当前位置: 仪器信息网 > 行业主题 > >

半乳糖苷酶偶联级

仪器信息网半乳糖苷酶偶联级专题为您提供2024年最新半乳糖苷酶偶联级价格报价、厂家品牌的相关信息, 包括半乳糖苷酶偶联级参数、型号等,不管是国产,还是进口品牌的半乳糖苷酶偶联级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半乳糖苷酶偶联级相关的耗材配件、试剂标物,还有半乳糖苷酶偶联级相关的最新资讯、资料,以及半乳糖苷酶偶联级相关的解决方案。

半乳糖苷酶偶联级相关的资讯

  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • Oxoid推出快速确认食品中大肠杆菌方法
    Thermo Fisher Scientific(赛默飞世尔)旗下全球知名的微生物培养与诊断产品Oxoid最新推出了优化的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基,不仅能够对食品和水样中的大肠杆菌与大肠群菌快速分离、区分和计数,而且能够快速对大肠杆菌进行确认鉴定。 大肠杆菌和大肠菌群直接或间接来自人与温血动物的肠道,它们在食品中的出现预示某些肠道病原菌的存在,因此在国内外的检测标准中大肠杆菌和大肠菌群的数量都是评价食品卫生质量的重要指标之一。Oxoid的BrillianceTM大肠杆菌/大肠菌群选择性显色培养基中的显色剂用来检测大肠杆菌的ß -葡萄糖苷酸酶活性和大肠菌群的ß -半乳糖苷酶活性(包括大肠杆菌),因此平板上紫色的大肠杆菌菌落与粉色的大肠菌群菌落非常清晰地区分开来,可以快速、方便地对食品和水样中的这两种菌群进行分离、区分和计数。   现在,Oxoid对这款培养基的蛋白胨成分进行了优化,初步鉴定的紫色大肠杆菌菌落可以在平板上直接通过吲哚试验确认。向平板加入Kovac’s溶液,紫色的大肠杆菌菌落立刻呈现明显的樱桃红色,即确认为阳性的大肠杆菌,而无需额外的确认实验。   对于食品微生物常规检测项目,Oxiod还有其它的显色培养基:BrillianceTM沙门氏菌显色培养基,BrillianceTM李斯特菌显色培养基、BrillianceTM阪崎肠杆菌显色培养基、BrillianceTM蜡样芽孢杆菌显色培养基等。同时,Oxoid还在不断的研究开发新的产品,努力为食品行业微生物检测提供更简便、更快速的解决方案。   关于Oxoid   Oxoid 是 Thermo Fisher Scientific 旗下的知名微生物产品品牌,其产品涵盖整个微生物科学领域,为临床检验、工业生产领域和基础学术研究的微生物诊断提供优质的解决方案。Oxoid最初起源于欧洲,其历史可以追溯到十九世纪微生物科学开始的年代。Oxoid总部位于英国Basingstoke,并在全球设有多家生产厂,如加拿大、德国、澳大利亚等等。2006年Oxoid在中国北京设立了一条新的微生物制成培养基生产线,它的运营使中国的微生物工作者在微生物培养基产品上可以与世界标准接轨,并大幅度减少了微生物实验室操作的工作量,有效地提高了微生物实验室检验的标准化程度。2006年Oxoid正式成为全球科学服务领域的领导者Thermo Fisher Scientific旗下的品牌之一,与另一微生物品牌Remel组成微生物产品部,资源整合优化后,为全球的微生物工作者提供更全面的产品与更专业的服务!欲了解更多信息,请浏览网站:www.oxoid.com。
  • 生物酶促销
    产品货号:CFHN-E-BGLAN 产品名称:&beta -半乳糖苷酶 酶号:3.2.1.23 规格:8000Units(~40.9 U/mg) 报价:2840.00元/瓶 促销价:2130.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-BSPRPD 产品名称:蛋白酶 酶号:3.4.21.14 规格:1g (10 U/mg of protein) 报价:3160.00元/瓶 促销价:2370.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-AMGDF 产品名称:淀粉转葡萄糖苷酶 酶号:3.2.1.3 规格:40 mL(3260 Units/mL) 报价:2400.00元/瓶 促销价:1800.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ACPEC 产品名称:酸性磷酸酶 酶号:3.1.3.2 规格:400 Units(~17 U/mg) 报价:2420.00元/瓶 促销价:1815.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ALPEC 产品名称:碱性磷酸酶 酶号:3.1.3.1 规格:400 Units(~10 U/mg) 报价:2625.00元/瓶 促销价:1968.00元/瓶 促销日期截止2013.6.30日 产品货号:CFHN-E-ISAMY 产品名称:异淀粉酶 酶号:3.2.1.68 规格:1000 Units(~280 U/mg) 报价:3060.00元/瓶 促销价:2296.00元/瓶 促销日期截止2013.6.30日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • Megazyme生物酶促销
    产品货号:CFGK-IC-6-1 产品名称:6种阳离子混标,Li/Na/K/Ca/Mg/NH4,溶于1%稀硝酸 规格:125ml 品牌:NSI 报价:1860.00元/瓶 促销价:1300.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BGLAN 产品名称:&beta -半乳糖苷酶 酶号:3.2.1.23 品牌:Megazyme 规格:8000Units(~40.9 U/mg) 报价:2840.00元/瓶 促销价:1700.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BSPRPD 产品名称:蛋白酶 酶号:3.4.21.14 品牌:Megazyme 规格:1g (10 U/mg of protein) 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-AMGDF 产品名称:淀粉转葡萄糖苷酶 酶号:3.2.1.3 品牌:Megazyme 规格:40 mL(3260 Units/mL) 报价:2400.00元/瓶 促销价:1440.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ACPEC 产品名称:酸性磷酸酶 酶号:3.1.3.2 品牌:Megazyme 规格:400 Units(~17 U/mg) 报价:2420.00元/瓶 促销价:1450.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ALPEC 产品名称:碱性磷酸酶 酶号:3.1.3.1 品牌:Megazyme 规格:400 Units(~10 U/mg) 报价:2625.00元/瓶 促销价:1580.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-ISAMY 产品名称:异淀粉酶 酶号:3.2.1.68 品牌:Megazyme 规格:1000 Units(~280 U/mg) 报价:3060.00元/瓶 促销价:1830.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-BLAAM 产品名称:&alpha -淀粉酶 酶号:EC:3.2.1.1 品牌:Megazyme 规格:40mL - 3000 Units/mL 报价:2360.00元/瓶 促销价:1420.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GLUKEC 产品名称:葡糖酸激酶,己糖激酶 酶号:EC:2.7.1.12 品牌:Megazyme 规格:1500 Units 报价:2740.00元/瓶 促销价:1640.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-GPDHEC 产品名称:葡萄糖-6-磷酸脱氢酶 酶号:EC:1.1.1.49 品牌:Megazyme 规格:1500 Units 报价:5000.00元/瓶 促销价:3000.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGIEC 产品名称:磷酸葡萄糖异构酶 酶号:EC:5.3.1.9 品牌:Megazyme 规格:10000 Units 报价:2260.00元/瓶 促销价:1350.00元/瓶 促销日期截止2013.12.31日 产品货号:CFHN-E-PGDHEC 产品名称:6-磷酸葡萄糖脱氢酶 酶号:EC:1.1.1.44 品牌:Megazyme 规格:150 Units 报价:3160.00元/瓶 促销价:1900.00元/瓶 促销日期截止2013.12.31日 关键词:Magazyme 生物酶 促销 化学 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 技术支持:techservice@anpel.com.cn
  • Cell综述:冷冻电镜时代的新药研发
    基于结构的药物发现(Structure-based drug discovery, SBDD)是设计和优化创新药的必要方法。本篇综述将深入探讨冷冻电镜(cryo-EM)在SBDD领域中的快速崛起及它的主要作用,以及阐释它如何为高价值药理学靶点提供丰富的全新结构信息。冷冻电镜技术相比X射线晶体学的主要优势在于,它可以跳过繁琐的结晶步骤,从而直接对玻璃化的生物大分子进行成像;冷冻电镜也可以提供更多维度的信息,包括异质性和动态性。此外,本综述还将讨论冷冻电镜近期和未来的发展,并探讨该技术将在SBDD的管线中产生何种广泛的影响。冷冻电镜时代的SBDDSBDD是一种基于靶点的原子级结构基础信息,针对该靶点进行理性药物设计的研发方法。20世纪80年代,随着Captopril卡托普利和多佐胺Dorzolamide等酶靶向药物获批上市,SBDD方法初露锋芒。这一批由FDA批准的药物结合了晶体结构模型与计算机辅助分子建模这两大新兴技术,并成功解决了传统湿实验室的高通量筛选方法(HTS)所面临的昂贵、耗时及低回报率等问题。此后,随着计算技术的不断革新,大量药物靶点的晶体结构得以解析,SBDD方法进入了飞速发展阶段。从1999年到2013年,在113个获批的first-in-class药物中,有78个是基于SBDD方法发现的。尽管SBDD的发展足够迅速,但学界及制药行业内对它的期望显然更高。SBDD方法往往能另辟蹊径,对过往认为不可成药的靶点进行验证,并进一步开发新药。如K-Ras(G12C)靶点,它利用晶体学结构确定了一个以前未知的结合口袋,以避免与皮摩尔亲和力的GDP/GTP竞争。由于靶点验证是发现和开发工作中的主要难题之一,first-in-class药物分子可以为靶点的有效性和疾病应用提供新的见解,例如bromodomain溴结构域抑制剂(+)-JQ-1和I-BET762,这些化合物被成功用于表征和验证溴结构域在各种疾病中的重要性,并催生了大量的临床候选药物。即使是FDA批准的已知药物靶点,临床上也常常需要进一步的SBDD,比如有些药物需要进行更好的选择性的优化设计。厄菲替尼(erdafitinib)在经过针对性的设计改造后,表现出了相对于原先药物对成纤维生长因子受体更高的选择。此外,有一些药物可能需要优化效力或疗效,或提供特定受体亚型的选择性,如改善鞘氨醇-1-磷酸(S1P)抑制剂西波尼莫德(siponimod)对S1P1而非对S1P3的选择性,是提高其在疗效和安全性上优于非选择性S1P抑制剂的关键。该药物靶向S1P1,而非S1P3,此外,许多抗病毒、抗菌和抗癌药物正面临着抗药性问题,SBDD方法能够基于产生耐药性的靶点结构,对药物进行持续改进。SBDD工作的瓶颈在于获取高分辨率的生物靶点结构信息。虽然一些小而有序的生物分子满足X射线晶体学的研究范畴,但大部分已知靶点中的蛋白质,例如跨膜受体或动态复合物,都难以结晶,导致这些靶点蛋白无法利用晶体手段进行高分辨率结构解析。