当前位置: 仪器信息网 > 行业主题 > >

乙酸丁酯聚氨酯级

仪器信息网乙酸丁酯聚氨酯级专题为您提供2024年最新乙酸丁酯聚氨酯级价格报价、厂家品牌的相关信息, 包括乙酸丁酯聚氨酯级参数、型号等,不管是国产,还是进口品牌的乙酸丁酯聚氨酯级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酸丁酯聚氨酯级相关的耗材配件、试剂标物,还有乙酸丁酯聚氨酯级相关的最新资讯、资料,以及乙酸丁酯聚氨酯级相关的解决方案。

乙酸丁酯聚氨酯级相关的论坛

  • 日本聚氨酯进口商,日本聚氨酯厂家

    聚氨酯材料是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。  [url=http://www.akaojapan.com/][b][color=#3366ff]聚氨酯[/color][/b][/url]的质量直接影响着产品的质量,这种聚氨酯有机高分子材料大多用于工业上,18个行业全面的数据,有比较多的,聚氨酯可以用来替代橡胶等作为原料生产。 我国与日本都是制造聚氨酯的大国,各自有着不同的生产技术,常规的聚氨酯是不能抗高温条件,或者不能防水的,抗高温与防水是两种性能。如果同时能够拥有抗高温与防水性能的是较先进的。而我国有多少是做日本聚氨酯进口商、日本聚氨酯厂家的?

  • 求助书籍《聚氨酯弹性体及其应用》和《聚氨酯树脂及其应用》

    1. 书名: 聚氨酯弹性体及其应用 作者:傅明源,孙酣经 编著 出版社:化学工业出版社 书号:7502578455 简介:本书主要阐述了聚氨酯混炼胶、聚氨酯浇注胶和聚氨酯热塑胶的合成配方和工艺、加工配方和工艺的具体数据和计算公式;聚氨酯革、聚氨酯胶黏剂、聚氨酯泡沫弹性体、聚氨酯涂料、聚氨酯水乳胶、聚氨酯灌浆材料和聚氨酯弹性纤维等的制作工艺、反应原理;简要介绍了新型聚氨酯弹性体;各种聚氨酯制品的加工方法及其应用。还介绍了合成聚氨酯的原材料的成品的分析,以及聚氨酯的工业卫生等。书中对TPUR半预聚法生产、聚氨酯革生产、反应注射成型(RIM)和增强的反应注射成型(RRIM)方法的生产作了较多介绍。 \r\n 本书除对第二版内容作适当补充修正外,还增加了聚氨弹性体助剂、聚氨酯预聚体以及田径场地塑胶跑道、篮球、排球、羽毛球和网球场地的聚氨酯塑胶铺面、聚氨酯地板和地板砖、聚氨酯防水材、聚氨酯嵌缝材和聚氨酯防腐材与新世纪展望等内容。 \r\n 本书实用性强,内容丰富,可供从事聚氨酯生产、科研、加工应用的工程技术人员和技术工人使用,也可供大专院校及中专高分子专业的师生参考。2. 书名: 聚氨酯树脂及其应用  ISBN:7502537449  著作者:李绍雄 刘益军  出版社:化学工业  出版日期:2002-05-01    页数:743  内容简介:第1章 绪论1.1 聚氨酯树脂的发展史1.2 我国聚氨酯工业的发展史1.3 国外聚氨酯树脂的生产与市场1.4 国内聚氨酯树脂的生产与市场1.5 聚氨酯树脂的技术发展动态第2章 聚氨酯化学2.1 异氰酸酯基本反应2.2 催化剂及温度对反应的影响2.3 聚氨酯分子结构与性能的关系第3章 基本原料3.1 概述3.2 异氰酸酯3.3 聚酯多元素3.4 聚醚多醇3.5 其它低聚物多元醇3.6 助剂第4章 聚氨酯泡沫塑料4.1 概述4.2 泡沫形成的化学机理4.3 软质聚氨酯泡沫塑料4.4 硬质聚氨酯泡沫塑料4.5 聚氨酯半硬泡4.6 聚氨酯泡沫的阻燃4.7 聚氨酯泡沫塑料的应用第5章 弹性体5.1 概述5.2 弹性体原料及原料对性能的影响5.3 浇注型聚氨酯弹性体5.4 热塑性聚氨酯5.5 混炼型聚氨酯弹性体5.6 聚氨酯弹性体的应用第6章 聚氨酯涂料6.1 概述6.2 聚氨酯涂料的分类与特性6.3 聚氨酯涂料的原料6.4 氨酯油6.5 双组分聚氨酯涂料6.6 封闭型聚氨酯涂料6.7 湿固化型聚氨酯涂料6.8 催化固化型双组分聚氨酯涂料6.9 聚氨酯沥青涂料6.10 聚氨酯弹性涂料6.11 水性聚氨酯涂料6.12 聚氨酯粉体涂料6.13 聚氨酯涂料的应用第7章 聚氨酯胶粘剂7.1 概述7.2 聚氨酯胶粘剂粘接机理7.3 多异氰酸酯胶粘剂7.4 双组分聚氨酯胶粘剂7.5 单组分聚氨酯胶粘剂7.6 聚氨酯胶粘剂7.7 聚氨酯密封胶第8章 聚氨酯人造革与合成革8.1 概述8.2 聚氨酯革的主要原料8.3 干法生产聚氨酯人造革8.4 湿法聚氨酯革第9章 聚氨酯弹性纤维9.1 概述9.2 聚氨酯弹性纤维的基本原理9.3 聚氨酯弹性的纤维的制造9.4 聚氨酯弹性纤维的性能与检验9.5 聚氨酯弹性纤维纱线及应用第10章 聚氨酯铺地材料10.1 概述10.2 主要原料10.3 胶面层浆料制备工艺10.4 聚氨酯跑道的铺设10.5 聚氨酯地板第11章 聚氨酯防水材料11.1 概述11.2 焦油聚氨酯防水材料11.3 沥青聚氨酯防水材料11.4 聚醚型聚氨酯防水材料11.5 聚氨酯防水材料标准和施工11.6 油溶性聚氨酯灌浆材料11.7 水溶性聚氨酯灌浆材料11.8 亲水性聚氨酯材料第12章 水性聚氨酯12.1 概述12.2 水性聚氨酯制备用原料12.3 水性聚氨酯的制备12.4 水性聚氨酯的性能12.5 水性聚氨酯的交联12.6 聚氨酯与其它聚合物共混或共聚分散液12.7 水性聚氨酯的应用第13章 反应注射成型聚氨酯13.1 概述13.2 原料体系13.3 RIM生产设备及工艺参

