频与一级倍频吸收,建模后具有最高的决定系数和最低的各项方差值,这些参数表明使用该方法建立的模型预测能力最好,与真实值最接近。因此本实验主要选择iPLS方法选择变量,结合一阶导数+SG15点平滑建立模型,应用于TMBQ萃取过程含量的快速检测。[align=center]表4 各变量选择方法比较[/align][align=center] [img=,374,136]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311059_01_1626619_3.png[/img][/align][align=center][img=,524,214]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311059_02_1626619_3.png[/img][/align][align=center]图10 优化后模型预测线性图[/align][b]3.5重复性试验考察[/b] 采集验证集8号、25号、36号样品,对TMBQ含量模型进行重复性测试,每样品采集10次光谱。预测结果见表5。[align=center]表5 重复性考察结果[/align][align=center][img=,578,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311100_01_1626619_3.png[/img][/align] 自由度为2时,χ[sup]2[/sup]临界值为5.99。实际χ[sup]2[/sup]小于临界值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法重复性为0.154,可以满足分析应用。[b]3.6NIR预测考察[/b] 第一次使用20ml石油醚萃取,之后每次使用等体积10ml石油醚萃取,共萃取8次,使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]测定TMBQ峰面积,并使用NIR采集8次萃取液[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],使用优化好的定量模型对其含量进行预测。[align=center][img=,490,255]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311102_01_1626619_3.png[/img][/align][align=center]图11 NIR预测值[/align] 图11为NIR对萃取过程的预测结果,第一次萃取即将大部分产品萃取出,随后的每次萃取量呈逐渐下降的趋势,在第五次萃取后,萃取液中产品含量几乎为0,并且随后没有变化,表明已达到萃取终点。使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测第4~8次萃取液,记录TMBQ峰面积,结果如表6。[align=center]表6 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测结果表[/align][align=center][img=,529,66]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311103_01_1626619_3.png[/img][/align] 第五次萃取后,TMBQ峰面积已经很小,并且基本没有变化,因此在4次萃取完全可以将水相中的TMBQ萃取完全,继续萃取已经没有意义,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测与NIR预测结果相符,表明此模型预测能力良好,对萃取工艺具有一定指导意义。[b]4讨论[/b] 本实验采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合PLS算法建立TMBQ萃取过程含量快速检测模型,并使用不同预处理方法与波段选择方法对模型进行优化,最终确定使用一阶导数+SG15点平滑预处理结合iPLS选择波段建立PLS模型,建模所用波段区间为4385.33 cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup],5928.11 cm[sup]-1[/sup]-6309.94cm[sup]-1[/sup],模型决定系数R[sup]2[/sup]=0.996,RMSEP=0.1350。使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]验证了NIR模型对萃取过程与终点的预测能力。以上结果表明模型精密度与准确度良好,可以满足含量分析的需要,是TMBQ萃取过程含量快速检测的有效方法。[b]5参考文献[/b]孙月婷. 维生素E 的合成与分析研究现状. 广州化工, 2011, 39(6): 34-35.O.A.Kholdeava Synthesis of Vitamia E J.Mol.Cotal,1992,88(5):235~ 244孔黎明, 周涛, 菅盘铭. 2, 3, 5- 三甲基苯醌和2, 3, 5- 三甲基氢醌的一种合成方法: 中国, 102219665. 2011-10-19.A BShishmakov, Yu V Mikushina, O V Koryakova. Oxidation of 2,3,6-Trimethylphenolon Titanium Dioxide Xerogel by Hydrogen Peroxide in the Absence of an OrganicSolvent. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2011, 84(9):1555-1559. O V Zalomaeva, N N Trukhan,I D Ivanchikova, et al. EPR study on the mechanism of H[b][sub]2[/sub][/b]O[b][sub]2[/sub][/b]-basedoxidation of alkylphenols over titanium single-site catalysts. J. Mol.Catal. A: Chem., 2007, 277(1-2), 185~192.褚小立. 化学计量学方法与分子光谱分析技术.北京 化学工业出版社. 2011.董学锋,戴连奎,黄承伟等.结合PLS-DA与SVM的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]软测量方法

  • 【转帖】USP标准品中英文对照(5)