此外,X射线晶体学往往会对靶点蛋白进行改造,如进行截短体设计、引入热稳定性突变或插入一段外源的结构域,从而影响后续的SBDD结构信息分析。还需要考虑的一个关键因素是,大量的靶点蛋白性质上达不到结晶的条件要求。不过,上述的这些难点正被冷冻电镜技术逐一攻克。冷冻电镜技术的分辨率已足够高,其产生的大量数据也可用于计算辅助药物设计(CADD)方法,这也是本综述的核心议题。与X射线晶体学不同的是,冷冻电镜无需对目标靶点进行结晶:纯化过的靶点生物大分子会被瞬间冻结在一层薄薄的非结晶玻璃体冰中,再经由透射电镜成像以记录下几十万到几百万个冷冻电镜颗粒数据,用于重构三维静电势图并对大分子进行精确建模。因此,这种技术很适合于蛋白质复合物、热稳定性较低和动态运动较高的蛋白质以及脂质胶束中的跨膜蛋白质的结构测定。随着分辨率的不断提高,冷冻电镜已经成为药物设计的强大工具。冷冻电镜与药物发现在2014年之前,冷冻电镜几乎无法解析出优于4.0Å分辨率的结构,这直接导致它无法对SBDD工作提供有效的数据支持。然而,在过去的几年里,冷冻电镜方法的爆炸性突破产出了大量高分辨率的结构数据,这在以前是无法实现的。这一质的飞跃要归功于许多技术革新,如用于记录图像的直接电子探测器、改进的计算方法和处理大型数据集的硬件集群,这些技术的飞跃在其他文献内有详细回顾。此外,作为一种直接可视化的技术,冷冻电镜能够快速判断样品的聚集性和稳定性等问题,从而通过遗传和生物化学手段,用互作因子稳定蛋白、或通过优化去垢剂从细胞膜环境中提取膜蛋白等方法来快速改善样品质量。综合以上,在PDB中的分辨率为4.0Å或更高的冷冻电镜结构的数量已经从2014年之前的合计16个增长到仅2020年一年提交1753个新结构的规模(图1, A)。在新上传的结构中,分辨率高于4.0和3.5 Å的比例分别从2015年的36%和12%增加到2020年的75%和50%。更振奋人心的是,截止2020年,分辨率高于3.0Å和2.5Å的冷冻电镜结构比例,分别达到了18%和3%,实现了冷冻电镜结构解析前所未来的突破(图1, B)。为了系统评估冷冻电镜对SBDD领域的影响,我们(作者)调查了2018年美国200种最常用处方药的靶点相关结构数据。72%的靶点在PDB数据库中含有结构信息。细分而言,这些结构信息是通过X射线晶体学技术(42%)、冷冻电镜技术(15%)或两者结合(15%)而确定的(图1, C)。通过冷冻电镜技术解析的靶点涵盖了许多跨膜蛋白,如离子通道(GABAA、CaV、NaV和KATP)、激活态的G蛋白偶联受体(GPCRs)和转运体蛋白(5-羟色胺转运体、NaCl转运体)。图1.冷冻电镜分辨率的提高及其对蛋白质药物结构表征的贡献。(A) PDB中上传的低于特定分辨率的冷冻电镜结构的绝对数量;(B) PDB中上传的低于特定分辨率的冷冻电镜结构的百分比的。(C)2018年200个热门处方药的靶点图,按靶点的结构特征分类;(D)44个热门GPCRs处方药的靶点图,按结构特征分类;(E)2018年200个销量最高的药物的靶点图(作为新药的代表),按靶点的结构特征分类。2020年的数据是由Njardarson实验室公示的2018年200种最受欢迎的处方药和200种销量最高的药物的蛋白质靶点(如果适用),然后在PDB中确定相关结构,进行人工筛选。在200多种最常见的处方药中,GPCRs占据了44种,这些药物包括靶向GPCRs的激动剂、拮抗剂和反向激动剂(图1, D;注意,拮抗剂和反激动剂在药理学上不同,但在这里我们(作者)把它们统一归为拮抗剂)。这些GPCRs中的32个(73%)已经进行了某种形式的结构解析,包括与拮抗剂(44%)或激动剂(7%)结合的晶体结构,与激动剂(9%)结合的冷冻电镜结构,或由X射线晶体学和冷冻电镜手段共同进行的结构解析(20%)。值得注意的是,GPCR的高度动态结构使其难以获得高质量的晶体,因此大多数的GPCR晶体结构都是与拮抗剂结合后才得以进行结构解析的。综上所述,冷冻电镜技术在针对市场上已经存在多年的处方药中中具有深刻影响。为了更加深入了解冷冻电镜技术在未来药物发现中的作用,我们(作者)还调查了2018年取得最高利润的200种药物,以代表那些市面上新进发现的药物(图1, E),我们简称新药。这批新药和之前提到的那些最常用的药物之间存在明显的差异。相当一部分新药已经用晶体学进行了表征,反映了结构数据在当今药物研发工作中的重要性:即便不是由结构驱动的,也很少有不追求结构的情况,因为结构信息可以为先导化合物的优化和进一步发现提供关键数据。此外,考虑到漫长的药物开发时间,冷冻电镜这一最近几年才崛起的新技术在这份名单中的占比虽小,但贡献仍相当可观。这些药物和靶点包括生物制药、离子通道和GPCRs,以及其他不适合结晶的高活性大分子。冷冻电镜对SBDD的贡献解析新型结构虽然有许多FDA批准的药物靶点结构可被X射线晶体学解析,冷冻电镜正在为越来越多的难结晶、甚至不可结晶的靶点打开大门,如分子量更大、更动态的蛋白质和蛋白质复合物。冷冻电镜也显著降低了对细胞内复合体的研究难度,如病原体的核糖体、染色质修饰复合体和转录机器。例如冷冻电镜技术近期解析了一种与线粒体体RNA聚合酶复合体相关的first-in-class 抑制剂的结构。值得注意的是,在膜蛋白领域,冷冻电镜的贡献无可比拟。不管是传统的药物,还是新型处方药,很多药物靶向针对GPCRs、离子通道和转运体蛋白。然而,利用X射线晶体学手段来解析膜蛋白的结构非常困难。尽管脂质立方结晶在GPCR领域取得了一些进展,但在结晶过程中,GPCR蛋白通常需要进行热稳定突变,或融合其他蛋白进行改造,以促进晶体的形成。并且,为了获取某种改造后的稳定的构象,还需要对克隆构建、实验方法及条件进行大量繁琐复杂的筛选。相比之下,冷冻电镜结构可以直接用来解析经过去污剂或纳米盘处理后的在生化上性质稳定的膜蛋白,并获得处于或者接近生理状态的蛋白的结构。冷冻电镜的在解析庞杂的膜蛋白的结构中能力势不可挡,并且已有大量的高分辨率结构被成功解析。长久以来膜蛋白一直都是获批药物的热门靶点,它们的结构也只是近期才被冷冻电镜揭示(图2)。图2. G蛋白偶联受体、转运体(上排)和离子通道(下排),每个受体有相应的FDA批准的配体分子(蓝框)。利用冷冻电镜解析膜蛋白结构的突出进展,部分原因受益于新试剂的设计和使用。这些试剂可以在体外纯化过程中维持跨膜蛋白的结构,在冷冻制样过程中保护蛋白,并为高分辨率的结构解析提供均质样品。去垢剂如正十二烷基β-D-麦芽糖苷(DDM)和月桂基麦芽糖新戊二醇(LMNG),可以有效地从细胞膜上溶解跨膜蛋白,并维持蛋白质的生理状态构象。去垢剂的使用也会产生一些问题,如去垢剂形成的空胶束和与包裹蛋白质的去垢剂同时存在存在会引起样品的不均一,对后期的数据处理处理产生影响;也可能会导致冷冻样品制备时的气液界面收到破坏,产生一些不好的结果。脂质纳米盘是去垢剂的一种替代品,原则上可以为结构和生物物理研究提供接近胜利状态的脂质双分子层。脂质纳米盘在膜蛋白药物靶点上的应用已经非常关键和广泛。举例而言,将纳米盘与冷冻电镜技术相结合,成功阐明了TRPV1和TRPV5离子通道(在TRPV1的情况下,脂质对抑制剂的结合至关重要)、GABAA配体门控离子通道、人类P-糖蛋白以及GPCR-β-arrestin复合物的高分辨率结构和机制。关于纳米盘的进一步介绍可查阅。冷冻电镜还可以用来解析嵌入脂质体中的蛋白质的结构,允许在更接近生理状态的的电化学梯度中对离子通道以及孔蛋白进行可视化研究。在过去的几年中,冷冻电镜也在生物制药领域产生了巨大影响。在较新的药物中,生物制药的占比正越来越高。如果仅将目光聚焦于药物靶点识别这一领域,生物制药的结晶技术确实称得上有所改善。然而,冷冻电镜已经为一些关键的生药物研发提供了基于全长蛋白的结构信细节息胰岛素受体一种二聚化的酪氨酸激酶受体蛋白,在调节人体的葡萄糖平衡方面起着关键作用。胰岛素受体信号通路的失调会引起一些疾病,如II型糖尿病,全球约有9.3%(4.63亿人)受到影响两个独立的研究小组利用冷冻电镜在胰岛素受体结构解析方面取得了突破进展;第一个小组以4.3Å和7.2Å的分辨率分别解析了与一个或两个胰岛素分子结合的胰岛素受体胞外结构域结构,第二个小组以3.1Å的分辨率获得了与四个胰岛素分子结合的胰岛素受体胞外结构域结构(图3, A)。这些结构解释了胰岛素受体结合胰岛素的不同结合位点,以及激活这一关键药物靶点所进行的构象变化。类似的例子比比皆是:从HER2-trastuzamab-pertuzumab复合物到SARS-CoV-2和中和抗体的结构解析,冷冻电镜为生物治疗的新老靶点提供了新的视点,为进一步发现和开发仿制药和first-in-class药物铺平了道路。另一个值得注意的例子是B淋巴细胞抗原CD20,它是治疗白血病和自身免疫性疾病的一个重要的治疗靶点,尽管其功能作用仍不清楚。尽管CD20的分子量较小,只要35kDa左右,但分别与单克隆抗体利妥昔单抗(rituximab)、奥法图单抗(ofatumumab)和奥比努单抗(obinutuzumab)的Fab结合形成复合物后,都解析获得分辨率较高的CD20复合物结构(图3, B)。负染结果显示,利妥昔单抗与CD20结合后,可诱导形成高度有序的高级结构,这一发现对激活先天免疫的补体系统提供了全新见解。由于复合物中的高度动态和跨膜结构域的存在,利用结晶手段结构解析几乎不可能实现,冷冻电镜技术的应用实现了这一可能。图3.冷冻电镜(cryo-EM)在小分子和生物制药发现方面的效用。(A)与胰岛素结合的胰岛素受体(PDB ID 6PXV)和(B)CD20与利妥昔单抗复合物(PDB ID 6VJA)冷冻电镜密度图。(C)使用GemSpot(PDB ID 6CVM)将小分子PETG精确地建模到β-半乳糖苷酶的冷冻电镜图像中。(D)基于片段的PKM2的发现,冷冻电镜密度允许正确识别和放置发现片段(PDB ID:6TTF)尽管冷冻电镜在膜蛋白结构测定领域已经迈出了一大步,但短板仍然存在。其中一个短板是解析小于50-70kDa的没有明显的胞内或胞外结构域的单体膜蛋白,由于几乎没有胞外结构域特征,因此难以对去垢剂胶束或脂质纳米盘进行降噪处理,以这种方式收集到的数据难以产出高分辨率结构,比如解析没有上下游偶联蛋白的处于非活性状态的的GPCR结构。然而,大量的蛋白质属于这一类型,解析这一类型的的膜蛋白因此也成为了一个重要的研究领域。目前,有一些解决方案正处于研究阶段,且已经取得了一定程度的成功,如前文所述的CD20。随着利用增加融合蛋白、抗体片段、纳米抗体、纳米抗体衍生物或其他支架蛋白以增加靶点蛋白的分子量等方法的应用,预计冷冻电镜在膜蛋白结构测定方面会有更多进展。计算赋能冷冻电镜冷冻电镜单颗粒技术利用数百万个颗粒的可视化投影来重建静电势图,这通常涉及数十万亿字节的原始数据。因此,该方法从计算方法的快速发展中获益匪浅,这些计算方法同时满足了对更高的分辨率的需求并加深了对粒子动力学的理解。然而,与X射线晶体学相比,冷冻电镜在获取配体-靶点复合物的高可信度模型时仍然面临着一些难题。其中一个难题是冷冻电镜难以解析得到高于2.5Å的蛋白结构,而这通常是建模人员能够精确放置配体并解析出结合位点处水分子的最低分辨率。此外,冷冻电镜的结构建模流程与晶体学完全不同:在晶体学中,模型和密度图之间有一套严格而完善的统计测量方法,该方法能够提供和模型精度相关的关键信息。而在冷冻电镜方法中,基于密度图的建模是一个完全独立的过程,仅适用收集的电镜投影来进行密度图重构,然后基于密度图进行结构建模和实空间下的微调。该过程的独立性使得模型的精度被降低了。这一问题在最近已得到改善。此外,两种方法之间还存在一些物理上的差异,如晶体学依赖电子密度图,而冷冻电镜依赖静电势图。这些差异加在一起,使得晶体学的模型验证工具无法应用于冷冻电镜模型。因此,我们可能需要为精确性开发一些新的指标。一种解决方案是使用强大的计算技术和精确的分子力场对大分子及其配体在冷冻电镜结构中的相互作用进行模拟。比如PHENIX软件包结合实空间和傅里叶空间微调和OPLS3e力场的分子动力学模型,从而生成生物分子和小分子的几何统计精修模型。OPLS3e微调工具已经被整合进到我们(作者)的自研软件GemSpot,它将各种计算方法整合为一个工作流程,从而提高冷冻电镜密度图中配体位置的准确性(图3C)。新的计算工具也推动冷冻电镜在基于片段的药物发现(Fragment-based drug discovery)中发挥作用,其中高溶解度的小片段化合物被浸泡在由多个不同结构的化合物组成的生物分子靶点中。解析复合体的结构可以解释配体与结合口袋之间关键位点的相互作用,然后可以将其组合成一个先导化合物。