当前位置: 仪器信息网 > 行业主题 > >

贝那普利相关物质

仪器信息网贝那普利相关物质专题为您提供2024年最新贝那普利相关物质价格报价、厂家品牌的相关信息, 包括贝那普利相关物质参数、型号等,不管是国产,还是进口品牌的贝那普利相关物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合贝那普利相关物质相关的耗材配件、试剂标物,还有贝那普利相关物质相关的最新资讯、资料,以及贝那普利相关物质相关的解决方案。

贝那普利相关物质相关的资讯

  • 无需诺贝尔奖高贵仪器 普通显微镜也可看到纳米级物质
    我们用显微镜来观察细胞,因为显微镜可以让物体的影像变大。但如果把物体本身变大不就有相同效果?这种看似不科学的说法要如何办到?答案跟婴儿用的尿布有关。麻省理工学院神经工程师 Edward Boyden 研发一种称为&ldquo 扩展显微镜&rdquo (expansion microscopy) 的技术,让被观察的物体膨胀,生物学家甚至可以用普通显微镜看到分子等级的脑部细节。 与昂贵技术有相同效果 Boyden 的技术其实跟 2014 年诺贝尔化学奖三位得主的萤光显微技术可以做个对比。诺贝尔奖的显微镜技术突破了可见光最小波长 400 纳米的限制,对于距离只有 20 纳米的物体仍能清晰分辨,不过缺点是所需的仪器很昂贵,且面对有厚度的物体较不易观察,例如肿瘤细胞或是整个大脑。Boyden 的技术则可以观察立体的组织,例如脑部神经细胞之间突触间隙及间隙一端的突触钮 (synaptic bouton)。 Boyden 运用的是丙烯酸类聚合物。常见的尿布或卫生棉之所以具有锁水功能,其中便含有丙烯酸;丙烯酸还能留住蛋白质分子。在 Boyden 的技术下,首先要把萤光分子锁定在要观察的蛋白质上,然后开始注水,要观察的组织因为加入丙烯酸而膨胀了 91.125 倍(三维方向各自膨胀 4.5 倍)。因为组织膨胀,被萤光分子标记的蛋白质彼此距离也拉开,可以让用可见光进行观察的显微镜也能看见。Boyden 表示这项技术可以让原先距离在 60 纳米以上的分子被清楚观察。 物质膨胀但无太多质变 重要的是,组织中的细胞仍然保持完好状态,蛋白质的相对位置与方向没有太大的改变,如上图左是膨胀后的样子,与图右的原始状态比较改变不大。这项改变根据研究团队的估计,大约是 1% 至 4% 之间。 2014 年诺贝尔化学奖得主之一的 Stefan Hell 表示,这项技术很有趣也值得继续发展,他提到 1990 年代德国就有科学家有类似的点子,但看来 Boyden 的研究团队才是真正把构想实现的人。 (首图来源:Boyden, E., Chen, F. & Tillberg, P. / MIT / Courtesy of National Institutes of Health)
  • 中国科大在生物质制备纳米结构材料方面取得系列进展
    近年来,中国科大合肥微尺度物质科学国家实验室俞书宏课题组在低温水热碳化生物质制备功能性碳基材料方面的研究取得显著进展,其中有关生物质水热碳化制备高活性富碳纳米功能材料的一系列工作引起国际关注。最近,该课题组应邀撰写观点透视综述论文,并以封面文章形式发表在Dalton Trans上,英国皇家化学会网站也进行了报道。 多功能碳基材料由于其在催化剂载体、固碳、吸附剂、储气、电极、碳燃料电池和药物传递等领域潜在的重要应用,使其合成技术研究成为一个热门课题。目前,该领域研究的重点已经从化石燃料转变到以生物质作为原料合成碳基材料,同时也有望为合理利用过剩的生物质,为储存碳能源和避免直接焚烧对环境的严重污染等提供新的解决方案。 该课题组研究发现,由非晶态纤维素组成软质的植物组织主要产生球状碳纳米颗粒,它们的尺寸很小,孔隙主要是间隙孔隙;由固定结构的晶态纤维素组成的硬质植物组织,能够保留外部形状以及大范围内宏观和微观结构特征,在纳米尺度上产生了显著的结构变化,形成介孔网状结构。同时,利用碳水化合物能够控制合成出具有特殊形态和结构的碳基纳米材料、多孔碳材料及复合材料,诸如纳米球、纳米纤维、亚纳米线、亚纳米管、纳米电缆和核壳结构等,而且富含能显著改善其亲水性和化学活性的官能团。所制备的碳基材料和复合材料具有优异的固碳效率、催化性质和电学性质,在固碳,色谱分离、催化剂载体和电极材料、气相选择吸附剂、药物传递等领域具有潜在的应用前景。 目前,该课题组正着力研究水热碳化过程机理和进一步提高碳化效率,为高效制备一系列多功能化、高活性碳基纳米结构材料及实际应用打下基础。
  • 欧盟可能限制使用全氟辛酸及相关物质
    德国与挪威合作,计划于2014年10月17日就全氟辛酸提交一份文件,称为《附件XV限制资料文件》。该份文件根据《化学品註册、评估、授权和限制法规》(REACH法规)附件XV内的相关资料规定匯编而成。   2014年3月5日,欧洲化学品管理局(ECHA)宣布,德国与挪威政府已展开一项资料收集工作,以确定全氟辛酸及全氟辛酸相关物质的使用、数量和供应情况,以及技术上和经济上可行的替代品。   这些资料将会用于评估替代品以及匯编「限制资料文件」。该份文件最终可能会导至限制含有全氟辛酸的物品及混合物在市场贩售。如当局採用限制措施,欧洲委员会将会把有关措施纳入REACH法规附件XVII内。   附件XVII现已载有一份禁止在欧盟市场贩售的产品清单,包括含有若干类邻苯二甲酸盐的玩具和儿童护理物品,以及含偶氮染料的纺织品。   多项产品会含有全氟辛酸,包括纺织品、地毯、家具布料、纸张、皮革、碳粉、清洁剂和地毯护理剂、密封剂、地板蜡及油漆。全氟辛酸会残留在若干物件上,包括电线绝缘体、专用电路板、用于衣服的防水膜(如Gore-Tex)、外科植入物、牙线和不粘涂层。此外,瑞典化学品管理局(KEMI)在一份报告中特别指出,进口产品(如户外衣服)是全氟辛酸的主要来源。   德国及挪威正制订限制全氟辛酸及相关物质(可以分解为全氟辛酸的前体物质)的建议。建议将涉及全氟辛酸、相关物质、其混合物、製品以及其他物质成份的製造、使用及市场贩售。含有全氟辛酸及相关物质的进口货亦包括在内。   德国及挪威展开资料收集工作的目的,在于尽量鼓励更多相关人士回答问卷,就全氟辛酸及相关物质的使用、供应以及技术上和经济上可行的替代品等问题提供资料。   收集资料的对象包括全氟辛酸、全氟辛酸盐和全氟辛酸相关物质的生产商、替代品生产商、消防泡沫生产商,以及纺织品整理加工业、摄影成像业及半导体业等下游使用者。   德国及挪威邀请可能受限制措施影响或持有相关资料的人士,于2014年4月30日提出意见。相关人士可以通过以下网址填写问卷及提交资料:http://goo.gl/yqWbFq   若德国及/或挪威提出限制措施的建议,欧洲化学品管理局亦会进行公众谘询。
  • 采用ACQUITY UPLC H-CLASS系统对氯雷他定及其相关物质进行分析
    开发方法时采用ACQUITY UPLC H-CLASS系统方法相比目前的HPLC方法约快5倍,且可获得与之等同甚至更加优化的的数据结果。 这一系统为实验室进行USP法定HPLC方法提供了理想的解决方案, 为探索如何将现有方法转化成更经济有效的UPLC方法开辟了途径. 目标 成功地将分析氯雷他定的HPLC测定方法转换至ACQUITY UPLC® H-CLASS系统, 再转换成UPLC® 优化方法。 背景 对药物和药品的检验,通常是检测杂质和相关物质及药品活性物质(API)含量,以确保药品的安全有效性。美国药典对这些物质法定的检测方法通常是采用长柱的HPLC,运行时间较长。针对氯雷他定和氯雷他定片(这是一种用于治疗过敏的抗组胺药物),对于相关物质(RS)的分析,USP方法采用4.6mmx15cmL7柱,以1.0mL/min流速等度洗脱,时间约为20min。氯雷他定相关物质分析的第二个方法(指定为检测2)通过一个不同的综合途径,采用4.6mmx25cm L1柱,以1.2 mL/min流速梯度洗脱,时间为50min,以便分离其中一种杂质。对一个实验室来说,分析时间的缩短都将显著降低实验室的分析成本。 解决方案 USP提供的方法严格按照法规中的描述,用传统的HPLC系统(Alliance® HPLC系统配置一个2998光敏二极管阵列检测器)。整个分析在ACQUITY UPLC H-CLASS系统上运行。比较这两种方法的结果(保留时间重现性,相关保留时间和杂质峰),证明了ACQUITY UPLC H-CLASS系统在执行这类检测方法方面, 较之传统HPLC的性能等同,甚至略胜一筹. 使用仪器自带的ACQUITY UPLC柱转换计算器可将HPLC方法无缝转换成UPLC方法。采用这种全新的计算方法,可分析整个样品集,其结果(保留时间重现性,相关保留时间和杂质峰)与HPLC结果相比较:可大幅降低运行时间,将等度洗脱的20min缩短至4min, 在ACQUITY H-CLASS系统上运行HPLC方法所得到的结果比传统HPLC系统(图1)上所得到的结果更优化。 图1.Alliance HPLC系统上运行HPLC分别与 ACQUITY UPLC H-CLASS系统上运行HPLC和运行UPLC 所得到的氯雷他定及其相关物质色谱图的比较 小结 用于分析氯雷他定及其相关物质所使用的HPLC方法成功地在沃特世 ACQUITY UPLC H-CLASS系统上重现。该系统上得到的数据与Alliance HPLC系统相同,符合USP方法的要求。 借助于ACQUITY UPLC 柱转换计算器,检测方法可转换成ACQUITY UPLC H-CLASS系统上的UPLC方法。这种全新的UPLC方法比目前的HPLC方法快约5倍,获得同样的甚至更加优化的数据。更快捷地获得高质量的数据,增强实验室的生产力并降低单个样品的成本. 沃特世ACQUITY UPLC H-Class系统为实验室进行USP法定HPLC方法提供了理想的解决方案, 为探索如何将现有方法转化成更经济有效的UPLC方法的技术平台开辟了途径.
