当前位置: 仪器信息网 > 行业主题 > >

型肌球蛋白标准品

仪器信息网型肌球蛋白标准品专题为您提供2024年最新型肌球蛋白标准品价格报价、厂家品牌的相关信息, 包括型肌球蛋白标准品参数、型号等,不管是国产,还是进口品牌的型肌球蛋白标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合型肌球蛋白标准品相关的耗材配件、试剂标物,还有型肌球蛋白标准品相关的最新资讯、资料,以及型肌球蛋白标准品相关的解决方案。

型肌球蛋白标准品相关的资讯

  • 葛瑛团队成果:自上而下蛋白质组学表征人类心脏中肌球蛋白特异性表达
    大家好,本周为大家分享一篇预发表的文章,Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  肌球蛋白作为肌节的“分子马达”,产生心肌收缩所必需的收缩力。肌球蛋白轻链1和2 (MLC-1和-2)在调节六聚体肌蛋白分子结构中起着重要的功能作用。轻链中存在“心房”和“心室”亚型,在心脏中呈现出腔限表达。然而,近年来MLC亚型在人心脏的腔室特异性表达受到了质疑。在本文中,作者使用自上而下蛋白质组学质谱分析了成人非衰竭供体心脏的四个心脏腔室中MLC-1和-2心房和心室亚型的表达。  MLC-1v和MLC-2a是在所有供体心脏中呈现出腔限表达模式的MLC异构体。重要的是,作者的结果明确地表明,MLC-1v,而不是MLC-2v,在成年人心脏中是心室特异性的。图1展示了LV(left ventricle)、RV(right ventricle)、LA(left atrium)和RA(right atrium)中MLC异构体的检测和定量。作者发现MLC-1v存在心室特异性表达,而MLC-2v没有特异性,并在心房组织中发现了与MLC-2v和pMLC-2v分子质量相匹配的峰。此外,在所有(n=17)无心脏疾病的捐赠者的每颗心脏的心房组织中都能检测到MLC-2v。MLC-2v占总MLC-2含量的百分比采用单因素方差分析(one-way ANOVA)进行定量分析,认为MLC-2v占总MLC-2含量的百分比具有统计学意义,心室和心房间差异显著,LA和RA间横向差异显著。  图1. MLCs Top-down MS分析  接下来作者使用串联质谱(MS/MS)鉴定了MLC-2v蛋白质序列。位于心房组织MLC-2v上的去酰胺化翻译后修饰(PTM)被定位到氨基酸N13。去酰胺化位点与调控磷酸化位点Ser14相邻。磷酸化位点附近的脱酰胺基团所带来的额外负电荷模拟了MLC-2a在Ser22/23位点的双磷酸化模式(图2C)。心房特异性的MLC-2v去酰胺化可能与心房内心力的产生有关。磷酸化诱导了MLC-2的构象变化,而第二负电荷的加入可能有助于提高钙敏感性并诱导蛋白质进一步的构象变化。  图2. Top-down MS/MS 鉴定  总的来说,自上而下蛋白质组学对整个人类心脏的MLC亚型表达进行了无偏差分析,揭示了之前意想不到的亚型表达模式和PTMs。  撰稿:张颖  编辑:李惠琳  文章引用:Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 免疫球蛋白的金属螯合色谱分离
    免疫球蛋白(Immunoglobulin,Ig)具有抗体活性,是脊椎动物在对抗原刺激的免疫应答中,由淋巴细胞产生的,能与相应的抗原发生特异性结合的或化学结构与抗体相似的一类球蛋白。它普遍存在于哺乳动物的血液、组织液、淋巴液和体外分泌液中,是主要的液体免疫物质。1890年,德国学者Behring和日本学者北里首次发现免疫球蛋白。随后人们用电泳技术证明了血液中抗体的活性存在于γ区、β2区、β区和α区。为了避免名称上的混乱,1964年WHO命名委员会统一将抗体和一些化学结构、抗原性与其有关的蛋白统称为免疫球蛋白。免疫球蛋白广泛应用于开发新型功能性食品添加剂,仔畜饲料以及生物新药和医药生化诊断、检测试剂等,已经成为研究和商业等部门重要的物质。所以免疫球蛋白的纯化也备受关注。由于免疫球蛋白对金属螯合色谱的亲和力最da,因此可采用增加上样量使其突破饱和点再用强洗脱液洗下吸附的免疫球蛋白。据报道,此法得到的免疫球蛋白的纯度可达95%,活力几乎没有损失。金属螯合色谱是一种利用金属离子与蛋白质中的某些氨基酸,如组氨酸等特有的亲和力进行分离纯化的新型色谱分离技术,它具有条件温和,分离的蛋白质活性回收率较高。同时操作较为简单,具有较高的处理能力,使用寿命也较长,适宜于生物活性蛋白的分离纯化。月旭推出的Chelating Tanrose 6FF金属螯合亲和介质,由亚氨基二乙酸(IDA)偶联到琼脂糖而成,相当于未螯合Ni离子的Ni Tanrose 6FF(IDA)。Chelating Tanrose 6FF介质的配基可提供3个配位位点同金属离子螯合,同时提供三个离子键结合部位高亲和的纯化目的蛋白,亲和力要强。可广泛应用于分离提纯蛋白质和多肽。其原理是利用蛋白质的组氨酸、半胱氨酸和色氨酸的侧链与多种过渡金属离子如Cu2+,Zn2+,Co2+,Fe3+的相互作用,从而达到分离纯化的目的。
  • 免疫球蛋白含量测定——安东帕Abbemat系列全自动折光仪
    共同战疫 2020年 免疫球蛋白含量快速测定安东帕Abbemat系列全自动折光仪 随着新型冠状病毒感染的肺炎确诊越来越多,医疗物资需求也越来越大,其中,静注人免疫球蛋白是目前防控新冠状病毒感染肺炎的重要药品之一。人免疫球蛋白人免疫球蛋白是取健康献血员的新鲜血浆或保存期不超过2年的冰冻血浆,每批最少应由1000名以上健康献血员的血浆混合。用低温乙醇蛋白分离法分段沉淀提取免疫球蛋白组分,经超滤或冷冻干燥脱醇、浓缩和灭活病毒处理等工序制得,其免疫球蛋白纯度应不低于90%。然后配制成蛋白浓度为10%的溶液,加适量稳定剂,除菌滤过,无菌灌装制成。人免疫球蛋白作为重要的医疗用品,选择合适的含量检测方法具有重大意义。目前,中国药典明确规定人血浆中蛋白可采用折射仪法进行测定。折光率作为物质浓度和纯度的表征,可用于物质含量的测定。将折光仪用于免疫球蛋白含量的测定,不但操作简单,其快速、准确的优势,可帮助制药企业节约大量时间成本,这在需要大量生产与检测免疫球蛋白的特殊时期,尤为关键!
  • 江西6人注射球蛋白死亡续:家属否认病危说法
    5月29日,国家药监局接到国家药品不良反应监测中心报告,江西南昌大学第二附属医院,在使用标示为江西博雅生物制药有限公司生产的批号为20070514的静脉注射人免疫球蛋白(pH4)后出现严重不良反应事件。国家药监局当即组成调查组赶赴江西,初步检测结果显示,部分样品存在异常,但具体原因尚未查明,调查组正在对此进行进一步的调查和检验。截至目前,除江西南昌大学第二附属医院外,没有其他省份报告使用该批号药品的任何不良反应报告。 中新社发 魏玮 摄 昨天(4日),针对有媒体报道抚州市食品药品监督管理局实验室传出消息,博雅公司原厂免疫球蛋白样品检测无异常,抚州市药监局称他们并不了解具体情况,国家药监局表示目前结果还没有出来,有结果后会第一时间在网上公布。 家属否认病危说法 昨天(4日),本次6人注射免疫球蛋白死亡事件的第1名死者家属余平联系上记者。 5月22日,在南昌打工的陈海英,因病毒性脑炎合并症状癫痫住进南昌大学第二附属医院,当晚6点多注射免疫球蛋白液体,第1瓶注射以后就已经昏迷了,随后在注射第2瓶液体时死亡。 “当天,会诊专家跟我说,病人免疫能力较弱,6瓶一疗程效果可能不会太好,不如一天8瓶冲击一下。”余平说。 据余平介绍,目前已经互相联系到3名死者家属,正在努力联系其他3名死者家属。“目前各家家属都不同意院方此前提出的‘病危说’。”余平说。 结果将在网上发布 昨天(4日),有媒体报道抚州市食品药品监督管理局实验室传出消息,经过小白鼠注射试验,证明博雅公司原厂提取的免疫球蛋白样品不存在异样情况。 据相关部门介绍,调查组目前调查仍然覆盖整个生产流通环节。 昨天(4日),参与协助调查的抚州市食品药品监督管理局表示,目前他们还不清楚情况,对于媒体报道原厂药品检验无异样,他们没看到相关消息,也不清楚消息来源。 6月5日,江西省药监局表示,目前不能透露相关情况,其下属的江西省食品药品检测所称,所有检测都在北京的中检所进行,而调查组目前也不在药监局。 下午,国家药监局方面表示,对于调查组是不是已经离开南昌,他们目前还不知道,最终调查结果出来的时间还不好说,结果出来以后将会在网上及时公布。 新华社消息称,江西省食品药品监督管理局5日通报,所有问题药品在全国范围内得到有效控制。(特派记者 孙勇杰) 致6人死亡球蛋白样本异常 江西公安部门介入调查致6人死亡的静脉注射人免疫球蛋白部分样品存在异常
  • 预计到2025年全球蛋白检测及定量市场将达到30亿美元
    p   近日,有机构发布最新研究报告显示,到2025年,全球蛋白检测及定量市场有望达到30亿美元。报告指出,未来几年,在低浓度下进行蛋白估算以监控其变化的分析方法将驱动市场增长。 br/ /p p   各国政府和组织通过增加基金投入来鼓励蛋白质组学领域的科学研究,因此,报告预测,未来几年,蛋白检测和定量市场将以显著的速度增长,如Human Proteome Organization, National Cancer Institute (NCI) 和 Genomic Health Inc.等组织提供资金以支持蛋白质组学领域相关的研发和产品开发。 /p p   在分子水平上研究以了解慢性疾病并开发出解决方案的需求不断增加,这些都成为刺激相关组织制定基金研发计划的因素。美国国家癌症研究所(NCI)的公共健康基因组学计划推动了公共卫生癌症研究中的精准医疗和基因组学一体化研究进程,以减少全球癌症研究的负担。 /p p   虽然科技的发展不断简化蛋白估算,但在某种特定条件下,技术手段和实验的高昂成本影响了这些实验和技术手段的应用,例如,研究人员认为用于功能蛋白研究的质谱非常贵并且分析速度也缓慢。在质谱目标分析实验中,每一个靶标都要求有定制化抗体,以用于分析肽的亲和免疫浓缩,这一过程被认为成本很高并且时间较长。 /p p   报告还指出,比色法在实验室分析中使用的试剂和溶液最多,是最主要的分析方法,免疫法和光谱法被预测为同比增长最快的两种方法,而判断市场的依据是FTIR和SMCxPRO等技术的发展。由于采用这些方法,临床诊断有望成为未来几年增长最快的领域。 /p p   就应用领域方面,作为用于药物发现过程中生物分子评估中的科学技术的在药物发现过程中的靶标分析和其他过程的使用最多,而且,报告认为,学术机构是这类科学实验和临床诊断实验室发展最快的组织。 br/ /p p   地域方面,由于大量的蛋白质组学项目的实施,北美地区占了最大的份额,而亚太地区的卫生健康基础设施的改变也带动了市场对此类产品的需求,因此,亚太地区有望成为最赚钱的地区。 /p p   此外,报告认为,配件和试剂由于使用广泛或与仪器配套使用,消耗品的市场也非常可观。 /p p    /p p br/ /p
  • 高灵敏Top-down蛋白组学方法捕获单个肌肉细胞的proteoforms异质
    大家好,本周为大家分享一篇发表在PNAS上的文章:High sensitivity top–down proteomics captures single muscle cell heterogeneity in large proteoforms [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  单细胞研究表明,即使是具有相同形态和遗传的细胞,其生理功能特性可能也存在较大差异。近年来,基于质谱的单细胞蛋白组学策略逐渐发展成研究细胞异质性的重要技术,但也面临着细胞的蛋白质含量有限和动态范围宽,以及存在proteoforms高度复杂等挑战。得益于肽段易分离、电离和碎裂的特性,目前几乎所有基于质谱的单细胞蛋白组学分析都采用“Bottom-up”的研究思路,但会丢失蛋白质序列变异和翻译后修饰(PTMs)等信息。“Top-down”的蛋白组学通过分析完整蛋白质来避免这些信息的丢失,尽管质谱信噪比会随着分子量的增加而呈指数衰减,其灵敏度也不如“Bottom-up”,但它非常适合用于proteoforms的鉴定,是解析细胞异质性层面的理想方法。因此,作者在此对单个肌细胞进行了高灵敏的Top-down蛋白质组学分析,探究单细胞层面的结构和功能异质性,以期建立细胞类型和proteoforms间的直接关联。  在本工作中,作者分别以大鼠股外侧肌(VL)、足底肌(PLN)和比目鱼肌(SOL)的单个肌细胞(SMFs)为研究对象,使用优化过的裂解和冻融方法来保证蛋白的高提取率,最大程度减少吸附性蛋白质的损失,最后基于微流多通道纳电喷雾源(MnESI)对完整蛋白进行LC-MS/MS分析。其中,VL和SOL组织分别主要由快缩肌细胞和慢缩肌细胞构成,PLN组织则包含这两类肌细胞,平均最大收缩速度测定结果显示VL和PLN中的SMFs收缩速度存在更大的异质性,如图1B所示。Top-down结果也表明在VL和PLN中主要包含快缩型骨骼肌钙蛋白复合物(fsTnT、fsTnI和fsTnC)、α-原肌球蛋白(α-Tpm)和快缩型骨骼肌球蛋白轻链(MLC-1F、MLC-2F和MLC-3F),而在SOL中则检测到慢缩型骨骼肌钙蛋白复合物(ssTnT、ssTnI和ssTnC)、β-原肌球蛋白(β-Tpm)和慢缩型骨骼肌球蛋白轻链(MLC-1S、MLC-1V和MLC-2S),这表明不同类型SMFs独特的功能特征与其proteoform异质性相关(图1C-1D)。值得注意的是,这里能够准确鉴定到分子量30 kDa的proteoforms,比如α-sActin(42 kDa)和MyHC亚型(223 kDa),说明Top-down方法可以实现对单个肌细胞水平的完整肌节proteoforms的检测。  图1.(A)大鼠骨骼肌结构示意图 (B)3种肌肉组织(VL、PLN和SOL)中SMFs收缩速度的测量(n = 10) (C)VL、PLN和SOL组织SMFs中的主要肌节proteoforms(n=6) (D)代表性的去卷积质谱图,红色p表示单磷酸化,“△H3PO4”表示pfsTnT3丢失磷酸盐,“-k”表示ssTnT1或pssTnT1赖氨酸残基的丢失。  肌球蛋白重链(Myosin heavy chain,MyHC)是一种为肌肉收缩和力产生提供能量的分子马达蛋白,具有多种分子量约为223 kDa的蛋白亚型。它们有超过80%的序列同源性,因而很难通过“Bottom-up”的策略去检测和定量。