当前位置: 仪器信息网 > 行业主题 > >

仓鼠卵巢细胞亚株

仪器信息网仓鼠卵巢细胞亚株专题为您提供2024年最新仓鼠卵巢细胞亚株价格报价、厂家品牌的相关信息, 包括仓鼠卵巢细胞亚株参数、型号等,不管是国产,还是进口品牌的仓鼠卵巢细胞亚株您都可以在这里找到。 除此之外,仪器信息网还免费为您整合仓鼠卵巢细胞亚株相关的耗材配件、试剂标物,还有仓鼠卵巢细胞亚株相关的最新资讯、资料,以及仓鼠卵巢细胞亚株相关的解决方案。

仓鼠卵巢细胞亚株相关的论坛

  • 新技术或可预测卵巢癌患者存活时间

    新华社华盛顿12月4日电(记者林小春)美国研究人员4日报告说,一种DNA(脱氧核糖核酸)检测技术或许可以帮助预测卵巢癌患者的存活时间,从而为个性化的癌症诊断及治疗提供指导。 美国弗雷德?哈钦森癌症研究中心的研究人员当天在《科学转化医学》杂志上说,他们开发的这种技术可以可靠、快速、廉价地对卵巢癌患者体内一种叫做肿瘤浸润淋巴细胞的免疫细胞进行计数。此前研究表明,卵巢癌患者体内的肿瘤浸润淋巴细胞越多,卵巢癌患者的存活时间越长。 研究负责人、癌症研究专家贾森?比拉说,与现有方法相比,新技术有望更早、更有效地预测癌症患者的治疗反应、癌症复发情况以及存活时间。如果将来用于临床,将会帮助医生选择最佳治疗方案,从而延长患者寿命。 研究人员利用30名卵巢癌患者身上取得的肿瘤样本测试了这种技术,这些患者存活时间从1个月到10年不等。结果表明,肿瘤浸润淋巴细胞的数量与卵巢癌患者的存活时间呈正相关,存活5年以上卵巢癌患者的肿瘤浸润淋巴细胞数量是不到两年患者的约3倍。 研究人员指出,这种肿瘤浸润淋巴细胞计数技术可能也适用于其他类型的癌症,有望在将来成为“一种用于更为个性化的癌症诊断及治疗的强有力工具”。

  • 【金秋计划】Nodakenin通过调节成骨细胞和破骨细胞的发生来减轻卵巢切除术所致的骨质疏松症

    [size=15px][color=#595959]骨质疏松[/color][/size][size=15px][color=#595959]症(OP)是一种以骨量减少和骨微结构损伤为特征的全身性骨代谢性疾病,它增加了骨脆性和骨折风险,与人口老龄化密切相关,患病率一直很高,正在成为全球关注的问题。此外,由于绝经后性激素水平急剧下降,女性的患病率远高于男性。目前临床治疗骨质疏松的药物包括特立帕肽、雌激素、降钙素、双膦酸盐等,主要目的是促进骨合成和防止骨吸收。这些药物在长期使用中经常会引起不良反应。因此,寻找一种安全有效的治疗方法尤为必要。[/color][/size] [size=15px][color=#595959]紫花前胡苷(Nodakenin,NK)是从中药独活(RAB)中分离得到的一种呋喃香豆素类化合物。NK已被证明具有抗炎、抗菌、抗氧化和抗血小板聚集作用,并能改善认知功能。最近,研究发现NK通过调节线粒体改善软骨退变和炎症反应,提高软骨下骨体积,从而缓解骨[/color][/size][size=15px][color=#595959]关节炎[/color][/size][size=15px][color=#595959]。然而,NK对OP影响的相关研究尚未见报道。[/color][/size] [align=center] [/align] [size=15px][color=#595959]评价NK对OVX小鼠的抗骨质疏松作用,探讨NK对体外成骨细胞和破骨细胞形成的调控机制。[/color][/size] [size=15px][color=#595959]采用网络药理学、分子对接和分子动力学模拟技术来确定NK在[/color][/size][size=15px][color=#595959]骨质疏松症[/color][/size][size=15px][color=#595959]中的潜在靶点和通路。6-8周龄雌性C57BL/6J小鼠行卵巢切除术,术后8周给予不同剂量NK (5 mg/kg或20 mg/kg)灌胃治疗,连续6周。从4周龄C57BL/6J小鼠骨髓腔中分离并获得BMSCs和BMMs,进行药效观察及机制验证。[/color][/size] [align=center] [/align] [size=15px][color=#595959]通过测定碱性磷酸酶活性和各种成骨标志物的表达,发现NK处理显著促进骨髓间充质[/color][/size][size=15px][color=#595959]干细胞[/color][/size][size=15px][color=#595959]成骨分化,同时激活PI3K/AKT/mTOR信号通路。相比之下,PI3K[/color][/size][size=15px][color=#595959]抑制剂[/color][/size][size=15px][color=#595959]LY294002逆转了这些变化,抑制了NK的成骨分化作用。同时,通过下调c-Src和TRAF6抑制Akt和NFκB信号通路,从而有效抑制RANKL诱导的破骨细胞生成。此外,口服NK可显著提高小鼠骨量,改善卵巢切除(OVX)介导的骨微结构紊乱。[/color][/size] [align=center] [/align] [size=15px][color=#595959]这些数据表明NK通过促进骨生成和抑制破骨细胞生成来减轻OVX诱导的骨丢失。该研究可能为骨质疏松症提供潜在的治疗策略。[/color][/size]

  • 【金秋计划】青蒿素类衍生物可治疗多囊卵巢综合征及其机制

    [size=14px] [/size] [size=14px] [/size] [size=14px]多囊卵巢综合征(polycystic ovary syndrome,PCOS)是一种普遍存在的生殖内分泌疾病,全球发病率约为10%-13%。其特征是高雄激素血症、排卵功能障碍、多囊卵巢形态,并且通常伴有代谢紊乱。雄激素升高是驱动PCOS表型特征的关键因素。尽管多囊卵巢综合征的患病率很高,但针对这种复杂综合征的药物干预仍面临巨大挑战。目前可用于PCOS的治疗方案有限,主要针对特定症状的管理。因此,迫切需要制定创新的治疗策略。[/size] [size=14px] [/size] [size=14px]青蒿素是植物来源的化合物,作为疗效稳定且副作用小的一线抗疟疾药物而闻名,但也被证明具有一些有益的代谢作用。复旦大学汤其群教授团队早期系统筛选了促进白色脂肪棕色化的小分子化合物,发现青蒿素类衍生物能够激活产热脂肪细胞来增强能量消耗和胰岛素敏感性的能力,从而防止饮食引起的肥胖和代谢紊乱(Cell Research,2016)。青蒿素在啮齿动物PCOS样模型和人类PCOS患者中的治疗潜力及机制尚不清楚。[/size] [size=14px] [/size] [size=14px]2024年6月14日,复旦大学附属中山医院汤其群教授团队在Science(IF=56.9)发表题为“Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction”的文章,发现青蒿素类衍生物能够显著改善PCOS的疾病表型。机制上,青蒿素能够靶向线粒体蛋白酶LONP1,促进LONP1与其底物CYP11A1的结合,加速CYP11A1的降解,抑制卵巢雄激素的合成,降低PCOS患者的雄激素水平,改善月经周期及卵巢多囊样变。该研究证明青蒿素还可以缓解多种啮齿动物模型和人类患者中多囊卵巢综合征的内分泌表现,这表明了一种治疗这种内分泌疾病多个方面的潜在方法。[/size] [size=14px] [/size] [size=14px]1、在啮齿类动物模型中,蒿甲醚(ATM)对PCOS样表型有抑制作用[/size] [size=14px] [/size] [size=14px]为了评估青蒿素对PCOS发展的影响,作者首先使用脱氢表雄酮(DHEA)建立PCOS样小鼠模型,并同时给药发现蒿甲醚(artemether,ATM,一种青蒿素),发现ATM可以消除DHEA处理小鼠血清中升高的睾酮,从而防止PCOS样特征,改善DHEA引起的发情周期中断,改善卵巢异常形态。在观察到预防效果的基础上,作者评估ATM的治疗效果。在建立DHEA诱导的PCOS样模型后,通过腹腔注射不同剂量的ATM处理小鼠,发现ATM降低血清睾酮,恢复正常的发情周期,抑制子宫水肿,并显著减少卵巢囊泡(图1)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]接下来,作者在大鼠模型中研究了ATM的抗PCOS作用,发现腹腔注射ATM足以使PCOS样大鼠的血清睾酮水平降至与对照大鼠相似的水平,并缓解被打乱的发情周期。卵巢组织学分析显示ATM逆转了DHEA处理大鼠的低排卵表型。在注射胰岛素和hCG(两者都是雄激素产生的强效诱导剂)建立的另一个PCOS样大鼠模型中,这一发现得到了进一步验证综上所述,在啮齿类动物模型中,ATM治疗改善了PCOS的主要特征,包括血清睾酮水平升高、发情周期不规则、多囊卵巢形态和低生育能力(图2)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、青蒿素抑制卵巢中的甾体生成和睾酮产生[/size] [size=14px] [/size] [size=14px]ATM引起的睾酮急剧下降促使作者探索青蒿素在调节雄激素合成中的作用。发现在PCOS样模型中,无论是腹腔还是口服,ATM均未显示出对促卵泡激素(FSH)和黄体生成素(LH)的影响。作者猜测青蒿素通过靶向卵巢调节睾酮水平,发现ATM显著抑制卵巢间质细胞中睾酮的产生。同样,SM934,也是一种青蒿素类似物,显示出与ATM诱导的睾酮水平相当的抑制作用。除了降低睾酮,ATM和SM934还明显降低孕烯醇酮、孕酮和17a-OHP,这些都是卵巢甾体生成的中间体和睾酮的前体,这一观察结果被另一种青蒿素衍生物青蒿琥酯(ATS)进一步验证。这些数据强烈表明,青蒿素抑制卵巢膜间质细胞的类固醇生成过程和随后的雄激素合成(图3A-3I)。[/size] [size=14px] [/size] [size=14px]3、青蒿素通过降低CYP11A1来限制睾酮的产生[/size] [size=14px] [/size] [size=14px]为了揭示青蒿素诱导雄激素合成减少的细胞途径,作者对分离的卵巢间质细胞进行蛋白质组学分析,发现CYP11A1是ATM诱导下调最显著的蛋白,CYP11A1催化胆固醇向孕烯醇酮的转化,这是类固醇激素生物合成的第一步,ATM对CYP11A1的下调与前面观察到的青蒿素抑制雄激素合成相一致。作者接着在大鼠和小鼠卵巢间质细胞和PCOS样小鼠卵巢中验证了青蒿素剂量依赖性地下调CYP11A1蛋白,而不影响HSD3B2和CYP17A1。接下来,作者发现补充孕烯醇酮(CYP11A1催化反应的产物)或者过表达CYP11A1挽救了青蒿素处理细胞中下降的睾酮,而CYP11A1表达被破坏后青蒿素无法进一步降低睾酮的产生,表明上调和下调CYP11A1决定了睾酮的产生,青蒿素通过CYP11A1影响睾酮的产生(图3J-3O)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、青蒿素介导LONP1和CYP11A1之间的相互作用[/size] [size=14px] [/size] [size=14px]作者接着探索青蒿素调节CYP11A1的机制。发现青蒿素诱导的蛋白水平降低,但Cyp11a1的mrna不受青蒿素的影响,表明青蒿素有转录后调控作用。随后,作者检测了CYP11A1的稳定性,发现ATM和SM934明显缩短了CYP11A1蛋白的半衰期。进一步研究表明,蛋白酶抑制剂MG132挽救了ATM和SM934诱导的CYP11A1下调,这共同表明青蒿素通过抑制其蛋白稳定性来降低CYP11A1水平(图4)。[/size] [size=14px] [/size] [size=14px]为了确定导致青蒿素诱导的CYP11A1不稳定的介质,作者应用IP-MS来鉴定ATM或SM934治疗下CYP11A1的相互蛋白,确定了两个候选蛋白在ATM和SM934均存在,co-IP验证发现其中的LONP1蛋白(一种线粒体蛋白酶,在线粒体蛋白质质量控制中至关重要)为目标蛋白,通过ATM和SM934诱导,LONP1和CYP11A1之间的相互作用显著增强。此外,LONP1过表达显著下调CYP11A1,这些数据表明,LONP1而不是TFG可能参与调节CYP11A1蛋白水平。内源性co-IP进一步证实,ATM和SM934增强了LONP1和CYP11A1之间的结合亲和力。综上所述,这些数据强烈表明,青蒿素增强了CYP11A1-LONP1的关联,就像“分子胶”一样,是一类诱导或稳定蛋白质之间相互作用的小分子。接下来,通过分子对接预测了LONP1和CYP11A1的结合位点,蛋白突变验证了CYP11A1中F252-T259区域对于CYP11A1-LONP1相互作用至关重要(图4)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、LONP1促进CYP11A1降解,抑制睾酮合成[/size] [size=14px] [/size] [size=14px]在确定了青蒿素增强了CYP11A1-LONP1的相互作用之后,作者试图研究LONP1在青蒿素诱导的CYP11A1降解中的作用。发现LONP1过表达降低了CYP11A1水平,MG132挽救了CYP11A1水平,MG132是一种蛋白酶抑制剂,也能够抑制LONP1。这些结果与上述数据一致,表明MG132可以恢复青蒿素引起的CYP11A1下降。此外, CDDO-Me(LONP1抑制剂)逆转了ATM引起的CYP11A1表达降低,敲低LONP1完全逆转了ATM诱导的CYP11A1下降。而催化失活的LONP1 (LONP1-S844A) 没有像WT LONP1那样降低CYP11A1的表达或缩短CYP11A1蛋白的半衰期,说明LONP1通过其蛋白酶活性降低了CYP11A1(图5)。[/size] [size=14px] [/size] [size=14px]为了证实LONP1是否直接介导了CYP11A1的下调,作者使用纯化的CYP11A1和LONP1蛋白进行了体外蛋白酶测定,发现ATM促进了LONP1催化的CYP11A1降解,而在缺乏LONP1或ATP的情况下,ATM对CYP11A1没有影响。此外,CYP11A1 (DF252-T259)的突变体形式未能与LONP1结合,对青蒿素诱导的下调表现出抗性。这些观察结果共同支持了LONP1在介导青蒿素诱导的CYP11A1下调中不可或缺的作用。接下来,作者评估了LONP1对卵巢雄激素合成的影响,发现LONP1的过表达下调了CYP11A1蛋白,进而降低孕烯醇酮、孕酮、17a-OHP和睾酮水平。通过腹腔注射AAV-LONP1在小鼠卵巢中过表达LONP1。结果显示,LONP1降低了CYP11A1同时抑制了血清睾酮。这些数据共同表明,LONP1的过表达复制了青蒿素降低雄激素的作用(图5)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、LONP1是青蒿素的直接靶点[/size] [size=14px] [/size] [size=14px]然后,作者试图确定青蒿素是否直接靶向LONP1或CYP11A1。通过生物素标记的青蒿素进行Pulldown实验证实了bio-ATS有效地降低了CYP11A1,进一步发现bio-ATS对LONP1蛋白而不是CYP11A1具有结合亲和力。游离ATS、ATM或SM934的竞争以及实验热稳定性实验同样表明LONP1,而不是CYP11A1,是青蒿素的直接靶点。进一步分子对接确定了青蒿素与靶点的结合模式。SPR和蛋白突变实验证实青蒿素对CYP11A1水平的抑制作用很大程度上依赖于其与LONP1蛋白水解结构域的结合。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]7、双氢青蒿素治疗多囊卵巢综合征的疗效观察[/size] [size=14px] [/size] [size=14px]最后,作者进行了一项试点临床研究,以验证青蒿素治疗多囊卵巢综合征患者的疗效。19例PCOS患者口服双氢青蒿素治疗12周,发现双氢青蒿素治疗显著降低了PCOS患者的血清睾酮。血清AMH水平与生长卵泡的数量密切相关,因此在PCOS患者中通常升高,而双氢青蒿素治疗显著降低了血清AMH。与这一结果一致的是,超声检查发现,双氢青蒿素治疗后,窦腔卵泡计数明显减少。63.16%的PCOS患者恢复了正常的月经周期。结果表明双氢青蒿素可有效改善PCOS患者高雄激素血症,改善多囊卵巢形态,促进月经正常。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]在这项研究中,作者将青蒿素确定为抗PCOS药物研究结果证明了青蒿素衍生物在缓解啮齿动物模型和人类患者的PCOS症状方面的功效,通过抑制卵巢雄激素合成来抑制高雄激素血症。青蒿素促进CYP11A1蛋白降解以阻止雄激素过量产生。从机制上讲,青蒿素直接靶向LONP1,增强了LONP1-CYP11A1相互作用,并促进了LONP1催化的CYP11A1降解。LONP1 的过表达复制了青蒿素的降雄激素作用。研究数据表明,青蒿素的应用是治疗多囊卵巢综合征的一种有前途的方法,并强调了LONP1-CYP11A1相互作用在控制高雄激素血症和多囊卵巢综合征发生方面的关键作用。[/size] [size=14px] [/size] [size=14px]图片[/size]