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 【赛纳斯】拉曼光谱技术穿透伪装识别合成大麻素等新精活物质
    毒 品从它诞生初始就披着美丽的外衣在诱惑民众,它不断变换形态、外貌引诱人们,从而扑倒在它的阴影下,迈入罪恶的深渊而无从挣扎。为警醒人们,我们好好剥开笼罩在它身上的外衣,让它真实面貌暴露在人们面前。“彩虹烟”的外观颜色酷炫,闻起来有香气,吸食有特殊烟雾,非常具有迷惑性。它是由小树枝、香料掺杂混合毒 品(系合成大麻素)制成,具有较强的兴奋、致幻效果,也会令吸食者出现头晕、恶心、气短、胸痛等症状。其危害丝毫不亚于海洛因、冰 毒等。“奶茶”是一种以小型冲泡饮品包装为伪装的新型毒 品的统称,这类毒 品的外形与真正的奶茶极度相似,却混合了冰 毒、氯胺酮、摇头丸等成分,服用后会产生中毒性精神障碍,情感变得脆弱不稳定,注意力无法集中,轻度意识模糊,产生日夜颠倒的幻觉,甚至陷入昏迷。“可乐”的主要成分是氯胺酮(K粉),外包装与普通可乐极为相似,吸食微量就会使人亢奋、出现幻觉,甚至会引起发狂。它与冰 毒相比危害更大,售价也高出10倍左右,吸食方法也不同。“跳跳糖”表面上看和普通的跳跳糖无异。普通的跳跳糖含二氧化碳,遇水时外边的糖分溶解,里边的二氧化碳冒出就产生“跳”的感觉 而毒 品“跳跳糖”主要含有摇头丸成分,遇水即溶、冲水即饮,服用后两到三天都会处于兴奋之中,会对人的大脑造成不可逆的损伤。“曲奇饼干”从外表看与饼干无异,打开包装袋有明显的异味,含有四氢大麻酚或合成大麻素类新精神活性物质成分。这种“大麻饼干”价格高昂。“迷幻蘑菇”是一种蘑菇外形的新型毒 品,涉毒圈内称之为“金老师”。吸食大麻的人也将“迷幻蘑菇”作为大麻的替代品。“迷幻蘑菇”中含有的成分为赛络新和赛洛西宾,致幻性强,短时间内能迅速作用于人的神经系统,使人对周围感知无限放大。这种伪装成“巧克力”的新型毒 品,是犯罪分子掺入了四氢大麻酚或合成大麻素类新精神活性物质制成的,其包装粗糙简陋,而且没有标明任何品牌。食用后会引起手脚颤抖、心跳加快、头脑昏沉、反应迟钝、短期失忆等不良反应。面对这种毒 品种类多样化,新型毒 品的伪装性及诱惑性极强,一线工作人员的危险性极大的情况下,赛纳斯基于自有搭建物联网平台,运用大数据、物联网、云端管理、人工智能等技术手段,并结合自主研发拉曼光谱技术光谱快检装备,构建了合成大麻素物联网检测与防控系统,实现合成大麻素的可管可治、严防严控,有效抑制合成大麻素的蔓延。结合拉曼光谱技术完美覆盖合成大麻素检测每一种合成大麻素类化学物质都有其独有的光谱特征谱,它就像人的指纹一样具有唯一性。常见的手持拉曼光谱仪的激发光源为785 nm激光,可以实现大部分毒 品标准品的鉴定。但是贩毒链中毒 品纯度较低,且含有的杂质容易带来荧光干扰,甚至有些毒 品本身的就具有较大的荧光基团。785 nm波长激发光下测试的拉曼特征谱峰往往会被被湮没在荧光信号当中,无法实现有效鉴定。而公共安全联合实验开发的SHINS 1064手持拉曼仪,配备1064 nm红外激光器,可以有效规避物质荧光干扰,如此实现合成大麻类毒 品的一网打尽。赛纳斯SHINS-P1000手持式拉曼光谱仪有效降低荧光干扰,能够覆盖荧光强的实际样品检测;用于烟油中合成大麻素样品的隔包装定性识别检测;采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,赛纳斯SHINS-P1000手持式拉曼光谱仪可穿透透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采1064nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:合成大麻素,芬太尼、卡芬太尼及衍生物 新型精神药物 安非他命 可卡因 海洛因 管制前体。SHINS-P1000现场快检装备介绍(1)信息特异性强,可透过透明包装直接鉴定(2)GPS定位、身份证识别、拍照取证、智能辅助为执法工作减负(3)本土化数据库,基于中国毒情建立物联网系统检测流程:合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。直接进行拉曼信号采集容易有杂质干扰,此处采用简单的前处理方式(①),然后将处理后的样品直接滴于增强芯片表面(②)。再将芯片插于拉曼光谱仪的检测槽中(③),进行拉曼检测,直接输出结果,检测限低至ppm级别,检测时间数十秒即可。
  • 计量院举办石化相关标准物质免费培训啦!
    关于举办石化、油品相关标准物质免费公益网络培训的通知各有关单位:为提高油品检测的准确性、有效性和一致性,提升我国油品检测的整体水平,帮助石化、油品行业检验检测机构和实验室相关技术人员了解质量控制管理和技术知识,掌握标准物质的正确使用方法,通过质量控制提高检验结果的准确性、可靠性和有效性,中国计量科学研究院拟于7月16日举办石化、油品相关标准物质免费公益网络培训。聘请国内相关领域标准物质研制专家授课,系统介绍石化、油品行业标准物质现状、标准物质的选择和使用、检测方法确认与质量控制、不确定度评定实例等内容。此次培训由中国计量科学研究院标准物质研究与管理中心(国家标准物质研究中心办公室)和环境计量中心联合主办,将进行免费公益网络直播授课,现将有关事宜通知如下:一、培训主题石化、油品相关标准物质的研制及应用二、培训时间培训时间:2021年7月16日具体课程安排及相应的授课信息将通知给已报名的学员三、培训内容题目授课老师单位时间标准物质及其作用简介马联弟 研究员标准物质研究与管理中心主任8:30-8:40中国计量院标准物质概况及标准物质研究与管理中心介绍卢晓华 研究员标准物质研究与管理中心副主任8:40-8:50石化、油品行业标准物质研制现状及需求分析全灿 博士/研究员标物中心市场室主任8:50-9:10牛顿流体黏度标准物质的研制及应用张正东 博士/副研究员环境计量中心油品室主任9:10-9:35油品低温性能(倾点、浊点、冷滤点)标准物质研制及应用李轲 博士环境计量中心油品室9:35-10:00开口/闭口闪点标准物质的研制及应用、水质石油类紫外分光光度分析用标准物质的研制及应用刘喆 硕士环境计量中心油品室10:00-10:25蒸发损失(诺亚克法)标准物质的研制及应用、塑料表观剪切黏度标准物质的研制及应用宋小卫 博士/助理研究员环境计量中心油品室10:25-10:50油品中元素含量标准物质的研制及应用王海 博士/研究员环境计量中心物化室主任10:50-11:15水分和馏程标准物质的研制及应用王海峰 博士/副研究员环境计量中心物化室11:15-11:40四、主办部门标准物质研究与管理中心(国家标准物质研究中心办公室)环境计量中心五、报名注册 此次培训为免费公益网络直播培训。六、联系人薄梦bomeng@nim.ac.cn吴雪 wux@nim.ac.cn中国计量科学研究院2021年6月10日
  • 迪马科技发布化妆品禁用和限用物质相关检测方法
    迪马科技为了配合国家食品药品监管局对规范化妆品中禁用物质和限用物质的检测要求,保证进出口化妆品的安全卫生质量,保护消费者身体健康,推出化妆品中丙烯酰胺、甲醛、挥发性有机溶剂、邻苯二甲酸酯类物质、三氯卡班、苯氧异丙醇、奎宁、6-甲基香豆素、苯甲醇、苯甲酸等禁用或限用物质的相关检测产品及其方法。 产品及相关应用图谱如下: 【1】 化妆品中丙烯酰胺的检测方法 丙烯酰胺单体(CAS:79-06-1) 氘代丙烯酰胺标准品 Diamonsil C18(2) 色谱柱 (100× 2.1mmI.D.,3&mu m) 应用图谱:http://www.dikma.com.cn/Application/show/id/319 【2】 化妆品中甲醛的方法 甲醛(CAS :50-00-0) 2,4-二硝基苯肼,纯度 &ge 99.0%。 色谱柱:Diamonsil C18(2)色谱柱(250 × 4.6 mmI.D.,5 &mu m) 应用图谱:http://www.dikma.com.cn/Application/show/id/450 【3】 测定化妆品中15种挥发性有机溶剂的顶空-气相色谱法 15种挥发性有机溶剂标准品:二氯甲烷、1,1-二氯乙烷、1,2-二氯乙烯、三氯甲烷、1,2-二氯乙烷、苯、三氯乙烯、甲苯、四氯乙烯、乙苯、间、对-二甲苯、苯乙烯、邻-二甲苯、异丙苯(均为色谱纯)。 色谱柱:DM-1毛细柱 (30m× 0.32mm I.D.,0.25 &mu m) 应用图谱:http://www.dikma.com.cn/Application/show/id/7 【4】 测定化妆品中10种邻苯二甲酸酯类化合物的高效液相色谱法。 标准品:邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丙酯、邻苯二甲酸丁基苄酯、邻苯二甲酸二正丁酯、邻苯二甲酸二正戊酯、邻苯二甲酸二环己酯、邻苯二甲酸二正己酯、邻苯二甲酸二异辛酯、邻苯二甲酸二正辛酯(纯度97.5%)。 色谱柱:Diamonsil C18(2)色谱柱 (250× 4.6mmI.D.,5&mu m) 应用图谱:http://www.dikma.com.cn/Application/show/id/455 【5】 化妆品中三氯卡班的检测方法 标准品:三氯卡班,纯度>99.0% 色谱柱:Diamonsil C18(2)色谱柱 (250mm× 4.6mmI.D.,5&mu m) 【6】 化妆品中苯氧异丙醇的检测方法。 标准品:苯氧异丙醇(CAS:770-35-4) 色谱柱:Diamonsil C18(2) 色谱柱 (250 × 4.6mm I.D.,5&mu m ) 【7】 化妆品中奎宁的检测方法 标准品:奎宁(CAS:130-95-0)纯度&ge 98% 色谱柱:Diamonsil C18(2)色谱 柱 (250 mm× 4.6mm I.D.,5&mu m) 相关产品应用图谱:http://www.dikma.com.cn/Application/show/id/90 【8】化妆品中6-甲基香豆素的检测方法 标准品:6-甲基香豆素,纯度&ge 99.0% 色谱柱:Diamonsil C18(2) 色谱柱 (250 mm× 4.6mm I.D.,5&mu m) 【9】 化妆品中防腐剂苯甲醇的检测方法 标准品:苯甲醇,(CAS:100-51-6)纯度&ge 99.5% 色谱柱:DM-FFAP石英毛细管色谱柱(30m× 0.25mmI.D.,0.25&mu m,硝基对苯二酸改性的聚乙二醇) 【10】 化妆品中防腐剂苯甲酸的检测方法 标准品:苯甲酸,(CAS:65-85-0)纯度&ge 99.5% 色谱柱:Spursil C18色谱柱 (250 mm× 4.6mm I.D.,5&mu m) 相关产品应用图谱:http://www.dikma.com.cn/Application/show/id/466 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 美国印第安纳大学生物质谱研究实验室获得沃特世创新中心荣誉称号