MyHC1、MyHC2、MyHC4和MyHC7是大鼠骨骼肌中主要存在的四种MyHC亚型,其中MyHC7和MyHC4分别是SOL和VL组织中的主要亚型,而PLN组织中主要含有MyHC1、MyHC2和MyHC4,此处检测结果与之相符,如图2所示。与SOL和VL相比,PLN来源的SMFs在最大收缩速度上存在更大差异也印证了一个事实,即多种MyHC亚型在PLN组织中表达,这有助于依据MyHC亚型的表达对SMFs类型进行区分。此外,MyHC亚型在各样本中的质量偏差不超过2 Da,表明该检测方法在单个肌细胞水平上具有高灵敏性。  图2. MyHC亚型的检测(A-B)VL、PLN和SOL组织中MyHC的电荷肽分布和去卷积谱图 (C-E)VL、PLN和SOL组织中对应的MyHC亚型(n=6)。  除了蛋白亚型的鉴定,作者也利用Top-down蛋白组学技术实现对蛋白质PTMs的鉴定,例如对fsTnT的检测,如图3所示。快缩型骨骼肌钙蛋白复合物(fsTnT)具有高度序列同源性,它的表达丰度较低,通过传统Bottom-up策略检测是非常具有挑战性的。如图3A所示,在VL和PLN组织中检测到了fsTnT3的几种高丰度proteoforms,包括单磷酸化的fsTnT3(pfsTnT3)、fsTnT3和丢失磷酸盐的pfsTnT3(△H3PO4)。fsTnT3在VL和PLN两组中的表达水平和总磷酸化水平都相似(图3C-图3D)。需要注意的是,进一步放大谱图时可以观察到几种低丰度和肌细胞特异性fsTnT的存在,比如在两组中都检测到的fsTnT4,其总磷酸化在PLN组织中具有更大的表达差异,如图3B所示。此外,Top-down方法也可对两种分子量相差26 Da的Tpm亚型(β-Tpm和β’-Tpm)进行区分。这些结果充分表明Top-down蛋白组学技术适合用于单个肌肉细胞亚型和PTMs的研究。  图3.磷酸化fsTnT的检测(A)fsTnT3在VL(红色)和PLN(紫色)中的去卷积谱图,红色p表示单磷酸化,“△H3PO4”表示pfsTnT3丢失磷酸盐 (B)A图中29700-30200 Da区域的放大图 (C)fsTnT3和fsTnT4的总磷酸化表达(n=6) (D)fsTnT3的表达(n=3),p30 kDa)。尽管它们的二级碎裂率不高(5.8%-25.2%),但可以产生一些覆盖全长序列的b/y离子,进而实现较大proteoforms的鉴定,表明Top-down蛋白组学方法是表征SMFs蛋白的有利手段。  图5.MLC-1亚型的表征(A)MLC-1F、MLC-1S和MLC-1V的序列比对,紫色表示亚型间至少共享一个残基,绿色表示亚型间没有共享残基,无颜色表示亚型间序列同源 (B)MLC-1亚型代表性的EIC谱图 (C-E)MLC-1亚型的CAD碎裂,“Ace”表示Nα-乙酰化,“(Me)2”表示Nα-二甲基化。  总的来说,作者开发了一种Top-down的蛋白质组学策略,其结合了一锅法样品制备和高灵敏的毛细管LC-MS/MS分析,可用于在功能和蛋白质组上具有显著异质性的SMFs的proteoform分离和表征。不同类型SMFs的异质性在肌节proteoforms中得以反映,在其中鉴定到的MyHC亚型(220 kDa)可以用于单细胞水平上的肌细胞分类。更为重要的是,本研究表明Top-down组学方法对于复杂肌节体系PTMs和亚型表征方面的独特优势,强调了其在关联单细胞表型异质性和功能多样性间的应用潜力,希望可以将该方法拓展到其它有高灵敏需求的场景。  撰稿:陈昌明编辑:李惠琳文章引用:High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Melby, J. A., Brown, K. A., Gregorich, Z. R., et al. High sensitivity top-down proteomics captures single muscle cellheterogeneity in large proteoforms. PNAS., 2023, 120(19), e2222081120. DOI https://doi.org/10.1073/pnas.2222081120
  • Top-down质谱在单细胞蛋白组学的新进展|威斯康星大学葛瑛团队PNAS成果
    蛋白质是生命活动生理功能的执行者,它更直观的表现生命的活动现象,它直接参与机体的免疫应答、免疫调节和催化过程。蛋白表达的差异水平会更直观的反应机体的生理状况和发病机制,因此蛋白质的定量检测对疾病的诊断、预后评价有着重要的意义。与此同时,单细胞技术正在通过直接研究个体细胞之间的生物变异,推动生物学和分子医学领域的革新。自上而下(Top-down)质谱方法是一种新兴的单细胞蛋白质组分析技术,可以同时分析蛋白质的各种异构体以及翻译后修饰,该技术可用于深入理解单个细胞的功能和细胞异质性。尤其是在蛋白质异构体的鉴定和定量方面,通过Top-down质谱技术,可以获得单个细胞蛋白质组的高分辨率和高质量信息,从而深入探究细胞内不同功能和代谢通路之间的关系,揭示细胞功能和生命过程的本质,进而推动生命科学领域的发展。然而,在单细胞蛋白质组学中,分析由基因突变、可变剪接和翻译后修饰引起的蛋白形式仍存在重大挑战。近日,在威斯康星大学麦迪逊分校葛瑛教授团队的一项新研究中,其团队开发了一种高灵敏的功能整合型Top-down蛋白质组学方法,全面分析单个细胞中的蛋白质形式。并将此方法应用于单个肌纤维(SMFs),以解析其在单细胞水平上的功能和蛋白质组学性质的异质性。该研究凸显了Top-down蛋白质组学在理解单细胞蛋白质异质性如何促进细胞功能的潜力。(原文链接:https://www.pnas.org/doi/10.1073/pnas.2222081120)研究团队开发了一种高灵敏的功能集成的Top-down蛋白质组学方法,用于对单个细胞的蛋白质形态进行全面分析。研究者将该方法应用于单个肌纤维(SMFs)中,以解析其单个细胞水平的异质性功能和蛋白质组学特性。值得注意的是,研究者从SMFs中检测到了大型蛋白形态的单细胞异质性( 200 kDa)。使用从三种不同功能的肌肉中获得的SMFs,发现肌肉肌节蛋白形态存在纤维间的异质性,这可以与其功能异质性相关联。更重要的是,其检测到多种肌球蛋白重链的同工酶(~ 223 kDa),这是驱动肌肉收缩的运动蛋白,具有高度的重复性,以便对单个纤维类型进行分类。研究结果揭示了在个体肌肉细胞之间可能存在的蛋白质翻译后修饰和同工酶表达差异,并进一步将功能性与蛋白质组学相结合,可重复测量肌球蛋白同工酶,用于单个肌肉纤维类型的分类,凸显了Top-down蛋白质组学揭示复杂系统中细胞间变异的分子基础的潜力。该成果“High sensitivity top–down proteomics captures single muscle cell heterogeneity in large proteoforms”已于2023年5月1日在《美国科学院院报》(PNAS)上发表。值得一提的是,该文章从投稿到成功在PNAS上发表,仅仅历时4个月时间。研究团队: https://labs.wisc.edu/gelab/威斯康星大学麦迪逊分校 葛瑛教授
  • 在线电化学方法实现免疫球蛋白链间/链内二硫键的还原
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins1。该文章的通讯作者是来自荷兰伊拉斯姆斯大学医学院的Martijn M. Vanduijn研究员。许多蛋白质中都包含着二硫键,二硫键是指连接不同肽链或同一肽链中两个不同半胱氨酸残基的巯基组成的化学键(-S-S-)。在蛋白质分子中,二硫键起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界影响的能力就越大。维持二硫键的完整有利于蛋白质的液相色谱分离,但却给后端的质谱分析带来了挑战。常规的方法是在质谱分析前期对蛋白质进行变性、还原、烷基化处理,这些前处理过程可以有效的减少二硫键对后续酶切或二级碎裂(MS/MS)的干扰,但却非常繁琐耗时,除了会产生副反应以外,蛋白样品也可能在前处理过程中发生丢失。一个有效的替代方法是采用电化学还原。一个配备金属电极的流通池,仅需要施加适当电压于电极上,流通池中蛋白分子上的二硫键就可以被还原。目前,这种微型电化学反应池已实现商业化,可在线连接至质谱前端,蛋白样品经电化学还原,离子源活化,二级碎裂后可直接进行基于MS/MS谱图的序列匹配。尽管如此,电化学反应池在设计、电极材料组成、流通池的大小以及施加的电势等方面仍在不断的提高与创新。免疫球蛋白(抗体)包含有多个链间/链内二硫键。Simone Nicolardi等人曾在2014年将电化学反应器与FTICR质谱联用用于单克隆抗体的分析,从MS1谱图中可以明显地观察到单克隆抗体由于链间二硫键还原后生成的重链和轻链。然而,由于还原不完全,导致重链/轻链上的链内二硫键仅部分打开。类似的不完全还原在Kasper D. Rand组中电化学还原与氢氘交换质谱联用中也能观察到。这种不完全还原会影响蛋白中肽链的精准测量(一对二硫键引起2 Da的质量偏差),同时,关闭的二硫键也会干扰其跨度区域的二级碎裂,碎裂产物也较难通过计算软件进行预测或分析。本文介绍了一种改进的在线电化学还原方法可以实现单克隆抗体链间/链内的完全还原。装置如图1所示,蛋白样品注入系统后在1μL/min的流速下进行色谱分离,色谱柱后流出液与19 μL/min的补充液(1%甲酸,50%乙腈)在T型管中混合,随后以20 μL/min的流速经过电化学反应池(电化学反应池固有体积为19 μL),最终还原后的反应液进入质谱进行检测。值得注意的是,补充液中的50%乙腈有利于蛋白变性,而1%甲酸则为还原反应提供氢原子,促进还原反应的进行。图1. 在线电化学反应池耦联质谱装置示意图为了考察整个方法的可行性及普遍适用性,作者利用该装置对一系列的单克隆抗体进行了电化学还原和质谱检测。如图2A为贝伐珠单抗在800 mV还原电势下色谱分离的总离子流图(TIC),图2B为图2A中色谱峰所对应的一级质谱图(MS1)。从MS1可以看出有两组电荷态分布分别对应重链和轻链,说明在800 mV电势下,贝伐珠单抗链间二硫键发生了还原,由于还原发生在色谱分离之后,所以重链和轻链产生了共流出,仅在TIC图中观察到一个色谱峰。相比较柱前还原,这种色谱柱后二硫键还原会导致肽链的共流出,质荷比接近的肽链则会产生重叠的电荷分布进而干扰谱图的解析。但这种方法在分析复杂的蛋白样本具有明显有优势,可以将还原后生成的肽链与蛋白母体相关联,方便溯源。图2C则为贝伐珠单抗在不同电势下的还原情况,随着电势的逐渐增加,MS1去卷积谱图上逐渐观察到部分还原生成的重链、轻链或重轻链组合,当电势达到1000 mV时,几乎所有的链间二硫键都实现了还原。对于链内的二硫键,由于还原产生的质量改变较小(轻链包含两个二硫键,还原后质量增加4.032 Da),且存在未还原、部分还原以及完全还原肽链间的信号干扰,所以不太容易从MS1谱图确认链内二硫键的还原情况。但轻重链朝高电荷态偏移(图2D)间接说明链内二硫键在打开,肽链更加舒展,更容易质子化。图2. 在线还原系统分析贝伐珠单抗:A)贝伐珠单抗总离子流图;B)对应色谱峰的一级质谱图;C)在不同还原电势下的一级质谱图(去卷积);D)重链在不同还原电势下电荷态的偏移。为了更加准确地评估链内二硫键的还原情况,作者模拟了不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布情况。如图3A,从上到下分别是模拟的完全还原(4 x SH)、部分还原(SS + 2 x SH)以及未还原(2 x SS)同位素分布。将实验测得同位素分布与模拟的同位素分布进行比对,计算每种氧化还原形式对总信号的贡献占比(图3B)。经过比对发现在1000 mV的电化学还原下是可以实现链内二硫键的完全还原的。因此,最终电化学还原设置为1000 mV。链内二硫键的完全还原可以极大的提高肽链的碎裂效率,获得更加丰富的MS/MS数据用于序列匹配。如图4所示,贝伐珠单抗以及西妥昔单抗的轻链19+电荷态被分离并碎裂。可以看到当施加1000 mV还原电势在质谱分析的前端时,轻链的二级碎片明显增加,特别是横跨链内二硫键的区域(图4,黄色阴影)。此外,在质量匹配的过程中也可以观察到二硫键处于还原状态,考虑还原氢引起的质量增加可以实现更多二级碎片的匹配。图3. A)不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布模拟;B)不同实验条件下的二硫键还原情况图4. MS/MS数据评估链内二硫键的还原情况总之,本文开发了一种在线电化学还原方法能够实现免疫球蛋白链间/链内二硫键的完全还原。该方法能够简化蛋白样品的前处理过程,方便后续的质谱测定。与之前的电化学反应器相比,该系统能实现链内二硫键还原的主要原因可能有以下几点:1、电化学流通池所用的表面材料,之前是全钛的设计,现在是表面镀铂。2、之前是三电极配置(工作电极,参比电极,辅助电极),而现在的设计减少至两个电极,驱动还原的电势适用于这种调整后电极配置。3、补充液的条件(50%乙腈和1%甲酸)对还原有利。此外,该电化学系统仍有需要改进的地方,例如:电化学反应池的体积过大、还原电势过高会影响质谱检测的信噪比等。该方法具有广阔的应用前景,无论是在蛋白质组学还是在结构质谱分析中。撰稿:刘蕊洁编辑:李惠琳原文:Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins参考文献1.Vanduijn MM, Brouwer HJ, Sanz de la Torre P, Chervet JP, Luider TM. Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins. Anal Chem. 2022, 94(7): 3120-3125. 2.Nicolardi S, Deelder AM, Palmblad M, van der Burgt YE. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014, 86(11): 5376-5382.3.Trabjerg E, Jakobsen RU, Mysling S, Christensen S, Jørgensen TJ, Rand KD. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem. 2015, 87(17): 8880-8888.