    http://www.greenherbs.com.cn/bbs/dispbbs.asp?boardid=2&Id=7691601521 二类残留溶剂-1,4-二氧;六环 Residual Solvent Class 2 - 1,4-Dioxane 对照品/标准品1601500 二类残留溶剂-N,N-二甲基酰胺 Residual Solvent Class 2 - N,N-Dimethylformamide 对照品/标准品1601485 二类残留溶剂-N,N-二甲基乙酰胺 Residual Solvent Class 2 - N,N-Dimethylacetamide 对照品/标准品1601463 二类残留溶剂-1,2-二甲氧基乙烷 Residual Solvent Class 2 - 1,2-Dimethoxyethane 对照品/标准品1601441 二类残留溶剂-二氯甲烷 Residual Solvent Class 2 -Methylene Chloride 对照品/标准品1601420 二类残留溶剂- 1,2- 二氯乙烯 Residual Solvent Class 2 - 1,2-Dichloroethene 对照品/标准品1601408 二类残留溶剂-环己烷 Residual Solvent Class 2 - Cyclohexane 对照品/标准品1601383 二类残留溶剂-氯仿 Residual Solvent Class 2 -Chloroform 对照品/标准品1601361 二类残留溶剂-氯苯 Residual Solvent Class 2 - Chlorobenzene 对照品/标准品1601340 二类残留溶剂-乙腈 Residual Solvent Class 2 -Acetonitrile 对照品/标准品1601306 二类残留溶剂-混合物 C Residual Solvent Class 2 - Mixture C 对照品/标准品1601292 二类残留溶剂-混合物 B Residual Solvents Class 2 - Mixture B 对照品/标准品1601281 二类残留溶剂-混合物 A  Residual Solvents Class 2 Mixture A 对照品/标准品1601226 一类残留溶剂- 1,1,1- 三氯乙烷 Residual Solvent Class 1 -1,1,1 对照品/标准品1601204 一类残留溶剂- 1,1- 二氯乙烯 Residual Solvent Class 1 -1,1-Dichlo 对照品/标准品1601180 一类残留溶剂- 1,2- 二氯乙烷 Residual Solvent Class 1 -1,2-Dichlo 对照品/标准品1601168 一类残留溶剂-四氯化碳 Residual Solvent Class 1 -Carbon Tetrachloride 对照品/标准品1601146 一类残留溶剂-甲苯 Residual Solvent Class 1- Benzene 对照品/标准品1601102 一类残留溶剂混合物 Residual Solvents Mixture Class 对照品/标准品1601000 利血平  Reserpine 对照品/标准品1600846 瑞格列奈杂质C Repaglinide Related Compound C 对照品/标准品1600835 瑞格列奈杂质B Repaglinide Related Compound B 对照品/标准品1600824 瑞格列奈杂质A Repaglinide Related Compound A 对照品/标准品1600813 瑞格列奈 Repaglinide 对照品/标准品1600121 瑞鲍迪甙 A Rebaudioside A 对照品/标准品1599500 红车轴草提取粉 Powdered Red Clover Extract 对照品/标准品1599000 萝芙碱 Rauwolfia Serpentina 对照品/标准品1598802 树莓酒 Raspberry Alcohol 对照品/标准品1598700 雷尼替丁杂质C Ranitidine Related Compound C 对照品/标准品1598609 雷尼替丁杂质B Ranitidine Related Compound B 对照品/标准品1598507 雷尼替丁杂质A Ranitidine Related Compound A 对照品/标准品1598450 雷尼替丁分离度用混合物 Ranitidine Resolution Mixture 对照品/标准品1598405 盐酸雷尼替丁 Ranitidine Hydrochloride 对照品/标准品1598347 雷米普利杂质D (二酮哌嗪雷米普利)Ramipril Related Compound D 对照品/标准品1598338 雷米普利杂质C Ramipril Related Compound C 对照品/标准品1598323 雷米普利杂质B Ramipril Related Compound B 对照品/标准品1598314 雷米普利杂质A  Ramipril Related Compound A 对照品/标准品1598303 雷米普利 Ramipril 对照品/标准品1598201 盐酸雷洛昔芬 Raloxifene Hydrochloride 对照品/标准品1598008 3- 奎宁环基 3-Quinuclidinyl Benzilate 对照品/标准品1597504 奎宁酮 Quininone 对照品/标准品1597005 硫酸奎宁 Quinine Sulfate 对照品/标准品1596807 二水合盐酸奎宁 Quinine Hydrochloride Dihydrate 对照品/标准品1595509 硫酸奎尼丁 Quinidine Sulfate 对照品/标准品1595000 葡萄糖酸奎尼丁 Quinidine Gluconate 对照品/标准品1594506 金鸡纳酸 Quinic Acid 对照品/标准品1594007 喹乙宗 Quinethazone 对照品/标准品1593423 喹那普利杂质 B  Quinapril Related Compound B 对照品/标准品1593412 喹那普利杂质 A Quinapril Related Compound A 对照品/标准品1593401 盐酸喹那普利 Quinapril Hydrochloride 对照品/标准品1593004 盐酸米帕林 Quinacrine Hydrochloride 对照品/标准品1592409 槲皮素 Quercetin 对照品/标准品1592227 夸西泮杂质 A Quazepam Related Compound A 对照品/标准品1592205 夸西泮CIV Quazepam CIV 对照品/标准品1592001 恩波吡维铵 Pyrvinium Pamoate 对照品/标准品1589109 丙酮酸 Pyruvic Acid 对照品/标准品1589007 乙胺嘧啶 Pyrimethamine 对照品/标准品1588004 马来酸吡拉明 Pyrilamine Maleate 对照品/标准品

  • 【求购】液相 标准品:孟鲁司特钠

    [size=3][b]有做过孟鲁司特钠的吗[/b][/size]做过的朋友能否告知一下对照品在哪买啊?在网上没找到。进口标准上对照品是孟鲁司特二环己胺盐,另外杂质 “亚砜、酮基甲醇、甲基苯乙烯”具体是什么结构啊?比如说,甲基苯乙烯的甲基在哪个位置啊?

  • 【分享】关于征求拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料意见的函

    有关单位:  经国家食品药品监督管理局化妆品审评专家委员会审核,拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料使用。现公开征求意见,请于2011年6月27日前将反馈意见电子版发送至chenzh@sfda.gov.cn。  附件:1.“二甲氧基甲苯基-4-丙基间苯二酚”技术要求     2.“聚甲基丙烯酰基赖氨酸”技术要求                       国家食品药品监督管理局食品许可司                          二〇一一年六月十五日

  • 【讨论】苯、甲苯标准品IR峰归属

    【讨论】苯、甲苯标准品IR峰归属

    今天拿到一张苯标准品、一张甲苯标准品的IR谱图。想请问一下,里面的吸收峰都是什么振动引起的呢?峰该怎样归属呢?谢谢大家~这张是苯的标准图:http://ng1.17img.cn/bbsfiles/images/2011/06/201106211618_300779_1905813_3.jpg这张是甲苯的标准图:http://ng1.17img.cn/bbsfiles/images/2011/06/201106211618_300780_1905813_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制