当前位置: 仪器信息网 > 行业主题 > >

硫酸特布他林杂质

仪器信息网硫酸特布他林杂质专题为您提供2024年最新硫酸特布他林杂质价格报价、厂家品牌的相关信息, 包括硫酸特布他林杂质参数、型号等,不管是国产,还是进口品牌的硫酸特布他林杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫酸特布他林杂质相关的耗材配件、试剂标物,还有硫酸特布他林杂质相关的最新资讯、资料,以及硫酸特布他林杂质相关的解决方案。

硫酸特布他林杂质相关的资讯

  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 湖北省质检院研发成功电子级硫酸产品检测新方法
    近日,湖北省产品质量监督检验研究院(以下简称“湖北省质检院”)联合赛默飞世尔仪器(中国)有限公司、美国爱博才思(AB Sciex)分析仪器中国有限公司和湖北兴福电子材料有限公司在武汉联合举办“猇亭区新材料产业园质量提升项目成果报告会”。与会单位交流电子级硫酸杂质阴离子检测技术联合攻关成果,讨论下一步技术与参数的优化方案。据了解,电子化学品是电子工业重要的支撑材料。湖北兴福电子材料有限公司是国内主要的电子化学品生产企业,其3万吨/年电子级磷酸产能规模居行业前列,开创了国产化电子级磷酸用在8英寸(1英寸=2.54厘米)及以上集成电路的先河。但由于国家标准GB/T 41881-2022《电子级硫酸》采用目视比色法等半定量方法检测,不能准确检测杂质离子含量,国内外相关技术开发也存在空白,不能满足下游芯片、集成电路客户需求,制约了该类产品的质量技术提升。湖北省质检院通过开展技术调研,联合国内外知名仪器设备制造商的技术开发专家,对电子级硫酸产品质量特点、国标要求、杂质离子检测技术等开展联合攻关,研发成功电子级硫酸产品中杂质阴离子检验检测方法,检测结果能准确反映产品质量水平,填补了国内空白。据介绍,此项技术成果为电子级硫酸产品杂质含量检测、质量技术升级和品牌提升、更好地满足下游芯片客户特别是高端芯片客户需求打下了坚实基础,对提升湖北省电子化学品产业核心竞争力,助推战略性新兴产业发展,具有重要意义。
  • 探索寡核苷酸杂质分离|Shim-pack Scepter Claris液相色谱柱
    探索寡核苷酸杂质分离 Shim-pack Scepter Claris色谱柱具有治疗潜力的核酸和mRNA疫苗在制药工业成为新的增长点。其中寡核苷酸发展迅猛,寡核苷酸是由20到60个碱基组成的单链或双链核酸片段。包括反义寡核苷酸(ASOs)、小干扰RNA (siRNA)、microRNA以及适配体。在生物化学、分子生物学和遗传学中有着广泛的应用。寡核苷酸由于细胞外稳定性低,溶剂被核酸酶解,同时难以进入细胞等因素的影响发展缓慢,近些年,由于核酸修饰(磷酸骨架,碱基以及糖环的修饰)以及递送介质(脂质体等)等相关技术的突破,使其成为继小分子药物、抗体蛋白质药物之后,出现的一类新模式药物,是近年药物开发的热点之一。寡核苷酸的结构决定了它极性非常强,在常规的反相色谱柱上很难保留,可以使用HILIC模式、离子交换模式或者借助于离了对试剂在反相柱上实现保留,不同分离模式各自有自己的局限性。IP-RP作为其中最常用的一种,应用范围最广,今天我们从方法开发的角度一探究竟。Part 1方法初筛不同离子对试剂的选择对于物质的保留差异较大。此次分析的样品是20个碱基的寡核苷酸,优先选择TEA作为离子对试剂,后期因为涉及进质谱进行质量确认,所以加入了100mmol的HFIP增加灵敏度。采用不同比例的有机相、结合不同浓度的缓冲盐浓度,优化色谱方法,得到24张色谱图,叠加如下文图1所示。整体色谱柱峰形优异,惰性化柱管对于因柱管导致的峰形拖尾等问题,改善明显。从②⑤⑧可以看出,随着离子对试剂浓度的增加,保留提升,分离得到进一步的改善。HFIP浓度以及有机相的比例会影响基线,200mmol/L的HFIP中有100%纯乙腈流动相会引起基线的抬升,比如⑬ , ⑯ , ⑲ 和㉒ 的实验结果。对比结果⑧和结果⑳ ,可以看出HFIP的提升,对于分离展现出不同的效果。此外,在一些文章中也提到需要在流动相中加入一定比例的HFIP,这样使得TEA的溶解度变小, 因而TEA更容易绑缚在固定相上形成更稳定的离子对试剂层 。这促使离子相互作用的分离机制非常显著,尤其针对于硫代寡核苷酸。从②③的实验结果可以看出,不同的有机试剂含量对于杂质分离展现不同的选择性。不同流动相HFIP和TEA中的浓度、以及有机溶剂乙腈与甲醇的混合比例对FLP和FLP相关杂质分离影响较大。最终,通过矩阵设计,考察分离效果,结果表明实验条件⑤的分离效果最佳,采用的流动相条件为:100mM HFIP 10mM TEA/ACN 50%_MeOH 50%。Part 2方法优化文献中提到升高的柱温通常减小峰宽,从而一定程度上改善了杂质分离,因此也是主要的一个影响因素。Scepter Claris C18色谱柱采用杂化硅胶,不仅具有杂化硅胶可以耐受高柱温的特性,而且Scepter Claris色谱柱采用生物惰性涂层,相比于其他柱管的惰性化程度,惰性更优,峰形改善更明显。所以,进一步优化如图3所示,柱温65℃的峰展宽更弱,峰形更窄。完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/NIT32ALeXXVa0t17JJ66uw 采用岛津Nexera XS inert 系统,配套岛津全新卓越惰性杂化硅胶色谱柱——Shim-pack Scepter Claris C18,从流动相比例、梯度、柱温等方面优化方法,避免了不锈钢柱管吸附导致的峰形问题,有效实现寡核苷酸的分离分析。结合LabSolutions MD可实现整个工作流程优化自动化,包括生成分析进度表、如自动峰值跟踪具体的数据处理功能、色谱的评价值和设计空间等,有效提升方法开发的效率。立即询价产品目录《岛津Shim-pack Scepter系列液相色谱柱》点击立即查看最新药斯卡排行榜
  • 戴安公司提供检测肝素钠中杂质的方法