  • 【金秋计划】苍术中有效成分抗肿瘤作用机制研究进展

    肿瘤是指体内细胞的异常增生,可以是良性的或恶性的。良性肿瘤(例如息肉)生长缓慢且通常局限在一个区域,不会侵犯周围组织或扩散到其他部位。恶性肿瘤(即癌症)具有侵袭性,可以快速生长并通过血液或淋巴系统扩散到其他身体部位,形成远处转移。癌症是一种严重威胁人类健康和生命的疾病,2020年全球有1 930万新增癌症病例和1 000万癌症死亡病例,且我国癌症发病率和死亡率均位居全球第一[1]。最常见的癌症类型是乳腺癌、肺癌、结直肠癌和前列腺癌。因此,寻找新的抗肿瘤药物,阐明抗肿瘤药物的分子机制,是解决当前临床肿瘤治疗难点的有效策略。中药具有多种有效成分,因其不良反应低、多靶点、多通路等优点,已成为抗肿瘤药物开发的重要来源和研究热点[2]。目前,常规的肿瘤症治疗方法为手术、放射治疗和化学治疗等,但这些方法往往伴随着较大的不良反应和毒性,而且对某些难治性或复发性肿瘤效果不佳[3]。因此,寻找有效、低毒的抗肿瘤药物是当前临床研究的重要方向。 苍术是一种常用的中药材,分为茅苍术Atractylodes lancea (Thunb.) DC.和北苍术A. chinensis (DC.) Koidz.,分别来源于菊科植物茅苍术或北苍术的干燥根茎。苍术具有燥湿健脾、祛风散寒的功效,在《神农本草经》中列为上品[4]。近年来,苍术在抗微生物、抗炎、抗肿瘤、免疫调节、调节消化系统、心血管系统和神经系统等方面的药理作用受到了广泛关注。苍术中含有挥发油、多糖、倍半萜类、聚乙炔类等[5]多种化学成分。其中一些成分已经被证实具有抑制或杀伤多种肿瘤细胞的能力,其作用机制涉及诱导凋亡、抑制增殖、迁移、侵袭和转移,以及调控免疫功能等方面[6]。然而,苍术中的抗肿瘤活性成分及其作用机制尚未完全明确,需要进一步深入地探索和验证。本文通过整理国内外研究文献,对苍术活性成分、苍术与其他药物联合抗肿瘤及其分子机制进行总结,探讨苍术在抗肿瘤方面的应用规律和思路,为苍术资源的开发利用以及抗肿瘤临床疗法的研究提供理论参考。 1 苍术主要化学成分 茅苍术与北苍术化学成分相似,药理作用也较为相似,目前已从苍术中分离出多种化学成分,主要含有包括萜类、聚乙烯炔类、有机酸类、糖苷类化合物等[7-8]。苍术主要抗肿瘤化学成分,见图1。茅苍术与北苍术中主要化学成分如表1所示。 图片 图片 2 苍术的抗肿瘤机制 苍术中含有苍术内酯Ⅰ、Ⅱ、Ⅲ、苍术酮、β-桉叶醇和苍术素等有效成分,这些成分不仅可以抗炎、抗氧化、抗菌、保肝、降血糖,还可以抗肿瘤[14-15]。近年来,苍术及其有效成分对肿瘤的抑制作用受到了广泛的关注。研究发现,苍术有效成分对多种肿瘤细胞都有抑制作用,可以通过多种途径和机制影响肿瘤细胞的生长、迁移、侵袭和血管生成,诱导肿瘤细胞的凋亡和自噬,调节肿瘤微环境和免疫系统。 2.1 抑制肿瘤细胞增殖 肿瘤是由于细胞增殖失控而形成的一种疾病[16]。细胞周期是细胞增殖的基本过程,由细胞周期蛋白(cyclin,CCN)和细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物共同调控[17]。干预细胞周期是抑制肿瘤发展的有效策略之一[18]。Kotawong等[19]发现,苍术中的苍术素、苍术内酯I和β-桉叶醇等有效成分可以通过影响肿瘤细胞周期的不同阶段来抑制肿瘤细胞的增殖。这些成分可以通过抑制磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)、磷酸化蛋白激酶B(protein kinase B,AKT)和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来诱导肿瘤细胞在G1期停滞;Yu等[20]发现苍术内酯I通过上调周期蛋白依赖性激酶抑制剂1A(cyclin-dependent kinase inhibitor 1A,p21)和下调cyclinB1、CDK1和细胞分裂周期25C蛋白(cell division cyclin25,Cdc25c)等关键分子来抑制肿瘤细胞在G2/M期的进入,在动物模型中,苍术内酯I可以显著抑制膀胱癌的生长,且无明显不良反应。Zhang等[21]实验发现苍术内酯Ⅱ可以通过改变结直肠癌细胞内的蛋白表达从而抑制结直肠癌细胞的增殖和活性,并且还显著增强了结直肠癌细胞的化疗敏感性。Pongsakorn等[22]发现,苍术提取物可以通过抑制细胞外信号调节激酶信号级联(ERK-signaling cascade,ERK)信号通路来抑制胆管癌细胞的增殖。ERK信号通路是一种重要的细胞内信号转导机制,参与调节细胞生长、分化和凋亡等过程。苍术提取物可以下调ERK及其下游分子的表达,从而抑制胆管癌细胞的生长和增殖,不同类型的胆管癌细胞对苍术提取物的敏感度不同,其中人胆管HuCCT-1癌细胞最为敏感。 2.2 诱导肿瘤细胞凋亡 细胞凋亡是一种程序性细胞死亡形式,它通过限制细胞的增殖和分化来维持组织稳态或去除潜在的有害细胞[23]。目前已知的细胞凋亡途径主要有3种,即外源性途径(死亡受体介导)、内源性途径(线粒体介导)和内质网途径。其中,线粒体途径是最重要的一种,它涉及线粒体外膜透化(outer mitochondrial membrane,MOMP)、细胞色素C释放和半胱天冬酶(cysteine aspartic acid protease,Caspase)激活[24]。多项研究发现,苍术酮可以通过降低线粒体膜电位、提高活性氧水平、抑制B细胞淋巴瘤-2基因(B-cell lymphoma-2,Bcl-2)表达、促进BCL2-相关X蛋白(BCL2-associated X protein,Bax)裂解和Caspase-3表达[25],以及下调PI3K/AKT/mTOR信号通路来诱导肿瘤细胞凋亡[26]。Narahara等[27]研究表明,β-桉叶醇和苍术内酯Ⅲ[27]可以通过增加Caspase-3、Caspase-8、Caspase-9和Bax等凋亡相关蛋白的表达、下调Bcl-2表达、释放细胞色素C和降低线粒体膜电位来诱导胆管癌细胞凋亡。此外,Li等[28]使用β-桉叶醇处理的白血病HL60细胞,发现β-桉叶醇可以通过激活c-JunN端激酶(c-Jun N-terminal kinase,JNK)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路来诱导白血病HL60细胞凋亡。Li等[29]研究发现,苍术素可以通过降低Bcl-2表达、激活p53肿瘤蛋白(p53 tumor protein,p53)、Bax和Caspase-3、-8、-9等凋亡因子来诱导人乳腺癌MCF-7细胞凋亡,并表现出浓度依赖的毒性效应。Li等[30]研究表明,苍术内酯I和苍术内酯Ⅱ[31]可以通过与对两面针激酶2(Janus kinase 2,JAK2)直接相互作用而负调节信号传导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)磷酸化,从而抑制其活化,进而导致糖酵解的抑制和结肠、直肠癌细胞凋亡的诱导。 2.3 抑制肿瘤细胞转移 肿瘤细胞转移是指肿瘤细胞通过血液循环从原发部位转移到其他部位的过程,这是癌症治疗的难点,也是癌症死亡的主要原因[32]。上皮间质转化(epithelial-mesenchymal transition,EMT)是一种与癌症发生相关的细胞程序,它使癌细胞具有移动性、侵袭性和抗凋亡能力,从而促进转移。苍术的一些活性成分具有抑制肿瘤细胞转移的潜在作用,其机制可能涉及对EMT的调控[33]。Acharya等[34]研究发现,β-桉叶醇可以改变EMT相关标志物的表达,从而抑制结肠癌细胞的增殖、迁移和侵袭。同时它还可以影响PI3K、AKT、p38丝氨酸/苏氨酸蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)信号通路,以及肺癌细胞中的活性氧水平,从而降低癌细胞的黏附和迁移能力[35]。麦静愔等[36]发现苍术酮可以通过抑制EMT过程等途径抑制肿瘤细胞的迁移和侵袭能力,此外,苍术酮还可以通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)的表达从而抑制肿瘤细胞的迁移和侵袭能力。MMP是一类能够降解细胞外基质(extracellular matrix,ECM)的锌依赖性内肽酶,在癌症进展中的作用与它们参与ECM降解以及黏附和细胞骨架蛋白、生长因子、趋化因子的调节和加工有关[37]。且有动物实验表明,苍术酮可以明显抑制肝癌生长,没有明显的毒性。Zhong等[38]在观察了苍术多糖在U-2 OS人骨肉瘤细胞中对内皮细胞选择素(endothelial cell selectin,E-Selectin)和路易斯X三糖(Lewis-X Trisaccharide,LacCer Lex)的影响,发现苍术多糖可通过降低U-2 OS细胞上的E-Selectin抑制U-2 OS细胞对人脐静脉内皮细胞HUVECs的黏附、迁移和侵袭。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在促进肿瘤转移中发挥重要作用,Zhang等[39]发现苍术内酯II可以有效抑制肿瘤细胞极化,从而抑制肺癌细胞在体内和体外的转移。铁死亡是一种新的细胞死亡模式,其特征是铁过载导致脂质过氧化而导致膜损伤,过度的铁死亡会影响肿瘤的转移,从而抑制肿瘤的进展[40]。He等[41]发现,苍术素可通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)和铁蛋白轻链(ferritin light chain,FTL)的表达,以及上调酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)和转铁蛋白受体(transferrin receptor,TFR1)的表达来诱导肝癌HCCM细胞的铁死亡。 2.4 诱导肿瘤细胞自噬 细胞自噬是一种分解代谢通路,能清除不必要的或功能失调的细胞成分并回收代谢底物[42]。目前已知有3种主要的细胞死亡方式:细胞凋亡(Ⅰ型)、自噬性细胞死亡(Ⅱ型)和坏死(Ⅲ型)。自噬性细胞死亡是指自噬过程中产生的自噬体过多或过大,导致细胞质溶解和细胞死亡。自噬体是由双层膜包裹的囊泡,内含被降解的细胞器和蛋白质。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)是自噬体形成的关键标志物,它以微管相关蛋白1A/1B-轻链3(microtubule-associated protein 1 light chain 3,LC3-I)和微管相关蛋白1轻链3的脂化形式(lipidated form of microtubule-associated protein 1 light chain 3,LC3-Ⅱ)2种形式存在,LC3-Ⅰ转化为LC3-Ⅱ是自噬体形成的必要步骤[43-44]。Li等[29]使用苍术素处理乳腺癌MCF-7细胞时发现,苍术素可以增加了LC3Ⅰ向其脂化形式的LC3Ⅱ的转化,并增加了苄氯素1(beclin-1,BECN1)的表达,下调了人乳腺癌MCF-7细胞中的p62蛋白(p62 protein,p62)表达,改变凋亡和自噬相关生物标志物。Acharya等[45]研究发现,苍术素通过调节PI3K、AKT、mTOR、p38MAPK信号通路的活性,可以诱导胆管癌HuCCT-1细胞发生自噬,并抑制其生长、迁移和侵袭,SB202190(p38MAPK诱导剂)和3-MA(p38MAPK抑制剂)分别显著增加和降低苍术素诱导的自噬速率。 2.5 抑制肿瘤血管生成 血管生成本身不会导致恶性肿瘤的形成,但可以为肿瘤的生长和转移提供条件。肿瘤在发展到一定阶段后,需要依赖新生血管来满足其对氧气和营养的增加的需求,以及排除代谢废物,因此,抑制血管生成是一种有效的抗肿瘤策略[46]。血红素加氧酶1(heme oxygenase 1,HO-1)是一种在肿瘤组织中高表达的酶,它可以促进肿瘤的血管生成和抗氧化应激,为肿瘤细胞提供生存优势。因此,抑制HO-1的表达或活性是治疗肿瘤的另一种有效策略之一。Mathema等[47]研究发现,苍术素可以抑制胆管癌CL6肿瘤细胞的集落形成和伤口愈合能力,其机制与抑制HO-1的表达、下调信号转导及转录激活蛋白1/3(signal transducer and activator of transcription 1/3,STAT1/3)和核因子κB(nuclear factor kappa-B,NF-κB)的信号通路有关。β-桉叶醇也具有抑制胆管癌细胞中HO-1的表达的能力,其机制与浓度依赖性地抑制STAT1/3和NF-κB信号通路有关[48]。β-桉叶醇还可以通过抑制生长因子信号通路中的环磷腺苷效应元件结合蛋白(cyclic-AMP response binding protein,CREB)激活来阻断血管生成,从而抑制肿瘤的发展[49]。Tsuneki等[50]有动物实验表明,β-桉叶醇可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)来刺激大鼠嗜铬细胞瘤细胞中的神经突生长,且β-桉叶醇还表现出了体外和体内的抗血管生成活性,其阻断了由碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或血管内皮生长因子(vascular endothelial growth factor,VEGF)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中CREB蛋白的磷酸化,从而抑制bFGF刺激的HUVEC迁移和HUVEC在基质胶中的管形成。同时,它还能显著降低小鼠皮下植入的Matrigel栓塞和小鼠佐剂诱导的肉芽肿中的血管生成[51]。 2.6 免疫调节作用 随着肿瘤的发生和发展,或在接受化疗、放疗等治疗的过程中,肿瘤患者机体免疫力的显著下降。因此,调节或刺激机体免疫能力,可能是一种有效的主动抗癌策略。免疫治疗作为一种新型的抗癌手段,已经引起了广泛的关注和研究[52]。巨噬细胞是机体内重要的免疫细胞,在机体免疫中发挥着重要的作用[53]。Qin等[54]从苍术中分离得到两种多糖成分:中性多糖和酸性多糖。研究表明,酸性多糖能够显著地刺激小鼠单核巨噬细胞白血病细胞(RAW264.7)细胞的增殖、吞噬能力、NO产生和细胞因子分泌,并且呈现出剂量相关性,而中性多糖则相对较弱。此外,中性多糖和酸性多糖均能够激活淋巴结Peyers patch细胞中的T细胞,并促进集落刺激因子的产生。而酸性多糖也表现出比中性多糖更好的肠道免疫调节活性。吲哚胺-2,3-二氧化酶(indoleamine 2,3-dioxygenase,IDO)是一种通过犬嘌呤途径氧化分解色氨酸的限速酶,是抗肿瘤免疫治疗中小分子药物开发的潜在目标。IDO可在肿瘤微环境中通过与许多肿瘤相关的自发炎症和T细胞激活而被诱导。Liu等[55]研究发现,苍术内酯Ⅰ可以通过下调Toll样受体4/髓样分化蛋白2复合物(toll-like receptor 4/myeloid differentiation 2 complex,TLR4/MD-2)的表达,抑制人卵巢癌细胞(EOCSKOV3)中髓样分化主要反应蛋白88(myeloid differentiation primary response protein 88,MyD88)、NF-κB、Akt和IDO1的信号通路的活化,从而减少白细胞介素-6(interleukin-6,IL-6)、转化生长因子-β1(transforming growth factor beta 1,TGF-β1)、VEGF和白细胞介素-17A(interleukin-17A,IL-17A)等促进肿瘤免疫逃逸的因子的分泌。同时,还可以降低调节性T细胞(Treg细胞)在肿瘤微环境中的比例,改善T淋巴细胞受到EOCSKOV3细胞上清液抑制而导致的增殖反应降低和抗肿瘤细胞毒性减弱。Liu等[56]研究发现,苍术内酯Ⅲ可以通过直接结合JAK3蛋白,从而抑制γ-干扰素(interferon gamma,IFN-γ)触发的JAK3/STAT3通路,从而达到抑制IDO激活的目的。 苍术抗肿瘤成分的潜在分子机制见图2。对苍术抗肿瘤有效成分及其抗肿瘤作用进行归纳总结,见表2。 图片 图片 3 联合用药 西医治疗肿瘤的常用手段有手术切除、药物化疗和高能射线放疗等,这些手段去除肿瘤西医的治疗方式更为直接,适合前期控制病情,化疗药物虽然能够杀死肿瘤细胞,但同时也伴有严重的副作用,影响患者的生活质量和治疗效果。中药具有不良反应小、安全性高的特点,因此中药与化疗药物的联合应用被广泛关注和探索[57]。 阿帕替尼是全球第一个在晚期胃癌被证实安全有效的小分子抗血管生成靶向药物,也是晚期胃癌标准化疗失败后,明显延长生存期的单药。Zhou等[58] 分析了不同苍术多糖提取方法的影响。比较了热水浸提法、超声浸提法和酶浸提法提取苍术多糖的得率、总糖含量、相对分子质量分布、单糖组成、并测定苍术多糖与阿帕替尼的协同活性。结果发现其中超声浸提法表现出最强的协同作用。这也与超声浸提的苍术多糖相对分子质量小、β-构型高、半乳糖含量高的事实相一致。Srijiwangsa等[59]发现,β-桉叶醇可以通过抑制胆管癌细胞和细胞裂解物中的NAD(P)H醌氧化还原酶1[NAD(P)H quinonedehydrogenase 1,NQO1]的活性和蛋白表达,增强氟尿嘧啶和多柔比星对细胞迁移的细胞毒性活性和抑制活性。Mai等[60]将不同浓度的苍术内酯I、硼替佐米以及硼替佐米+苍术内酯I作用于U266细胞结果研究发现,苍术内酯可以调节JAK2/STAT3通路上的IL-6、JAK2、STAT3等基因表达抑制U266肿瘤细胞的增殖和促进其凋亡并呈剂量依赖性,并能与硼替佐米产生协同作用,当苍术内酯I与硼替佐米联合使用时,可显著增强对U266细胞增殖的抑制作用。 紫杉醇是第一个获得批准的草药衍生化疗药物[61]。并且作为一种已知的Toll受体4配体(toll-like receptor 4 ligand,TLR4),可激活TLR4/MyD88依赖性途径,该通路介导了上皮性卵巢癌的化学耐药性和肿瘤进展。苍术内酯I是一种新型TLR4拮抗剂,通过干扰紫杉醇与人白细胞膜TLR4的结合,来抑制TLR4信号传导。Huang等[62]研究发现苍术内酯-I可以减弱紫杉醇诱导的IL-6、VEGF和存活蛋白的蛋白表达,并增强MyD88(+)EOC人卵巢癌细胞的早期凋亡和生长抑制;苍术内酯I被发现更加亲和人髓样分化蛋白2(myeloid differentiation 2,MD-2)的疏水囊,并通过对接模拟与紫杉醇的结合位点部分重叠,这表明苍术内酯-I可能阻断MyD88(+)EOC细胞中MD-2介导的TLR4/MyD88依赖性紫杉醇信号传导。因此,苍术内酯-I可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高MyD88(+)EOC细胞对紫杉醇的反应。 结缔组织生长因子(connective Tissue Growth Factor,CTGF)是一种多功能信号调节剂,可通过调节细胞增殖、迁移、侵袭、耐药性和EMT来促进癌症的发生、进展和转移。CTGF还参与大多数节点的肿瘤微环境,包括血管生成、炎症和肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)激活[63]。Wang等[64]研究发现,苍术内酯-I可以下调三阴性乳腺癌细胞中CTGF的表达和分泌。除了通过CTGF抑制三阴性乳腺癌细胞迁移外,苍术内酯-I还下调了成纤维细胞中CTGF的表达,降低了乳腺癌细胞将成纤维细胞转化为CAFs的能力,从而增加了三阴性乳腺癌细胞对紫杉醇的敏感性。在小鼠肿瘤模型中,发现苍术内酯-I治疗可以增强紫杉醇对肿瘤的化疗作用,减少肿瘤向肺和肝的转移。在用苍术内酯-I与紫杉醇联合治疗的小鼠中,源自接种肿瘤的原代培养的成纤维细胞表达相对较低水平的CAFs标志物。 研究表明了苍术内酯-I可以通过阻断CTGF表达和成纤维细胞活化来使三阴性乳腺癌细胞对紫杉醇敏感,还可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高肿瘤细胞对紫杉醇的反应并。这些机制有助于未来研究以确定苍术内酯I在临床环境中的价值。对苍术化学成分联合治疗归纳总结,见表3。 图片 4 结语与展望 苍术中含有多种抗肿瘤成分,其中多为倍半萜类成分,如苍术酮、苍术素和苍术内酯等,这些成分多是通过调控PI3K/Akt/mTOR通路来发挥抗肿瘤的作用,但作用靶点与方式却各不相同。例如苍术内酯主要通过降低Akt的磷酸化水平、上调Bax和Bad蛋白表达、增加脂质磷酸酶(PTEN)活性来抑制该通路进而诱导肿瘤细胞凋亡[20];β-桉叶醇能通过激活p27抑制cyclinD1和CDK4蛋白表达最终导致细胞周期停滞于G1期[19]。这些成分通过多途径、多靶点影响肿瘤细胞的生存、运动、代谢和迁移进而共同发挥抗肿瘤作用。正因为其作用机制的不同,使其各有效成分对不同肿瘤的作用具有一定特异性。因此苍术抗肿瘤活性成分联合化疗药物减副增效在科学研究及临床用药时可根据其作用机制进行选择。目前关于苍术化合物对肿瘤细胞的研究还存在一些不足之处,如缺乏对不同肿瘤细胞类型和不同剂量的系统比较、缺乏对苍术化合物与其他药物或放化疗的协同作用的评价,以及缺乏对苍术化合物在体内代谢和药效学的深入分析等。 因此,今后还需要加强对苍术化合物抗肿瘤作用的基础和临床研究。后续可以根据苍术有效成分的抗肿瘤作用机制,筛选出具有最强抗肿瘤活性和最低毒性的化合物,作为候选药物进行进一步的优化和改造,提高其药效和安全性;分析苍术中有效成分的药代动力学特征,研究其在体内的吸收、分布、代谢和排泄等过程,确定其最佳的给药途径、剂量和方案,减少其不良反应和药物相互作用;根据苍术中有效成分的药效学特征,研究其对不同类型、分期和分子标志物的肿瘤细胞的作用差异,确定其最适合的治疗对象和指标,提高其个体化和精准化的治疗效果;根据苍术有效成分的协同增效或拮抗作用,探索其与其他抗癌药物或放化疗的联合应用,实现其对肿瘤细胞的多靶点、多途径和多机制的综合干预,增强其抗肿瘤效能和克服肿瘤耐药性,以期为开发新型的抗肿瘤药物提供更多的选择和可能性。 苍术与化疗药物的联合应用被广泛关注和探索。作为苍术的主要成分,现有研究已表明倍半萜类具有显著的抗肿瘤活性,其与化疗药物的联合临床用药有着巨大的潜力。但倍半萜类化合物分子结构中含有多个疏水基团,导致它们的极性较低,难以与水分子形成氢键或静电相互作用,在水中的溶解度小、生物利用度低。随着现代药物研究技术的现代化和多学科的交叉融合,这些问题也可以通过引入基团、采用纳米技术制备纳米载体、采用共晶技术制备倍半萜类化合物的共晶体等方式来提高其水溶性,进而增强其生物利用度。这些技术在药物化学领域已比较成熟,也已逐步应用于临床药物的开发。例如,抗疟活性药物青蒿素同样具有水溶性差应用困难的问题,通过引入羧酸基团,显著提高了其水溶性和生物利用度[65-66]; 此外,共晶体可以改变倍半萜类化合物的晶型和晶格参数,从而降低其结晶度和熔点,增加其自由能和溶解度[67]。苍术内酯也可通过与尼可替尼(一种具有较高水溶性的抗肿瘤药物)制备共晶体,可以显著提高其水溶性。因此,苍术抗肿瘤有效成分和化疗药物的联合用药在临床环境中的开发和应用具有很高的研究价值。 苍术作为中医临床常用的化湿药。其药性辛、苦、温,归脾、胃、肝经,其苦温燥湿,可以去湿浊、辛温健脾以和脾胃,多用