  • 【分享】聚氨酯化工英语

    acid number 酸值 acylurea 酰(基)脲 aqurous ployurethane 水溶性聚氨酯 alliphanate 脲基甲酸酯 amide 酰胺 amine equivalent 胺当量 amine value 胺值 bitolylene diisocyanate 3,3-二甲基-4,4-联苯二异氰酸酯 biuret 缩二脲 1,4-butylene glycol(1,4-BG)or1,4-Butylene diol(1,4-BDD) 1,4-丁二醇 caprolactone ployester 己内酯型聚酯 caster oil 蓖麻油 carbodiimide 碳化二亚胺 casting molding machine 浇注机 casting PU(CPU) 浇注型聚氨酯 casting table 浇注平台 centrifugal casting 离心浇注 chain extender 扩链剂 cohension energy 内聚能 compression moulding 加压模塑(成型) cream time 乳白时间 crosslinking agent 交联剂 cyclohexyl diisocyanate (CHDI) 环己烷二异氰酸酯 4,4-dicyclohecylmethane diisocyanate (H12MDI) 4,4-二环己基甲烷二异氰酸酯,即氢化MDI demould time 脱模时间 3,5-diamino-p-chloroisobutylbenzoate(Baytec-1604) 3,5-二氨基对氯苯甲酸异丁酯 1,4-diazobicyclo-2,2,2-octane(DABCO) 1,4-二氮杂-(2,2,2)-双环辛烷,即三亚乙基二胺 dibutyltin dilaurate(DBTDL) 二丁基锡二月桂酸酯 3,3-dichloro-4,4-dianilino methane(MOCA) 3,3-二氯-4,4-二氨基二苯甲烷 4,4-methylene bis(2-Chloroaniline) 4,4-亚甲基双(二-氯苯胺) die C tear strength 撕裂强度(直角形) dihydromethyl propionic acid(DMPA) 二羟甲基丙酸 1,4-dihydroxybutane 1,4-丁二醇 dimethyl methyl phosphonate(DMMP) 甲基膦酸二甲酯 3,5-dimetylthio toluene dianiline(DMTDA) 3,5-二甲硫基甲苯二胺 4,4-diphenylmethane diisocyanate(MDI) 4,4-二苯(基)甲烷二异氰酸酯 domain 微区 domain structure 微区结构 dynamic properties 动态力学性能 elongation at break(Eb)扯断伸长率 extrusion moulding 挤出成型 extruding moulding machine 挤出机 fine mesh sieve screen 条缝筛 flexible PU foam 软质聚氨酯泡沫,聚氨酯软泡 glycerin -monoallylether 甘油-单烯丙基醚 gel time 凝胶时间 hard segment domains 硬段微区 hardness(shore A) 硬度(邵尔A) 1,6-hexamethylene diisocyanate(HDI) 1,6-六亚甲基二异氰酸酯 high pressure impingement mixing(HPIM) 高压碰撞混合 horizontal centrifruge with one sprindle 单轴卧式离心机 hydrogen boad 氢键 hydroquinore dihydroxyethylether 氢醌二羟乙基醚 hydroxyl number 羟值 hydroxyl-terminated polybutadiene 端羟基聚丁二烯 imitation leather 人造革,假皮 ingredient 配合剂 injection moulding 注塑成型 injection moulding machine 注塑机 integral skin foam 自结皮泡沫,整皮泡沫 isocyanurate equivalent 异氰酸酯当量 isocyanate index 异氰酸酯指数 isophorone diisocyanate(IDDI)(3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate) 异佛尔酮二异氰酸酯 liquid injection moulding 液体注射成型 liquid PU 液体聚氨酯 low free TDI prepolymer 低游离TDI预聚体 low-monol polypropylene glycol 低一元醇聚丙二醇 microcellular PUE 微孔聚氨酯弹性体 micro phase separate 微相分离 millable PU(MPU) 混炼型聚氨酯 modulus 300%(M300) 300%模量(300%定伸应力) morphological structure 形态学结构 1,5-naphalene diisocyanate(NDI) 1,5-萘二异氰酸酯 number average molacular weight 数均分子量 papa-phenylene diisocyanate(PPDI) 对苯二异氰酸酯 paracrystalline 次晶 percent free NCO NCO,%或NCO(%) percent NCOin prepolymer 预聚物中NCO基百分含量 percentage free NCO 游离NCO基百分含量 perment set 永久变形 phenyl mercury acetate 醋酸苯汞 phenyl mercury propionate 丙酸苯汞 polybutadiene glycol 聚丁二烯二醇,即端羟基聚丁二烯 polybutylene adipate(glycol) 聚己二酸丁二醇 酯(二醇 ) polybutylene glycol(PBG) 聚丁二醇 ploycaprolactone(glycol) 聚己内酯(二醇 ) polyester(diol) 聚酯(二醇) ployether 聚醚 ployether PU 聚醚型聚氨酯 polyethylene propylene adipate (Glycol) 聚己二酸乙二(醇 )丙二(醇 )酯(二醇) polyisocyanurate 聚异氰 脲酸酯 polymeric glycol 聚合二醇、低聚(物)二醇、大分子二醇 ployol 多元醇 polytetramethylene glycol(PTMG) 聚四亚甲基二醇 polyoxytetramethylene glycol(POTMG) 聚氧四亚甲基二醇 polytetrahydrofuran(PTHF) 聚四氢呋喃 polytetramethylene ether Glycol(PTMEG) 聚四亚甲基醚二醇 polyphenylmethane polyisocyanate(PAPI) 多苯基多亚甲基多异氰 酸酯 polypropylene glycol 聚丙二醇 polypropylene oxide glycol 聚氧化丙烯二醇 polyurethane(PU) 聚氨基甲酸酯,简称聚氨酯 post vure 后硫化 pot life 釜中寿命 prepolymer 预聚物,预聚体 PU adhesive 聚氨酯粘合剂 PU coating 聚氨酯涂料 PU elastomer 聚氨酯弹性体 PU fiber 聚氨酯纤维 PU foam 聚氨酯泡沫 PU ionomers 离子型聚氨酯,聚氨酯离聚体 PU plastic 聚氨酯塑料 PU rubber 聚氨酯橡胶 o-xylylene Diisocyanate(XDI) 对苯二亚甲基二异氰酸酯 quasi-prepolymer 半预聚体,半预聚物 reaction injection moulding(RIM) 反应注射模塑或反应注射成型 rigid block 硬(嵌)段 rigid PU foam 硬质聚氨酯泡沫,聚氨酯硬泡 rigid Segment 硬链段 rise time 起发时间 rotary injection reaction 旋转注射反应 injection molding 注射成型 rotary table 旋转平台 rotational casting 回转浇注 segmented PU 嵌段聚氨酯 semi-flexible(or semirigid)foam 半硬泡 set time 固化时间 soft segment(or flexible segment) 软链段,软段 spray coating 喷涂 stannous octoate 辛酸亚锡 tack-free time 不粘手时间 tensile strength 拉伸强度 tensioning screen 张力筛 rensioning screen with square 方孔张力筛 thermoplastic PU(TPU) 热塑性聚氨酯 3,3-tolidine-4,4-diisocyanate(TODI)(3,3-dimethyldiphenyl-4,4-diisocyanate) 3,3-二甲基联苯-4,4-二异氰酸酯 toluene diisocyanate 甲苯二异氰酸酯 triethylene diamine 三亚乙基二胺 trimethylolpropane monoallylether 三羟甲基丙烷单烯丙基醚 tripropamol amine 三异丙醇胺 two-component low pressure dispensing machine 双组分低压浇注机 two-component spraying machine 双组分喷涂机 urea 脲 urethane 氨基甲酸酯,简称氨酯 urethane bond 氨基甲酸酯键 urethane link 氨基甲酸酯基,简称氨酯基 urethane group 氨基甲酸酯基 urethane-urea 氨酯-脲 uretidione ring 脲二酮环 uretonimine 脲酮亚胺 water-blown PU 水发泡聚氨酯 water dispersed PU 水系聚氨酯 weight average molacular weigth 重均分子量

  • 聚氨酯改性聚异氰脲酸酯泡沫塑料和聚氨酯泡沫塑料的性能比较

    [b]【序号】:1【作者】:[font=&][size=13px][color=#666666][/color][/size][/font][b][/b]王鸿奎[font=宋体][size=12px][/size][/font][font=&][size=13px][color=#666666][/color][/size][/font]【题名】:[b][url=https://wenku.baidu.com/view/e5c296f0f8d6195f312b3169a45177232e60e470?fr=xueshu_top][b][font=&][color=#888888]聚氨酯改性聚异氰脲酸酯泡沫塑料和聚氨酯泡沫塑料的性能比较[/color][/font][/b][/url][/b]【期刊】:[font=&][size=13px][color=#666666][url=https://www.zhangqiaokeyan.com/journal-cn-13389/]宇航材料工艺[/url][/color][/size][/font]【年、卷、期、起止页码】:[font=&][size=13px][color=#666666]1995年1期[b][/b][/color][/size][/font]【全文链接】:[url=https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JAZG201607001043.htm]聚氨酯改性聚异氰脲酸酯泡沫塑料和聚氨酯泡沫塑料的性能比较-王鸿奎-中文期刊【掌桥科研】 (zhangqiaokeyan.com)[/url][/b]

  • SPE柱可以除去聚氨酯吗?