    去年发生的美国百特公司使用美国SPL公司在中国控股的常州SPL公司提供的 &ldquo 肝素钠&rdquo 原料生产的&ldquo 肝素钠注射液&rdquo 在美国集中出现不良反应,美国食品药物管理局(FDA)随后公布检验结果,在药物原料中验出&ldquo 多硫酸软骨素&rdquo 的成分。 硫酸软骨素是一种从动物关节、软骨等组织中提取出来的生物衍生产品,可作为食品添加剂。在问题&ldquo 肝素钠&rdquo 里检测出来的是发生过化学变化的类似肝素钠分子的多硫酸软骨素,故美国对肝素钠原料中杂质的含量给予限定,并将新的检测方法纳入美国药典,对中国肝素钠出口厂进行限制。中国国家食品药品监管局针对此事件于去年4月要求国内肝素钠药品生产企业必须在现行的肝素钠药品质量检测标准的基础上,增加多硫酸软骨素检测项目,以确保产品质量安全。 目前美国药典中针对肝素钠杂质的检测方法有两种:液相法和离子色谱法。两种方法均涉及到了戴安公司的技术。 液相色谱或离子色谱法:该方法使用常规液相色谱仪或离子色谱仪,戴安的IonPac AS11离子色谱柱,紫外检测器。该方法能够直接分离样品中的硫酸皮肤素、多硫酸软骨素以及肝素钠,主要用于检测肝素钠中的多硫酸软骨素。 离子色谱法:该方法使用带有脉冲安培检测器的离子色谱仪。将肝素钠样品水解,肝素钠中有机杂质会水解为半乳糖胺,用戴安公司的氨基酸捕获柱、保护柱、CarboPac PA20分析柱进行分析,通过脉冲安培检测,得到半乳糖胺的含量,水解样品溶液中的半乳糖胺在总氨基己糖中的含量不得超过1%。主要用于检测肝素钠中的有机杂质。 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182 戴安中国市场部 2009年4月10号
  • 【瑞士步琦】药品质量控制中的灰分测定方法——根据不同标准方法(USP)(EP)(CP)测定硫酸盐灰分
    根据不同标准方法测定硫酸盐灰分灰分测定”硫酸盐灰分测定是药品质量控制中评价药品成分纯度和质量的一项重要分析技术。硫酸盐灰分的测定包括加入硫酸,然后焚烧样品,去除所有的有机物,然后测定残留物。所得的残留物主要由无机盐组成,可以对其进行分析,得到有关杂质存在和样品质量的信息。硫酸盐灰分的测定是评价原料药质量的一个重要参数,关系到最终产品的有效性和安全性。药物中杂质的存在和无机阳离子的水平会影响最终产品的药效和纯度,在某些情况下,会对患者身体健康产生不利影响。因此,需要准确可靠的硫酸盐灰分测定方法,以保证药品的质量和安全。1介绍各种药典方法已被开发用于测定药用物质中的硫酸盐灰分,包括美国药典(USP)、欧洲药典(EP)和中国药典(CP)方法。这些方法已在各地的药品质量控制实验室得到验证和广泛应用。然而,由于其中一些测定的复杂性和成本控制等,需要建立一种更简单、更经济、更准确的硫酸盐灰分测定方法。本研究在 USP 药典方法的基础上,建立了一种简单、准确、安全、可靠的测定原料药中硫酸灰分的方法。该方法具有良好的准确性、安全性和优异的高温性能,同时也适用于阿司匹林等药用物质中硫酸灰分的测定。所得结果与预期结果吻合较好。该仪器可用于药品质量控制实验室的常规分析,为评价药品成分的纯度和质量提供了可靠的工具。2硫酸盐灰分测定中国药典中对该硫酸灰分测定的方法为 0841 炽灼残渣检查法。具体方法:取供试品 1.0~2.0g 或各品种项下规定的重量,置已炽灼至恒重的坩埚中,精密称定,缓缓炽灼至完全炭化,放冷;除另有规定外,加硫酸 0.5~1ml 使湿润,低温加热至硫酸蒸汽除尽后,在 700~800℃ 炽灼使完全灰化,移置干燥器内,放冷,精密称定后,再在 700~800℃ 炽灼至恒重,即得。如需将残渣留作重金属检查,则炽灼温度必须控制在 500~600℃。根据对比不同国家药典的方法研究,USP 和 EP 可以说完全一样,只是叫法不一样,与 CP 的区别为:USP、EP 对加样品之前的坩埚不需要恒重,CP 要求加样品之前坩埚恒重。USP、EP 对整个炽灼过程中要求不能产生火焰,CP 没要求。USP、EP 判断结果是从首次完全炽灼后开始,如不超限度,判定合格,不需要再恒重 如超限度,需要循环最后一步,若在恒重前不超限度,判定合格,若直至恒重仍不合格,判定不合格。温度要求不一样。湿法消解仪 B-440尾气吸收仪 K-415湿法灰化系统由湿法消解仪 B-440 和尾气吸收仪 K-415 组成(如上图1),可以根据药品质量控制中的不同具体方法的选择可能取决于分析的目的、每天的样品量以及遵守官方标准方法的需要,轻松有效地进行灰化实验。此外,它可用于不同药典的各种应用(温度高达600°C):2302 灰分测定法原子吸收光谱法或ICP进行元素分析前处理镉和铅分析的预处理Residue on ignition (USP 281)Heavy metal test method (USP 231, Method II)Loss on ignition test method (USP 733)▲ 图 2. 湿法灰化系统示意图,由湿法消解仪B-440(左)和尾气吸收仪K-415(右)组成。湿法消解仪 B-440 将样品加热到高达 600°C 的温度,尾气吸收仪提供多步骤进行吸收,以确保完全中和吸收灰化过程中产生的有害烟雾。提供以下三个步骤:预冷凝含水烟雾的冷凝阶段用碱性溶液中和酸雾的中和阶段活性炭对残留烟雾的吸附阶段湿法灰化系统通过两种仪器的完美同步工作,得到最准确的结果。在这项研究中,通过对一些样品测试,如乳糖,玉米淀粉以及阿司匹林等。通过应用这些方法,测定的硫酸盐灰分含量低至 0.02 - 0.04 wt% (如表1),很好的吻合于样品的真值。表1:测定不同样品的仪器参数及数据结果3结论在这项研究中,我们提出了一种有效的方法,用于测定药用物质中的硫酸盐灰分。该方法在药典方法的基础上取得了良好的结果,证明了其作为药物质量控制实验室常规分析的可靠方法的潜力。使用湿法灰化系统,提高分析速度,精度和安全性。同时开发可靠的方法对于维持药品生产的高质量标准和确保患者安全至关重要。
  • 【安捷伦】方法目录免费下载 | 应对基因毒性杂质,我们有妙招!
