当前位置: 仪器信息网 > 行业主题 > >

可溶性淀粉对照品

仪器信息网可溶性淀粉对照品专题为您提供2024年最新可溶性淀粉对照品价格报价、厂家品牌的相关信息, 包括可溶性淀粉对照品参数、型号等,不管是国产,还是进口品牌的可溶性淀粉对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可溶性淀粉对照品相关的耗材配件、试剂标物,还有可溶性淀粉对照品相关的最新资讯、资料,以及可溶性淀粉对照品相关的解决方案。

可溶性淀粉对照品相关的资讯

  • 【瑞士步琦】白酒酿造,酒醅中可溶性淀粉转化葡萄糖有多少?
    酒醅中可溶性淀粉转化葡萄糖有多少?酒曲生产需要一定的发酵周期,发酵过程不便调控,因此酒曲的化学成分分析对于制曲生产起着相当重要的作用。衡量大曲质量的优劣主要是根据大曲的水分、酸度、淀粉、发酵力、酯化力、糖化力等理化指标的大小,再辅以感官来进行综合评判。其中大曲糖化力是一个重要指标,是表征大曲将酒醅中可溶性淀粉转化为葡萄糖的能力。检测大曲糖化力的传统方法为斐林试剂法,存在耗时长、样品前处理过程繁琐等不足,因此建立一种快速、高效的大曲糖化力检测方法具有重要意义。本实验采用步琦的近红外光谱仪 NIRMaster 对大曲糖化力的快速检测。近红外光谱技术结合偏最小二乘法检测大曲糖化力 1仪器设备瑞士 Buchi 公司的 NIRMaster 傅里叶变换近红外光谱仪。光谱谱区范围为 4000~10000 cm-1,光谱分辨率为 8 cm-1,扫描次数为 48 次,测量序列个数为 3。 2样品酒厂酿酒周期的现用大曲 200 个 3实验方法3.1大曲糖化力化学方法测定大曲糖化力的化学测定法采用斐林试剂法。大曲中的糖化酶能将淀粉水解为还原糖,还原糖可以将斐林试剂中的二价铜离子还原为一价铜离子,反应终点由次甲基蓝指示。根据还原一定量的斐林试剂所需的还原糖量,可计算大曲样品的糖化酶活力,即 1g 大曲在 35 ℃、pH4.6 条件下,反应 1h,将可溶性淀粉分解为葡萄糖的能力。每个样品的检测均取 2 个平行样。3.2大曲样品的近红外光谱测量方法将大曲样品平铺于培氏培养皿样品杯底部,样品量约占样品杯 2/3,并用样品勺压紧,避免出现缝隙,然后将样品杯放置于测量池上进行测量。 4结果实验数据处理方法采集的光谱数据用 NIRCal 化学计量学分析软件处理和计算。▲ 大曲糖化力化学值与预测值的散点图上图可直观的看出模型的光谱预测值与原始值的相关性较好。其中,建模集的相关系数为 r 为 0.9613,验证集的相关系数 r 为0.9528;建模集标准偏差 SEC 与验证集标准偏差 SEP 的比值为 29.6099/29.7088=0.9967,模型稳定性较好,具有很好的预测能力。▲ 未知样品含量预测值与化学值的比较模型的验证结果可以看出,大曲糖化力近红外模型预测值的平均相对误差为 5.27 %,说明该近红外模型有较好的预测能力。为考察两种方法检测结果之间的差异性,采用 SPSS 软件对 50 组大曲样品进行差异显著性分析。结果见下表。从分析结果可以看出,在 0.05 水平上,两种方法差值的显著性结果为 0.830,大于 0.05,说明两种方法的检测结果的差异性并不显著,均可以反映大曲糖化酶活力大小,该模型可以用于大曲糖化力的预测。 5讨论本试验采用近红外光谱技术结合偏最小二乘法建立了预测大曲糖化力的定量模型。通过对模型的预测结果与传统方法检测结果的对比分析可以看出,该模型的准确度可以满足实际生产中大曲糖化力的预测。近红外光谱分析具有以下特点:操作简单分析速度较快,适合大批量重复测试测试过程中无需使用化学试剂、无污染样品可以重复使用可用于生产线等在线检测6参考文献王军凯,王卫东,蒋明,韩瑶,等. 近红外光谱技术结合偏最小二乘法检测大曲糖化力[J].酿酒,2018(3):116-118.