    David Clemmer教授率领的质谱研究已经为蛋白质组学和蛋白质表征领域的新发现铺平了道路。 马萨诸塞州米尔福德 - 2012年12月13日 David Clemmer教授(左2)与(从左至右)文理学院院长Larry Singell、沃特世公司John Gebler以及印第安纳大学科研副校长Jorge Jose合影留念。 在印第安纳大学卢明顿校区举办的庆典仪式上,沃特世公司 (NYSE:WAT)庆祝生物质谱实验室和David Clemmer教授、化工学会主席兼文理学院理科类副院长Robert 和 Marjorie Mann 加入沃特世创新中心计划。沃特世对Clemmer教授在离子淌度质谱方面做出的贡献给予高度赞扬,表彰其为世界各地的研究人员提供了在蛋白质表征及新兴蛋白质组学领域等方面进行探索的新方法。 印第安纳大学教务长兼执行副校长Lauren Robel表示:&ldquo 我谨代表印第安纳大学,非常荣幸地欢迎沃特世公司成为我们在学术研究领域的合作伙伴,同时我个人祝贺Clemmer教授及其研究小组成为沃特世创新中心的一员。这是一次令人振奋的合作,树立了顶尖大学研究团队与领先的技术公司合作伙伴共同实现突破性成就的典范。由此产生的创新成果可以革新我们的研究方法,显著加快科学探索进程,并为学生提供前所未有的学习机会及发展先进实验室技术的机遇。&rdquo &ldquo 这将成为我们学校和学院发展史上重要的里程碑。我非常荣幸能够代表大家发言表彰我们之中最杰出的一员&rdquo ,化学系的David Giedroc教授说。&ldquo David为离子淌度质谱的发展做出了巨大贡献。&rdquo 沃特世创新中心总经理John Gebler在发表讲话时表示:&ldquo 过去二十年,质谱研究取得了惊人的发展。今天我们可以自豪地宣布革命性的进展已经实现。当你参观David的实验室时,你可以看到由激情与热忱勾勒出的未来质谱研究发展雏形。&rdquo 接受该项殊荣时,曾于2009年荣获印第安纳大学研究和教学卓越性最高荣誉Tracy M. Sonneborn奖的Clemmer教授感谢了对他的职业生涯产生深远影响的人。&ldquo 沃特世的认可对我具有重要意义。我很幸运,一路走来,众多有天赋的学生、同事、顾问和导师,还有对我信任有加的行政管理人员都为我提供了很多帮助。他们对我的离子淌度质谱研究工作贡献颇多,我对此深表感激。&rdquo 在举办创新中心庆典仪式的同时,印第安纳大学还组织了为期半天的科学研讨会,探讨Clemmer教授所获殊荣的&ldquo 用于生物分子表征高清质谱进展&rdquo 项目。该研讨会汇集了全球顶尖的离子淌度质谱领域研究人员,其中包括:苏格兰爱丁堡大学Perdita Barran教授,美国华盛顿大学Michael Gross教授,德国康斯坦茨大学Michael Przybylski教授以及沃特世公司Kevin Giles博士。 关于离子淌度质谱 离子淌度质谱基于分子大小、质量和电荷分离气相离子,使科学家能够成功分离同分异构或构象异构化合物。因此,目前科学家在预测分子的大小以及具有重要意义的构象方面可以达到前所未有的精准度和清晰度。利用离子迁移数据,还可以建立蛋白质和蛋白质聚合体(两个或以上蛋白质的组合)的三维模型,这是利用传统二维质谱所不可能完成的工作。 离子淌度质谱技术已经在Waters SYNAPT® HDMS 质谱仪中使用,并已经在蛋白组学、脂类组学、全蛋白分析、小分子分析以及组织成像等领域实现了应用验证。 研讨会开始之前,印第安纳大学的生物质谱实验室接收了第二台Waters Synapt HDMS 质谱仪。 更多信息 Clemmer教授的研究小组:www.indiana.edu/~clemmer IMS/MS:It&rsquo s Time Has Come, Anal. Chem. 2008, 80 (21), 7918 &ndash 7920 DOI: 10.1021/ac8018608 关于美国印第安纳大学 印第安纳大学是一所著名的多校区公立研究机构,尤其以文理科教研最为突出,是专业、医疗和技术教育领域的全球领导者。创建于1820年的卢明顿校区位居印第安纳大学全州八大校区之首。创新、创造和学术自由是印第安纳大学卢明顿校区的典型标志及其在科研教学领域世界级贡献的象征。 关于沃特世创新中心计划 沃特世创新中心计划为科学工作者取得研究突破提供了认可与支持,包括:健康和生命科学研究、食品安全、环境保护、运动药剂等诸多领域。 Clemmer教授和其他19名研究者和研究中心共同参与了沃特世创新中心计划。具体包括:Ganesh Anand教授(新加坡国立大学);David Cowan教授(伦敦国王学院);Joseph Dalluge(美国明尼苏达大学);Marcos Eberlin教授(巴西坎皮纳斯大学);John Engen教授(美国马萨诸塞州东北大学);Albert J. Fornace, Jr.教授(华盛顿特区美国乔治敦大学综合癌症中心);Frank Gonzalez博士(美国国家癌症研究所);Julie Leary教授(美国加州大学戴维斯分校);Amit Kumar Mandal博士(印度班加罗尔圣约翰研究所);Arthur Moseley教授 美国北卡罗来纳州达勒姆杜克大学);Jeremy Nicholson教授(英国伦敦帝国学院);Devin Peterson博士(美国明尼苏达大学);Konstantinos Petritis博士(亚利桑那州凤凰城翻译基因组学研究院);Pauline Rudd教授(美国国家生物工艺研究和培训机构);Vladimir Shulaev教授(北德克萨斯大学);James Scrivens教授(英国考文垂华威大学);Sarah Trimpin教授(美国韦恩州立大学);以及Caroline West 和 Eric Lesselier(法国奥尔良奥尔良大学)。 上述著名的科学工作者们,正和沃特世一起,用液相色谱和质谱技术共同塑造未来的科研方向、探索科学奥秘。 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters和SYNAPT是沃特世公司商标。
  • 第三届全国生物质谱会议在丽江隆重召开
    “蛋白质组数据处理暨第三届全国生物质谱学术交流会”在云南丽江召开   为了积极促进我国蛋白质组学技术发展和应用、数据挖掘和生物质谱的经验交流,由中国生物化学与分子生物学会蛋白质组学专业委员会、中国质谱学会生物质谱专业委员会和中国化学会分析化学委员会主办,北京蛋白质组研究中心、复旦大学和蛋白质组学国家重点实验室共同承办的“蛋白质组数据处理暨全国生物质谱学术交流会”于2010年5月15日在云南省丽江市召开。200余名从事蛋白质组学研究的专家、学者参加了此次会议,仪器信息网作为支持媒体也应邀参加。 大会现场   本次会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。其中,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,而第二天的报告则以讨论蛋白质数据处理技术为主,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。 钱小红研究员主持会议   大会主席由北京蛋白质组学研究中心钱小红研究员和复旦大学杨芃原教授共同担当。并且,会议开幕式由钱小红研究员主持,杨芃原教授在开幕式上致辞。中科院大连化学物理研究所张玉奎院士、军事医学科学院二所科技处王东根处长、美国加州大学心血管研究中心Ping Peipei教授出席了开幕式。 杨芃原教授在开幕式上致辞   杨芃原教授在开幕式上的致辞中表示,近年来,随着质谱的灵敏度、精确度、分辨率的不断提高,以及高通量技术的不断发展,质谱在蛋白质组学研究中扮演着越来越重要的角色。自2002年在军事医学科学院举办了第二届生物质谱研讨会后,时隔8年,今天再次举办第三届生物质谱会议,希望此次学术交流会取得圆满成功。并且,蛋白质组学专业委员会理事会议通过决定,将中国蛋白质组学大会由每年一届改为每两年一届,从而增强质谱界同仁的学术交流,促进我国质谱技术的进一步发展。 王东根处长出席开幕式 Ping Peipei教授出席开幕式 参加开幕式的与会人员合影   开幕式后,中科院大连化学物理研究所张玉奎院士作了题为《蛋白质组研究分离和鉴定技术进展》的大会特邀报告 来自日本Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology的Hisashi Narimatsu教授作了题为“Development of glyco-biomarkers for liver fibrosis, and liver cancers and others using newly developed technologies for Glycomics”的大会特邀报告。 张玉奎院士作大会特邀报告   张院士在报告中表示,近年来,针对蛋白质组的高效、高分辨、高通量分离和高灵敏度、高可靠性鉴定,发展了多种蛋白质组分离鉴定新技术新方法。   在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术 一次运行可去除58种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术。在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。   在多维多模式液相分离方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法 通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。   在质谱高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。 Hisashi Narimatsu教授作大会特邀报告   Hisashi Narimatsu教授在报告则提到,近10年来,糖蛋白组学的技术在不断发展,目前,其科研组已经发现了184个人类糖基因。在蛋白质组学研究中,应关注糖蛋白研究,因为除白蛋白外的蛋白质,最终会糖化。其在报告中介绍了糖蛋白组学研究应用的三种技术:(1)实时定量PCR技术(2)微矩阵分析技术(3)用IGOT方法确定载体蛋白。   围绕会议主题,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、军事医学科学院放射与辐射医学研究所张养军副研究员等30多位业内资深专家进行了深入的交流、探讨。   除大会报告外,会议同期举办了AB SCIEX新技术推广会和小型的厂商仪器展览会,安捷伦科技、沃特世、AB SCIEX、赛默飞世尔科技、布鲁克道尔顿、戴安中国、源资信息科技(上海)有限公司等厂商参展。 AB SCIEX新技术推广会现场 小型展会展示现场   大会开幕式晚宴由安捷伦科技赞助,安捷伦科技有限公司生命科学事业部经理赵影女士在晚宴上宣布, 5月15日对安捷伦而言,是具有里程碑意义的一天,因为安捷伦于今天(5月15日)正式完成了对瓦里安公司的收购,此条消息已在其英文的官方网站上正式对外公布。 安捷伦招待晚宴现场 赵影女士在晚宴上讲话   晚宴后,为了大家解除一天的劳顿,安捷伦科技诚邀全体参会人员参加“安捷伦之夜”,共同前往丽江国际民族文化交流中心剧场,欣赏精彩的民族舞蹈诗画《丽水金沙》。 “安捷伦之夜”现场 民族舞蹈诗画《丽水金沙》表演现场   关于大会报告具体内容及会议详细情况,敬请关注仪器信息网后续报道……
  • 全国生物质谱学术报告会-生物质谱前沿技术邀请报告会-第二轮通知