  • 赛默飞推出获IVDR认证的EXENT®解决方案 突破创新单克隆免疫球蛋白检测和监测手段
    近日,赛默飞宣布在获得IVDR认证后推出EXENT®解决方案。该解决方案是一种全面集成的自动化质谱系统,旨在改变单克隆丙种球蛋白病患者的诊断和评估,包括多发性骨髓瘤。据世界卫生组织称,多发性骨髓瘤是全球第二大常见的血液癌症。EXENT解决方案现已在以下国家/地区上市:比利时、法国、德国、意大利、荷兰、西班牙和英国。EXENT解决方案支持临床实验室测量、量化和跟踪特定的内源性M蛋白和外源性治疗性单克隆抗体,并提高血清中的分析灵敏度和特异性。EXENT解决方案易于在实验室的日常工作中实施,并具有三个集成模块:EXENT-iP®500(自动化样品制备仪器);EXENT-iX®500(基质辅助激光解吸电离 - 飞行时间质谱仪 (MALDI-ToF MS)); EXENT-iQ®(一款智能且直观的工作流程软件,包括数据审查)。该分析仪与EXENT®免疫球蛋白同种型 (GAM) 免疫分析相结合,后者是一种高灵敏度和特异性的免疫分析,用于测量和定量IgG、IgA和IgM。赛默飞蛋白质诊断首席科学官Stephen Harding博士指出:“EXENT解决方案代表了单克隆免疫球蛋白检测和监测创新方面的重大突破。”在过去,单克隆丙种球蛋白病的治疗是通过监测M蛋白水平来确定的,这可以表明肿瘤的大小。近年来,随着治疗的显著成功,许多患者使用标准技术将M蛋白浓度降至可检测限度以下。然而,患者群体内依然存在疾病进展的差异。EXENT解决方案填补了对更灵敏分析方法的未满足临床需求,从而区分子集,而无需过早启动侵入性骨 髓活检技术。EXENT解决方案基于Mayo Clinic的知识产权开发,将创新领域的行业领先地位与Mayo在单克隆丙种球蛋白病研究方面的专业知识相结合。EXENT解决方案旨在帮助诊断单克隆丙种球蛋白病,并监测多发性骨髓瘤和华氏巨球蛋白血症患者。EXENT解决方案的主要特点和创新包括:• 增强的分析灵敏度:通过突破灵敏度的限制,支持临床医生和实验室仅使用血清样本就可以监测患者更深层次的反应。• 动态监测独特的M蛋白:随着时间的推移跟踪特定的M蛋白,从而识别新克隆产生的其他M蛋白。• 高级可视化:以直观的方式呈现M蛋白,支持临床医生和实验室就内源性M蛋白做出明智的决策。• 简化且微创的血清检测:通过简单且微创的血清检测,优先考虑患者的舒适度和便利性。• 具有自动算法数据处理功能的智能软件:由具有自动算法数据处理功能的智能软件支持,可最大限度地减少手动工作,提高数据准确性并加快分析速度。• 使用Optilite®分析仪进行定量分析:与Optilite分析仪结合使用,可对M蛋白进行精确定量,以获得全面、准确的结果。今年早些时候,赛默飞完成了对The Binding Site的收购,将蛋白质诊断解决方案(包括单克隆丙种球蛋白病的诊断和监测)添加到其专业诊断产品组合中。
  • 葛瑛团队成果:利用Top-down蛋白质组学建立缺血性心肌病的肌节proteoform图谱
    大家好,本周为大家分享一篇发表在J. Proteome Res上的文章:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。缺血性心肌病(Ischemic cardiomyopathy,ICM)是一种高度异质性的心血管疾病,大多数是由于左心室收缩功能障碍使得流向心脏的血液减少,从而导致氧气剥夺和心肌缺氧。ICM是心力衰竭的主要病因,是造成全球死亡率升高和疾病负担增加的主要因素之一,但其潜在的分子机制还有待深入研究。肌节作为心脏收缩的基本单位,由以肌动蛋白为基础的细肌丝和以肌球蛋白为基础的粗肌丝组成,它们附着在一个Z盘结构上。研究发现肌节蛋白质翻译后修饰(PTMs)和亚型的改变在心脏生理病理进程中扮演着重要角色。基于质谱的Top-down蛋白质组技术是以完整蛋白质为分析对象,可以提供不同表型心脏病蛋白质PTMs和亚型变化等生物信息,但目前还缺乏ICM肌节proteoforms图谱变化的相关报道。因此,作者利用Top-down蛋白质组学技术,在正常和ICM条件下构建了肌节proteoform图谱,并探究其变化对ICM发病机制的影响,从而为人类ICM的研究提供独到的见解。为了揭示ICM的分子变化情况,作者首先利用不同的pH条件,去除心脏功能正常的供体左心室(Left ventricular,LV)心肌组织(donor,n=16)和ICM患者LV心尖组织(ICM,n=16)的胞质蛋白质,对富集到的肌节蛋白质进行LC-MS/MS检测分析(图1)。心尖是在ICM患者进行左心室辅助装置植入手术期间获取的,实验已经证明LV和心尖组织具有相似的肌节proteoform图谱,两者可以进行相互比较。通过去卷积图谱上proteoform的峰强度与同一蛋白质所有proteoforms的总强度之比来进行蛋白质修饰水平的定量,而蛋白质表达的定量则依赖提取离子色谱图(EIC)峰下面积(AUC)的积分来计算。整个实验流程,从样品制备到LC-MS/MS分析,用时不到3h,表明该方法具有快速与高通量的优点。  图1. 非标记Top-down蛋白质组学的实验流程:对无心脏病史的非衰竭供体(donor,n=16)和ICM患者(ICM,n=16)的LV组织进行肌节蛋白质的提取,然后进行LC-MS/MS分析。Top-down蛋白质组学策略提供了正常供体和ICM心脏组织中的proteoform图谱,如图2所示。作者检测到了许多肌丝蛋白,包括心肌肌钙蛋白I(cardiac troponin I,cTnI)、肌钙蛋白C(troponin C,TnC)、原肌球蛋白(tropomyosin,Tpm)亚型、α-肌动蛋白(α-肌动蛋白)亚型、心室型肌球蛋白轻链2(MLC-2v)、心室型肌球蛋白轻链1(MLC-1v)和心房型肌球蛋白轻链1(MLC-1a),同时也检测到了多种Z盘蛋白,包括ENH2、肌肉LIM蛋白(muscle LIM protein,MLP)、富含半胱氨酸蛋白2(cysteine rich protein 2,CRIP2)、cypher-5、cypher-6、elfin、calsarcin-1(Ca1-1)和四个半LIM结构域蛋白2(four and a half LIM domains 2,FHL2)(图2)。随后,作者采用碰撞活化解离(CAD)模式对所有检测到的肌节蛋白质进行MS/MS分析,以进一步表征蛋白质。比如,实验结果显示MLC-2v上的磷酸化位点位于Ser19,并且实现了21%的序列覆盖率,这些数据表明Top-down的MS/MS分析可以对完整肌丝蛋白质进行测序,以用于蛋白质的鉴定和表征。  图2. 正常供体和ICM患者心脏组织中的proteoform图谱。(a)代表性的基峰色谱图(BPC)表明肌节蛋白和Z盘蛋白呈高分辨分离(MLP、CRIP2、cTnT、ENH2、cypher-6、elfin、cypher-5、FHL2、calsarcin-1、cTnI、Tpm、MLC-1V、MLC-1a、MLC-2v、α-actin和TnC) (b)去卷积质谱图显示肌节蛋白和Z盘蛋白的多样性,红色p和pp分别表示单磷酸化和双磷酸化形式的proteoform。  紧接着,作者对3个正常供体组织样本进行了LC-MS/MS检测,结果表明它们的BPC和总离子色谱图(TIC),以及质谱信号强度的重现性非常好,证明了该分析方法稳健的重现性。为了比较两组样本间的蛋白质表达水平,作者对来自同一正常供体的组织样本,分别提取50、400、500、600、750、1000和1200 ng的总蛋白质进行LC-MS/MS检测以评估仪器响应线性,结果如图3a所示,它们表现出高度相似的proteoform图谱。图3b展示了代表性肌节蛋白(ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC)的EIC,通过测定每个EIC的AUC丰度总和,建立了250~1200 ng的相互线性范围。如图3c所示,不同总蛋白量相关性结果的R2均大于0.99,表明该检测方法具有优异的重现性、灵敏度和线性,所以有信心将其用于样本间的蛋白质定量。  图3. 关键肌节蛋白相互线性范围响应的测定。(a)50、400、500、600、750、1000和1200 ng总蛋白质的BPC,proteoform图谱高度相似 (b)ENH2、cTnI、α-Tpm、MLC-1v、MLC-2v和TnC的EIC(结合同一蛋白质所有proteoforms前3~5个最丰富电荷状态的离子) (c)每个肌节蛋白的AUC与250~1200 ng总蛋白(每个点重复3次)显示出相互线性相关(R20.99)。与正常供体样本相比,作者在ICM组中检测到了cTnI和ENH2的PTM和表达水平的显著变化。在供体和ICM组中,作者检测到了三种主要的cTnI proteoforms,包括未磷酸化的cTnI、单磷酸化的cTnI(pcTnI)和双磷酸化的cTnI(ppcTnI)同样也在两组中检测到了未磷酸化的ENH2和单磷酸化的ENH2(pENH2)(图4a)。与供体组相比,实验观察到ICM组LV组织中cTnI和ENH2表达水平的显著降低(图4b),同时发现它们的总磷酸化水平在ICM组中也显著降低(图4c),其中cTnI和ENH2的总磷酸化水平分别降低了35%和34%。此外,为了确定ICM组织中cTnI和ENH2磷酸化水平的降低是否相互依赖,作者对两者磷酸化水平进行了线性拟合,发现cTnI和ENH2磷酸化水平表现出很强的线性相关(r=0.8926,p0.00001)(图4d)。这些发现也与作者先前对肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)患者心脏的研究结果相一致(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),表明可能是由异常的PKA信号通路介导了cTnI和ENH2磷酸化水平的协同降低。  图4. ICM组中cTnI和ENH2磷酸化水平协同降低。(a)正常供体(蓝色)和ICM(红色)中代表性去卷积质谱图和EIC,红色p和pp分别表示单磷酸化和双磷酸化 (b)cTnI和ENH2表达水平的定量,两组在p0.05时被认为有统计学差异 (c)用mol pi/mol protein计算cTnI和ENH2总磷酸化,水平线代表组内中间值,两组在p0.001时被认为有统计学差异 (d)cTnI和ENH2磷酸化水平间的线性相关性(r=0.8926,p0.00001:线性相关性很强)。  Tpm是一种细丝相关蛋白,共有几种可以与cTnT和α-actin相互作用以调控肌肉收缩的蛋白质亚型。作者在先前的研究中证实了人类心脏中存在α-Tpm、β-Tpm、和κ-Tpm,其中α-Tpm是表达最为丰富的亚型(Ying Ge, et al. J Muscle Res Cell Motil. 2013 34(3-4):199-210)。在本项研究中,未磷酸化的α-Tpm、单磷酸化的α-Tpm(pα-Tpm)和单磷酸化的κ-Tpm(pκ-Tpm)是主要检测到的TPM亚型(图5a),而未磷酸化的κ-Tpm、γ-Tpm和skβ-Tpm丰度较低。与正常供体组相比,skβ-Tpm在ICM组中的表达显著降低,而α-Tpm和κ-Tpm在两组比较中无显著变化(图5c)。γ-Tpm的丰度太低,致使很难对其进行准确定量。尽管Tpm亚型的比例变化对心脏功能的影响还不得而知,但skβ-Tpm在ICM组中表达水平的显著降低同样也在先前HCM患者心脏中观察到(Ying Ge, et al. Proc Natl Acad Sci USA. 2020 117(40):24691-24700),因此有理由推断skβ-Tpm表达水平的变化可能会改变心脏功能,并使得ICM患者心脏收缩功能受损。除此之外,在正常供体组和ICM组中也都检测到了α-actin的两种亚型:骨骼肌α激动蛋白(Skeletal α-actin,α-SKA)和心脏α肌动蛋白(Cardiac α-actin,α-CAA),如图5b所示。它们在心肌中共表达,在肌节结构和完整性中具有重要作用。与正常供体组相比,实验观察到α-SKA在ICM组中的表达显著增加(图5d)。结合作者先前观察到α-SKA在非衰竭供体心脏中的表达显著增加(Ying Ge, et al. Anal Chem. 2015 87(16):8399-8406),实验结果说明衰竭心脏中表达上调的α-SKA可以作为一种有前景的心脏病生物标志物。  图5. Tpm和α-actin不同亚型的表达。(a)Tpm在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,共鉴定到α-Tpm、β-Tpm、κ-Tpm和γ-Tpm四种亚型,红色p表示单磷酸化和双磷酸化 (b)α-CAA和α-SKA在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图 (c~d)依据AUC进行Tpm和α-actin亚型的定量,两组在p0.005时被认为有统计学差异。  作者也对Z盘蛋白质进行了鉴定和定量,例如MLP和Cal-1。图6a和图6c分别对应两种蛋白质的去卷积质谱图,其中MLP为未磷酸化和单磷酸化形式(pMLP),Cal-1则表现出多种磷酸化proteoforms,包括单磷酸化(pCal-1)、双磷酸化(ppCal-1)和三磷酸化(pppCal-1)。与正常供体组相比,实验观察到MLP和Cal-1的总磷酸化水平在ICM组中的表达显著增加,分别增加了27%和4%(图6b和图6d)。MLP和Cal-1都与心肌病的发病相关,但目前尚未清楚PTMs如何影响其中的分子机制。本项研究首次揭示了ICM患者中MLP和Cal-1的磷酸化水平增加,但两者的总磷酸化水平呈负线性相关,说明它们不太可能被相同的激酶磷酸化或是在Z盘上有着密切的相互作用。  图6. MLP和Cal-1在ICM组中的磷酸化水平增加。(b)MLP在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p分别表示单磷酸化的MLP (b)MLP总磷酸化的计算,两组在p0.01时被认为有统计学差异 (c)Cal-1在正常供体(蓝色)和ICM(红色)中的代表性去卷积质谱图,红色p、pp和ppp分别表示单磷酸化、双磷酸化和三磷酸化的Cal-1 (d)Cal-1总磷酸化的计算,两组在p0.05时被认为有统计学差异。基于质谱的Top-down蛋白质组学技术,本研究对供体和ICM心脏组织中的proteoform图谱进行了详细分析,观察到多个蛋白质在表达和修饰水平上发生了显著改变,总的结果在proteoform层面揭示了与晚期缺血性心力衰竭相关的分子变化。值得注意的是,作者发现cTnI和ENH2磷酸化水平在ICM组中协同降低,表明缺血性心力衰竭时PKA信号通路出现异常。此外,在ICM组中也观察到了MLP和Cal-1这两种Z盘蛋白磷酸化水平的显著增加,并且也检测到了ICM组中Tpm和α-actin不同蛋白亚型的表达变化。总的来说,本研究强调了在proteoform水平研究ICM的必要性,有助于揭示ICM的发病进程和开发可行的治疗方案。  撰稿:陈昌明  编辑:李惠琳  原文:Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Chapman EA, Aballo TJ, Melby JA, et al. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. Journal of Proteome Research. 2023, 22 (3): 931-941.