  • 地表水中可溶性阳离子知多少?离子色谱IC-16显身手
    导读地表水是人类生活用水的重要来源之一,也是各国水资源的主要组成部分。近年来,随着工业化进程加快,过度取水和工、农业废水的排放,导致地表水受到不同程度的污染。水中可溶性阳离子(K+、NH4+、Ca2+、Mg2+等)在一定程度上反映水质,并与人民健康息息相关。为了保护自然环境,保障人体健康,亟需对地表水中可溶性阳离子进行定量分析。相对于传统方法(化学法和原子吸收法等),离子色谱法(简称IC法)无论在方法检出限、分析速度、测定范围等方面都表现出明显的优势,已成为水质中可溶性阳离子测定的重要手段。今天,我们带来离子色谱检测方案,一起来看看吧。 水中可溶性阳离子超标的危害水质中可溶性阳离子浓度会影响水体硬度,它不仅会干扰基础的新陈代谢还会诱发疾病。比如高钾、钠离子浓度过高,将会使体液失去平衡,对于肾功能不好的人有一定危害。高钙摄入能影响铁、锌、镁、磷的生物利用率,并引发肾结石、奶碱综合症等疾病;过量镁摄入,可能发生心脏完全传导阻滞或心搏停止等。 IC法测定水中可溶性阳离子相关法规随着环保监管的日趋严格,水质中可溶性阳离子的检测日益得到重视。目前我国采用离子色谱法分析水质阳离子的常见标准见下表。其中,《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》涉及最常见的6种可溶性阳离子(Li+、Na+、K+、NH4+、Ca2+、Mg2+)。 可溶性阳离子测定,岛津IC-16显身手岛津Essentia IC-16离子色谱仪配置阳离子抑制器,可快速高效对地表水中6种可溶性阳离子进行测定,轻松应对《HJ 812-2016 水质 可溶性阳离子的测定 离子色谱法》中阳离子检测标准的要求。 l 分析条件 l 对照品色谱图按上述分析条件进行测定,对照品色谱图如图1所示。图1. 对照品溶液色谱图(1 µg/mL) l 校准曲线将对照品溶液按照上述分析条件进行测定,使用外标法定量。校准曲线见图2,线性方程、相关系数见表1。 表1. 6种水溶性阳离子校准曲线(1/C)图2. 6种水溶性阳离子校准曲线 l 实际样品取供试品溶液进样5 μL进行测定,以外标法计算供试品含量,色谱图见图3,定量结果如表2所示。图3. 样品色谱图 表2. 供试品溶液测试结果注:N.D. 表示未检出。 结语岛津Essentia IC-16离子色谱仪性能稳定,灵敏度高,配置阳离子膜抑制器CS-1000可轻松应对《HJ 812-2016水质 可溶性阳离子的测定 离子色谱法》检测标准的要求,快速、便捷的实现地表水中6种水溶性阳离子的测定。地表水安全监测刻不容缓,岛津为您的健康安全保驾护航。 本文内容非商业广告,仅供专业人士参考。
  • 欧盟加强玩具中的可溶性镉限量要求
    近日,根据新的玩具安全指令,欧盟对玩具中的可溶性镉设定了更为严格的限量要求。同时,欧盟要求成员国在2013年1月20日之前将新要求转化为国家法律。要求的正式生效日期将与其他化学品要求相同,即2013年7月20日。   2009年6月,新玩具安全指令2009/48/EC(TSD)发布于《欧盟官方公报》(OJEU)上,并在2009年7月20日生效,成员国从2011年7月20日开始实施新的措施。但是根据指令附件二第三部分规定,个别化学物质具有豁免权,而这些化学物质的相关要求将在2013年7月20日生效。   2012年3月3日,《欧盟官方公报》公布了新指令2012/7/EU。指令参照新的科学数据,将更严格限制玩具中的镉迁移限量。   • 1.9毫克/千克至1.3毫克/千克(干燥、脆弱、粉状或柔软玩具材料)   • 0.5毫克/千克至0.3毫克/千克(液体或胶质玩具材料)   • 23毫克/千克至17毫克/千克(易刮落玩具材料)   因此,欧盟要求成员国在2013年1月20日之前将新指令转化为国家法律。附件二第三部分规定的化学物质的生效日期继续保持至2013年7月20日。其中,总结了19种重金属元素的迁移限量,以及新的限量与之前的比较如表格1所示。为方便参考,豁免的玩具材料在表格2中给出。   可溶性镉限量的变化来自所谓的欧盟专家委员会程序(comitology procedure)。该新程序使欧盟委员会修改部分指令而不需要通过欧洲议会和理事会的双方同意。 限制物质 使用限量 新生儿和儿童服装(12岁以下) 直接与皮肤接触的产品 间接与皮肤接触的产品 致癌染料 禁止 偶氮染料 禁止 海军蓝染料 禁止 溴化阻燃剂(PBB,TRIS,TEPA) 禁止 甲醛 <20毫克/千克 <75毫克/千克 <300毫克/千克 邻苯二甲酸盐(DEHP,DBP,BBP,DNOP,DINP,DIDP) ≤0.1% — — 镉 禁止 镍 小于0.5微克/平方厘米/每周 铅 <300毫克/千克 玩具材料 豁免 1 干燥、脆弱、粉状或柔软 • 压缩油漆表面 • 粉笔、蜡笔、石膏粉、防水沙、印模膏和橡皮泥 • 烤箱硬PVC造型化合物、弹性油泥 2 液体或胶质 • 吹泡泡玩具、广告涂料、指画法颜料 • 液体胶粘剂、胶棒、软泥 3 易刮落 • 表面材料(油漆、清漆) • 聚合物(聚苯乙烯、ABS、PVC、聚丙烯(PP)、橡胶、立体塑胶) • 木材(纤维板、刨花板、胶合板) • 服装(短绒毛毡、棉絮、涤纶短纤维、长毛绒) • 玻璃、陶瓷(大理石、玻璃纤维) • 金属和合金(钢、镍黄铜) • 其他材料(皮革、骨头、天然海绵)
