当前位置: 仪器信息网 > 行业主题 > >

乙烯菌核利标准品

仪器信息网乙烯菌核利标准品专题为您提供2024年最新乙烯菌核利标准品价格报价、厂家品牌的相关信息, 包括乙烯菌核利标准品参数、型号等,不管是国产,还是进口品牌的乙烯菌核利标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙烯菌核利标准品相关的耗材配件、试剂标物,还有乙烯菌核利标准品相关的最新资讯、资料,以及乙烯菌核利标准品相关的解决方案。

乙烯菌核利标准品相关的资讯

  • 用于确定真菌核糖体结构的冷冻电镜
    大多数人身上携带真菌白色念珠菌,没有它会引起很多问题。然而,这种真菌的全身感染是危险的并且难以治疗。很少有抗菌剂是有效的,而且它的耐药性正在增加。包括格罗宁根大学副教授 Albert Guskov 在内的一个国际科学家小组已经使用单粒子冷冻电镜来确定真菌核糖体的结构。他们的研究结果近日发表在《科学进展》上,揭示了新药的潜在目标。白色念珠菌通常不会引起任何问题,或者只是容易治疗的皮肤瘙痒感染。然而,在极少数情况下,它可能会导致可能致命的全身感染。现有的抗真菌药物会引起很多副作用并且价格昂贵。此外,白色念珠菌的耐药性越来越强,因此确实需要新的药物靶点。“我们注意到没有抗真菌药物针对蛋白质合成,而一半的抗菌药物会干扰这个系统,”Guskov说。造成这种情况的一个原因是真菌核糖体,即将遗传密码转化为蛋白质的细胞机器,在人类和真菌中非常相似。所以,你需要一种非常有选择性的药物来避免杀死我们自己的细胞。——Albert Guskov,格罗宁根大学副教授原子分辨率因此,Guskov 和他的合作者推断,获得白色念珠菌核糖体的结构对于寻找药物靶点很有价值。经典的方法是从纯化的核糖体中生长晶体,并使用 X 射线晶体学确定它们的结构;然而,这是一项费力的技术。相反,他们使用单粒子冷冻电镜,其中大量单粒子在电子显微镜中在非常低的温度下成像。从不同角度看到的单个粒子的图像随后被组合以产生原子分辨率的结构。突变' 通过这种方式,我们解决了空缺和抑制剂结合的真菌核糖体的结构,并将它们的功能与酵母和兔子的核糖体进行了比较——后者作为人类核糖体的模型——并重复了与不同核糖体结合的核糖体抑制剂,”Guskov 解释道。其中一种抑制剂是抗微生物放线菌酮 (CHX),已知白色念珠菌对其具有抗药性。通过比较这些结构,科学家们注意到在蛋白质合成中起关键作用的 E 位点的单个突变阻止了 CHX 与白色念珠菌核糖体结合。 ' 突变将这个E位点结构中的一个氨基酸从脯氨酸改变为谷氨酰胺。这种替代减少了结合位点的大小,因此抑制剂不能附着,因此无效。另一种抑制剂叶花苷不会被突变阻断。威胁' 通过比较白色念珠菌和人类空缺核糖体中 E 位点的结构以及不同抑制剂与该位点结合方式的信息,我们可以开发出一种特异性抑制剂,它可以阻断真菌核糖体,但不能阻断人类的核糖体。这将成为治疗真菌感染的选择性药物。科学家们目前正在筛选分子库以寻找药物先导物。 “开发针对白色念珠菌的疫苗极具挑战性,就像我们针对冠状病毒所做的那样。因此,我们需要药物来治疗全身感染,”Guskov解释道。 “这种真菌日益增加的耐药性是一个真正的威胁。如果这种情况继续下去,除非开发出新药,否则我们可能会遇到严重的麻烦。Source:University of GroningenJournal reference:Zgadzay, Y., et al. (2022) E-site drug specificity of the human pathogen Candida albicans ribosome. Science Advances. doi.org/10.1126/sciadv.abn1062.
  • 我国科学家解析结核杆菌核糖体大亚基与抗生素结合的三维结构
    由结核杆菌引起的结核病是全球重要的慢性疾病。据世界卫生组织发布的《2019年全球结核病报告》数据,全球结核潜伏感染人群约17亿,占全人群的1/4左右,结核病仍是全球前10位死因之一。目前结核杆菌耐药性问题日益严重,了解结核杆菌耐药机制并研发新的治疗结核病药物对实现“终止结核病策略”意义重大。  近日,复旦大学和北京大学为主的联合团队在《Emerging Microbes & Infections》杂志上发表了题为“Cryo-EM structure of Mycobacterium tuberculosis 50S ribosomal subunit bound with clarithromycin reveals dynamic and specific interactions with macrolides”的文章,该研究解析了结核杆菌核糖体大亚基与大环内酯类抗生素克拉霉素(Clarithromycin,CTY)结合的冷冻电镜三维结构。  研究团队发现抗生素CTY结合位点位于结核杆菌核糖体大亚基新生肽链通道靠近rRNA第2062位腺嘌呤(A2062)的位置,与其他大环内酯抗生素的结合位置基本一致。研究团队基于研究获得的密度图,认为结合CTY的结核杆菌大亚基的A2062存在两种构象;与已发表的核糖体与大环内酯结合的结构比较,认为A2062与特定的大环内酯类抗生素结合的动力学可能调节肽基转移酶向翻译阻滞方向发展。该研究对结核杆菌核糖体大亚基A2062与大环内酯类药物的动力学研究结果,可能有助于合理设计下一代抗结核药物,以对抗日益严重的结核杆菌耐药问题。  论文链接:  https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2022439  注:此研究成果摘自《Emerging Microbes & Infections》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 中药配方颗粒标准中“茯苓皮配方颗粒的检测”,使用迪马色谱柱
    2023年,辽宁省药品监督管理局正式发布了68个第三批中药配方颗粒标准,自发布之日起正式实施。其中“茯苓皮配方颗粒”标准检测方案中,使用了迪马科技色谱柱:Diamonsil® Plus C18, 250x4.6mm,5μm(Cat.#:99403)。一、品种说明 【来源】本品为多孔菌科真菌茯苓Poria cocos(Schw.)Wolf 菌核的干燥外皮经炮制并按标准汤剂的主要质量指标加工制成的配方颗粒。【制法】取茯苓皮饮片10000g,加水煎煮,滤过,滤液浓缩成清膏(干浸膏出膏率为2%~6%),加入辅料适量,干燥(或干燥,粉碎),再加入辅料适量,混匀,制粒,制成1000g,即得。【性状】 本品为浅灰黄色至浅灰棕色的颗粒;气微,味微苦。二、特征图谱 【特征图谱】照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(柱长为250mm,内径为4.6mm,粒径为5μm);以乙腈为流动相A,以0.1%磷酸溶液为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.8mL;柱温为30℃;检测波长为242nm。理论板数按茯苓酸A峰计算应不低于8000。参照物溶液的制备 取茯苓皮对照药材2g,加水50mL,加热回流30分钟,放冷,滤过,滤液蒸干,残渣加甲醇25mL,超声处理30分钟,放冷,摇匀,滤过,取续滤液,作为对照药材参照物溶液。另取茯苓酸A对照品、松苓新酸对照品适量,精密称定,加甲醇制成每1mL各含40μg的混合溶液,作为对照品参照物溶液。供试品溶液的制备 取本品适量,研细,取约1.0g,精密称定,置具塞锥形瓶中,精密加入甲醇20mL,称定重量,超声处理(功率250W,频率40kHz)30分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密吸取参照物溶液和供试品溶液各10μL,注入液相色谱仪,测定,即得。供试品色谱中应呈现6个特征峰,并应与对照药材参照物色谱中的6个特征峰保留时间相对应,其中峰3,峰5应分别与相应对照品参照物峰的保留时间相对应;与茯苓酸A参照物峰相对应的峰为S1峰,计算峰1、峰2、峰4与S1峰的相对保留时间,其相对保留时间应该在规定值的±10%之内,规定值为:0.81(峰1)、0.91(峰2)、1.29(峰4);与松苓新酸参照物峰相对应的峰为S2峰,计算峰6与S2峰的相对保留时间,其相对保留时间应该在规定值的±10%之内,规定值为:1.13(峰6)。
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 公开征集对《环氧乙烯基酯树脂》等505项行业标准和53项推荐性国家标准计划项目的意见
    p style=" text-align: center " strong 公开征集对《环氧乙烯基酯树脂》等505项行业标准 /strong /p p style=" text-align: center " strong 和53项推荐性国家标准计划项目的意见 /strong /p p br/ /p p style=" text-indent: 2em " 根据标准化工作的总体安排,现将申请立项的《环氧乙烯基酯树脂》等505项行业标准计划项目和《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项推荐性国家标准计划项目予以公示(见附件1、2),截止日期为2018年5月28日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:标准立项公示反馈)。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 地址:北京市西长安街13号 工业和信息化部科技司 标准处 /p p style=" text-indent: 2em " 邮编:100846 /p p style=" text-indent: 2em " 联系电话:010-68205241 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 公示时间:2018年4月27日-2018年5月28日 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 附件: /p p style=" line-height: 16px text-indent: 2em " 1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/7df061fd-09ed-4c73-8b2a-4a13e8bc3dc7.docx" 《环氧乙烯基酯树脂》等505项行业标准制修订计划(征求意见稿).docx.docx /a /p p style=" line-height: 16px text-indent: 2em " 2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/42cef454-a775-4eca-8729-8bd443ee71da.docx" 《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项国家标准制修订计划.docx& nbsp /a /p p style=" line-height: 16px text-indent: 2em " 3. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/db790b51-8e34-4048-807f-a40e0f01499b.doc" 标准立项反馈意见表.doc /a /p p br/ /p p style=" text-align: right " 工业和信息化部科技司 /p p style=" text-align: right " 2018年4月27日 /p p & nbsp /p p & nbsp /p p br/ /p
  • 我国乳品标准被指倒退 菌落数高欧美20倍
    今年6月1号起,由卫生部批准公布的乳品安全国家标准正式实施,其中共包括66项具体标准,涉及生乳、巴氏杀菌乳、灭菌乳等所有乳类和乳制品。这是2008年“三聚氰胺事件”发生后,有关部门对1986年颁布的乳品标准进行的一次重大修订,因此也被称为乳品新国标。然而,正是这个新国标却在行业内外引发了一场激烈争论。   这是2008年“三聚氰胺事件”发生后,有关部门对乳液新标准进行的一次重大修订。然而,新国标从标准正式发布到实施,引发无数争论。争论焦点之一是蛋白质含量,新国标中,蛋白含量每100克含2.8克,这个数字低于国际标准3.0克,也低于1986年旧国标的2.95克 争论焦点之二是每毫升牛奶中的菌落总数,新标准由原来的50万上升到了200万,比美国、欧盟10万的标准高出20倍,被业界惊呼为一夜倒退25年。更有舆论指出,这个乳业新国标让“中国原奶质量降到了全世界最低”。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长王竹天   王竹天:这个标准是适合于我们国家现在的这种养殖方式下的一个标准   中国畜产品加工研究会名誉会长农业部(奶类)顾问 骆承庠   骆承庠:中国的乳品工业恐怕要完了。   中国奶业协会乳品工业委员会副主任、卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:不能像某些领导所讲的,这个标准是相互协调,相互照顾,这样的一个产物。   围绕乳品新国标,我们听到了两种针锋相对的声音。争论第一大焦点就是1986年颁布的生鲜牛乳收购标准和2003年卫生部的鲜乳卫生标准,都要求蛋白质含量为2.95%,新国标却把蛋白质含量降低为2.8%。那么,这项标准究竟是怎么定下来的?能否保证今后原奶的质量呢?我们再来看看专家的分析。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:不是说这个蛋白质的含量从2.95降到2.8以后,这个牛奶就不能喝了,   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛   曾寿瀛 国际上没有一个标准,原料奶、生奶是2.8的,没有。   对于蛋白质标准,支持者和反对者各执一词,记者注意到,我国1986年的“国标”2.95与国际标准已有明显差距,2010年的标准在其基础上为何又降到了2.8呢?参与这次国标制定的中国农科院北京畜牧兽医研究所副所长王加启告诉记者,影响奶蛋白含量的因素很多,饲料是其中最关键的一个因素,而目前中国奶业有76%都是散户养殖,在精饲料投入不足,这不可避免地影响了奶蛋白含量。1986年制定标准时,我国以国营农场为主,奶牛数量少,都是集中养殖,2.95的指标就当时的情况来说并不高。而现在的情况已经大不一样了。   中国农科院北京畜牧兽医研究所 中国奶业协会 副理事长 王加启   王加启:分散饲养、多种模式饲养的这么一个奶业发展的局面,那么这就导致了奶牛的品种,饲养的水平,管理的水平和饲养的环境参差不齐。   中国农业大学的李胜利教授是国家奶牛产业技术体系首席科学家。他告诉我们,新国标中,蛋白质含量的标准,是根据检测部门长期监测得出的数据确定的。此前中国农业大学在全国设立了24个试验站,150个辐射点收集信息,相当一部分企业的奶蛋白含量实际上达不到2.95。这是工作人员在黑龙江省一个国内大型乳制品生产企业监测的数据,我们看到,这家企业在东北地区奶蛋白含量达到2.95以上的比例是75.1%,中南地区是63.7%,西北地区仅为23.6%。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:超过2.95的你看只有多少,它基本上有接近一半都活不了,你算吧。   记者:这也是一个很大的企业吗?   李胜利:很大的企业。   对于新国标把奶蛋白含量标准最终定为2.8, 86岁高龄的中国奶业协会顾问曾寿瀛则有不同的观点。   中国奶业协会顾问曾寿瀛   曾寿瀛:我看到材料上介绍的,内蒙、黑龙江有6%和10%的奶牛达不到2.95,只能达到2.8,那么这些地方的是不是应该分析一下,他为什么达不到。   从1985年开始,曾寿瀛老人作为主要标准制定者和起草人,参与了《消毒牛奶》《酸牛奶》《全脂奶粉》等8项目乳品卫生标准的制定,参与并见证了1986年的乳业国标制定。   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛  曾寿瀛:以前过去中国那时候有一个叫北方奶牛一宗族,中国南方奶牛一宗族,那个资料都充分地显示,都是收购的牛奶在2.95,或者接近2.95,或者高于2.95,2.8是三级品,是等外品,2.95才是正品,现在是次品变正品。   曾寿瀛认为规范养殖和科学饲喂,达到2.95以上并不困难。他给记者拿出了一组数据。