  • 全球蛋白质组学千亿美元市场 中国创新企业能分羹几何
    蛋白质是经过基因表达之后的产物,是生命活动的直接执行者和调控者。蛋白质分子是应用最广泛的一类靶标物质,其中,超过95%的药物靶标,超过55%的临床诊断指标是蛋白质分子。  国家《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,打造国家生物技术战略科技力量,提高重大疾病的诊断和治疗水平。  “蛋白质组学是研究大规模水平上蛋白质的序列结构和功能的系统生物学科,其组成随着生命活动、疾病发生在不断变化。蛋白质组是后基因组时代解读生命本质的重要译码。”近日,青莲百奥CEO李京丽在接受记者采访时介绍称。  弗若斯特沙利文数据预计,当前全球蛋白质组整体市场接近千亿美元,在产业链上游赛默飞等跨国企业质谱仪和试剂供应商为蛋白组学研究提供基础仪器和试剂。2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。而目前中国创新企业又能分羹几何?  市场潜力巨大  1994年,Marc Wilkins博士等人提出了“proteome”(蛋白质组)这个术语,将蛋白质组定义为“基因组计划”的延伸。在21世纪初,人类蛋白质组研究在全球开启。2014年,两个独立的国际研究小组分别在《自然》杂志上公布了人类蛋白质组的第一张草图。  在我国,基因组研究发展步伐跟随国际,但在蛋白质组学研究领域,国内研究水平与国际比肩。就在2023年,由中国科学院院士贺福初牵头领衔发起并主导的人体蛋白质组导航国际大科学计划(Proteomic Navigator of the Human Body,简称π-HuB计划),全球科学家通力协作,绘制人类全生命周期图谱,解读人体蛋白质组构成原理与变化规律,实现蛋白质组学驱动的医学范式,共创智慧医学。  据了解,蛋白质组学产业链上游主要包括质谱仪和试剂供应商,如赛默飞、布鲁克、CST等,为蛋白组学研究提供基础仪器和试剂;中游主要包括蛋白组学技术服务的提供商,如景杰生物、中科新生命等,中游企业利用自身的创新技术和平台,为客户提供蛋白质鉴定、定量、修饰、互作等分析服务;下游主要包括蛋白组学技术服务的用户,如高校、科研院所、医院、生物医药企业等,它们通过采购蛋白组学技术服务,进一步从事基础研究、疾病研究、药物研发等活动。  根据弗若斯特沙利文数据预计,我国蛋白质组学市场规模,以31.3%的复合年增长率持续扩大。  不过,李京丽也指出,在上游层面,中国与海外差距较大,主要核心技术如高分辨质谱等,被国外头部企业引领。不过在中下游,国内实力与海外市场差距较小,国内的蛋白质组市场需求也在快速攀升。  值得注意的是,在精准医疗的应用层面蛋白质组具有较大增量,李京丽向记者进一步介绍称,在临床诊断、疾病预测和治疗监测等方面发挥重要作用。通过蛋白组学技术将疾病血液、组织等样品进行数字化,然后采用蛋白质定量、翻译后修饰、蛋白相互作用等数据分析找到关键特征分子,再进行系统研究,找到作为诊断标志物或药物治疗靶点。  另据了解,蛋白质组学技术可以伴随患者全生命周期的健康管理和用药指导。比如,在疾病发生发展过程中,初次确诊,是否复发、用药是否获益、是否耐药等场景的诊断应用。  此外,李京丽指出,相比人的2万个静态基因,人的蛋白质水平是动态的100+万种蛋白变体,蛋白质组维度更精细,基于蛋白质的临床检测还会逐渐增多,无论从存量还是未来增量而言,蛋白质组都有巨大的发展空间。  基于蛋白组学的广泛应用及发展空间,国家政策层面积极支持,资本层面也看好其发展前景。如《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,加快生物技术向多领域广泛融合赋能,加快培育蛋白领域新技术、新产业(300832)、新业态、新模式。  与此同时,近年来也有不少资本向蛋白组学领域倾斜。德联资本在不久前就投资了青莲百奥。德联资本相关负责人向记者分析称,相比于基因组,在蛋白质组领域,中国科学家有更强的话语权,且市场增速较快。同时,蛋白质组与人的健康或疾病状况的关联更直接,其在科研端还有众多未被发现的领域,科学价值很高,可以为科研端市场带来持续不断的增长。2023年,由贺福初院士牵头主导的人类蛋白组导航计划将持续30年,该计划每年可为科研市场带来数亿元的额外经费投入。  “实际上,科研端大量投入的背后,是希望将蛋白质组数据转化为新药研发的靶点或诊断标志物,临床转化是科研投入背后的长期目标,这仍然需要时间,但目的十分明确。当科研发展到一定阶段,如发现一些新的、有效的标志物,谁能将其快速实现商业化,谁就能得到市场的机会。”上述德联资本负责人指出。  填补国内市场空缺  随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。李京丽指出,我国在蛋白组学领域,急需标准化流程,需要解决相关问题。  据了解,针对国内蛋白质组市场现存的空缺需求,青莲百奥提供针对血液和微量组织样本的多种纳米材料富集试剂盒、蛋白样本前处理工作站、AI生信分析算法等产品,其产品组合的多样性和独特性国内独有。  作为一家创新型的服务平台,青莲百奥属于产业链的中游,提供创新性的解决方案,辐射上下游两端,针对上游提供科学工具产品,下游向临床端及科研端提供服务和产品。  青莲百奥是国内一家专注于蛋白质组学检测的创新性平台型CRO企业,成立于2013年,也是国内较早研究蛋白质组学研究的团队,几名核心创始人参与过人类蛋白质组计划及中国人类蛋白质组计划,从蛋白的功能机制研究,到药物靶点的发现,再到疾病诊断的突破,从实验室到产业化,从研发端到商业化落地,团队在蛋白质组学发展的20年间,是见证者也是实施者。  目前,青莲百奥主要面向医院科研和药企研发,临床需求是其首要解决的客户需求,同时,也率先与LDT头部医院达成战略合作,形成产学研闭环。据了解,青莲百奥核心技术优势在于临床需求的解决方案,对样品的高深度、标准化通量产出,加之数据质控和后期AI算法的优势,使得多年的行业积累,其业务发展已获得良好契机。  “在与临床端合作时,我们首先会确定临床需求,再通过创新性的蛋白组学技术,将临床样本数字化,产出数据矩阵,通过大模型算法找到可能引起疾病发生变化的关键蛋白。之后,将蛋白指标作为诊断或治疗特征,实现蛋白质组学驱动的医学范式转变。”李京丽进一步介绍。  目前,青莲百奥已与多家三甲医院展开合作,包括携手协和医院完成国内首篇空间蛋白质组学研究,探讨病毒感染疾病的机制问题;联合深圳市人民医院,利用热蛋白质组学新技术,发现肺部感染治疗的新抗菌药物;助力北京大学第三医院合作妇产项目,运用独有的纳米材料筛选血浆潜在标志物;此外,青莲百奥更与中国人民解放军总医院进行了多种罕见病的相关合作,开发新的诊断标志物。  2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。据记者了解,青莲百奥2023年实现了其独特产品的持续放量,获得商业认可并已实现盈利,也于2023年完成了数千万元的首轮融资。所募集资金将用于“一站式蛋白组学平台”升级建设,加速蛋白质诊疗标志物发现及临床转化。  实际上,蛋白质组在结构、组成、变体数量上更加复杂多样,且蛋白质无法通过技术手段实现扩增,因此蛋白质组检测难度更高,挑战性更大。此外,在临床应用端,临床体液样本往往存在样本量小、通量高、一致性及可溯性要求高的特点,传统蛋白质组检测难以应对其低丰度、高深度、高通量的分析需求,因此亟需新一代的蛋白质组学平台,加速蛋白质组学检测在临床端的应用推广。  企业档案:北京青莲百奥生物科技有限公司是一家专注于蛋白质组学检测的创新性平台型CRO企业,以临床需求为导向、以源头创新为核心驱动力,为蛋白质诊、疗标志物的临床转化提供一站式的完整解决方案。拥有蛋白样本的独创性纳米磁珠富集技术、全流程前处理智能机器人及全自动大数据分析系统。公司聚焦于血液、外泌体、组织切片、单细胞等样品,攻克微量检测限、高深度覆盖、定量准确性、方法标准化、算法智能化等蛋白质检测关键技术环节,全力打造新一代蛋白质组学平台。
  • 河北省食检院基于质谱的食品安全科研项目通过验收
    日前,市场监管总局科技财务司组织开展了总局科技计划项目集中验收,河北省食品检验研究院(以下简称“河北省食检院”)主持承担的“食品过敏原原肌球蛋白的高分辨质谱裂解规律研究”“葡萄酒区域产业集群质量提升的研究”两项总局科研项目成果顺利通过验收。  “食品过敏原原肌球蛋白的高分辨质谱裂解规律研究”项目通过自主开发虾、蟹等甲壳类水产品主要过敏原原肌球蛋白制备纯化技术,提出高分辨质谱裂解规律,在该领域首次建立了基于免疫亲和柱净化的原肌球蛋白检测技术,具备前处理简单、干扰少、特异性强等优点,可广泛运用于食品产业过敏原测试管控、食品样品精准定量检测,为保障公众健康、维护公共卫生安全提供了技术支撑。该项目发表SCI论文两篇,提交1份风险研判报告。  “葡萄酒区域产业集群质量提升的研究”项目,针对我国葡萄酒产业相关标准规范滞后、食品安全风险防控技术亟待更新等关键性问题,从国内外标准规范对比借鉴、生产过程风险因素分析和防控入手,针对葡萄种植、采摘到葡萄酒酿造、灌装、储存全链条,开展多种潜在污染物溯源、限值及预防技术研究,并首次运用高通量筛查技术,分析葡萄酒中农药残留、真菌毒素,建立了传统酿造、现代加工和特色家庭酒堡等多种产业模式下的食品安全风险防控和质量提升技术规程,对提升我国葡萄酒行业技术能力和食品质量安全水平具有重要意义。  据了解,河北省食检院近两年共开展了6项市场监管总局科技计划和技术保障项目,涉及特殊食品、食用农产品等,开发了多项快速筛查和检测技术,极大提升了技术储备和服务产业发展的能力。下一步,河北省食检院将进一步优化科技项目管理、加大成果转化,深入推动食品安全领域前瞻性研究,为市场监管科技创新贡献更多力量。
  • 中国轻工业联合会公开征集对《乳制品中A2型β-酪蛋白的测定》等108项轻工行业标准计划项目的意见
    根据标准化工作的总体安排,现将申请立项的《猫砂》等108项轻工行业标准计划项目予以公示(见附件1),截止日期为2023年6月12日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件2)并反馈至我部,电子邮件发送至qgbz445@163.com(邮件注明:轻工行业标准立项公示反馈)。联系电话:010-68396445附件: 1. 2023年6月轻工行业标准制修订计划(征求意见稿)2.标准立项反馈意见表中国轻工业联合会质量标准部2023年6月6日 相关标准如下:序号体系编号标准项目名称代替标准项目周期(月)标准化技术组织1210000003000000005CP聚合级γ-氨基丁酸24中国轻工业联合会2210000003000000006CP生物基聚丁内酰胺24中国轻工业联合会3041010001000000007JC轻工机械 智能化通用技术要求24全国轻工机械标准化技术委员会4045510003050000001CP降膜式蒸发器QB/T 1163-200018全国食品加工机械标准化技术委员会5045510003050000002CP外循环列管式真空蒸发器QB/T 1829-199318全国食品加工机械标准化技术委员会6045510001000000011JC乳品机械名词术语QB/T 3921-199918全国食品加工机械标准化技术委员会7045510001000000010JC乳品机械型号编制方法QB/T 1823-199318全国食品加工机械标准化技术委员会8084100006020399002CP金属保温饭盒24全国金属餐饮及烹饪器具标准化技术委员会9081740101040100055CP旅行剪刀QB/T 1234-199118全国五金制品标准化技术委员会日用五金分技术委员会10201190720010105001CP冷库保温门24全国制冷标准化技术委员会冷藏柜分技术委员会11093770003010000011CP玻璃容器 化妆品瓶罐24全国日用玻璃标准化技术委员会12152950001000000024GL食盐安全信息追溯体系规范QB/T 5279-201818全国盐业标准化技术委员会13061410403040500177CP滤嘴棒纸QB/T 2689-201518全国造纸工业标准化技术委员会14041010201010200020CP连续式软管吹瓶机24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会15041010201010100059CP白酒灌装旋盖一体机24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会16041010201010200002CP饮料灌装旋盖机QB/T 2371-199818全国轻工机械标准化技术委员会制酒饮料机械分技术委员会17041010201019900021CP果蔬汁(含颗粒)饮料热灌装生产线QB/T 4441-201218全国轻工机械标准化技术委员会制酒饮料机械分技术委员会18140640014030800025CP植物提取物 螺旋藻多糖24全国食品工业标准化技术委员会19140640000040200011FF食品中L-阿拉伯糖的测定24全国食品工业标准化技术委员会20140640001040000105FF乳制品中A2型β-酪蛋白的测定24全国食品工业标准化技术委员会21140640016050000025GL芒果粉加工技术规程24全国食品工业标准化技术委员会22140640016040000026FF大蒜制品中蒜氨酸的测定24全国食品工业标准化技术委员会23140640014030400026CP抗性淀粉24全国食品工业标准化技术委员会24140640011050000001GL灵芝孢子油加工技术规范24全国食品工业标准化技术委员会25140640001050000100GL婴幼儿配方乳粉行业产品质量安全追溯体系规范QB/T 