然而,这种方法要求配体密度质量高、分辨率高,才能正确区分配体的姿态和原子类型,目前对于冷冻电镜来说还是一个难题。最近,Saur等人在高度棘手的β-半乳糖苷酶和颇具治疗意义和挑战性的激酶PKM2的场景中成功地将冷冻电镜用于FBDD。尽管他们为了将配体置放于密度图中,而不得不将干法和湿法实验结合,但他们成功地建立了一个与β-半乳糖苷酶结合的大约150kDa的精准片段模型。更令人印象深刻的是,他们能够从四种化合物的鸡尾酒中确定哪些片段与PKM2结合(图3, D)。因此,不断发展的计算方法为冷冻电镜密度图的构建提供了一个强大的平台,可以在高分辨率下对大分子复合物进行建模。冷冻电镜的快速发展可及性与通量的提升冷冻电镜是极为精密且昂贵的仪器,需要大量的费用和人力成本来搭建、维护与操作。这一特性在很大程度上限制了冷冻电镜的发展,并将冷冻电镜的机时资源集中在了那些受政府资金扶持的大型机构上。因此,在科研界中,冷冻电镜资源的获取门槛极高。然而,这一门槛正在被逐渐降低:许多国家级设施都启动了冷冻电镜人才培养计划,以降低冷冻电镜运维的人力成本。一些大型制药公司也开始进行内部投资,设立最先进的冷冻电镜设施。此外,冷冻电镜设施的可复制性远超晶体学极其昂贵的同步加速器和线性加速器,使得该技术更有发展前景。随着100kV电子束技术的发展,未来可能会出现性价比极高的冷冻电镜,增加其在药物发现领域中的应用场景。鉴于2018年FDA批准的药物中有49%来源于中小型公司,降低冷冻电镜的成本将使冷冻电镜技术得到更广泛的应用。最近对SARS-CoV-2相关蛋白的结构表征证明了冷冻电镜的无限潜力。在病毒爆发后的几个月内,科学家们利用冷冻电镜,以极快的速度解析了新冠病毒刺突蛋白的几种构象,以及它与人源血管紧张素转换酶或许多中和人源抗体片段的复合物的结构。最近获得FDA批准的用于治疗COVID-19的再利用药物瑞德西韦(Remdesivir)与SARS-CoV-2 RNA聚合酶结合的结构也已被冷冻电镜解析。鉴于X射线晶体学一直是病毒RNA聚合酶结构测定的传统方法,对新冠病毒的冷冻电镜结构解析是一个颠覆性的创新,凸显了冷冻电镜的高时效性特点在快速反应研究中的应用。此外,冷冻电镜的分辨率仍在大幅提高,最近的一份报告指出,作为冷冻电镜的代表性复合物结构,去铁蛋白apoferritin的分辨率达到了1.25Å,该分辨率足以对单个原子进行精准定位,在某些情况下甚至可以解析氢原子和质子化态。毋庸置疑,在样品制备良好的情况下,冷冻电镜的不断改进将持续打破结构解析的分辨率记录。冷冻电镜在药物发现和开发方面的应用将进一步受益于该技术的全面自动化。在载网准备方面,一些自动化工具正在出现,以解决不可重复性和样品浪费的难题。这些技术的改进不仅会提高自动化的程度和可及性,还可能解决冷冻电镜载网制备中的其他难题,如减少颗粒在空气及水中的暴露程度。此外,机器学习方法和深度神经网络也是提高颗粒筛选速度和准确性的关键。这些自动化方法甚至有望在未来成为冷冻电镜的核心技术,从而推动冷冻电镜在药物发现领域的发展。主流硬件和软件的改进也有望提高冷冻电镜在SBDD领域的可及性。例如,更高效的检测设备能显著提高冷冻电镜的产能。在一个标准的数据收集过程中,老式的检测器相机可以每次收集1个影像,每小时产生50个影像,而较新的检测器可以每次收集9-16个影像,每小时可以产生超过200个影像,进而转化为每24小时收集的数百万颗粒投影数据。此外,虽然今天许多最高分辨率的结构是用300kV冷冻电镜获得的,但这些机器非常庞大,且前期和维护成本昂贵。在许多情况下,对于单颗粒分析中使用的薄样品,200kV的显微镜可能就足够了,甚至100kV的显微镜也可以用来获得分辨率高达3.4 Å的结构。分子动力学的新窗口结合硬件和数据处理方面的改进,冷冻电镜的潜力将进一步被释放。当X射线晶体学受限于结晶条件而无法解析时,冷冻电镜的低样品需求大幅降低了数据收集的门槛,使我们得以看到样品的构象连续体或一系列不同的能量最低状态,为大分子动力学提供了新的窗口。图4.单一的冷冻电镜数据集,投影的三维分类显示了两种不同的构象,代表了两种不同的G蛋白偶联受体-G蛋白相互作用的状态,代表了两种热力学上可比较的构象。在典型状态下(左边,PDB ID 6OS9),受体以典型的方式与G蛋白结合,其中核苷酸结合口袋为GTP结合做准备。在非经典状态下(右图,PDB ID 6OSA),G蛋白异源三聚体与经典状态相比旋转了45°,代表了沿G蛋白偶联途径的中间配体结合受体状态。缩写:α-N=G蛋白的N端α螺旋;cryo-EM=冷冻电镜;TM=跨膜螺旋。一些计算工具,例如二维和三维分类以及子区域的重点细化,能够利用数据集内颗粒的异质性来模拟大分子活性成分的运动。在我们(作者)小组最近的一个例子中,对神经紧张素1受体的冷冻电镜单颗粒分析结果揭示了先前识别的G蛋白、激动剂结合状态和G蛋白偶联通路上的一个新的中间状态(图4)。最近,我们(作者)还将AI深度学习网络应用于冷冻电镜数据集,揭示了26S蛋白酶体的构象动态,使解析出的结构细节达到了前所未有的原子级水平。随着分辨率和分类工具的不断改进,我们将获得更精细的构象变化。有了以上这些技术,再加上分子动力学模拟和机器学习方法等计算技术,我们将得以对配体结合的复杂过程进行更精确的建模,从而揭示全新的、可成药的中间状态。结语尽管冷冻电镜已经在SBDD领域取得了飞跃性的进展,但它的潜力远不止于此。在三维分析重构及深度学习算法等领域,若能将计算工具与更大、更高质量的数据集结合并进行训练,我们将能够描述蛋白质甚至其配体的更小幅度、更高分辨率的动态运动。我们还期望冷冻电镜在时间维度上的结构解析方法将使人们对大分子复合物的结合和解离过程有更深了解,为靶向药物的研发提供更多思路和机会。目前晶体学和大多数冷冻电镜结构所提供的只是能量最小值的瞬间结构,但对于开发新的药物作用模式而言,对机制和中间状态的理解至关重要,所以我们若能获取构象的动态信息,则对理性药物设计具有突破性意义。在综合了冷冻电镜的软硬件及方法的快速发展之后,我们可以得出结论:冷冻电镜有望为药物发现和人类健康做出巨大贡献。词表:1. 激动剂一种通过增加受体活性以产生生物反应的物质。2. 拮抗剂(也称中性拮抗剂)一种能阻断激动剂或反向激动剂的物质,在不存在激动剂或反向激动剂的情况下便没有活性
  • 冷冻电镜分辨率达2.2Å 促药物研发进入新时代
    科学家们用冷冻电镜(cryo-EM)成像了代谢酶与其抑制剂的结合,获得了空前的高分辨率。他们认为,这种技术将为药物研发带来一场革命。   了解一个酶与药物结合时的精确结构,就可以更好的设计药物来阻断或者增强酶的活性。美国国立癌症研究所NCI(隶属NIH)的Sriram Subramaniam博士领导研究团队,对&beta -半乳糖苷酶(beta-galactosidase)及其抑制子PETG(phenylethyl-beta-D-thiogalactopyranoside)进行了高分辨率成像(2.2 Å ),并将结果发表在五月七日的Science杂志上。   &ldquo 以成像人类蛋白为基础的药物研发进入了新时代,&rdquo NIH主管Francis S. Collins博士说。&ldquo 近原子水平的蛋白结构,为理解细胞过程提供了极为详细的信息。&rdquo   药物研发人员往往要分析小分子与蛋白质的相互作用,而且分辨率越高越好。现在Subramaniam等人达到了cryo-EM成像迄今为止的最高分辨率(2.2 Å ),此前只有X射线晶体衍射达到过这种水平的分辨率。这能为人们提供足够的结构信息,进行更好的药物研发。   用cryo-EM进行结构分析时,需要在液氮温度下瞬间冷冻蛋白质悬液,让蛋白质分子周围的水分保持类似液体的状态,然后再通过成像解析蛋白分子的三维结构。1995年,Richard Henderson曾作过一个大胆的预测:在理想条件下,冷冻电镜(cryo-EM)检测蛋白结构应该可以达到3 Å 的分辨率。现在研究者们已经成功突破了这一理论极限。   &ldquo cryo-EM技术允许我们成像相对较小的蛋白,在接近天然环境的条件下获得高分辨率结构,蛋白结构不受结晶过程的影响。这些优势使其成为了革命性的技术,&rdquo Dr. Subramaniam说。   研究人员用大约四万张分子图像,建立了&beta -半乳糖苷酶结合PETG的结构模型。他们明确了PETG的结合位点,揭示了复合体中的离子和水分子,获得了极为详细的氨基酸排列。   Dr. Subramaniam及其同事近年来用cryo-EM研究了一系列有重要医学意义的分子,比如HIV的包膜糖蛋白以及脑细胞中的谷氨酸受体。而这项研究是分辨率最高的一次结构分析。   &ldquo Cryo-EM逐渐成为了结构生物学和癌症药物研发中的强大工具,&rdquo NCI 的Douglas Lowy说。&ldquo 就算是难以结晶的蛋白,Cryo-EM也很容易获得高分辨率的三维结构。&rdquo
  • 日本研制出新型癌症荧光检测试剂
    日本东京大学等机构的研究人员研制出了一种卵巢癌新型荧光检测试剂。据称,该试剂可检测出1毫米以下的微小卵巢肿瘤。相关研究报告发表于近日出版的英国《自然· 通讯》杂志上。   在通过手术切除卵巢肿瘤时,如能切除1毫米以下的微小肿瘤,治疗效果将大幅提高。但是,医生很难将微小肿瘤与正常卵巢组织区分开来。   东京大学浦野泰照教授等报告说,他们开发出一种名为&ldquo gGlu-HMRG&rdquo 的荧光检测试剂。这种试剂本身无色透明,但其与卵巢癌细胞的&beta -半乳糖苷酶发生反应后,会发出强烈荧光。   动物实验显示,在向患卵巢癌实验鼠的肿瘤部位喷洒这种荧光检测试剂后,数分钟内癌组织就会发出明亮荧光,肉眼便可观察到,分辨精度小于1毫米。研究人员以荧光为标记,成功切除了动物体内的肿瘤。   研究人员认为,由于检测时只需使用微量试剂,所以副作用很小。如果改善试剂使其能与其他酶结合,这种试剂还有望用于检测其他癌细胞。他们准备进一步验证这种试剂的安全性和精确性,争取3~5年内开展临床试验。
  • 新西兰修订《澳新食品标准法典》
    近日,新西兰食品安全局(NZFSA)发布了对《新西兰(澳大利亚、新西兰食品标准法典)食品标准2002》的第31号修订案。   该修订案对《食品标准法典》作了第117号修订,主要内容如下:   1、允许在糖霜和糖粉中使用食用色素3号赤藓红   2、允许使用由转基因玉米(耐除草剂)LineDP-098140-6加工的食品   3、允许使用β-半乳糖苷酶作为加工助剂(酶)   4、允许使用麦芽四糖淀粉酶作为加工助剂(酶)。   该修订案将于2010年9月2日生效。
  • 农业农村部:《食用菌中粗多糖的测定 分光光度法》等74项农业行业标准发布