这是位于福建南平的一家大型乳制品生产企业,从2007年到2009年生鲜牛乳主要指标中,记者看到,除了个别月份乳蛋白的含量在2.96以上,其他均在3.0以上,2009年4月份的最高数值达到了3.08。   对于目前的乳业生产状况,两方给出了不同的数据,那个数据更接近真实的情况呢?记者选择了双方提供的两个奶牛养殖基地进行了调研,一个位于江苏省常州市,一个位于黑龙江哈尔滨南岗区。   在黑龙江哈尔滨南岗区的红旗满族乡,在这儿呢,奶牛养殖是当地的支柱产业,同时也是农民的主要收入,据了解当地农户都是分散式的小规模养殖,而且每户养殖八到十头,能占到90%以上的比例。   在村子里,我们碰到了几位在路边放牛的奶牛养殖户。他们告诉记者,家里的玉米秸秆喂完了,暂时把牛栓在路上补充些青草。   黑龙江红旗满族乡农民 付明禹   付明禹:现在苞米秸秆一块钱一捆,你算算,啥都是钱,现在工钱都没有,我们俩的工钱都没有。   记者:我们养牛不赚钱吗?   付明禹:赚啥钱,多少年没赚钱,四五年没赚钱了。   养了20多年牛的农户付明禹告诉记者,饲料的连年上涨,奶牛养殖户的利润越来越小。跟去年比,今年的玉米价格,每公斤上涨了四毛多,豆饼每吨上涨了三四百元,配合饲料每吨也上涨了500元,饲养一头牛每月的饲料成本直接增加200多元,而现在每公斤奶的价格是2.7元,一直没有太大的变化。养牛不挣钱,养殖户都喂不起精饲料。   黑龙江红旗满族乡农民 付明禹   付明禹:要是有盈利了就多给点,没有盈利就少给点,我还没有吃饭钱,得给我对付点吃饭钱。   记者在红旗满族乡走访了多户村民,发现这些分散饲养的奶牛的饲料多是玉米秸秆,豆饼,或是混合饲料,每天每头牛的饲料成本都不超过30元。当地的奶牛合作社站长告诉记者,饲料的情况,直接影响了奶蛋白含量,从他们收奶的情况来看,大部分养殖户送来的奶,蛋白含量在2.8-2.9的占50%,2.9以上高指标的奶占50%。   黑龙江浩源奶业合作社站长 关凤春   记者:你们想收高指标的奶吗?   关凤春:想,为啥不想收过指标奶。   记者:收得上来吗?   关凤春:收不上来,因为奶户这一块,牛本身出的奶就稀,就出那个奶。   随后记者又来到了位于双城县幸福乡的庆源牧业,这里是有着900头奶牛的规模牧场。记者主要,这里每头牛每天的饲喂成本达到了40多元,为提高蛋白还添加了每吨1200元的羊草。但是厂长告诉我们,按照DHI来检测的话,还有20%奶蛋白含量达不到2.8。   黑龙江庆源牧业场长 薛英峰   薛英峰:就是增加饲养这块,调整个体牛的营养指标。   薛英峰告诉记者,一定的资金实力和规模至少能保障80%的奶品奶蛋白含量达到2.9以上。但是他们所在的双城县,像他这样具备同等实力的牧场不过三家,对于有着22万头奶牛存栏量的双城县来讲,90%以上的散户小规模养殖,难以达到2.9的标准。   黑龙江奶业协会秘书长 吴和平   吴和平:原因就是这个时间呢,它的一个饲料结构,也就是营养结构,牛体状况和气侯条件所影响的。   吴和平认为2.8的数据符合奶牛泌乳期规律,而北方地区奶牛养殖量占全国的82%,其中70%以上是农户散养,又是一个不得不面对的客观事实。那么农户养牛到底有没有突破?能否养出奶蛋白在2.95以上的奶牛来呢?中国奶业协会乳品工业委员会副主任曾寿瀛告诉我们这并不难,老人带记者来到了江苏省常州市横山镇的这家奶牛合作社进行了调研。   常州横山镇苏农奶牛专业合作社顾春元   顾春元:喂的是玉米粉,还有黄豆、豆粕什么,混合的。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:你要给奶牛吃好,奶牛才能给人吃好,如果你给奶牛天天吃的稻草,水葫芦,水花生,在青饲料里面也克扣它,它怎么能让你牛奶里营养成分好呢?   顾春元告诉记者,他们每天给牛配备的精料有十几种,达九公斤,除此之外每天还要给牛配备青饲料50公斤,分三次喂食。   常州横山镇苏农奶牛专业合作社 张正东   记者:你觉得就高好了还是就低好呢?奶蛋白。   张正东:那肯定高好了。   记者:为什么呢?但是你要增加成本,你高了之后。   张正东:成本是,但是有回报。   陈建国说,奶蛋白含量是2.8,2.9还是3.0,三个数字表面看起来差异不大,但是实际上事关成本大小。按照他们的计算,蛋白含量每提高0.1个百分点,喂饲料成本就得相应增加五块钱左右。这个合作社实行的是按质论价,他们以奶蛋白2.9为标准,以每公斤牛奶3元钱为相应的定价基础,每高出0.1个蛋白含量就会增加5分钱。同样,每低于0.1个百分点会有相应的惩罚性罚款。计算下来,每产一公斤奶,蛋白含量2.95要比2.8,能多卖1.23元左右。   常州横山镇苏农奶牛专业合作社 负责人 陈建国   陈建国:你一头牛(一年),那就算300块钱,一头牛一年它就要相差三百。   曾寿瀛的课题组长期对这个合作社进行质量检测,他们发现,在合作社实施按质论价的体系后,从日常监测数据来看,牛奶蛋白达到2.95的比例占95%以上。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:每天要检测,一个月三十天,他一年下来要多少份数,三年的份数,证实了他的牛奶常年维持到2.95。   在采访中,我们还得到了一组数据,目前发达国家的原奶奶蛋白含量可以达到3.2%,加拿大的奶蛋白含量在3.3%,新西兰能够达到3.8%。显然,只有先进的集中饲养模式才能培育更好的牛,吃上更好的饲料,产出更好的牛奶。但对中国乳品行业来说,完成这个庞大的系统工程不是一朝一夕的事。面对这种困境,国家标准到底应该是就高还是就低呢?   对于中国乳品行业来说,短时间内改变散户养殖占90%的传统模式确实很难,所以很多人认为,新国标如果提高奶蛋白标准,结果只能是纸上谈兵。而反对方的观点是,不能因为发展水平低,就降低标准,以至于整个产业陷入恶行循环,更何况从操作环节看,可以实行优质优价的办法,用市场手段推行高标准。这个两难的问题似乎陷入了无解的尴尬。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:如果采用原来的国标的话,意味着我们有将近20%多比例的奶,都可能成为不合格的。大部分人进不去,可能有一些奶农会出现倒奶的可能性。   李胜利认为,针对目前全国70%以上乳品来自散户养殖的现状,过高的蛋白标准,只能催发更多的倒奶事件发生。   在李胜利看来,过高的标准对提高奶品质量也是有害无益。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:三聚氰胺在发生之前就是因为奶源过剩。   李胜利分析,正是因为达不到企业的收购标准,一些人为了把牛奶卖出去,宁愿铤而走险添加三聚氰胺。但是对于低标准一直持反对态度的曾寿瀛并不认同这个观点。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:三聚氰氨它是这种见利忘义,对不对,怎么会是被迫呢?怎么会是因为2.95的问题?你2.8就不掺假了?   曾寿瀛告诉记者,现在把标准降低,无法遏制不法分子添加三聚氰胺,而且,他认为低标准也会带来另外一种隐患,乃蛋白含量低会影响牛奶固有的香味和脂气味,难以避免一些企业不用添加剂或者脱水奶粉以次充好。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:带来的是你用这个原料奶做出来的所有的成品都要受到影响的问题,   奶蛋白数据的降低,会不会使生产企业为提高口感而使用添加剂呢?低标准对企业加工又会有什么影响呢?带着这样的疑问,我们的记者联系了多家大型乳品企业,最终只有北京三元食品股份有限公司接受了我们的采访。   北京三元食品股份有限公司总经理 钮立平   记者:为了保持以前这个品质,或者口感,会增加其它的添加剂,有没有这样的情况?   钮立平:我们这个企业不存在这个问题,一方面呢就是我刚才说了,一个产品线很丰富,2.8的奶也可以生产出产品,2.95以上也可以生产出自己的产品,   记者:如果要生产我们的极致奶,只有2.8奶蛋白这样的奶,那我们。   钮立平:不能生产,就不能生产。是不能够添加任何东西的,你只能用优质的奶源去生产。   记者:普通的一些中型或小型企业。   钮立平:因为小型企业呢,我觉得它主要是一个,当然它也有成本上的考虑。因为它的脂肪可能低了,为了达到你那个标准去添加一些东西,这个说不好。   看来,奶蛋白含量标准高低对乳品行业究竟会带来什么影响,还有很多未知数。而围绕乳品新国标的争论中还有另一个焦点就是菌落总数。新标准由原来的50万调高到了200万,比美国、欧盟10万的标准高出了20倍,被业界惊呼为一夜倒退25年。那么,这个标准又是如何确定的?   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王竹天:就是如果是真的把它整到50万的话,就会把这一些大量的这些牛奶拒之门外。   中国畜产品加工研究会名誉会长、农业部(奶类)顾问 骆承庠   骆承庠:韩国的(菌落总数)不是7000吗?你们中国的奶200万,这不是开玩笑吗?   参与国标制定工作的中国农科院北京畜牧兽医研究所副所长王加启告诉我们菌落总数定在200万的原因。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:在新的标准里面,菌落总数定的是200万,在1986年的标准里面分了四级,一级是50万,二级是100万,三级是200万,四级是400万,所以说你比较两个标准的话,你会发现新的标准,既没有严格,也没有放松,它相当于原来标准的三级的那种标准。   王加启认为依照中国目前的养殖现状菌落总数如果设置在50万,会有一半牛奶被拒之门外。而曾寿瀛则认为菌落指标过高会直接影响牛奶的安全性。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:你200万的细菌数,我们不可能把所有的细菌杀灭掉,那么牛奶中残存了一定量的数量,这个数量对牛奶在运转的过程中,保质期必然要缩短。   那么菌落值在50万和200万到底对安全性的影响有多大呢?农业部奶及奶制品质量监督检测室王俊博士,向我们展示了菌落总数在50万和200万的照片。照片上白点菌群的分布情况差异很大。   农业部奶及奶制品质量监督检验测试中心检测室主任 王俊博士   王俊:如果是50万的数的话,在这个挤奶的奶站里面,应该大家能觉得,就是说进去一看的话,应该觉得比较干净,地面上没有残余的牛奶。200万的话应该就是比较脏的条件,应该基本上来说夏天苍蝇是满处飞的,然后会有一些残余的牛奶散落在地面上,卫生设备,有些时候可能会闻到一些异味。   王俊认为,菌群数量不同,对乳品的安全性有一定的影响。不过,在国家疾控中心,负责营养与食品安全的王竹天副所长则认为菌落微生物不是致病菌,不会影响乳品安全。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王俊:大的方面来讲的话,菌落总数,不是一个直接的食品安全指标,它和我们人类的致病没有关系。   菌群数量的不同,到底对乳品会有什么影响呢,采访中,我们找到了有20年乳品安全生产经验的王炎场长。   记者:有的人说微生物含量它不是致病菌,而且还有后续的加工,说影响不到这个品质。   王炎:不可能的,不可能的,那是肯定能够影响的。   记者:根据您的经验。   王炎:肯定是影响的,但是因为他消毒,可能说不能够给人致病,但是它的新鲜感,它的口感肯定是要受影响的,   王炎告诉记者,菌落总数体现出牛奶生产的卫生状况,同时也影响着奶制品的保质期。冷链生产控制,牛奶挤下后进入这些储罐中,温度迅速降到4度以下,然后再装冷藏车,运往加工厂。整个过程一直在低温下运行,这样细菌总数可以控制在10万以下。对企业来说,相应设备的投入和改造则需要大笔资金。而很多企业会把成本转移到终端产品上去。   乳品厂管理人员:今年将近三百万投入,光北京地区。   记者:如果全范围内来讲都投入到的话又是多大?   乳品厂管理人员:那得上千万了。   在我们的印象中,社会在进步,技术在提高,消费需求在提升,相关的行业标准似乎也应该芝麻开花节节高。但是,在乳品新国标的制定中,却出现了相反的动向。这种反常的现象背后,到底折射出中国乳品行业的哪些困境?我们也听到了不少声音。   尽管对此次乳业新国标的一直是支持态度的,但是王加启认为,现行乳业新标准确实偏低,他认为这个标准会在一两年的时间内协调改进,而优质优价体系势在必行。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:企业实施真正的优质优价的体系,是推动牛奶品质提高的绝对性力量,其它的都是辅助性力量,因为市场它是一个最大的推动力量。   王加启说,在美国乳制品安全体系中最重要的《A级高温灭菌奶法令》被记录于美国《联邦法规法典》,该法规为美国奶制品的检验检测提供了可靠依据。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:监管的力度和规范,在这一点我们国家比较欠缺。   黑龙江奶协秘书长吴和平同样赞同从事实出发制定新国标,但是针对目前中国奶业的发展,他认为应该用奶粉贮备流转制度和相应的金融服务体系对奶业行业进行保障。   黑龙江奶业协会秘书长 吴和平   吴和平:在我们国内制订一个长期的一个奶粉储备流转的制度,它会对稳定行业高峰低谷这种不断的变化起到一个稳定作用。   作为卫生部原乳品订标组副组长:曾寿瀛,一直坚持用高标准引领行业发展,他告诉我们,乳蛋白含量指标定在2.8,菌落总数定在200万的低标准严重制约了我国乳业的发展。中国乳业发展可以借鉴新西兰,建立第三方检测机构。新西兰拥有全球领先的乳品第三方检测机构-SAITL乳品检测中心。第三方检测实验室的建立可以为奶户和乳制品企业提供公正的交易平台,与按质论价价格体系相结合,保障奶农与企业利益的均衡,促使奶农主动提高生鲜乳质量。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:我们国家对生乳的标准,是不是能够分级,不要实行一个项目只有一个指标,例如蛋白质就是2.8,例如菌落总数就是200万,为什么不可以考虑分级呢?这个分级对消费者来讲是有好处,对乳品企业来讲也有好处,对奶农来讲它也有好处   乳品新国标究竟是订高了还是低了,我们不是专业人士,也很难给出一个定论。这场没有结果的争论里,却让我们看到了乳品行业的窘境。客观地讲,中国乳品行业最近十几年确实取得了跨越式发展,但是很多结构性的缺陷一直被表面繁荣所掩盖。一个很简单的道理,喝上好奶,必须养好奶牛。然而,过去大量投资都集中在乳品生产销售环节,并不缺少先进的技术设备,对行业基础的养殖环节,反倒没有相应规划,以至于产业链前后脱节,养殖水平落后于很多国家,原奶质量不稳。扭曲的产业结构不仅给国家标准怎么制定带来了一系列两难,也对乳制品的安全构成了隐患。不过,我想不管怎么样,安全和品质都应该是一个产业发展始终不渝的目标,作为制定标准的主管部门,在顾及现实利益的同时,千万别忘了这点。
  • 苏州医工所在血液制品细菌污染核酸检测方面取得进展
    目前,核酸筛检系统(Nucleic Acids Testing,NAT)已广泛用于血制品常规病原体(乙肝、丙肝、艾滋、梅毒)的核酸检测,极大降低了相关疾病的输血传播。但是,在输血感染性风险中,血小板的细菌污染及相关败血症性输血反应仍是棘手的问题。将核酸筛检技术用于细菌污染检测还有不少困难,包括:1、细菌污染不像特定病原体,没有统一的标准品 2、缺少合适的内参质控排除假阳性或假阴性结果 3、核酸扩增聚合酶(Taq)大多是细菌来源,带有痕量的细菌核酸成分。  近期,中国科学院苏州生物医学工程技术研究所血液免疫学研究中心提出一种双重荧光定量PCR方法可提高细菌污染检测的可靠性:设计一条人工核酸序列(IRC)作为内参,其特点是IRC与靶基因共用同一对引物进行扩增,分别用不同荧光探针进行检测。通过精确控制IRC分子数达到阳性检出限,以其Ct(i)值作为阈值,只有样本检测的Ct(s)值小于或等于Ct(i)时,检测结果才可认定为阳性。一种双样本混合的t测验(two samples pooled t-test)统计学方法可用于帮助判断两个Ct值的大小。IRC还可以包装成噬菌体,用于监控核酸样本提取过程。  此外,该双重荧光定量PCR方法可通过分别检测细菌的DNA(脱氧核糖核酸)与RNA(核糖核酸),计算不同Ct的比值,能判断细菌是处于生长繁殖期或者已经是死菌,从而帮助判断血制品灭活的效果。该方法不仅能用于血制品细菌污染检测,理论上也能开发成其他外源基因核酸定量检测的有效方法。  图-1、IRC双重荧光定量PCR原理图  图-2、IRC双重荧光定量PCR性能测试
  • 北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会召开