4971-201818全国食品工业标准化技术委员会26140640001040000101FF生乳及纯奶中钙的快速测定方法24全国食品工业标准化技术委员会27140640001040000102FF乳及乳制品中低聚果糖的检测24全国食品工业标准化技术委员会28140640001040000103FF乳及乳制品中蛋白酶活力的检测24全国食品工业标准化技术委员会29140640001040000104FF生乳及液态乳中脂肪酶活力的检测24全国食品工业标准化技术委员会30140640019040101029GL预制菜加工技术规范24全国食品工业标准化技术委员会31140640000040200017FF食品中叶酸的测定 预包被微孔板式微生物法24全国食品工业标准化技术委员会32140640000040200018FF食品中泛酸的测定 预包被微孔板式微生物法24全国食品工业标准化技术委员会33140640000040200012FF食品及食品生产过程中致敏原的测定 第1部分:麸质致敏原的免疫分析检测方法24全国食品工业标准化技术委员会34140640000040200013FF食品及食品生产过程中致敏原的测定 第2部分:乳致敏原的免疫分析检测方法24全国食品工业标准化技术委员会35140640000040200014FF食品及食品生产过程中致敏原的测定 第3部分: 花生致敏原的免疫分析检测方法24全国食品工业标准化技术委员会36140640000040200015FF食品及食品生产过程中致敏原的测定 第4部分:蛋致敏原的免疫分析检测方法24全国食品工业标准化技术委员会37140640000040200016FF食品及食品生产过程中致敏原的测定 第5部分:芝麻致敏原的免疫分析检测方法24全国食品工业标准化技术委员会38140640017030600005CP素肉 第4部分:熏煮素肉24全国食品工业标准化技术委员会39140640017030700006CP素肉 第5部分:素肉干24全国食品工业标准化技术委员会40140640019020100005CP方便菜肴QB/T 5471-202018全国食品工业标准化技术委员会41140640019030100026FF预制菜肴消费者喜好测试规范24全国食品工业标准化技术委员会42140640019030100027FF预制菜肴感官货架期确定规程24全国食品工业标准化技术委员会43140640019030100028FF预制菜肴感官品质评价规范24全国食品工业标准化技术委员会44140640014030500027CP食用食叶草粉24全国食品工业标准化技术委员会45140640014050000028GL食用食叶草粉生产技术规范24全国食品工业标准化技术委员会46140640007040218033CP氨基酸、氨基酸盐及其类似物 第18部分:L-组氨酸及其盐酸盐24全国食品工业标准化技术委员会47140640007040123034CP氨基酸、氨基酸盐及其类似物 第23部分:羟脯氨酸24全国食品工业标准化技术委员会48140640007040124035CP氨基酸、氨基酸盐及其类似物 第24部分:四氢甲基嘧啶羧酸24全国食品工业标准化技术委员会49140640007040126036CP氨基酸、氨基酸盐及其类似物 第26部分:麦角硫因24全国食品工业标准化技术委员会50140640007040127037CP氨基酸、氨基酸盐及其类似物 第27部分:N-乙酰基-L-半胱氨酸24全国食品工业标准化技术委员会51140640007040128038CP氨基酸、氨基酸盐及其类似物 第28部分:L-丙氨酰-L-谷氨酰胺24全国食品工业标准化技术委员会52140640007050102005CP核苷(酸)及其衍生物 第2部分:胞嘧啶核苷24全国食品工业标准化技术委员会53140640007070100084CP乳酸菌类后生元24全国食品工业标准化技术委员会54140640007089900006CP酵素制品通则24全国食品工业标准化技术委员会55140640007069900062FF食源性多糖的分子量及其分布测定-高效凝胶渗透色谱法24全国食品工业标准化技术委员会56140640007020300029CP海藻糖酶制剂24全国食品工业标准化技术委员会57140640007060200025CP伊代欣糖(浆)QB/T 4916-201618全国食品工业标准化技术委员会58140640007010100018CP谷胱甘肽酵母粉24全国食品工业标准化技术委员会59140640007010100019CP富营养素酵母24全国食品工业标准化技术委员会60140640007079900082JC工业用菌种基因组追溯管理通则24全国食品工业标准化技术委员会61140640007060300056CP阿拉伯木聚糖24全国食品工业标准化技术委员会62140640007079900083JC食品生产用微生物工程菌鉴定和检测技术规程24全国食品工业标准化技术委员会63140640000050000007GL食品中微量营养素混合均匀度技术评价规范24全国食品工业标准化技术委员会64140640000040200019FF茶叶及制品中茶多糖总量的测定-分光光度法24全国食品工业标准化技术委员会65140640004030400025CP葛根全粉24全国食品工业标准化技术委员会66140640115000000001GL冷熏海水鱼加工技术规程24全国食品工业标准化技术委员会67140640115000000002GL冻熟小龙虾加工技术规程24全国食品工业标准化技术委员会68140640115000000003CP预挂浆鱼片(冻预调制淡水鱼片)24全国食品工业标准化技术委员会69140640115000000003GL冻预调制淡水鱼片加工技术规程24全国食品工业标准化技术委员会70140640019040300037GL预制菜肴产品追溯体系规范24全国食品工业标准化技术委员会71 140640001010100106JC乳制品工业术语24全国食品工业标准化技术委员会72140640000030000019GL短保食品检验规则24全国食品工业标准化技术委员会73140640006080300084CP盐渍青梅24全国食品工业标准化技术委员会74140640004010000025JC 冻干食品术语和分类24全国食品工业标准化技术委员会75140640205010300006CP海参罐头和海胆罐头24全国食品工业标准化技术委员会罐头分技术委员会76140640205000000005CP肉酱类和蔬菜酱类罐头QB/T 4630-201418全国食品工业标准化技术委员会罐头分技术委员会77140640205000000005JC罐头食品包装、标志、运输和贮存QB/T 4631-201418全国食品工业标准化技术委员会罐头分技术委员会78144710008040000121CP特种葡萄酒 第2部分:加香葡萄酒24全国酿酒标准化技术委员会79203830020020601001JC食品机械通用技术条件 基本技术要求SB/T 222-201318全国饮食加工设备标准化技术委员会80203830020020601002JC食品机械通用技术条件 机械加工技术要求SB/T 223-201318全国饮食加工设备标准化技术委员会81203830020020601003JC食品机械通用技术条件 装配技术要求SB/T 224-201318全国饮食加工设备标准化技术委员会82203830020020601004JC食品机械通用技术条件 铸件技术要求SB/T 225-201718全国饮食加工设备标准化技术委员会83203830020020601005JC食品机械通用技术条件 焊接、铆接技术要求SB/T 226-201718全国饮食加工设备标准化技术委员会84203830020020601006JC食品机械通用技术条件 电气装置技术要求SB/T 227-201718全国饮食加工设备标准化技术委员会85203830020020601007JC食品机械通用技术条件 表面涂漆SB/T 228-201718全国饮食加工设备标准化技术委员会86203830020020601008JC食品机械通用技术条件 产品包装技术要求SB/T 229-201318全国饮食加工设备标准化技术委员会87203830020020601009JC食品机械通用技术条件 产品检验规则SB/T 230-201318全国饮食加工设备标准化技术委员会88203830020020601010JC食品机械通用技术条件 产品的标志、运输与贮存SB/T 231-201318全国饮食加工设备标准化技术委员会89203830020020202001CP绞肉机技术条件SB/T 10130-200818全国饮食加工设备标准化技术委员会90213970405030102003CP玻璃器皿 醒酒器24全国食品直接接触材料及制品标准化技术委员会91213970505040200003FF食品金属容器内壁腐蚀的测定 第2部分:电化学法24全国食品直接接触材料及制品标准化技术委员会
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 重磅!《复合蛋白饮料》行业标准发布!
    近年来我国消费者对食品安全的关注度持续提升,国务院及有关部门陆续颁布了一系列涉及食品、乳品的法律法规及标准,形成了完善的法规标准体系,对于规范蛋白饮料企业生产经营、保障产品质量安全、维护消费者利益发挥着重要作用。日前,国家工业和信息化部发布2023第38号公告,由中国饮料工业协会牵头起草的《复合蛋白饮料》(QB/T 4222-2023)行业标准获得批准,将于2024年7月1日正式实施。复合蛋白饮料是指以乳或乳制品,和不同的植物蛋白为主要原料,经加工或发酵制成的饮料。行业标准《复合蛋白饮料》(QB/T 4222-2023)由中国饮料工业协会组织国内多家复合蛋白饮料生产企业修订完成。在该标准修订过程中,进行了深入的行业调研、专家审定等相关工作。该标准规定了复合蛋白饮料的原辅料、感官、理化、食品安全等要求,描述了相应的试验方法,规定了检验规则、标签、包装、运输和贮存的内容,在修订时充分考虑了目前蛋白饮料产品在原辅料等方面的创新需求,兼顾了产品质量分级的市场需求。与2011版相比,该标准对复合蛋白饮料的定义、蛋白质贡献率进行了修改完善,提高了蛋白质含量,并且根据产品质量分级,新增了浓型复合蛋白饮料、特浓型复合蛋白饮料,为复合蛋白饮料产品质量升级奠定了基础,满足了消费者对不同蛋白质含量的消费选择。同时对复合蛋白饮料产品的标签标示进行了完善,更有利于向消费者明示产品信息。复合蛋白饮料是我国蛋白饮料的主要品类之一,近年来,随着人们健康意识的不断加强,复合蛋白饮料迎来新的发展机遇。根据行业对主要生产企业的统计,复合蛋白饮料年产量达到60万吨以上。行业标准《复合蛋白饮料》(QB/T 4222-2023)的实施将在饮料健康产品的丰富度方面起到促进作用。2021年国家“十四五”规划和2035年远景规划中明确“碳达峰、碳中和”为国家整体规划布局的重要组成部分,鼓励“绿色、健康、可持续发展”,《国民营养计划》明确“植物蛋白”为主要的营养基料,植物基产品发展前景广阔。
  • 科研人员揭示母体体温控制对神经细胞发育的重要性
    据日本科学技术振兴机构(JST)网站消息,大阪大学蛋白质研究所、东京都健康安全研究中心等机构的科研人员共同组成的研究团队发现胚胎母体体温控制与胚胎神经细胞发育之间的关联。该项研究成果近期发表在《Nano Letters》,题为:“Microscopic temperature control reveals cooperative regulation of actin–myosin interaction by drebrin E”。  神经细胞轴突的前端是决定轴突生长导向的生长锥(growth cone),其中含有肌球蛋白(myosin)、肌动蛋白丝(actin filament)和胚胎型脑发育调节蛋白(drebrin E)。前期研究表明,肌球蛋白和肌动蛋白丝相互作用决定细胞的形态,而drebrin E抑制两者的相互作用。在动物胚胎成长初期,随着神经细胞的发育成熟,drebrin E的浓度逐渐降低。但是,在接近体温的温度下,drebrin E的浓度变化对肌球蛋白和肌动蛋白丝相互作用的影响尚不明确。  此次,科研人员着眼于动物胚胎神经细胞中的蛋白质以及温度对蛋白质间相互作用的影响,运用上述三种蛋白质,在人工环境下再现细胞内部的现象。科研人员运用局部热脉冲法进行实验,克服了肌球蛋白因加热而失去活性的技术难题,实验显示,在室温的情况下,drebrin E会阻碍肌球蛋白和肌动蛋白丝的相互作用,与前期研究一致。此外,科研人员发现温度在37度且drebrin E浓度在活体浓度范围内的情况下,drebrin E浓度的些许变化便可影响肌球蛋白和肌动蛋白丝相互作用的强弱,通过调节drebrin E的浓度可以有效控制相互作用的强弱。但是,如果温度低1度,即便大幅改变drebrin E的浓度,相互作用的强弱也无法出现相应的变化。  研究显示,drebrin E的浓度变化对肌球蛋白和肌动蛋白丝相互作用强弱的调控仅在生理温度下有效,即使周围环境温度发生变化,只要胚胎母体体温控制在37度左右,胚胎神经细胞就可正常发育,揭示了母体体温精准控制对于神经细胞正常发育的重要性。   原文链接:  https://www.jst.go.jp/pr/announce/20211109/index.html