    《畜禽品种(配套系) 澳洲白羊种羊》等74项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2023年8月1日起实施。标准编号和名称见附件。该批标准文本由中国农业出版社出版,可于发布之日起2个月后在中国农产品质量安全网(http://www.aqsc.org)查阅。特此公告。附件:《畜禽品种(配套系) 澳洲白羊种羊》等74项农业行业标准目录农业农村部2023年4月11日相关标准如下:序号标准编号及标准名称代替标准号1NY/T 129-2023 饲料原料 棉籽饼NY/T 129-19892NY/T 1676-2023 食用菌中粗多糖的测定 分光光度法NY/T 1676-20083NY/T 2316-2023 苹果品质评价技术规范NY/T 2316-20134NY/T 4326-2023 畜禽品种(配套系)澳洲白羊种羊5NY/T 4327-2023 茭白生产全程质量控制技术规范6NY/T 4328-2023 牛蛙生产全程质量控制技术规范7NY/T 4329-2023 叶酸生物营养强化鸡蛋生产技术规程8NY/T 4330-2023 辣椒制品分类及术语9NY/T 4331-2023 加工用辣椒原料通用要求10NY/T 4332-2023 木薯粉加工技术规范11NY/T 4333-2023 脱水黄花菜加工技术规范12NY/T 4334-2023 速冻西兰花加工技术规程13NY/T 4335-2023 根茎类蔬菜加工预处理技术规范14NY/T 4336-2023 脱水双孢蘑菇产品分级与检验规程15NY/T 4337-2023 果蔬汁(浆)及其饮料超高压加工技术规范16NY/T 4338-2023 苜蓿干草调制技术规范17NY/T 4339-2023 铁生物营养强化小麦18NY/T 4340-2023 锌生物营养强化小麦19NY/T 4341-2023 叶酸生物营养强化玉米20NY/T 4342-2023 叶酸生物营养强化鸡蛋21NY/T 4343-2023 黑果枸杞等级规格22NY/T 4344-2023 羊肚菌等级规格23NY/T 4345-2023 猴头菇干品等级规格24NY/T 4346-2023 榆黄蘑等级规格25NY/T 4347-2023 饲料添加剂 丁酸梭菌26NY/T 4348-2023 混合型饲料添加剂 抗氧化剂通用要求27NY/T 4349-2023 耕地投入品安全性监测评价通则28NY/T 4350-2023 大米中2-乙酰基-1-吡咯啉的测定气相色谱-串联质谱法29NY/T 4351-2023 大蒜及其制品中水溶性有机硫化合物的测定 液相色谱-串联质谱法30NY/T 4352-2023 浆果类水果中花青苷的测定 高效液相色谱法31NY/T 4353-2023 蔬菜中甲基硒代半胱氨酸、硒代蛋氨酸和硒代半胱氨酸的测定 液相色谱-串联质谱法32NY/T 4354-2023 禽蛋中卵磷脂的测定 高效液相色谱法33NY/T 4355-2023 农产品及其制品中嘌呤的测定 高效液相色谱法34NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法35NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法36NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法37NY/T 4359-2023 饲料中16种多环芳烃的测定 气相色谱-质谱法38NY/T 4360-2023 饲料中链霉素、双氢链霉素和卡那霉素的测定 液相色谱-串联质谱法39NY/T 4361-2023 饲料添加剂 α-半乳糖苷酶活力的测定 分光光度法40NY/T 4362-2023 饲料添加剂 角蛋白酶活力的测定 分光光度法41NY/T 4363-2023 畜禽固体粪污中铜、锌、砷、铬、镉、铅汞的测定 电感耦合等离子体质谱法42NY/T 4364-2023 畜禽固体粪污中139种药物残留的测定 液相色谱-高分辨质谱法43NY/T 4365-2023 蓖麻收获机 作业质量44NY/T 4366-2023 撒肥机 作业质量45NY/T 4367-2023 自走式植保机械 封闭驾驶室 质量评价技术规范46NY/T 4368-2023 设施种植园区 水肥一体化灌溉系统设计规范47NY/T 4369-2023 水肥一体机性能测试方法48NY/T 4370-2023 农业遥感术语 种植业49NY/T 4371-2023 大豆供需平衡表编制规范50NY/T 4372-2023 食用油籽和食用植物油供需平衡表编制规范51NY/T 4373-2023 面向主粮作物农情遥感监测田间植株样品采集与测量52NY/T 4374-2023 农业机械远程服务与管理平台技术要求53NY/T 4375-2023 一体化土壤水分自动监测仪技术要求54NY/T 4376-2023 农业农村遥感监测数据库规范55NY/T 4377-2023 农业遥感调查通用技术 农作物雹灾监测技术规范56NY/T 4378-2023 农业遥感调查通用技术 农作物干旱监测技术规范57NY/T 4379-2023 农业遥感调查通用技术 农作物倒伏监测技术规范58NY/T 4380.1-2023 农业遥感调查通用技术 农作物估产监测技术规范 第1部分:马铃薯59SC/T 1135.8-2023 稻渔综合种养技术规范 第8部分:稻鲤:(平原型)60SC/T 1168-2023 鳊61SC/T 1169-2023 西太公鱼62SC/T 1170-2023 梭鲈63SC/T 1171-2023 斑鳜64SC/T 1172-2023 黑脊倒刺鲃65SC/T 1174-2023 乌鳢人工繁育技术规范66SC/T 2001-2023 卤虫卵SC/T 2001-200667SC/T 3058-2023 金枪鱼冷藏、冻藏操作规程68SC/T 3059-2023 海捕虾船上冷藏、冻藏操作规程69SC/T 3060-2023 鳕鱼品种的鉴定 实时荧光PCR法70SC/T 3061-2023 冻虾加工技术规程71SC/T 4018-2023 海水养殖围栏术语、分类与标记72SC/T 6106-2023 鱼类养殖精准投饲系统通用技术要求73SC/T 9443-2023 放流鱼类物理标记技术规程74SC/T 9444-2023 水产养殖水体中氨氮的测定 气相分子吸收光谱法
  • 北化徐福建团队:阳离子光敏剂烷基链长度对活性氧抗菌机制的影响
    近日,北京化工大学材料科学与工程学院徐福建教授团队和济宁医学院的李敬博士在Adv. Mater.上发表了题为“Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms”的研究论文。阳离子光敏剂与带负电荷的细菌和真菌具有良好的结合能力,在抗菌光动力疗法(aPDT)中应用广泛。然而,阳离子光敏剂对病原菌,尤其是真菌与哺乳动物细胞不具有选择性,往往会存在生物安全性的问题。同时,由于缺乏对相同光敏剂的系统性研究,目前尚不清楚细菌的哪些生物活性分子位点是光动力的有效损伤位点。因此,以小檗碱(BBR)为光敏剂核心,设计并合成了一系列具有不同烷基链长度的阳离子聚集诱导发光(AIE)衍生物(CABs),用于灵活调节阳离子光敏剂对细胞活性物质的选择性。BBR核心可以有效地产生活性氧(ROS),并在生理环境中实现高性能的aPDT。通过精确调节烷基链长度,实现了CABs在细菌、真菌和哺乳动物细胞中的不同结合、定位和光动力杀伤效果。研究发现,aPDT更有效的损伤位点是细胞内活性物质(DNA和蛋白质),而不是细菌膜。中等长度烷基链的CABs在光照下能有效地杀死革兰氏阴性菌和真菌,同时仍然保持良好的生物安全性。通过HOMO-LUMO实验证明烷基链长度的改变并不会改变核心BBR的AIE性能,但是随着烷基链的增长,CABs更容易形成分子间聚集体。与此同时,随着烷基链的增长,CABs与细菌的结合速率与结合量增加。CAB-8光照时的抗菌性能提升更明显。进一步的激光共聚焦定位实验证明,烷基链长调控CABs在细菌内的定位,CAB-8进入细菌,CAB-10卡在膜上。通过分子动力学模拟实验发现,CAB-10比CAB-8要克服更大的自由能,导致CAB-10卡在细菌膜上。透射电镜冷冻切片证明,CABs的定位调控杀伤,CAB-8损伤菌内活性物质,CAB-10损伤细菌膜上。进一步通过液质联用、DNA彗星实验以及β-半乳糖苷酶检测证明:CAB-10(膜上)膜损伤程度大于CAB-8(膜内),CAB-8(膜内)对DNA、酶损伤程度大于CAB-10(膜上)。随着烷基链的增加,CABs进入真菌的能力增强:CAB-10>CAB-8 CAB-6。同时,烷基链越长,CABs进入哺乳动物细胞的能力越强,具体表现为CAB-10的细胞毒性远大于CAB-8和CAB-6。综上所述,CAB-8可以很好的平衡光动力杀菌和生物相容性,具有高效杀菌性和生物安全性。该研究通过烷基链的定位调控,解决了阳离子光动力抗菌材料对细菌、真菌、哺乳动物细胞不具有选择性造成的生物安全问题,同时证明了相对于细菌膜来说,细菌内部的活性物质是光动力更为有效的氧化位点。本研究有望为构建具有良好选择性的高性能阳离子光敏剂提供系统的理论和研究指导。北京化工大学材料科学与工程学院博士生郑良和博士生朱艺文为本文的共同第一作者。材料科学与工程学院徐福建教授和俞丙然教授、济宁医学院的李敬博士为本文的通讯作者。北京化工大学为第一完成单位。本研究工作得到了国家重点研发计划,国家自然科学基金,和北京市优秀青年科技人才计划的资助。
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 医疗污水处理过程中的微生物检测标准及方法解析
    为什么需要如此重视医疗污水和城镇污水监管工作呢?美国PM Gundy的研究团队曾在《Survival of Coronaviruses in Water and Wastewater》一文中指出,水体中的有机物和悬浮固体可以吸附冠状病毒,为病毒的存活提供了保护。同时,从污水流向的我们不难看出,粪便最终排到了污水处理厂,这些可能携带新型冠状病毒的废水,在污水处理中形成携带病毒的气溶胶,从而形成了气溶胶传播的环境,使污水处理人员成为感染风险较大的群体,对阻止疫情传播有很大的影响。因此,医疗机构、污水处理机构及环境监测部门,都是控制病毒通过污水传播的关键。 目前,为有效防止新型冠状病毒通过粪便和污水扩散传播,生态环境部门要求对要接收新型冠状病毒感染的肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)、相关临时隔离场所及研究机构,严格执行《医疗机构水污染物排放标准》,并参照《医院污水处理技术指南》、《医院污水处理工程技术规范》和《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》等有关要求,对污水和废弃物进行分类收集和处理,确保稳定达标排放;同时,地方生态环境部门要督促城镇污水处理厂切实加强消毒工作,结合实际,采取投加消毒剂或臭氧、紫外线消毒等措施,确保出水粪大肠菌群数指标达到《城镇污水处理厂污染物排放标准》要求。 通过对比以上标准发现,在这些污水处理过程中,粪大肠菌群数是评判污水处理是否合格的关键微生物指标。研究表明,污水中粪大肠菌群数量与肠道致病菌数量存在相关关系,当污水中粪大肠菌群数超过1174个/L时,即可在污水中检出病原菌,因此将粪大肠菌群数作为特征指示性指标对这些微生物进行控制。 根据检测方法、应用领域和污染情况的不同,各标准中对粪大肠菌群数的限量也不同(表1)。目前,可用于检测水体中粪大肠菌群数的方法有4种,分别是多管发酵法、膜过滤法和快速荧光检测法、酶底物法,其中前三种认可度较高,且使用较广泛。 1 膜过滤法 膜过滤法是目前最常用于水体中粪大肠菌群数检测的一种标准方法,也是《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》中的指导方法,可于地表水、地下水、生活污水、工业废水及医疗污水等样本的检测。 该方法使样品通过孔径为0.45μm的滤膜过滤,细菌被截留在滤膜上,然后将滤膜置于MFC选择性培养基上,在特定的温度(44.5℃)下培养24h,胆盐三号可抑制革兰氏阳性菌的生长,粪大肠菌群能生长并发酵乳糖产酸使指示剂变色,通过颜色判断是否产酸,并通过对呈蓝色或蓝绿色的菌落进行计数,从而测定样品中粪大肠菌群浓度。 膜过滤法的关键在于样品前处理,需借助抽滤装置才可完成,使微生物被截留在无菌滤膜上,并通过物理的方式进行富集,以保证粪大肠菌以菌落形态被检出。目前,市面上已有较为成熟、有效的的水中膜过滤装置,可用于水体中微生物前处理操作。专为水质样品前处理、富集等操作设计;结构精巧,配合精密抽滤泵,保证良好的抽滤效果;不锈钢材质,可高温高压灭菌,避免交叉污染;直抽直排,防止废液倒吸。 2 多管发酵法 多管发酵法又称最大可能数(most probable number,MPN)法或稀释培养计数法,该方法是用于检测地表水、地下水、生活污水和工业废水中粪大肠菌群的测定中粪大肠菌群数的一种标准方法。 该方法是一种基于泊松分布的间接计数法,利用统计学原理,根据一定体积不同稀释度样品经培养后产生的目标微生物阳性数,查表估算一定体积样品中目标微生物存在的数量(即单位体积存在目标微生物的最大可能数)。 采用多管发酵法时,先将样品加入含乳糖蛋白胨培养基的试管中,37℃初发酵富集培养,大肠菌群在培养基中生长繁殖分解乳糖产酸产气,产生的酸使溴甲酚紫指示剂由紫色变为黄色,产生的气体进入倒管(杜氏小管)中,指示产气。然后再44.5℃复发酵培养,培养基中的胆盐三号可抑制革兰氏阳性菌的生长,最后产气的细菌确定为是粪大肠菌群。最后通过查MPN表,即可得出粪大肠菌群浓度值。 实验小贴士 该方法在操作过程中,根据样品检出限的不同,可选择12管法(检出限为3MPN/L)或15管法(检出限为3MPN/L)进行实验,因此需要大量使用试管和液体培养基(每个样品需准备12或15支试管)。若检测样品量较大时,建议可采用培养基分液器来降低工作量。可用于生理盐水、液体及半固体培养基自动分装;1L溶液分装到100个MPN法试管中,最快仅需2分钟;微电脑系统与精密泵体联合控制,分装精度高;分装量、分装速度、分装时间、停顿时间、分装次数等参数可自由设定。 