    近日,北京市检验检测认证中心所属市特种设备检验检测研究院组织召开了北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会。会议邀请了来自中国标准化研究院、中国特种设备检测研究院、北京化工大学、国家化学建筑材料测试中心、北京顺义燃气有限责任公司、北京航星机器制造有限公司、北京工业大学等单位共计16名专家组成审查专家组进行评议。会上,标准编制组人员就标准的目的意义、制定原则和依据、适用范围、主要条款等向专家组作了详细汇报,与会专家对标准的有关技术内容进行了质询,并对标准的完善提出了宝贵意见。最后,会议对标准征求意见稿进行了审查,专家组一致同意该标准通过预审查。《聚乙烯管道热熔对接接头微波无损检测质量控制要求》针对北京市城市燃气聚乙烯管道热熔对接接头的实际情况,首次提出了聚乙烯管道热熔对接接头的微波无损检测质量控制规范,并为聚乙烯管道热熔对接接头的质量检测与评判提供了方法与准则。本次会议为该地方标准的顺利发布奠定了基础。
  • 药品生产在线清洗与灭菌有了技术标准!10月起实施
    p   2018年3月15,国家标准化管理委员会发布了GB/T 36030-2018《制药机械(设备)在位清洗、灭菌通用技术要求》,该标准规定了药品生产过程中进行在线清洗与在线灭菌的通用技术要求,并要求该国标将于2018年10月1日实施。 /p p   根据文件指出的范围,该标准适用于药品生产过程中实现在位清洗与灭菌的制药机械(设备)。 /p p   在清洁、灭菌规程方面,给出检查表判断评估完整性,包括: /p p   是否包括辅助设备 /p p   是否按其持续一致的操作 /p p   是否规定了行之有效的干燥方法 /p p   是否规定了清洗程序和参数,并按照程序清洗 /p p   是否规定了适用的灭菌程序和参数,并按照程序灭菌 /p p   是否规定了生产结束至开始清洗的最长时间 /p p   是否规定了设备清洗、灭前后的保留有效时间 /p p   是否规定了清洗、灭菌周期的时间 /p p   是否详细描述了设备清洗后的安全存储条件。 /p p   在清洁验证判定标准方面,要求判断气味。 /p p   然而此文件刚出,就有网友@歪打正着 发帖提出质疑,“这是制药设备的技术要求,而不是清洁工艺的要求,也不是灭菌工艺的要求,反而大谈灭菌工艺要求,清洁工艺要求,管的宽!” /p p   该网友列出了通用技术要求中的三个例子并作出反对理由。具体如下: /p p   4.5 在位清洗制药机械(设备)使用后应在规定时间清洗。非无菌药品生产设备清洗后应干燥 无菌药品生产设备及无菌作业区生产设备清洗后应在规定时间灭菌。清洗、灭菌、干燥后的外露敞口应封闭。 /p p   反对理由:是否在规定时间内清洗,跟设备有什么关系?清洁时间是清洁规程的内容,跟设备没关系,跟设备材质没关系,也不由设备厂家规定,而是由制药厂自行制定。设备厂家是吃饱了没事干吧。 /p p   4.6 无菌药品生产设备应在完全装配后灭菌,与物料直接接触的设备、管道、连接点、阀门、密封装置应在位清洗、在位灭菌。 /p p   反对理由:谁说的一定要在位灭菌了?很多药厂采用离线灭菌,难道就不符合了?你们3家公司吃饱了没事找事啊!就从这一条,你们3家公司恶心透顶了。 /p p   11.3 验证原则 /p p   验证原则如下:至少进行连续三批的验证 /p p   反对理由:工艺验证的是至少三批,而设备的验证,哪来三批的说法呢?设备的验证,应该与批次无关。设备的性能与批次无关,批次是基于产品的概念,要考察设备可靠性、稳定性,可以用连续工作时间来判断,而不是用批次的概念。更不能用工艺验证的内容来代替设备验证。这是把工艺验证与设备验证搞混淆了。基本内容都分不清,还写出这个标准,你们3家单位这次闹出大笑话了。 /p p   该网友认为,设备的技术要求应针对设备的结构、材质、硬件等方面,但这份标准主要提及的内容为制药工艺,明显偏离了主题。也有网友持支持或中立意见,有的表示,“来学习各位大咖的经验。” /p p   “推动行业新一轮采购热潮而已。” /p p   “推荐性标准,采纳了就执行,不采纳就不执行。” /p p   ...... /p p   可以看到,业内对该标准持有不同的看法。不可否认,近年来,国家GMP标准不断提高,对于药品的生产各个环节监管也更加严格,亟待更完善的标准出台。该标准的采用目的是为了促进制药工业在线清洗与灭菌技术的升级,或许还不够完全符合制药人的标准预期,但笔者相信,未来标准有望进一步完善与升级。那么,你怎么看呢? /p
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 国家市场监督管理总局关于征求146项拟立项国家标准样品研复制计划项目意见的通知
    各有关单位:经研究,国家标准委决定对《铝合金3A21成分标准样品》等146项拟立项国家标准样品研复制计划项目公开征求意见,征求意见截止时间为2022年3月28日。请登录国家标准委网站的计划公示网页http://std.samr.gov.cn/gsm/gsmPlanPublic,查询项目信息,反馈意见建议。2023年3月13日相关项目如下:序号项目中文名称研/复制截止日期12,4-滴残留分析用甲醇溶液标准样品研制2023-03-282O.P′-滴滴涕残留分析用正己烷溶液标准样品研制2023-03-283P.P′-滴滴滴残留分析用正己烷溶液标准样品研制2023-03-284P.P′-滴滴涕残留分析用正己烷溶液标准样品研制2023-03-285P.P′-滴滴伊残留分析用正己烷溶液标准样品研制2023-03-286α-六六六残留分析用正己烷溶液标准样品研制2023-03-287β-六六六残留分析用正己烷溶液标准样品研制2023-03-288γ-六六六残留分析用正己烷溶液标准样品研制2023-03-289δ-六六六残留分析用正己烷溶液标准样品研制2023-03-2810阿特拉津残留分析用丙酮溶液标准样品研制2023-03-2811艾氏剂残留分析用正己烷溶液标准样品研制2023-03-2812暗盖淡鳞鹅膏核酸定性标准样品研制2023-03-2813巴胺磷残留分析用丙酮溶液标准样品研制2023-03-2814百菌清残留分析用正己烷溶液标准样品研制2023-03-2815倍硫磷残留分析用丙酮溶液标准样品研制2023-03-2816丙溴磷残留分析用甲醇溶液标准样品研制2023-03-2817产志贺毒素大肠埃希氏菌核酸定性标准样品研制2023-03-2818肠道集聚性大肠埃希氏菌核酸定性标准样品研制2023-03-2819成人乳粉中乳糖、蔗糖分析标准样品研制2023-03-2820成人乳粉中三氯蔗糖分析标准样品研制2023-03-2821虫酰肼残留分析用甲醇溶液标准样品研制2023-03-2822杵柄鹅膏核酸定性标准样品研制2023-03-2823哒螨灵残留分析用丙酮溶液标准样品研制2023-03-2824单增李斯特菌毒力基因prfA质粒核酸定性标准样品研制2023-03-2825稻丰散残留分析用丙酮溶液标准样品研制2023-03-2826地虫硫磷残留分析用丙酮溶液标准样品研制2023-03-2827狄氏剂残留分析用正己烷溶液标准样品研制2023-03-2828敌百虫残留分析用丙酮溶液标准样品研制2023-03-2829敌敌畏残留分析用丙酮溶液标准样品研制2023-03-2830点柄黄红菇核酸定性标准样品研制2023-03-2831碘盐中碘分析标准样品研制2023-03-2832丁草胺残留分析用正己烷溶液标准样品研制2023-03-2833动物产品和饲料检测用头孢氨苄纯度标准样品研制2023-03-2834对硫磷残留分析用丙酮溶液标准样品研制2023-03-2835多菌灵残留分析用乙醇溶液标准样品研制2023-03-2836多效唑残留分析用甲醇溶液标准样品研制2023-03-2837恶虫威残留分析用甲醇溶液标准样品研制2023-03-2838二嗪农残留分析用丙酮溶液标准样品研制2023-03-2839粉锈宁残留分析用正己烷溶液标准样品研制2023-03-2840呋喃丹(克百威)残留分析用甲醇溶液标准样品研制2023-03-2841伏杀磷残留分析用丙酮溶液标准样品研制2023-03-2842氟胺氰菊酯残留分析用正己烷溶液标准样品研制2023-03-2843氟虫脲残留分析用丙酮溶液标准样品研制2023-03-2844氟乐灵残留分析用正己烷溶液标准样品研制2023-03-2845氟氰戊菊酯残留分析用正己烷溶液标准样品研制2023-03-2846富锂铍铯伟晶岩成分标准样品(LHH)研制2023-03-2847富锂铷伟晶岩成分标准样品(LHS)研制2023-03-2848富锂伟晶岩成分标准样品(LHL)研制2023-03-2849锆合金C7成分标准样品(粒状)研制2023-03-2850鲑鱼甲病毒E2基因片段 RNA定性标准样品研制2023-03-2851汉坦病毒M基因片段装甲RNA定性标准样品研制2023-03-2852环氧七氯残留分析用正己烷溶液标准样品研制2023-03-2853火麻仁中Δ9-四氢大麻酚定量分析标准样品研制2023-03-2854火麻油中Δ9-四氢大麻酚分析标准样品研制2023-03-2855家用和类似用途插座温升试验用单相两极带接地试验插头(10A/16A)标准样品研制2023-03-2856家用和类似用途插座温升试验用单相两极试验插头(10A)标准样品研制2023-03-2857甲胺磷残留分析用丙酮溶液标准样品研制2023-03-2858甲拌磷残留分析用丙酮溶液标准样品研制2023-03-2859甲基对硫磷残留分析用丙酮溶液标准样品研制2023-03-2860甲基异柳磷残留分析用正己烷溶液标准样品研制2023-03-2861甲氰菊酯残留分析用正己烷溶液标准样品研制2023-03-2862甲霜灵残留分析用正己烷溶液标准样品研制2023-03-2863假褐云斑鹅膏核酸定性标准样品研制2023-03-2864金属镍中碳、硫成分标准样品(屑状)研制2023-03-2865久效磷残留分析用丙酮溶液标准样品研制2023-03-2866抗蚜威残留分析用甲醇溶液标准样品研制2023-03-2867克罗诺杆菌特征基因atpD质粒核酸定性标准样品研制2023-03-2868喹硫磷残留分析用丙酮溶液标准样品研制2023-03-2869乐果残留分析用丙酮溶液标准样品研制2023-03-2870联苯菊酯残留分析用正己烷溶液标准样品研制2023-03-2871硫线磷残留分析用丙酮溶液标准样品研制2023-03-2872罗非鱼湖病毒基因片段S3 RNA定性标准样品研制2023-03-2873氯菊酯残留分析用正己烷溶液标准样品研制2023-03-2874氯氰菊酯残留分析用正己烷溶液标准样品研制2023-03-2875马拉硫磷残留分析用丙酮溶液标准样品研制2023-03-2876绵羊痘/山羊痘病毒P32基因片段质粒DNA定性标准样品研制2023-03-2877灭菌丹残留分析用丙酮溶液标准样品研制2023-03-2878茉莉花茶感官分级标准样品研制2023-03-2879内吸磷残留分析用丙酮溶液标准样品研制2023-03-2880尼帕病毒N基因和L基因片段装甲RNA定性标准样品研制2023-03-2881皮蝇磷残留分析用丙酮溶液标准样品研制2023-03-2882葡萄酒中Δ9-四氢大麻酚分析标准样品研制2023-03-2883七氯残留分析用正己烷溶液标准样品研制2023-03-2884禽偏肺病毒N基因装甲RNA定性标准样品研制2023-03-2885氰戊菊酯残留分析用正己烷溶液标准样品研制2023-03-2886噻菌灵残留分析用甲醇溶液标准样品研制2023-03-2887三氟氯氰菊酯残留分析用正己烷溶液标准样品研制2023-03-2888三氯杀螨醇残留分析用正己烷溶液标准样品研制2023-03-2889三七花中总砷、铅、镉和总汞分析标准样品研制2023-03-2890三唑醇残留分析用异丙醇溶液标准样品研制2023-03-2891三唑磷残留分析用丙酮溶液标准样品研制2023-03-2892杀螟松残留分析用丙酮溶液标准样品研制2023-03-2893杀扑磷残留分析用丙酮溶液标准样品研制2023-03-2894石油和石油产品中硫成分系列标准样品研制2022-11-1595食用盐中钙、镁、钾、氯、硫酸根分析标准样品研制2023-03-2896霜霉威残留分析用甲醇溶液标准样品研制2023-03-2897霜脲氰残留分析用丙酮溶液标准样品研制2023-03-2898水胺硫磷残留分析用丙酮溶液标准样品研制2023-03-2899水泡性口炎病毒L基因片段装甲RNA定性标准样品研制2023-03-28100速克灵残留分析用丙酮溶液标准样品研制2023-03-28101速灭威残留分析用甲醇溶液标准样品研制2023-03-28102特丁硫磷残留分析用丙酮溶液标准样品研制2023-03-28103戊唑醇残留分析用异丙醇溶液标准样品研制2023-03-28104西维因残留分析用甲醇溶液标准样品研制2023-03-28105烯唑醇残留分析用丙酮溶液标准样品研制2023-03-28106辛硫磷残留分析用丙酮溶液标准样品研制2023-03-28107新型冠状病毒核酸检测用假病毒标准样品研制2023-03-28108溴硫磷残留分析用丙酮溶液标准样品研制2023-03-28109溴氰菊酯残留分析用正己烷溶液标准样品研制2023-03-28110氧化乐果残留分析用丙酮溶液标准样品研制2023-03-28111叶蝉散(异丙威)残留分析用甲醇溶液标准样品研制2023-03-28112乙硫磷残留分析用丙酮溶液标准样品研制2023-03-28113乙稀菌核利残留分析用丙酮溶液标准样品研制2023-03-28114乙酰甲胺磷残留分析用丙酮溶液标准样品研制2023-03-28115异稻瘟净残留分析用丙酮溶液标准样品研制2023-03-28116异狄氏剂残留分析用正己烷溶液标准样品研制2023-03-28117印刷品墨层结合牢度测定用胶带标准样品研制2023-03-28118婴幼儿配方乳粉中钼分析标准样品研制2023-03-28119婴幼儿配方乳粉中月桂酸分析标准样品研制2023-03-28120硬质合金用复式碳化物粉K32总碳标准样品研制2023-03-28121治螟磷残留分析用丙酮溶液标准样品研制2023-03-28122仲丁威残留分析用甲醇溶液标准样品研制2023-03-28123猪水疱病毒3D基因片段装甲RNA定性标准样品研制2023-03-28
  • 农业部审批通过193项农业标准
    中华人民共和国农业部公告第1642号   《丝瓜等级规格》等193项标准业经专家审定通过,我部审查批准,现发布为中华人民共和国农业行业标准,自2011年12月1日起实施。   特此公告。   