  • 新欧盟玩具指令可溶性重金属的筛查服务
    新欧盟玩具指令(2009/48/EC)可溶性重金属的筛查服务   挑战   由于人们对玩具的安全性日益关注,欧盟颁布了新的玩具指令2009/48/EC,旨在应对不断变化的玩具安全问题,并提升执法力度和有效性。该指令于2009年6月在欧盟官方公报上发布,除化学要求将于2013年7月生效外,其他部份巳于2011年7月生效。   现行的欧盟玩具指令88/378/EEC于20多年前开始实施。在过去的20年中,玩具产品发生了巨大变化,现行指令中要求的8项受限制可溶性重金属巳不能满足玩具安全的需要。在新的指令中,受限制的可溶性重金属大幅增加至19项。附表为在不同材质中规定的限量。   在不同材质中可溶性重金属的规定限量 标准EN71-3 元素 新标准的限值 现行标准的限值 在干燥,粉末状 或柔软的玩具材料中 在液态或粘稠的玩具材料中 在玩具表面刮出物中 普通玩具材料 造型粘土 (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 铝(Al) 5625 1406 70000 -- -- 锑(Sb) 45 11.3 560 60 60 砷(As) 3.8 0.9 47 25 25 钡(Ba) 4500 1125 56000 1000 250 硼(B) 1200 300 15000 -- -- 镉(Cd) 1.3 0.3 17 75 50 三价铬(Cr III) 37.5 9.4 460 60 (可溶性铬总含量) 25 (可溶性铬总含量) 六价铬(Cr IV) 0.02 0.005 0.2 钴(Co) 10.5 2.6 130 -- -- 铜(Cu) 622.5 156 7700 -- -- 铅(Pb) 13.5 3.4 160 90 90 锰(Mn) 1200 300 15000 -- -- 汞(Hg) 7.5 1.9 94 60 25 镍(Ni) 75 18.8 930 -- -- 硒(Se) 37.5 9.4 460 500 500 锶(Sr) 4500 1125 56000 -- -- 锡(Sn) 15000 3750 180000 -- -- 有机锡(Organictin) 0.9 0.2 12 -- -- 锌(Zn) 3750 938 46000 -- --   解决方案   Intertek为帮助玩具企业尽早了解自身的产品是否符合新的规定,现提供2009/48/EC受限制可溶性重金属的筛查服務。   关于Intertek   Intertek天祥集团是全球领先的质量和安全服务机构,为众多行业提供专业创新的解决方案。从审核和检验,到测试,质量保证和认证,Intertek致力为客户的产品和流程增加价值,促进客户在全球市场取得成功。Intertek在超过100个国家拥有1,000多家实验室和分支机构,以及33,000名的员工,凭借专业技术,资源和全球网络,为客户提供最优质的服务。Intertek集团(LSE:ITRK)在伦敦证券交易所上市,是英国富时100指数成分股之一。
  • 土壤中可溶性硫酸盐的测定等三项国家环保标准征求意见
    关于征求《土壤 可溶性硫酸盐的测定 重量法》(征求意见稿)等三项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《土壤 可溶性硫酸盐的测定 重量法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2010年8月15日前反馈我部。   联系人:环境保护部科技标准司 李晓弢   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556215   传真:(010)66556213   附件:1.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)   2.《土壤可溶性硫酸盐的测定重量法》(征求意见稿)编制说明   3.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)   4.《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定分光光度法》(征求意见稿)编制说明   5.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)   6.《土壤、沉积物挥发性有机物的测定吹扫捕集/气相色谱—质谱法》(征求意见稿)编制说明    二○一○年七月十六日