    邀 请 函为积极促进我国生物质谱技术的发展和应用,加强国内外相关研究领域的专家学者之间的交流与合作,将于2014年7月3日在复旦大学举办“全国生物质谱学术报告会--生物质谱前沿技术邀请报告会”。全国生物质谱学术报告会曾在1999年(上海),2003年(北京),2004年(上海),2009年(上海),2010年(丽江)举行。2014年本次会议由中国人类蛋白质组组织(CNHUPO) 、中国物理学会质谱分会、中国化学会质谱分析专业委员会和复旦大学主办,美国AB Sciex公司协办。本次会议特邀瑞士苏黎世联邦技术学院分子系统生物学研究所Ruedi Aebersold教授、加拿大阿尔伯塔大学Liang Li教授、美国北卡罗来纳大学Xian Chen教授、约翰霍普金斯大学Hui Zhang教授、美国西奈山伊坎医学院Rong Wang教授、中国科学院大连化学物理研究所张玉奎院士、北京蛋白质组研究中心钱小红教授、中科院上海生命科学研究院生物化学与细胞生物学研究所曾嵘教授、中国科学院北京基因组研究所刘斯奇教授和复旦大学杨芃原教授10名国内外知名专家围绕生物质谱前沿技术和热点问题作专题报告,每个邀请报告的时间为40分钟(含提问时间5~10分钟)。我们真诚地邀请您和您的研究组参加此次会议,本次会议不收会务费,参会者请自行安排住宿,交通和住宿等费用自理,会议提供7月3日的午餐和晚宴。 时间及地点会议时间:2014年7月3日报到时间:08:00-08:30,报到地点:明道楼二楼报告厅大厅 会议地点:复旦大学枫林校区明道楼二楼报告厅(上海徐汇区东安路131号明道楼二楼报告厅),地图请见附件四★ 会议回执:请务必再次填写回执,请见附件二,以供我们安排您的席位!★ 会议议程:请见附件三 会务联系方式徐婷婷: 021-24197312,13917508504,18501662236, tingting.xu@absciex.com方彩云:021-54237961附件一:邀请函(如需要请复制打印) 附件二:会议回执姓名单位是否参加会议(是或否)是否出席晚宴(是或否)附件三:会议议程TimeTitleSpeaker8:00-8:30Registration(明道楼二楼)8:30Welcome and IntroductionPresiding, Dr. Pengyuan Yang, Institutes of Biomendical Sciences, Fudan UniversityPresiding, Dr. Siqi Liu, Beijing Institute of Genomics, Chinese Academy of Sciences8:35~9:15From Proteome to Proteotype via SWATH-MSBy Dr. RuediAebersold,Institute of Molecular Systems Biology (IMSB) in ETH Zurich9:15~9:55Novel Methods for Proteome QuantificationBy Dr. Yukui Zhang, Dalian Institute of Chemical Physics, Chinese Academy of Sciences9:55~10:10AB SCIEX New Product Launch10:10~10:20BreakPresiding, Dr. Pengyuan Yang, Institutesof Biomedical Sciences, Fudan University10:20~11:00Proteomic and GlycoproteomicAnalyses of Tumor Tissues Reveals Altered Glycosylation in Tumor SubtypesBy Dr. Hui Zhang,Johns Hopkins University11:00~11:40Integration of SWATH and MRM for Biomarker Discovery of Esophageal Squamous Cell CarcinomaBy Dr. Siqi Liu, Beijing Institute of Genomics, Chinese Academy of Sciences11:40~12:20Discovery of Novel Interplaying Signal and Epigenetic Pathways Involved in Cellular Stress ResponsesBy Dr. Xian Chen, University of North Carolina at Chapel Hill12:20LunchPresiding, Dr. XiaohongQian, Beijing Proteome Research Center, China14:00~14:40Integrating Proteomics and Metabolomics: Technical ChallengesBy Dr. Liang Li, University of Alberta14:40~15:20Quantitative Mass Spectrometry to Reveal Dynamics of Metabolic NetworkBy Dr. RongZeng, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences15:20~15:40BreakPresiding, Dr. RongZeng, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences15:40~16:20Affinity Enrichment Based Strategy for Proteomics AnalysisBy Dr. XiaohongQian, Beijing ProteomeResearch Center, China16:20~17:00Learning Alzheimer' s Disease using Mass SpectrometryBy Dr. RongWang, Icahn School of Medicine at Mount Sinai17:00~17:40Deciphering Glycoform of Site-specific Glycosylation Based on High-throughput CID/HCD MS/MSBy Dr. Pengyuan Yang, Institutes of Biomedical Sciences, Fudan University18:00Dinner附件四:地铁示意图附件五:附近酒店示意图
  • 成果|中国计量院推出数字PCR仪校准用拷贝数浓度标准物质
    NIM-RM4061数字PCR仪校准用拷贝数浓度标准物质数字PCR技术可以实现核酸的绝对定量,目前已经在肿瘤突变检测、传染病诊断等众多领域得到应用。数字PCR仪计量性能的可靠性,直接关系到检测和诊断结果的准确与否。数字PCR仪校准用拷贝数浓度标准物质,专门用于数字PCR仪拷贝数浓度的校准,特性量值为每管溶液中含有目标基因的拷贝数浓度,标准值及扩展不确定度为:(1.07±0.08)×10^4copies/μL。该标准物质均匀性及稳定性良好。采用0.5mL冻存管包装,最小取样量为2μL。该标准物质采用高效液相色谱外标法得到高浓度质粒DNA母液浓度,结合称量法和经确认的绝对定量方法-数字PCR方法对标准物质的拷贝数浓度进行定值,取两种方法的平均值作为标准物质的标准值。通过使用满足计量学特性要求、经确认的绝对定量测量方法和经检定/校准的容量计量器具,确保本标准物质的量值溯源至可作为任何一个量制基本单位的实体数基本单位“一”(符号:1)以及体积的国家法定计量单位升(L)。数字PCR仪校准用拷贝数浓度标准物质可作为测量标准用于数字PCR仪的拷贝数浓度相对示值误差和拷贝数浓度重复性的校准。规格:50μL/管研制单位:中国计量科学研究院NIM-RM4061 数字PCR仪校准用拷贝数浓度标准物质
  • 重磅!欧盟将针对PFCAs及相关物质开展专项执法行动
    近日,欧洲化学品管理局(ECHA)执法论坛同意开展一个新的试点项目,以检查化妆品等消费品中是否存在受限制的全氟羧酸(PFCAs)及其相关物质。 执法行动基本信息:该试点项目的检查今年(2023年)随后全面展开,并于2024年在12个参与国继续进行。目标是保护消费者不被暴露在PFCAs及其相关物质【包括全氟辛酸(PFOA)】的环境中。该项目还将提高销售化妆品和其他消费品的公司对欧盟REACH法规和持久性有机污染物法规(POPs)限制的认识。 执法目标:保护消费者以避免PFCAs和相关物质的暴露,其中也包括被列为SVHC的全氟辛酸(PFOA)。 持续时间:2023年-2024年。 执法区域:欧盟12国。执法员可根据 REACH 或 POPs 法规中适用的相关条例,对违规行为采取执法措施(如召回产品、撤离市场、禁止销售等),项目报告预计将在2024年底发布。 欧盟PFCAs和PFOA管控要求 1.物质:C9-C14 PFCAs及其盐和相关物质 管控法规:REACH法规 管控要求:自2023年2月25日起,物质、混合物或物品中C9-C14 PFCAs及其盐类的总和低于25 ppb,C9-C14 PFCAs相关物质的总和低于260 ppb,否则不能制造或投放市场。需注意:对于特定产品分阶段实施,详见法规原文(https://echa.europa.eu/)。 2.物质:PFOA及其盐和相关物质 管控法规:POPs法规 管控要求:物质、混合物或物品中PFOA及其盐含量小于等于0.025mg/kg;物质、混合物或物品中PFOA相关物质单项或总和≤1mg/kg。需注意:对于特定产品分阶段实施,详见法规原文(https://echa.europa.eu/)。
  • 关于举办石化、油品相关标准物质免费公益网络培训的通知
    关于举办石化、油品相关标准物质免费公益网络培训的通知 各有关单位:为提高油品检测的准确性、有效性和一致性,提升我国油品检测的整体水平,帮助石化、油品行业检验检测机构和实验室相关技术人员了解质量控制管理和技术知识,掌握标准物质的正确使用方法,通过质量控制提高检验结果的准确性、可靠性和有效性,中国计量科学研究院拟于7月16日举办石化、油品相关标准物质免费公益网络培训。聘请国内相关领域标准物质研制专家授课,系统介绍石化、油品行业标准物质现状、标准物质的选择和使用、检测方法确认与质量控制、不确定度评定实例等内容。此次培训由中国计量科学研究院标准物质研究与管理中心(国家标准物质研究中心办公室)和环境计量中心联合主办,将进行免费公益网络直播授课,现将有关事宜通知如下: 一、培训主题 石化、油品相关标准物质的研制及应用 二、培训时间 培训时间:2021年7月16日 具体课程安排及相应的授课信息将通知给已报名的学员 三、培训内容题目授课老师单位时间标准物质及其作用简介马联弟 研究员标准物质研究与管理中心主任8:30-8:40中国计量院标准物质概况及标准物质研究与管理中心介绍卢晓华 研究员标准物质研究与管理中心副主任8:40-8:50石化、油品行业标准物质研制现状及需求分析全灿 博士/研究员标物中心市场室主任8:50-9:10牛顿流体黏度标准物质的研制及应用张正东 博士/副研究员环境计量中心油品室主任9:10-9:35油品低温性能(倾点、浊点、冷滤点)标准物质研制及应用李轲 博士环境计量中心油品室9:35-10:00开口/闭口闪点标准物质的研制及应用、水质石油类紫外分光光度分析用标准物质的研制及应用刘喆 硕士环境计量中心油品室10:00-10:25蒸发损失(诺亚克法)标准物质的研制及应用、塑料表观剪切黏度标准物质的研制及应用宋小卫 博士/助理研究员环境计量中心油品室10:25-10:50油品中元素含量标准物质的研制及应用王海 博士/研究员环境计量中心物化室主任10:50-11:15水分和馏程标准物质的研制及应用王海峰 博士/副研究员环境计量中心物化室11:15-11:40 四、主办部门 标准物质研究与管理中心(国家标准物质研究中心办公室) 环境计量中心 五、报名注册 此次培训为免费公益网络直播培训。请报名参加培训的学员于6月30日前扫描下方二维码完成报名,或详细填写参会回执回复至指定邮箱。微信扫描二维码 六、联系人 薄梦 bomeng@nim.ac.cn 吴雪 wux@nim.ac.cn 中国计量科学研究院2021年6月10日 附件:参会回执单位名称参训人员姓名职务/职称手 机微信号电子邮箱备注备注:请参加人员详细填写参会回执中的各项信息,并于6月30日前回复至邮箱
  • 纳克标物:秉承七十载技术底蕴,做标准物质的引领者