    我这边要开展测试聚氨酯中偶联剂的测试,但因为方法要求取样量是2g,定容体积是10ml,我担心聚氨酯浓度过高损坏[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url],故想通过SPE柱先将聚氨酯除去。请问我这个想法能实现吗?

  • 【资料】汽巴精化推出一种新型热塑性聚氨酯用光稳定剂

    汽巴将在2007年9月24-31日于佛罗里达州奥兰多举办的北美聚氨酯工业展览会(UTECH North America 2007)和10月24-31日于德国杜塞尔多夫举办的K展(6号馆A24展台)上推出一种新型热塑性聚氨酯(TPU)用光稳定剂Ciba TINUVIN PUR 866,主要应用在运动休闲领域。TINUVIN PUR 866和其他许多经常影响基材原始颜色的光稳定剂不同,它在混配和注塑成型后不会影响TPU的原始颜色。由于这种稳定剂能具有优异的原始颜色,从而使其成为适合透明的以及浅色的TPU应用理想材料。  另外,透明的和浅色的热塑性聚氨酯树脂暴露在阳光条件下更倾向于变色。TINUVIN PUR 866起到降低变色的作用,有助于热塑性聚氨酯产品保持其视觉外观,从而保护其产品品牌。热塑性聚氨酯材料在运动休闲领域的一般应用包括高性能运动鞋、滑雪靴和户外服装应用的透明热塑性聚氨酯薄膜、直排溜冰鞋、标识徽章以及透明气垫等。  汽巴塑料添加剂部门的聚氨酯全球营销主管Kerstin Schrinner博士表示,“以鞋底为例,热塑性聚氨酯的独特性能能使得最终产品具有刚性或者柔性,更高的弹性或者具有很好的振动吸收性能,并且具有不同程度的热稳定性和耐磨损性能。我们提供的新型TINUVIN PUR 866光稳定剂,其性能要比目前最好的光稳定剂体系更佳,甚至可以满足要求严格的应用领域。”

  • 日本聚氨酯厂家

    聚氨酯(Polyurethane,简称PU)全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。聚氨酯可通过改变原料的种类和化学结构、规格指标、配方比例制造出具有各种性能的不同制品。 聚氨酯是各种高分子材料中唯一一种在塑料、橡胶、泡沫、纤维、涂料、胶粘剂和功能高分子大领域均有重大应用价值的合成高分子材料,产品渗透到国民经济的方方面面,已成为当前高分子材料中品种最多、用途最广、发展最快的特种有机合成材料 。 我国与日本都是制造聚氨酯的大国,各自有着不同的生产技术,常规的聚氨酯是不能抗高温条件,或者不能防水的,抗高温与防水是两种性能。如果同时能够拥有抗高温与防水性能的是较先进的。日本聚氨酯厂家的?

  • 聚氨酯进口商

    聚氨酯材料是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。  [url=http://www.akaojapan.com/][b][color=#3366ff]聚氨酯[/color][/b][/url]的质量直接影响着产品的质量,这种聚氨酯有机高分子材料大多用于工业上,18个行业全面的数据,有比较多的,聚氨酯可以用来替代橡胶等作为原料生产。  能够抗高温与耐水性,热稳定性的聚氨酯有没有?

  • 【原创大赛】一张图看懂硅烷封端聚氨酯(SPU)

    【原创大赛】一张图看懂硅烷封端聚氨酯(SPU)

    [b]一、概念[/b] 硅烷封端聚氨酯(SPU)是以聚氨酯为主链,再通过小分子硅烷偶联剂对聚氨酯预聚体进行封端改性制得的聚合物。[b]二、历史[/b] 硅烷封端聚氨酯(SPU)最早由联碳公司在1971年开发,之后GE、Bayer、Degussa、Wacker、Witco、Crompton等公司也相继开发了类似产品,日本钟渊化学工业公司于1979年成功开发硅烷封端聚醚。[b]三、性能[/b] 1. 优良的粘结性、耐老化性; 2. 良好的弹性和表面可涂饰性; 3. 固化时一般不会出现固化气泡的现象,且固化速度人工调节范围广; 4. 硅烷链段的引入使其具有良好的耐水、耐热性。[b]四、制备方法[/b] 硅烷封端聚氨酯(SPU)一般有两种合成路线: 1、首先合成端羟基聚氨酯预聚体,然后合成SPU[align=center][img=,690,386]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161034319588_7400_2879355_3.jpg!w690x386.jpg[/img][/align] 2、首先合成端异氰酸酯基聚氨酯预聚体,然后合成SPU[align=center][img=,690,387]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161034540475_8781_2879355_3.jpg!w690x387.jpg[/img][/align][b]五、原料选择[/b] 1、多元醇:聚醚多元醇,聚酯多元醇,植物油多元醇。 聚醚多元醇制备的聚氨酯一般具有良好的弹性和延伸率,醚键的旋转比较容易,使其具有良好的耐低温性、疏水性和耐水解性。 聚酯多元醇中含有强极性的酯键,内聚强度大,产品强度和硬度较大。 植物油多元醇如蓖麻油价格低廉、天然可再生且来源丰富。 2、异氰酸酯:MDI、TDI、IPDI、HDI。 MDI、TDI等芳香族异氰酸酯强度硬度大,价格便宜,易黄变。IPDI、HDI等脂肪族异氰酸酯柔性好,强度硬度较小,价格高,耐候性好。[sup][/sup][sup][/sup][align=center][img=,690,220]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161035527448_7499_2879355_3.jpg!w690x220.jpg[/img][/align] 3、硅烷[b]六、应用[/b] 1、密封胶 目前,硅烷封端聚氨酯用于密封胶基础聚合物的研究已比较成熟,日本钟渊化学公司、美国联碳公司、德国德固赛等公司均有相应的硅烷改性聚氨酯密封剂产品,国内对SPU密封胶配方的研究也比较全面。由于SPU密封胶的力学性能比较广泛,所以其既能应用于低模量、低粘度的建筑密封胶,也能用于高模量的汽车密封胶,并可与汽车的挡风玻璃、后窗玻璃等形成稳固的粘接。 2、粘合剂 硅烷封端聚氨酯端基为硅烷氧基,在一定湿气下硅烷氧基水解成硅羟基,硅羟基进而可以和各种基材表面的羟基发生缩合反应生成Si-O-Si键。Si-O-Si键非常稳定,在硅烷封端聚合物与基材的表面架构起一座键桥,使得SPU与各种基材(如玻璃、金属、石材、混凝土等)的粘接性非常好,粘接强度很高。近年来,SPU粘合剂或SPU胶粘剂甚至扩大到对尼龙、丙烯酸树脂、玻璃纤维、PVC等各种塑料材料的粘接。 3、反应型热熔胶 硅烷封端聚氨酯预聚物在常温或高温下都具有一定流动性,能够润湿被粘基材的表面,同时硅烷氧基又能与湿气反应形成交联粘接结构,所以可以作为反应型热熔胶使用。在SPU热熔胶中,由于硅氧链段趋于向表面富集,表面能比传统聚氨酯热熔胶低,因而SPU热熔胶可以对一些低表面能的基材进行浸润和粘接,延伸了传统聚氨酯热熔胶的应用范围。SPU反应型热熔胶中的一般具有使用简便、粘接强度高、耐热性能好等特性。 4、涂料 瓦克化学公司指出硅烷封端聚醚因把硅烷直接连接在基础聚醚聚合物上,分子内只有氨基甲酸酯基团,不含脲键,分子间氢键作用较弱,制备的硅烷封端聚醚粘度较小,可以用来配制高性能无溶剂涂料。 参考文献; 马文石.硅烷封端聚氨酯的制备及其在涂料上的应用研究.广州:华南理工大学,2014. 姚晓宁,张军营,齐士成.硅烷改性聚氨酯的合成及力学性能的研究.石油化工,2006,36(4),383-387.[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”编辑,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【原创大赛】【我爱学习】气相色谱法聚氨酯胶黏剂中游离甲苯二异氰酸酯含量的测定