    基因毒性杂质,又称遗传毒性杂质,是指能直接或间接损伤细胞 DNA,产生致突变和致癌作用的物质。其主要来源有:- 原料药合成过程中的起始物料、中间体、试剂、反应副产物;- 药物在合成、储存或者制剂过程中的降解产物;- 部分药物通过激活正常细胞而产生基因毒性物质,如化疗药物顺铂等。有关基因毒性杂质的英文文献报道出现于 2006 年。近年来,对于药物研发而言,基因毒性杂质已经不再是新闻:从沙坦类药物中的叠氮化物、亚硝胺类化合物,到美罗培南中的 318BP、M9、S5,再到阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等,人们对于特定药物品种中基因毒性杂质的研究不断深入。同时,随着 EMA,FDA 及 CFDA 对于原料药和制剂中的基因毒性杂质监管和控制法规的不断强化,目前对于基因毒性杂质的评估要求无疑正在朝着更为严格的趋势发展。安捷伦作为药物杂质分析领域全面解决方案的领导者,可提供涵盖液相、气相、液质、气质、色谱柱与方案包、计算机认证与合规软件在内的完整基因毒性杂质检测技术。在当前市场背景和法规驱动下,继 2018 年发布《安捷伦基因毒性杂质检测解决方案》后,我们持续对市场动态和用户需求以及法规升级保持高度关注,并针对常见药物基因毒性杂质分析方法进行了系统的更新与梳理,适时推出《安捷伦基因毒性杂质检测简报》。简报对于常见的基因毒性杂质类型如卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、氨基甲酸乙酯、肼类及其他近二十几类典型基因毒性杂质的分析进行了系统的方法开发,并对方案特点进行了客观详细的说明和总结,对于从事相关研究的用户来说,将是非常有助益的研究工具。访问 www.agilent.com/zh-cn/technology/yaodian,阅读安捷伦药典系列文章。[本文转自“安捷伦视界”公众号,作者为安捷伦 MKT 和 SDT 团队]关注“安捷伦视界”公众号,获取更多资讯。
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • 《硫酸工业污染物排放标准》正式实行
    公开征求意见已超过一年的《硫酸工业污染物排放标准》(以下简称《标准》)近日将正式发布并实行。记者11月12日了解到,《标准》的实施进一步限制了硫酸企业尾气中二氧化硫的排放量:从标准实施之日起,新建的硫酸企业二氧化硫污染物排放浓度限值为400毫克/立方米 2013年1月1日,现有硫酸企业二氧化硫污染物排放浓度全部达到这一限值。目前,部分硫酸企业已经开始抓紧改造以适应新标准,硫酸行业将借助新标准推动产业结构调整、设备改造和技术升级。   标准主要起草人之一、青岛科技大学环境保护研究所所长杨波教授告诉记者,硫酸行业的二氧化硫排放量在化工行业中占有较大比例,引起了社会各界和环保部门的高度重视。在即将出台的《标准》中,对于硫酸工业二氧化硫排放有了更严格的规定,对于已经建成的硫酸企业,自2011年1月1日起至2012年12月31日止,二氧化硫污染物排放浓度限值为860毫克/立方米 自2013年1月1日起,二氧化硫污染物排放浓度限值为400毫克/立方米。   杨波表示,目前我国多个行业都对二氧化硫排放有严格的规定,现行的《大气污染物综合排放标准》(GB16297-1996)中规定的二氧化硫排放浓度限值96毫克/立方米已经难以满足硫酸工业二氧化硫限排要求。从2008年起,环保部委托青岛科技大学、中国硫酸工业协会等单位,就硫酸工业污染防治技术政策和污染物排放标准等,展开深入的研究,并于2009年9月公布《硫酸工业污染物排放标准》并公开征求意见。征求意见稿综合考虑了当前我国硫酸工业技术水平和污染控制技术水平,使污染物排放限值全面与国际接轨,这要求我国现有的硫酸企业不仅二氧化硫排放浓度要满足目前的国家标准,而且还要为2013年后更加苛刻的排放限值作准备。   据了解,我国硫酸生产主要采用两转两吸工艺,由于受到装置转化率的限制,传统两转两吸硫酸生产装置,难以满足二氧化硫排放浓度限制400毫克/立方米的要求,目前我国大多数硫酸装置都达不到这一要求,尤其是中小企业,为了降低装置二氧化硫排放浓度,必然进行设备改造升级,增加生产成本。对此中国硫酸工业协会理事长齐焉表示,国家新出台的“三废”排放、综合能耗等硬性指标规定,将加速淘汰一批中小产能,实现行业产品的结构调整。   齐焉指出,新标准的实施将促进硫酸行业进一步优胜劣汰、转型升级,提高整体环保水平。企业应着力寻求减排的有效方法,以科技推动环保升级。针对硫酸行业新的“三废”排放标准,应通过两个途径解决达标问题:一是改进国产钒催化剂,国内、国外催化剂并用,改造转化系统,加强管理控制 二是增加尾气处理装置,以氨水、胺液、柠檬酸钠等碱性溶液处理。在“十二五”期间,要加快高品质国产催化剂的研制,同时推进超重力场机替代高塔提高脱吸率等措施,以保证硫酸企业尾气排放等指标达标。   有业内人士认为,由于传统两转两吸工艺难以适应新的排放标准,企业将根据自身的情况选择合适的工艺,改造传统装置和上马新装置,选择关键在于操作成本,未来我国硫酸生产工艺可能会趋于多元化,例如采用一转一吸联用尾气脱硫工艺装置。未来二氧化硫排放标准日趋严格,将推动相关设备、脱硫技术、催化剂开发等行业的发展。   据了解,目前已经有不少硫酸企业,尽管尾气排放指标控制在860毫克/立方米标准之内,也开始为400毫克/立方米新标准进行改造。中石化南京化学工业有限公司磷肥厂采用氨―酸法回收尾气,生产液体二氧化硫 开封化肥厂、太原化工总厂等均改用三级氨法尾气回收生产固体亚硫酸铵和高浓度亚硫酸氢铵溶液,降低废气中二氧化硫排放量 浙江巨化硫酸厂采用超重力吸收技术进行硫酸尾气脱硫改造,采用空塔和超重力设备进行硫酸尾气氨法脱硫工艺处理,项目预计今年底完成,届时巨化硫酸厂的二氧化硫排放水平将达到国家即将推行的新标准。