    钢研纳克检测技术股份有限公司(简称:钢研纳克),“出生”于原钢铁研究总院,前身可追溯到1952年,是我国金属材料检测领域的先行者,经过多年的发展整合,目前,已经是拥有第三方检测、仪器装备(仪器、无损、环保)、标准物质/标准样品、能力验证、计量校准、腐蚀防护、认证评价等9大业务板块的材料全产业覆盖的方案提供者。其中,标准物质/标准样品业务板块在冶金材料领域一直保持领先,具有全球最大的冶金材料标准物质销售、研制中心,不仅在国内发展良好,且大力发展国际合作,已与美国、日本、德国、俄罗斯、英国、捷克等全球20多个国家的百余家标准物质/标准样品研究单位建立了长久的代理合作关系。标准物质业务板块建立的历史背景是什么?近70年的发展过程中发生过哪些意义重大的事件?如何在海外发展并取得成功的?未来会拓展哪些新领域?带着一系列问题,仪器信息网编辑走进了钢研纳克标准物质事业部。七十载历史积淀,开创多个标物研制先河新中国成立以前,国内没有自行研制发布的标准物质,有限使用的标准物质也是从国外进口。解放初期,在大规模经济恢复时段,钢铁工业也快速发展,为了统一钢铁及原材料的分析方法,并为建立标准方法做准备,国内需要自己制备标准物质。1952年,钢铁研究总院研制了全国第一批标准物质,即钢铁(钢3种,铁2种)标准物质,不仅开创了我国标准物质的研制先河,这批标准物质也为统一分析方法、培训化学分析人员、提高分析质量、确保测量结果的一致性以及今后制定标准方法发挥了极为重要的作用和战略意义,更为我国标准物质/标准样品行业的发展奠定了基础。1962年,标准物质研制组筹备建立;1991年,标准物质销售部成立;2011年,标准物质研制组和标准物质销售部合并,成立了钢研纳克标准物质事业部。至今,钢研纳克标准物质业务已经发展了近七十载,期间,再次开创了我国光谱类标准物质、液体标准物质的研制先河,创造了多项“全国第一”,包括研制了全国第一套直读光谱分析标准物质/标准样品、全国第一批国家标准溶液,以及全国第一,也是至今为止唯一的力学拉伸和冲击国家标准样品,将标准样品的研制从传统的化学成分拓展到机械性能,为材料性能的检测提供了保障。累积研制标物已超1500种,销售成绩斐然目前,钢研纳克已成为国内标准物质/标准样品行业同时通过RMP(标物生产者认证)、CNAS(实验室认证)和ISO9000(质量管理体系)认证的龙头企业,拥有冶金标准样品及有色标准样品研制和销售的认可证书。秉承钢铁研究总院几十年标物质研制的技术底蕴,钢研纳克标准物质事业部累积研制标准物质已超过1500种,研制和销售的产品包括:冶金及有色固体标样,标准溶液,冲击、拉伸标样以及粮食,食品,环境,有机类标物等。据悉,纳克标物同时拥有国内和国际销售网络和标准物质信息网络平台。在海外,纳克标物采取“请进来,走出去”的模式。“请进来”是将国内没有且急需的产品,在国际上找到合格的供应商,建立长期的合作关系,以合适的价格供给用户,在满足客户需求的前提下,保持一定的竞争优势。“走出去”是一方面参加国际相关的展会进行宣传,另一方面借助国外合作伙伴的销售网络,借船出海。多年深耕,成绩斐然。钢研纳克标准物质事业部近年来一直稳居国内同行销售额之首。立足冶金,发展标液,拓展领域近年来,随着民众对食品安全的关注,食品中重金属检测的需求也变得日益迫切。标准物质作为分析测量行业中的“量具”,在校准测量仪器和装置、评价测量分析方法、测量物质或材料特性值和考核分析人员的操作技术水平,以及在生产过程中产品的质量控制等领域,都起着不可或缺的作用。下一步,钢研纳克将拓展全新领域。据标准物质事业部负责人介绍,依托钢研纳克标准物质事业部深厚的检测技术底蕴,目前在研的食品、环境标准物质/标准样品,包括大米、小麦、玉米、胡萝卜、牛肉、猪肉、虾等一系列涉及民生的粮食、蔬菜、肉类等标准物质/标准样品,以及土壤、水质等环境标准物质/标准样品。此外,标准物质事业部确立了“立足冶金,发展标液,拓展领域”的发展目标,并围绕此目标,钢研纳克致力于研制全领域,体系化,符合客户需求的标准物质/标准样品。
  • 宁波材料所在玻璃态物质指数弛豫谱的探测方面取得重要进展
    玻璃态材料是一类具有长程无序原子/分子结构的材料。按照成键形式和化学组成,玻璃态材料一般分为金属玻璃、氧化物玻璃、有机玻璃、硫系玻璃等。作为结构材料和功能材料,玻璃态材料在电力电子、光学、信息存储、生物医药、建筑等领域具有重要的应用价值。由于玻璃处在热力学非平衡状态,热历史和加工条件将影响玻璃能量状态,进而影响玻璃的结构和性能。所以,玻璃应用之前往往需要进行退火,通过能量弛豫,逐步消除热历史的影响。   然而,由于玻璃态材料能量状态丰富,弛豫演化规律非常复杂,存在多种弛豫模式,而且不同弛豫模式之间存在耦合和记忆效应,缺乏精准调控的理论和方法,亚稳特征对物理化学性能的影响规律和机制仍然不清楚,极大限制了高性能玻璃态材料的研发进程。   一种经典理论认为,玻璃表现出的宽广的弛豫峰是由一系列具有指数特征的弛豫基元(类似晶体中声子的动力学行为)叠加而成,不同能量的弛豫基元反映了玻璃结构的不均匀性。但目前仍然缺少弛豫基元谱的实验证据。研究探测玻璃弛豫子谱对理解玻璃态本质、精准调控退火工艺改善性能具有重要意义。   最近中国科学院宁波材料技术与工程研究所非晶合金磁电功能特性研究团队在王军强研究员的带领下从玻璃态物质弛豫过程中能量变化角度出发,利用高精度闪速差示扫描量热仪研究了金属玻璃、高分子玻璃和小分子玻璃等不同玻璃态材料在不同退火温度和退火时间下的热流变化。通过精准控制退火温度和时间,他们测量了热流弛豫峰,发现不同温度或弛豫时间的热流弛豫峰的谱线与力学弛豫谱具有一致性,表明宽泛的谱峰来自独立弛豫单元谱的叠加。   为了进一步验证探测到的热流弛豫谱是否是弛豫基元,他们使用Debye模型拟合弛豫峰,得到了合理的激活能或特征时间,并据此提出了“弛豫子”(relaxun)概念。弛豫子与晶体中的声子符合相同的动力学行为,为准确描述玻璃材料的非平衡热力学行为提供了基础。   他们通过控制多步退火中的温度和时间可以实现对特定弛豫子的激活、湮灭或编程,证实了宏观弛豫源于具有指数特征弛豫谱的非均匀性叠加假说。此外,激活能随退火温度和退火时间存在从γ/β′弛豫向β弛豫,并最终进入到α弛豫的转变动力学行为,在焓空间中实现了对不同弛豫模式含量的定量表征。相关结果为理解玻璃态本质提供了重要实验证据,也为精准调控退火工艺提供了重要理论指导。   研究成果以“玻璃态物质指数弛豫谱的探测”(Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry)为题发表在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America, PNAS.120(20), e2302776120 (2023))上(DOI: 10.1073/pnas.2302776120)。论文的第一作者为宁波材料所宋丽建副研究员,通讯作者为宁波材料所王军强研究员和霍军涛研究员,合作作者包括宁波材料所硕士研究生高玉蓉、博士研究生邹鹏、许巍副研究员、高萌研究员、张岩研究员,郑州大学李福山教授,西北工业大学乔吉超教授,燕山大学王利民教授。该研究工作得到了国家自然科学基金委、科技部重点研发计划项目、中科院、浙江省和宁波市的资助。图1 弛豫谱特征。(A)Au基金属玻璃在退火温度Ta=273-393 K下退火5s的热流弛豫峰;(B)Au基金属玻璃在退火温度Ta=253,303,318,363 K下退火不同时间的热流弛豫峰;(C)Au基金属玻璃的力学弛豫谱图2 弛豫谱的Debye模型分析。(A)Au基金属玻璃在退火温度Ta=273-393 K下退火5s的热流弛豫峰(实点)与Debye模型拟合(实线);(B)A图中退火条件下的弛豫激活能;(C)Au基金属玻璃在退火温度Ta=253,303,318,363 K下退火不同时间的热流弛豫峰(实点)与Debye模型拟合(实线);(D)C图中退火条件下的弛豫激活能图3 弛豫谱的调控。(A)Au基金属玻璃在退火温度Ta=403 K下退火0.5s的热流弛豫峰;(B)Au基金属玻璃先在Ta=403 K退火0.5s,然后降低至Ta=363 K退火0.1s的热流弛豫峰;(C)Au基金属玻璃先在Ta=403 K退火0.5s,然后降低至Ta=363 K退火0.1s,最后在Ta=253 K退火500s的热流弛豫峰图4 不同弛豫模式在焓空间中的演化规律。(A)激活能随退火温度和弛豫焓变的关系;(B)不同弛豫模式演化的温度-焓变相图
  • “新冠”疫情防控相关标准物质
    “新冠”疫情防控相关标准物质“新冠”疫情防控相关标准物质资源汇总表
  • 岛津的肥料中三聚氰胺及相关物质分析方案
    最近,日本有关部门发现在石灰氮经加水、造粒而制成的产品(石灰氮水和造粒品)中含有较高浓度的三聚氰胺,但目前尚未制定肥料中的三聚氰胺标准值。为此,需要探讨制定肥料中三聚氰胺相关法规的必要性。目前,日本已经开展有关土壤中三聚氰胺动态以及向农作物转移的调查。 日本岛津制作所以日本独立行政法人农林水产消费安全技术中心(FAMIC)监制的肥料等试验法(2012)作为参考,开发出基于HPLC的肥料中三聚氰胺及相关物质的分析方案,供广大用户参考使用。 了解详情,请点击 《肥料中三聚氰胺及相关物质的分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 大连化物所实现生物质催化转化制备低碳天然气
    近日,中国科学院大连化学物理研究所生物质氢键选控与活化创新特区研究组研究员路芳团队,实现了原生生物质催化转化制备低碳天然气。  天然气是重要基础化石能源之一,可作为发电、供热和运输的燃料,也可用于生产甲醇等大宗化学品。与石油、煤炭相比,天然气燃烧效率高、碳排放及污染物排放低。在当前碳达峰、碳中和的国家战略背景下,发展农林废弃物为原料合成天然气技术路线,对于缓解天然气供应紧张、促进农业废弃物转化和利用具有重要意义。  该工作中,科研人员发展了一种高效的催化氢解策略,可以直接转化多种农林废弃物快速制备天然气:通过精准构建Ni2Al3合金催化活性中心,促进原生生物质大分子中碳-氧和碳-碳键的高效断裂,在温和条件下催化生物质高效转化制备天然气,其中天然气的碳收率可达93%,并且符合管道天然气的组成。全生命周期和经济评估分析表明,生物质天然气与化石天然气相比,碳排放降低了30%左右,通过初始氢压的优化,0.1MPa氢压条件下的碳排放仅为4.0MPa氢压下的10%左右。此外,利用该技术路线,有望实现从原生生物质出发,利用可再生氢气等制备生物质天然气,再通过管道输送将该天然气用于工业、住宅、交通和发电等方面。该技术路线制备的天然气能够有效减少碳排放,具有一定的经济竞争性,为生物质资源转化利用提供了新技术路径。  相关研究成果以Catalytic Production of Low-carbon Footprint Sustainable Natural Gas为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、科技部国家重点研发计划等的支持。  论文链接 大连化物所实现生物质催化转化制备低碳天然气
  • 科学家在银河深处发现暗物质粒子证据