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 单细胞蛋白质分析技术Milo追踪定量不同iPSC-CM分化亚型
    iPSC简介2006年Takahashi和Yamanaka突破性发现使终末分化、谱系受限的成体细胞:如皮肤活检来源的成纤维细胞、外周血来源的T淋巴细胞、毛囊细胞等,通过转录因子OCT4、SOX2、KLF、c-MYC、NANOG和LIN28的强制异位表达直接将其重编程为多能状态的细胞,这些细胞被称为诱导多能干细胞(induced pluripotent stem cells, iPSC)。iPSC与胚胎干细胞(Embryonic Stem Cells, ESC)有相似的基因表达、表观遗传谱和分化潜能,可产生任何类型的体细胞。并且避免了ESC基于使用胚胎来源细胞和可能导致异常发育的体外受精胚胎的伦理问题,因此iPSC在医疗领域里具有更好的应用和产业化发展前景。iPSC应用和挑战描述任何人类疾病和药物发现的病因学和病理生理学的主要关键组成部分是需要一个生理相关的疾病实验模型,无论是体外还是体内或两者,需要忠实地概括各自的病理生理学和临床表现。因此基于人类iPSC的疾病模型可以无限供应临床相关的表型细胞、以及它们具有的衍生潜力,可以加速阐明生物医学研究中疾病的病因机制,应用于新药发现、药物效价测试、预测药物安全性药理学/毒理学研究,以及基于iPSC的再生细胞疗法,有望治疗心脏病、帕金森、视网膜和角膜疾病、肝脏衰竭、糖尿病、脊髓损伤等疾病。然而将iPSC治疗方法真正有效转化为临床环境,保证患者安全,还需解决:临床级iPSC的衍生和通用细胞系的生物库建立;需要定义iPSC及其差异化治疗细胞产品可接受质量属性;致瘤性问题;免疫排斥反应;选择同种异体或自体 iPSC 以获得更有效的细胞治疗的难题;iPSC 谱系表型细胞和细胞系变异的异质性;基于iPSC的多基因、散发性和迟发性疾病的患病模型的挑战;需要大量的患者iPSC以实现更有效的病因学和临床转化;iPSC衍生的表型细胞缺乏成熟度;遗传的不稳定性等挑战。iPSC-CM研究和面临的问题心血管疾病(cardiovascular disease,CVD)作为全球主要的死因之一,每年会导致约1790万人死亡,所以迫切需要可以延缓疾病进展并且可以改善心脏功能和预防衰竭的治疗方法。而目前的药物、介入或手术方法可能会改善临床结果,但由于无法促进心脏组织修复和再生,因此使这种治疗方法的成功率得不到提升。人类诱导多能干细胞(hiPSC)技术的出现以及随后在培养物中分化和建立心肌细胞(cardiomyocytes,CMs)的能力,为实现人类心脏再生疗法创造了可能性。作为分化CMs的连续和生物学相关来源,hiPSC-CM是心血管研究界的宝贵工具,不仅可用于治疗CVD,还可用于模拟人类心脏发育和疾病、研究潜在机制以及筛选具有疗效和心脏毒性的新药。由于hiPSC-CM由不同的细胞亚群组成,这些细胞亚群是异质的、未成熟的、表达胎儿基因表达谱,并且与成人心肌细胞相比收缩力减少,因此hiPSC-CM疾病模型的准确性和实用性仍然有限。此外,随着hiPSC-CMs的成熟和蛋白质表达动态的波动,大量样品分析的分辨率变得不足。由于其异质性导致心室样、心房样和节点样亚群,需要严格表征hiPSC-CM,并应对其成熟度、身份和功能进行筛选。为此,需要进行单细胞分析模式以了解这种异质性。细胞异质性研究方法虽然单细胞测序技术在分析单细胞转录组学和基因组信息的通量和规模方面取得了进步,但由于任何一个细胞中存在的蛋白质含量非常低,因此难以满足对定量、单细胞蛋白质组学技术的需求。此外,蛋白质组的复杂性和广泛的浓度范围(fM到高nM)带来了额外的挑战。为了在单细胞水平上进行生化蛋白质表征分析,高灵敏度工具是必不可少的。来自ProteinSimple的单细胞蛋白质分子技术:Milo是一种基于微流体的芯片电泳技术。可以克服单细胞蛋白质组学方法面临的障碍。Milo操作流程将细胞悬浮液加载到Milo芯片上,这样单个细胞就可以安放在芯片上的各个微孔中。然后Milo裂解细胞,产生单细胞裂解物,通过分子量电泳分离每个单细胞裂解物中的蛋白质,然后使用紫外线在Milo芯片中捕获蛋白质。然后,对目标蛋白进行一级抗体和荧光二级抗体进行免疫荧光捕获。通过使用开放格式的微阵列扫描仪对芯片进行成像,并使用Scout™ 软件对图像进行分析,以进行定量的自动数据分析。Milo追踪定量不同iPSC-CM亚型与免疫荧光和流式细胞术等其他单细胞分析系统不同,单细胞Western Blot技术Milo可以提供分子量大小信息,以及在单细胞水平测量蛋白质表达时的免疫结合信息,赋予额外的特异性。这种分子量分级步骤可以分辨不同物种的不同蛋白质亚型或区分脱靶抗体结合。为了表征CMs亚型标志物,通过Milo检测了肌球蛋白调节轻链2心房亚型(MLC2A或MYL7)及其心室亚型(MLC2V或MYL2)的蛋白质表达。可以观察到Milo鉴定了三个亚群,这些亚群由MLC2A或MLC2V的单一表达或共表达组成。Milo检测到hiPSC-CM亚型特异性心室和心房标记物MLC2V和MLC2A,在45秒的电泳运行时间内,迁移到总泳道长度的60%(图A)。使用Milo-Scout™ 软件通过找到典型峰形与源自原始荧光图像的一维强度图的卷积的局部最大值来识别峰中心。检测到的MLC2A、MLC2V和GAPDH峰的峰中心位置也由泳道指数显示(图B),显示出单个Milo芯片上所有孔的峰迁移的均匀性。为了评估芯片位置(图C)是否影响峰面积量化,比较了空间不同块之间计算的峰面积方差:每个块区域之间的差异小于2.5%(图D)。应用优化的Milo的检测方法研究hiPSC-CM随时间的异质性,观察整个分化时间线中蛋白质表达的变化。在第17、23和30天从培养物中提取hiPSC-CM细胞,检测MLC2A和MLC2V蛋白质表达。结果显示,共表达MLC2A和MLC2V阳性细胞的比例在整个分化过程中增加,而仅表达MLC2A(MYL7+)的细胞比例随时间减少。且三个亚群中每个亚群中的细胞百分比在所有芯片中一致重现。为了了解在整个分化过程中每个标记物的表达水平在hiPSC-CM亚群中的变化,在hiPSC-CM分化的第17、23和30天对MLC2V和MLC2A的表达进行了量化。随着分化的进行,MLC2A的总水平略有增加。然而,MLC2V表达在第23天和第30天之间增加了近三倍(图C)。为了了解驱动MLC2V表达增加的细胞亚群,三个亚群(MLC2A+、MLC2V+和共表达MLC2A+和MLC2V+)被进一步分层(图D)。MLC2V的水平在共表达MLC2A+和MLC2V+亚群中显着增加,以及在单独的MLC2V+亚群中增加。为了进一步了解导致hiPSC-CM分化过程中MLC2V表达显着增加的机制,对先前从三个iPSC系产生的hiPSC-CM进行了Milo分析,其中转录因子NR2F2 (NR2F2GE)、TBX5 (TBX5GE) 的外显子)和HEY2 (HEY2GE) 被CRISPR/Cas9编辑删除。利用这些品系来验证NR2F2、HEY2或TBX5缺陷在单细胞蛋白质水平上对MLC2V表达的影响。结果显示,TBX5GE和HEY2GE hiPSC-CM中MLC2V的单细胞表达显着降低(图E)。此外,MLC2V表达的显着下降归因于共表达MLC2A和MLC2V亚群(图F)。鉴于共表达MLC2A和MLC2V的亚群增加了MLC2V的表达,推测单独表达MLC2A的未成熟hiPSC-CM会随着时间的推移共同表达MLC2V,从而变得更像心室。同时使用预测调节MLC2V(HEY2或TBX5)的转录因子缺陷的两种细胞系时,我们仅观察到MLC2V在共表达MLC2A和MLC2V亚群中表达降低。这可能表明单独表达的MLC2V群体代表了一个独特的细胞亚群,并且该亚群中MLC2V的表达受替代转录因子的调节。结论:随着在基础和转化心脏研究中的应用,hiPSC-CM正被用于心血管疾病和心脏发育研究。然而,由于hiPSC-CM由不同的细胞亚群组成,并且hiPSC-CM蛋白表达动力学随着成熟而波动,一些蛋白分析方法可能因为分辨率不足而无法检测单细胞蛋白异质性,因此hiPSC-CM的单细胞蛋白质组学可能受到依赖抗体结合检测而无法评估脱靶结合技术的限制。单细胞蛋白质分析技术Milo,通过靶点分子量差异和抗体识别特异性蛋白标记物,避免了抗体脱靶结合的现象,同时能够跟踪单细胞亚群蛋白表达随时间的变化,从而能够识别并量化hiPSC-CM中不同的异质性亚群,应用于疾病建模和再生医学治疗研究。参考文献:1 Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications.2 Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes.3 Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns.
  • 远慕生物:血红蛋白测定哪些方法?
    1.氰化高铁血红蛋白HiCN测定法:除SHb外推荐参考方法,具有操作简单、显色快、结果稳定可靠、读取吸光度后可直接定值等优点。致命的弱点是氰-化钾(KCN)试剂有剧-毒,使用管理不当可造成公害。氰化高铁血红蛋白测定法操作(1)直接测定法①加转化液:试管内加5ml?HiCN转化液②采血与转化:取全血20μl,加到盛有转化液的试管底部,用上清液反复冲洗吸管3次,充分混合,静置5min。③测定:以符合WH0标准的分光光度计,波长540nm处,光径(比色杯内径)1.000cm,HiCN转化液或蒸馏水调零,测定吸光度(A)。④计算:根据样本的吸光度(A)直接计算出血红蛋白浓度(g/L)(A为测定管吸光度,44为毫摩尔消光系数,64458/1000为1mol/L Hb溶液中所含Hb克数,251为稀释倍数。)(2)HiCN标准液比色法测定HiCN参考液(50g/L、100g/L、150g/L、200g/L),分别测得540nm处的吸光度,以参考液血红蛋白含量为横坐标,吸光度为纵坐标,绘制标准曲线或求出K值。①标准曲线绘制和K值计算②样本吸光度③通过标准曲线查出样本血红蛋白浓度,或用K值计算,血红蛋白浓度Hb(g/L)=K×A。 注意事项(1)HiCN贮存:转化液贮存在棕色有塞玻璃瓶中,不能贮存在塑料瓶中,否则会使CN-丢失,测定结果偏低。HiCN转化液在4℃保存一般可数月,不能在0℃以下保存,因为结冰可使高铁氰-化钾还原,试剂失效。(2)标本:异常血浆蛋白质、高脂血症、白细胞数超过30×109/L、脂滴等可产生浊度,干扰Hb测定。(3)HiCN转化液是一种低离子强度、pH近中性的溶液(7.2±0.2)。样本中白细胞过高或球蛋白异常增高时,HiCN比色液会出现浑浊。(4)氰-化钾试剂是剧,测定后的废液应收集于广口容器中,首先以水稀释废液(1:1),再按每升上述稀释液加次氯酸钠35ml,充分混匀,敞开容器,放置15h以上,使CN-氧化成C02和N2挥发,或水解成C032-和NH4+,再排入下水道。废液不能直接与酸性溶液混合,因为氰化-钾遇酸可产生剧毒的氰氢酸气体。2.十二烷基-硫酸钠血红蛋白SDS测定法:具有操作简单、呈色稳定、准确性和精-确性符合要求、无公害等优点。但由于摩尔消光系数尚未最后确认,不能直接用吸光度计算Hb浓度,而且SDS试剂本身质量差异较大,会影响检测结果。3.HiN3最大吸收峰542nm,显色快,结果稳定。
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心 对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。 ■ 自动标注蛋白的各种不同修饰形态。 ■ 以直观方式,比较样品与标品间差异。 ■ 自动计算蛋白质的各种修饰形式间的峰强度比例。 ■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。 图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。 图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。 图4. 完整及还原后IgG质量测定解决方案示意图。 参考文献 (1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN (2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN (3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN (4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN (5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 胶原蛋白市场混乱催生标准出台