  • 中国轻工业联合会公开征集对《重组可溶性胶原》等104项轻工行业标准计划项目的意见
    根据标准化工作的总体安排,现将申请立项的《重组可溶性胶原》等104项轻工行业标准计划项目予以公示(见附件1),截止日期为2023年3月14日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件2)并反馈至我部,电子邮件发送至qgbz445@163.com(邮件注明:轻工行业标准立项公示反馈)。联系电话:010-68396445附件: 1. 2023年3月轻工行业标准制修订计划(征求意见稿)2.标准立项反馈意见表中国轻工业联合会质量标准部2023年3月8日相关标准如下:序号标准项目名称制、修订代替标准项目周期(月)标准化技术组织1重组可溶性胶原制定24中国轻工业联合会2白桦树汁制定24中国轻工业联合会3智能制造 家电行业应用 大规模个性化定制实施指南制定24中国轻工业联合会4两步法发酵玉米皮生产蛋白饲料技术规程制定QB/T 4465-201324中国轻工业联合会5制糖行业节能监察技术规范制定24全国制糖标准化技术委员会6氨基酸生产企业水平衡测试方法制定24轻工行业节水标准化工作组7酵母生产企业水平衡测试方法制定24轻工行业节水标准化工作组8食品工业产品水足迹核算、评价与报告通则制定24轻工行业节水标准化工作组9节水型企业 发酵酒精行业制定24轻工行业节水标准化工作组10淀粉糖生产企业水平衡测试方法制定24轻工行业节水标准化工作组11多元醇生产企业水平衡测试方法制定24轻工行业节水标准化工作组12有机酸生产企业水平衡测试方法制定24轻工行业节水标准化工作组13节水型企业 乳制品行业制定24轻工行业节水标准化工作组14节水型企业 调味品行业制定24轻工行业节水标准化工作组15软水机水效限定值及水效等级制定24轻工行业节水标准化工作组16梨膏糖制定24全国食品工业标准化技术委员会17辅酶Q10制定24全国食品工业标准化技术委员会工业发酵分技术委员会18发酵食品用曲通用技术要求制定24全国食品工业标准化技术委员会工业发酵分技术委员会19食品中乳糖酶活力的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会20植物甾醇(酯)制定24全国食品工业标准化技术委员会工业发酵分技术委员会21食品中总黄酮的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会22食品中N-乙酰神经氨酸的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会23酵母多肽制定24全国食品工业标准化技术委员会工业发酵分技术委员会24顺-15-二十四碳烯酸制定24全国食品工业标准化技术委员会工业发酵分技术委员会25奇亚籽及其制品制定24全国食品工业标准化技术委员会工业发酵分技术委员会26酵母中硒代蛋氨酸的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会27食品中脂质组分的测定 第1部分:鞘磷脂的测定制定24全国食品工业标准化技术委员会工业发酵分技术委员会28厨卫五金 产品轻量化设计规范制定24全国五金制品标准化技术委员会厨卫五金分技术委员会29家具 产品碳足迹 产品种类规则制定24全国家具标准化技术委员会30抗菌杯壶制定24全国食品直接接触材料及制品标准化技术委员会31固体食品包装用镀锡(铬)薄钢板容器修订QB 1878-199318全国食品直接接触材料及制品标准化技术委员会32面条罐头制定24全国食品工业标准化技术委员会罐头分技术委员会33汤类罐头通则制定24全国食品工业标准化技术委员会罐头分技术委员会34具有深冷功能的家用制冷器具修订QB/T 4497-201318全国家用电器标准化技术委员会35制盐工业能效限定值及能效等级标准制定24全国盐业标准化技术委员会36饮料生产数字化车间技术要求制定24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会37制酒饮料机械 码瓶(罐)垛机修订QB/T 4224-201118全国轻工机械标准化技术委员会制酒饮料机械分技术委员会38制酒饮料机械 卸瓶(罐)垛机修订QB/T 4225-201118全国轻工机械标准化技术委员会制酒饮料机械分技术委员会39漱口盐制定24全国盐业标准化技术委员会40酿造用盐制定24全国盐业标准化技术委员会41生态海盐评价技术规范制定24全国盐业标准化技术委员会42自动化低温生物样本库制定24全国制冷标准化技术委员会43疫苗冷库技术要求制定24全国制冷标准化技术委员会44聚乙烯中空板材修订QB/T 1651-199218全国塑料制品标准化技术委员会45冰箱用耐腐蚀抗开裂塑料内胆制定24全国塑料制品标准化技术委员会46滚塑成型 聚烯烃粉末通用技术规范制定24全国塑料制品标准化技术委员会47聚醚醚酮(PEEK)板材制定24全国塑料制品标准化技术委员会48软聚氯乙烯复合膜修订QB/T 