    北京时间10月28日消息,据国外媒体报道,宇宙学家表示,他们已经在银河核心深处发现与暗物质粒子有关的最令人信服的证据。该地的这种神秘物质相撞在一起产生伽马射线的次数,比天空中的其他临近区域更频繁。   最近几年,科学杂志上不断出现类似研究,不过要证实信息来源一直非常困难。然而费米实验室和芝加哥大学的宇宙学家、最新研究的第一论文作者丹霍普表示,10月13日出现在arXiv.org网站上的这项最新研究与此不同。他说:“除了暗物质以外,我们考虑每一个天文学来源,然而我们了解的知识无法解释这些观测资料。也没有与之密切相关的解释。”这一断言还没得到其他科学家的严格审查,不过看过这篇论文的人表示,他们还需要对该成果进行更多讨论。   费米实验室的天体物理学家克雷格霍甘并没参与这项研究,他说:“这是我所知道的第一项通过一个简单粒子模型,把少量与暗物质的证据有关的线索拼接在一起的研究。虽然它还没有充足证据,但它令人兴奋,值得我们去追根究底。”暗物质从137亿年前开始在庞大的能量膨胀——宇宙大爆炸过程中形成。能量冷却后形成普通物质、暗物质和暗能量,目前它们在宇宙中的比例分别是4%、23%和73%。   跟普通物质一样,暗物质具有引力,几十亿颗恒星正是在它们的帮助下聚集到星系里。但是这种物质很难与普通物质发生互动,人们看不到它。微中子是唯一一种曾在实验室里发现的暗物质粒子,但是它们几乎是零质量,而且在暗物质的宇宙能量部分里仅占很小比例。天体物理学家认为,剩下的很大一部分是由弱相互作用大质量粒子(WIMP)构成,这种粒子的能量大约比质子多10到1000倍。如果两个暗物质粒子撞在一起,它们就会彼此摧毁对方,产生伽马射线。   霍普和他的科研组通过对费米伽马射线太空望远镜在两年多时间里传回地球的数据进行分析,发现这种高能死亡信号。费米太空望远镜是美国宇航局的伽马射线望远镜,主要用来扫描银河的高能活跃区。他们发现,发出信号的相撞在一起的暗物质粒子,比质子大约重8到9倍。霍普说:“它比我们大部分人猜测的结果可能更轻一些。迄今为止我们很擅长这方面。不过人们猜测的暗物质粒子的重量范围不会一成不变。”   该科研组在银河核心处一个直径100光年的区域收集到的数据里发现这些信号。霍普解释说,他们之所以会关注这个区域,是因为它是暗物质最喜欢的聚集地,银河这个区域的暗物质密度,是银河边缘的10万倍。简而言之,银河核心就是一个暗物质大量聚集在一起,经常相撞的地方。   然而,其他科学家希望看到卡尔萨根的名言“不同凡响的发现需要不同凡响的证据”能变成现实。也就是说,他们希望看到从自然界和实验室两方面获得的证据。芝加哥大学的宇宙学家迈克尔特纳没参与这项研究,他说:“没人提供像萨根提到的那种证据。接受这一观点最困难的部分是,你必须拒绝接受天体物理学解释。大自然非常非常聪明,这可能是我们至今从没思考过的事情。”   特纳表示,好消息是几项有希望的暗物质探测试验目前正在进行。相干锗中微子技术(CoGeNT)等深埋地下的探测器可助霍普一臂之力。该探测器近几年可能已经发现弱相互作用大质量粒子的迹象。特纳说:“这十年是暗物质的十年。这个问题即将解决。现在所有这些探测器都在观测正确方位。”霍普同意两人的观点,不过他表示,与他交谈过的天体物理学家,没人能解释清楚这一现象。他认为,在他的发现得到支持或痛批前,也许只要数周时间就能在实验室里验证暗物质是否存在。他说:“我从没像现在一样为自己是一名宇宙学家而感到激动不已。”
  • 欧盟拟修改砷、可可碱等有害物质相关规定
    欧盟于2009年7月23日通报,欧共体委员会拟修改2002/32/EC号指令关于某些有害物质的相关规定。 规定属痕量元素化合物功能团添加剂砷的最高标准;根据技术知识的最新发展,批准鱼肉、鱼油鱼饲料内砷的最高标准;规定以铁内砷为示踪元素的砷最高标准;降低可可碱的现定最高标准;修改曼陀罗、蓖麻、巴豆的规定;新增一条相思子的规定。
  • BCEIA 2023 |阿尔塔有约-标准物质与质谱应用技术研讨会
    时间:2023年9月7日(周四)地点:BCEIA E200会议室 (中国国际展览中心(顺义馆)北京市顺义区裕翔路88号)主办方:天津市分析测试协会标准物质与检测技术分会、天津阿尔塔科技有限公司*会议简介由天津市分析测试协会标准物质与检测技术分会、天津阿尔塔科技有限公司主办,于2023年9月7日举办《阿尔塔有约-标准物质与质谱应用技术研讨会》。集中研讨有机标准物质在质谱检测的重要作用,大咖云集,现场报告,答疑解惑。*日程安排主持人:卢晓华(中国计量科学研究院 研究员)9:00-9:30 签到9:30-10:00 《程序定义量标准物质关键技术与选用要点》王苏明 教授级高工 国家地质实验测试中心10:00-10:30 《标准物质的作用及选用中的常见问题》卢晓华 研究员 中国计量科学研究院10:45-11:15《QuSEL化学物质特征库及其在风险筛查中的应用》邱静 研究员 中国农业科学院农业质量标准与检测技术研究所11:15-11:45 《液相色谱串联质谱在生活饮用水检测中的应用-GB/T 5750的解读》陈永艳 副研究员 中国疾控中心环境所主持人:徐银(天津阿尔塔科技标物中心总监 副高级工程师)12:00-13:30 午餐卫星会12:00-12:30 《自动化农残解决方案》孔晔 GCMS应用工程师 安捷伦12:30-13:00 《SCIEX高质量精度质谱助力食品安全与营养》 张景然 应用专家 SCIEX中国13:00-13:30 《基于液质的新污染物高通量监测方法介绍》郭藤 应用主管 赛默飞主持人:谢剑炜(军事科学院军事医学研究院 研究员)13:30-14:00 《农药残留标准进展与应用》刘潇威 研究员 农业农村部环境保护科研监测所14:00-14:30 《血液中常见毒药物的质谱筛查方法》李惠玲 主任技师 首都医科大学附属北京朝阳医院14:30-15:00《临床化学性中毒检测的实践与思考》 谢剑炜 研究员 军事科学院军事医学研究院15:15-15:45 《质谱检测稳定同位素标记标准物质》张磊 总经理/首席技术官 天津阿尔塔科技有限公司15:45-16:15 《自建谱库对代谢组学及标志物开发与转化的重要性》孔子青 高级总监 杭州凯莱谱精准医疗检测技术有限公司 多组学研发研发中心16:15-17:00 《工业源新污染物的非靶标筛查与控制》刘国瑞 研究员 中科院生态环境研究中心*主持人卢晓华 中国计量科学研究院 研究员徐银 天津阿尔塔科技标物中心总监 副高级工程师谢剑炜 军事科学院军事医学研究院 研究员*报告专家王苏明,国家地质实验测试中心 教授级高工CNAS实验室认可、标准物质/标准样品生产者和能力验证提供者主任评审员,检验检测机构资质认定国家级评审员。国务院第三次全国土壤普查实验室评审专家、全国土壤污染状况详查国家级技术指导和质量监控责任专家、全国地下水质和污染调查评价样品分析质量监控专家。长期从事资源环境领域分析技术研究、标准物质和标准方法研制、实验室测试质量监控与评估等技术研究工作,主持完成百余项国家/行业标准方法和标准物质,负责组织完成实验室能力验证计划项目40余项。卢晓华,中国计量科学研究院 研究员中国计量科学研究院标准物质研究与管理中心(国家标准物质研究中心办公室)副主任,全国标准物质计量技术委员会(MTC24)等多个工作组的专家。拥有丰厚的计量基础理论知识与实践经验,曾作为核心成员参与国家科技基础条件平台“国家标准物质资源共享平台建设”等多个科研项目,主持国家质量基础重点研发计划 “标准物质关键共性技术研究与应用”课题,主持或作为主要起草人完成《标准物质通用术语及定义》等多个国家计量技术规范的起草制定,参与《标准物质质量控制及不确定度评定》等多部化学有效分析测量系列丛书的编写。在标准物质研制、质量管理、应用与量值评价、能力验证、检测技术评价、计量溯源基础理论等领域发表国内外论文40余篇,获制备技术发明专利2项。邱静,中国农业科学院农业质量标准与检测技术研究所 研究员博士,三级研究员,博士生导师,国家“神农青年英才”,中国农业科学院“青年英才”、农产品质量安全风险评估创新团队“首席科学家”,食品安全国家标准审评委员会委员。中国农业科学院农业质量标准与检测技术研究所风险监测与评估研究室主任,农业农村部农产品质量安全监督检验测试中心常务副主任。主要从事农产品质量分析及安全评估研究,主持包括国家重点研发计划项目“地理标志产品特色品质控制技术研究与应用”1项、国家自然科学基金4项在内的科研项目课题30余项。以第一/通讯作者发表论文110余篇,SCI收录81篇,一区52篇,4篇IF>10;研制国家/行业标准9项,授权发明专利6项,主参编著作3本,指导研究生16名。获全国农牧渔业丰收奖、神农中华农业科技奖等省部级成果一等奖5项。陈永艳,中国疾控中心环境所 副研究员 长期从事饮用水与健康相关研究工作,参与“十二五”和“十三五”国家科技重大专项、“十四五”国家重点研发计划等多项科研项目,参与完成饮用中药品及个人护理品、全氟化合物、高氯酸盐、农药等新污染物检验方法研制及标准化工作。孔晔,安捷伦 GCMS应用工程师 2009年毕业于中国农业科学院食品安全专业,师从李培武院士,主要研究方向为农药残留快速检测技术。毕业后先后任职于SGS (瑞士通标标准技术服务有限公司)和NSF (美国国家卫生基金会)主要负责食品和药品中痕量污染物分析技术,现任职于安捷伦科技(中国)有限公司十余年,主要负责GCMS产品线的应用技术研究。张景然,SCIEX中国 应用支持专家 主要负责食品安全、环境污染物、法医毒物等领域的客户应用支持和整体解决方案开发工作,拥有10年液质联用使用经验。郭藤,赛默飞 应用主管 食品安全专业背景,多年质谱分析相关的工作经验,赛默飞世尔科技色谱质谱部LCMSMS资深应用工程师,一直致力于LCMSMS的应用方法开发、解决方案研究,主要应用方向为食品环境安全、药物分析、化合物鉴定等。刘潇威,农业农村部环境保护科研监测所 研究员担任国家农业检测基准实验室(农药残留)主任,国家食品安全风险评估专家委员会和国家农产品风险评估专家委员会委员,国家食品安全标准委员会和国家农药残留标准委员会委员等。主要从事环境及农产品中污染物监测技术与风险评估研究、农产品产地环境控制技术标准研究与制定工作。先后组织起草多项国家农药残留检测标准。李惠玲,首都医科大学附属北京朝阳医院 主任技师首都医科大学附属北京朝阳医院职业病与中毒医学科毒物化学分析实验室负责人。负责筹建了北京朝阳医院毒物化学分析实验室。参与国内多起突发化学品中毒事件的毒物检测和应急处置工作;培养各省市毒化检测进修技师30余名;承担和参与多项科研课题;在国内外期刊发表文章30余篇;参编论著2部。现任中华预防医学会中毒控制分会委员、中国物理学会质谱分会学术委员、北京医学会职业病分会委员,北京市职业病防治技术评审专家库专家等社会兼职。谢剑炜,军事科学院军事医学研究院 研究员军事科学院军事医学研究院、抗毒药物与毒理学国家重点实验室研究员,少将军衔,军事科学院首席专家。全军毒检中心(国际禁化武组织指定实验室、国家反恐怖检测鉴定指定机构)主任。兼任中央军委保健专家、国家防范处置恐怖袭击事件咨询组专家及化学组副组长、中国化学会质谱分析专业委员会副主任委员、中国毒理学会中毒与救治专业委员会主任委员等。主要从事未知化学危害物筛查鉴定技术及相关分析毒理学研究,荣获国家科技进步一等奖、军队科技进步一等奖和中国分析测试协会科学技术奖特等奖各1项,发表SCI期刊学术论文150余篇,授权发明专利20余项。张磊,天津阿尔塔科技有限公司 总经理/首席技术官博士,天津阿尔塔科技有限公司创始人,天津市标准物质与稳定同位素标记技术研究重点实验室主任,天津市分析测试协会标准物质与检测技术分会会长,南开大学研究生校外指导教师,《化学试剂》、《食品安全质量检测学报》编委,国家标准物质技术评审专家库专家,全国标准样品技术委员会委员,中国认证认可协会科学技术委员会委员,中国认证认可协会检验检测智库专家,中国分析测试协会、AOAC中国分会等多个专业协会的标准化/技术委员会委员/专家。长期致力于食品、环境、医药、临床、农药、兽药等有机标准品和稳定同位素标记物的研发与国产化。孔子青,杭州凯莱谱精准医疗检测技术有限公司多组学研发中心,高级总监南京医科大学姑苏学院产业教授,杭州医学院特聘教授。专注于临床质谱技术的精准医学领域的应用,深耕代谢组、代谢机制研究等领域;先后主持瑞典Kempe基金会奖学金项目、国家自然科学青年基金项目等多项省部级科研项目;在Cell、Cell Discovery、Cell Reports、Nucleic Acids Research等杂志上以主要作者发表20余篇SCI论文;参与完成多项国家重大课题研究,参与万人级大队列项目的检测研究数个;主导开发慢性代谢性疾病和肾结石相关创新诊断标志物产品并获得发明专利授权3项和医疗器械注册证1张;在Cell杂志发表全球首个新冠病人血清多组学研究成果,并主导开发了多项新冠轻重症发病机制和预后标志物研究工作。刘国瑞,中科院生态环境研究中心 研究员 中科院创新交叉团队负责人,研究方向为持久性有毒污染物排放及控制,在Nat. Commun., Prog. Energy Combust. Sci., Environ. Sci. Technol.和Trends Anal. Chem.等发表论文160余篇。担任Ecotox. Environ. Saf.副主编、iScience编委。随团队获2019国家科技进步二等奖、2019年生态环境部环保科技一等奖、第13届国际PTS大会青年科学家奖。*预约报名请联系我们预约报名,前100名报名的老师可以凭预约信息现场领取精美礼物一份关于阿尔塔科技天津阿尔塔科技有限公司成立于2011年,是国内领先的具有专业研发及生产能力的国产标准品企业,公司坚守“精于科技创新,保障人民健康安全生活”的企业愿景,秉持”致力于成为标准品第一品牌”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,精于标准品科技创新,创造绿色健康品质生活,真正实现From Medicare to Healthcare。 