    近日,有关胶原蛋白争议日渐白日化,就连学术界也观点不一,但不可否认的是胶原蛋白产品销售却是"畅销",众多知名企业也纷纷踏入胶原蛋白市场。但是,在"火爆"的销售市场背后也隐藏着概念混淆、物质来源、提取技术和夸大宣传等诸多问题。   针对乱象丛生的胶原蛋白市场,各国纷纷出台标准使市场有序竞争,有法可循。2005年由国家三胶检测中心及胶原蛋白研究的权威单位北京华达杰瑞生物技术有限公司起草了胶原蛋白的国家标准,经轻工业部校验之后在2006年1月1日发布,作为全国各生产单位可参照的行业标准。对胶原蛋白的定义和市场标准、检验方法做出了明确规定。除了国家标准,我国还要求每一个胶原蛋白制品企业都制定相应的企业标准,美国的ASTM标准化委员会也于2002年推出了《关于I型胶原蛋白作为外科手术用植入材料及作为组织工程基质》的标准指南。   由于存在对胶原蛋白中胶原肽效果的模糊认识,导致相关产品在物质功效、提取工艺等方面存在根本的概念混淆。胶原蛋白的市场混乱主要包括产品定性、物质来源、提取技术等介绍不明确。产品属于胶原蛋白、胶原肽还是明胶,提取自猪皮、牛皮还是鱼皮(三文鱼、鳕鱼等),这些关键信息在产品包装上没有明确标识,导致出现问题时企业打太极,消费者也一头雾水。胶原蛋白、胶原肽可能具有的功效研究覆盖19个项目,我国政府已验证其中3项,分别是保护皮肤水分、增加骨密度、增强免疫力。   中国食品发酵工业研究院院长蔡木易指出,许多企业在生产和品牌宣传中,没有厘清这些基本内涵,将胶原蛋白与胶原肽混为一谈,造成了市场的混乱和消费者认识不清。他认为,生产者应明确标识,消费者要合理选择,政府再加强监管力度,澄清混乱的认识,还给胶原蛋白产业一个清白。   有专家学者认为,市场混乱不仅需要政府出台标准,专家、学者在专业研究领域也要做好科普,引领企业规范生产和宣传,引领消费者正确选用合适的产品。
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • 乳清蛋白含量新国标遭质疑:空有指标无检测标准
    乳清蛋白含量新国标有指标规定无检测标准 卫生部正研制新检验方法   雅培事件新闻追踪   南方日报讯 最近雅培奶粉身陷“质量门”事件,再度引发了人们对新国标的质疑。在新国标中明确规定乳清蛋白与酪蛋白比例指标,该指标被部分专家认为是判别奶粉是否易为幼儿消化。然而令人困惑的是,新国标里没有该项目的检测标准,在日常监管中,也非常规抽查项目。对此,国家食品安全风险评估中心也承认,由于采用现行乳清蛋白测定方法的测定结果与实际含量存在一定的误差。据悉,目前卫生部正在组织研制新的乳清蛋白的检验方法。   最近雅培与香港CER公司的“口水战”,引发人们对我国新国标乳清蛋白和酪蛋白比例指标的争议。根据我国国家标准规定,婴幼儿配方奶粉中这个比例应为6:4,而CER公司检测的结果是41:59,故CER检测报告得出雅培涉事奶粉“质量最差”。   记者昨天从国家食品安全评估中心获悉,我国《婴儿配方食品》国标中,确有要求以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。“该要求主要是参考母乳中乳清蛋白和酪蛋白的比例”,国家食品安全风险评估中心在一则《对婴儿配方食品中乳清蛋白比例的说明》中称,乳清蛋白是蛋白质的一种,为人体提供必需氨基酸等成分。   值得一提的是,虽然目前婴幼儿配方奶粉新国标中规定有乳清蛋白与酪蛋白的比例要求,在日常监管部门的抽查中,这并不是一个常规抽查项目。有乳品专家指出,目前国内缺少配方奶粉工艺标准,甚至连检测标准都没有。   国家食品安全风险评估中心也坦承,目前卫生部正在组织有关单位研制新的乳清蛋白的检验方法。
  • 权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制
    前 言*图片来源于湖北药检所官网人纤维蛋白原(human fibrinogen, Fg)是一种由肝脏合成的球蛋白,发挥止血和凝血功能。Fg可用于治疗先天性和获得性Fg缺乏症患者的凝血功能障碍。目前Fg制剂是由健康人血浆经分离、提纯并经病毒去除和灭活处理、冻干制成。Fg这类蛋白质药物具有大分子、多电荷、结构复杂等特点,其稳定性往往较差。而稳定性是保证药物发挥其作用的基础。2023年3月,湖北省药品监督检验研究院王文晞博士近期发表“多功能蛋白质稳定性分析仪在人纤维蛋白原制品质量控制中的应用”,借助NanoTemper公司的PR Panta对不同企业生产的Fg产品的质量进行快速分析质控。/ 实验步骤/NanoTemper多功能蛋白质稳定性分析仪PR Panta可用于快速测定蛋白质的热稳定性,通过热变性、粒径分布聚集倾向和粒径大小等参数对产品进行评估。使用毛细管吸取10uL 20mg/ml样品置于PR Panta上,首先在DLS模块上检测Fg的水力学半径(Rh),然后进行1℃/min的升温(25℃-95 ℃)。使用1份样品,同时且实时的检测获得Fg的样品热变性中点温度(Tm)、蛋白质初始去折叠温度(Tonset)、粒径开始变化温度(Tsize)和流体力学半径(Rh)等多种参数。/ 研究结果/nanoDSF检测模块结果显示21批次样品Tm 值为51.20~53.31 ℃(表1)。不同企业产品Tm值存在一定差异,最高相差 2.1 ℃, 表明各企业间产品稳定性存在较大差异。其中企业F产品Tm值最高(53.28℃),企业A产品Tm值最低(51.22℃),差别2.06℃。表1 不同企业Fg蛋白热变性中点温度Tm值测定结果21批次样品的Tonset值为47.29~49.32 ℃(表2),不同企业产品Tonset值存在一定差异。其中企业F的产品Tonset值最高,企业A Tonset值最低,总体与Tm值趋势一致。表2 不同企业Fg蛋白质初始去折叠温度Tonset值测定结果21批次样品Tsize值45.36~46.99 ℃,不同企业产品Tsize值差异较小。表3 不同企业Fg蛋白粒径开始变化温度Tsize值结果 21批次样品Rh值 19.03~30.75 nm,不同企业产品Rh值存在一定差异。表4 不同企业Fg蛋白流体力学半径 Rh 值结果综上可知企业F产品热稳定性最好,企业A产品热稳定最差。除稳定性外,纯度是反映Fg产品中可凝固蛋白与总蛋白的比值是产品有效性的重要指标。作者通过凯氏定氮仪进行样品检测后并依据下方公式计算纯度。结果显示21批次样品纯度80.3%~95.9%(表5),其中企业F产品纯度最高,平均94.6%。企业A产品纯度最低平均83.2%。表5 Fg纯度测定结果作者将纯度与在PR Panta检测得到的Tm值进行相关性分析,结果显示相关系数为0.729,P<0.05 。即产品纯度与Tm值呈显著相关, 热稳定性高的产品纯度较高。为了明确Fg的组分分布,作者采用HPSEC-MALLS测定纯度最高与最低产品的组分分布。企业F产品(稳定性&纯度最佳)由Fg单体和多聚物2个组分组成,企业A产品(稳定性&纯度最佳最差)由 Fg单体、多聚物和蛋白质降解产物3个组分组成。结合以上部分稳定性与纯度呈相关性的结果可以进一步分析得出,Fg热稳定性较差,在生产、存放、复溶后放置的过程中会形成可溶性寡聚体,导致产品纯度降低。因此可根据产品热稳定性测定结果初步分析不同企业产品纯度高低,进而能简单、快速 地对不同企业间产品质量进行初步评估,为企业工艺优化和制剂筛选提供更加快速、准确的依据。多功能蛋白质稳定性分析仪可以测定产品纯度与稳定性,为人纤维蛋白原产品保护剂的筛选和生产工艺优化提供相应数据参考,且能对不同企业产品的质量进行初步分析,仪器操作简便、检测时间短、检测效率高。——摘自本文文献对PR Panta的评价
  • 胶原蛋白企业亮出检测报告自证清白 各自执行企业标准
    10月8日,有媒体声称其自行送检的7款口服胶原蛋白产品中3款并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。对于这一结果,相关企业均强烈否认并亮出检测报告自证清白。据了解行业内一直未形成对于胶原蛋白产品的统一标准,各大公司执行自己的企业标准。   胶原蛋白产品不含胶原蛋白? 涉事企业强烈否认   胶原蛋白可谓命运多舛,日前又被爆成分争议&ldquo 不含胶原蛋白&rdquo 。昨日,有媒体声称其自行送检的7款口服胶原蛋白产品中,汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料等3款产品中,并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。另外Fancl、Lumi、丸美、安婕妤4款产品胶原蛋白含量则远低于宣称的含量。不过,报道未披露具体数据,也未交代其送检机构。对于这一结果,相关企业均强烈否认并亮出检测报告&ldquo 自证清白&rdquo 。   记者了解到,目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确,造成行业频频陷入舆论危机。   从成本看似无造假必要   汤臣倍健昨日在给本报的声明说,其胶原蛋白采购自法国罗赛洛公司,检测显示羟脯氨酸含量为9.33%,并能提供检测报告。该公司指,一直严守法律法规以及食品安全标准。   无限极声明表示,报道提及的产品其生产标准在广东省卫生厅备案,原料经第三方权威机构检测完全符合国家相关法律法规和标准,昨日已再次送检,结果会及时公布。   而广州颜如玉医药科技有限公司的声明则称,上述口服液取得国家保健食品批准证书,标志性成分为低聚肽而非羟脯氨酸。此外,有关产品是海洋鱼皮胶原低聚肽口服液,而不是胶原蛋白口服液,用评价胶原蛋白的方法来评价低聚肽是不专业的,&ldquo 被检产品未经我们公司确认,是否属实,不得而知。&rdquo   羟脯氨酸是胶原蛋白18种氨基酸中的一种,为胶原蛋白特有,但从成本角度看,企业似乎并无造假必要。南海水产研究所一位研究员昨日对本报说,只要采用一般鱼类的&ldquo 边角料&rdquo 进行水解就能提取,&ldquo 甚至不法之徒用皮革的下脚料,也能得到羟脯氨酸。&rdquo   记者翻查资料发现,乳业之前曾热炒&ldquo 皮革奶&rdquo ,即添加皮革下脚料来&ldquo 增加&rdquo 蛋白质,科研人员就是通过检测奶中是否含有羟脯氨酸来辨别的。&ldquo 普通猪皮中就能弄出羟脯氨酸。&rdquo 上述研究员说。   各公司执行自己的标准   不过,胶原蛋白近期先后被质疑功效、涉嫌违法宣传,还是让这种在近年被不断应用于食品、保健品、化妆品中的成分受到了高度关注。记者了解到,事实上目前胶原蛋白仍未有国标,消费者对其作用也是&ldquo 蒙查查&rdquo 。   目前,我国已认可胶原蛋白、胶原肽的保健功效只有保护皮肤水分、增加骨密度、增强免疫力三项。但市民麦小姐说,她选购胶原蛋白的理由是冲着它&ldquo 可以修复肌肤、保持弹性,人变得更年轻。&rdquo   据记者昨日获得的一份由中国食品科学技术学会在2011年撰写的胶原蛋白标准研讨会摘要显示,在2010年国内胶原蛋白年产值保守估计已经达到100亿元,产能在600多吨或日本的十分之一。   该学会指出,在胶原蛋白生产过程中都存在水解或酶解过程,最终很多产品已经以多肽的形式存在,因此行业内一直未形成对于胶原蛋白产品的统一标准。此外,行业也需要明确胶原蛋白的特异性指标,例如羟脯氨酸的含量比例,或者是甘氨酸、脯氨酸和羟脯氨酸的总含量占到蛋白质的50%左右。   记者还了解到,《水解胶原蛋白》国标曾在2007年对外征求意见,但该稿一度被业内指出&ldquo 操作性不够好&rdquo ,而且最终版本始终未能落地。目前各大公司执行自己的企业标准。   胶原蛋白或将   禁止以口服液形式销售   国庆长假期间,国家食品药品监督管理总局在官方网站征求对保健食品监管新规的意见,提出拟于2014年1月1日起,禁止食品以片剂、胶囊、口服液、丸剂等形状生产销售,&ldquo 如仅取得食品生产许可(QS标志),国家食药总局拟于2014年1月1日起,禁止其以片剂、胶囊、口服液、丸剂等形状生产销售 禁止营养补充剂宣称有保健功能。&rdquo   而据记者走访药店、超市、便利店以及从业界了解得知,目前市面上充斥的大量胶原蛋白产品刚好就处于此政策&ldquo 打击&rdquo 范围内:基本上既属于普通食品,又主要以口服液形式存在。&ldquo 不少消费者将胶原蛋白口服液当美颜饮料喝,而且相信了其铺天盖地宣传的保健功效,但实际上它作为普通食品,功效推广属于违法,而且口服液形式也会暗示和催眠消费者,其具有不错的保健功效甚至药效。&rdquo 一位行业观察人士表示,胶囊和口服液暗示产品的药用性太强,的确应进行规范整顿。
  • 胶原蛋白乱象折射标准缺失 监管缺失