  • 【金秋计划】苍术中有效成分抗肿瘤作用机制研究进展

    肿瘤是指体内细胞的异常增生,可以是良性的或恶性的。良性肿瘤(例如息肉)生长缓慢且通常局限在一个区域,不会侵犯周围组织或扩散到其他部位。恶性肿瘤(即癌症)具有侵袭性,可以快速生长并通过血液或淋巴系统扩散到其他身体部位,形成远处转移。癌症是一种严重威胁人类健康和生命的疾病,2020年全球有1 930万新增癌症病例和1 000万癌症死亡病例,且我国癌症发病率和死亡率均位居全球第一[1]。最常见的癌症类型是乳腺癌、肺癌、结直肠癌和前列腺癌。因此,寻找新的抗肿瘤药物,阐明抗肿瘤药物的分子机制,是解决当前临床肿瘤治疗难点的有效策略。中药具有多种有效成分,因其不良反应低、多靶点、多通路等优点,已成为抗肿瘤药物开发的重要来源和研究热点[2]。目前,常规的肿瘤症治疗方法为手术、放射治疗和化学治疗等,但这些方法往往伴随着较大的不良反应和毒性,而且对某些难治性或复发性肿瘤效果不佳[3]。因此,寻找有效、低毒的抗肿瘤药物是当前临床研究的重要方向。 苍术是一种常用的中药材,分为茅苍术Atractylodes lancea (Thunb.) DC.和北苍术A. chinensis (DC.) Koidz.,分别来源于菊科植物茅苍术或北苍术的干燥根茎。苍术具有燥湿健脾、祛风散寒的功效,在《神农本草经》中列为上品[4]。近年来,苍术在抗微生物、抗炎、抗肿瘤、免疫调节、调节消化系统、心血管系统和神经系统等方面的药理作用受到了广泛关注。苍术中含有挥发油、多糖、倍半萜类、聚乙炔类等[5]多种化学成分。其中一些成分已经被证实具有抑制或杀伤多种肿瘤细胞的能力,其作用机制涉及诱导凋亡、抑制增殖、迁移、侵袭和转移,以及调控免疫功能等方面[6]。然而,苍术中的抗肿瘤活性成分及其作用机制尚未完全明确,需要进一步深入地探索和验证。本文通过整理国内外研究文献,对苍术活性成分、苍术与其他药物联合抗肿瘤及其分子机制进行总结,探讨苍术在抗肿瘤方面的应用规律和思路,为苍术资源的开发利用以及抗肿瘤临床疗法的研究提供理论参考。 1 苍术主要化学成分 茅苍术与北苍术化学成分相似,药理作用也较为相似,目前已从苍术中分离出多种化学成分,主要含有包括萜类、聚乙烯炔类、有机酸类、糖苷类化合物等[7-8]。苍术主要抗肿瘤化学成分,见图1。茅苍术与北苍术中主要化学成分如表1所示。 图片 图片 2 苍术的抗肿瘤机制 苍术中含有苍术内酯Ⅰ、Ⅱ、Ⅲ、苍术酮、β-桉叶醇和苍术素等有效成分,这些成分不仅可以抗炎、抗氧化、抗菌、保肝、降血糖,还可以抗肿瘤[14-15]。近年来,苍术及其有效成分对肿瘤的抑制作用受到了广泛的关注。研究发现,苍术有效成分对多种肿瘤细胞都有抑制作用,可以通过多种途径和机制影响肿瘤细胞的生长、迁移、侵袭和血管生成,诱导肿瘤细胞的凋亡和自噬,调节肿瘤微环境和免疫系统。 2.1 抑制肿瘤细胞增殖 肿瘤是由于细胞增殖失控而形成的一种疾病[16]。细胞周期是细胞增殖的基本过程,由细胞周期蛋白(cyclin,CCN)和细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物共同调控[17]。干预细胞周期是抑制肿瘤发展的有效策略之一[18]。Kotawong等[19]发现,苍术中的苍术素、苍术内酯I和β-桉叶醇等有效成分可以通过影响肿瘤细胞周期的不同阶段来抑制肿瘤细胞的增殖。这些成分可以通过抑制磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)、磷酸化蛋白激酶B(protein kinase B,AKT)和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来诱导肿瘤细胞在G1期停滞;Yu等[20]发现苍术内酯I通过上调周期蛋白依赖性激酶抑制剂1A(cyclin-dependent kinase inhibitor 1A,p21)和下调cyclinB1、CDK1和细胞分裂周期25C蛋白(cell division cyclin25,Cdc25c)等关键分子来抑制肿瘤细胞在G2/M期的进入,在动物模型中,苍术内酯I可以显著抑制膀胱癌的生长,且无明显不良反应。Zhang等[21]实验发现苍术内酯Ⅱ可以通过改变结直肠癌细胞内的蛋白表达从而抑制结直肠癌细胞的增殖和活性,并且还显著增强了结直肠癌细胞的化疗敏感性。Pongsakorn等[22]发现,苍术提取物可以通过抑制细胞外信号调节激酶信号级联(ERK-signaling cascade,ERK)信号通路来抑制胆管癌细胞的增殖。ERK信号通路是一种重要的细胞内信号转导机制,参与调节细胞生长、分化和凋亡等过程。苍术提取物可以下调ERK及其下游分子的表达,从而抑制胆管癌细胞的生长和增殖,不同类型的胆管癌细胞对苍术提取物的敏感度不同,其中人胆管HuCCT-1癌细胞最为敏感。 2.2 诱导肿瘤细胞凋亡 细胞凋亡是一种程序性细胞死亡形式,它通过限制细胞的增殖和分化来维持组织稳态或去除潜在的有害细胞[23]。目前已知的细胞凋亡途径主要有3种,即外源性途径(死亡受体介导)、内源性途径(线粒体介导)和内质网途径。其中,线粒体途径是最重要的一种,它涉及线粒体外膜透化(outer mitochondrial membrane,MOMP)、细胞色素C释放和半胱天冬酶(cysteine aspartic acid protease,Caspase)激活[24]。多项研究发现,苍术酮可以通过降低线粒体膜电位、提高活性氧水平、抑制B细胞淋巴瘤-2基因(B-cell lymphoma-2,Bcl-2)表达、促进BCL2-相关X蛋白(BCL2-associated X protein,Bax)裂解和Caspase-3表达[25],以及下调PI3K/AKT/mTOR信号通路来诱导肿瘤细胞凋亡[26]。Narahara等[27]研究表明,β-桉叶醇和苍术内酯Ⅲ[27]可以通过增加Caspase-3、Caspase-8、Caspase-9和Bax等凋亡相关蛋白的表达、下调Bcl-2表达、释放细胞色素C和降低线粒体膜电位来诱导胆管癌细胞凋亡。此外,Li等[28]使用β-桉叶醇处理的白血病HL60细胞,发现β-桉叶醇可以通过激活c-JunN端激酶(c-Jun N-terminal kinase,JNK)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路来诱导白血病HL60细胞凋亡。Li等[29]研究发现,苍术素可以通过降低Bcl-2表达、激活p53肿瘤蛋白(p53 tumor protein,p53)、Bax和Caspase-3、-8、-9等凋亡因子来诱导人乳腺癌MCF-7细胞凋亡,并表现出浓度依赖的毒性效应。Li等[30]研究表明,苍术内酯I和苍术内酯Ⅱ[31]可以通过与对两面针激酶2(Janus kinase 2,JAK2)直接相互作用而负调节信号传导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)磷酸化,从而抑制其活化,进而导致糖酵解的抑制和结肠、直肠癌细胞凋亡的诱导。 2.3 抑制肿瘤细胞转移 肿瘤细胞转移是指肿瘤细胞通过血液循环从原发部位转移到其他部位的过程,这是癌症治疗的难点,也是癌症死亡的主要原因[32]。上皮间质转化(epithelial-mesenchymal transition,EMT)是一种与癌症发生相关的细胞程序,它使癌细胞具有移动性、侵袭性和抗凋亡能力,从而促进转移。苍术的一些活性成分具有抑制肿瘤细胞转移的潜在作用,其机制可能涉及对EMT的调控[33]。Acharya等[34]研究发现,β-桉叶醇可以改变EMT相关标志物的表达,从而抑制结肠癌细胞的增殖、迁移和侵袭。同时它还可以影响PI3K、AKT、p38丝氨酸/苏氨酸蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)信号通路,以及肺癌细胞中的活性氧水平,从而降低癌细胞的黏附和迁移能力[35]。麦静愔等[36]发现苍术酮可以通过抑制EMT过程等途径抑制肿瘤细胞的迁移和侵袭能力,此外,苍术酮还可以通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)的表达从而抑制肿瘤细胞的迁移和侵袭能力。MMP是一类能够降解细胞外基质(extracellular matrix,ECM)的锌依赖性内肽酶,在癌症进展中的作用与它们参与ECM降解以及黏附和细胞骨架蛋白、生长因子、趋化因子的调节和加工有关[37]。且有动物实验表明,苍术酮可以明显抑制肝癌生长,没有明显的毒性。Zhong等[38]在观察了苍术多糖在U-2 OS人骨肉瘤细胞中对内皮细胞选择素(endothelial cell selectin,E-Selectin)和路易斯X三糖(Lewis-X Trisaccharide,LacCer Lex)的影响,发现苍术多糖可通过降低U-2 OS细胞上的E-Selectin抑制U-2 OS细胞对人脐静脉内皮细胞HUVECs的黏附、迁移和侵袭。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在促进肿瘤转移中发挥重要作用,Zhang等[39]发现苍术内酯II可以有效抑制肿瘤细胞极化,从而抑制肺癌细胞在体内和体外的转移。铁死亡是一种新的细胞死亡模式,其特征是铁过载导致脂质过氧化而导致膜损伤,过度的铁死亡会影响肿瘤的转移,从而抑制肿瘤的进展[40]。He等[41]发现,苍术素可通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)和铁蛋白轻链(ferritin light chain,FTL)的表达,以及上调酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)和转铁蛋白受体(transferrin receptor,TFR1)的表达来诱导肝癌HCCM细胞的铁死亡。 2.4 诱导肿瘤细胞自噬 细胞自噬是一种分解代谢通路,能清除不必要的或功能失调的细胞成分并回收代谢底物[42]。目前已知有3种主要的细胞死亡方式:细胞凋亡(Ⅰ型)、自噬性细胞死亡(Ⅱ型)和坏死(Ⅲ型)。自噬性细胞死亡是指自噬过程中产生的自噬体过多或过大,导致细胞质溶解和细胞死亡。自噬体是由双层膜包裹的囊泡,内含被降解的细胞器和蛋白质。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)是自噬体形成的关键标志物,它以微管相关蛋白1A/1B-轻链3(microtubule-associated protein 1 light chain 3,LC3-I)和微管相关蛋白1轻链3的脂化形式(lipidated form of microtubule-associated protein 1 light chain 3,LC3-Ⅱ)2种形式存在,LC3-Ⅰ转化为LC3-Ⅱ是自噬体形成的必要步骤[43-44]。Li等[29]使用苍术素处理乳腺癌MCF-7细胞时发现,苍术素可以增加了LC3Ⅰ向其脂化形式的LC3Ⅱ的转化,并增加了苄氯素1(beclin-1,BECN1)的表达,下调了人乳腺癌MCF-7细胞中的p62蛋白(p62 protein,p62)表达,改变凋亡和自噬相关生物标志物。Acharya等[45]研究发现,苍术素通过调节PI3K、AKT、mTOR、p38MAPK信号通路的活性,可以诱导胆管癌HuCCT-1细胞发生自噬,并抑制其生长、迁移和侵袭,SB202190(p38MAPK诱导剂)和3-MA(p38MAPK抑制剂)分别显著增加和降低苍术素诱导的自噬速率。 2.5 抑制肿瘤血管生成 血管生成本身不会导致恶性肿瘤的形成,但可以为肿瘤的生长和转移提供条件。