    【原创大赛】【我爱学习】气相色谱法聚氨酯胶黏剂中游离甲苯二异氰酸酯含量的测定

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法聚氨酯胶黏剂中游离甲苯二异氰酸酯含量的测定摘要:试样用乙酸乙酯稀释后,加入正十四烷作内标物。将稀释后的试样溶液注入进样装置,并被载气带入色谱柱,在色谱柱内被分离成相应的组分,用氢火焰离子化检测器检测并记录色谱图,用内标法计算试样溶液中甲苯二异氰酸酯的含量。方法的检出限为76.32mg/kg,回收率为97%.14-97.91%,精密度5%,完全满足聚氨酯胶黏剂中游离甲苯二异氰酸酯含量的测定。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 聚氨酯 胶粘剂 游离甲苯二异氰酸酯引言甲苯二异氰酸酯简称TDI,[color=#333333]主[/color]要用于生产软质聚氨酯泡沫及聚氨酯弹性体、涂料、胶黏剂等。TDI的主要危害:TDI在装修中主要存在于油漆之中,超出标准的游离TDI会对人体造成伤害,主要是致敏和刺激作用,出现眼睛疼痛、流泪、结膜充血、咳嗽、胸闷、气急、哮喘、红色丘疹、斑丘疹、接触性过敏性等症状。国际上对游离TDI的限制标准是0.5%以下。聚氨酯胶粘剂生产过程中必不可少的就是TDI,胶粘剂产品中或多或少有残留,国内成熟的标准方法主要是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。[b]1. 实验部分[/b]1.1[b]试剂[/b]5A分子筛甲苯二异氰酸酯、正十四烷(色谱纯)乙酸乙酯。1.2[b]仪器[/b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:安捷伦7890B配氢焰离子化检测器 (GC-FID)色谱柱:HP-5 (固定液为二甲基聚硅氧烷)色谱测试条件:汽化室温度:200°C;检测室温度250°C;柱箱温度160°C高纯氮气、氢气、空气(纯度达99.999%以上)[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/09/201709101939_01_1657564_3.jpg[/img]1.3[b]分析步骤 [/b]称取2.0g-3.0g(精确至0.1mg)样品于50mL容量瓶中,加入5mL内标物,用适量的乙酸乙酯稀释,取1uL进样,测定试样溶液中甲苯二异氰酸酯和正十四烷的色谱峰面积。[b]2试验结果报告[/b]2.1[b]正十四烷及甲苯二异氰酸酯出峰时间的确定 [/b]称取0.2g各标准物质于50mL的容量瓶中,用乙酸乙酯稀释至刻度,摇匀。用微量注射器取1uL进样,结果见表1。[align=center]表1出峰时间表[/align] [table=271][tr][td] [align=center]化合物[/align] [/td][td] [align=center]出峰时间(min)[/align] [/td][/tr][tr][td] [align=center]正十四烷[/align] [/td][td] [align=center]5.312[/align] [/td][/tr][tr][td] [align=center]甲苯二异氰酸酯[/align] [/td][td] [align=center]5.149[/align] [/td][/tr][/table][b]2.2校正因子的计算[/b] 2.2.1 内标溶液的制备:称取0.4052g正十四烷于50mL的容量瓶中,用乙酸乙酯稀释至刻度,摇匀。 2.2.2 标准溶液的配制:称取0.3080g甲苯二异氰酸酯于50mL的容量瓶中,加入5mL内标物,用适量的乙酸乙酯稀释,取1uL进样,测定甲苯二异氰酸酯和正十四烷的色谱峰面积,结果见表2. [align=center]表2 甲苯二异氰酸酯响应因子[/align][align=center][img=,619,76]http://ng1.17img.cn/bbsfiles/images/2017/09/201709101945_01_1657564_3.png[/img][/align][b]2.3样品测试[/b] 称取2.0g-3.0g(精确至0.1mg)样品于50mL容量瓶中,加入5mL内标物,用乙酸乙酯稀释至刻度,取1uL进样,测定试样溶液中甲苯二异氰酸酯和正十四烷的色谱峰面积,结果见表3。[align=center]表3 样品中甲苯二异氰酸酯的含量[/align][align=center] [/align][img=,551,121]http://ng1.17img.cn/bbsfiles/images/2017/09/201709101945_02_1657564_3.png[/img]2.4[b]方法的回收率及重复性 [/b]取标准溶液上机测试10次结果见表4。[align=center]表4加标回收结果统计[/align] [img=,659,321]http://ng1.17img.cn/bbsfiles/images/2017/09/201709101945_03_1657564_3.png[/img][b]2.5方法的检出限 [/b]取乙酸乙酯上机测试10次,将甲苯二异氰酸酯含量作为VOC结果,结果见表5:[align=center]表3方法检出限的计算[/align] [img=,690,174]http://ng1.17img.cn/bbsfiles/images/2017/09/201709101946_01_1657564_3.png[/img][align=center] [/align][b]3.小结[/b]本文通过试验数据分析得出:方法的回收率的范围为97.14%-97.91%,相对标准偏差小于5%,方法检出限为76.32mg/kg。可以满足室内装饰装修材料胶粘剂中有害物质TDI含量的测定,方法简单快速。准确度高,稳定性好。4.参考文献:GB18583-2008室内装饰装修材料胶黏剂中有害物质的限量。

  • 学位论文:聚氨酯海绵基体低磷化学镀镍工艺及机理研究

    是湖南大学的硕士学位论文,从万方下载的,页面是散的,没有合并成一个文件。【 摘 要 】 该文采用聚氨酯海绵为基体材料,以次磷酸钠为还原剂,在碱性化学镀镍溶液中对低磷化学镀镍磷合金工艺进行了详细的研究.同时,该文还采取线性电位扫描研究方法,对化学镀镍沉积过程中磷析出的可能机理进行了初步的探讨.在制备泡沫镍材料的过程中,首先要求在聚氨酯海绵基体上低磷化学镀镍制备导电层.该文针对聚氨酯海绵基体的特殊性,研究并确定了合适的前处理工艺和镀层成分镍和磷分析的分光光度法.降低化学镀镍镀层磷含量的主要方法是选择合适的络合剂.对于以聚氨酯海绵为基体的化学镀镍,研究认为,三乙醇胺是较好的选择.该研究采用正交试验方法,筛选并确定了镀层磷含量为1.5﹪的最佳低磷化学镀镍配方,并研究了硫酸镍浓度、次磷酸钠浓度、三乙醇胺浓度和温度对镀层磷含量的影响.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34322]聚氨酯海绵基体低磷化学镀镍工艺及机理研究[/url]

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • 进口型聚氨酯厂家怎么样?