    胶原蛋白行业在国外已有数十年的历史,国内,这个行业也正在兴起,其中不乏众多上市公司的身影。然而,一些非专门研究胶原蛋白的人士却对其功效提出质疑。近日,针对胶原蛋白而起的一系列风波,不仅相关行业上市公司纷纷发布公告或通过投资者关系平台解答,中国保健协会更是高度重视,他们组织多名对胶原蛋白有研究的专家学者,在北京召开专门研讨会,从胶原蛋白概念、分子结构、来源以及用途等多个方面,对胶原蛋白到底对人体有什么作用?有没有实验支持等多个角度,深入分析探讨胶原蛋白。记者整理专家发言录音,为读者揭开胶原蛋白&ldquo 神秘面纱&rdquo 。   某些正规产品俗称的胶原蛋白实为胶原蛋白肽   专家们提出,其实,市面上一些上市公司出售的正规胶原蛋白产品,实质上应该叫做胶原蛋白肽。之所以被俗称为胶原蛋白,缘于一般老百姓对&ldquo 肽&rdquo 是什么很陌生,所以许多厂家为了便于产品被理解,笼统地称作胶原蛋白。这才使得一些对胶原蛋白行业没有研究的外界人士发出了&ldquo 蛋白质到消化过程中都要变为氨基酸,所以胶原蛋白无用&rdquo 的说法。   为了便于老百姓了解,中国海洋大学食品科学与工程学院李八方对胶原蛋白和胶原蛋白肽做了详细的阐述。   已有的科学研究表明:胶原蛋白(collagen)是一种生物性高分子物质,是一种白色、不透明、无支链的纤维性蛋白质。它是动物结缔组织重要的蛋白质,主要是在于皮肤、肌肉、骨骼、牙齿、内脏、血管和眼球等部位。因为有了胶原蛋白的存在,结缔组织才具有了一定的结构与机械力学性质,如张力、拉力、弹力等,以达到支撑、保护功能。随着年龄的增长,人体中胶原蛋白的结构在不断发生变化,新生成的胶原蛋白接近于IV型,呈螺旋型,具有可溶性,后来逐渐转变成互相交织的不溶胶原蛋白。与此同时,纤维细胞进行性的合成能力下降,再加上环境污染,紫外线照射,精神紧张等各种原因,结果使皮肤变得干燥,变薄,失去弹性,脸上的皱纹也逐渐增多,这就是为什么皮肤老化会失去青春光彩的主要原因。在骨骼中的胶原蛋白也会发生流失,降低骨骼的韧性。骨质疏松的不仅仅是缺少钙的问题,胶原蛋白流失更是一个重要原因。   研究人员目前已经发现了29种胶原蛋白,其中数量最大的是一型胶原,主要存在于人的皮肤和骨骼当中,胶原二型主要存在于软骨组织之中,胶原三型主要存在于婴幼儿皮肤或者血管内膜等等这些内脏器官当中,胶原四型主要各种器官的(基底膜)、胎盘、(经脏器)等等这些部位。   什么叫肽?它跟蛋白质有什么区别?李八方教授介绍说:肽是由两个或者两个以上的氨基酸以肽键相连构成的化合物。一种肽含有的氨基酸少于10个称为寡肽,超过10个的就称为多肽 50个以上的氨基酸组成的多肽就是我们平时所熟知的蛋白质,在人体当中自然存在的胶原蛋白是由三条肽链形成的螺旋形纤维状蛋白质。因此多肽、寡肽、蛋白质在物质构成上是相同的,也就是说他们的物质基础是相同的,只是它们的分子量不同,构成肽的氨基酸的数量有差异,由于这种差异就造成了蛋白质多肽寡肽在生理上很多的不同。   胶原蛋白可以以多肽或寡肽的形式存在并起作用。就产品而言,胶原蛋白多肽指那些分子量在1000道尔顿以上,胶原蛋白寡肽则是指1000道尔顿以下。   小分子胶原蛋白肽可以被吸收 且比氨基酸吸收快   肽相对于蛋白质和氨基酸来讲,它有什么样的优势?李八方教授进一步解释:肽在许多活性方面它首先是优于蛋白质,两者在功能上有很大区别,首先肽是许多生命信息的携带者,能够调节各种各样的生命活动和生化反应,其次生物活性高,在微量和低浓度的情况下,肽都能发挥其独特的生理作用。第三分子太小,更容易人体吸收利用。   肽相对于氨基酸来讲,也有一些优势。第一它较氨基酸吸收快,氨基酸分子小于肽,但是在吸收方面肽要快于氨基酸,第二肽的吸收以完整的形式被集体利用,也就是说一串一串氨基酸被吸收,第三肽是主动吸收,很多氨基酸是被动吸收,肽通过十二指肠吸收后直接进入血液,输送到人体各个部位加以利用,第四个方面是耗能低,与氨基酸相比肽吸收具有低能耗和不消耗能量的特点,因此吸收比较快,第五个方面,肽吸收较氨基酸具有不饱和的特点,不会造成返回的这种现象,第六个方面是各种肽之间的运转没有竞争性,不存在抑制性。   与李八方教授的观点相同,北京大学公共卫生学院营养与食品卫生学系教材《肽营养学》明确提出, 小分子胶原蛋白无需分解可被人体直接吸收,在口服吸收及外用护肤方面效果明显。书中表示:大分子胶原蛋白进入人体后需要降解为小分子的胶原蛋白肽、氨基酸才能被人体吸收,真正有效吸收的成分并不多。因此,口服含胶原蛋白的食物,比如多喝富含胶原蛋白的骨肉汤、口服胶原蛋白补品等。但由于会被人的消化系统过滤掉很大一部分,且真正能到达肌肤并起作用的量非常有限。所以,最好是口服是纯天然无添加的小分子胶原蛋白肽,才能真正进入真皮层帮助修护肌肤,重建胶原蛋白层。   在整理专家发言的过程中,记者也搜寻了相关资料,有关资料显示:北京大学公共卫生学院营养与食品卫生学系主任李勇曾指出,小分子肽在吸收上有以下特点:(1)不需要消化,直接吸收:其表面有一层保护膜,不会受到人体的胃蛋白酶、胰酶、淀粉酶、消化酶及酸碱物质二次水解,它以完整的形式直接进入小肠,被小肠吸收,进入人体循环系统,发挥其功能 (2)吸收特别快:吸收进入循环系统的时间,如同静脉针剂注射一样,快速发挥作用 (3)具有100%吸收的特点:吸收时,没有任何废物及排泄物,能被人体全部利用 (4)主动吸收 (5)零负担:吸收时,不需耗费人体能量或消耗能量很少,不增加胃肠道负担 (6)起载体的作用:它可将人所食的各种营养物质运载送到人体的各细胞、组织、器官。因此,分子量越小,越容易为人体吸收。   现有的资料表明:国内外学术界已拿到充分的临床试验证据,证明小分子胶原蛋白在口服吸收及外用护肤方面都有明显的效果。空军总医院皮肤科、北京军区总医院、西苑中医院等权威医院都专门的临床研究表明,小分子的胶原蛋白吸收利用率可达90%以上。   据李八方教授介绍:目前胶原蛋白胶原肽已经广泛应用到各个方面,主要是应用在食品,特别是保健食品,应用比较多,而且胶原蛋白可以作为我们保健食品的基料来使用。当初日本研究胶原蛋白比较多,正是由于日本渔业较发达。我国是水产来料加工和出口贸易的大国,水产品的加工当中很多都是优良的胶原蛋白的,它们都是生产胶原蛋白和胶原肽很好的原料,我们应该充分注意到这些资源,开发优质的胶原蛋白产品。   所有的蛋白质进入体内都变成氨基酸是站不住脚的   对于胶原蛋白肽可以起到正面的作用,中国食品方向研究院院长、教授蔡木易进一步通过大量的实证例子提供了支持的根据。   据了解,胶原蛋白行业在国外兴起了数十年,最初以欧美国家研究为多,后来日本更是进行了大量的研究。   蔡木易教授介绍:在日本曾用大狗做实验,他们用小肽和游离氨基肽给大狗吃,做出来的效果小肽的吸收率明显高于游离氨基肽,这是个经典的实验,而且在医学上是可信的。另外关于胶原肽能不能吸收在日本找到有些文献,他们把低聚肽用同类素速成方法,进入体内之后,它在各个器官的表现,同肝脏、肾脏、脾脏,软骨,大脑,肌肉,皮肤芥蒂组织都找到同类适中的结果。而且对于皮肤来讲,14天之后,仍然发现了百分之七十。在国内外都有对低聚肽的研究,低聚肽可以直接吸收。国内做了下用整蛋白和肽的对照实验,发现实验结果跟国外相同,而且蛋白质吸收率非常有帮助,比整蛋白高很多。   蔡木易教授明确说:&ldquo 实际上,在药上用的胰岛素本来就是一种肽。 如果按照有些说法,所有的蛋白质进入体内都变成氨基酸的话,那么所有的多肽药物在体内都是没用的,所以我觉得这是站不住脚的。&rdquo   骨关节病与胶原蛋白密切相关 国内缺少用于治疗的胶原蛋白制剂   &ldquo 胶原蛋白对关节软骨的保护和恢复非常重要。&rdquo 研讨会上,来自北京航天731医院首席骨科医师、医学博士曲龙教授表示,骨关节病应该是骨科和胶原蛋白关系最为密切的一个疾病,骨关节病跟骨质疏松都是一种因老化而引起的疾病,其中骨关节病主要发生在关节部位,主要是软骨。而胶原蛋白是关节软骨组织的主要成分,占近60%,软骨中胶原蛋白的缺乏就会产生关节软骨组织变形、变薄,不能负重并引发病痛。   据了解,中国人口普查刚完,大概60岁以上老人已经超过1.75亿人,其中老年人口中有1亿人患骨关节病,骨质疏松有8000万。曲龙博士比喻说:在骨头里面主要是钙和胶原蛋白,比例大约是2:1,但胶原蛋白是骨骼中的骨,它在骨骼中起的作用,就好比是要进行水土保持一定要先植树造林,有了树根才能保证水土不流失,同样,如果胶原蛋白少的话,就起不到保护钙的作用,钙就会流失。在治疗过程中,骨关节病大概像一个做一个生态工程,主要是植树,补充胶原蛋白,防止水土流失。 &ldquo 现在很多患者都在服用含胶原蛋白的药或保健品来治疗骨关节病。&rdquo 据曲教授介绍,由于胶原蛋白对关节软骨的保护和恢复非常重要,现在不少患者在服用日本的一种保健品,它里面的成分有二级胶原蛋白,而目前国内临床并没有胶原蛋白制剂。正因如此,曲教授他们一直在关注胶原蛋白的研究。   胶原蛋白乱象折射标准缺失 监管缺失   根据现有可以查到的中研普华出具的《2010-2015年胶原蛋白行业发展前景分析及投资风险预测报告》,从2001年到2009年,世界胶原蛋白的市场需求量增长了近三倍,年均复合增长率超过了17.25%,表现出强劲的增长趋势。   西方发达国家由于胶原蛋白市场较为成熟,在全球胶原蛋白市场中所占份额较高,欧洲和美国的胶原蛋白市场最大,分别占全球市场总量的31.20%和28.00%, 亚洲市场仅次于美国,占14.60%,亚洲市场主要是日本、台湾及东南亚等地。   蔡木易教授介绍:其实,就胶原蛋白的安全性来说,大家应该不用质疑。目前卫生部门规定胶原蛋白是来源于食用蛋白质,用安全的食用酶制剂制成的物质,是普通食品,这一规定对行业规范是非常有帮助的。原料是用的鱼皮、猪皮,能多有毒?对此,中国保健协会保健品市场工作委员会秘书长王大宏曾告诉过媒体记者,没有政府部门在胶原蛋白类产品抽检中发现激素,也没有人举报类似问题。他欢迎相关质疑的人拿出证据去相关部门举报,如果能够查证,还有高额资金呢。   蔡木易教授说,胶原蛋白如果作为食品,根据法规要求,食品是不允许宣传的。但是客观来讲,老百姓吃食品是有选择的,食品应该是有功能的,但是不能进行宣传。   国内之所以对胶原蛋白提出质疑,本质上在于市场上胶原蛋白类产品混杂,标准缺失。虽然国家发改委在2005年公布了《水解胶原蛋白》的国家行业标准,但该标准规定胶原蛋白分子量的分布范围是500-20,000道尔顿,过于宽松(根据行业的公认,平均分子量为2000-5000道尔顿的胶原蛋白方易为人体吸收,目前在售的进口胶原蛋白其平均分子量基本在这一水平)。大多数企业利用国家行业标准中分子量范围过大的情况,将不易为人体吸收的大分子量胶原蛋白也宣称为易于人体吸收的胶原蛋白产品对外进行销售。   蔡木易教授表示,造成行业混乱的另一个主要原因则在于:由于行业内不企业不愿透露胶原蛋白的来源,产品没有明确标识,造成企业想申报标准却没有依据。这其中,有一些关键性的指标,肽作为一种蛋白质,首先蛋白质是应该有纯度的,我们国家的分离蛋白的标准就很宽泛,而且没有规定蛋白纯度。另外,作为肽必须要标明准确的分子量。
  • 关于批准《胶原蛋白三肽》团体标准项目立项的公告
    关于批准《胶原蛋白三肽》团体标准项目立项的公告各有关单位:  根据《中国保健协会团体标准管理办法(试行)》相关规定,经过对团体标准公开征集、自愿申报及立项论证等程序,我会决定批准《胶原蛋白三肽》团体标准项目立项(具体内容见附件)。  请制标单位严格按照有关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,促进提升产品和服务竞争力,增强标准的适用性和有效性。  同时欢迎与上述标准相关的高校、科研机构、相关企业等单位加入团体标准的起草编制工作。有意参与标准起草工作的,可与我会联系。  特此公告。  联系人:孙 莉 电话:010-68944085 13439472188  邮 箱:foodhealth@163.com   李 妍 电话:010-59817415 13601222762  邮 箱:ly@chc.org.cn  附件:团标项目牵头起草单位相关信息表中国保健协会 2023年5月22日
  • 胶原蛋白产品目前无国标 汤臣倍健自称符合标准
    10月8日《消费者报道》发文:汤臣倍健胶原蛋白粉被检出不含胶原蛋白   10月9日《消费者报道》追踪报道:胶原蛋白粉成分谎言:配料乾坤颠倒   10月8日,《消费者报道》发布了7款胶原蛋白产品的第三方检测结果,其中汤臣倍健、颜如玉、无限极等3款胶原蛋白产品未检出胶原蛋白,其余4款产品检测出的胶原蛋白含量也与企业宣传相去甚远。   截至目前,汤臣倍健、颜如玉两家企业已对本刊报道作出回应,其他企业暂无回应。   汤臣倍健股份有限公司在其发布的《关于汤臣倍健胶原蛋白产品的情况说明》中指出,其使用的胶原蛋白粉,采购自法国罗赛洛集团有限公司,经第三方权威检测机构检测(中国广州分析测试中心)显示:各项指标均符合标准,其中羟脯氨酸含量为9.33%。   在汤臣倍健提供的这份2013年4月1日出具的检测报告中,其中羟脯氨酸检测方法为GB/T 9695.23-2008《肉与肉制品中羟脯氨酸含量测定》。   本刊经查阅发现, GB/T 9695.23-2008标准的适用范围为肉与肉制品中羟脯氨酸含量低于0.5%(质量分数)的产品。而在本刊送检之前,为汤臣倍健出具检测报告的中国广州分析测试中心业务人员曾回复本刊称:&ldquo 国家没有胶原蛋白中羟脯氨酸的检测标准,我们无法接检。&rdquo   据本刊了解,目前胶原蛋白检测方法除了《肉与肉制品中羟脯氨酸含量测定》之外,还有《乳与乳制品中动物水解蛋白鉴定&mdash &mdash L(-)-羟脯氨酸含量测定法》,本刊送检机构参考了后一种测定方法,使用高效液相色谱质谱联用法,得出检测结果。   本刊同时亦了解到,除了前述两种方法之外,目前确没有专门针对于胶原蛋白美容产品的国家标准。对此,本刊亦呼吁监管部门与企业本着为消费者负责任的态度,共同推动和制定保障产品质量的统一标准。   另一家在本刊送检中同样未检出胶原蛋白含量的企业&mdash &mdash 颜如玉也对本刊送检结果做出了回应。   颜如玉医药科技有限公司董事长王中振8日接受媒体采访时表示:颜如玉的胶原蛋白口服液中主要成分为低聚肽粉,低聚肽由胶原蛋白分解而成,低聚肽表现出比大分子的胶原蛋白更易吸收的特点。并称&ldquo 低聚肽的形式不会被分解,当然也就测不出羟脯氨酸&rdquo 。   但经本刊查询,国家对于低聚肽中羟脯氨酸含量有具体的标准,在GB/T22729-2008《海洋鱼低聚肽粉》要求的理化指标中,明确规定羟脯氨酸在海洋鱼皮胶原低聚肽粉和海洋鱼骨胶原低聚肽粉中需分别大于等于3.0%和2.0%。   《消费者报道》是一家专注于商品独立检测发布的媒体,目的在于为消费者提供更清晰的消费参考与指引,降低商品消费中的信息不对称。在此,我们也希望企业能够以认真、坦诚的态度面对消费者,提供更好的产品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制