肿瘤在发展到一定阶段后,需要依赖新生血管来满足其对氧气和营养的增加的需求,以及排除代谢废物,因此,抑制血管生成是一种有效的抗肿瘤策略[46]。血红素加氧酶1(heme oxygenase 1,HO-1)是一种在肿瘤组织中高表达的酶,它可以促进肿瘤的血管生成和抗氧化应激,为肿瘤细胞提供生存优势。因此,抑制HO-1的表达或活性是治疗肿瘤的另一种有效策略之一。Mathema等[47]研究发现,苍术素可以抑制胆管癌CL6肿瘤细胞的集落形成和伤口愈合能力,其机制与抑制HO-1的表达、下调信号转导及转录激活蛋白1/3(signal transducer and activator of transcription 1/3,STAT1/3)和核因子κB(nuclear factor kappa-B,NF-κB)的信号通路有关。β-桉叶醇也具有抑制胆管癌细胞中HO-1的表达的能力,其机制与浓度依赖性地抑制STAT1/3和NF-κB信号通路有关[48]。β-桉叶醇还可以通过抑制生长因子信号通路中的环磷腺苷效应元件结合蛋白(cyclic-AMP response binding protein,CREB)激活来阻断血管生成,从而抑制肿瘤的发展[49]。Tsuneki等[50]有动物实验表明,β-桉叶醇可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)来刺激大鼠嗜铬细胞瘤细胞中的神经突生长,且β-桉叶醇还表现出了体外和体内的抗血管生成活性,其阻断了由碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或血管内皮生长因子(vascular endothelial growth factor,VEGF)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中CREB蛋白的磷酸化,从而抑制bFGF刺激的HUVEC迁移和HUVEC在基质胶中的管形成。同时,它还能显著降低小鼠皮下植入的Matrigel栓塞和小鼠佐剂诱导的肉芽肿中的血管生成[51]。 2.6 免疫调节作用 随着肿瘤的发生和发展,或在接受化疗、放疗等治疗的过程中,肿瘤患者机体免疫力的显著下降。因此,调节或刺激机体免疫能力,可能是一种有效的主动抗癌策略。免疫治疗作为一种新型的抗癌手段,已经引起了广泛的关注和研究[52]。巨噬细胞是机体内重要的免疫细胞,在机体免疫中发挥着重要的作用[53]。Qin等[54]从苍术中分离得到两种多糖成分:中性多糖和酸性多糖。研究表明,酸性多糖能够显著地刺激小鼠单核巨噬细胞白血病细胞(RAW264.7)细胞的增殖、吞噬能力、NO产生和细胞因子分泌,并且呈现出剂量相关性,而中性多糖则相对较弱。此外,中性多糖和酸性多糖均能够激活淋巴结Peyers patch细胞中的T细胞,并促进集落刺激因子的产生。而酸性多糖也表现出比中性多糖更好的肠道免疫调节活性。吲哚胺-2,3-二氧化酶(indoleamine 2,3-dioxygenase,IDO)是一种通过犬嘌呤途径氧化分解色氨酸的限速酶,是抗肿瘤免疫治疗中小分子药物开发的潜在目标。IDO可在肿瘤微环境中通过与许多肿瘤相关的自发炎症和T细胞激活而被诱导。Liu等[55]研究发现,苍术内酯Ⅰ可以通过下调Toll样受体4/髓样分化蛋白2复合物(toll-like receptor 4/myeloid differentiation 2 complex,TLR4/MD-2)的表达,抑制人卵巢癌细胞(EOCSKOV3)中髓样分化主要反应蛋白88(myeloid differentiation primary response protein 88,MyD88)、NF-κB、Akt和IDO1的信号通路的活化,从而减少白细胞介素-6(interleukin-6,IL-6)、转化生长因子-β1(transforming growth factor beta 1,TGF-β1)、VEGF和白细胞介素-17A(interleukin-17A,IL-17A)等促进肿瘤免疫逃逸的因子的分泌。同时,还可以降低调节性T细胞(Treg细胞)在肿瘤微环境中的比例,改善T淋巴细胞受到EOCSKOV3细胞上清液抑制而导致的增殖反应降低和抗肿瘤细胞毒性减弱。Liu等[56]研究发现,苍术内酯Ⅲ可以通过直接结合JAK3蛋白,从而抑制γ-干扰素(interferon gamma,IFN-γ)触发的JAK3/STAT3通路,从而达到抑制IDO激活的目的。 苍术抗肿瘤成分的潜在分子机制见图2。对苍术抗肿瘤有效成分及其抗肿瘤作用进行归纳总结,见表2。 图片 图片 3 联合用药 西医治疗肿瘤的常用手段有手术切除、药物化疗和高能射线放疗等,这些手段去除肿瘤西医的治疗方式更为直接,适合前期控制病情,化疗药物虽然能够杀死肿瘤细胞,但同时也伴有严重的副作用,影响患者的生活质量和治疗效果。中药具有不良反应小、安全性高的特点,因此中药与化疗药物的联合应用被广泛关注和探索[57]。 阿帕替尼是全球第一个在晚期胃癌被证实安全有效的小分子抗血管生成靶向药物,也是晚期胃癌标准化疗失败后,明显延长生存期的单药。Zhou等[58] 分析了不同苍术多糖提取方法的影响。比较了热水浸提法、超声浸提法和酶浸提法提取苍术多糖的得率、总糖含量、相对分子质量分布、单糖组成、并测定苍术多糖与阿帕替尼的协同活性。结果发现其中超声浸提法表现出最强的协同作用。这也与超声浸提的苍术多糖相对分子质量小、β-构型高、半乳糖含量高的事实相一致。Srijiwangsa等[59]发现,β-桉叶醇可以通过抑制胆管癌细胞和细胞裂解物中的NAD(P)H醌氧化还原酶1[NAD(P)H quinonedehydrogenase 1,NQO1]的活性和蛋白表达,增强氟尿嘧啶和多柔比星对细胞迁移的细胞毒性活性和抑制活性。Mai等[60]将不同浓度的苍术内酯I、硼替佐米以及硼替佐米+苍术内酯I作用于U266细胞结果研究发现,苍术内酯可以调节JAK2/STAT3通路上的IL-6、JAK2、STAT3等基因表达抑制U266肿瘤细胞的增殖和促进其凋亡并呈剂量依赖性,并能与硼替佐米产生协同作用,当苍术内酯I与硼替佐米联合使用时,可显著增强对U266细胞增殖的抑制作用。 紫杉醇是第一个获得批准的草药衍生化疗药物[61]。并且作为一种已知的Toll受体4配体(toll-like receptor 4 ligand,TLR4),可激活TLR4/MyD88依赖性途径,该通路介导了上皮性卵巢癌的化学耐药性和肿瘤进展。苍术内酯I是一种新型TLR4拮抗剂,通过干扰紫杉醇与人白细胞膜TLR4的结合,来抑制TLR4信号传导。Huang等[62]研究发现苍术内酯-I可以减弱紫杉醇诱导的IL-6、VEGF和存活蛋白的蛋白表达,并增强MyD88(+)EOC人卵巢癌细胞的早期凋亡和生长抑制;苍术内酯I被发现更加亲和人髓样分化蛋白2(myeloid differentiation 2,MD-2)的疏水囊,并通过对接模拟与紫杉醇的结合位点部分重叠,这表明苍术内酯-I可能阻断MyD88(+)EOC细胞中MD-2介导的TLR4/MyD88依赖性紫杉醇信号传导。因此,苍术内酯-I可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高MyD88(+)EOC细胞对紫杉醇的反应。 结缔组织生长因子(connective Tissue Growth Factor,CTGF)是一种多功能信号调节剂,可通过调节细胞增殖、迁移、侵袭、耐药性和EMT来促进癌症的发生、进展和转移。CTGF还参与大多数节点的肿瘤微环境,包括血管生成、炎症和肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)激活[63]。Wang等[64]研究发现,苍术内酯-I可以下调三阴性乳腺癌细胞中CTGF的表达和分泌。除了通过CTGF抑制三阴性乳腺癌细胞迁移外,苍术内酯-I还下调了成纤维细胞中CTGF的表达,降低了乳腺癌细胞将成纤维细胞转化为CAFs的能力,从而增加了三阴性乳腺癌细胞对紫杉醇的敏感性。在小鼠肿瘤模型中,发现苍术内酯-I治疗可以增强紫杉醇对肿瘤的化疗作用,减少肿瘤向肺和肝的转移。在用苍术内酯-I与紫杉醇联合治疗的小鼠中,源自接种肿瘤的原代培养的成纤维细胞表达相对较低水平的CAFs标志物。 研究表明了苍术内酯-I可以通过阻断CTGF表达和成纤维细胞活化来使三阴性乳腺癌细胞对紫杉醇敏感,还可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高肿瘤细胞对紫杉醇的反应并。这些机制有助于未来研究以确定苍术内酯I在临床环境中的价值。对苍术化学成分联合治疗归纳总结,见表3。 图片 4 结语与展望 苍术中含有多种抗肿瘤成分,其中多为倍半萜类成分,如苍术酮、苍术素和苍术内酯等,这些成分多是通过调控PI3K/Akt/mTOR通路来发挥抗肿瘤的作用,但作用靶点与方式却各不相同。例如苍术内酯主要通过降低Akt的磷酸化水平、上调Bax和Bad蛋白表达、增加脂质磷酸酶(PTEN)活性来抑制该通路进而诱导肿瘤细胞凋亡[20];β-桉叶醇能通过激活p27抑制cyclinD1和CDK4蛋白表达最终导致细胞周期停滞于G1期[19]。这些成分通过多途径、多靶点影响肿瘤细胞的生存、运动、代谢和迁移进而共同发挥抗肿瘤作用。正因为其作用机制的不同,使其各有效成分对不同肿瘤的作用具有一定特异性。因此苍术抗肿瘤活性成分联合化疗药物减副增效在科学研究及临床用药时可根据其作用机制进行选择。目前关于苍术化合物对肿瘤细胞的研究还存在一些不足之处,如缺乏对不同肿瘤细胞类型和不同剂量的系统比较、缺乏对苍术化合物与其他药物或放化疗的协同作用的评价,以及缺乏对苍术化合物在体内代谢和药效学的深入分析等。 因此,今后还需要加强对苍术化合物抗肿瘤作用的基础和临床研究。后续可以根据苍术有效成分的抗肿瘤作用机制,筛选出具有最强抗肿瘤活性和最低毒性的化合物,作为候选药物进行进一步的优化和改造,提高其药效和安全性;分析苍术中有效成分的药代动力学特征,研究其在体内的吸收、分布、代谢和排泄等过程,确定其最佳的给药途径、剂量和方案,减少其不良反应和药物相互作用;根据苍术中有效成分的药效学特征,研究其对不同类型、分期和分子标志物的肿瘤细胞的作用差异,确定其最适合的治疗对象和指标,提高其个体化和精准化的治疗效果;根据苍术有效成分的协同增效或拮抗作用,探索其与其他抗癌药物或放化疗的联合应用,实现其对肿瘤细胞的多靶点、多途径和多机制的综合干预,增强其抗肿瘤效能和克服肿瘤耐药性,以期为开发新型的抗肿瘤药物提供更多的选择和可能性。 苍术与化疗药物的联合应用被广泛关注和探索。作为苍术的主要成分,现有研究已表明倍半萜类具有显著的抗肿瘤活性,其与化疗药物的联合临床用药有着巨大的潜力。但倍半萜类化合物分子结构中含有多个疏水基团,导致它们的极性较低,难以与水分子形成氢键或静电相互作用,在水中的溶解度小、生物利用度低。随着现代药物研究技术的现代化和多学科的交叉融合,这些问题也可以通过引入基团、采用纳米技术制备纳米载体、采用共晶技术制备倍半萜类化合物的共晶体等方式来提高其水溶性,进而增强其生物利用度。这些技术在药物化学领域已比较成熟,也已逐步应用于临床药物的开发。例如,抗疟活性药物青蒿素同样具有水溶性差应用困难的问题,通过引入羧酸基团,显著提高了其水溶性和生物利用度[65-66]; 此外,共晶体可以改变倍半萜类化合物的晶型和晶格参数,从而降低其结晶度和熔点,增加其自由能和溶解度[67]。苍术内酯也可通过与尼可替尼(一种具有较高水溶性的抗肿瘤药物)制备共晶体,可以显著提高其水溶性。因此,苍术抗肿瘤有效成分和化疗药物的联合用药在临床环境中的开发和应用具有很高的研究价值。 苍术作为中医临床常用的化湿药。其药性辛、苦、温,归脾、胃、肝经,其苦温燥湿,可以去湿浊、辛温健脾以和脾胃,多用于湿