    不同厂家生产聚氨酯的技术是不同的,因为生产技术人员的质量与设备都不同。所以市场上的聚氨酯质量与性能参差不齐,做进口聚氨酯的也有不少,而聚氨酯进口商哪个好?进口型聚氨酯厂家、日本聚氨酯厂家,在国内有自己的技术?  聚氨酯材料是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。  [url=http://www.akaojapan.com/][b][color=#3366ff]聚氨酯[/color][/b][/url]的质量直接影响着产品的质量,这种聚氨酯有机高分子材料大多用于工业上,18个行业全面的数据,有比较多的,聚氨酯可以用来替代橡胶等作为原料生产。

  • 耐高温型聚氨酯性能如何?

    聚氨酯全称为聚氨基甲酸酯 ,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。聚氨酯材料,用途非常广,可以代替橡胶,塑料,尼龙等,对于工业上使用的都是机器上使用的而且是长期使用的,所以对于长期使用条件下聚氨酯耐温性能要求会高些。耐高温型聚氨酯的性能如何?  常规普通型聚氨酯长期使用温度80℃以下,短期使用温度可以达到120 ℃,如果市面上有一款耐高温型聚氨酯可以在长期使用温度下80℃及其80℃以上的条件下保持正常运行,耐高温型聚氨酯的性能是处于领先水平的。

  • 耐高温聚氨酯有什么特点

    耐高温聚氨酯有什么特点许多工业用品在面对高温环境,软性物品的材料抵挡不住。像工业上对水、温度要求较高的密封圈(O型圈),不少材料是跟聚氨酯有关的,不同厂家生产的O型圈使用的聚氨酯性能不同,只能应用于低于80度温度环境中,如果应用于高温下AKAO耐高温型聚氨酯的性能的优越性表现在什么地方呢?

  • 禾工CT-1Plus电位滴定仪分析聚氨酯中的NCO含量

    [color=#000000] [/color][color=#000000][/color] NCO是指化学材料中异氰酸酯基,其值是指100g试样所含的异氰酸酯(-NCO)基团的质量。利用异氰酸酯基与过量的二正丁胺反应生产脲,再用盐酸滴定过量的二正丁胺来定量计算异氰酸酯基的含量。[b][color=#000000]---仪器配置---[/color][/b][table][tr][td=1,1,642][color=#000000]1. [/color][color=#000000]CT-1Plus电位滴定仪[/color][color=#000000]2. [/color][color=#000000]搅拌台[/color][color=#000000]3. [/color][color=#000000]PH复合电极[/color][color=#000000]4. [/color][color=#000000]100mL滴定杯[/color][b][/b][/td][/tr][/table][b][color=#000000]---试剂---[/color][/b][table][tr][td=1,1,322][color=#000000]滴定剂: 0.5mol/L盐酸乙醇标准溶液[/color][/td][td=1,1,322][color=#000000]溶剂: 乙酸乙酯[/color][/td][/tr][tr][td=1,1,322][color=#000000]样品: 聚氨酯胶黏剂[/color][/td][td=1,1,322][color=#000000]反应物:0.5mol/L二丁胺甲苯溶液[/color][color=#000000][/color][/td][/tr][/table]

  • 耐水型聚氨酯进口商

    在聚氨酯的使用范围内,不同性能的材料直接涉及我国的工业,在工业制造上,聚氨酯对于传统工业上的影响还是较大的,耐水型聚氨酯进口商大多是做进出口贸易的,而全国范围内能做贸易的公司很多,耐水型聚氨酯进口商哪家比较好呢?  随着聚氨酯行业的不断发展,越来越多的行业和企业运用到了聚氨酯,聚氨酯材料用途非常广泛,可代替橡胶、塑料、尼龙等,用于各种建筑领域。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。 我国与日本都是制造聚氨酯的大国,各自有着不同的生产技术,常规的聚氨酯是不能抗高温条件,或者不能防水的,抗高温与防水是两种性能。如果同时能够拥有抗高温与防水性能的是较先进的。

  • 【转帖】聚氨酯泡沫塑料的阻燃

    聚氨酯泡沫塑料的阻燃聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,未经阻燃处理的聚氨酯是可燃物,遇火会燃烧并分解,产生大量有毒烟雾,特别是聚氨酯软泡开孔率较高,可燃成分较多,燃烧是由于较高的空气流通性供给氧气,且不易自熄,给灭火带来困难。1. 阻燃原理一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。在聚氨酯泡沫塑料中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。含卤素阻燃剂主要在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,茂密体中溴(Br)质量分数应达12% -14%,或氯(cl)质量分数达18% ~ 20%。当磷- 卤联用时,由于存在一定的协同效应,故0. 5%P +(4% - 5%)Br 或1%P +(8% - 12%)CI 即可使聚氨酯泡沫具有自熄性。典型的磷- 氮阻燃体系可有聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气:在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。2. 添加阻燃剂制备阻燃泡沫塑料人们发现,含磷、氮、卤素、锑、铝,硼等元素的塑料制品具有较好的阻燃性能,一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。2.1 添加液态有机阻燃剂在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯。如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3—二氯丙基)磷酸酯,可使硬泡的氧指数达26:添加15%该阻燃剂可使软泡的阻燃性能达到UL94HF - 1 或ASTMDl692阻燃要求。卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚胺酯软泡的阻燃。典型的产品有:四(2 - 氯乙基)二亚乙基醚二磷酸酯,含磷12%,氯27%;四(2 - 氯乙基)亚乙基二磷酸酯,含磷13%、氯30. 5%。其他产品如3 - 亚丙基二磷酸酯、四(1,3 - 二氯- 2 - 丙基)—亚乙基二磷酸酯、2 - 亚乙基二磷酸酯,在聚氨酯泡沫特别是在软泡中具有良好的阻燃效果。相对于100 份聚醚多元醇,在配方中加入12 份上述阻燃剂中的一种,可使软泡的氧指数大于23,软泡的燃烧速率降低到原来的50%以下,可使软泡自熄;添加量为20%时,水平燃烧速率下降64%。阻燃剂用量15 ~ 10 份时,氧指数可达25。甲基磷酸二甲酯是一种不含卤素的高磷液态阻燃剂,磷元素的质量分数高达25%,因此用量小,软泡种添加5% - 10%的DMMP,可达到离火自熄的效果。在硬泡加入5%的DMMP,相当于加入14%TCEP 火加入18%磷酸三(2,3 - 氯丙基)酯所达到氧指数24. 5 的相似阻燃效果。加阻燃剂延缓了泡沫的热分解,使得起始分解温度提高。在一定程度内,泡沫中阻燃剂含量越高,则阻燃性越高。阻燃剂对制品的某些物性有不良影响,所以一般应在保证泡沫物性的前提下,尽可能少地使用阻燃剂而达到阻燃效果。液态添加型阻燃剂的加入对发泡工艺的影响不大,但由于阻燃剂的增塑作用,将使得泡沫的硬度降低;并且阻燃剂添加量多时会明显延缓发泡时间。卤代磷酸酯类阻燃剂虽然与多元醇等原料有良好的混溶型,常温下为液态,但泡沫燃烧时,阻燃剂也分解,产生大量烟雾和腐蚀刺激性气体,因此国内外近年来关注无卤阻燃剂,包括含磷、氮元素的阻燃剂及无机阻燃剂。2.2 添加固态阻燃剂固态阻燃剂添加到液态原料中容易沉淀,一般在发泡前或发泡时加入。在组合聚醚中加入固态阻燃剂后一般需不停搅拌,以使料液均匀。固态阻燃剂会使物料粘度增加,降低了泡沫物料的流动性,添加无机阻燃填料对泡沫性能有一定的负面影响。颗粒越细越有利于阻燃性能的发挥,并且减轻对泡沫物性的不利影响。三聚氰胺是一种用于模塑聚氨酯泡沫的固体阻燃剂,主要通过分解吸热发挥阻燃效果。三聚氰胺研成微细颗粒,加入到聚醚多元醇中,进行发泡,它多用于软泡的阻燃。2.3 固态和液态阻燃剂复合使用固态阻燃剂使物料粘度加大,而液态阻燃剂降低料液粘度,它们可结合使用,不仅具有协同效应,而且可调节反应物料的粘度,得到高阻燃的聚氨酯泡沫塑料。天津消防科学研究所采用高用量固态阻燃剂与液态阻燃剂相结合的方法,研制出难燃、低烟硬质聚氨酯泡沫塑料,泡沫的阻燃性能高,氧指数可达30 以上,甚至50,可以通过建材GB8624 难燃B1 级试验;烟密度小,发烟速度低,比一般阻燃产品降低了数倍;耐火隔热性能优良。由于采用了大量粉末阻燃填料,不适合于喷涂、连续化生产,但可机械混合灌注成型。2.4 阻燃剂复合使用时的协同作用不同的阻燃元素,不同的阻燃剂复配使用,会产生良好的协同效应。如磷化物与含氮化物等一起使用,有显著的协效作用。磷、卤阻燃剂共同使用时,阻燃效果更佳。固体阻燃剂三氧化锑粉末与卤化物配合使用才能发挥较好的阻燃效果。有研究表明,采用粉碎并经表面处理的三聚氰胺分散于聚醚多元醇中,并添加含溴、氯和磷的复合阻燃剂T201,泡沫物性没受阻燃剂影响,可制得泡沫氧指数达26 的阻燃聚氨酯软泡,达到汽车座椅所要求得阻燃性能。但不是所有的不同类型的阻燃剂都产生协同效应。据报道,在通常情况下,含卤代磷酸酯不与锑化合物产生协同阻燃效应。其原因可能是当被阻燃的材料受热时,所含得卤代磷酸酯与锑化合物作用生成不挥发的磷酸锑,从而阻碍锑化合物进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发挥阻燃作用所致。3. 结束语在对聚氨酯泡沫塑料进行阻燃时,不仅需尽可能减少阻燃处理对发泡工艺和泡沫性能的不利影响,还必须注意环保,采用高效、低卤或无卤阻燃剂。聚氨酯泡沫塑料用于许多领域,作为一种日常生活中接触到的材料,国内外对聚氨酯泡沫塑料的阻燃越来越重视,在许多应用领域都有严格的阻燃要求。对阻燃问题不重视,就会给使用这种泡沫塑料的场所带来了火灾隐患。