1260-199118全国塑料制品标准化技术委员会49硬聚氯乙烯(PVC)塑料管道系统用溶剂型胶粘剂修订QB/T 2568-200218全国塑料制品标准化技术委员会50塑料薄膜和薄片 镀铝层附着力测定方法 EAA膜拉伸法制定24全国塑料制品标准化技术委员会51自动燃气炒菜机制定24全国食品加工机械标准化技术委员会52卫生级凸轮转子泵制定24全国食品加工机械标准化技术委员会53卫生级混合均质泵制定24全国食品加工机械标准化技术委员会54真空乳化机修订QB/T 1170-201418全国轻工机械标准化技术委员会55转鼓碎浆机制定24全国轻工机械标准化技术委员会56纸和纸板水分测定仪(烘干法)制定24全国轻工机械标准化技术委员会57纸管抗压强度测定仪制定24全国轻工机械标准化技术委员会58黄酒感官品评导则制定24全国酿酒标准化技术委员会59黄酒感官品评术语制定24全国酿酒标准化技术委员会60特种啤酒 第2部分 精酿啤酒制定24全国酿酒标准化技术委员会61固态法白酒原酒 第3部分:清香型制定24全国白酒标准化技术委员会62拉杆式购物包制定24全国皮革工业标准化技术委员会63一次性拖鞋制定24全国制鞋标准化技术委员会64眼镜镜片 光学树脂镜片修订QB/T 2506-201718全国眼视光标准化技术委员会眼科光学分技术委员会65记号笔修订QB/T 2777-201518全国制笔标准化技术委员会66水溶性彩色铅笔修订QB/T 4435-201218全国制笔标准化技术委员会67微孔笔头修订QB/T 4163-201118全国制笔标准化技术委员会68微孔笔用墨水修订QB/T 4168-201118全国制笔标准化技术委员会69纤维笔头修订QB/T 4164-201118全国制笔标准化技术委员会70纤维储水芯修订QB/T 4165-201118全国制笔标准化技术委员会71荧光笔修订QB/T 2778-201518全国制笔标准化技术委员会72荧光笔用墨水修订QB/T 4166-201118全国制笔标准化技术委员会
  • Resonon | 基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度
    车厘子,相信大家都不陌生,毕竟“车厘子自由”曾经也是风靡一时的网络热词。但是车厘茄是什么呢?车厘子的变种?车厘子和茄子的结合?空想不如实干,看看度娘怎么说......嚯,原来车厘茄就是常见的小番茄!另外,小加还了解到车厘茄含有丰富的维他命和十分高的铁质含量,不仅有美容功效,还可以预防出现贫血,可谓是值得多次购买的营养好物。但是购买时,我们只能通过朴素的双眼判断其好坏,如果从专业性的角度出发,该如何评估车厘茄的质量呢?答案就在下面这篇论文里,快一起来看看吧!基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度车厘茄(Solanum lycopersicum)因其特殊的香味深受世界各地消费者喜爱。可溶性固形物(SSC)和硬度是评估产品质量的两个主要指标。现存的测量技术主要依赖于化学方法。然而,这种破坏性的方法不适用于大面积的测量。高光谱成像技术可以同时获取光谱信息和空间信息,已广泛应用于各个领域,如植物病害胁迫检测、工业食品包装、医学图像分类及水果质量分析。基于此,来自浙江工业大学和浙江省农业科学院的研究人员选择当地主流的车厘茄(Zheyingfen-1)为研究对象,测量其硬度和SSC,并基于高光谱图像(PIKA XC 高光谱相机,Resonon Inc.,Bozeman,MT,USA)和相应的深度学习回归模型开发了无损式测量技术。高光谱成像系统【结果】(A)校正的光谱反射率图。(B)MSC预处理。(C)二阶差分预处理。每个模型的SSC估算结果。(A)小样本数据的SVR估算结果。(B)大样本数据的SVR估算结果。(C)小样本数据的KNNR估算结果。(D)大样本数据的KNNR估算结果。(E)小样本数据的AdaBoostR估算结果。(F)大样本数据的AdaBoostR估算结果。(G)小样本数据的PLSR估算结果。(H)大样本数据的PLSR估算结果。(I)小样本数据的Con1dResNet估算结果。(J)大样本数据的Con1dResNet估算结果。大样本数据集每个模型的硬度估算结果。【结论】本研究中,作者利用高光谱图像提出了Con1dResNet深度学习模型来估算车厘茄的SSC和硬度。相比传统的机器学习方法,充足的样本数量可以实现更好的结果。就SSC估算而言,其R2值为0.901,比PLSR高26.4%,其MSE为0.018,比PLSR低0.046。就硬度估算而言,其R2值为0.532,优于PLSR33.7%。结果表明高光谱成像结合深度学习可以显著提高车厘茄SSC和硬度估算准确性
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 果汁检测用试剂——钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸,抵制 “烂果门”