二〇一一年九月二日 序号 标准号 标准名称 代替标准号 1 NY/T 1982-2011 丝瓜等级规格   2 NY/T 1983-2011 胡萝卜等级规格   3 NY/T 1984-2011 叶用莴苣等级规格   4 NY/T 1985-2011 菠菜等级规格   5 NY/T 1986-2011 冷藏葡萄   6 NY/T 1987-2011鲜切蔬菜   7 NY/T 1988-2011 叶脉干花   8 NY/T 1989-2011 油棕 种苗   9 NY/T 1990-2011 高芥酸油菜籽   10 NY/T 1991-2011 油料作物与产品 名词术语   11 NY/T 1992-2011 农业植物保护专业统计规范   12 NY/T 1993-2011 农产品质量安全追溯操作规程 蔬菜   13 NY/T 1994-2011 农产品质量安全追溯操作规程 小麦粉及面条   14 NY/T 1995-2011 仁果类水果良好农业规范   15 NY/T 1996-2011 双低油菜良好农业规范   16 NY/T 1997-2011 除草剂安全使用技术规范 通则   17 NY/T 1998-2011 水果套袋技术规程 鲜食葡萄   18 NY/T 1999-2011 茶叶包装、运输和贮藏 通则   19 NY/T 2000-2011 水果气调库贮藏 通则   20 NY/T 2001-2011 菠萝贮藏技术规范   21 NY/T 2002-2011 菜籽油中芥酸的测定   22 NY/T 2003-2011 菜籽油氧化稳定性的测定 加速氧化试验   23 NY/T 2004-2011 大豆及制品中磷脂组分和含量的测定 高效液相色谱法   24 NY/T 2005-2011 动植物油脂中反式脂肪酸含量的测定 气相色谱法   25 NY/T 2006-2011 谷物及其制品中β-葡聚糖含量的测定   26 NY/T 2007-2011 谷类、豆类粗蛋白质含量的测定 杜马斯燃烧法   27 NY/T 2008-2011 万寿菊及其制品中叶黄素的测定 高效液相色谱法   28 NY/T 2009-2011 水果硬度的测定   29 NY/T 2010-2011 柑桔类水果及制品中总黄酮含量的测定   30 NY/T 2011-2011 柑桔类水果及制品中柠碱含量的测定   31 NY/T 2012-2011 水果及制品中游离酚酸含量的测定   32 NY/T 2013-2011 柑桔类水果及制品中香精油含量的测定   33 NY/T 2014-2011 柑桔类水果及制品中橙皮苷、柚皮苷含量的测定   34 NY/T 2015-2011 柑桔果汁中离心果肉浆含量的测定   35 NY/T 2016-2011 水果及其制品中果胶含量的测定 分光光度法   36 NY/T 2017-2011 植物中氮、磷、钾的测定   37 NY/T 2018-2011 鲍鱼菇生产技术规程   38 NY/T 2019-2011 茶树短穗扦插技术规程   39 NY/T 2020-2011 农作物优异种质资源评价规范 草莓   40 NY/T 2021-2011 农作物优异种质资源评价规范 枇杷   41 NY/T 2022-2011 农作物优异种质资源评价规范 龙眼   42 NY/T 2023-2011 农作物优异种质资源评价规范 葡萄   43 NY/T 2024-2011 农作物优异种质资源评价规范 柿   44 NY/T 2025-2011 农作物优异种质资源评价规范 香蕉   45 NY/T 2026-2011 农作物优异种质资源评价规范 桃   46 NY/T 2027-2011 农作物优异种质资源评价规范 李   47 NY/T 2028-2011 农作物优异种质资源评价规范 杏   48 NY/T 2029-2011 农作物优异种质资源评价规范 苹果   49 NY/T 2030-2011 农作物优异种质资源评价规范 柑橘   50 NY/T 2031-2011 农作物优异种质资源评价规范 茶树   51 NY/T 2032-2011 农作物优异种质资源评价规范 梨   52 NY/T 2033-2011 热带观赏植物种质资源描述规范 红掌   53 NY/T 2034-2011 热带观赏植物种质资源描述规范 非洲菊   54 NY/T 2035-2011 热带花卉种质资源描述规范 鹤蕉   55 NY/T 2036-2011 热带块根茎作物品种资源抗逆性鉴定技术规范 木薯   56 NY/T 2037-2011 橡胶园化学除草技术规范   57 NY/T 2038-2011 油菜菌核病测报技术规范   58 NY/T 2039-2011 梨小食心虫测报技术规范   59 NY/T 2040-2011 小麦黄花叶病测报技术规范   60 NY/T 2041-2011 稻瘿蚊测报技术规范   61 NY/T 2042-2011 苎麻主要病虫害防治技术规范   62 NY/T 2043-2011 芝麻茎点枯病防治技术规范   63 NY/T 2044-2011 柑桔主要病虫害防治技术规范   64 NY/T 2045-2011 番石榴病虫害防治技术规范   65 NY/T 2046-2011 木薯主要病虫害防治技术规范   66 NY/T 2047-2011 腰果病虫害防治技术规范   67 NY/T 2048-2011 香草兰病虫害防治技术规范   68 NY/T 2049-2011 香蕉、番石榴、胡椒、菠萝线虫防治技术规范   69 NY/T 2050-2011 玉米霜霉病菌检疫检测与鉴定方法   70 NY/T 2051-2011 桔小实蝇检疫检测与鉴定方法  71 NY/T 2052-2011 菜豆象检疫检测与鉴定方法   72 NY/T 2053-2011 蜜柑大实蝇检疫检测与鉴定方法   73 NY/T 2054-2011 番荔枝抗病性鉴定技术规程   74 NY/T 2055-2011 水稻品种抗条纹叶枯病鉴定技术规范   75 NY/T 2056-2011 地中海实蝇监测规范   76 NY/T 2057-2011 美国白蛾监测规范   77 NY/T 2058-2011 水稻二化螟抗药性监测技术规程 毛细管点滴法   78 NY/T 2059-2011 灰飞虱携带水稻条纹病毒检测技术 免疫斑点法   79 NY/T 2060.1-2011 辣椒抗病性鉴定技术规程 第1部分:辣椒抗疫病鉴定技术规程   80 NY/T 2060.2-2011 辣椒抗病性鉴定技术规程 第2部分:辣椒抗青枯病鉴定技术规程   81 NY/T 2060.3-2011 辣椒抗病性鉴定技术规程 第3部分:辣椒抗烟草花叶病毒病鉴定技术规程   82 NY/T 2060.4-2011 辣椒抗病性鉴定技术规程 第4部分:辣椒抗黄瓜花叶病毒病鉴定技术规程   83 NY/T 2060.5-2011 辣椒抗病性鉴定技术规程 第5部分:辣椒抗南方根结线虫病鉴定技术规程   84 NY/T 1464.37-2011 农药田间药效试验准则 第37部分:杀虫剂防治蘑菇菌蛆和害螨   85 NY/T 1464.38-2011 农药田间药效试验准则 第38部分:杀菌剂防治黄瓜黑星病   86 NY/T 1464.39-2011 农药田间药效试验准则 第39部分:杀菌剂防治莴苣霜霉病   87 NY/T 1464.40-2011 农药田间药效试验准则 第40部分:除草剂防治免耕小麦田杂草   88 NY/T 1464.41-2011 农药田间药效试验准则 第41部分:除草剂防治免耕油菜田杂草   89 NY/T 1155.10-2011 农药室内生物测定试验准则 除草剂 第10部分:光合抑制型除草剂活性测定试验 小球藻法   90 NY/T 1155.11-2011 农药室内生物测定试验准则 除草剂 第11部分:除草剂对水绵活性测定试验方法   91 NY/T 2061.1-2011 农药室内生物测定试验准则 植物生长调节剂 第1部分:促进/抑制种子萌发试验 浸种法   92 NY/T 2061.2-2011 农药室内生物测定试验准则 植物生长调节剂 第2部分:促进/抑制植株生长试验 茎叶喷雾法   93 NY/T 2062.1-2011 天敌防治靶标生物田间药效试验准则 第1部分:赤眼蜂防治玉米田玉米螟   94 NY/T 2063.1-2011 天敌昆虫室内饲养方法准则 第1部分:赤眼蜂室内饲养方法   95 NY/T 2064-2011 秸秆栽培食用菌霉菌污染综合防控技术规范   96 NY/T 2065-2011 沼肥施用技术规范   97 NY/T 2066-2011 微生物肥料生产菌株的鉴别 聚合酶链反应(PCR)法   98 NY/T 2067-2011 土壤中13种磺酰脲类除草剂残留量的测定 液相色谱串联质谱法   99 NY/T 2068-2011 蛋与蛋制品中ω-3多不饱和脂肪酸的测定 气相色谱法   100 NY/T 2069-2011 牛乳中孕酮含量的测定 高效液相色谱-质谱法   101 NY/T 2070-2011 牛初乳及其制品中免疫球蛋白IgG的测定 分光光度法   102 NY/T 2071-2011 饲料中黄曲霉毒素、玉米赤霉烯酮和T-2毒素的测定 液相色谱-串联质谱法   103 NY/T 2072-2011 乌鳢配合饲料   104 NY/T 2073-2011 调理肉制品加工技术规范   105 NY/T 2074-2011 无规定动物疫病区 高致病性禽流感监测技术规范   106 NY/T 2075-2011 无规定动物疫病区 口蹄疫监测技术规范   107 NY/T 2076-2011 生猪屠宰加工场(厂)动物卫生条件   108 NY/T 2077-2011 种公猪站建设技术规范   109 NY/T 2078-2011 标准化养猪小区项目建设规范   110 NY/T 2079-2011 标准化奶牛养殖小区项目建设规范   111 NY/T 2080-2011 旱作节水农业工程项目建设规范   112 NY/T 2081-2011 农业工程项目建设标准编制规范   113 NY/T 2082-2011 农业机械试验鉴定 术语   114 NY/T 2083-2011 农业机械事故现场图形符号   115 NY/T 2084-2011 农业机械 质量调查技术规范   116 NY/T 2085-2011 小麦机械化保护性耕作技术规范   117 NY/T 2086-2011 残地膜回收机操作技术规程                                                                                                                                                                                                             118 NY/T 2087-2011 小麦免耕施肥播种机 修理质量   119 NY/T 2088-2011 玉米青贮收获机 作业质量   120 NY/T 2089-2011 油菜直播机 质量评价技术规范   121 NY/T 2090-2011 谷物联合收割机 质量评价技术规范   122 NY 2091-2011 木薯淀粉初加工机械安全技术要求   123 NY/T 2092-2011 天然橡胶初加工机械 螺杆破碎机   124 NY/T 2093-2011 农村环保工   125 NY/T 2094-2011装载机操作工   126 NY/T 2095-2011 玉米联合收获机操作工   127 NY/T 2096-2011 兽用化学药品制剂工   128 NY/T 2097-2011 兽用生物制品检验员   129 NY/T 2098-2011 兽用生物制品制造工   130 NY/T 2099-2011 土地流转经纪人   131 NY/T 2100-2011 渔网具装配操作工   132 NY/T 2101-2011 渔业船舶玻璃钢糊制工   133 NY/T 2102-2011 茶叶抽样技术规范 NY/T 5344.5-2006 134 NY/T 2103-2011 蔬菜抽样技术规范 NY/T 5344.3-2006 135 NY 525-2011 有机肥料 NY 525-2002 136 NY/T 667-2011 沼气工程规模分类 NY/T 667-2003 137 NY/T 373-2011 风筛式种子清选机 质量评价技术规范 NY/T 373-1999 138 NY/T 459-2011 天然生胶 子午线轮胎橡胶 NY/T 459-2001 139 NY/T 232-2011 天然橡胶初加工机械 基础件 NY/T 232.1~ 232.3-1994 140 NY/T 606-2011 小粒种咖啡初加工技术规范 NY/T 606-2002 141 NY/T 243-2011 剑麻纤维及制品回潮率的测定 NY/T 243-1995,NY/T 244-1995 142 NY/T 712-2011 剑麻布 NY/T 712-2003 143 NY/T 340-2011 天然橡胶初加工机械 洗涤机 NY/T 340-1998 144 NY/T 260-2011 剑麻加工机械 制股机 NY/T 260-1994 145 NY/T 451-2011 菠萝 种苗 NY/T 451-2001 146 NY/T 2104-2011 绿色食品 配制酒   147 NY/T 2105-2011 绿色食品 汤类罐头   148 NY/T 2106-2011 绿色食品 谷物类罐头   149 NY/T 2107-2011 绿色食品 食品馅料   150 NY/T 2108-2011 绿色食品 熟粉及熟米制糕点   151 NY/T 2109-2011 绿色食品 鱼类休闲食品   152 NY/T 2110-2011 绿色食品 淀粉糖和糖浆   153 NY/T 2111-2011 绿色食品 调味油   154 NY/T 2112-2011 绿色食品 渔业饲料及饲料添加剂使用准则   155 NY/T 750-2011 绿色食品 热带、亚热带水果 NY/T 750-2003 156 NY/T 751-2011 绿色食品 食用植物油 NY/T 751-2007 157 NY/T 754-2011 绿色食品 蛋与蛋制品 NY/T 754-2003 158 NY/T 901-2011 绿色食品 香辛料及其制品 NY/T 901-2004 159 NY/T 1709-2011 绿色食品 藻类及其制品 NY/T 1709-2009 160 SC/T 1108-2011 鳖类性状测定   161 SC/T 1109-2011 淡水无核珍珠养殖技术规程   162 SC/T 1110-2011罗非鱼养殖质量安全管理技术规范   163 SC/T 2008-2011 半滑舌鳎   164 SC/T 2040-2011 日本对虾 亲虾   165 SC/T 2041-2011 日本对虾 苗种   166 SC/T 2042-2011 文蛤 亲贝和苗种   167 SC/T 4024-2011 浮绳式网箱   168 SC/T 6048-2011 淡水养殖池塘设施要求   169 SC/T 6049-2011 水产养殖网箱名词术语  170 SC/T 6050-2011 水产养殖电器设备安全要求   171 SC/T 6051-2011 溶氧装置性能试验方法   172 SC/T 6070-2011 渔业船舶船载北斗卫星导航系统终端技术要求   173 SC/T 7015-2011 染疫水生动物无害化处理规程   174 SC/T 7210-2011 鱼类简单异尖线虫幼虫检测方法 175 SC/T 7211-2011 传染性脾肾坏死病毒检测方法   , 176 SC/T 7212.1-2011 鲤疱疹病毒检测方法 第1部分:锦鲤疱疹病毒  , 177 SC/T 7213-2011 鮰嗜麦芽寡养单胞菌检测方法   178 SC/T 7214.1-2011 鱼类爱德华氏菌检测方法 第1部分:迟缓爱德华氏菌   179 SC/T 8138-2011 190系列渔业船舶柴油机修理技术要求   180 SC/T 8140-2011 渔业船舶燃气安全使用技术条件   181 SC/T 8145-2011 渔业船舶自动识别系统B类船载设备技术要求   182 SC/T 9104-2011 渔业水域中甲胺磷、克百威的测定 气相色谱法   183 SC/T 3108-2011 鲜活青鱼、草鱼、鲢、鳙、鲤 SC/T 3108-1986 184 SC/T 3905-2011 鲟鱼籽酱 SC/T 3905-1989 185 SC/T 5007-2011 聚乙烯网线 SC/T 5007-1985 186 SC/T 6001.1-2011 渔业机械基本术语 第1部分:捕捞机械 SC/T 6001.1-2001 187 SC/T 6001.2-2011 渔业机械基本术语 第2部分:养殖机械 SC/T 6001.2-2001 188 SC/T 6001.3-2011 渔业机械基本术语 第3部分:水产品加工机械 SC/T 6001.3-2001 189 SC/T 6001.4-2011 渔业机械基本术语 第4部分:绳网机械 SC/T 6001.4-2001 190 SC/T 6023-2011 投饲机 SC/T 6023-2002 191 SC/T 8001-2011 海洋渔业船舶柴油机油耗SC/T 8001-1988 192 SC/T 8006-2011 渔业船舶柴油机选型技术要求 SC/T 8006-1997 193 SC/T 8012-2011 渔业船舶无线电通信、航行及信号设备配备要求 SC/T 8012-1997
  • 生态环境部发文加强重金属污染防控 一系列标准亟待出台