  • 抗癌药帕唑帕尼可延缓卵巢癌复发

    据新华社华盛顿6月3日电 研究人员日前在芝加哥举行的美国临床肿瘤学会年会上报告说,大规模临床试验显示,抗癌药物帕唑帕尼可延缓卵巢癌复发。 口服抗癌药帕唑帕尼由葛兰素史克公司生产,药物原理是通过干预肿瘤内血管生长实现抑制肿瘤。此前,美国食品和药物管理局已批准该药用于治疗肾癌和软组织肉瘤。 在此次研究中,德国妇科癌症专家安德烈亚斯·迪布瓦领导的小组选取940名卵巢癌患者,这些研究对象此前已接受化疗或手术等初始治疗。研究人员分别使用帕唑帕尼和安慰剂对他们进行对比试验。 研究发现,口服帕唑帕尼的卵巢癌患者,其卵巢癌平均复发时间为17.9个月,与使用安慰剂治疗的患者相比,复发时间延缓了约半年。 迪布瓦表示,这一研究证实帕唑帕尼可抑制卵巢肿瘤增长,如果经过批准,该药可用于卵巢癌患者术后或化疗后的维持治疗。

  • 每日服用阿司匹林可降卵巢癌风险

    据新华社华盛顿电 (记者林小春)美国国家癌症研究所一项新研究显示,每天服用阿司匹林可以把女性罹患卵巢癌风险降低20%。不过,研究人员同时强调,还需进一步研究才能把这个结论作为临床建议推荐。 早期卵巢癌可成功治疗,但早期卵巢癌症状与消化系统疾病和膀胱疾病类似,因此卵巢癌常常到晚期才被发现。 美国国家癌症研究所研究人员指出,晚期卵巢癌治疗选择有限,治疗效果不理想,因此预防措施对控制卵巢癌问题至关重要。阿司匹林具有抗炎症的效果,之前研究显示每日服用阿司匹林能够降低罹患结肠直肠癌、黑色素瘤等癌症的风险,因而他们开展了迄今最大型的研究来评估阿司匹林与卵巢癌风险之间的关系。 研究人员分析了来自约8000名卵巢癌患者和近1.2万名未罹患卵巢癌女性的数据,这些人中有18%经常服用阿司匹林。结果发现,与每周服用阿司匹林不到一次的女性相比,每天服用阿司匹林的女性患卵巢癌风险降低20%。 参与研究的美国国家癌症研究所布里顿·特拉贝特博士说:“我们的研究表明阿司匹林也可以降低卵巢癌风险,但这一结果不应影响当前的临床实践。我们还需要更多的研究以探索这种潜在防癌药物的风险与益处的平衡。”来源:中国科技网-科技日报 2014年02月13日