    果汁检测用试剂&mdash &mdash 钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸 &ldquo 烂果门&rdquo 事件,怎可坐以待毙! 近期有媒体暗访指多家内地果汁生产商涉嫌使用腐烂果汁。国产果汁巨头卷入&ldquo 烂果门&rdquo ,你是否忧心忡忡?大多果汁含量无据可依,你该如何选择?国家统计局的数据显示,2012年全国饮料行业总产量为13024.01万吨,比上年增长10.73%,其中,国内果汁和蔬菜汁饮料产量为2229.17万吨(最主要为果汁饮料),占到饮料总产量的17.16%,较2011年增长16.09%。这些果汁真的如消费者理解的哪样健康自然高品质吗? 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 上海甄准生物提供果汁检测的钾、总磷、氨基酸态氮、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸检测标准品和试剂。 产品信息: 货号 描述 规格 可溶性固形物检测ZZSRIBS07S 折光率标准液1.343253 (± 0.00004)@20C 15ml ZZSRIBS10S 折光率标准液1.347824 (± 0.00004)@20C 15ml ZZSRIBS112S 折光率标准液1.349682 (± 0.00004)@20C 15ml ZZSRIBS115S 折光率标准液1.350149 (± 0.00004)@20C 15ml ZZSRIBS12S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS125S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS15S 折光率标准液1.355679 (± 0.00004)@20C 15ml ZZSRIBS20S 折光率标准液1.363842 (± 0.00004)@20C 15ml ZZSRIBS25S 折光率标准液1.372328 (± 0.00004)@20C 15ml ZZSRIBS30S 折光率标准液1.381149 (± 0.00004)@20C 15ml ZZSRIBS35S 折光率标准液1.390322 (± 0.00004)@20C15ml ZZSRIBS40S 折光率标准液1.39986 (± 0.00004)@20C 15ml ZZSRIBS45S 折光率标准液1.409777 (± 0.00004)@20C 15ml ZZSRIBS50S 折光率标准液1.420087 (± 0.00004)@20C 15mlZZSRIBS55S 折光率标准液1.4308 (± 0.00004)@20C 15ml ZZSRIBS60S 折光率标准液1.441928 (± 0.00004)@20C 15ml 总D-异柠檬酸检测 ZZK-ISOC D-异柠檬酸检测试剂盒 100 test L-脯氨酸检测 ZZS1568506 L-脯氨酸标准品 200MG ZZR70501 茚三酮显色液 2L 钾检测 ICCS03 钾离子 K+ 1mg/ml 1000ppm 100ml ICCT03 钾离子 K+ 0.2mg/ml 200ppm 100ml 甄准,甄心倾听您每一个标准!
  • 陕西省质量认证认可协会批准发布《水质 可溶性阳离子(Sr2+、Ba2+)的测定 离子色谱法》等两项团体标准
    根据《陕西省质量认证认可协会团体标准管理办法》的有关要求,现批准《水质 可溶性阳离子(Sr2+、Ba2+)的测定 离子色谱法》和《细粒土颗粒分析试验 激光法》2项标准为陕西省质量认证认可协会团体标准,编号分别为T/SXQCA 001-2023、T/SXQCA 002-2023并予以发布,发布日期2023年12月22日,实施日期2024年01月01日特此公告。陕西省质量认证认可协会2024年01月02日关于批准发布水质可溶性阳离子(Sr2+、Ba2+)的测定离子色谱法等2项团体标准的公告.pdf
  • 可溶性冻干丝素蛋白的应用领域及水分含量检测
    丝素是最早利用的动物蛋白质之一,它作为纤维材料在纺织领域中具有无可比拟的优越性。随着科学技术的进步和人们对蚕丝结构、性质研究的不断深入,丝素在生物材料及医药领域中的应用越来越引人注目。 丝素蛋白可用作手术缝线、隐形眼镜、人工皮肤等,还可以与其他材料混合制作人工肌肉。丝素具有独特的氨基酸组成和丝阮蛋白的二级结构,并且其中部分氨基酸对人体具有保健、医药功效,丝素蛋白作为生物医药材料的研究更加广阔而深入,特别在创面覆盖材料、药物释放材料、活性酶的载体及其生物传感器的应用、生物材料等方面的研究已取得了十分显著的成效。 丝素蛋白冻干粉是丝素蛋白再经技术处理后,通过冷冻干燥技术制备出来的丝素蛋白的冻干态,丝素蛋白冻干粉结构稳定,可溶于水,同时在室温下能长期保存和运输。