  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 日立实验|荧光分析法测定硫酸奎宁含量
    ▶#日立实验#荧光分析法某些物质的分子能吸收能量而发射出荧光,根据荧光的光谱和荧光强度,对物质进行定性或定量的方法,称为荧光分析法。荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比紫外-可见分光光度法低2~4个数量级,在生化分析中的应用较广泛;既可依据发射光谱特征,又可依据激发光谱特征进行测试。摘要本实验采用日立F-4700荧光分光光度计对不同浓度硫酸奎宁溶液进行测试。实验原理1.硫酸奎宁的分子结构特征硫酸奎宁属生物碱类抗心率失常药,其分子具有喹啉环结构,可产生较强的荧光,可直接用荧光法测定其荧光强度,由校正曲线求出回归方程进而求出试样中奎宁的浓度。2.定量依据与方法2.1定量依据:在低浓度时,溶液的荧光强度与溶液中荧光物质的浓度呈线性关系。2.2定量方法:标准曲线法:配制一系列标准浓度试样测定荧光强度,绘制标准曲线,再在相同条件下测量未知试样的荧光强度,在标准曲线上求出浓度。测试条件测试结果配置不同浓度硫酸奎宁标准样品,测试其标准曲线如下结论本次实验采用荧光分析法对硫酸奎宁溶液进行定量测试。结果表明,日立荧光分光光度计测定硫酸奎宁溶液标准品线性良好,同时对未知浓度样品进行测试,结果准确,测试结果不受其它干扰物质影响,说明日立荧光分光光度计灵敏度高,满足用户需求。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 硫酸铜产线颗粒管控利器——普洛帝硫酸铜液体颗粒计数器
    硫酸铜生产线上的颗粒管控,历来是确保产品纯度与品质的关键环节。而今,这一领域迎来了一位革新性的守护者——普洛帝硫酸铜液体颗粒计数器,它不仅是生产线上的科技明珠,更是提升生产效率与产品质量的智慧之钥。 普洛帝,以其精准的测量技术与非凡的创新设计,颠覆了传统颗粒检测的方式。这款液体颗粒计数器,专为硫酸铜溶液量身打造,如同一位精密的侦探,能在微观世界中捕捉每一粒可能影响产品纯净度的微小颗粒。其采用先进的光学传感技术,结合智能算法分析,能够实时、准确地计数并分类溶液中的微小颗粒,确保每一滴硫酸铜都纯净无瑕。在繁忙的生产线上,普洛帝展现出了无与伦比的稳定性与高效性。它能够连续工作,不间断地监测硫酸铜溶液的颗粒状况,为生产人员提供即时、可靠的数据支持。这不仅大大降低了人工检测的误差与成本,更使得生产线能够迅速响应颗粒污染问题,采取有效措施加以控制,从而保障了产品的整体质量。 普洛帝硫酸铜液体颗粒计数器的出现,无疑是硫酸铜生产领域的一次重大飞跃。它以其卓越的性能与广泛的应用前景,赢得了业界的广泛赞誉与信赖。在未来的日子里,普洛帝将继续以其专业的精神与不懈的努力,为硫酸铜生产线的颗粒管控贡献更多的智慧与力量。
  • 二维液相色谱丨含碘造影剂,你的微量手性杂质我来查
    导读最近看到一则新闻,某患者因为肺部感染、哮喘,到医院放射科做了CT平扫,发现有一肺部肿块,医生建议再做个增强CT来进一步确定疾病的性质。那么,新闻中所说的增强CT究竟是什么呢?其实,增强CT就是指在CT平扫基础上,对发现的可疑部位,在经静脉注入含碘造影剂后,进行有重点的检查。也许您有疑问,为什么要注入含碘造影剂呢?它的安全性又如何控制呢? 为什么要注入含碘造影剂呢?含碘造影剂具有密度大的特点,经静脉注射进入体内后,因为病变组织内或血管丰富或血流缓慢而在病理组织中停滞、积蓄,使病变组织与邻近正常组织间的密度对比增加(即影像上黑白对比增加),CT图像能够更加清楚地显示组织血流和病变情况,以帮助鉴别疾病的良、恶性,提高病灶的定性能力,从而提高诊断准确率。 含碘造影剂小科普l 含碘造影剂的变迁自20世纪50年代被发现后,含碘造影剂经历了第一代的离子型造影剂飞跃到非离子型单体造影剂,再次飞跃到非离子型二聚体造影剂的过程。 图1 4种碘化CT造影剂的化学结构:离子单体、离子二聚体、非离子单体和非离子二聚体 目前被广泛用于临床的非离子型造影剂,如碘帕醇、碘海醇、碘普罗胺、碘曲轮、碘克沙醇等,具有毒性低、性能稳定、低渗等渗、耐受性好等优点。 l 碘帕醇的手性构型碘帕醇是一种非离子型水溶性碘造影剂,具有良好的显影作用,对血管壁及神经组织毒性低,化学性质稳定,不良反应较少,适应范围广。 碘帕醇(CAS号:66166-93-0)有1个手性中心,两个异构体(S-构型、R-构型),结构式见图2。碘帕醇中的R-碘帕醇含量增加会使碘帕醇注射液黏度升高,进而导致碘帕醇注射液的不良反应增加。因此控制不良构型的含量是碘帕醇及其他含碘造影剂质量控制的关键步骤。 图2 碘帕醇的S构型(左)和R构型(右) l 碘帕醇的一维手性分离探索利用色谱柱中手性固定相对异构体的吸附速度不同实现的色谱分离是常用手段。以Chiralpak MA(+)色谱柱和硫酸铜溶液为流动相建立碘帕醇的分离,R/S-碘帕醇分离结果如图3所示。 