  • 二甲双胍可提高卵巢癌患者生存率

    新华社华盛顿12月4日电 (记者任海军)美国研究人员日前发表报告称,他们的研究显示,常用的糖尿病药物二甲双胍能提高卵巢癌患者的生存率。 明尼苏达州梅奥诊所研究人员比较了61名服用二甲双胍的卵巢癌患者和178名未服用二甲双胍的卵巢癌患者的数据。他们发现,服用二甲双胍组患者的5年生存率为67%,而对照组患者的5年生存率为47%。如剔除身高体重指数、癌症严重程度、化疗方式、手术质量等因素的影响,服用二甲双胍组患者的5年生存率比对照组患者要高4倍。 相关研究报告本周发表在美国《癌症》杂志网络版上。研究负责人桑吉夫·库马尔表示,研究结果“令人鼓舞”,但由于研究中有很多因素不可控,二甲双胍与卵巢癌患者生存率的提高是否具有直接关系仍不能下定论。库马尔表示,卵巢癌是一种死亡率很高的癌症,找到治疗卵巢癌的有效方式非常迫切,他们的研究可望为二甲双胍应用于卵巢癌治疗临床研究铺平道路。 二甲双胍是一种具有长期用药安全记录的药品。此前曾有研究显示,二甲双胍可以抑制肺部和乳腺肿瘤的生长,降低糖尿病患者患乳腺癌的风险。

  • 【金秋计划】转录组学和蛋白质组学分析显示桂枝茯苓丸抑制STAT3-EMT在卵巢癌进展中的作用

    [b][size=15px][color=#595959]卵巢癌[/color][/size][size=15px][color=#595959](OC)[/color][/size][/b][size=15px][color=#595959]是最致命的妇科恶性[/color][/size][b][size=15px][color=#595959]肿瘤[/color][/size][/b][size=15px][color=#595959]。频繁的腹膜播散是导致生存率低的主要原因。目前,临床上使用诱导化疗(铂和紫杉类药物)和[/color][/size][b][size=15px][color=#595959]靶向治疗[/color][/size][/b][size=15px][color=#595959](抗[/color][/size][b][size=15px][color=#595959]血管[/color][/size][/b][size=15px][color=#595959]生成药物和聚ADP核糖聚合酶[/color][/size][b][size=15px][color=#595959]抑制剂[/color][/size][/b][size=15px][color=#595959])来改善治疗效果。然而,75%的患者出现耐药性,导致复发和临床失败。因此,迫切需要制定有效的治疗策略。[/color][/size] [b][size=15px][color=#595959]桂枝茯苓丸(GZFL)[/color][/size][/b][size=15px][color=#595959]源于《金匮要略》,由桂枝、茯苓、赤芍、牡丹皮、桃仁组成,用于治疗[b]妇科癥瘕[/b](腹部肿块和疼痛),也是目前临床上治疗卵巢癌的经典中药方剂,疗效良好。经GZFL治疗的患者化疗效果改善(血清CA125、CEA水平降低),不良反应(如胃肠道)减少,生存期延长。药理研究证实GZFL具有明显的体外[b]抗癌作用[/b]。在[/color][/size][b][size=15px][color=#595959]乳腺癌[/color][/size][/b][size=15px][color=#595959]细胞模型中,GZFL通过调控PI3K和MAPK通路抑制肿瘤发展。在OC中,GZFL可抑制MTDH-PTEN,调节PI3K/AKT/mTOR通路,增加顺铂敏感性。综上,GZFL具有较强的抗癌作用。为了了解GZFL抗OC的潜在机制,前期通过网络药理学和体外验证证明GZFL抑制OC细胞迁移,[b]IL6/STAT3被显著抑制[/b]。然而,其潜在机制尚未得到充分探讨。[/color][/size] [align=center] [/align] [size=15px][color=#595959]阐明GZFL治疗OC的潜在机制,重点是STAT3信号通路。[/color][/size] [align=center] [/align] [size=15px][color=#595959]采用[b]OC异种移植小鼠模型[/b],评价GZFL的体内疗效。在OC细胞中进行[/color][/size][b][size=15px][color=#595959]蛋白质[/color][/size][size=15px][color=#595959]组学分析[/color][/size][/b][size=15px][color=#595959],在小鼠肿瘤中进行RNA-seq分析,以充分捕捉GZFL的[b]翻译和转录特征[/b]。GZFL对[b]体外野生型和STAT3敲除OC细胞[/b]的增殖、成球能力和活性氧(ROS)的影响进行了评估。通过[b]STAT3激活[/b]、转录活性、[b]缺氧和EMT[/b]相关蛋白的表达来验证GZFL的生物学活性。[/color][/size] [align=center] [/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]GZFL在小鼠中具有安全抑制肿瘤生长的作用,同时在体外以[b]STAT3依赖的方式[/b]阻止细胞生长、成球能力和ROS积累。GZFL通过转录和翻译影响参与[b]炎症信号、EMT、细胞迁移和细胞缺氧应激反应[/b]的基因。深入的分子研究证实,GZFL诱导的OC细胞毒性和EMT抑制与STAT3激活和转录活性的抑制直接相关。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [align=center] [/align] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]该研究首次提供了GZFL通过[b]抑制STAT3-EMT信号抑制OC进展[/b]的证据。这些结果将进一步支持其在卵巢癌中的潜在临床应用。[/color][/size][size=15px][color=#595959][/color][/size]

  • 维生素C可以杀死一类顽固癌细胞

    有研究说足够浓度的维生素C可以杀死一类顽固癌细胞,对治疗胰腺癌、结肠癌和卵巢癌有疗效。所以多吃富含维生素C的蔬菜对健康很有帮助。

  • 昆明植物所等发现对肿瘤细胞有选择性的铂类抗癌化合物

    铂类药物是一类重要的肿瘤化疗药物,在临床中得到广泛的应用,成为治疗包括肺癌、胃癌、结肠癌、卵巢癌、睾丸癌等常见恶性肿瘤的一线药物。然而,目前临床使用的铂类抗癌药物对肿瘤细胞缺乏选择性,在杀死肿瘤细胞的同时,对正常细胞也有较大伤害,导致明显的临床毒副作用。同时,肿瘤病人容易对铂类药物产生耐药性,导致化疗失败。 针对铂类药物存在的以上两大问题,中国科学院昆明植物研究所李艳研究组与昆明贵金属研究所刘伟平研究组合作,发现mixed-NH3/cyclopentamine和不对称的3-X-1,1-cyclobutanedicarboxylato与Pt(II)配合物对肿瘤细胞显示出明显的选择性,能选择性诱导肿瘤细胞的凋亡,而对正常细胞影响很小,同时对顺铂耐受的非小细胞肺癌和卵巢癌细胞株有较高的杀伤活性,显示出重要的研究开发前景。 近日,这类化合物的结构和用途已经获得国家发明专利授权(ZL20101027465.2)。

  • 干细胞药物研发成为我国支持对象

    日前,由天津市申报的《子宫内膜再生细胞治疗卵巢早衰临床前及临床研究》项目成功入选国家重大科技专项2014新药创制项目。这标志着国家重大科技专项首次将干细胞药物研发作为支持对象,也是我国今年正式启动的首个国家级干细胞临床研究课题。  这一项目是由天津滨海新区科技创新型企业顺昊细胞生物技术(天津)有限公司牵头,与天津市药物研究院、北京协和医院、天津医科大学总医院、天津市中心妇产医院共同研发,经市科委筛选申报,经科技部、财政部、国家发改委5轮评审,以其独创性和成果的临床效果,从全国40余个干细胞项目中脱颖而出。  子宫内膜再生细胞作为近年来国际干系细胞领域的最新技术成果之一,对卵巢组织具有重建和修复功能,并可形成局部免疫抑制微环境,是一种无毒、非依赖性的组织修复和免疫调节疗法,实现卵巢早衰病症的缓解,乃至治愈。  目前,天津顺昊细胞已研发出从胎盘组织分离扩增造血干细胞和间充质干细胞的有效方法,全面掌握从胎盘及宫内膜中分离、扩增、冻存各类型干细胞的技术,并针对各类适应者研发出干细胞个性化制剂,为恶性贫血,白血病等危害人类健康的重大疾病的造血干细胞移植治疗带来希望。同时可针对心脑血管疾病,肝硬化、骨和肌肉衰退性疾病、脑和脊髓神经损伤、老年痴呆及红斑狼疮和硬皮病等自身免疫性疾病进行治疗。顺昊细胞的子宫内膜再生细胞项目此次获批不仅是一项干细胞药物治疗重大疾病的临床研究,更重要的是干细胞制药的标准化研究,为今后出台国家级标准提供依据。  顺昊细胞生物技术(天津)有限公司是滨海新区科技创新型企业,成立仅两年,却汇聚了以天津生物医药创业领军人物周泽奇博士和哈佛大学医学院细胞和分子生理学博士后朱彦、瑞士联邦理工学院分子生物学博士张磊等一大批国内外干细胞研究精英人才。目前已通过了国家高新技术企业认定,成为天津国际生物医药联合研究院干细胞研发中心项目承建单位。

  • 挑战人类生殖: 用干细胞制造胚胎

    自去年10月开始,分子生物学家Katsuhiko Hayashi就陆陆续续收到了许多夫妻的邮件,这些夫妻大多人到中年,仍然在为了一件事情焦急:要一个孩子。其中有一位英国的更年期妇女,希望到他位于日本京都大学的实验室,在他的帮助下怀上孩子,她写道:“这是我唯一的愿望。”这些请求开始于Hayashi一篇文章的发表——他原以为只有发育生物学家才会对他的实验结果感兴趣。在体外条件下,利用小鼠的皮肤细胞创造可以发育成精子和卵子的原始生殖细胞(PGCs)。为了证明这些实验室培养的原始生殖细胞与自然发育而成的原始生殖细胞类似,他利用它们生成了卵子,进而创造小鼠生命。他表示,这个创造出来的小鼠生命仅仅是他研究的一个“副产品”,他的研究将意味着更多——利用不孕妇女的皮肤细胞为她们提供可受精的卵细胞。与此同时他还提出,男性的皮肤细胞也可以用来创造卵子,同样,女性的皮肤细胞也可以生成精子。(事实上,研究结果发表后,许多同性恋发邮件给Hayashi ,索要更多的信息。)尽管这是一项创新研究,但是公众的广泛关注还是令Hayashi和他的教授Mitinori Saitou感到非常惊讶。他们花了十多年不断挖掘哺乳动物配子产生的微妙细节,然后在体外条件下重新创建该过程——一切都是为了科研,而非医疗。现在他们的方法使研究人员能够创建无限的原始生殖细胞,这种在以前很难获得的珍贵细胞的正常供应有助于推动哺乳动物生殖研究。但是,当他们将这个科学挑战自小鼠到猴子,再到人类推进时,这一过程被公众定义为治疗不孕不育的过程,于是相关的道德争议随之出现。“毫无疑问,他们在小鼠身上给这一领域带来了重大的改变,” 洛杉矶加州大学的生育专家Amander Clark说,“但是,在这项技术展示它的实用性之前,我们必须讨论一下使用这种方式创造配子的伦理问题。”回到最初在小鼠体内,胚胎发育一周后,便出现约40个左右的原始生殖细胞。这个小小的细胞团进而在雌性小鼠体内形成成千上万的卵细胞,在雄性小鼠体内每天都能生成几百万个精细胞,并能够遗传小鼠的全套遗传信息。Saitou想要了解在这些细胞发育过程中受到了那些信号的控制。在过去的十年中,Saitou已经通过辛苦研究确定了几个基因——包括Stella, Blimp1 和Prdm14 ——这些基因的某种组合在某些时候对于PGCs的发育起到了至关重要的作用。利用这些基因作为标记,可以从其他细胞中筛选原始生殖细胞以观察这些细胞的变化。2009年,在日本神户的RIKEN发育生物学中心,他发现,当培养条件适当时,在精确的时间加入骨形态发生蛋白4(BMP4),可以胚胎干细胞转化为原始生殖细胞的。为了验证这一发现,他向胚胎干细胞提供高浓度的BMP4,结果显示,几乎所有的胚胎干细胞都变成了PGCs。他和科学家们都预计这一过程非常复杂。http://www.ibioo.com/data/attachment/portal/201308/25/095620gaqefeejnqejxuu3.jpg人造小鼠生殖细胞产生小鼠胚胎的过程(点击图片查看大图)Saitou的方法严格遵循了自然过程,这与其他从事类似研究的人形成了鲜明的对比,以色列魏茨曼科学研究所的干细胞专家Jacob Hanna说。许多科学家尝试通过信号分子轰击干细胞在体外创造特定类型的细胞,然后筛选细胞混合物得到他们想要的细胞。但是他们忽略了这些细胞的自然形成过程和这些人造细胞与自然形成细胞的相似程度。Saitou找出了形成生殖细胞所需的条件,去除多余的信号干扰并将每个过程的时间精确控制,给他的同事们留下了深刻的印象。英国谢菲尔德大学的干细胞生物学家Harry Moore将这种生殖细胞发育的精确重现视为一场“胜利”。到了2009年, Saitou在小鼠生殖细胞出现之前从外胚层取了一些细胞,这成了研究的起点。但是想要真正掌握这个过程中,Saitou希望从细胞培养开始。当时正值Hayashi从英国剑桥大学回到日本,和Saitou一样,Hayashi在该领域先驱Azim Surani英国的实验室里完成了4年的研究。Surani盛赞这两位科学家说,他们的“气质、风格和解决问题的方法能够相互补充”。 Saitou “处理事情时很有系统性、完成目标一心一意”,而Hayashi“工作时更有直觉、视角更广阔、处理问题方法相对更加宽松”,他说。“他们确实形成了一个非常强大的团队。”Hayashi加入了Saitou京都大学的团队,他很快就发现,那里不同于剑桥。在京都大学,Hayashi用在理论讨论上的时间比曾经少得多,而更多的时间都花在实验上。他说“在日本,我们只管‘做’,这有时是非常低效的,但有时又酝酿着巨大的成功”。Hayashi同样以外胚层细胞作为起点,但与Saitou不同的是,他试图培养一个能够产生原始生殖细胞的稳定细胞系。可惜这种方法没有奏效。Hayashi借鉴其他研究结果——一个关键调控分子(activin A)和生长因子(bFGF)可以将培养的早期胚胎干细胞转化成类似于外胚层细胞的细胞类型。这引发了Hayashi将这两个因素结合起来的想法,诱导胚胎干细胞分化为外胚层,然后采用Saitou之前的方法把这些细胞成为的PGCs。通过这种新的方法,他最终获得了成功。为了证明这些人造的原始生殖细胞是真实的拷贝,他们必须证明这些细胞可以进一步发育成精子和卵子。这一进程是非常复杂和难以理解的。所以研究小组将这一工作留给了自然——Hayashi将PGCs植入无法产生精子的小鼠的睾丸,观察这些细胞是否会发育。Saitou认为,这是可行的,但还是感到有些担忧。当实验进行到第3或4只小鼠时,他们发现小鼠的输精管里充满了精子。“这一切都发生得恰如其分,我知道他们会产生幼仔,”Hayashi说。研究小组将这些精子注入卵细胞中并植入雌性小鼠的胚胎,结果产生了大量的雌性和雄性后代。他们利用诱导多能干细胞(iPS)进行反复的实验,成熟的细胞被重新编程为胚胎状态。此外,精子被用于生产幼仔,证明它们具有基本功能——这是干细胞分化领域的罕见成就。Clark说:“这是整个多能性干细胞研究领域里在培养皿中生成全功能细胞类型少有的成功案例之一。”他们预计形成卵细胞更复杂,但是在去年,Hayashi在体外条件下制作有正常着色的原始生殖细胞并转入白化小鼠的卵巢,将产生的卵细胞体外受精后植入代孕。当透过幼崽半透明的眼睑看到黑色的眼睛时,他知道这一切又成功了。生殖细胞的回馈目前,许多研究人员已经能够复制验室培养原始生殖细胞的过程。人造原始生殖细胞特定用于表观遗传学研究:通过修饰DNA确定哪些基因表达。最常见的修饰就是为DNA碱基加上甲基,这些修饰在有些情况下,能够反映生物所经历的历史过程。与其它类型的细胞类似,表观遗传标记改变了原始生殖细胞在胚胎发育过程中的命运,但原始生殖细胞有个与众不同的特点,就是当它们发育成精子和卵子后,表观遗传标记被擦除。这就允许细胞创建能够形成任何类型细胞的受精卵。表观遗传微妙变化中出现错误将会导致不孕不育并出现器官故障,如如睾丸癌。Surani和Hanna的团队已经利用人造原始生殖细胞研究不同酶在表观遗传调控中的作用,也许有一天,能够解答表观遗传网络如何参与疾病调控。事实上,体外产生的原始生殖细胞可以为研究提供数百万个细胞,而不是供科学家研究了40个左右,这些细胞可以通过解剖早期胚胎获得。Hanna说:“这是一个大问题,因为我们这里有这些稀有的原始生殖细胞正在经历我们尚不了解的全基因组表观遗传变化。”“体外模型为科学家们提供了前所未有的方便,” Clark表示认同。临床意义但是Hayashi和Saitou没有办法向乞求帮助的不孕夫妻提供帮助。在这种方法被运用在临床之前,还有许多问题需要梳理。Saitou和Hayashi发现,虽然运用他们的技术所产生的后代通常似乎是健康和大量的,但这些后代产生的原始生殖细胞并生不完全“正常”。 第二代原始生殖细胞产生的卵细胞往往是脆弱、畸形的,并且从支持它们生长的组织上脱离。当受精时,卵细胞内部会分为三组染色体,而不是正常的两组,体外受精的成功率也只有正常原始生殖细胞的三分之一。哈佛医学院从事表观遗传学研究的Yi Zhang,使用Saitou的方法在研究中发现,体外受精过程中,人造的原始生殖细胞不能像自然状态下产生的原始生殖细胞一样,抹去它们的表观遗传标记。“我们必须要知道,这些都是PGCs的类似细胞,而不是真正的原始生殖细胞,”他说。此外,这项技术还存在两个大的挑战。首先是在不将PGCs放回睾丸或卵巢的前提下买入和使它们变成成熟的精子和卵子,Hayashi目前正在试图破解PGCs生成卵子或精子的生物信号,使人工培育条件下完成这一阶段成为可能。但最可怕的挑战是在人体重复上述所有的工作。该小组已经在利用Saitou找到的关键调控基因来调整人类的iPS细胞,但是Saitou 和Hayashi都知道,人类的信息调控网络不同于小鼠。此外,Saitou有无数的小鼠胚胎进行解剖,但无法在人类胚胎进行