丝素蛋白冻干粉经水调配后会再次形成丝素蛋白溶液,继而用于生物材料的制备和其他科学研发领域。广泛应用于组织工程、化妆品等领域,本文为您提供专业的应用方法来检测丝素蛋白冻干粉中的水分含量。使用仪器:禾工AKF-2010V智能卡尔费休水分测定仪配置:全封闭安全滴定池组件;铂针电极;滴定池搅拌台;10ul微量注样针;样品称量舟;电子天平(0.1mg)使用试剂:滴定剂:容量法单组份试剂,当量3mg/ml;溶剂:无水甲醇; 实验步骤:使用AKF-2010V水分仪的“吸溶剂”功能向滴定池内注入约40ml的无水甲醇溶剂,再通过”打空白“功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态,用经过干燥处理的微量进样针精确抽取5ul的纯水,拭干针头后放入天平称量选择仪器标定仪功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量只差作为纯水的重量输入到仪器,开始标定。重复操作3-5次,仪器自动保存标定结果并计算出平均值作为试剂的滴定度。用称量舟称取一定量的样品加入滴定池,将进样前后称量舟的重量之差作为样品进样量输入仪器,并开始测量。 结果表明通过使用禾工AKF-2010V直接进样法测量,不但为分析测试人员省去了宝贵的时间,还同样有效的检测出了丝素蛋白冻干粉当中的含水量。
  • 低水溶性化合物TOC分析:清洁验证中棉签回收率的评估
    本研究旨在通过总有机碳(TOC)分析评测具有低水溶性的化合物能否进行回收。在默克索引中,这些化合物的可溶性说明被描述为“基本不溶”或“实际不溶”。我们的任务是在实验中测定这些化合物的溶解度,并调查研究擦拭技术的百分比回收率。鉴于保密协议,不能公开这些化合物的特性。化合物A-F(参见表1)为小分子(300-600 g/mol)。材料12x12cm不锈钢板,具有10x10cm加标区域,使用CIP-100清洗,使用低TOC水漂洗,放置干燥无粉手套容量瓶,按照Sievers® ️步骤914-80015进行清洗棉签(Texwipe Alpha棉签)预清洁的40 mL样品瓶移液管,30 mLHamilton气密注射器,使用CIP-100和低TOC水清洗使用膜电导检测技术的Sievers® ️ TOC分析仪带自动进样器步骤为最大限度地降低有机污染,在整个实验过程中须佩戴无粉手套。各化合物的溶解度通过将化合物加入低TOC水中进行经验测定。对混合物进行摇动、搅拌和超声处理以帮助化合物的溶解。目测检查后,按以下公式计算储备液的碳浓度。百分比(%碳)从化合物的经验式推导得出。如,化合物C20H22N4O10S的%碳是:用TOC分析确定各储备液的碳浓度。对化合物A和B的储备液直接分析,而化合物C到F的储备液进行10倍稀释。进行TOC分析之前,使用磷酸将少量(2 mL)的各储备液酸化到pHTOC结果与计算的碳浓度吻合,各种化合物的溶解度列在下表1中。进行棉签回收研究时,配制了以下溶液:2个样品瓶的试剂水2个样品瓶的背景棉签溶液2个样品瓶的标准添加溶液(共12个)2个样品瓶的棉签回收溶液(共12个)试剂水:30 mL的移液管用于在28个预清洁样品瓶(40 mL)中注入30 mL的低TOC水。流入后,马上盖上各样品瓶,直到以后使用。2个试剂水样品瓶进行标注并放到一边,以备随后的TOC分析。剩余的26个充注好的样品瓶用于制备背景棉签溶液、标准添加溶液和棉签回收溶液。背景棉签溶液:通过切除三个棉签尖端到30 mL低TOC水中制备两个样品瓶的背景棉签溶液。小心避免污染切入水中的棉签柄部分。标准添加溶液:在低TOC水(30 mL)中加入少量储备液(试剂量范围为0.1-1.0 mL)制备标准添加溶液(每种化合物2个样品瓶)。每种化合物所选的试剂量使最终的标准添加溶液浓度约为1 ppm C。棉签回收溶液:制备棉签回收溶液时,在不锈钢板上放置用于制备标准添加溶液的同样试剂量的储备液。溶液在10x10cm钢板表面区域均匀分布,以便干燥(大约1个小时)。然后使用三根由低TOC水预湿润的棉签擦拭钢板的表面。然后将三根棉签的尖端切入低TOC水的样品瓶(30 mL)中。分析前剧烈摇动所有的样品瓶。使用配备自动取样器的Sievers TOC分析仪(采用膜电导检测技术)对所有样品瓶(28个)进行分析。分析条件为:氧化剂流速为0.2 mL/min,酸流速为0.75 mL/min。每个样品瓶重复分析四次。舍弃各样品瓶的第一次测定数值,将后面的三次进行平均。然后将重复样品瓶的结果进行平均,显示于表1中。这些数据用于计算图1所示的百分比回收率。结论虽然化合物A至F在默克索引中描述为在水中“基本不溶”或“实际不溶”,我们通过实验测定其室温下的溶解度,其范围为百万分之几(ppm)。使用擦拭技术和TOC分析从不锈钢板上成功回收了这些化合物。本研究论证了使用TOC分析进行清洁验证应用的可行性。通过TOC分析,诸如A至F通常被认为在水中“不溶”的有机化合物实际上对于回收而言充分可溶。◆ ◆ ◆联系我们,了解更多!