图3 250 mg/L浓度的R-碘帕醇样品溶液 (1)和S-碘帕醇样品溶液(2) 的1stD LC色谱图 通过分离结果可以看到,该手性分离体系能在20 min内实现碘帕醇两种构型的手性分离,但和多数液相手性分离的色谱行为相似,存在柱效较低的问题,因此在定量分析中对于含量较低的待测物的检出存在不足。 岛津解决方案对于类似碘帕醇这样的分子结构提示其可在反相色谱上有良好保留,因此考虑构建手性色谱体系和反相色谱体系的二维液相色谱系统,对已获分离的异构体杂质再次进行反相色谱分离以提高检测的灵敏度。 l 手性构型的二维分离 l 分离结果解析R-碘帕醇溶液(0.5 mg/L)2D LC 分析色谱图 5-10min间为R碘帕醇在1维液相上的保留,可以看到该浓度下无明显色谱峰,无法进行定量分析。经过阀切换将R碘帕醇在1维液相上的组分切入二维后,通过反相色谱作用,可以在16.5min左右发现明显的色谱峰同手性分离的 1 stD LC 结果相比,经过二维液相色谱分离的 R-碘帕醇灵敏度较之有 10 倍的提升。 结语药物杂质的高灵敏检查是控制药物纯度,提高药品质量的一个非常重要的环节。为了让含碘造影剂更加安全的为患者服务,岛津的二维液相色谱系统可发挥作用,弥补手性色谱柱效不足的缺点,既获得两种异构体的有效分离,又在经过反相色谱分离中获得良好响应。 撰稿人:李月琪 本文内容非商业广告,仅供专业人士参考。
  • 香港一实验室发生化学事故 一人被硫酸溅伤
    p   据香港《明报》网站报道,香港柴湾吉胜街一个实验室29日发生化学事故,一名女职员颈部被硫酸溅中,其他人士见状大惊,于是报警,由救护车将伤者送院治理。警方正调查事件原因。 /p p   事件在下午2时许发生,女伤者姓黄,事后一直保持清醒,需要用急救面膜保护伤口,由担架床送院治理。案件列作“有人意外受伤”处理。 /p p style=" text-align: center " img title=" 9250D63A9F17F8F8521A4841F31DE63F.jpeg" src=" http://img1.17img.cn/17img/images/201603/noimg/655a22ca-ece1-4515-8b10-a0eb1aab545f.jpg" / /p p style=" text-align: center " 女职员颈部被硫酸溅中,敷上急救面膜送院。 /p
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 《硫酸工业污染物排放标准》等3项国家污染物排放标准发布
    关于发布《硫酸工业污染物排放标准》等3项国家污染物排放标准的公告   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,防治污染,保护和改善生态环境,保障人体健康,现批准《硫酸工业污染物排放标准》等3项标准为国家污染物排放标准,并由我部与国家质量监督检验检疫总局联合发布。标准名称、编号如下:   一、硫酸工业污染物排放标准(GB 26132-2010)   二、硝酸工业污染物排放标准(GB 26131-2010)   三、非道路移动机械用小型点燃式发动机排气污染物排放限值与测量方法(中国第一、二阶段)(GB 26133-2010)   按有关法律规定,以上标准具有强制执行的效力。   以上标准自2011年3月1日起实施。   以上标准由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   特此公告。   (此公告业经国家质量监督检验检疫总局纪正昆会签)   二○一○年十二月三十日
  • 万万没想到!海关检验检测中心这样处理浓硫酸!
    浓硫酸(h2so4 )纯净的浓硫酸是无色、粘稠、油状液体,不易挥发。常用的浓硫酸浓度是98%。浓硫酸具有很强的吸水性,对皮肤、衣物等有很强的腐蚀性,如果不慎在皮肤或衣物上沾上硫酸,应立即用布拭去,再用大量的清水冲洗。浓硫酸(h2so4 )的移取目前,一般实验室采用量筒、移液管、移液枪等移取浓硫酸,采用量筒、移液管等固态玻璃量具移取时,会存在移液不安全、人为读数误差大、移液效率低等问题;采用移液枪移取时,由于浓硫酸密度大,粘度大,有粘滞性,会出现移液体积误差较大甚至是无法吸液等现象,且硫酸蒸汽的强腐蚀性会损坏枪体,降低移液枪使用寿命。针对这些问题,某海关检验检测中心采用了世界上最先进的数字化液体处理设备——德国赫施曼全能型瓶口分配器,实现对浓硫酸快速、安全、高效的移取。具体操作如下:(1)将瓶口分配器安装在装有浓硫酸的试剂瓶上。(2)调节仪器上端刻度环至所需刻度,正反向调节皆可,平视刻度即可,无人为读数误差。(3)缓慢匀速向上拉起控制活塞,进行吸液操作。阶梯式设计控制量程,确保分液量高度精确。(4)吸液操作完成,开始排液。下按活塞,在排液管管口处接收浓硫酸,移取浓硫酸操作完毕。(5)移液操作完毕后,旋转密封安全阀对试剂瓶中浓硫酸进行密封,在瓶口位置形成的一层密封性特氟龙材质瓶盖,有效避免瓶中浓硫酸及其蒸汽进入套筒进而损害仪器。另外,他们还安装防倒底座确保实验操作稳定性;利用万能底座从各种容器中快捷移液。而且,他们还采用赫施曼延长排液管进行远距离移液,实现快速多次分液。自从使用了德国赫施曼全能型瓶口分配器,有效规避了浓硫酸移取数据不精准、移取操作不安全、移取效率低、移液枪经常性损坏等问题,海关检验检测中心的实验人员再也不担心移取浓硫酸的实验了。高效、安全、环保、精准,宝宝以后操作浓硫酸就用它了——赫施曼全能型瓶口分配器!!!