  • 聚氨酯泡沫填缝剂使用小细节

    聚氨酯泡沫填缝剂使用小细节

    [img=,690,460]https://ng1.17img.cn/bbsfiles/images/2021/05/202105311714403052_1682_5282300_3.jpg!w690x460.jpg[/img][font=宋体][size=18px][font=宋体] 千里之堤溃于蚁穴,意味着一个大工程可能因为一个小蚁窟而失败,聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]的使用也是如此。聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]作为[/font][/size][/font][font=宋体][size=18px][font=宋体]建筑门窗、[/font][/size][/font][font=宋体][size=18px][font=宋体]墙面[/font][/size][/font][font=宋体][size=18px][font=宋体]的填缝与[/font][/size][/font][font=宋体][size=18px][font=宋体]修补[/font][/size][/font][font=宋体][size=18px][font=宋体]材料[/font][/size][/font][font=宋体][size=18px][font=宋体],在使用中也要注意细节。[/font][/size][/font][font=宋体][size=18px](1)在[/size][/font][font=宋体][size=18px][font=宋体]打[/font][/size][/font][font=宋体][size=18px][font=宋体]聚氨酯[/font][/size][/font][url=http://www.wellgo.com.cn/http://][b][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][/b][/url][font=宋体][size=18px][font=宋体]和安装门框之前,最好在墙面上喷洒一些水,这样固化更快,膨胀[/font][/size][/font][font=宋体][size=18px][font=宋体]快[/font][/size][/font][font=宋体][size=18px][font=宋体],稳定性好。[/font][/size][/font][font=宋体][size=18px](2)标准施工要求门框和墙体必须有效固定,例如用木工板、木工钉等。因为[/size][/font][font=宋体][size=18px][font=宋体]单组分[/font][/size][/font][font=宋体][size=18px][font=宋体]聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]主要起填缝、密封、保温的作用,一些非标工人在施工时直接打胶,没有任何固定,为以后可能出现的质量问题埋下隐患。[/font][/size][/font][font=宋体][size=18px][font=宋体] 聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]应从下往上,从左向右打孔。由于聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]具有一定的[/font][/size][/font][font=宋体][size=18px][font=宋体]后胀[/font][/size][/font][font=宋体][size=18px][font=宋体]效果,所以枪口应该打在墙的一侧,而不是门框的一侧,聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]只需要填充缝隙,既节省了[/font][/size][/font][font=宋体][size=18px][font=宋体]产品用量[/font][/size][/font][font=宋体][size=18px][font=宋体],又减小了膨胀力,保证了缝隙深处的胶水能够充分[/font][/size][/font][font=宋体][size=18px][font=宋体]填充与密封[/font][/size][/font][font=宋体][size=18px][font=宋体]。涂抹聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]的速度应均匀,以确保门不会损坏。许多客户的反应门因使用不当而损坏。[/font][/size][/font][font=宋体][size=18px][font=宋体] 聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]的使用或储存有一定的要求,应放在[/font][/size][/font][font=宋体][size=18px][font=宋体]恒[/font][/size][/font][font=宋体][size=18px][font=宋体]定的温度下,按规定的步骤使用。储存注意事项:聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]的储存温度为[/font]5 ~ 40[/size][/font][font=宋体][size=18px]℃[/size][/font][font=宋体][size=18px][font=宋体],[/font][/size][/font][font=宋体][size=18px][font=宋体]蕞[/font][/size][/font][font=宋体][size=18px][font=宋体]佳范围为[/font]18 ~ 25[/size][/font][font=宋体][size=18px]℃[/size][/font][font=宋体][size=18px][font=宋体]。[/font][/size][/font][font=宋体][size=18px][font=宋体] 聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]不耐长期紫外线照射,应在胶粘剂完全固化后进行覆盖和涂布。[/font][/size][/font][font=宋体][size=18px][font=宋体] 聚氨酯[/font][/size][/font][font=宋体][size=18px][font=宋体]泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]的使用不仅简单方便,而且固化后不会在墙面留下痕迹,所以不会影响墙面的美观,使墙面[/font][/size][/font][font=宋体][size=18px][font=宋体]看起来[/font][/size][/font][font=宋体][size=18px][font=宋体]可以焕然一新,[/font][/size][/font][font=宋体][size=18px][font=宋体]上海威固泡沫填缝剂[/font][/size][/font][font=宋体][size=18px][font=宋体]也有同样的效果。[/font][/size][/font]