采用自动微生物试剂分液器进行实验用品准备,不仅能实现准确的连续分装,还可在保证进度的同时,大大降低工作量。 3 快速荧光检测法 快速荧光检测法是一种利用ATP荧光原理与微生物特性相结合的快速检测方法,虽然该方法暂未被纳入国家标准中,但由于其操作方便,检测与培养时间短(仅为膜过滤法、多管发酵法的1/3),目前被很多大型企业作为内部微生物自检的一种重要手段。通过与对应的采样、增菌拭子配合使用,可快速检测水体中粪大肠菌群数量。 快速荧光检测法是在荧光素酶(lueiferase)和Mg2+的作用下,荧光素(lueiferin)与ATP发生腺苷酰化反应后被活化,活化的荧光素与荧光素酶相结合,形成了荧光素-AMP复合体焦磷酸(PPi)。该复合物在氧化作用下,产生荧光信号。通过ATP检测液检测微生物ATP的发光量,达到检测细菌的目的。该方法现已获得AOAC研究机构的检测方法性能担保认证。 目前,杭州大微已开发了DW-ES800型微生物实时检测系统,该系统基于ATP荧光快速检测法,采用双模块设计,实现对水体中粪大肠菌群、大肠菌群、大肠杆菌、细菌总数等多种微生物的检测和计数。耗时短:培养时间短(定性8小时,定量1~8小时),检测时间仅需15秒范围广:细菌总数、大肠杆菌、总大肠菌群、粪大肠菌群等多种微生物效率高:双培养通道,可同时培养不同温度微生物易操作:五步即可完成(增菌拭子采样→培养→转移→检测拭子激活→检测)可将RLU值转换为CFU值 4 酶底物法 酶底物法是检测水体中大肠菌群、粪大肠菌群和大肠埃希氏菌的一种标准方法。该方法是利用在特定温度下培养特定的时间,总大肠菌群、粪大肠菌群、大肠埃希氏菌能产生特定的β-半乳糖苷酶将选择性培养基中的无色底物邻硝基苯-β-D-吡喃半乳糖苷(ONPG)分解为邻硝基酚(ONP),呈黄色反应;且大肠埃希氏菌同时又能产生β-葡萄糖醛酸酶将选择性培养基中的4-甲基伞形酮-β-D-葡萄糖醛酸苷(MUG)分解为4-甲基伞形酮,在紫外灯照射下呈荧光反应。统计阳性反应出现数量,查MPN表,再除以接种样品的稀释度。计算相应水样中总大肠菌群、粪大肠菌群、大肠埃希氏菌的浓度值。由于操作起来较为繁琐,工作量巨大,故在日常检测中很少被使用。
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 科学家首次揭示诱发性共刺激分子免疫新功能
    科学家首次揭示诱发性共刺激分子免疫新功能 清华大学医学院祁海教授课题组首次揭示了诱发性共刺激分子(ICOS)的免疫新功能——直接控制免疫细胞T细胞在体内迁移运动,为理解免疫器官产生抗体提供了新线索,从而给保护性疫苗的研制指出了新方向。 人类抵抗长期感染类疾病的过程,其实是免疫细胞产生抗体消灭病毒和细菌等病原微生物。祁海在接受科技日报记者采访时说:“为了抵抗病原,有两类免疫细胞特别重要:T细胞和B细胞。负责产生抗体的B细胞不单独工作,必须和T细胞的一个亚类——滤泡性辅助T细胞协同工作才能产生抗体。可以说,滤泡性辅助T细胞的数量在一定程度上直接决定了抗体的数量和质量。” 为帮助B细胞产生抗体,滤泡辅助T细胞需要移动到B细胞生活的区域。祁海研究组发现,ICOS在体内促进T细胞的持续运动能力,决定它们在B细胞区组织中的迁移与分布。“如果把T细胞比作一辆汽车,那么ICOS就相当于发动机。”祁海作了个形象的比喻。而在此之前,医学界一直认为ICOS所起的作用仅仅是让这类T细胞更好地识别那些“诱惑”因子。 “当前,通过疫苗来刺激机体产生保护性抗体是预防病毒感染的重要手段。而研究清楚诸如ICOS分子调节滤泡性辅助T细胞的运动及功能机制后,医学界在研制疫苗时就可以考虑通过提高滤泡性辅助T细胞的产生来改进抗体疫苗的效率。”祁海说,通过控制滤泡性辅助T细胞的产生,还可能对人类的自身免疫疾病,如红斑狼疮、类风湿性关节炎的治疗提供新思路。YSRIBIO1345 人抗酿酒酵母抗体(ASCA)ELISA试剂盒 Human Anti-Saccharomyces cerevisiae antibody,ASCA ELISA KitYSRIBIO1346 人迟现抗原4(VLA4)ELISA试剂盒 Human very late appearing antigen 4,VLA4 ELISA KitYSRIBIO1347 人吖啶橙(AO)ELISA试剂盒 Human Acrine Orange,AO ELISA KitYSRIBIO1348 人甲胺喋呤(MTX)ELISA试剂盒 Human methotrexate,MTX ELISA KitYSRIBIO1349 人对氨基苯甲酸(PABA)ELISA试剂盒 Human para-aminobenzoic acid,PABA ELISA KitYSRIBIO1350 人苯丙氨酸(LPA)ELISA试剂盒 Human L-phenylalanine,LPA ELISA KitYSRIBIO1351 人免疫核糖核酸(Irna)ELISA试剂盒 Human Immune RNA,Irna ELISA KitYSRIBIO1352 人β内酰胺酶抑制剂(BLI)ELISA试剂盒 Human β-Lactamase inhibitors,BLI ELISA KitYSRIBIO1353 人α半乳糖基抗体(Gal)ELISA试剂盒 Human α-galactoyl,Gal ELISA KitYSRIBIO1354 人αN已酰氨基葡糖苷酶(αNAG)ELISA试剂盒 Human αN-acetylglucosaminidase,αNAG ELISA KitYSRIBIO1355 人α2纤溶酶抑制物(α2-PI)ELISA试剂盒 Human α2-plasmin inhititor,α2-PI ELISA KitYSRIBIO1356 人烟酰胺腺嘌呤二核苷酸磷酸(NADPH)ELISA试剂盒 人高香草酸(HVA) ELISA KitYSRIBIO1357 人钙粘蛋白相关的神经受体1(CNR-1)ELISA试剂盒 Human cadherln-related neuronal receptor1,CNR-1 ELISA KitYSRIBIO1358 人毛细血管扩张性共济失调突变基因(ATM)ELISA试剂盒 Human Ataxia telangiectasia mutated,ATM ELISA KitYSRIBIO1359 人芳香烃受体(AhR)ELISA试剂盒 Human aryl hydrocarbon receptor,AhR ELISA Kit
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • Cell Metabolism | 徐铭团队报道二型糖尿病治疗新策略
    辐射、氧化应激、端粒缩短等多种应激环境诱导细胞呈现不可逆的细胞周期停滞状态,并伴随p16和p21基因高表达,即为衰老细胞(Senescent cells)【1】。衰老细胞的累积和衰老相关分泌表型 (SASP) 是机体衰老的标志,也是衰老及其相关多种慢性疾病发生的重要机制。2021年10月,美国康涅狄格大学徐铭课题组报道了一种用于追踪以及调控体内p21high衰老细胞的新型p21-Cre转基因小鼠模型,并以此发现老年小鼠多种器官存在p21high衰老细胞,且特异性清除该衰老细胞可有效延缓机体衰老(详见BioArt报道:Nature Aging | 徐铭团队建立p21-Cre小鼠模型,揭示p21high细胞在衰老中的作用)。此外,该团队在高脂喂养的肥胖小鼠体内还检测到明显的p21high细胞聚集【2】。胰岛素抵抗是二型糖尿病的主要特征之一,而肥胖是造成胰岛素抵抗及二型糖尿病的关键诱因。关于p21high衰老细胞是否参与肥胖相关胰岛素抵抗的发生,以及是否可以通过药物靶向清除p21high衰老细胞来改善胰岛素抵抗及糖尿病,这两个问题还有待解答。2021年11月22日,徐铭团队在Cell Metabolism再发长文Targeting p21Cip1-highly-expressing cells in adipose tissue alleviates insulin resistance in obesity ,揭示了肥胖伴随的脂肪组织中p21high衰老细胞聚集是其造成胰岛素抵抗的重要发生机制,而应用达沙替尼和槲皮素的药物组合可有效清除人体脂肪组织中的p21high细胞并改善脂肪移植小鼠的代谢功能。该研究为以 p21high 细胞作为减轻胰岛素抵抗的新型治疗靶点提供了重要依据。研究者首先利用单细胞转录组测序,发现高脂喂养两个月的肥胖小鼠脂肪组织中具有较高水平的p21high细胞,且主要集中于脂肪前体细胞、内皮细胞和巨噬细胞;与此同时,未检测到明显的p16high细胞。他们利用前期构建的 p21-Cre 转基因小鼠模型,结合流式细胞术进一步证实了p21high衰老细胞在肥胖小鼠脂肪组织中的分布。p21high衰老细胞和p16high衰老细胞是两种常见的衰老细胞类群。研究者随后分别在基因和蛋白水平验证了单细胞测序结果,即短期高脂喂养的肥胖小鼠脂肪组织中主要存在p21high衰老细胞的聚集,而非p16high衰老细胞。肥胖引起脂肪组织扩增和功能紊乱,最终造成胰岛素抵抗和二型糖尿病。为了探究p21high衰老细胞是否参与调控肥胖相关的胰岛素抵抗,研究者将p21-Cre小鼠与floxed DTA(白喉毒素A片段)小鼠杂交,以特异性清除体内p21high衰老细胞。随着这些细胞的清除,肥胖小鼠的葡萄糖耐受和胰岛素敏感性均能获得显著改善。此外,清除p21high衰老细胞后的肥胖小鼠脂肪组织中衰老相关β-半乳糖苷酶活性和端粒DNA损伤均明显减弱,细胞增殖能力得到有效恢复,SASP表达也有明显降低。然而,小鼠体重、体脂率、日均食物摄取量和活动量等都未明显改变,表明清除p21high衰老细胞主要通过减少组织衰老程度而非小鼠饮食活动发挥作用。为了确认造成肥胖小鼠胰岛素抵抗的p21high衰老细胞的组织来源,研究者首先利用免疫荧光和生物发光成像技术对肥胖小鼠不同组织进行观测,他们发现p21high衰老细胞主要分布于内脏脂肪组织,而肝脏、胰腺、肌肉等组织均不明显。接下来研究者将肥胖小鼠的内脏脂肪移植至正常小鼠,结果显示该脂肪移植可引起受体小鼠的胰岛素抵抗现象;而清除供体内脏脂肪的p21high衰老细胞则可以显著改善脂肪移植造成的受体小鼠胰岛素抵抗的危害。以上研究提示内脏脂肪组织中p21high衰老细胞导肥胖小鼠胰岛素抵抗发生的重要机制。为了阐明p21high衰老细胞参与调控胰岛素抵抗发生的潜在机制,研究者在p21high衰老细胞中特异性抑制NF-κB通路。结果显示抑制NF-κB不会引起p21high衰老细胞比例改变,但脂肪组织SASP表达显著减少,并且能显著改善肥胖小鼠的代谢紊乱。应用Senolytics(一类具有选择性诱导衰老细胞凋亡的药物)清除累积的衰老细胞或抑制SASP是目前被认为极具前景的抗衰老策略【3】。为了探究是否可以通过该类药物靶向p21high衰老细胞来减轻其对机体代谢功能的危害,研究者选取了目前广泛应用的senolytic药物达沙替尼(dasatinib, D)和槲皮素(quercetin, Q),分别对肥胖小鼠和人体脂肪进行干预。结果显示D+Q组合均能显著降低肥胖小鼠和人体脂肪组织中p21high衰老细胞比例。值得一提的是,研究者将来自肥胖人群的脂肪组织移植到免疫缺陷的小鼠体内以此建立异种移植模型,并利用该模型评价了D+Q对受体小鼠代谢功能的调控作用。他们发现,肥胖人体脂肪组织会导致受体小鼠出现胰岛素抵抗现象,而脂肪组织经 D+Q给药处理后,受体小鼠的胰岛素抵抗现象几乎消除。该结果阐明了靶向p21high衰老细胞在改善代谢紊乱中的巨大临床应用前景。文章通讯作者徐铭教授认为该人体脂肪组织移植实验结果令人印象深刻,为日后D+Q临床试验奠定了基础。徐教授强调,关于D+Q对二型糖尿病患者治疗效果的临床测试目前已在筹划进行中。在D+Q的有效性和安全性被大规模临床试验验证之前,该药物还不能马上在临床上用于治疗糖尿病。该文是继调控自然衰老之后,该团队对p21high衰老细胞生物学功能的再次探索。以往衰老研究领域较多关注p16high衰老细胞,而本文揭示了肥胖小鼠组织中p21high衰老细胞和p16high衰老细胞为两种不同的细胞类群,二者在肥胖小鼠体内的组织分布、聚集时间以及对代谢方面的调控作用均存在差异;相较于p16high衰老细胞,p21high衰老细胞更多更早地参与调控脂肪组织功能障碍,从而造成胰岛素抵抗。该研究也为进一步挖掘p21high衰老细胞的特质及其在自然衰老过程中其他各种衰老相关疾病可能发挥的致病作用提供了依据。原文链接:https://doi.org/10.1016/j.cmet.2021.11.002