    日前,生态环境部发布《关于进一步加强重金属污染防控的意见》。主要目标,到2025年,全国重点行业重点重金属污染物排放量比2020年下降5%,重点行业绿色发展水平较快提升,重金属环境管理能力进一步增强,推进治理一批突出历史遗留重金属污染问题;到2035年,建立健全重金属污染防控制度和长效机制,重金属污染治理能力、环境风险防控能力和环境监管能力得到全面提升,重金属环境风险得到全面有效管控。文件内容显示,重点防控的重金属污染物包括铅、汞、镉、铬、砷、铊和锑,并对铅、汞、镉、铬和砷五种重点重金属污染物排放量实施总量控制。重点行业包括重有色金属矿采选业(铜、铅锌、镍钴、锡、锑和汞矿采选),重有色金属冶炼业(铜、铅锌、镍钴、锡、锑和汞冶炼),铅蓄电池制造业,电镀行业,化学原料及化学制品制造业(电石法(聚)氯乙烯制造、铬盐制造、以工业固体废物为原料的锌无机化合物工业),皮革鞣制加工业等。文件特别指出,要健全标准,加强重金属污染监管执法,其中明确提出要完善重金属污染物标准体系。包括,研究修订铅锌、电镀等行业污染物排放标准,加快制定出台废水重金属在线监测系统安装、运行、验收技术规范。修订《重点重金属污染物排放量控制目标完成情况评估细则(试行)》。省级生态环境部门结合本地区突出的重金属污染问题,加强地方排放标准体系建设,对于涉锰、锑、钼等产业分布集中的地区,要加快研究制定地方性生态环境标准,推动解决区域性特色行业污染问题。更多内容如下:关于进一步加强重金属污染防控的意见各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:“十三五”时期,重金属污染防控取得积极成效。同时应该看到,一些地区重金属污染问题仍然突出,威胁生态环境安全和人民群众健康,重金属污染防控任重道远。根据《中共中央 国务院关于深入打好污染防治攻坚战的意见》,为进一步强化重金属污染物排放控制,有效防控涉重金属环境风险,制定本意见。一、指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届历次全会精神,深入贯彻落实习近平生态文明思想,立足新发展阶段,完整、准确、全面贯彻新发展理念,服务构建新发展格局,把握减污降碳协同增效总要求,以改善生态环境质量为核心,以有效防控重金属环境风险为目标,以重点重金属污染物减排为抓手,坚持稳中求进工作总基调,坚持精准治污、科学治污、依法治污,深入开展重点行业重金属污染综合治理,有效管控重点区域重金属污染,切实维护生态环境安全和人民群众健康。二、防控重点重点重金属污染物。重点防控的重金属污染物是铅、汞、镉、铬、砷、铊和锑,并对铅、汞、镉、铬和砷五种重点重金属污染物排放量实施总量控制。重点行业。包括重有色金属矿采选业(铜、铅锌、镍钴、锡、锑和汞矿采选),重有色金属冶炼业(铜、铅锌、镍钴、锡、锑和汞冶炼),铅蓄电池制造业,电镀行业,化学原料及化学制品制造业(电石法(聚)氯乙烯制造、铬盐制造、以工业固体废物为原料的锌无机化合物工业),皮革鞣制加工业等6个行业。重点区域。依据重金属污染物排放状况、环境质量改善和环境风险防控需求,划定重金属污染防控重点区域。鼓励地方根据本地生态环境质量改善目标和重金属污染状况,确定上述要求以外的重点重金属污染物、重点行业和重点区域。三、主要目标到2025年,全国重点行业重点重金属污染物排放量比2020年下降5%,重点行业绿色发展水平较快提升,重金属环境管理能力进一步增强,推进治理一批突出历史遗留重金属污染问题。到2035年,建立健全重金属污染防控制度和长效机制,重金属污染治理能力、环境风险防控能力和环境监管能力得到全面提升,重金属环境风险得到全面有效管控。四、分类管理,完善重金属污染物排放管理制度完善全口径清单动态调整机制。各地生态环境部门全面排查以工业固体废物为原料的锌无机化合物工业企业信息,将其纳入全口径涉重金属重点行业企业清单(以下简称全口径清单);梳理排查以重点行业企业为主的工业园区,建立涉重金属工业园区清单;及时增补新、改、扩建企业信息和漏报企业信息,动态更新全口径清单,并在省(区、市)生态环境厅(局)网站上公布。依法将重点行业企业纳入重点排污单位名录。加强重金属污染物减排分类管理。根据各省(区、市)重金属污染物排放量基数和减排潜力,分档确定减排目标;按重点区域、重点行业以及重点重金属,实施差别化减排政策。各地生态环境部门应进一步摸排企业情况,挖掘减排潜力,以结构调整、升级改造和深度治理为主要手段,将减排目标任务落实到具体企业,推动实施一批重金属减排工程,持续减少重金属污染物排放。推行企业重金属污染物排放总量控制制度。依法将重点行业企业纳入排污许可管理。对于实施排污许可重点管理的企业,排污许可证应当明确重金属污染物排放种类、许可排放浓度、许可排放量等。各地生态环境部门探索将重点行业减排企业重金属污染物排放总量要求落实到排污许可证,减排企业在执行国家和地方污染物排放标准的同时,应当遵守分解落实到本单位的重金属排放总量控制要求。重点行业企业适用的污染物排放标准、重点污染物总量控制要求发生变化,需要对排污许可证进行变更的,审批部门可以依法对排污许可证相应事项进行变更,并载明削减措施、减排量,作为总量替代来源的还应载明出让量和出让去向。到2025年,企业排污许可证环境管理台账、自行监测和执行报告数据基本实现完整、可信,有效支撑重点行业企业排放量管理。探索重金属污染物排放总量替代管理豁免。在统筹区域环境质量改善目标和重金属环境风险防控水平、高标准落实重金属污染治理要求并严格审批前提下,对实施国家重大发展战略直接相关的重点项目,可在环评审批程序实行重金属污染物排放总量替代管理豁免。对利用涉重金属固体废物的重点行业建设项目,特别是以历史遗留涉重金属固体废物为原料的,在满足利用固体废物种类、原料来源、建设地点、工艺设备和污染治理水平等必要条件并严格审批前提下,可在环评审批程序实行重金属污染物排放总量替代管理豁免。五、严格准入,优化涉重金属产业结构和布局严格重点行业企业准入管理。新、改、扩建重点行业建设项目应符合“三线一单”、产业政策、区域环评、规划环评和行业环境准入管控要求。重点区域的新、改、扩建重点行业建设项目应遵循重点重金属污染物排放“减量替代”原则,减量替代比例不低于1.2:1;其他区域遵循“等量替代”原则。建设单位在提交环境影响评价文件时应明确重点重金属污染物排放总量及来源。无明确具体总量来源的,各级生态环境部门不得批准相关环境影响评价文件。总量来源原则上应是同一重点行业内企业削减的重点重金属污染物排放量,当同一重点行业内企业削减量无法满足时可从其他重点行业调剂。严格重点行业建设项目环境影响评价审批,审慎下放审批权限,不得以改革试点为名降低审批要求。依法推动落后产能退出。根据《产业结构调整指导目录》《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》等要求,推动依法淘汰涉重金属落后产能和化解过剩产能。严格执行生态环境保护等相关法规标准,推动经整改仍达不到要求的产能依法依规关闭退出。优化重点行业企业布局。推动涉重金属产业集中优化发展,禁止低端落后产能向长江、黄河中上游地区转移。禁止新建用汞的电石法(聚)氯乙烯生产工艺。新建、扩建的重有色金属冶炼、电镀、制革企业优先选择布设在依法合规设立并经规划环评的产业园区。广东、江苏、辽宁、山东、河北等省份加快推进专业电镀企业入园,力争到2025年底专业电镀企业入园率达到75%。六、突出重点,深化重点行业重金属污染治理加强重点行业企业清洁生产改造。加强重点行业清洁生产工艺的开发和应用。重点行业企业“十四五”期间依法至少开展一轮强制性清洁生产审核。到2025年底,重点行业企业基本达到国内清洁生产先进水平。加强重金属污染源头防控,减少使用高镉、高砷或高铊的矿石原料。加大重有色金属冶炼行业企业生产工艺设备清洁生产改造力度,积极推动竖罐炼锌设备替代改造和铜冶炼转炉吹炼工艺提升改造。电石法(聚)氯乙烯生产企业生产每吨聚氯乙烯用汞量不得超过49.14克,并确保持续稳中有降。推动重金属污染深度治理。自2023年起,重点区域铅锌冶炼和铜冶炼行业企业,执行颗粒物和重点重金属污染物特别排放限值。根据排放标准相关规定和重金属污染防控需求,省级人民政府可增加执行特别排放限值的地域范围。上述执行特别排放限值的地域范围,由省级人民政府通过公告或印发相关文件等适当方式予以公布。重有色金属冶炼企业应加强生产车间低空逸散烟气收集处理,有效减少无组织排放。重有色金属矿采选企业要按照规定完善废石堆场、排土场周边雨污分流设施,建设酸性废水收集与处理设施,处理达标后排放。采用洒水、旋风等简易除尘治理工艺的重有色金属矿采选企业,应加强废气收集,实施过滤除尘等颗粒物治理升级改造工程。开展电镀行业重金属污染综合整治,推进专业电镀园区、专业电镀企业重金属污染深度治理。排放汞及汞化合物的企业应当采用最佳可行技术和最佳环境实践,控制并减少汞及汞化合物的排放和释放。开展涉镉涉铊企业排查整治行动。开展农用地土壤镉等重金属污染源头防治行动,持续推进耕地周边涉镉等重金属行业企业排查整治。全面排查涉铊企业,指导督促涉铊企业建立铊污染风险问题台账并制定问题整改方案。开展重有色金属冶炼、钢铁等典型涉铊企业废水治理设施除铊升级改造,严格执行车间或生产设施废水排放口达标要求。各地生态环境部门构建涉铊企业全链条闭环管理体系,督促企业对矿石原料、主副产品和生产废物中铊成分进行检测分析,实现铊元素可核算可追踪。江西、湖南、广西、贵州、云南、陕西、甘肃等省份要制定铊污染防控方案,强化涉铊企业综合整治,严防铊污染问题发生。加强涉重金属固体废物环境管理。加强重点行业企业废渣场环境管理,完善防渗漏、防流失、防扬散等措施。推动锌湿法冶炼工艺按有关规定配套建设浸出渣无害化处理系统及硫渣处理设施。加强尾矿污染防控,开展长江经济带尾矿库污染治理“回头看”和黄河流域、嘉陵江上游尾矿库污染治理。严格废铅蓄电池、冶炼灰渣、钢厂烟灰等含重金属固体废物收集、贮存、转移、利用处置过程的环境管理,防止二次污染。推进涉重金属历史遗留问题治理。全面推动陕西省白河县硫铁矿区污染系统治理,有序推进丹江口库区及上游等地区历史遗留矿山污染排查整治,因地制宜、“一矿一策”,形成一批可复制可推广的污染治理技术模式。推动“锰三角”地区加快锰产业结构调整,系统开展锰污染治理和生态修复,加强全国其他地区涉锰企业污染整治。坚持问题导向,举一反三,推动地方结合农用地土壤镉等重金属污染防治、清废行动等专项工作,开展废渣、底泥等突出历史遗留重金属污染问题排查,以防控环境风险为核心实施分类整治。对问题复杂、短期难以彻底解决的问题,要以保障人体健康为优先目标做好污染阻隔等风险管控措施,防止污染饮用水水源地、耕地等环境敏感目标。鼓励有条件的地方利用卫星遥感、无人机、大数据等手段开展历史遗留重金属污染问题排查。七、健全标准,加强重金属污染监管执法完善重金属污染物标准体系。研究修订铅锌、电镀等行业污染物排放标准,加快制定出台废水重金属在线监测系统安装、运行、验收技术规范。修订《重点重金属污染物排放量控制目标完成情况评估细则(试行)》。省级生态环境部门结合本地区突出的重金属污染问题,加强地方排放标准体系建设,对于涉锰、锑、钼等产业分布集中的地区,要加快研究制定地方性生态环境标准,推动解决区域性特色行业污染问题。强化重金属污染监控预警。加快推进废水、废气重金属在线监测技术、设备的研发与应用。建立健全重金属污染监控预警体系,提升信息化监管水平。各地生态环境部门在涉铊涉锑行业企业分布密集区域下游,依托水质自动监测站加装铊、锑等特征重金属污染物自动监测系统。排放镉等重金属的企业,应依法对周边大气镉等重金属沉降及耕地土壤重金属进行定期监测,评估大气重金属沉降造成耕地土壤中镉等重金属累积的风险,并采取防控措施。鼓励重点行业企业在重点部位和关键节点应用重金属污染物自动监测、视频监控和用电(能)监控等智能监控手段。强化涉重金属执法监督力度。将重点行业企业及相关堆场、尾矿库等设施纳入“双随机、一公开”抽查检查对象范围,进行重点监管。加大排污许可证后监管力度,对重金属污染物实际排放量超出许可排放量的企业依法依规处理。将对涉重金属行业专项执法检查纳入污染防治攻坚战监督检查考核工作,依法严厉打击超标排放、不正常运行污染治理设施、非法排放、倾倒、收集、贮存、转移、利用、处置含重金属危险废物等违法违规行为,涉嫌犯罪的,依法移送公安机关依法追究刑事责任。强化涉重金属污染应急管理。重点行业企业应依法依规完善环境风险防范和环境安全隐患排查治理措施,制定环境应急预案,储备相关应急物资,定期开展应急演练。各地生态环境部门结合“一河一策一图”将涉重金属污染应急处置预案纳入本地突发环境应急预案,加强应急物资储备,定期开展应急演练,不断提升环境应急处置能力。八、落实责任,促进信息公开和社会共治分解工作任务。省级生态环境部门明确重金属污染防控责任人,加强组织领导,制定工作方案,明确年度减排目标,细化任务分工,逐项落实工作任务,确保各项工作顺利开展。按照一区一策原则,在工作方案中明确各重点区域污染控制、质量改善、风险管控等任务。省级工作方案应于2022年6月30日前报送生态环境部备案。定期调度进展。省级生态环境部门要加强重金属污染防控工作调度和成效评估,每年7月15日前将上半年重点行业建设项目总量替代清单、减排工程实施清单,每年1月底前将上年重金属污染防控工作进展、减排评估结果和动态更新后的全口径企业清单报送生态环境部。生态环境部根据省级生态环境部门工作情况,加强工作指导和技术帮扶。对于进展滞后的地区实施预警,对未执行总量替代政策的进行通报。加强财政金融支持。省级生态环境部门按照土壤污染防控等资金管理相关规定合理使用资金,积极拓宽资金来源渠道,支持涉重金属历史遗留问题治理等工作。收集、贮存、运输、利用、处置涉重金属危险废物的单位,应当按照国家有关规定,投保环境污染责任保险。鼓励各地探索开展重金属污染物排污权交易工作。鼓励公众参与。重点行业企业应依法披露重金属相关环境信息。有条件的企业可设置企业公众开放日。充分发挥行业协会等社会团体作用,督促企业自觉履行社会责任。支持各地建立完善有奖举报制度,将举报重点行业企业非法生产、不正常运行治理设施、超标排放、倾倒转移含重金属废物等列入重点奖励范围。  生态环境部  2022年3月3日
  • 我国首次制定食品致病菌限量标准
    各种肉类、巧克力、饮料等内含沙门氏菌、金黄色葡萄球菌的限量值,首次有了明确的标准。昨日,卫生部发布征求食品安全国家标准《食品中致病菌限量》的征求意见稿,该标准拟自正式发布后6个月施行,这是我国首次制定食品中致病菌限量标准。   标准制定考虑潜在危害   据介绍,在标准制定过程中,充分考虑了致病菌或其代谢产物对健康造成实际或潜在危害的证据,原料中致病菌状况,加工过程对致病菌状况的影响,贮藏、销售和食用过程中致病菌状况的变化,食品的消费人群,致病菌指标应用的成本/效益分析等因素。   本次标准制定中梳理分析的标准共计562项。   标准提出了沙门氏菌、金黄色葡萄球菌、副溶血性弧菌、单核细胞增生李斯特氏菌、大肠埃希氏菌等几种主要致病菌,在对肉制品、水产制品、即食蛋制品、粮谷类制品、巧克力类及可可制品、即食加工果蔬、饮料及冷冻饮品类、即食调味品、坚果籽实制品共9类食品进行了限量要求。   其中,公众比较熟悉的沙门氏菌在各类食品中的限量值均为0,也就是说,样品中不得检出这类病菌,金黄色葡萄球菌在各类食品中的限量则均为100CFU/g.   乳制品不含在该标准   此外卫生部表示,非即食生鲜类食品中的致病菌污染主要通过生产加工过程标准进行控制,不在本标准中进行规定 乳与乳制品已清理完毕,也不包含在该标准之中。   卫生部表示,食品中致病菌限量标准是食品安全基础标准的重要组成部分。工作组参考分析了欧盟、澳新、日本、美国、香港、台湾等地区食品中的致病菌限量标准及其规定制定了这一标准。
  • 【行业动态】重磅来袭!新标准GB 29921-2021解读:食品中致病菌限量
    GB 29921-2021《食品安全国家标准 预包装食品中致病菌限量》已于11月22日正式实施!该标准仅适用于预包装食品!不适用于执行商业无菌要求的食品、包装饮用水、饮用天然矿泉水。根据GB 7718-2011,预包装食品是指预先定量包装或者制作在包装材料和容器中的食品,包括:预先定量包装以及预先定量制作在包装材料和容器中并且在一定量限范围内具有统一的质量或体积标识的食品。01、新标准修订及实施时间近几年,国内外频发的食源性疾病给公众身体健康与生命安全、社会、经济带来严重危害,食源性疾病已成为不断扩大的公共卫生问题之一,引起各国政府的高度关注。而食品中致病菌污染是导致食源性疾病的重要原因,预防和控制食品中致病菌污染是食品安全风险管理的重点内容。 为了保障食品安全和消费者健康,强化食品生产、加工和经营全过程管理,助推行业提升管理水平和健康发展。我国在2013年制定和发布的《食品中致病菌限量》(GB 29921-2013)标准的基础上制定了两部新的食品致病菌限量标准,分别是《食品安全国家标准 散装即食食品中致病菌限量》(GB 31607-2021)和本文讨论的《食品安全国家标准 预包装食品中致病菌限量》(GB 29921-2021)。《食品安全国家标准 散装即食食品中致病菌限量》(GB 31607-2021)标准将于2022年3月7日实施。02、标准具体变化一览表表1:《GB 29921-2021 食品安全国家标准 预包装食品中致病菌限量》变化情况表2:《GB 31607-2021 食品安全国家标准 散装即食食品中致病菌限量》 全新总体来说,GB 31607-2021散装即食食品中致病菌限量标准是全新增加,包含了5种致病菌,沙门氏菌、金黄色葡萄球菌、蜡样芽胞杆菌、单核细胞增生李斯特氏菌、副溶血性弧菌。而GB 29921-2021预包装食品中致病菌限量标准与2013版比较,主要变化:修改了标准名称、范围描述、应用原则描述,增加了乳制品和特殊膳食用食品两大类食品,以及增加了“附录A 食品类别(名称)说明”,致病菌检测项目新增“致泻大肠埃希氏菌、克罗诺杆菌属(阪崎肠杆菌) ”,此外,即食果蔬制品和冷冻饮品这两类食品新增“单核细胞增生李斯特氏菌”检测项目。03、根据新标准提供的产品方案为了保证检测的准确性,针对沙门氏菌、金黄色葡萄球菌、蜡样芽胞杆菌、单核细胞增生李斯特氏菌、副溶血性弧菌、致泻大肠埃希氏菌、克罗诺杆菌属(阪崎肠杆菌) 这些致病菌 ,坛墨质检商城均可以提供相应的标准菌株和质控样品菌株,来为食品企业和实验室保驾护航!