  • 自动电位滴定仪测定聚氨酯预聚体NCO 含量

    自动电位滴定仪测定聚氨酯预聚体NCO 含量

    [back=0px 0px]NCO,即异氰酸酯基,是衡量聚氨酯预聚体性能的重要指标。本试验通过 ALT-1 全在线自动电位滴定仪来测定胶样的 NCO 含量。[/back][back=0px 0px]仪器配置[/back][back=0px 0px]1. ALT-1 全自动在线电位滴定仪[/back][back=0px 0px]2. PH-101 复合电极[/back][back=0px 0px]3. 100mL 滴定杯[/back][back=0px 0px]4. 电子天平 ( 0.1mg)[/back][back=0px 0px]5. 烧杯,量筒,容量瓶等[/back][back=0px 0px]试剂[/back][back=0px 0px]1. 滴定剂:0.5852mol/L 盐酸标准溶液[/back][back=0px 0px]2. 溶剂: 无水甲苯,异丙醇[/back][back=0px 0px]3. 反应剂:0.1mol/L 二正丁胺甲苯溶液[/back][back=0px 0px]测定方法[/back][back=0px 0px]1. 利用酸碱中和反应原理测定 NCO[/back][back=0px 0px]2. 二正丁胺甲苯溶液:量取 16.6mL 二正丁胺溶于 1000mL 甲苯备用。[/back][back=0px 0px]3. 称取 1g 左右样品于 250mL 具塞锥形瓶中,不要沾附在瓶颈上,加入无水甲苯 25mL,盖上瓶塞,在加热板上温热速溶。用移液管吸取 25mL 二正丁胺甲苯溶液,盖上塞子震荡溶解片刻,加入 20ml 异丙醇,插入电极和滴定头,设置好滴定参数,用盐酸标准溶液进行滴定,测量结束仪器会根据设置的公式自动计算结果并显示在屏幕上,不加样品重复上述操作测定样品空白。[/back][back=0px 0px]仪器参数[/back][back=0px 0px]● 计量管体积:20mL[/back][back=0px 0px]● 控制精度:1μL[/back][back=0px 0px]● 最小滴定体积:10μL[/back][back=0px 0px]● 最大滴定体积:100μL[/back][back=0px 0px]● 搅拌速度:200[/back][back=0px 0px]● 每滴间隔:1200ms[/back][back=0px 0px]● 终点模式:微分判定[/back][back=0px 0px]● 微分设置:200[/back][back=0px 0px]实验条件[/back][back=0px 0px]● 样品来源:客户[/back][back=0px 0px]● 样品名称:胶类[/back][back=0px 0px]● 环境温度:24℃[/back][back=0px 0px]● 环境湿度:45%[/back][back=0px 0px]● 空白体积:4.7740mL[/back][back=0px 0px][back=0px 0px]实验数据[/back][/back][img]https://f10.baidu.com/it/u=2353262040,3962690220&fm=173&app=49&f=JPEG?w=599&h=201&s=5AA8346387746D2208FDF0CA0000C0B1&access=215967316[/img][back=0px 0px]计算公式: [back=0px 0px]X [/back]=[/back][back=0px 0px][back=0px 0px]([/back][back=0px 0px]V[/back][back=0px 0px]1[/back][back=0px 0px]-[/back][back=0px 0px]V[/back][back=0px 0px]0[/back][back=0px 0px])[/back][back=0px 0px]C[/back][back=0px 0px]0.042[/back][back=0px 0px]m[/back][/back][back=0px 0px]100[/back][back=0px 0px]式中:V1:滴定终点体积(mL)[/back][back=0px 0px]V0:滴定空白体积(mL) C: 滴 定 剂 浓 度 (mol/L) 0.042:1mmolNCO 的质量(g/mmol) m:样品质量(g)[/back][back=0px 0px]图谱[/back][back=0px 0px]结果讨论[/back][back=0px 0px]经测定,胶样的 NCO 值为 3.1399%, 重复性较好,符合相关标准要求。因聚氨酯预聚体种类繁多,有时溶解需要加助溶剂,如丙酮等,按需添加。[/back][back=0px 0px]相关标准[/back][back=0px 0px]HG/T2409-92 聚氨酯预聚体中异氰酸酯基含量的测定[/back]

  • 聚氨酯样品的切片问题

    聚氨酯样品里面有大量的肉眼可以看到的气泡,样品有点软,想通过透射电镜观察相分离情况,这样的样品如何切片?谢谢

  • 【实验仪器不寂寞】聚氨酯保温材料容易着火?着给你看!

    【实验仪器不寂寞】聚氨酯保温材料容易着火?着给你看!

    本帖子已参加活动:【嗨!11月】免费拿时尚帅气实验服,实验仪器不寂寞~http://bbs.instrument.com.cn/topic/5997471_1?order=threadid~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~【实验仪器不寂寞】聚氨酯保温材料容易着火?着给你看! 设备名称:氧指数测定仪型号:JF-3测试产品:泡沫塑料燃烧性能测定生产单位:北京三思行测控技术有限公司购买年限:5年测试范围:0-100%/Vol分辨率:0.1%/O2http://ng1.17img.cn/bbsfiles/images/2015/11/201511161325_573684_2806843_3.jpg单位主要用于聚氨酯保温材料的氧指数测试。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161329_573686_2806843_3.jpg测试样品尺寸如下【(150×10×10)mm】:http://ng1.17img.cn/bbsfiles/images/2015/11/201511161331_573687_2806843_3.jpg要用纯度98%以上的氮气、氧气对氧浓度进行调节:http://ng1.17img.cn/bbsfiles/images/2015/11/201511161333_573688_2806843_3.jpg(图中有实验室安全隐患,例如气瓶未固定、通风橱放置位置过高等,现已整改,这是之前的照片只为说明试验过程与原理)调节至需要的氧浓度然后进行点火试验:http://ng1.17img.cn/bbsfiles/images/2015/11/201511161335_573689_2806843_3.jpg进行多次点火试验,最终找到该测试样品能够支持燃烧所需要的最低氧浓度。该设备使用方便、稳定性好,给如今市场上的聚氨酯生产企业把握氧指数点提供了质量提升的机会。令人不足的地方是试验人员操作的时候,因为聚氨酯点燃有一定的有毒气体释放,房间内总是有气味,所以需要经常通风散味,试验人员也需佩戴有效的劳防用品。