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 达标蜂蜜未必纯正 新国标未涉及大米糖浆检测
    将不同的蜂蜜样本进行取样萃取。   实验室检测人员在电脑上分析大米糖浆检测数据。   通过酶标仪检测氯霉素残留。   ■ 送检说明   ●组织送检单位:   “绿篮子”食品安全科普组织,由英国大使馆文化教育处指导创建,指定中国土畜进出口商会检验支持。通过媒体公开安全食品标准、解读标准,引导公众作出正确的选择。鼓励企业为食品安全履行更多承诺。   ●送检样本:   慈生堂结晶蜂蜜400g:抽检产品在北京沃尔玛超市随机购买。   同仁堂荆条蜂蜜:从同仁堂北四环华堂商场专柜购买。   百花牌枣花蜂蜜454g:在北京大润发超市购买。   百花调制儿童蜂蜜膏450g:从华堂超市购买。   冠生园纯天然蜂蜜580g:从北京大润发超市民族园店购买。   中粮悦活枸杞蜂蜜454g:在北京北四环华堂超市购买。   福明洋槐蜂蜜500g:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   感蜂堂洋槐蜂蜜:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   ●检测方法:在蜂蜜制造业业内人士的指导下,对比了欧盟、日本等国家蜂蜜标准后,共检测8项内容,按排除法一一检测。   ●检测内容:(按检测步骤先后顺序):SM-R大米糖浆检测、β-呋喃果糖苷酶检测、碳六项检测、TLC检测四项真实性检测 氯霉素、甲硝唑、硝基呋喃、四环素族四项安全性检测。   ●检测机构   秦皇岛出入境检验检疫局:拥有针对蜂蜜类产品最严格的实验室检测方法,是欧盟、日韩等多个发达国家认可的蜂蜜出口检验单位。   ●检测结果   三送检样品掺有大米糖浆   在此次送检的八个样品中,其中有三个样本在SM-R检测中结果呈阳性,证明其中掺入大米糖浆,并非纯正蜂蜜,其中包括北京和上海的某知名品牌的蜂蜜。   其他5个蜂蜜产品在本轮抽检批次中顺利通过了真实性与安全性检测。   【真实性检测】   SM-R大米糖浆检测   将已经萃取提纯的蜂蜜液态样品,送入液相色谱串联质谱仪中。实验人员解释说,如果将色谱柱当作跑道的话,各种不同的物质,通过液相极性分离出不同的糖,由于分子量、分子结构极性不同,在相同助力的推动下,却会先后到达终点。通过色谱图观察,不同物质达到峰值的时间预算,可确定是否是大米糖浆,而通过达到的峰的面积可以确定含有的大米糖浆的含量。   SM-R是大米糖浆里特有的物质,也是判断蜂蜜是否纯正最重要、最基本的检测项目之一,为我国蜂蜜出口欧盟的必检项目之一。如果产品被检测出SM-R呈阳性,则涉嫌在蜂蜜中掺入大米糖浆。大米糖浆虽然也是糖,但却廉价,其保健功效是完全不一样的。   β-呋喃果糖苷酶检测   β-呋喃果糖苷酶检测是在液相色谱仪上进行的,同样的送样、极性分离后的与标准色谱卡的对照,来判断是否含有β-呋喃果糖苷酶。   β-呋喃果糖苷酶,可将蔗糖直接转化成葡萄糖和果糖。作为蜂蜜掺假手段之一,其作用机理是将普通蔗糖的葡萄糖基与果糖基的s-(1,4)糖苷键断裂,生成果糖与葡萄糖。如果在加入二糖蔗糖的同时又加入了β-呋喃果糖苷酶,就可将蔗糖直接转化成葡萄糖和果糖,而天然蜂蜜中90%的成分为葡萄糖和果糖这两种单糖,但这种化学方式生产的“蜂蜜”其营养价值与天然蜂蜜完全不同。   “在这种情况下掺杂糖浆和白砂糖的蜂蜜有可能借助于HPLC也检验不出来。”实验室人员解释说,现在针对β-呋喃果糖苷酶建立了相应的检测方法,针对甜菜糖来源的果葡糖浆掺假进行检测,能够控制一部分的造假行为。   碳六项检测   通过“碳同位素质谱分析仪”检测,这项检测专业的说法叫液相串联同位素质谱检测,来判断蜂蜜中各种糖同位素值的测定方法。液相分离不同的糖,不同糖的同位素比值不一样,来判断糖的种类。   “大米、玉米、马铃薯等植物的糖是碳四植物糖,碳四植物糖通过光合作用产生,不是蜜蜂酿造的,蜂蜜中碳四植物糖含量越高,说明造假越严重。”据业内人士透露,碳同位素检测,主要是通过碳13蛋白和蜂蜜的碳同位素阈值来判断蜂蜜是否掺假,但阈值在-23~--23.5之间的为灰色地带,即不能判断它是否掺假。   TLC检测   又称高果糖浆检测,高果糖浆是一种多糖,淀粉类植物如马铃薯、甜菜糖等都属于高果糖浆,味道和颜色与蜂蜜相似,但是价格比蜂蜜便宜很多。TLC检测使用的是薄层色谱检测法,检测方法看似很老土———通过将样品滴在硅胶板上的“履迹”和颜色深浅,来判断其中是否含有高果糖浆。   【安全性检测】   氯霉素等四项抗生素残留检测   真实性检测均过关的蜂蜜产品,统一通过酶标仪检测氯霉素、硝基呋喃、硝基咪唑类、四环素族,这四项均为蜂蜜中的抗生素残留成分。比如便宜效果好的氯霉素是用来防治蜂病的,但如果蜂蜜中的氯霉素残留,被人体摄取后,会增加致癌的可能性 而甲硝唑可造成恶心、呕吐、腹痛、头晕、站立不稳、精神错乱等症状 硝基呋喃是合成药物,有抑菌作用,但同时也能致癌 四环素残留可能会导致儿童牙齿损害,成人造成肝脏损害。   ■ 检测方声音   对比色谱-质谱发现SM-R   蜂蜜的主要成分是葡萄糖和果糖,掺入糖和糖浆是最简单的方法。针对蜂蜜的掺杂造假的检测方法也一直在发展。常见的掺假方法是通过大米糖浆和甜菜糖浆加入蜂蜜掺假,与甜菜糖浆相比,大米糖浆价格便宜,所以目前最为严重的就是通过大米糖浆掺杂在蜂蜜中造假,又由于检测方法跟不上,市场上有人公然兜售能满足所有蜂蜜检测要求的大米糖浆。   我们今年开始使用通过对比大米糖浆和蜂蜜的色谱-质谱的差别,发现了一种糖浆中特有的物质(SM-R),通过检测该物质能有效地鉴别蜂蜜中是否掺杂了大米糖浆。方法对于掺杂了5%大米糖浆的蜂蜜都能有效的鉴别,方法快速,准确率高。   ■ 行业发言 假蜂蜜形成规模会破坏生态系统   ●周磊,绿篮子食品安全科普团队蜂蜜选题负责人   现行蜂蜜的国家标准为中国蜂产品协会主导,而蜂产品协会的主要成员基本由上海冠生园、北京百花、江西汪氏等国内几大蜂蜜厂家的负责人组成,蜂蜜国家标准虽然规定了“不得添加或混入任何蜂蜜以外的物质”,但没有对检测项目和具体指标做限定,导致检测项目无法鉴别蜂蜜的真假。   尽管新标准仍只使用碳4检测项目来鉴别蜂蜜,但是中国蜂产品协会还是致函卫生部,对新标准提出异议,主要内容是“对不涉及食品安全的感官指标、理化指标等写入食品安全标准提出了行业意见”,并提出暂停执行新标准的建议,力求“放宽”,而非“打假”。   蔗糖蜂蜜、高果糖浆蜂蜜是近年来除了普遍存在的大米糖浆掺假蜂蜜后的另几种高科技蜂蜜造假手段,它们可以欺骗传统的检测仪器,而掺假技术还在发展,很多检测项目结果已不能断定真假蜂蜜,被逐步弱化为“参考指标”。   假蜂蜜虽然吃了无害,但形成规模后,少数蜂农也被动掺假、蜜源无法被控制。人类高依赖性生态圈的花朵授粉已少有野生蜂采蜜,人工蜂业萎缩会导致生态系统连锁受损。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 30年的努力,MALDI-TOF MS遇到了前所未有的春天
    前言:2002年,MALDI(基质辅助激光解吸电离)与另一“软电离”技术电喷雾电离(ESI)同时获得诺贝尔奖,这给予了这两项技术极大的肯定。如今,创新技术的进一步发展正在推动MALDI-TOF迈向更光明的未来,它将成为一项标准化技术被应用于疾病的病理学,个体化临床检测领域。MALDI方法可用于分析任何含有目标分析物的体液,包括血液和血液制品,母乳,脑脊液,淋巴液,唾液,尿液,胃和消化液,眼泪,大便,精液,前列腺液,阴道液,羊水和来源于组织的间质液。特别是新一代MALDI-TOF定量性能的提升将可更快被用于常规临床检测使用,除了用于病原体鉴定的用途外,我们将会看到这一技术将会被推广到:直接从血清,组织提取物和其他体液进行的癌症分型;组织成像;蛋白质修饰分析;小分子药物(体内)分布;生物标志物的鉴定和验证;质谱免疫测定;多肽定量;诊断和治疗相关生物标志物的临床测定等。目前,MALDI用于临床的首个定量方案已经由融智生物研制出来,即糖化血红蛋白定量分析解决方案。MALDI技术从理论雏形,到真正研制成商品化的仪器进行推广应用,这其中有很多不为人知的小故事,有着30年基于ESI及MALDI质谱产品的研发及研发管理工作经历的周晓光老师,于2017年底跟我们分享了MALDI诞生以来的发展历程,以及其广阔的发展前景,如今重温旧读,深以为然。周晓光:MALDI诞生30年小记基质辅助激光解吸电离(也就是通常所说的MALDI)于1987年首次由Hillenkamp 及Karas提出,如今已经30年。从那时起,通过应用这一“软电离”技术与飞行时间质谱(MALDI -TOF MS)的结合,成功地实现了为生物大分子提供快速和高度可靠检测手段的目的,同时也为生命科学领域提供了全新的分析方法。相比其他质谱技术,MALDI-TOF操作简便,不需要接受分析化学培训的专业人员就可以使用。特别是近年来在基因分型分析、生物标志物鉴定、病原体鉴定、质谱成像等应用的发展,越来越被临床检测领域所青睐。近几年,国内在MALDI-TOF MS仪器的研发与生产快速起步,涌现了一批科研人员和企业,大大推动了MALDI-TOF MS国产化的进程。MALDI-TOF MS将可能成为首个由中国企业掌握最领先核心技术,并引领技术发展的质谱仪品类,这对我国在生物大分子分析研究、临床分子诊断应用等方面有极大的推动。我于30年前开始,参与了一系列基于ESI及MALDI质谱产品的研发及研发管理工作,谨借此技术发表30年之际,对MALDI-TOF质谱技术的发展及其将来做作简单的回顾与展望。关于MALDI的起源MALDI在2002年与另一“软电离”技术电喷雾电离(ESI)同时得到了诺贝尔奖委员会的关注,田中耕一因激光解吸电离(LDI)技术的开发,与电喷雾电离的发明人John Fenn由于“开发了用于生物大分子质谱分析的软解吸电离方法”而分享了2002年诺贝尔化学奖。尽管田中耕一的方法使用了基于激光的软解吸电离方法从而获得诺贝尔化学奖,但他经常被错误地认为是MALDI的发明人。其实MALDI(基质辅助激光解吸电离)是首次由德国University of Münster科学家Hillenkamp 及Karas提出的,它与田中所发现的方法有一些本质上的区别。尽管两种方法都使用了激光,但在MALDI中,分析物混入基质中并被基质包围,基质分子吸收激光能量并将其中一部分转移到分析物(如蛋白质、核酸分子)上。而田中的方法则是在甘油中使用金属纳米粒子的悬浮液,分析物位于纳米颗粒的表面上。通过实践的验证,Hillenkamp 和Karas所开发的基质辅助激光解吸的离子化效率更高,成为之后被广泛采用的技术。但田中是首先发表了可以使用激光解吸电离来分析和检测蛋白质类生物大分子,同时提醒了我们只是蛋白质离子化还是不够的,必须通过改进仪器的其他部分,尤其是探测器,而达到生物大分子分析的目的。严格意义上讲,当今被广泛采用的MALDI-TOF质谱技术实际上是两个核心技术的组合,即基质辅助激光解吸电离与飞行时间离子分离技术。基质辅助激光解吸电离除与飞行时间结合外,同样可以与其它离子分离手段如四极杆、离子阱等相连接。但脉冲式的激光解吸电离方式无疑与在飞行时间质谱中同样采用脉冲式离子提取方式在耦合上有着许多优势,从而促成了MALDI-TOF这一质谱技术的出现。这一质谱仪器的发展史也是MALDI这一分子电离技术与TOF离子分离技术的相互依赖、相互推进的发展历程。脉冲触发飞行时间的质谱仪设计在MALDI出现之前十几年就已经出现。在美国Texas A&M University的Macfarlane等通过放射性元素Californium-252轰击样本表面,以放射性自然脉冲触发飞行时间计时的原理设计了等离子体解吸电离(Plasma Desorption Ionization)飞行时间质谱仪,并用来分析较高极性的有机生物分子,成为当时最为成功、被认为最有潜力的蛋白质大分子分析的质谱工具。1984年首款基于这类原理的商业化产品由Bio-Ion Nordic AB生产并销售,该公司于1989年被Applied Biosystems Inc.收购。但这一技术可谓是昙花一现,很快就被崭露头角的激光解吸技术所取代。激光电离(Laser Desorption)被研究得更久,但是直到适当吸收激光能量的基质被引入前的几十年中,在生物分子分析中的应用非常有限。