  • 第三届原子光谱及相关技术学术会议热点报告
    仪器信息网讯 2014年9月14日,第三届全国原子光谱及相关技术学术会议在广西桂林市阳朔召开。会议由中国仪器仪表学会分析仪器分会原子光谱专业委员会主办、广西师范大学承办,200多名科研和技术人员与会交流,仪器信息网作为支持媒体也参加了此次会议。   虽说是原子光谱学术会议,但是此次会议交流的报告内容主要集中在电感耦合等离子体质谱ICP-MS最新应用方面。ICP-MS是20世纪80年代发展起来的新的分析测试技术,作为一种相对先进的离子化形式,它几乎可分析地球上所有元素。与传统无机分析技术相比,ICP-MS技术具有检出限低、干扰小、精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。ICP-MS在环境科学、食品科学、材料科学、生命科学、地球科学、半导体等领域获得了广泛的应用,成为痕量分析与元素形态分析等最有力的分析手段。   此次会议上,ICP-MS最新应用研究主要聚焦在了生命科学领域。如张新荣教授研究了元素探针结合ICP-MS进行DNA分析 王秋泉教授也是以元素标记的策略,基于ICP-MS进行目标蛋白质、细胞和病毒的定量和计数 胡斌教授则在微流控芯片上实现固相或液相微萃取结合ICP-MS的方法,实现了细胞中痕量元素的分析。 清华大学 张新荣教授   张新荣教授介绍说:&ldquo 荧光探针与成像方法在复杂生物样品分析中已经被广泛应用,但是,由于受到荧光光谱与峰宽限制,目前一本只能同时检测3~5种不同类型的待测分子,很难进行多组分的同时分析。发展适用于复杂生物品样品的新型探针和多组分分析方法,是分析化学的一项基础性研究课题。&rdquo   张新荣教授报告中介绍了其课题组在这一方面所做研究的进展。其一是采用稀土稳定同位素探针结合ICP-MS,能够同时检测生物样品中15种具有特定序列的DNA分子 并且,通过测量同位素稀释比,可实现DNA分子的绝对定量分析。其二是研究了非荧光单金属纳米颗粒探针结合ICP-MS,成功用于三组分DNA的检测。张新荣教授在上述研究中采用了单纳米颗粒的检测模式,大大提高了检测DNA的灵敏度。并且,根据单粒子和二聚以及多聚纳米粒子在无机质谱中响应信号的差异,可对特定序列DNA的杂交反应进行检测。   并且,张新荣教授还指出,利用元素与纳米探针结合ICP-MS进行DNA分析还有很大的发展空间,是一个值得研究的方向。 厦门大学 王秋泉教授   目标蛋白生物标志分子、病变细胞/病毒的定量信息有助于疾病的诊断。在这方面,王秋泉教授课题组近年来发展了目标蛋白质、病变细胞/病毒分析方法学,此方法采用了化学选择性和生物专一性元素标记策略,并结合ICP-MS的分析方法。   此次会议报告中,王秋泉教授重点介绍了其课题组近两年来针对目标蛋白生物标志分子所展开的基于&ldquo Activity&rdquo 的元素标记策略、集成ICP-MS和生物质谱的&ldquo Chemical Hub&rdquo 以及目标蛋白生物标志分子、病变细胞/病毒的定量和成像方法。   最后,王秋泉教授还展望了从&ldquo Chemistry-based&rdquo 到&ldquo Activity-based&rdquo 再到&ldquo metabolism-mediated&rdquo 元素标记策略的发展趋势。 武汉大学 胡斌教授   细胞是生命体的最小基本单元,是生物医学分析中的重要研究和监测对象。&ldquo ICP-MS及其联用技术用于细胞分析尚处于起步阶段,所面临的问题主要包括:细胞分析需要高灵敏度的分析方法,微量的细胞样品要求分析方法微型化 复杂的细胞基质要求方法具备分离基质的能力等,&rdquo 胡斌教授介绍到。   针对上述问题,胡斌教授研究组以磁性纳米粒子自组装堆积方式制备了芯片磁固相填充柱,实现了磁固相萃取和细胞样品引入技术在芯片上的整合。首次建立了芯片磁固相萃取-电热蒸发-ICP-MS新方法,并将其应用于HepG2肝癌细胞中痕量元素Cd、Hg和Pb的分析,并且得出单个HepG2肝癌细胞中痕量元素Cd、Hg和Pb的含量在fg/亚fg级。   第三届全国原子光谱及相关技术学术会议召开
  • 马庆伟:怀揣生物质谱的中国梦
    8月31日,马庆伟再次以学生身份走进北京大学校门,成为北京大学前沿交叉学科研究院2013级在职博士研究生。从生物学到金融学,从创业再到如今回归医疗器械工程技术方面的学习和研究,马庆伟一直在努力成为科研和市场之间的桥梁。   每周五下午,北京亦庄生物医药园内随处可见&ldquo 回城&rdquo 的喜悦。而在毅新兴业(北京)科技有限公司(以下简称毅新兴业)和中国科学院北京基因组研究所共建的&ldquo 毅新&mdash 中科联合实验室&rdquo 里,实验室负责人单广乐还沉浸在工作中。毅新兴业总经理马庆伟成功地将&ldquo 5+2&rdquo 、&ldquo 白加黑&rdquo 的创业精神传递给了公司每一名员工,所有人都平添了一份责任感。   一项SNP(Single Nucleotide Polymorphisms,指在基因组上单个核苷酸的变异形成的遗传标记)合同中,客户为毅新兴业提供了200多份样品。但公司技术部在前期质检中发现,有40多份样品不合格。   &ldquo 本着对客户负责的态度,我们向客户反映了这一问题。为了不耽误客户的课题进展,技术部门的员工周末连续加班,为客户完成DNA的重新提取工作。&rdquo 在马庆伟眼里,敬业、责任、严控质量是从事生物医药行业工作的基本准则。   代理赚来了第一桶金   早在11年前诺贝尔化学奖的颁发,给马庆伟带来了启发。2002年,诺贝尔化学奖授予在质谱和核磁共振领域有杰出贡献的3位科学家,以表彰他们对生物大分子鉴定及结构分析方法作出的贡献。马庆伟敏锐地从当中感觉到,生物质谱技术在临床应用中有着巨大的潜力。   &ldquo 那时,国内很多科学家也开始关注生物质谱。&rdquo 马庆伟说,由于已经在代理的市场上摸爬滚打多年,他幸运地抢到了市场先机。随后,毅新兴业通过和当时专业生产质谱仪的著名企业布鲁克公司谈判,得到了其大中华区总裁的支持,由此,毅新兴业开始代理布鲁克的生物质谱产品。   &ldquo 当时,中国生物产业几乎被外资垄断,市场上充斥着美国应用生物系统公司、罗氏等品牌的产品。中国人只能在这个市场里充当代理的角色。&rdquo 血气方刚的马庆伟从那个时候开始,就酝酿&ldquo 制造中国医疗器械&rdquo 之梦。   中国经济信息网在当年的一份分析报告中预测,到2005年,中国医疗器械工业的销售额将达到400亿元以上,&ldquo 市场前景十分广阔&rdquo 。但报告同时也指出,当年我国每年都要花费数亿美元外汇从国外进口大量医疗设备,国内大约有近70%的医疗器械市场已被发达国家的公司瓜分。   &ldquo 大概只有5%的国内企业自主研发生物试剂以及仪器。&rdquo 马庆伟说,自主研发需要大量资金,而相关资金只能通过贸易来积累。   在创业过程中,&ldquo 联想模式&rdquo 给了马庆伟很大启发。即使到现在,马庆伟依然坚持毅新兴业走&ldquo 贸易+科技服务+自主研发&rdquo 的发展道路。   用科技服务巩固市场   &ldquo 我们发现,国外公司在中国只有销售部和售后维修,因此,大量用户的深入研发需求得不到支持。&rdquo 在一次与投资公司的对话中,马庆伟谈起自己做科技服务的初衷。看到一些客户把买回去的仪器因为技术支持不足而利用率低下,他抑制不住自己要为客户再做点儿什么的想法。   马庆伟在设备销售中还发现,很多科学家虽然不考虑购买仪器,但是有兴趣通过质谱技术做课题。   于是,毅新兴业在2005年成立了技术支持部门,一方面给科学家提供更深入的服务,另一方面,开始和301医院、军事医学科学院等合作临床实验,与科研专家合作进行肿瘤多肽指纹图谱以及微生物蛋白指纹图谱的临床前研究。   &ldquo 从最开始的设备使用培训,到后来的参与课题,我们跟客户的合作越来越紧密,客户也对我们有了依赖。&rdquo 马庆伟涉足科技服务的这步棋不仅巩固了设备销售市场,更是为公司开拓了另一条盈利途径。   在科技服务领域,超强的责任心为毅新兴业赢得了好口碑。   &ldquo 在执行血清多肽谱项目时,实验结果与客户预期的不同,但客户提出无法确认这是客观事实还是我们的实验水平问题。&rdquo 马庆伟说。在合作初期,受到客户质疑是无法避免的,毅新兴业通常会想办法与客户一起寻找答案。   本着客户和课题为先的思想,毅新兴业为客户重做了200份样品,并将每一步结果交给客户查阅。最终的结果与上一次得到的结果一致,证明客户的最初设想与客观事实存在偏差。   多数时候,科技服务提供商的角色就像是一个隐藏在幕后的&ldquo 剧务&rdquo ,但看着&ldquo 主角&rdquo 们取得荣誉,马庆伟就像是自己获奖般地开心。   2012年,毅新兴业为阜外医院、上海复旦大学提供的大样本SNP验证数据得到了《自然》等全球著名学术期刊的认可,这再一次肯定了毅新兴业的服务能力。   智库&ldquo 撑起&rdquo 自主研发   2009年12月,欧洲斯耶来伯集团宣布在旗下70多家第三方检测实验室使用布鲁克公司的生物质谱进行微生物鉴定工作 2010年6月,全球最大的微生物鉴定企业法国生物梅里埃公司并购德国Annogstec公司,推出生物质谱微生物鉴定产品VITEK MS,拉开了生物质谱在微生物鉴定领域临床大规模推广的序幕。   在这一场国际市场大战中,毅新兴业全力以赴。   早在2008年,毅新兴业认识到科学仪器对于科研、临床工作的支撑作用,考虑进行飞行时间质谱的硬件研发。这个设想虽在当时受到一些质疑,但还是得到了国内质谱领域很多专家的鼓励。   &ldquo 国内质谱市场在过去30年一直被外资占领,这个局面需要被改变。&rdquo 马庆伟是个不善于表达的人,说话速度不快,但这丝毫没有削弱话语里的坚定。   马庆伟的坚定,或许还源于他身后支撑他的专家们。   在毅新兴业的顾问团队里,英国Sanger测序中心教授宁泽民、现任约翰· 霍普金斯大学病理和肿瘤系副主任张真等知名专家赫然在列。另外,国家&ldquo 千人计划&rdquo 特聘教授、北京科技大学化学与生物工程学院院长张学记同样给了毅新兴业不少直接帮助。   在全球质谱领域顶级科学家的建议下,毅新兴业和英国科学仪器公司合作。从OEM到ODM,再到逐步开始自主研发,毅新兴业累计获得15项授权,得到了6项软件著作权,并最终在2010年底完成了CLINTOF样机研发。   2012年,经过一年多的改进,CLINTOF通过了欧盟CE IVD认证和美国FDA注册。同年7月在科技部举办的高新区20年成就展中,CLINTOF得到了科技部部长万钢的勉励。   &ldquo 我们在实现生物质谱领域中国梦的路上!&rdquo 马庆伟信心十足。