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 无菌隔离器渐受欢迎,行业标准制定迫在眉睫
    在过去的30年中,隔离技术在制药行业逐渐得到推广,使制药行业的生产技术有了巨大的变革。制药行业采用隔离器操作技术主要有2个目的:一是保护产品免遭来自环境的污染,包括操作人员的活动所带来的污染 二是保护操作人员,使其避免受到生产过程中有害物质和有毒物质的伤害。最初隔离技术引入制药行业是从实验室的无菌测试开始,并逐渐推广到了大生产过程中。另外,隔离技术还用于最终产品质量控制的常规检测方面,如无菌测试等。实现隔离操作的设备主要有限制进出屏障系统(RABS)和无菌隔离器(Isolator)。  与传统的无菌室相比,无菌隔离技术具有一系列优点:  其中,随着新版药典的实施和新版GMP要求的不断发展完善,无菌检查离器日益受到了国内制药企业的关注。值得注意的是,2015年版《中国药典》增加了《9206 无菌检查用隔离系统验证指导原则》,这是中国药典首次提到隔离器,隔离器在药品无菌检查中的应用已经成为趋势。  进口无菌隔离器价格较为昂贵,基本在五百万人民币左右,而国产无菌隔离器虽然价格低廉,但行业还比较混乱,据仪器信息网编辑获悉,国家药典委员会正在研究相关行业标准,有望近日出台。
  • 全球首创!国产自研微生物进化仪,让工业菌种创制“上高速”
    合成生物学作为生物经济发展的关键技术已经被推向了风口。2022年,中美先后发布生物经济领域的发展规划。5月,国家发展改革委发布《“十四五”生物经济发展规划》,这是我国首部生物经济的五年规划,明确了生物经济发展的具体任务。9月12日,美国总统拜登签署《关于推进生物技术和生物制造创新以实现可持续、安全和可靠的美国生物经济的行政命令》。据企查查数据显示,在存量方面,我国现存27.1万家合成生物相关企业;在注册量方面,近十年,我国合成生物相关企业每年注册量逐年增加,其中, 2020年新注册的企业数量增至3万家,同比陡增226.8%,此后三年虽增速放缓,但2023年全年新注册8.2万家合成生物相关企业,成为近十年新高。可见,在政策和技术优势的双重加持下,国内合成生物学产业发展迅速。近十年我国合成生物相关企业注册量&增速(单位:万家)(注:本次数据来源于企查查;统计时间为2024/5/10)合成生物学作为一种具有颠覆性意义的新兴技术,其应用范围已经涵盖农业、食品、医药健康、化工等各个方面,为绿色生物制造产业的发展提供着技术支持。微生物战略资源严重短缺:我国核心菌种自主率不到20%工业菌株作为生物制造的“灵魂”,同时也是合成生物学研究中的底盘细胞,经过基因编辑等技术重新设计合成通路,最终成为高效细胞工厂:只需获取简单物质便能合成出人类所需的产品,例如胶原蛋白、乙醇等。因此,积极开展自主工业菌种的设计创制研究是爆涨我国生物制造产业新质生产力发展的关键。然而,有数据显示,我国核心菌种自主率不到20%、核心工业酶的自主率不到25%、益生菌核心菌株的自主率不到10%,微生物战略资源严重短缺,工业菌种创新率低严重制约着我国生物制造产业的发展,那么,如何突破工业菌种的创新难题呢?清华大学邢新会教授在报告中表示,“设计-构建-测试-学习(DBTL)”循环能力是关键,而科学仪器作为产业发展不可或缺的一环,其在提高“DBTL”循环能力方面也发挥着重要作用。全球首创微生物进化仪,加快“DBTL”循环能力提到这里,邢教授以自动化生物铸造系统为例向我们展示了提高DBTL循环的方法:用机器人/机械臂将菌种、涂布接种仪、菌落挑取仪、摇床、移液工作站、酶标仪等关键仪器设备进行连接。但同时他也指出,该系统存在设备系统复杂、运行成本高、通量受限于培养体系等问题。因此,邢教授及其生物育种技术与装备团队长期致力于高通量生物育种技术与装备的研发,同时,也在“合成生物制造技术”、“活性-药效-安全筛选评价技术与装备”方面开展了许多工作,涵盖了从生物功能发现到功能制造。邢教授团队通过等离子技术研发出了ARTP(Atmospheric and Room Temperature Plasma)高通量诱变育种仪,该装备实现了常温常压下的突变育种,并成功孵化了天木生物进行商品化制造。在实现了突变后,邢教授与清华大学张翀教授合作利用微流控实现了高通量/自动化细胞培养和单细胞筛选。至此,基于微流控技术开发出了一系列高通量工业表型测试技术与装备,然后通过基因编辑技术开展高通量基因型-工业表型关联新方法的研究,进而产出系列新装备、带动新标准、研发新菌种,为合成生物学与绿色生物制造产业的发展提供技术平台支撑。常压室温等离子体诱变育种仪ARTP(点击进入详情页)邢教授团队研发出的高通量皮升级液滴单细胞分选系统DREM Cell、高通量微升级液滴单细胞分选系统 MISS Cell的核心技术指标相当甚至优于国际竞争仪器,高通量微升级微生物液滴培养仪MMC和毫升体系微生物适应性进化仪EVOL Cell为全球首创。其中,MMC可以实现连续15天200克隆,EVOL Cell可以实现4通道无气泡供养。(点击下方仪器名称即可进入页面详情页)左:高通量皮升级液滴单细胞分选系统DREM Cell,右:M高通量微升级液滴单细胞分选系统 MISS Cell左:高通量微升级微生物液滴培养仪MMC,右:毫升体系微生物适应性进化仪EVOL Cell在报告的最后,邢教授通过分子克隆全自动挑取、自动进化培养甲醇依赖型大肠杆菌、创制下一代蛋白和多肽合成细胞工厂等6个实际场景的应用,充分证明了这几款仪器在自动化、高通量工业菌株性能精准改造等方面的应用优势。注:上述内容节选自清华大学邢新会教授的《创新高通量育种装备体系,支撑生物制造新质生产力发展》。“合成生物学先进工具与解决方案”主题约稿活动合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展......为帮助广大科研工作者及时了解前沿技术进展、创新产品与解决方案,仪器信息网特此约稿。欢迎投稿,投稿文章将于话题专栏展示并在仪器信息网相关渠道推广,投稿邮箱:chensh@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13171925519(同微信)。(点击下图进入专题详情页面)
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 海鲜食品安全危机?标准、解决方案这里都有
    北京时间24日中午12时,日本向海洋排放福岛第一核电站污染水正式启动, 2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。对此,群众最为关心的莫过于对我国生态环境和食品安全是否会有影响。据了解,核污染具有毒性和生物蓄积性,对生态系统造成破坏,长期摄入或造成慢性放射性中毒。8月24日,我国海关总署发布公告,自24日(含)起全面暂停进口原产地为日本的水产品(含食用水生动物)。日本核污水排海的后续影响有待研究机构和有关部门进一步判定。小编特整理了海鲜水产品检测中涉及到的检测项目、检测仪器及解决方案,供大家参考:一、检测项目:1)理化检测:感官检测、水分、pH值、净含量检测、含砂量、干燥失重、盐分检测、浸出物、酸价测定、过氧化值、多磷酸盐、挥发性盐基氮、新鲜度检测2)卫生检测:甲醛、多氯联苯、组胺检测、生物胺检测、挥发酚检测、食品添加剂检测、明矾、硼酸、重金属、亚硝胺检测3)微生物检测:菌落总数、大肠菌群、沙门氏菌检验、金黄色葡萄球菌、副溶血性弧菌、寄生虫、商业无菌检测4)农药残留检测:马拉硫磷、毒死蜱、三氯杀螨醇、三唑酮、烯丙菊酯、氯丹、杀扑磷、硫丹、丙草胺、六六六,敌敌畏5)兽药残留检测:青霉素检测、红霉素、土霉素、四环素检测、硝基呋喃类、磺胺类、孔雀石绿6)营养成分检测:能量,蛋白质检测,脂肪,碳水化合物,氨基酸检测,无机盐,维生素检测、DHA检测、EPA7)成分分析:主成分分析,全成分分析,未知物分析,定性定量分析,指标检测,成分含量检测二、海鲜相关检测标准:GB/T 18108-2008 鲜海水鱼GB 5009.206-2016 食品安全标准 水产品中河豚毒素的测定GB 5009.273-2016 食品安全标准 水产品中微囊藻毒素的测定GB 5009.274-2016 食品安全标准 水产品中西加毒素的测定GB 5009.231-2016 食品安全标准 水产品中挥发酚残留量的测定GB 2733-2015 食品安全标准 鲜、冻动物性水产品GB 10136-2015 食品安全标准 动物性水产制品GB 29682-2013 食品安全标准 水产品中青霉素类药物多残留的测定GB 29684-2013 食品安全标准 水产品中红霉素残留量的测定GB 29705-2013 食品安全标准 水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定GB/Z 21702-2008 出口水产品质量安全控制规范GB/T 20361-2006 水产品中孔雀石绿和结晶紫残留量的测定GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留量的测定GB 14882-1994 食品中放射性物质限制浓度标准SN/T 4590-2016 出口水产品中焦磷酸盐、三聚磷酸盐、三偏磷酸盐含量的测定SN/T 4526-2016 出口水产品中有机硒和无机硒的测定SN/T 0393-1995 出口水产品中总汞含量检验SN/T 3196-2012 水产品中致病性弧菌检测SN/T 0223-2011 进出口冷冻水产品检验规程SN/T 2564-2010 水产品中致病性弧菌检测SN/T 1974-2007 进出口水产品中亚甲基蓝残留量检测SN/T 1643-2005 进出口水产品中砷的测定SC/T 3012-2002 水产品加工术语SC/T 3015-2002 水产品中土霉素、四环素、金霉素残留量的测定SC/T 3011-2001 水产品中盐分的测定SN 0598-1996 出口水产品中多种有机氯农药残留量检验SN/T 0392-1995 出口水产品中硼酸的测定三、海鲜食品检测仪器有:序号海鲜食品检测仪器名称用途1水分测定仪测定海鲜水分含量2酶标仪检测海鲜疫病、兽药残留、抗生素、真菌毒素等3气相色谱仪配置定制,根据测的项目不同,进行配置4气相色谱-质谱联用仪现场的有机污染物进行准确定性和定量检测,主要应用于环境空气、水体、土壤和固体废弃物中挥发性和部分半挥发性有机物的现场分析5紫外可见分光光度计测量物质对不同波长单色辐射的吸收程度,定量分析6电子天平样品称量必备仪器7脂肪测定仪测定脂肪含量的仪器8凯氏定氮仪测定蛋白质含量的仪器9微生物检测仪用于海鲜食品中的活菌总数、大肠杆菌、绿脓杆菌、沙门氏菌、链球菌、酵母菌等微生物的快速检测10兽药残留检测仪可定量快速检测阿莫西林、孔雀石绿、瘦肉精、黄曲霉毒素等11食品安全检测仪检测海鲜中是否含有重金属、细菌、病毒等超标的污染物。12马弗炉用于测定水分、灰分、挥发分、灰熔点分析、灰成分分析、元素分析。也可以作为通用灰化炉使用。13微波消解仪微波消解对样品进行前处理,可完全消解样品,便于检测更多海鲜食品检测仪器请点击查看: 仪器优选四、海鲜食品相关解决方案: 1、 海鲜水产呋喃类代谢物残留快速检测解决方案 2、 海鲜组织中的兽药分析——实时直接分析 (DART) 和高效液相色谱 (HPLC) 与 Agilent 6400 系列三重四 极 杆质谱仪 (QQQ-MS) 联用系统 3、 海鲜甲醛检测操作流程 4、 解决方案 | 食品中放射性物质锶-90的测定 5、 海鲜储存对质地的影响更多海鲜食品检测解决方案请点击查看:水产品检测面对日本核污水排放这一事件,我们不能过于恐慌。我们应该保持理性,采取必要的措施来保障食品安全。同时,我们也需要加强环境监测和食品安全监管,确保我们的食品安全和健康。最后,让我们一起关注食品安全和环境保护问题,为我们的健康和未来努力。══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/ ) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
  • 中国化工学会发布《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准征求意见稿
    各有关单位及专家:由中国化工学会组织制定的《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准已完成征求意见稿,现公开征求意见。请于2024年5月17日之前将中国化工学会团体标准征求意见表(见附件2)以电子邮件的形式反馈至中国化工学会。联系人:杨越 电话:010-64455951 邮箱:yangy@ciesc.cn附 件:1.《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》征求意见稿2. 中国化工学会团体标准征求意见表 关于《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准征求意见的通知.pdf附件1《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》征求意见稿.pdf附件2 征求意见表.doc
  • 美国火车脱轨泄露的氯乙烯到底有多“毒”?