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 上海废弃硫酸实行“点对点”资源化利用 破解集成电路芯片产业发展难题
    上海被赋予打造集成电路产业高地的重大任务,随着产业规模逐步扩大,废酸环境无害化处置成为突出问题。据了解,上海通过 “点对点”资源化定向再利用创新模式已破解这一难题。  日前,一辆挂有危险标识的罐装运输车稳稳驶入厂区,公司专职管理员引导车辆,过磅、取样、检验、联单签收… … 一系列流程后,车被引导至专用卸车区,车上的特殊液体被接收到公司的原料储料罐中,等待用于后续的生产。  这是记者在位于金山第二工业区内的上海澎博钛白粉有限公司(以下简称澎博公司)看到的场景。罐装车内装运的是液体硫酸,它的特殊性在于是上游集成电路芯片生产企业使用过的废弃硫酸。  在现场,公司负责人何文龙告诉记者,公司是上海市集成电路芯片行业产生的废硫酸资源化利用定点单位,每天安排专用车辆将废酸运回工厂,经过严格的检验流程后再投入到钛白粉生产当中,今年1月-7月已处置利用废酸1.5万吨。  新模式解决行业发展难题  据上海市生态环境局相关负责人介绍,上海首创的废硫酸“点对点”资源化定向再利用模式运用逐步成熟,目前已经全部覆盖了上海具备回收废酸条件的集成电路芯片制造企业,总体上稳定地解决了上海集成电路芯片制造企业废硫酸处置问题。  据上海市集成电路行业协会相关负责人介绍,集成电路产业生产过程中会使用大量浓硫酸,排放以硫酸物质为主,处理废硫酸成本很高,同时会存在一定的生态环境安全风险。这个问题成为阻碍行业发展的难题。  直面痛点。在上海市经济和信息化委、上海市生态环境局等相关部门的支持下,上海市固体废物和化学品管理技术中心、上海市集成电路行业协会积极探索,多次召开专家研讨会论证处置方案,并于2016年开始由中芯国际和澎博公司开展废硫酸“点对点”资源化定向再利用试点运行,经过多轮试点验证,最终形成较为成熟的经验。  去年,上海市集成电路行业协会会同多部门专门编写形成了《钛白粉用集成电路制造行业废硫酸》(T/SICA001-2020)团体标准,在上海市质量技术监督部门网站和国家标准网上进行公示,全力保障废酸源头质量的把控。  多维度再利用效益明显  废硫酸“点对点”资源化定向再利用,这一新模式的环境效益、经济效益和社会效益都很显著。相关专家告诉记者,模式的核心是实现集成电路制造过程中产生的废硫酸替代钛白粉生产工艺过程中用到的工业硫酸。经过试点验证,这种模式技术可行性很强,废酸再利用单位在使用废硫酸生产钛白粉时,不需要调整现有工艺。同时,替用过程不增加额外的环境负担与风险,不影响产品的质量,符合“固体废物减量化、资源化和无害化”原则。  谈到经济效益,这位专家给记者算了一笔账:澎博公司再利用废硫酸每吨收费500元,按照上海市往年废硫酸处置费每吨2000元计算,今年1月至7月,澎博公司累计利用废硫酸1.5万吨,集成电路生产企业可节约2250万元。同时,澎博公司也节省了购置工业浓硫酸的费用,产废企业和再利用企业达到了“双赢”。  此外,新模式还符合循环经济产业需求,不仅解决了废硫酸处置出路难、处置费用高的难题,降低了企业生产成本和废硫酸处理费用,还促进了钛白粉生产单位的升级改造、精准转型和绿色发展,为日后集成电路产业的蓬勃发展铺平了道路。  深入推进“点对点”资源化再利用  “在探索推行这一新模式的过程中,我们以守好环境底线为前提,做到严格把关,按程序推进。”上海市生态环境局相关负责人介绍,在前期提出设想并加以论证的基础上,他们于2016年发文,同意将中芯国际和澎博公司设立为上海市首个废硫酸定向再利用试点单位,利用芯片废硫酸生产钛白粉。  2019年11月,上海市生态环境局同意4家企业废硫酸定向资源化再利用备案。2020年10月,上海市生态环境局扩大废硫酸定向资源化再利用备案,新增4家企业,全面覆盖上海市具备回收废酸条件的集成电路制造企业。  据介绍,目前,各方进展顺利,各试点企业在严格执行危险废物各项管理制度下,废硫酸源头品质得到保障,并委托具有相关运输资质的单位专人专车进行运输。澎博公司在废酸使用期间,生产运行稳定,各项污染物排放环保指标检测均符合排放标准。同时,澎博公司对生产设备工艺进行优化改造,在末端形成了可满足近期集成电路产业发展需求的每年6万吨废硫酸利用能力。  “十四五”期间,上海的集成电路产量将快速增长,需处置的废硫酸量也将随之增加。据最新统计,2020年产生废酸1.25万吨,2021年预计为2.8万吨,到2022年上海芯片企业产生的废硫酸将高达6万吨,2025年将达到10万吨以上。  面对这一形势,上海各相关部门召开会议制定了“提前谋划改造,形成需求匹配、长久稳定”的废硫酸利用原则。上海市发改委、上海市经济和信息化委还专门组织专家队伍到资源化综合利用企业澎博公司开展现场调研,了解情况,听取企业和行业专家的意见和建议。  作为废酸再利用定点企业,澎博公司也启动了匹配废酸资源化利用技改规划,积极响应上级部门对澎博公司以废定产、提前谋划的要求,规划“集成电路行业10万吨废酸资源化利用”技改。  在上海市人民政府近日印发的《上海市2021-2023年生态环境保护和建设三年行动》文件上,记者也注意到相关条文:在环境可控的前提下,持续推动集成电路行业废酸等危险废物“点对点”定向资源化利用工作,形成稳定的与集成电路行业未来发展相适应的废酸处置利用能力。  据悉,未来,这种废弃硫酸“点对点”资源化定向再利用模式,将有力保障我国集成电路行业的发展,也将对其他行业的危险废物综合利用起到借鉴和引领作用。
  • 国家环境保护标准《硫酸工业污染物排放标准》征求意见