  • analytica 2014国际研讨会聚焦:微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。   为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。   纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。   除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。   analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。   关于analytica   analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。   更多展会和相关活动信息请访问:www.analytica.de/en   关于analytica China   analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn   慕尼黑国际博览集团   慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。   此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 合肥物质院计量与检测中心顺利通过CNAS/CMA扩项现场审核
    4月15日至22日,合肥物质院计量与检测中心分别接受了中国合格评定国家认可委CNAS实验室认可和国家计量认证中科院评审组CMA资质认定的现场评审,均顺利通过评审。副院长程艳参加相关评审工作。   现场评审时,CNAS、CMA共组织10名专家对计量与检测中心管理体系各要素进行全面审核,通过现场试验、盲样试验、人员比对、报告验证和操作演示等方式开展技术能力考核。审核专家一致认为管理体系运行和技术能力均达到满足检测或校准标准的要求,推荐扩项检测和校准参数获得认可。   扩项后计量与检测中心各类检测校准参数较扩项前实现大幅增长,其中CNAS认可的检测项目达到31大类94个参数,增幅一倍,CNAS认可校准能力覆盖9大类27个参数,翻两番;CMA认定的检测项目达到25个大类102个参数,也实现翻两番。计量与检测中心在相关专业领域检测的综合实力、技术能力、服务质量得到整体提升和进一步拓展。   2022年,为进一步满足科研项目申请资质和检测市场的需要,安光所大气光学和光谱辐射检测、等离子体所大功率电气设备和超导电工检测、固体所水质分析检测、核安所材料服役性能和辐射安全检测均提出CNAS/CMA检测与校准能力扩项的申请。计量与检测中心、高技术与质量处与各检测实验室通力协作,前期组织开展了认可标准宣贯会,修订体系文件,一体化的内审和管理评审,持续改进管理体系。为一次性通过扩项审查,组织扩项预审查或专题辅导,积极开展外部质量控制,参加中科院系统组织的能力验证与CNAS认可的测量审核,均获得满意结果,为最终现场评审获得技术能力认可奠定了夯实的基础。
  • 合肥物质院杨良保团队开发出表面增强拉曼光谱分析新方法
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所研究员杨良保课题组,开发了AgNP/MoS2纳米“口袋”自动捕获目标物分子的表面增强拉曼光谱方法,可实现部分化学反应过程的高灵敏长时间动态检测。相关成果发表在《分析化学》(Analytical Chemistry)上,并被选为当期正封面(图1)。表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保团队致力于SERS方面的研究。在既往研究的基础上,该团队在大面积单层纳米粒子膜上覆盖了二维材料MoS2(图2),制备成AgNP/MoS2纳米“口袋”,将其覆盖在待测目标物分子之上,采用多物理场模型的有限元模拟方法,分析了AgNP/MoS2纳米“口袋”结构在溶液和空气中的电场增强分布和溶液蒸发的动态过程。研究表明,该纳米“口袋”具有高密度的热点,并具有主动捕获分子的能力,与单层AgNP膜相比,覆盖MoS2后减缓了溶液的蒸发,延长了SERS检测的窗口期,同时进一步增强了电场。该结构可实现长达8分钟的高灵敏度、高稳定性的SERS动态检测。此外,该结构可用于检测抗肿瘤药物和监测血清中次黄嘌呤的结构变化。相关方法有望更多地应用于生物系统中物质转化或其他化学反应动力学的现场检测。   研究工作得到中国科学院科研仪器装备开发项目、国家自然科学基金和安徽省自然科学研究项目等的支持。
  • 中国计量院研制出新冠病毒奥密克戎变异株基因组RNA标准物质
    日前,中国计量科学研究院(以下简称“中国计量院”)联合北京科兴中维生物技术有限公司成功研制了新冠病毒奥密克戎变异株基因组RNA标准物质。项目组以新冠病毒奥密克戎变异株为候选物,对其灭活后进行基因组RNA纯化、序列表征和量值测定。该标准物质可用于验证现有核酸检测试剂盒是否会对奥密克戎变异株漏检,以及新冠病毒检测分型试剂盒的开发。此次开发的标准物质涵盖新冠病毒奥密克戎变异株的全部序列,高通量测序和数字PCR结果表明不存在其他病毒和新冠变异序列。采用经国际比对验证的数字PCR方法,对开放阅读框(ORF1ab)基因、核衣壳蛋白N基因、包膜蛋白E基因和刺突蛋白S基因进行了准确定值。特性量值为每管溶液中含有的新冠病毒奥密克戎变异株的ORF1ab、N、E和S基因的拷贝数浓度。具体量值见表1。表1. 新冠病毒奥密克戎变异株基因组RNA标准物质特性量值新冠病毒奥密克戎变异株基因组RNA标准物质S基因的序列中单核苷酸变异位点包括A67V、T95I、Y145D等30多个变异位点,主要变异位点见图1。图1. 新冠病毒奥密克戎变异株基因组RNA标准物质S基因变异位点据了解,此次为中国计量院继德尔塔(Delta,B.1.617.2)、阿尔法(Alpha,B.1.1.7)、贝塔(Beta,B.1.351)、伽马(Gamma,P.1)变异株等标准物质之后的又一突破。截至2022年1月底,中国计量院已成功研制了核酸、抗原和抗体等30种新冠病毒相关的标准物质,该系列标准物质可应用于方法建立、方法验证、质量控制、试剂性能评估、验证与评价等多方面。上述标准物质已广泛应用于全国31个省市的700余家单位,为保障新冠病毒检测结果准确、可比、可溯源提供了技术支撑。
  • 色谱图里的秘密:PFPD检测器硫物质分析
    脉冲式火焰光度检测器PFPD5383硫物质分析——杰出的选择性和灵敏度PFPD对于硫物质具有线性的、等摩尔响应,能够选择性地测定从极低的ppb到ppm级的各个独立硫物质的浓度以及各个独立的硫物质峰加和的总硫浓度。单独一台检测器就能够同时得到硫物质和烃类物质的色谱图,这一独特的功能使其远优于其它的硫物质检测技术。PFPD操作原理氢气和空气的混合燃烧气被引入并且从下向上充满检测器的内腔体和上盖(1)。燃烧混合气在上盖位置被点燃(2)。点燃的火焰沿着内部的流路传播,同时消耗氢气和空气的混合气(3)。由气相色谱仪的柱子分离出来的物质在石英燃烧管内燃烧并且发射出元素特定波长的光(4)。当火焰到达检测器的底部时熄灭,激发出来的物质持续发射荧光长达25毫秒。激发出来的物质发射出来的光沿着一根光管传播,选择性发射出来的光穿过一个滤光片到达光电倍增管进行检测(5)。整个脉冲的火焰周期以大约每秒钟3至4次的频率重复。相比于其他的检测器,PFPD提高了长期稳定性并且只需要极少的维护,避免了其他检测器由于烟尘的沉积干扰了硫发射信号的传播。检测和定量气体中的硫污染物对于工业过程的正常运转以及控制产品品质都是格外重要的。GPC-PFPD已经被证明是实现硫物质分析的高效的手段。&bull 液化石油气(LPG)中的硫物质&bull 乙烯和丙烯原料中的羰基硫&bull 天然气中的硫物质&bull 饮料级CO2中的不纯物质&bull 半导体和工业气体的纯度&bull 气体产物和混合过程中的质量控制乙烯和丙烯原料丙烯是乙烯蒸汽裂化的副产品。羰基硫(COS)是丙烯原料中最主要污染物,如果不能够有效地去除,将损坏用于聚合物生产和其它过程中的昂贵的催化剂床。右侧的色谱图显示了在丙烯和乙烯装置分离之前以及洗刷掉硫物质之前,原料气中存在的烃类物质和COS。天然气天然气中含有硫化氢或者甲硫醇,也称作“酸”气。天然气中的硫化氢的浓度范围从几乎检测不到到高达0.30%(3,000 ppm)。CO2中的不纯硫物质尽早地检测和控制H2S和COS的含量是控制食品级CO2品质的一个重要考虑因素,因为这些物质的存在,将在碳酸饮料中产生不希望的气味和口感。石化产品中的硫分析PFPD已经被广泛应用在实验室以及过程气相色谱仪器上,用于分析液态石化产品中的各个独立的硫物质以总硫的浓度。汽油柴油气态和液态的石化产品&bull 丙烯中的羰基硫(ASTM D5303)&bull 天然气中的硫物质(ASTM D5504&D6228)超低硫浓度的汽油(ULSG)&bull 超低硫浓度的柴油(ULSD)&bull 苯中的噻吩(ASTM D4735-02&D7011)&bull 石油醚液体中的硫物质(ASTM D5623)喷气机燃油&bull 萘&bull 原油和合成油燃料油&bull 轻循环油(LCO)
  • 继芬太尼后,新精物(NPS)再添列管物质,普识纳米SERS增强手持拉曼实现ppm识别
    前言:公安部、国家卫生健康委员会和国家药品监督管理局联合发布《关于将合成大麻素类物质和氟胺酮等18种物质列入的公告》,决定正式整类列管合成大麻素类新精神活性物质,并新增列管氟胺酮等18种新精神活性物质。公告自2021年7月1日施行。整类列管合成大麻素类物质是中国继芬太尼整类列管后再次整类列管一类新精神活性物质,中国成为全球首个整类列管大麻素的国家。  新精神活性物质(NPS),又称“策划药”或“实验室毒品”,是不法分子为逃避打击而对管制毒品进行化学结构修饰得到的毒品类似物,具有与管制毒品相似或更强的兴奋、致幻、麻醉等效果,已成为继传统毒品、合成毒品后全球流行的第三代毒品。由于新精神活性物质品种层出不穷,因此生物样品中新精神活性物质的分析面临很大挑战。其中大麻素类物质危害严重,在新疆等滥用严重地区,已引发毒驾、故意伤害等危害公共安全事件。  合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。吸毒人员吸食该类物质后,会出现头晕、呕吐、精神恍惚、致幻等反应,过量吸食会出现休克、窒息甚至猝死等情况,已引发数起毒驾、故意伤害等危害公共安全事件。该类物质既有国内非法制造,也有部分从国外走私而来。此外,本次新增列管的氟胺酮作为氯胺酮替代品在部分地区滥用问题突出。  普识纳米在拉曼光谱应用一直走在行业前列,新增列管氟胺酮等新精神物质能够实现ppm准确识别。  普识纳米HR650D手持式拉曼光谱仪采用激光拉曼光谱分析技术【获得公安部认证】,能对各种毒品、新精物(NPS)等物质进行快速检测和准确识别。仪器可在保证不损害被测样品完整性的情况下,检测液体和固体状态的样品,明确给出被测物质的具体名称、物质属性和谱图,并生成PDF报告,整个过程几秒内完成。相较于常规拉曼检测,普识纳米结合拉曼表面增强试剂或者芯片,可对痕量物质等进行快速检测(常规ppm,个别ppb级别 ),满足现场使用要求,仪器设计紧凑,结构简单,性价比高。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制