Franz Hillenkamp,Michael Karas及其同事在80年代中期发现将丙氨酸与色氨酸混合并用266 nm激光脉冲照射可以更容易地将其电离,从而推断色氨酸吸收激光能量并帮助非吸收能力的丙氨酸电离,因而赋予了基质辅助激光解吸电离(MALDI)这个术语。当与这种“基质”混合时,分子量高达2843 Da的多肽Melittin同样可被电离。对更大分子的激光解吸电离的突破发生在1987年,田中耕一和他的同事使用了将甘油中的30 nm钴金属粉末与337nm氮气激光器相结合的“超细金属加液体基质法”用于电离。使用这种基质与激光的组合,田中完成了对分子量34,472 Da羧肽酶-A蛋白生物分子的电离,证明了激光波长和基质的适当结合可以使蛋白质电离。随后,Karas和Hillenkamp使用烟酸基质和266 nm激光电离了67 kDa的白蛋白(Albumin)。Karas和Hillenkamp在1988年Bordeaux国际质谱会议上发布了使用静态电场反射式飞行时间质谱仪结合MALDI电离获得的β-半乳糖苷酶(分子量116,900)的光谱图,首次展示了单电荷离子质量大于100,000的质谱图,标志着MALDI-TOF MS新时代的来临。 Karas和Hillenkamp在1988年Bordeaux国际质谱会议上发布了使用静态电场反射式飞行时间质谱仪结合MALDI电离获得的β-半乳糖苷酶(分子量116,900)的质谱图但从上图中质谱峰宽上可以看出,在初期工作中使用静态电场反射式飞行时间质谱获得的蛋白质量分辨能力是相当低的。人们很快就意识到这主要是由于离子在飞行过程中碎裂所致。MALDI-TOF MS的诞生第一台用于大分子分析的实用MALDI-TOF质谱仪是由美国Rockefeller University的Beavis和Chait在Hillenkamp发现MALDI后的几个月内搭建的。这是一个简单的线性飞行时间质谱,采用单静态加速电场,漂移管,和探测器。该仪器的加速电压高达30kV,飞行长度为2米。线性飞行时间分析仪的一个主要优点在于飞行过程中解离破碎的离子与稳定离子几乎同时到达离子探测器,从而消减了Hillenkamp等在反射式分析器中观察到的离子色散,提高了质量分辨能力。Beavis和Chait还对MALDI的基质进行了广泛的研究,实现了MALDI的进一步的改进。其开发的肉桂酸衍生物基质表明在260 nm和360 nm紫外波段间的任何波长都可以用来激光解吸蛋白质,使得波长为337 nm的更小型和相对便宜的氮气激光器同样可以应用在MALDI仪器上,取代了笨重昂贵的Nd:YAG激光器,受到20世纪90年代初商用仪器开发研究人员的青睐,直到至今还被广泛采用在商业化产品中。首批商业化MALDI-TOF产品出现于上个世纪90年代初,由Dr. Marvin Vestal创建的Vestec公司(被PerSeptive Biosystems收购后又并入Applied Biosystems Inc公司)及本人当时所在的Finnigan公司在1990年分别开发生产出MALDI-TOF产品。Finnigan开发的LaserMAT飞行时间质谱仪是首款采用氮气激光器的线性MALDI-TOF产品,飞行管长度只有0.5米。而Vestec生产的飞行时间质谱仪采用了更长的飞行管,因此性能会好一些。下图是作者在1991年LaserMAT产品展台前的留影。1991年本文作者周晓光在LaserMAT产品展台前留影相比于几乎同时出现的电喷雾电离质谱市场的快速发展及应用推广,初期MALDI-TOF产品商业化的进程遇到了一些麻烦。这主要是由于TOF仪器性能偏低,特别是TOF的质量分辨能力不足,质量测量精度不高,如上述Finnigan LaserMAT的质量分辨率只有一两百,不能满足MALDI电离用于生物大分子的检测需求。但从另外一个角度看,MALDI电离技术的巨大潜力为飞行时间质量分析器提出了更高的要求,大大刺激了为这种电离技术特别定制改进的TOF仪器的发展。TOF技术的发展飞行时间(TOF)质谱在上世纪40年代中期首先由University of Pennsylvania的W. E. Stephens提出。当时在美国Bendix Aviation Corporation Research Laboratories工作的Wiley和McClaren于50年代中期完成了第一个实用型飞行时间(TOF)质谱仪的设计,并系统的描述了提高质量分辨能力的方式,首先提出了脉冲加速的时间聚焦概念,并描述了实现聚焦的一般条件。这些条件同样适用于MALDI以及其他电离技术,为之后的MALDI飞行时间质谱的发展打下了理论基础。但在之后的很长时间内,这项技术被普遍认为是离子特性基础研究的一种奢侈品,并没有被广泛应用于分析化学及解决实用问题之中。直到上世纪70年起,由于等离子体解吸电离(PD)、二次离子质谱(SIMS),特别是基质辅助激光解吸电离(MALDI)等脉冲离子源的出现,这项技术才重新引起大家关注。早期高分辨MALDI-TOF MS的几项关键技术理想的离子源是应该产生一个狭窄而几乎平行的离子束,不同质量大小的离子通过电场加速到达检测器的飞行时间与离子的初始位置和速度无关。而在MALDI解吸电离过程中,被检分子是被包埋在沉积在作为离子加速器电极的样品靶板表面上的基质晶体之中的。当激光脉冲对样本晶体照射时,产生包括带电离子在内的解吸物质羽流。普遍认为离子以百米至千米/秒的初始速度分布飞出。如果相同大小的两个离子以不同的初速度在飞行管中加速,则它们将在不同的时间到达离子探测器,导致峰展宽。正是由于离子间初速度的不同,造成了线性MALDI-TOF分辨率降低。因此提高线性MALDI飞行时间分辨率的关键之一就是在对离子初始速度分布进行再聚焦,以补偿离子初始速度的差异。Wiley和McClaren在1953年发表的文章中就已经有了具体的描述,但之后被大多科研人员遗忘了。MALDI离子源出现后,1994年美国Utah State University的Lennon和Brown报道了在电离激光脉冲之后采用精确延迟的提取脉冲可以显著提高MALDI-TOF的分辨能力。Marvin Vestal马上意识到并将已经报道过的MALDI离子初速度分布与线性式和反射式飞行时间分析仪的聚焦关联连接起来,花了近一年的时间系统性地建立了TOF分析仪中各组件的理论模型,用以针对MALDI离子源的TOF分析器性能优化。其中最重要的工作之一就是重新发现和整合了延迟离子提取(Delayed Extraction),并将其引入到了MALDI-TOF仪器的设计中。这一技术是通过延迟离子提取电场的施加来改变不同初始速度的离子被加速的持续时间,最终使所有离子都同时到达探测器。这一改进将线性飞行时间的质量分辨能力提高了10倍以上。 延迟离子提取与连续离子提取质谱图对比另外一种补偿MALDI离子生成初始动能差异的改进是通过在线性飞行时间管终端加入离子反射器。反射器(Reflectron)飞行时间的概念最早是由苏联科学家Mamyrin于1973年提出,它是由一系列均匀间隔的电极组成,在电极上施加离子飞行方向的反向电场。飞行管中相同m / z离子由于动能和速度的差异将导致进入反射器深度不同。具有较大动能的离子先到达并进入反射器,深入到反射场中飞行路径比具有较少动能的离子更长,因此与持后离子同时到达检测器。建立在Marvin的理论研究基础上,Applied Biosystems公司设计开发产生了Voyager系列产品,首次为蛋白质大分子分析提供了质量分辨能力超过10,000、质量精度高达10 ppm的高分辨MALDI-TOF质谱仪。从90年代中期开始,在市场上使用的商业化MALDI-TOF仪器中有一半以上是基于Marvin的理论设计的。早期的MALDI-TOF仪器虽然有许多优点,但有一个主要限制:它们只能得到分析物的分子量,但无法测定结构。 因此,这些仪器不能用来确定对蛋白质化学家来说至关重要的蛋白质序列或翻译后修饰。为了通过MALDI-TOF获取蛋白、多肽结构信息,20世纪90年代早期德国科学家Kaufmann和Spengler利用亚稳态衰变离子在无电场区域飞行过程中碎裂后再被反射器分离,从而获得碎片离子质量信息,即所谓的后源衰变(Post Source Decay)技术,进行了多肽测序的工作。这一手段在某种意义上弥补了MALDI-TOF无法获取多肽结构信息的不足,但毕竟PSD碎片离子与通常的MS/MS碎片离子所包含的分子结构精度还是有很大差距。为了弥补这一缺陷,Marvin Vestal通过完善理论,将其扩展到串联TOF质谱,成功构建了MALDI-TOF-TOF仪器的设计理论,开发出Applied Biosystems公司的4700蛋白质组分析仪及后来升级版的AB 4800 TOF-TOF 质谱仪。这些仪器至今还在大多数蛋白质组学中心使用。 MALDI-TOF MS和MS-MS系统对包括蛋白质组学,糖组学,细胞信号,结构生物学,细胞器成像和聚合物科学等许多重要研究领域产生了巨大的影响。Marvin也因为在MALDI-TOF,TOF-TOF方面的贡献于2010年获得世界质谱界颁发的美国质谱学会杰出贡献奖。在MALDI-TOF技术出现的早期,它主要是被应用在蛋白质的鉴定中。质谱蛋白鉴定的一种方法是通过将提取的蛋白质组经过内切酶的作用分割成多肽,然后比对MALDI-TOF MS质谱图中的多肽峰与从蛋白数据库所生成的多肽质量匹配程度,达到蛋白鉴定的目的。这种方法通常被誉为肽质量指纹谱分析(Peptide Mass Fingerprinting,PMF)。另外一种鉴定蛋白的方法是通过MALDI TOF-TOF将蛋白内切后的产生的多肽在串联质谱内轰撞成离子碎片,然后通过蛋白多肽串联质谱数据库搜索匹配多肽信息来确定蛋白。相比蛋白和多肽,核酸的MALDI-TOF分析比较迟后,直到Becker研究小组1993报道了3-羟基吡啶甲酸(3-HPA)可作为良好的基质才有所突破。其中一个爆发点是应用于基因位点的单核苷酸多态性鉴定。1997年Applied Biosystems的Haff 和Smirnov首先建立了利用单碱基延伸(Single-base Primer Extension)化学与MALDI-TOF相结合的单核苷酸多态性(SNP)鉴定的质谱方法。这一SNP检测的主要优势在于可以在一个样品反应体系中同时检测多达几十个SNP位点(如图所示乳腺癌1号基因的检测)。 乳腺癌1号基因的SNP检测质谱图2000年Applied Biosystems就已完成了基于这一方法的商业化产品开发工作。但由于商务上的考量,并没有将这一产品推向市场。而真正出现在市场上基于单碱基延伸质谱分析的商业化产品是几年后由Sequenom(现为Agena)公司推出的 MassARRAY产品。随着多位点SNP基因分型在临床及精准医疗应用中推广,以单碱基延伸化学与MALDI-TOF检测相结合的检测手段越来越被重视。质谱成像技术在MALDI-TOF技术出现后,美国Vanderbilt University的Richard Caprioli意识到这一分子检测技术具有二维扫描的特性,自90年代中期开始了利用激光扫描结合质谱分析的分子成像技术,探索开发一种新的方法来确定生物大分子在组织切片中的分布,特别是对传统的免疫化学无法进行分析的样本。他们使用的方法是用基质液滴喷洒冷冻组织切片,并用配备有精细激光焦点的MALDI-TOF仪器对组织样品进行扫描。这项技术,不光可以获取样品中的分子信息,同时可以在无化学标记的状态下获得生物分子在复杂表面的空间分布。这一结合为生物组织学研究人员提供了可以用于组织表面的直接生物分子表征的化学“显微镜”。小鼠肾脏质谱影像Richard Caprioli也因在成像质谱(Imaging Mass Spectrometry)上的开拓性工作,于2014年获得美国质谱学会颁发的杰出贡献奖。MALDI自30年前出现至今已经成为分析各种非挥发性分子,包括蛋白质,肽,寡核苷酸,脂质,聚糖和其他具有生物分子的成熟技术。但在常规临床检测应用领域中的突破也只是出现在近年的临床病原体鉴定上。2001年美国University of Maryland的Ryzhov和Fenselau通过质谱分析微生物细胞内丰富的核糖体蛋白质分子指纹,提出了利用MALDI-TOF鉴定病原微生物的可能性。这种质谱分子指纹技术后被验证比基于微生物实验室通常使用的各种表型和生物化学测试方法更精确,速度更快。而且也为微需氧菌、厌氧菌、真菌、结核分枝杆菌及病毒等难鉴定、难培养病原体的鉴定弥补了生化鉴定方法的不足,被临床实验室逐渐所采纳。