    各有关单位:   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,我部决定制定国家环境保护标准《硫酸工业污染物排放标准》。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面修改意见,于2009年9月10日前反馈我部科技标准司。   联 系 人:环境保护部科技标准司 司蔚   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传  真:(010)66556213   附件:1.征求意见单位名单   2.《硫酸工业污染物排放标准》(征求意见稿)   3.《硫酸工业污染物排放标准》编制说明(征求意见稿)   附件一:   征求意见单位名单   发展改革委办公厅   工业和信息化部办公厅   住房城乡建设部办公厅   水利部办公厅   商务部办公厅   农业部办公厅   国家质检总局办公厅   各省、自治区、直辖市环境保护厅(局)   新疆生产建设兵团环境保护局   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   环境保护部环境工程评估中心   环境保护部环境规划院   环境保护部对外合作中心   中国环境科学学会   中国环境保护产业协会   中国无机盐工业协会   中国石油和化学工业协会   中国硫酸工业协会   中国石化集团南京设计院   全国硫酸工业信息站   东华工程科技股份有限公司   铜陵市铜官山化工有限公司   云浮硫铁矿企业集团公司化工厂   韶关市化工厂   武汉市中东化工有限公司   湖北省黄麦岭磷化工有限公司   武汉青江化工股份有限公司   普兰店市成达磷肥化工有限公司   山东恒邦冶炼股份有限公司   漾濞县跃进化工有限责任公司   浙江巨化股份有限公司   宁夏鲁西化工化肥有限公司   宜昌禾友有限责任公司   九江中伟科技化工有限公司   龙蟒磷制品股份有限公司   云南禄丰勤攀磷化工有限公司   瓮福(集团)有限责任公司   贵州西洋肥业有限公司   无锡东沃化能有限公司   双狮(张家港)精细化工有限公司   上海华谊集团上硫化工有限公司   云南云峰化学工业有限公司   中化重庆涪陵化工有限公司   贵州开磷(集团)有限责任公司   昆明化肥有限责任公司   湖北新洋丰肥业有限公司   四川龙蟒钛业股份有限公司   山东红日阿康化工股份有限公司   云南云天化国际化工股份有限公司富瑞分公司   中国石化集团南京化学工业有限公司   中国石油化工股份有限公司荆门分公司   山东鲁北企业集团总公司
  • 四川泸州15吨硫酸泄漏 饮水河流险遭污染
    21日凌晨5时01分,一辆从四川泸州出发前往重庆潼南县、牌照为川Z15809的运输槽车,在行至重庆大足县中敖镇加油站时,满载15吨硫酸的运输槽车突然发生泄漏,大量浓硫酸直喷而出,流下公路的排水沟,直逼大足县城居民饮水主河流。   重庆大足县消防大队接警后,迅速调集3台消防车、24名官兵赶赴现场。5时11分,消防官兵到场后勘察发现,硫酸运输槽车的车尾阀门螺丝松落,大量硫酸正猛烈向外喷射,外泄的硫酸混顺着公路往下流淌。   经询问得知,运输槽车里共装有15吨硫酸,浓度为98%,属浓硫酸。硫酸槽车上喷射的硫酸压力很大,根本无法进行堵漏。现场抢险人员在向当地政府应急办汇报的同时启动化危品事故应急救援预案,请求调集石灰到场对流淌硫酸进行中和处理,并立即协助现场交巡警,将现场堵塞的车辆及时清理。   不断喷出的硫酸很快淌下高速路的排水沟,消防官兵经侦查发现,大足县城居民饮水主河流距事发地不到100米,一旦遭遇污染,后果不堪设想。消防官兵迅速利用水枪对泄漏硫酸进行稀释,并向大足县相关领导汇报请求支援。   5时34分,重庆大足县相关领导率领县安监、环保等部门人员赶到现场,首先命令救援人员挖沟筑坝,对泄漏的硫酸混合物进行封堵,防止进入河流,同时命令就近的中敖派出所立即调运10吨石灰到现场,对硫酸进行稀释处理。   同时,当地交巡警也立即将此路段双向封锁,确保石灰运输车可逆向行驶,快速将石灰运抵现场 安监、环保、卫生、水利等部门则负责对硫酸流经的下水道进行监测。   随着石灰运来,消防官兵连续奋战3小时,一边对硫酸槽车喷射的硫酸一边将石灰扛到公路旁的下水沟里,堵住硫酸淌下河流,利用酸碱中和反应原理,对硫酸水进行处理。   8时21分,硫酸槽车泄漏口压力变小,处置硫酸专业技术人员到场,将硫酸槽车泄漏口进行了堵漏,剩余的浓硫酸被安全转移。8时50分,经过多部门近4个多小时的联合处置,事故现场全部清理完毕。
  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱 SRT® (5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性; ● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率; ● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命; ● 低盐浓度洗脱,适合LC-MS分析; ● 专利的表面修饰层,确保对样品的最大回收率; ● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。 &mdash &mdash 样品来源于某制药公司 良好的批间重现性 &mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m 孔径 (Å ) ~ 150 蛋白分子量范围 500 - 150,000 水溶性聚合物 分子量范围 500 - 25,000 pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5 反压 (7.8x300 mm) ~ 1,500 psi 最大耐受压力 (psi) ~ 4,500 盐浓度范围 20 mM - 2.0 M 最高使用温度 (oC) ~ 80 流动相的兼容性 常规水相及有机相溶剂应用实例 头孢地嗪钠 头孢西丁 头孢米诺钠 头孢拉定 头孢呋辛酯头孢地尼 头孢泊肟酯 美洛西林钠 磺苄西林钠 头孢尼西 头孢噻肟钠 头孢噻吩钠 比阿培南 阿莫西林 头孢噻利 头孢丙烯 泰比培南酯 磺苄西林钠破坏物 盐酸头孢替安 头孢硫脒 头孢特仑新戊酯 头孢哌酮钠 注:点击链接可见图谱。 优质服务 ● 提供免费的产品试用 ● 提供实际样品的色谱柱筛选和方法确认 促销公告 即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。 注:第二支体积排阻色谱柱市场价不得高于第一支。 