  • 【原创大赛】聚醚型聚氨酯分析新进展

    【原创大赛】聚醚型聚氨酯分析新进展

    使用聚醚多元醇合成的聚氨酯一般被称作聚醚型聚氨酯,在聚醚型聚氨酯的分析过程中,最常用的仪器有NMR、Py-GCMS、MS、MALDI-TOF等,单体的种类一般通过Py-GCMS与MS进行定性,通过NMR进行定量。 聚醚多元醇的性能与起始剂密切相关,也与分子中氧化烯烃链段长度及排列结构有关。聚醚多元醇的官能度取决于合成时所选择起始剂的活泼氢数目。不同聚醚型聚氨酯产品中使用的聚醚多元醇的结构有所不同,在设计产品的时候往往选用多种聚醚复配使用。对复杂混合聚醚进行结构解析难度不小,而对于聚氨酯预聚体与树脂中的聚醚多元醇的解析则难度更大。 我们选取了几十款市面上常用的聚醚多元醇,对各种聚醚多元醇进行了原样的表征;然后将其与不同的异氰酸酯反应合成了不同的预聚体,对不同的预聚体进行了表征;最后针对预聚体进行了扩链合成了树脂,再针对树脂进行了表征,提高了微谱分析整体对该类产品定性定量的准确度。一、HNMR 不同单体(环氧丙烷、环氧乙烷、四氢呋喃)合成的聚醚多元醇在NMR上的主体出峰明显不同,如下图,为三种常用的聚醚多元醇(204、210、220)的NMR出峰,其中三种聚醚的起始剂均为1,2-丙二醇,单体均为环氧丙烷,分子量分别为400、1000、2000。可以看出在NMR图谱上面3.7ppm附近的出峰面积比例有明显的变化,该位置体现了聚醚多元醇的端位的出峰,根据该位置的出峰可以区别聚醚的结构。[align=center][img=,690,352]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120944210335_7386_2879355_3.jpg!w690x352.jpg[/img][/align] 当我们将以上聚醚多元醇与MDI进行预聚反应生成端-NCO聚氨酯时,聚醚多元醇的端位羟基与NCO发生了反应,端位化学位移到了5.0ppm左右。而当我们将MDI换成HDI,情况则又有变化,该数据可以用于预聚体的结构解析。我们也用小分子二元醇对预聚体进行扩链,对扩链之后的树脂的NMR图谱也进行了深入的研究。一、MALDI-TOF 由于含量低,且单体出峰容易遮挡,聚醚的起始剂解析难度大,MALDI-TOF是解析的主要手段。 在MALDI-TOF图谱上,聚醚的特征出峰一般是间隔58(环氧丙烷)、44(环氧乙烷)的多组特征峰,通过计算解析可以得到聚醚的起始剂的分子量。图2.1、2.2分别为聚醚210与聚醚220的MALDI-TOF图谱,解析可知起始剂的分子量均为76(或134),判断可能为丙二醇或三羟甲基丙烷等,结合羟值等参数可知为丙二醇,图2.3为聚醚210与聚醚220与MDI反应生成预聚体的MALDI-TOF图谱,可明显找到MDI-210-MDI与MDI-220-MDI的出峰,进一步通过NMR等图谱可以解析出两种聚醚的比例。我们对市面上大部分常用聚醚均进行了如上表征,可以将聚醚起始剂、单体种类比例、分子量、封端等信息解析清楚。[align=center][img=,690,223]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120944522185_2255_2879355_3.jpg!w690x223.jpg[/img][/align][align=center]图2.1[/align][align=center][img=,690,304]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120945309075_7358_2879355_3.jpg!w690x304.jpg[/img][/align][align=center]图2.2[/align][align=center][img=,690,242]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120946094565_5977_2879355_3.jpg!w690x242.jpg[/img][/align][align=center]图2.3[/align] 针对于更复杂的情况,如多种聚醚预聚体,或聚醚型聚氨酯树脂等,我们一般采取水解的方法,在经过多种后续处理后将聚氨酯中的聚醚还原,然后进行多种测试、解析。 除此之外,我们还对以上结构的物质进行了CNMR、Py-GCMS等多种测试并研究,这对我们在聚醚型聚氨酯产品分析中起到了很大的帮助。[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”原创,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 市场行情:聚氨酯发泡机的简单故障排除办法

    [align=left][font=宋体][color=#333333]市场行情:聚氨酯发泡机的简单故障排除办法[/color][/font][/align][align=left][font=宋体][color=#333333]当聚氨酯发泡机的部分零件有故障发生时,检测点就会发出信号,显示屏上就会立即出现闪烁的的标记指出故障的具体位置,程序自动根据故障地采取相应的保护措施,比如停机,部分停机和停止注射,报警器会发声报警,工作人员要根据故障的提示文字采取对应的措施。[/color][/font][/align][align=left][font=宋体][color=#333333]如果故障已经解除,,将"故障清楚"的按钮按下后,之前显示的故障文字就会消失,没有被排除的故障还将继续显示。直到所有故障被排除之后才会彻底消失。[/color][/font][/align][align=left][font=宋体][color=#333333]一定要记住:当设备发出故障报警信号的时候,千万要重视故障,不要轻视它,一定不要轻易的将"故障清除"按钮按住,首先要查清故障显示原理,并根据显示的信息,分析造成原因可能是哪几类,最终能够把聚氨酯发泡机的故障解决掉。[/color][/font][/align][align=left][b][font='微软雅黑','sans-serif'][color=#333333]不断总结和完善最新聚氨酯发泡机更多故障排除方法,更多细节欢迎来电咨询。[/color][/font][/b][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]*[/color][/font][font='微软雅黑','sans-serif'][color=#333333]以上信息全部来自互联网,所有权利为其原作者所有,如有不合适,请来信告知。 [/color][/font][/align]

  • 如何选购聚氨酯发泡机?

    如何选购聚氨酯发泡机?

    [align=left][font='微软雅黑','sans-serif'][color=#333333]如何选购聚氨酯发泡机?[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]发泡机的价格一直是一个热门话题,在购买前还需要仔细考虑。决定买一台高质量的聚氨酯发泡机,我们当然还要做一个总体的比较。现在市场上聚氨酯发泡机的价格各不相同,当然,质量和性能也会有很大的不同。我们都希望能够购买到高性价比的设备,这样就避免不了前期的对比。[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]目前,市场上的聚氨酯发泡机种类繁多。发泡机新的牌号、新的名称层出不穷。众多的机型让人眼花缭乱,以至于不小心选错机型。为了便于生产厂家选择到自己需要的发泡机,下面给大家介绍下聚氨酯发泡机的选择方法。[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]一、需了解发泡机的类型[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]虽然发泡机的基本原理都是将气体引入发泡剂的水溶液中,但不同类型的发泡机以不同的方式引入气体。了解发泡机的类型,了解其引气方式,有助于进一步了解其技术特征和使用性能,使生产厂家有一个总体把握。每种发泡机的优缺点都清楚后,再选择发泡机就比较容易了。因此,了解发泡机的类型对生产厂家来说是非常重要的。[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]二、认真掌握发泡机的基本技术参数[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]对于生产者来说,不仅要了解发泡机的机型和发泡原理,还需要进一步了解发泡机的几个重要技术参数,以确定其是否满足生产要求。[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]1.[/color][/font][font='微软雅黑','sans-serif'][color=#333333]产量:产量即产泡量,这个量必须略高于自身需泡量的20%,其产泡量应以下限为核定计算依据,而不能以上限;[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]2.[/color][/font][font='微软雅黑','sans-serif'][color=#333333]设备大小:该参数是车间总体布局规划的必要因素;[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]3.[/color][/font][font='微软雅黑','sans-serif'][color=#333333]装机容量:装机容量就是装机总功率,此参数对核算电器电路对总用电量的适应性有重要意义;[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]4.[/color][/font][font='微软雅黑','sans-serif'][color=#333333]泡径范围:一般应根据具体产品对泡径的要求进行比较。[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]三、认真了解发泡质量[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333]发泡机的产品是泡沫,我们在生产过程中需要的也是泡沫。因此,泡沫质量是衡量发泡机性能的标准。判定发泡质量主要由泡沫细密性、泡沫均匀性、泡沫泌水量三个方面来衡量 .[/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=#333333][img=,690,380]https://ng1.17img.cn/bbsfiles/images/2021/05/202105241337258341_2757_4017671_3.jpg!w690x380.jpg[/img][/color][/font][/align]

  • 聚氨酯IR常见基团吸收

    跟大家分享一下,聚氨酯的IR分析 v3250-3500 ms OH伸缩振动、NHCO的顺式NH伸缩振动。 v2940、2860 s CH2、CH3伸缩振动。 v2240-2280 s NCO特征吸收峰。 v2120 s 碳化二亚胺吸收峰。 v1770-1785 s 脲二酮环(二聚体)中的C=O。 v1715-1750 vs 酯基C=O、酰胺I键C=O。 v1689-1710 s 异腈脲酸酯(三聚体)中C=O(1408-1430也有峰) v1600-1615 苯环C=C骨架伸缩振动。 v1520-1560 ms 酰胺II键(N-H)变形振动。 v1450-1470 CH2变形振动、CH3非对称变形振动。 v1380 CH3对称变形振动 v1225-1235 聚酯C-O伸缩或OH变形振动 v1060-1150 宽s C-O-C(脂肪族醚)吸收峰。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制