  • 【讨论】转基因食物导致仓鼠不孕?

    【讨论】转基因食物导致仓鼠不孕?

    关于转基因食品的安全性问题是国际性的话题。我们希望和鼓励大家秉承科学的精神,依据可靠的实验和研究来讨论。对于一些并不可靠的所谓的“科学实验结果”更需要仔细分辨。http://ng1.17img.cn/bbsfiles/images/2011/04/201104120842_288320_2185349_3.jpg流言: 科学家已经证明,食用转基因食物会导致后代的生育能力丧失!并且发现实验中食用转基因食物的第三代仓鼠有畸形,嘴里竟然长毛了!转基因食物绝对有害!

  • 【讨论】藏书羊肉是怎么回事啊?

    最近看到有人讨论附近的一家苏州藏书羊肉馆,说是量很足,但我一向很少听说苏州羊肉的,再说苏州现在有养羊的地方吗?倒是说上海的七宝有白切羊肉,还是不错的。还有,藏书是啥意思?难道像鸡毛信,尾巴后面藏了本书?武林秘笈?[em0801]

  • Nature:科学家从人卵细胞培养出胚胎干细胞

    10月6日出版的新一期英国《自然》杂志刊登报告说,美国研究人员用人类卵细胞培养出了胚胎干细胞,虽然这项成果还存在一些缺陷,但已是“黄禹锡造假事件”后最接近培养出正常人类胚胎干细胞的成果。这一成果可能引起有关克隆问题的新一轮大争论。http://www.bioon.com/biology/UploadFiles/201110/2011100911202350.jpg(图片来自原文)将体细胞中的遗传物质植入卵细胞中,将其培育成为胚胎干细胞甚至最终培养出新的个体,就是常说的克隆技术,著名的克隆羊“多利”就是用这种技术得到的。2004年,韩国研究人员黄禹锡曾宣称用这种方法培育出了人类胚胎干细胞,引起一时轰动,但后来证明这是一起造假事件。此后,许多科研人员都进行了这方面的尝试,但一直没有成功。相关研究面临的障碍是,如果先将人类卵细胞中的遗传物质去掉,再植入另一个体细胞的遗传物质,这样得到的卵细胞分裂几次后就会停止发育。而美国纽约干细胞基金实验室等机构的研究人员报告说,如果留下一部分原有卵细胞中的遗传物质,再另外加上体细胞的部分遗传物质,这样得到的卵细胞可以发育到具有70至100个细胞的囊胚阶段,达到可以提取胚胎干细胞的阶段。胚胎干细胞具备发育成各种组织和器官的潜力,如果能够培育出人类胚胎干细胞,就意味着能够培育出属于某个人自己的组织和器官,可用于个性化的医疗。当然这也会引起有关克隆人的争议。本次研究虽然能够培育出人类胚胎干细胞,但也存在一些缺陷。最重要的是这些细胞中存在3组染色体,即卵细胞原有的1组染色体和来自体细胞的2组染色体,而正常的人类细胞只有2组染色体。因此,这种人类胚胎干细胞还不具备实用性。但是《自然》杂志同时发表的社论指出,这是自“黄禹锡造假事件”后最接近培养出可用人类胚胎干细胞的成果,在大方向上证明这仍然是一条可行的道路。社论认为,这将引起新一轮的有关克隆人的大争论,甚至提出联合国有必要开始考虑制订监管克隆的规章制度。

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • RNA递送纳米粒子系统能关闭特殊基因 抗癌药物开发中的瓶颈问题或找到克服途径

    中国科技网讯 据物理学家组织网近日报道,美国麻省理工大学和哈佛大学达纳—法伯癌症研究所、布罗德研究所合作,利用RNA介入(RNAi)方法开发出一种RNA递送纳米粒子系统,能大大加快筛选抗癌药物标靶进程。首个小鼠试验显示,一种以ID4蛋白为标靶的纳米粒子能缩小卵巢肿瘤。相关论文在线发表于《科学·转化医学》上。 通过对癌细胞基因组进行测序,科学家发现了大量基因变异或被删除。这对寻找药物标靶来说是个福音,但对测试标靶来说,却几乎成了不可能的任务。论文高级作者、麻省理工大学卫生科学与技术教授桑吉塔·巴蒂雅说,这种纳米粒子系统克服了抗癌药物开发中的瓶颈问题。“我们所做的是努力建设一条管线,在这里你可以测试所有的标靶,然后通过小鼠模型筛选出重要标靶。你可以用RNA介入的方法,确定想要进入临床试验的标靶的优先顺序,或者开发抵抗它们的药物。” 通常筛选出药物标靶后,下一步是通过基因技术让小鼠缺乏该基因(或该基因过度表达),观察肿瘤长出来以后它们有什么反应。但还有一种更快的方法,就是在肿瘤出现后简单地将它们关闭,RNA介入法为此提供了广阔前景。在自然的RNA介入中,RNA短链与信使RNA(mRNA)结合,负责递送怎样构建蛋白质的指令。如果mRNA被破坏,就无法造出相应的蛋白质。 自上世纪90年代末发现RNA介入以来,科学家一直在研究怎样利用这一过程来治疗癌症。但要找到一种安全有效地瞄准肿瘤的方法,尤其是让RNA进入肿瘤,还有很多困难。 在实验中,研究人员将目标集中在ID4蛋白,因为在约1/3的高侵略性卵巢肿瘤中,这种蛋白都被过度表达。该基因显示出与胚胎发育有关:它在生命早期已经关闭,不知什么原因在卵巢肿瘤中被重新激活。 他们设计了一种以ID4为标靶的RNA递送纳米粒子,能同时瞄准并进入肿瘤,这是以往的RNA介入方法做不到的。其表面标记有一种短链蛋白片断,这让它们能进入肿瘤细胞,这些蛋白片断会被拉向肿瘤细胞中一种特殊蛋白p32。研究人员还发现了许多这类片断。纳米粒子外面有一层膜,内部是RNA链与蛋白质的混合。粒子进入肿瘤细胞后,蛋白质—RNA混合物能穿过膜层进入细胞内部,开始破坏mRNA。经过对卵巢肿瘤小鼠的实验,研究人员发现,通过RNAi纳米粒子治疗,能消除大部分的肿瘤。 在潜在标靶中,有许多蛋白无法与传统药物结合,而新粒子能递送RNA短链关闭特殊基因,使科学家能继续“追捕”这些“没有可能”的蛋白。达纳—法伯研究所癌症基因组发现中心主任哈恩说:“如果这一方法能在人体内发挥作用,将再打开一类全新的药物标靶。” 联合研究的目标是开发一种“混合与剂量”技术,通过混合不同的RNA递送粒子,瞄准特殊基因。目前,研究人员正在用纳米粒子系统测试其他可能的卵巢癌标靶和包括胰腺癌在内的其他类型癌症,并在研究将ID4—标靶粒子开发为一种卵巢癌疗法的可能性。(记者 常丽君) 《科技日报》(2012-09-17 二版)

  • 转基因小鼠制备实验

    1、 选取7~8周龄雌性小鼠,阴道口封闭,作为供体,下午3:00左右,每只小鼠腹腔注射PMSG(10 IU)。2、 47~48小时后,每只小鼠腹腔注射HCG(0.8 IU),并与正常公鼠合笼;另取数只适龄母鼠(2月龄以上)作为受体,阴道口潮红,与结扎公鼠合笼。3、第二天上午9:00前观察供体、受体,有精栓者拿出备用。受体笼拿出作好隔离措施。4、10:30左右,断颈处死供体,手术取出整个输卵管,放入透明质酸酶~0.3mg/M2液中。显微镜下,用镊子撕开输卵管壶腹部,受精卵随同颗粒细胞即一同流出。5、仔细观察放在透明质酸酶M2液中的受精卵,当受精卵周围的颗粒细胞脱离时,将受精卵吸出,放入M2液中洗涤,最后放在M16液中放入5% CO2,37C0培养箱培养。6、在显微镜下观察,挑选细胞饱满,透明带清晰,雄原核清晰可见的受精卵待用。7、安装持卵针和注射针,使其末端平行于载物台,在凹玻片的中央滴入一滴M2液,覆盖石蜡油,移入待注射的受精卵。DNA在注射针中的气泡应在先前全部弹走。8、在高倍镜下,将注射针轻触持卵管,使DNA缓慢流出并控制其流量;反复吹吸受精卵,使其处于最佳位置,将注射针刺入受精卵的雄原核,直至看到原核膨大即退出。将注射过的和未注射过的受精卵上下分开放置,不致于混搅,注射完毕后,放入5% CO2,37C0培养箱培养。9、将受体麻醉,注射计量为1%戊巴比妥钠0.01ml/g,腹腔注射。手术取出卵巢连接输卵管,用脂肪镊固定,在显微镜下找到输卵管开口。吸取注射后经培养成活的受精卵,吸取方法是先吸一段较长的M2,吸一个气泡,然后吸取受精卵,尽量紧密排列,再吸一段液体,吸一个气泡,再吸一段液体,共四段液体三个气泡。除较长的那段液体,其余的液体大致1cm左右,气泡0.2cm左右。将移植管口插入输卵管口,轻轻将移植管内的液体吹入,看到输卵管壶腹部膨大并清晰地看到三个气泡,即移植成功。将卵巢连同输卵管放回腹腔,缝合肌肉和皮肤。10、受体每隔一个星期称体重一次,当第二次比第一次称重增加时,即可初步判断怀孕。手术后19~21天仔鼠分娩,待仔鼠3周后,剪耳、编号,剪尾,交分子组检测。(一般选取4-5周龄的雌鼠作为供体,此时的小鼠卵数较多,状态较好。用pms诱导卵细胞成熟,用hcg超排。)

  • 【讨论】蛋是一个细胞?