    2月13日,美国俄亥俄州一起火车脱轨事故冲上微博热搜榜第一名,近日仍在互联网上持续发酵。据悉,当地时间2月3日,美国俄亥俄州的一列火车脱离轨道造成大火,引发了氯乙烯等危险化学品泄漏。此次火车脱轨事故中泄漏的氯乙烯究竟是什么?氯乙烯对人体健康和周围环境可能造成哪些危害?应该如何科学、安全地处置氯乙烯等危险化学品?揭开氯乙烯的神秘面纱“氯乙烯,也叫乙烯基氯,其化学式为C?H?Cl。”西安科技大学地质与环境学院教授修福荣介绍,“常温常压下,氯乙烯为无色有气味的气体,其密度小于水但大于空气,加压冷凝处理后可变为液体状态。”此次火车脱轨事故中泄露的氯乙烯并非气体状态,而是液体状态。这可能与加压冷凝处理后,液体状态的氯乙烯密度更大,每个车厢可以运输更多的氯乙烯有关。“氯乙烯具有较强的易燃易爆性。”修福荣指出。氯乙烯与空气混合时,其爆炸极限为4%—21%,在加压处理后则更易爆炸。“氯乙烯的熔沸点较低,微溶于水,溶于乙醇、乙醚、丙酮等有机溶剂。”修福荣说。氯乙烯作为一种有机化合物,在化工中拥有广阔的应用空间,要用作合成塑料和各种有机合成的原料。“氯乙烯是PVC塑料合成的重要原料,有时也被用作冷冻剂。” 修福荣介绍。对人体与环境均有严重危害危险化学品,指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、设施、环境具有危害的剧毒化学品和其他化学品。“氯乙烯就是一种典型的危险化学品,如果大量泄露,对人体健康与周围环境均会造成严重的危害。”修福荣指出。如果吸入或大量皮肤接触,氯乙烯会对人体产生十分严重的致癌和中毒作用。“氯乙烯属于1类致癌物,主要对神经系统、肝脏、消化系统及皮肤产生毒害或损伤作用。”?修福荣介绍。氯乙烯的中毒主要可以分为急性中毒、慢性中毒和皮肤接触中毒三种。急性中毒时,轻度中毒者往往表现为眩晕、胸闷、嗜睡等。而严重中毒则表现为昏迷、抽搐、甚至死亡。慢性中毒时,中毒者会出现神经衰弱、肝功能损伤、消化功能损害等症状。皮肤接触中毒时,往往会造成中毒者红斑、湿疹、水肿甚至肢体坏死。“氯乙烯大量泄露到空气中,可能对周围环境造成难以逆转的损害。”修福荣指出。氯乙烯因为密度比空气大,往往会在低处扩散,其影响范围较大;氯乙烯容易与空气混合形成易燃、易爆的混合物,遇热源或明火极易发生爆炸;弥散至大气中的氯乙烯会参与光化学烟雾的反应和形成,为大气污染推波助澜;此外,由于其严重的毒性,氯乙烯还会对生态环境造成严重损害,造成动植物大量死亡,进而影响生物多样性。科学处置避免可能风险此次发生于美国的危险化学品泄露事故,给我国的危险化学品处置敲响了警钟。我们应该如何从中吸取教训,科学、安全地处置氯乙烯等危险化学品,避免类似的事故在我国发生呢?“总的来说,我们要遵循我国的《危险化学品安全管理条例》,对各种危险化学品进行处置。”修福荣说,“具体来说,在生产操作环节、储存运输环节、废弃处置环节上要遵守相关安全规范,最大程度避免危险化学品造成的可能风险。”在生产操作环节,要坚持密闭操作,做好安全通风。操作人员要佩戴防毒面具、安全防护眼镜,穿戴防化服和手套;操作场所要远离火种和热源,安装防爆、通风系统和设备。在储存运输环节,储存时,要将各种危险化学品储存于阴凉、通风的库房;运输时,要按照危险化学品运输的相关规定进行配装和运输,远离火种和热源,与氧化剂分开,防止日光暴晒。在废弃处置环节,要根据不同的危险化学品特点,进行对应的科学处置。“氯乙烯废弃后,一般用焚烧法处置。”修福荣表示。需要特别指出的是,在对氯乙烯等含氯塑料的焚烧过程中,如果焚烧温度低于800℃,就会造成不完全燃烧,极易生成氯苯——剧毒物质二噁英合成的前体。“因此,我们要在专业的危险废物焚烧机构使用专业焚烧炉处置氯乙烯等含氯物质,并严格处理焚烧后产生的尾气。只有达到国家排放标准后,才能将其排放。”修福荣表示。
  • 聚乙烯中炭黑含量不同测试方法的探讨
    摘要采用GB13021《聚乙烯管材和管体炭黑含量测定(热失重法)》和热重分析仪两种方法测定聚乙烯中炭黑含量。对两种方法的测定结果进行了比较,结果表面,两种方法均有良好的重复性和准确度,测定结果基本一致,采用不同方法得到的测定结果间可以互相参考  关键词 GB13021,热重分析依法,炭黑含量  Carbon black content in polyethylene was determined by two methods of GB13021, polyethylene pipe and tube carbon black content determination (thermal gravimetric method) and thermo gravimetric analyzer. Compared with the measurement results of the two methods of the surface, the two methods have good repeatability and accuracy. The measurement results are basically the same, the determination results obtained by different methods can reference each other  Key wordsGB13021, thermal gravimetric analysis, carbon black content  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑[1]。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响[2]。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法主要执行GB13021–1991[3]。使用热重分析仪是现在常用的热分析手段,用来测量高聚物的成分极为方便,常用标准是ASTME1131–2008[4],热重分析仪也可以用于测定聚乙烯中的炭黑含量。目前这两种方法并存,不同实验室间经常采用不同的方法测试,存在炭黑含量分析结果无法直接比较的问题。笔者用以上两种方法测定同批聚乙烯粒料中的炭黑含量,对不同测试方法的优缺点、测量重复性以及两种方法测试结果的一致性进行了探讨,对炭黑含量测试方法的选择提供了参考。1实验部分  1.1主要仪器与材料  炭黑含量分析仪:HS-TH-3500型,上海和晟仪器科技有限公司;机械分析天平:精度0.0001g,上海天平仪器厂;热重分析仪:STA449C型;德国耐驰公司;电子天平:M2P型,德国赛多利斯公司;聚乙烯:市售。  1.2实验方法  1.2.1GB13021法  称取试样质量m1(1±0.05)g置于样品舟中,将样品舟放入炭黑含量分析仪中,调氮气流量130mL/min,在氮气保护下升温至600℃,恒温裂解30min,取出后放入干燥器冷却至室温,称量质量m2,再放入马弗炉中950℃灼烧10min,取出放入干燥器冷却至室温,称量质量m3。炭黑含量c(%)  按式(1)计算。  1.2.2热重分析仪法  称取试样质量(10±0.05)mg放入样品架上,合上加热炉,设置升温程序,氮气气氛下室温升至550℃,转换成氧气,在氧气气氛下升温至750℃,计算机自动采集升温过程中样品质量变化。  2结果与讨论  2.1测量结果比较  按照1.2.1测定聚乙烯中炭黑的含量,测定结果见表1。 按照1.2.2测定聚乙烯样品的热重曲线(见图1)。根据曲线上各步失重的百分数可以判断样品分解机理及各组分的含量。随着温度升高,聚乙烯发生裂解,持续到550℃质量恒定,因为炭黑在高纯氮气中不发生反应,此时切换气体,通入氧气,使炭黑反应至完全,试样质量再次恒定。从550℃切换氧气到650℃质量稳定时发生的质量减少就是聚乙烯中的炭黑含量。650℃质量稳定后剩余物质为聚乙烯中的灰分。聚乙烯样品中碳黑含量的测定结果列于表1。从测试结果看,两种测试方法的相对标准偏差均小于3%,说明两种方法均具有较好的重复性,其中热重分析仪法的相对标准偏差比GB13021的相对标准偏差略大,这跟热重分析仪法样品量少、样品不均匀有关。两种方法测试结果的一致性可以采用以下方法进行[5]:假设两种测试方法的测试结果分别为x11,x12…x1n,平均值为x1,标准偏差为S1;x21,x22…x2n,平均值为x2,标准偏差为S2。若把xx12-看作随机变量,则根据方差的基本法则有:  故若xx2S12(x1x2)-G-则认为两组数据是一致的。将表1中的数据代入公式可以计算出:xx0.8212-=,2S(x1-x2)=0.83,计算结果表明两组数据一致。两种方法测试的结果具有一致性,可以用来相互比对。  2.2热重分析仪法准确度  热重分析仪在分析过程中自动记录样品实时质量,人为因素小,热失重量的准确度可以用标准CaC2O4来验证。CaC2O4H2O随着温度升高会发生以下3步化学反应:CaC2O4H2O(固)=CaC2O4(固)+H2O(气)(3)CaC2O4(固)=CaCO3(固)+CO(气)(4)CaCO3(固)=CaO(固)+CO2(气)(5)在每步反应中都有气体放出,从而固体出现失重现象,根据化学反应方程和分子量就可以计算出每步化学反应的理论失重量。CaC2O4H2O的每步化学反应都可以反映在热失重曲线上,用热重分析仪得到的CaC2O4H2O失重量和理论值列于表2。 从表2可以看出热重分析仪在550~750℃内的测量相对偏差为1.3%,测量准确度高。热重分析仪法和GB13021方法测量炭黑含量的结果可靠。热重分析仪法快捷方便,但是测量相对标准偏差比GB13021测试方法的要大,原因是进行热重分析时所用样品量只有10mg,如果样品中的炭黑分布不均匀,用热重分析仪测聚乙烯中的炭黑含量时就会增大测试标准偏差。建议用热重分析法分析炭黑含量时尽量从多个聚乙烯颗粒上取样并且适当增加样品量。  3结语  从实验过程及分析结果可以看出炭黑含量分析的两种不同方法具有以下特点:(1)两种测试方法均可用来测定聚乙烯中的炭黑含量,测定结果基本一致,具有可比性。(2)GB13021法测炭黑含量试验重复性好,但是用到炭黑分析仪和马弗炉两种设备,实验过程中需要冷却和3次称量,操作较热重分析仪复杂。(3)热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。
  • 沃特世推出全新的分析标准品与试剂产品组合
    质量控制标准品和认证溶剂瓶可确保用户获得一致的、准确的分析结果 美国马萨诸塞州米尔福德市&ndash 2013年3月18日&ndash 沃特世(Waters® )公司(纽约证券交易所代码:WAT)针对分析标准品与试剂产品组隆重推出质量控制标准品(QCRM)和认证溶剂瓶。QCRM设计专用于沃特世仪器,通过此标准品能够非常快捷地确认色谱或MS系统的运行状况,同时确保系统性能的可重复性。沃特世认证溶剂瓶适用于盛载溶剂和流动相,经过独特的工艺处理,可防止出现假峰和基线噪音。 沃特世的QCRM产品组合是以沃特世科学家们的专业知识为基础,经过特别配制的一系列标准品和混合物。用户可以使用QCRM对系统进行评估和基准测试,确保系统每次运行时都能够呈现出相同的性能。生产这些即时可用型标准品的工厂均经过ISO 9001和ISO 17025系统认证。QCRM适用于大量的仪器性能测试,产品规格囊括组成简单的中性混合物以及组成复杂、特定于某个应用的标准品。所有化合物经过在不同的色谱柱上进行评价、满足UV和MS检测器下良好的峰形后最终被选中。此外,QCRM还可用于评估硬件、软件、流动相、色谱柱和化学问题。 新型的认证溶剂瓶有助于确保我们的客户尽可能方便地获得可靠、一致的优质结果。认证溶剂瓶可用于任何LC系统,包括UPLC、LC/UV和LC/MS。这些特殊的溶剂瓶按照严格的标准进行制造,可防止由高TOC、玻璃的化学干扰以及玻璃基质的水解腐蚀引起的玻璃老化而导致的假峰和基线噪音。 &ldquo 分析标准品与试剂在检测准确度方面作出的贡献有效提升了沃特世产品的竞争力,而QCRM和认证溶剂瓶则帮助我们在这个方向上又迈进了创新性的一大步。通过整合这些产品,我们的用户将明显感受到数据质量的大幅提升。此外,他们无需花费大量时间用于制备、混合标准品和流动相,节省下来的更多时间可以集中到解决科学问题上。&rdquo 消耗品业务部副总裁Mike Yelle说。 沃特世致力于为实验室提供端对端解决方案,范围涵盖仪器到消耗品,力争提供全方位的支持服务。分析标准品与试剂可以完美地融合到分析过程中,为所有沃特世品牌的色谱柱提供可靠的结果。QCRM和认证溶剂瓶在实现这一目标的同时,可减少重复运行,确保分析系统性能的稳定性并有效提高系统的工作效率。 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: Chris Orlando 沃特世公司 公共关系经理 508-482-2623 Chris_Orlando@waters.com
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 液相色谱柱进展及其在药品标准中的应用(一)
    p style=" text-align: center "    strong 液相色谱柱进展及其在药品标准中的应用(一) /strong /p p style=" text-align: right " strong ——液相色谱柱及其填料种类 /strong /p p   高效液相色谱法(HPLC)已成为药物分析,特别是多组分分析和杂质控制中最重要、最广泛的分析技术之一。伴随着理论体系不断完善,分离方法不断更新,仪器性能不断改进,应用领域不断扩展,液相色谱分析技术已经、正在和必将继续飞速发展。就技术领域发展而言,主要包括仪器性能、数据处理以及色谱柱技术等方面的提高和改进。如今,色谱柱技术的不断改进创新,填料种类的日益丰富,分离模式和分离方法的逐步完善,为分离分析科学描绘了一幅幅绚丽的图景。由于色谱柱是液相色谱分离的核心,开发新型或高性能的高效液相色谱填料(又称为填充剂、固定相),提供多种色谱柱类型一直是色谱研究中最丰富、最有活力、最富于创造性的内容。本文将主要讨论液相色谱柱及其填料的进展分类,以及在药品标准、特别是在药典中的应用现状。 /p p    span style=" color: rgb(0, 0, 0) " strong 1 液相色谱柱及其填料种类 /strong /span /p p   改善分离度和色谱峰形一直是分析工作者关注的主要问题,通过改变流动相组成来提高色谱柱的选择性是分析工作中常用的手段。不过,由于改变流动相如有机相比例、pH、缓冲盐浓度等以提高色谱柱的选择性或分离能力有限,为适应日益增加的分离要求,开发选择性更高、性能更优越的色谱柱就成为液相色谱法的研究热点之一。如今,为适应分离工作数量和难度的需求,越来越多的色谱固定相被开发出来,并不断地被应用于实际分析包括药物分析工作中。色谱柱填料的基质、形状、尺寸、类型、直径、孔径、比表面积等因素将影响色谱柱的性能。为便于理解,下文按不同的方式对色谱柱或填料进行分类。 /p p    span style=" color: rgb(0, 112, 192) " strong 1.1 按色谱填料种类不同分类 /strong /span /p p   按基质材料化学组成的不同,液相色谱填料主要分为两大类:有机基质填料和无机基质填料。无机基质填料是研究和应用的主流,其中应用最多的材料是硅胶,其具有机械强度高,比表面积大及表面易于修饰等特点,是开发最早,研究最为深入,应用最为广泛的液相色谱填料,其应用占液相色谱填料的90%以上。硅胶表面覆盖着强极性的硅醇基,在非极性流动相中与样品分子发生作用,也可以作为化学键合相的反应位点。因此,硅胶、键合硅胶是正反相液相色谱法中最常用的色谱柱填充剂。 /p p   最初使用的硅胶填料是无定形微粒硅胶,无定形硅胶易于制备,价格低廉,但涡流扩散大,渗透性差,柱效不高,重现性较差。20世纪70年代,科克兰(J. J. Kirkland)采用硅珠堆砌技术制备全多孔球形ZORBAX 硅胶,该填料平均粒径约7微米,具有更好的渗透性、比表面积和更高的柱效,而且球形填料易于填装,重现性好。到1995年,在分析色谱中不定型填料基本被5-10微米的球形颗粒填料取代,前者因为价格便宜,主要是用于制备色谱分离 现在的分析色谱中,球形颗粒硅胶基质的色谱填料已经占绝对地位。 /p p   硅胶基质分为A型硅胶和B型硅胶:A 型硅胶金属含量较高,导致硅胶纯度较低,且酸性较强,从而导致色谱峰拖尾和某些化合物回收率很差 B 型硅胶是通过全合成获得的填料,称之为高纯硅胶,可有效地控制金属离子的含量(一般控制在0.05%以内),避免活性化合物在色谱柱上与金属离子产生螯合,也降低了硅醇基的活性,有利于避免碱性化合物拖尾。另外,为了提高硅胶基质的稳定性,在硅胶表面进行有机改性,如聚合物包覆,或引入有机杂化基团,可以使基质填料表面的部分硅羟基被有机基团代替,从而提高pH 耐受性,也能降低碱性化合物的拖尾。 /p p   有机基质填料主要分为多糖型和聚合物型两大类,前者是以天然多糖化合物为原料,用物理方法加工成微球并经过交联而得到的凝胶,如葡聚糖、琼脂糖等基质的凝胶,主要用于凝胶渗透色谱(GPC)。后者以合成单体与交联剂为原料,用化学聚合方法制备的交联高聚物微球,如苯乙烯- 二乙烯基苯共聚物以及聚甲基丙烯酸酯类树脂等,有机聚合物填料排除了硅醇基的影响,具有较强的色谱容量,不容易产生不可逆的非特异性吸附,有较好的化学稳定。 /p p    span style=" color: rgb(0, 112, 192) " strong 1.2 按键合相种类不同分类 /strong /span /p p   中国药典(0512 高效液相色谱法)按键合相种类不同分类如下: /p p   反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等 常用的填充剂有十八烷基硅烷键合硅胶(C18)、辛烷基硅烷键合硅胶(C8)和苯基键合硅胶等。 /p p   正相色谱柱:用硅胶填充剂或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等,在使用正相体系时,一般都采用弱极性的溶剂作为流动相。此类极性固定相如硅胶、氨基键合硅胶和氰基键合硅胶等也可使用含水的流动相,此时化合物的保留随着流动相中水的比例增加而减弱,这种分离模式称为亲水作用液相色谱(hydrophilic interaction liquid chromatography,HILIC)。 /p p   离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 /p p   手性拆分色谱柱:用手性填充剂填充而成的色谱柱。 /p p   在中国药典分类所述的各类色谱柱中,反相色谱柱是应用最广泛、最常见的一种。 /p p    span style=" color: rgb(0, 112, 192) " strong 1.3 按色谱柱填料粒径大小分类 /strong /span /p p   根据色谱填料粒径的大小,色谱柱可分为常规色谱柱、亚2 微米填料色谱柱和大粒径色谱柱。常规的色谱柱内径一般为3.9~4.6 mm,填充剂粒径为3~10微米。限于仪器系统、载样量、柱效、分离度等因素的影响,5微米粒径,4.6 mm× 250 mm 尺寸的色谱柱依然是常规液相分析中最广泛的色谱柱尺寸。但在常规液相体系中使用3微米或3.5微米的填料时,可在获得较快分析速度的同时,节省溶剂,故又称溶剂节省柱。 /p p   亚2微米填料色谱柱通常填充1.3~2.0微米 的颗粒填料,色谱柱内径一般为2.1~3.0 mm,长度一般为30~150 mm。由于这样的色谱柱填料粒径小,在液相系统中会产生极高的反压,压力通常大于40 MPa,故需要在更高的超高压(或超高效)液相色谱系统中使用。 /p p   大粒径色谱柱(粒径大于10微米)现主要用于制备色谱分离纯化,即制备色谱柱 或者用于大分子物质分析如凝胶渗透色谱或体积排阻色谱(GPC/SEC)。用于大分子物质,如聚合物、蛋白、单抗等分析时,一般相对分子质量都大于2000,采用的色谱填料孔径应大于300 。 /p p    span style=" color: rgb(0, 112, 192) " strong 1.4 按色谱柱填料结构类型分类 /strong /span /p p   在色谱分离过程中,溶质分子与固定相间的传质速率通常被其在色谱柱填料中的扩散所左右。颗粒形状和大小,孔的结构、孔径及其分布等与比表面积有关。按照色谱填料孔结构类型主要有无孔型、全多孔型和表面多孔型。 /p p   无孔型的填料表面无孔,消除了溶质在孔内较慢地扩散传质引起的谱带展宽效应,可提高柱效,但由于其比表面积非常小,载样量也很小,故应用不多。一般使用非常细的填料(1~1.5 微米),填充于较长的色谱管柱中,用于大分子物质分析。 /p p   全多孔型填料是在硅胶制备过程中形成的多孔硅胶,多孔体系的形成有利于提高溶质在固定相中的分配和保留,具有柱容量大和选择范围宽等优点。全多孔型填料又分为颗粒型(particles)和整体化色谱柱(monolithic column),其中全多孔型填料颗粒(total porous particles)是目前使用最多的液相色谱固定相材料。 /p p   表面多孔型填料是在无孔实心的硅胶核外面生成一个均匀的多孔外壳。由于颗粒内核是实心的,溶质成分在通过固定相时,只在颗粒填料表面的多孔成分进行吸附和分配,其扩散路径缩短,传质效率提高,只需要花费少量的时间便能扩散至硅球表面的颗粒孔中,在较短时间完成扩散,更快地传质。与相同粒径的全多孔型填料相比,其传质速度和柱效得到大大提高。全多孔颗粒填料和核壳型填料的颗粒构造如图1所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/8a99a421-5f3e-456d-aac4-1acc6d21ba4a.jpg" title=" 图1_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 图1 全多孔颗粒填料与表面多孔壳填料比较示意图 /strong /span /p p    span style=" font-family: 黑体, SimHei " 注:近年来,液相色谱柱技术发展的非常迅速,这同时也促进了高效液相色谱法在药物分析中更为广泛的应用。据统计,一个典型的制药企业甚至可能会拥有成百上千支液相色谱柱,在一种药物分析方法的开发过程中,如何选择适当的色谱柱往往会给实验人员带来很多困扰。 /span /p p    span style=" font-family: 黑体, SimHei " 本文献原文刊登于《药物分析杂志》2017年37卷第2期,作者为洪小栩、石莹、宋雪洁等八人,分别来自国家药典委员会、扬子江药业、安捷伦科技和江苏省食品药品监督检验研究院等单位。本文为该文献的第一部分,详细介绍了液相色谱柱及其填料的种类。仪器信息网后续还将发布该论文其余内容,为广大色谱柱用户以及色谱柱供应商提供相关参考。 /span /p p    br/ /p p br/ /p
  • 《食品安全国家标准食品中致病菌限量》征求意见
    根据《食品安全法》规定,我部组织制订了《食品安全国家标准 食品中致病菌限量》(征求意见稿),现公开征求意见。请于2011年2月16日前按以下方式反馈意见:传真010-67711813或电子邮箱foodsafetystandards@gmail.com.   附件:   1.《食品安全国家标准 食品中致病菌限量》(征求意见稿).doc   2.《食品安全国家标准 食品中致病菌限量》(征求意见稿)编制说明.doc   二○一○年十二月十六日   标准表1 食品中致病菌限量标准 食品 致病菌指标 采样方案及限量 (若非指定,均以/25 g或/25 mL表示) 检验方法 备注 n c m M 肉及肉制品 沙门氏菌 5 0 0 - GB 4789.4 - 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 适用于熟肉制品和即食生肉制品。 金黄色葡萄球菌 5 0 100 CFU/g - GB 4789.10 空肠弯曲菌 5 0 0 - GB/T 4789.9 适用于预制肉制品。 大肠埃希氏菌O157:H7/NM 5 0 0 - GB/T 4789.36 适用于预制牛肉制品。 水产品 沙门氏菌 5 0 0 - GB 4789.4 - 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 适用于生食水产品和熟制水产品。 副溶血性弧菌 5 0 0 - GB/T 4789.7 适用于熟制水产品。 副溶血性弧菌 5 0 100 MPN/g - 适用于生食水产品和预制水产品。 蛋制品 沙门氏菌 5 0 0 - GB 4789.4 - 粮食制品 沙门氏菌 5 0 0 - GB 4789.4 - 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 适用于熟制粮食制品。 金黄色葡萄球菌 5 1 100 CFU/g 1000 CFU/g GB 4789.10 适用于熟制粮食制品。 金黄色葡萄球菌 5 1 1000 CFU/g 10000 CFU/g 适用于生制粮食制品。 豆类制品 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 焙烤及油炸类食品 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 糖果、巧克力类及可可制品 沙门氏菌 5 0 0 - GB 4789.4 - 蜂蜜及其制品 沙门氏菌 5 0 0 - GB 4789.4 - 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 加工水果 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 藻类制品 沙门氏菌 5 0 0 - GB 4789.4 - 副溶血性弧菌 5 0 0 - GB/T 4789.7 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30 饮料类 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 冷冻饮品 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 发酵酒及其配制酒 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 调味品 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 适用于除香辛料外的其它调味品。 副溶血性弧菌 5 0 0 - GB/T 4789.7 适用于水产调味品。 脂肪,油和乳化脂肪制品 沙门氏菌 5 0 0 - GB 4789.4 适用于含水乳化油脂(大于1%为限值)。 金黄色葡萄球菌 5 0 0 - GB 4789.10 果冻 沙门氏菌 5 0 0 - GB 4789.4 - 金黄色葡萄球菌 5 0 0 - GB 4789.10 即食食品 沙门氏菌 5 0 0 - GB 4789.4 适用于表中未列出的其他即食食品 单核细胞增生李斯特氏菌 5 0 0 - GB 4789.30
  • 为中国标准品在国际上征得一席之地——ACCSI2019视频采访坛墨质检总经理方燕飞
    p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 在2019科学仪器发展年会(ACCSI2019)上,仪器信息网编辑采访了坛墨质检科技股份有限公司(以下简称“坛墨质检”)总经理方燕飞女士。这已经是方总第三次参加科学仪器发展年会,她感受到本届年会参会人数更多,认为科学仪器发展年在行业内的获得的关注度更高。 /p script src=" https://p.bokecc.com/player?vid=1626FA4BE55CF5A99C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(192, 0, 0) " strong 引领中国公司走向世界的标准品 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 本届年会坛墨质检带来了重量级的产品——同位素内标标准品。方总表示,随着国家仪器发展和国标的更新,质谱的应用越来越普及。根据国家的发展规划,公司也做了自己的产品规划,在江苏常州总部实验室,建立了500平米的有机稳定同位素内标合成实验室,该类实验室目前在国内是首屈一指的,在国际上也屈指可数。该实验室合成的同位素内标标准品,可以说是“中国公司走向世界”的一款产品,因为国外的同位素标准品种类也是非常少的。方总言语中透着自信与自豪感。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong span style=" color: rgb(192, 0, 0) " 用户对国内品牌认知习惯还需慢慢引导 /span /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 目前存在的问题是,在中国标准品市场上,由于国内的标准物质标准品起步晚,进口品牌仍占领主要市场,而且国内用户对国内品牌认知存在一定偏见。实际上,坛墨质检申请的国家标准物质已经400多个品种,所有产品都是按照国家级标准物质研制规范生产,在2017年通过了“标准物质/标准样品生产者能力认可”,和国际大型公司如LGC等拥有一样的资质。因此用户对国内品牌认知习惯还需慢慢引导。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " strong span style=" color: rgb(192, 0, 0) " 坚持高度聚焦于标准物质/标准品 /span /strong /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在2018年,坛墨质检公司有三个突破——团队突破100人,产品总数超过9000个,销售额突破1个亿。发展规划方面,坛墨质检在江苏常州成立了总部,建成了2700平方米的标准物质/标准品研发实验室。具体到产品类型,方总表示,仍会高度聚焦在标准物质/标准品领域,服务的检测领域是食品、环境和职业卫生,以后会拓展药品检测领域。 /p
  • 12月份有73项标准将实施
    12月份有73项标准将实施我们通过国家标准信息平台查询到,在2022年12月份将有73项与仪器及检测行业的国家标准、行业标准和地方标准将实施。12月份,新实施的标准较之前的月份相比较少,在各领域中,医药卫生新实施标准居多。具体12月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(5个)JT/T 692.2-2022 逆反射材料色度性能测试方法 第2部分:荧光反光膜和荧光反光标记材料昼间色 JT/T 692.1-2022 逆反射材料色度性能测试方法 第1部分:逆反射体夜间色 JT/T 690-2022 逆反射体光度性能测量方法 JT/T 688-2022 逆反射术语 DB14/T 2534—2022 万能试验机验收规范 农林牧渔食品标准(5个)GB/T 20707-2021 可可脂质量要求 GB/T 20978-2021 软冰淇淋机质量要求 DB4116/T 033-2022 食用山药栽培化肥农药减施技术规程 DB4116/T 029-2022 农村有机废弃物堆沤肥料化利用技术规程 DB41/T 2297-2022 食用菌高温杀菌大气污染防治技术规范 环境环保标准(8个)DB34/ 4295-2022 玻璃工业大气污染物排放标准 DB32/ 4386-2022 燃气电厂大气污染物排放标准 DB32/ 4385-2022 锅炉大气污染物排放标准 DB32/ 4384-2022 酿造工业水污染物排放标准 DB41/T 2321-2022 地下水监测站借用井技术规范 DB36/T 1590-2022 红壤区坡面径流小区径流泥沙监测技术规范 DB36/T 1589-2022 水土保持无人机监测技术规程 DB36/T 1588-2022 稀土重点行业用水定额 医药卫生标准(21个)GB/T 25440.1-2021 外科植入物的取出与分析 第1部分:取出与处理 GB/T 16886.16-2021 医疗器械生物学评价 第16部分:降解产物与可沥滤物毒代动力学研究设计 GB/T 16886.11-2021 医疗器械生物学评价 第11部分:全身毒性试验 GB/T 25440.2-2021 外科植入物的取出与分析 第2部分:取出外科植入物的分析 YY/T 1836-2021 呼吸道病毒多重核酸检测试剂盒 YY/T 1826-2021 B群链球菌核酸检测试剂盒(荧光PCR法) YY/T 1825-2021 红细胞和白细胞计数参考测量程序定值结果测量不确定度评定指南 YY/T 1824-2021 EB病毒核酸检测试剂盒(荧光PCR法) YY/T 1204-2021 总胆汁酸测定试剂盒(酶循环法) YY/T 1164-2021 人绒毛膜促性腺激素(HCG)检测试剂盒(胶体金免疫层析法) YY/T 1160-2021 癌胚抗原(CEA)测定试剂盒 YY/T 0647-2021 无源外科植入物 乳房植入物的专用要求YY/T 0500-2021 心血管植入物 血管假体 管状血管移植物和血管补片 DB14/T 2549—2022 制药企业质量控制 中药实验室管理规范 DB14/T 2548—2022 制药企业质量控制 生物检定实验室管理规范 DB14/T 2547—2022 制药企业质量控制 化学药品实验室管理规范 DB50/T 1298-2022 奇异变形杆菌和普通变形杆菌双重Real-Time PCR检测方法DB41/T 2320-2022 医疗器械不良事件报告评价规范 DB41/T 2319-2022 医疗机构药品不良反应报告和监测工作规范 DB41/T 2318-2022 药品批发企业现代物流基本要求 DB41/T 2317-2022 疫苗生产企业派驻检查工作规范 石油天然气标准(3个)JT/T 1444-2022 天然气营运客车燃料消耗量限值及测量方法 DB41/T 2328-2022 煤化工企业安全阀及爆破片装置风险管理规则 DB14/T 2535—2022 煤炭绿色开采技术指南 轻工纺织标准(1个)GB/T 24320-2021 回用纤维浆 能源标准(2个)DB36/T 1442.6-2022 水利工程标准化管理规程 第6部分:农村水电站 DB36/T 1607-2022 水利水电工程质量监理检测规程 机械标准(4个)DB41/T 2327-2022 承压类特种设备风险隐患分析指南 DB14/T2533—2022 合成铸铁用废钢铁验收规范 DB14/T 2532—2022 环形炉炉温均匀性测试方法 DB14/T 2531—2022 离散型制造工艺数据分类及编码要求 其他标准(24个)GB 16994.2-2021 港口作业安全要求 第2部分:石油化工库区 GB 16994.3-2021 港口作业安全要求 第3部分:危险货物集装箱 GB 16994.1-2021 港口作业安全要求 第1部分:油气化工码头 JT/T 1447-2022 营运车辆低速驾驶辅助系统性能要求和测试规程JT/T 1446-2022 营运车辆前向碰撞减缓系统性能要求和检测方法JT/T 1434-2022 水路内贸集装箱载运商品汽车安全技术要求 JT/T 1431.3-2022 公路机电设施用电设备能效等级及评定方法 第3部分:公路隧道照明系统JT/T 1429-2022 营运车辆轮胎气压监测系统技术要求和试验方法DB50/T 867.36-2022 安全生产技术规范 第36部分:仓储企业 DB50/T 867.35-2022 安全生产技术规范 第35部分:食品、饲料及烟草制品批发市场 DB50/T 867.34-2022 安全生产技术规范 第34部分:残疾人服务机构 DB50/T 867.33-2022 安全生产技术规范 第33部分:橡胶、塑料制品企业 DB41/T 2292-2022 企业安全生产风险管控与隐患治理双重预防机制效能评估规范 DB32/T 4357-2022 建筑工程施工机械安装质量检验规程(修订) DB34/T 4250-2022 民用建筑绿色设计标准 DB34/T 4249-2022 既有多层住宅加装电梯技术标准 DB34/T 4248-2022 建筑风貌设计导则编制指南 DB34/T 4247-2022 公共建筑节能改造节能量核定规程 DB34/T 4246-2022 危险性较大的分部分项工程安全管理监理导则 DB32/T 4285-2022 预应力混凝土空心方桩基础技术规程 DB32/T 4284-2022 居民住宅二次供水工程技术规程 DB32/T 4283-2022 建筑工程渗漏检测技术规程 DB32/T 4282-2022 环氧磨石地面施工技术规程 DB32/T 4281-2022 江苏省建筑工程施工现场专业人员配备标准 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制