订货信息 产品名称 粒度 孔径 规格 订货号 SRT SEC-100 5 &mu m 100 Å 7.8x300 mm 215100-7830 SRT SEC-1505 &mu m 150 Å 7.8x300 mm 215150-7830 Zenix SEC-100 3 &mu m 100 Å 7.8x300 mm 213100-7830 Zenix SEC-150 3 &mu m 150 Å 7.8x300 mm 213150-7830 Mono GPC-100 5 &mu m 100 Å 7.8x300 mm 230100-7830 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters® SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。 图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟. 制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 岛津生物药杂质和辅料分析解决方案,助推质量研究进程
    生物技术药物(简称:生物药)是什么?采用DNA重组技术或其他创新生物技术生产的治疗药物。 为什么制药企业这么关注质量控制?大多生物药由微生物或哺乳动物细胞制备而来,在生产过程中极易受到各种生物或理化条件的影响。 生物药品监管中质量控制都包括哪些内容?主要包括理化特性分析、生物学活性测定、生产工艺的优化、残留杂质检测、制剂安全性研究等等,贯穿生物药整个生产过程。其中,杂质与辅料的分析与控制,是不可缺少的环节之一。 岛津有好的解决方案吗?岛津全新推出《生物药杂质和辅料分析解决方案》,快来关注。 法规与技术指南生物医药行业发展迅猛,各种新技术、新产品不断出现,生物技术产品相关标准不断提高。为指导和规范生物技术药物的研究与评价工作,国家食品药品监督管理总局(NMPA)针对生物技术药物质量控制,先后出台了若干法规和技术指南,并紧跟国际前沿、不断完善条例标准、引进成熟技术应用于生物技术药物的质量控制,使得药物安全性得到进一步提高。这些法规和技术指南均是我国生物技术药物质量控制研究的重要指导依据,为生物技术药物杂质与辅料分析提供了强有力的指导和技术支撑。 岛津《生物药杂质和辅料分析解决方案》岛津紧跟生物药行业发展,将前沿先进的分析手段应用到生物技术药物研发过程,继推出《蛋白类生物技术药物开发和临床试验解决方案》后,细化生物技术药物研究领域,推出《生物药杂质与辅料分析解决方案》,助力生物技术药物质量研究发展。 《生物药杂质和辅料分析解决方案》 典型方案概览 一、浸出物与工艺杂质分析 应用案例1:LCMS-8050定量分析单抗生产用一次性细胞培养袋浸出物抗氧化剂bDtBPP标准品色谱图 bDtBPP标准曲线相关参数(采用1/C加权) 应用案例2:LCMS-8050定量测定Fc融合蛋白药物原液中的氢化可的松残留加标样品MRM谱图(2.0 ng/mL) 校准曲线参数(线性回归,权重为1/C) 应用案例3:ICPMS-2030测定蛋白药物中的杂质元素含量 样品分析结果及加标回收率(部分元素结果)备注:1.N.D表示未检出;2.*为使用No Gas模式,其余为He气碰撞模式 二 、聚集体与不溶性微粒分析 应用案例1:利用岛津Nexera Bio生物兼容液相系统分析贝伐单抗生物类似药的多聚体UHPLC-UV (220nm) 贝伐单抗生物类似药的色谱图 UHPLC-UV (220nm) 贝伐单抗生物类似药六次进样分析的色谱图 应用案例2:动态颗粒图像分析系统iSpect DIA-10测试生物药中不溶性微粒的粒度、粒形和颗粒圆度单抗药物中不溶性微粒粒形图 三、药用辅料分析 应用案例1:LC-MSMS定量重组人白介素中十二烷基硫酸钠实际样品中SDS典型色谱图 工作曲线及相关系数不同厂家重组人白介素产品中SDS的含量测定应用案例2:应用台式MALDI-TOF对注射剂中辅料吐温80进行降解评价不同保存条件下注射液制剂中吐温80的一级质谱图 更多应用详情,请关注岛津官网,下载岛津《生物药杂质和辅料分析解决方案》。*本文内容非商业广告,仅供专业人士参考。
  • 河南宝丰黑木耳检测镁超标3倍!硫酸镁浸泡为增重
    近日,河南宝丰黑木耳被检测发现镁超标,每千克黑木耳中镁的含量竟然达到了8500多毫克,而国家限定不得超过2500毫克。  宝丰县食品药品监督管理局的执法人员以顾客的身份买了一些黑木耳,并连夜送往洛阳黎明化工研究院化工新材料检测中心进行检测,监测结果让执法人员大吃一惊。  黑木耳被检测,镁超标指数惊人!  宝丰县食品药品监督管理局的执法人员告诉记者,他们在杨庄监督检查之后,看到路边晾晒了大面积的黑木耳。而执法人员警觉到,宝丰不属于这类黑木耳的生产地,这批黑木耳应该有很大的问题。  随即,执法人员以消费者的身份购买了一批黑木耳,并连夜将这些黑木耳送往洛阳黎明化工研究院化工新材料检测中心进行检测。  经过一个夜晚的等待,黑木耳的检测结果也很快出来,从检测报告上来看,每千克黑木耳中镁的含量竟然达到了8500多毫克,而国家限定黑木耳中的镁元素含量每千克不得超过2500毫克,所以,这批黑木耳中的镁元素严重超标。  惊人!这样的黑木耳生产过程!  宝丰县食药监局稽查大队负责人张晓兵告诉记者,这家黑作坊的老板的黑木耳是从山东滕州进购的。  黑作坊老板把进购来的黑木耳再掺入硫酸镁、白糖等东西,将黑木耳进行二次加工。加工之后,老板再将黑木耳摊放在比较隐蔽的地方进行晾晒。  在确定了黑作坊的违法事实后,执法人员将黑作坊的所有不合格黑木耳全部没收。最后确定,不合格的黑木耳总重高达2905.5公斤。  我们将这批有问题的黑木耳送到了河南国康监测中心,中心的张主任告诉我们,不法商贩之所以用硫酸镁和白糖浸泡黑木耳是为了给其增重。但是这些用硫酸镁等化学原料浸泡的黑木耳会让食用者出现恶心、呕吐、腹泻,甚至是昏迷的不良反应。
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节从2013年8月开始正式生效,它参考了 USP关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 和),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制