国外两家公司布鲁克、生物梅里埃推出的以线性MALDI-TOF仪器为基础的临床病原微生物鉴定系统已相继被美国食品和药物管理局(FDA)及国内药监部门批准用于病原体鉴定的临床应用。MALDI的局限与改进基于Vestal在90年代中期建立的MALDI-TOF仪器设计理论上开发的商业化产品出现后至今,该技术从根本上基本没有改变。但要进一步将此分析方法推向更宽广的临床检测领域,我们还面对着不少挑战,还需克服限制此质谱仪器被广泛接受的许多因素,例如仪器的制造成本和操作复杂性高,较差的可靠性,以及速度,全谱灵敏度分辨率和质谱光谱重现性不佳等。特别是这些因素造成人们普遍认为MALDI-TOF不是定量的分析手段,在临床分析应用中的进一步推广也因此受到影响。要从应用角度解决质谱定量分析需要从几个方面着手:样品前处理,点样方式和仪器本身的定量分析误差。虽然在本世纪初Applied Biosystems相继开发了化学试剂iCAT(Isotope-coded affinity tag)和iTRAQ(Isobaric tags for relative and absolute quantitation)同位素代码标记定量技术,在一定程度上缓解了定量分析的瓶颈,但仪器本身的局限一直没有得到解决。我们必需从根本上寻找答案,也就是从离子生成、离子提取传输和离子检测几个层次入手。首先,样本与基质分子形式的结晶层在MALDI靶板上的分布是不均的,因此优质的质谱图是需要通过寻找结晶层中“甜点”而获得。而通常此类仪器采用的氮气激光器的发射频率被限制在50Hz左右,所以通常在单位时间内仅有一小部分(通常1%)样品分子被激光照射电离和分析,使每个叠加后的质谱图中离子强度重现性非常不稳定,误差会高达30%以上。而新一代的MALDI-TOF(如融智生物的QuanTOF)采用了5000Hz以上的半导体激光器,结合快速二维移动平台控制及高速离子探测与数据采集,可以在相同时间内完成几万到几十万次的激光照射,电离分析靶点上的大部分样品,减少了样品数量变化和分布不均造成的影响。另外影响质量分析重现性的因素包括在MALDI离子源内的离子提取及加速电场的施加方式。上一代MALDI-TOF设计中,这些电压是加在靶板上的,造成在整个靶板上电场分布不均,从而使点在靶板不同位置上的离子感应到不同的电场,使得离子飞行时间的波动。而在新一代的仪器设计中(如QuanTOF)采用了靶板接地的专利技术,消除了靶板边缘电场的波动,进一步提高了质谱光谱的重现性。这一改进使质量检测的均一性会更好,特别对需要在空间维度上进行扫描的质谱成像应用有更大的意义。新一代MALDI-TOF的另一改进是在全质量范围的检测性能。Wiley和McClaren在50年代就对飞行时间(TOF)质谱设计中无法对不同大小离子在初始空间及速度上同时完成聚焦有了阐述,加上通常MALDI-TOF激光照射入射角度的不对称性,使得传统MALDI-TOF仪器设计中有造成质量偏倚性的许多因素,在不同质量区间的分辨率、灵敏度有较大的区别。QuanTOF通过激光照射光学系统,离子光学系统,延迟离子提取,离子聚焦传输及混合离子检测器的创新设计及全面改进,实现了质谱分析在全质量范围内的分辨率、灵敏度的同步性能提升,提高了质谱定量检测分析的重现性。下图展示了对极高分子量蛋白质检测的能力。新一代MALDI-TOF检测极高分子量蛋白的质谱图新一代MALDI-TOF的定量分析性能提升可以从全血样品中血红蛋白糖化率测定上看出。下图中所示为3个不同糖化率的血红蛋白样本(分别为6%,9%,14%),每个样本被重复点在靶板上24个不同样点所获得的72张质谱光谱图的叠加。糖化峰三组不同浓度离子强度的重现性高达98%以上。新一代MALDI-TOF检测3个不同糖化率的血红蛋白样本质谱图
  • 美科学家开发出单芯片基因合成新法
    在合成生物学与生物技术中,定制基因序列的可靠性和成本效益对于相关应用是至关重要的。尽管脱氧核糖核酸(DNA)微阵列对于基因合成的短寡核苷酸池也是一个划算的来源,但是这些复杂混合物必须经过放大和正确的组装。一项最近的研究描述了一种方法,即将30个基因(或基因变异池)合成在一个单芯片上。美国科学家报告说,一轮的合成与选择能够成功鉴别出那些具有人们所渴望的属性的基因变异,例如最佳的表达水平。   在这项新的研究中,美国北卡罗来纳州杜克大学的Jiayuan Quan和同事进行了等温的基因巧合以及链置换扩增反应,以同时扩大和释放60-mer的寡核苷酸,随后他们利用聚合酶循环组装在0.5kb~1kb的基因中建立了重叠产物。为了方便,这些反应都在芯片上以及相同的反应混合物中进行 假性的寡核苷酸杂化通过将芯片细分为针对每个基因的单独的阱而得到最小化。其产物随后通过芯片外聚合酶链反应(PCR)而进一步被放大。   研究人员还开发出了一种质量控制程序,从而使错误合成基因(在一次变性复性循环后形成错配的双链单位)的亚族群能够被错配特定内切酶所分开。然而,由于变异的错配可能性,这一程序的一个局限在于它只适用于合成单一基因,而不是一组密切相关的基因变异的混合库。   这种基因合成方法随后被应用到优化转基因表达,除了强启动子序列外,这还要求适当的密码子使用。研究人员生成了lacZα基因片断的一个同义“密码子变异”库,并在大肠杆菌细胞中表达了它们。当在包含半乳糖苷的琼脂中生长时,克隆被选择用来使基于其蓝色色度的lacZα表达最大化。相对于野生型序列而言,在这些克隆中,lacZα序列被发现极大提高了lacZα的表达。   在一个类似但更有价值的应用中,研究人员生成并测试了74个黑腹果蝇转录因子的密码子变异库。高度表达的变异需要抗体的产生,并且根据绿色荧光蛋白(GFP)融合蛋白标记物的荧光强度,这些变异被成功鉴别出来。   研究人员在最近出版的《自然—生物技术》杂志上报告了这一研究成果。   研究人员指出,搞清这些光学基因序列是否为基于一些属性,例如mRNA结构和稳定性的功能性选择,以及这种方法是否是更长基因合成的最佳延伸,将令人关注。
  • ​Cell Research年度杰出论文奖出炉,这些研究领域重点关注
    近日,赛诺菲-Cell Research 2021年度杰出论文奖发布,共3篇发表于 Cell Research 的论文获奖,论文通讯作者分别是清华大学张强锋;复旦大学鲁伯埙、丁澦;南京大学张辰宇、张骑鹏、汪芳裕。获奖论文的通讯作者获奖论文分别是:论文题目:Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures通讯作者:张强锋(清华大学)论文简介:在这篇论文中,张强锋等人建立了一个深度学习模型——PrismNet,从体内RNA二级结构数据预测细胞蛋白质-RNA的动态相互作用。该模型能够发现破坏RNA结构的遗传变异,这些变异通常与动态RNA-蛋白质结合以及人类疾病有关。通过深度神经网络学习到的特征和规律,可能帮助我们从新的角度理解人类疾病的调控机制。论文题目:Degradation of lipid droplets by chimeric autophagy-tethering compounds通讯作者:鲁伯埙、丁澦(复旦大学)论文简介:基于PROTAC的靶向降解蛋白技术已成为一种有前途的药物研发技术,但靶向降解非蛋白质生物分子仍然难以实现。在这篇论文中,鲁伯埙、丁澦等人开发了一种新型分子——LD-ATTEC,可以通过细胞内的自噬有效和选择性地清除脂质液滴,可以同时应用于蛋白质和非蛋白质靶点,这也是首次实现从非蛋白类生物大分子的靶向降解,为进一步开发新的治疗方式开辟了新途径。论文题目:SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs通讯作者:张辰宇、张骑鹏、汪芳裕(南京大学)论文简介:早在2012年,张辰宇团队就首次发现了食物中的植物miRNA可以被哺乳动物吸收,并跨界调控动物靶基因的表达,颠覆了此前外源核酸不能被哺乳动物的消化道完整吸收,并在体内有生物学功能的经典生物化学概念。而在这篇获奖论文中,张辰宇、张骑鹏、汪芳裕等人进一步揭示了哺乳动物胃中的SIDT1蛋白介导食物miRNA的吸收,进而使其在动物体内发挥生物学功能。这项研究为“哺乳动物能吸收并利用食物miRNA——近十年来细胞外RNA研究领域中最具突破性和争议性的发现之一”提供了有力证据,从而结束了这个领域长达10年的争论。关于 Cell ResearchCell Research 最新影响因子为46.297,是中国乃至亚洲影响因子最高的学术期刊,许多人将其誉为“国刊之光”。Cell Research 于1990年创刊,创刊后的第11年才获得第一个影响因子,又过了5年,影响因子为2.161(但这也是当时首个超过2分的国产学术期刊)。2006年是 Cell Research 发展的转折点,这一年,已经是 Cell 副主编的李党生回国出任 Cell Research 常务副主编,全面负责期刊的学术工作。2008年,期刊影响因子突破4分,2010年突破8分,2013年突破10分,2018年突破15分,2020年突破20分。自李党生2006年回国担任 Cell Research 常务副主编以来,该期刊影响力与日俱增,已经逐步发展为生命科学领域备受瞩目的具有国际影响力的期刊。在李党生的带领下,Cell Research 发展了专业的科学编辑队伍,并拓展建立了“绿色通道”和“快速通道”的论文发表渠道,以保障中国本土科学家的话语权、并吸引国外优秀科学家投稿。其中一个典型的例子就是,2012年,南京大学生命科学院张辰宇教授做出了一个令人惊讶的发现:食物中的外源植物miRNA可以调控哺乳动物靶基因的表达。该论文先后被 Nature、Science 国际顶刊拒稿,李党生带领团队通过“绿色通道”和“快速通道”,仅用了48小时,就完成了该论文的审稿工作,并安排发表。该论文上线后,引起较大关注,一度成为中国被引用量最高的学术论文,也是 Cell Research 飞跃之路的重要里程碑。此后,张辰宇教授在 Cell Research 陆续发表了一些列研究成果,开创了细胞外RNA(exRNA)这一新领域。详情:miRNA的跨界之旅——张辰宇团队开创的细胞外RNA领域2021年初,李党生由正式出任 Cell Research 主编一职,原主编裴钢院士任名誉主编。赛诺菲-Cell Research 2020年度杰出论文奖2020年杰出论文的通讯作者获奖论文分别是:论文题目:Interaction between microbiota and immunity in health and disease通讯作者:Eran Elinav(以色列魏茨曼科学研究所)论文简介:该综述系统地讨论了宿主免疫系统-微生物组的相互作用及其对人类健康和疾病风险的潜在影响,提供了微生物组-免疫全景图。论文题目:Inhibition of SARS-CoV-2 (previously 2019-nCoV) inhibition of SARS-CoV-2 (previously 2019-nCoV) inhibition of SARS-CoV-2 (previously 2019-nCoV)通讯作者:陆路、姜世勃(复旦大学)、朱赟(中科院生物物理所)论文简介:该研究发现,新冠病毒S蛋白上一个称为HR1区的基因序列在病毒通过膜融合侵入细胞的过程中起到关键作用,于是,研究者合成了靶向抑制HR1区的多肽改良化合物——EK1C4融合抑制剂来阻断病毒膜融合入侵;经多项体外实验验证,该化合物能够高效且广谱性抑制冠状病毒(包括新冠病毒)感染细胞。论文题目:Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice通讯作者:邓宏魁、罗佗平(北京大学)论文简介:该研究创新性的报道了一种新型的前体药物开发策略,即基于溶酶体β-半乳糖苷酶(β-gal)的活性增加(衰老细胞的主要特征)来设计新化合物。基于此开发了新的前体药物SSK1,该药物可以被溶酶体β-gal特异性切割成具有细胞毒性的物质并诱导衰老细胞凋亡,进而清除衰老细胞。2021年度杰出论文链接:1. https://www.nature.com/articles/s41422-021-00476-y2. https://www.nature.com/articles/s41422-021-00532-73. https://www.nature.com/articles/s41422-020-0389-3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制