    鸡蛋,在如今的社会里,更多时候是作为一种营养丰富的食品出现在我们的餐桌上。现代化大型养殖场如生产产品般输出鸡蛋的方式颠覆了人们对鸡蛋的认识,或许已经很少有人能够联想到从蛋黄蛋白到一个小生命的奇迹升华。但在人类漫长的历史中,农业是文明的核心。就在不太遥远的过去,大多数人还可以在家中目睹鸡生蛋、蛋生鸡的奇迹。这种神秘的现象让古时的人们感到好奇、困惑,甚至产生莫名的崇拜。我们华夏文明由雏鸡的诞生联想到世界的起源,“天地混沌如鸡子,盘古生其中”,看来在我们祖先的眼中,鸡蛋的孵化犹如天地诞生般神秘。这种“卵生崇拜”在史籍中屡见不鲜,如《史记·殷本纪》记述商朝人先祖契的来历时提到有娀氏的女儿简狄“见玄鸟坠其卵,简狄取吞之,因孕生契”,同样,在《史记·秦本纪》中,文章伊始就记载了颛顼的孙女女修织布时“玄鸟陨卵,女修吞之,生子大业”,而这位大业就是秦人的先祖。不得不佩服古人的想象,这玄鸟蛋孵化出了两个重要朝代。在漫长的历史中,这种对蛋朦胧而浪漫的崇拜逐渐融入了我们的文化中,直到如今,染红壳的鸡蛋依旧是新婚、生子、满月时,人们表达祝福的重要载体。随着科技的进步,人们对蛋的理解逐渐清晰,现在很多人都知道蛋和卵细胞有千丝万缕的关系。可是鸡蛋到底是否就是一个细胞?答案可谓五花八门,有人说整个鸡蛋就是一个放大的卵细胞,蛋壳内的那层膜是细胞膜,蛋清是细胞质,蛋黄是细胞核;也有人说蛋黄是卵细胞,卵黄膜就是细胞膜,蛋黄就是细胞质,而蛋黄上面的小白点是细胞核;还有人认为鸡蛋本就是由很多细胞构成的。

  • 美澳科学家成功将被煮熟鸡蛋变回生鸡蛋!!!!

    据美国全国广播公司财经频道报道,近日,美国加州大学欧文分校和澳大利亚弗林德斯大学的研究人员在实验中成功将煮熟的鸡蛋变回生鸡蛋。这一创新将极大地减少全球生物科技行业里癌症治疗、食物生产和其他部分的成本,总额约1600亿美元。这项研究被发表在期刊《ChemBioChem》上。还原只要几分钟据悉,该研究团队在实验中采用了多种不同的蛋白质材料,尝试将它们转化成可用的蛋白质,如溶菌酶。众所周知,鸡蛋的蛋清在煮熟的时候会变成白色,它富含蛋白质,加热后蛋白质长链展开,失去活性,然后重新组合成一种更紧密、更复杂的结构。因此,蛋清才从透明的粘液状变成白色有弹性的固体。该项目的研究人员发现了一种拆解复杂蛋白质链以使其恢复到原本结构的方法:首先,他们用一种化学物质液化熟鸡蛋的蛋白,然后用涡旋射流装置切断紧密缠结的蛋白质分子链以使它们正常重构。“是的,我们发明了一种不煮熟鸡蛋的方法。”加州大学欧文分校的化学分子生物学和生物化学教授格里戈·韦斯这样说道,“在文章里我们描述了一种可以分开纠缠的蛋白质使得它们可以再折起的设备。我们将鸡蛋蛋白在90摄氏度的温度下煮了20分钟,再将鸡蛋的一个关键蛋白质恢复到正常运转状态。”和其他研究人员一样,韦斯一直致力于有效地产生和回收有价值的分子蛋白质,这类蛋白质具有广泛的应用,但它们常常在形成时未进行正确的折叠,从而形成结构错误的形状,这导致它们几乎成为废物。“我们感兴趣的并不是处理鸡蛋的过程,而是演示这个过程有多强大。”韦斯说道,“真正的问题是你花了太多时间从试管上刮去胶性蛋白,而你需要某种回收这一材料的方法。”但常用方法非常昂贵也耗时:分子水平的透析大约要进行4天,“而新的过程只需要几分钟,它加速了上千倍。”很快会投入市场韦斯说道:“我们的研究不仅会省很多钱,更重要的是会省下大笔的时间,因为时间就是金钱。”对于该技术在癌症治疗方面的应用,他尤其乐观。癌症治疗技术中有一种是用实验室制成的抗体附着在癌细胞的蛋白质上,这样免疫系统就能摧毁这些癌细胞。在实验室制作抗体蛋白相当耗时且费用昂贵。韦斯说,这项技术可以大大减少制作抗体蛋白的时间和成本。例如,制药公司目前正在昂贵的仓鼠卵巢细胞上创造癌症抗体,这类细胞的蛋白质一般不会发生错误的折叠。快速而廉价地促进蛋白质的流水线加工,使得癌症治疗更能负担得起。工业奶酪的制造者、农民以及其他使用重组蛋白质的人,也可以因此获取更高利润。目前,加州大学欧文分校已经为该技术申请了专利,并将很快投入市场。加热蛋白溶菌酶能杀灭诺如病毒日本东京海洋大学的一个研究小组日前宣布,在实验中发现,加热处理鸡蛋蛋白含有的溶菌酶,能灭活诺如病毒。这是由于溶菌酶能破坏包裹诺如病毒基因的外壳。诺如病毒会引发急性肠胃炎和食物中毒。这种病毒具有强大的感染力,只要有10至100个病毒体进入人体,就会导致感染,目前还没有有效的抗病毒剂。研究小组利用实验鼠的诺如病毒替代人类诺如病毒进行了实验。他们将蛋白中含有的溶菌酶在100摄氏度下加热40分钟,使其变性。接下来,将含有1%加热处理过的溶菌酶的溶液与实验鼠诺如病毒混合在一起,并观察了1分钟之后的变化。溶菌酶是蛋白等含有的一种能水解致病菌中黏多糖的碱性酶。研究人员发现,诺如病毒基因量大幅减少,以致无法检出,并观察到病毒体出现膨胀。他们认为这是由于包裹病毒基因的外壳被破坏导致的。研究人员指出,实验鼠诺如病毒和人类诺如病毒从遗传学上来看非常类似,所以这种加热变性处理的蛋白溶菌酶对人类诺如病毒应该也有效果。他们希望将其制成消毒喷雾剂,在下一年度达到实用化。

  • 【应用数据库有奖问答 8.27(已完结)】苍术的检测,使用的色谱柱货号是?

    【应用数据库有奖问答 8.27(已完结)】苍术的检测,使用的色谱柱货号是?

    [b]问题:[b][b][b][/b][/b]苍术的检测,使用的色谱柱货号是?[/b]答案:99603=======================================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单:千层峰(注册ID:jxyan)qgp(注册ID:qgp)zgx3025(注册ID:v2844608)yifan1117(注册ID:yifan1117)dahua1981(注册ID:dahua1981)[img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/08/201808271510262708_4539_1610895_3.png!w690x388.jpg[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/08/201808271510297712_6701_1610895_3.png!w690x388.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][align=center]=======================================================================[/align]方法:HPLC基质:药品应用编号:103787化合物:苍术素色谱柱:[url=http://www.dikma.com.cn/product/details-219.html]Diamonsil C18(2) 5μm 250 x 4.6mm[/url]样品前处理:对照品溶液:取苍术素对照品适量,精密称定,加甲醇制成每I mL含 20μg的溶液,即得。供试品溶液:取本品粉末(过三号筛)约 0.2g,精密称定,置具塞锥形瓶中,精密加甲醇50mL,密塞,称定重量,超声处理(功率250W,频率40kHz) 1小时,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。色谱条件:色谱柱: Diamonsil C18(2) 250*4.6 mm,5 μm流动相: 甲醇:水=79:21流速: 1.0 mL/min柱温: 30 ℃检测器: 340nm进样量: 10.0 uL文章出处:天津应用实验室关键字:苍术、苍术素、Diamonsil C18(2) 、HPLC、99603摘要:Diamonsil C18(2)检测苍术中苍术素。图谱:[img]http://www.dikma.com.cn/u/image/2017/01/05/1483600337467669.jpg[/img][img]http://www.dikma.com.cn/u/image/2017/01/05/1483600337793936.jpg[/img]

  • 动物细胞培养技术

    这是很经典的一本书,复旦大学图书馆藏书,希望对大家有所帮助[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15193]动物细胞培养技术[/url]

  • 【转帖】纳米微粒结合转铁蛋白 猎杀癌细胞

    美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫—德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。

  • 【经典精读】一篇小鼠造血干细胞研究方法综述的精读笔记

    原文是Purton, L.E., and Scadden, D.T. (2007). Limiting Factors in Murine Hematopoietic Stem Cell Assays. Cell Stem Cell 1, 263-270.发表在2007年cell stem cell 杂志上,最近由于要进行相应的课题研究,拿来精读了一番,做了一个笔记,发上来和大家分享,由于初涉小鼠造血干细胞这个领域,肯定有很多地方理解不全和错误,请大家指正。下面是我的精读笔记:小鼠造血干细胞研究方法综述一.关于HSC 免疫表型1. Thy1.1lo,Lin-Sca-1+Cells:其缺点是Thy1.1只表达于C57BL/Ka-Thy1.1小鼠,不表达于常用的C57BL/6小鼠;2. Lin- c-Kit+ Sca-1+ Cells(LSK):异质性,含有祖细胞,HSC含量不超过10%;结合CD34和Flt3可以分为long-term repopulating HSCs (LKS+ CD34- Flt3-) ,short-term repopulating HSCs (LKS+ CD34+ Flt3-) ,以及multipotent progenitors(LKS+ CD34+ Flt3+);3.荧光染料标记HSC: Rhodamine 123, Hoescht 33342, 以及Side Population,Rhodamine 123为线粒体染料,Hoescht 33342为DNA染料,HSC能够更多地将这两种染料泵出细胞外,所以染色较浅;4. SLAM Family Members:SLAM antigens (CD150+ CD244-CD48- cells),其优点是不像Thy1.1和Sca-1其表达受到品系和发育阶段等的影响,在更多的种系的小鼠中适用二.克隆形成实验:主要反映的是祖细胞的造血能力,不反映HSC,检测T系和B系需要另外特定的培养条件;三.Cobblestone Area-Forming Cells/Long-Term Culture-Initiating Cells,鹅卵石样区域形成细胞实验/长期培养-启动细胞实验:体外检测更早期造血干/祖细胞的方法,但由于feeder layers和培养条件不同,实验结果在不同实验室间稳定性较差,对于其是否真正能检测造血干细胞也比较有争议,不过在一些情况下,比如归巢(homing)或植入(engraftment)有缺陷导致体内造血重建实验无法进行时,这两个方法是较好的替代方法;四.Colony-forming unit-spleen (CFU-S)脾集落单位形成实验:属于短期(1-3周)体内重建实验,检测的干祖细胞比体外CFC早,但比HSC晚;五.long-term repopulating assays,长期重建实验,包括:1. competitive repopulation assay:竞争重建实验:属于定性或者半定量研究HSC重建能力的方法,不能区别是HSC的数量还是质量造成的结果差异,得到的结果为RU即重建单位;2. limiting dilution assay:统计的指标是造血重建失败的小鼠数目,采用泊松分布来计算HSC的频率,得到的结果为CRU即竞争重建单位;Stem Cell公司的免费软件L-Calc,可用于分析实验结果。limiting dilution assay有两种方法:1CRU assay,采用最小数的HSC作为竞争细胞,可以在单细胞水平检测HSC;2也称为CRU assay,采用标准的,足量的HSC作为竞争细胞,不能在单细胞水平检测HSC;3serial transplant assay,多代移植,最为严格的检测造血干细胞的方法;六:Limiting Dilution Assays需要考虑的几个重要因素:1.竞争细胞:1compromised bone marrow,即连续两代重建成功的骨髓细胞,比较耗时2W41/W41受体小鼠:c-kit基因发生突变,具有更加敏感的宿主微环境,能够检测更少的植入的HSC,不需要另外的HSC作为支持细胞(竞争细胞);3全骨髓细胞(whole bone marrow cells):经验表明2 X105 competing bone marrow cells比较适合2.受测细胞(Test Cells, Unknown HSC Potential):有人用LKS+ CD34- cells,但作者认为全骨髓细胞最好,原因是这种方法是在功能上评价HSC,避免了HSC在基因修饰的小鼠中免疫表型发生变化导致的结果的不可靠,在作者实验室通常采用的受测全骨髓细胞数为8 X 103到2 X106;3.重建失败的标准:现在一般认为受测细胞的重建比例小于1%为重建失败;在重建比例中,红细胞是不计算在内的,因为其不表达CD45,但一般认为只要其他系重建成功,红系应该也会重建成功;4.分析重建的时间点:看长期造血重建,最少要16周,最佳是六个月;5.其他考虑因素:归巢,HSC各系分化阻滞或减弱,祖细胞增殖动力学特性的改变,造血微环境对HSC的影响等等七.区分供体,受体的遗传学标志:最常用的是CD45.1,CD45.2系统,还有可以通过性别(Y染色体)来区分。

  • 【转帖】纳米粒子与转铁蛋白结合即可猎杀癌细胞

    转铁蛋白与纳米粒子结合就可瞄准并杀死拉莫斯癌细胞,而无需负载其他化疗药物,此项发现将有望发展出癌症靶向治疗的新策略。   相关研究成果发表在本周的《美国化学协会杂志》上。  美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。   转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。   然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。   德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。   研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。   化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。   不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。(科技日报)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制