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍   糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。   二、检验标准的探讨   现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。   (一)样品的前处理   食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。   (二)还原糖测定和结果计算   GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。   直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):   X=   其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。   (三)计算公式的正确表达   1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。   2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:   X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。   (四)还原糖滴定法的注意事项   1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。   2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。   食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p   国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。 /p p    strong 果糖基转移酶(又名β—果糖基转移酶) /strong /p p   米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。 /p p   该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。 /p p    strong 单,双甘油脂肪酸酯 /strong /p p   单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。 /p p   该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。 /p p    strong dl—酒石酸 /strong /p p   dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。 /p p   该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。 /p p    strong 可溶性大豆多糖 /strong /p p   可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。 /p p   该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。 /p p    strong 亮蓝 /strong /p p   亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。 /p p    strong 磷酸 /strong /p p   磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。 /p p   该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。 /p p    strong 柠檬黄 /strong /p p   柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。 /p p    strong 乳酸链球菌素 /strong /p p   乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。 /p p   该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。 /p p style=" text-align: right "   日期:2018-03-19 /p
  • 国标蜂蜜中掺假淀粉糖浆的测定-离子色谱法
    国标GB/T21533-2008蜂蜜中掺假淀粉糖浆的测定-离子色谱法 国标GB/T21533-208检测蜂蜜中普遍掺假而加入的淀粉糖浆。该检测常见糖类的简单方法是配有氨丙基硅与高分子相或键合金属的阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱,等浓度淋洗分析,但这种方法由于糖从糖醇和有机酸中分离不充分、缺乏 特异检测、灵敏度不足等问题的存在,不能满足某些应用的要求,改进糖的分析方法已受到关注,自从规定食品中总糖的含量必须在标签中注明后,糖类的分析显得尤为重要,DIONEX戴安公司提供了与该国标的一致的一种全新而且成熟的方法,方法为:在高pH条件下,使用配有脉冲安培检测器(HPAE-PAD)和高效阴离子交换柱的离子色谱使上述问题得到了解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生,并且可以定量到P摩尔 (10-12 mol)水平。该技术已广泛应用于常规检测和研究中,且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器、金工作电极、以四电位波形检测。 戴安公司有关于蜂蜜检测的操作视频,欢迎索取010-64436740(汪小姐/汤先生) 蜂蜜中淀粉糖浆的测定--离子色谱法 1 该国标中规定了蜂蜜中果葡糖浆、麦芽糖浆、异麦芽糖浆、饴糖浆等淀粉糖浆的测定方法。本标准适用于蜂蜜中淀粉糖浆的测定。 本标准检出限:5%淀粉糖浆。 2 检测原理:蜂蜜中不含5糖(DP5)以上的寡糖,而各种淀粉糖浆中均含5糖(DP5)以上的寡糖,使用凝胶 体积排阻法去除样品中果糖、葡萄糖,将寡糖富集后直接经阴离子交换色谱-电化学检测器检测,将 5糖(DP5)以上寡糖的存在作为蜂蜜中淀粉糖浆的判定指标。 3 试剂和材料 3.1 聚丙烯酰胺凝胶微球,粒径45&mu m~90&mu m,分级分离的相对分子质量范围 100~1800,按使用 说明书进行水化和脱气。 注:可使用Bio-Gel® P-2 Gel 型聚丙烯酰胺凝胶或同等性能的凝胶材料。 3.2 凝胶层析柱:将聚丙烯酰胺凝胶(3.1)湿法装入1.5 cm× 15 cm 空柱管中,装入的凝胶高度为10cm,上端保持1cm 以上的水层,避免干涸。 3.3 层析柱架。 3.4 麦芽糖标准储备液:分别称取色谱纯麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦 芽七糖标准物质各10.0mg,用水分别溶解定容至10mL,配制成浓度为1mg/mL 的储备液,于棕色瓶中4℃下储存。 3.5 麦芽糖标准混合使用液:吸取一定量的糖标准储备液(3.4),按表1 用水配制麦芽糖标准混合使用液,在4℃下保存不超过30 天。该溶液用于样品色谱图中寡糖保留时间的定位。 3.6 50%氢氧化钠储备液:符合离子色谱使用纯度。 3.7 无水醋酸钠:符合离子色谱使用纯度。 3.8 0.45&mu m 样品滤膜:水性。 3.9 除非另有说明,所用试剂为分析纯,所用水符合GB/T 6682 规定的一级水。 4 仪器 4.1 离子色谱仪:配电化学检测器。 4.2 分析天平: 0.1mg 。 5 试样制备 5.1 称取混匀的蜂蜜2.0g 作为试样,用水溶解后定容至20mL,用0.45&mu m 水性滤膜过滤,滤液备 用。 5.2 将准备好的聚丙烯酰胺凝胶层析柱(3.2)中的水放尽,至下端无水珠滴下时,将样品滤液(5.1) 2.0 mL 沿柱壁慢慢加入层析柱中,恰好流至凝胶上方无液时,加入3.0mL 水冲洗柱壁,又至凝胶上 方无液时,再加入5.0mL 水冲洗凝胶柱。注意每次在层析柱上方加液(或水)的时机,应是前次加 液(或水)的层析柱体上端液体恰好流尽、下端恰好无液体滴出。弃去上述三次共10.0mL 流出液后, 于层析柱下方接一只2mL 具塞塑料离心管,从柱上方加入2mL 水,收集这2mL 流出液至离心管中, 盖紧离心管塞,摇匀后作为待测样品溶液,24 小时之内测定。层析柱中加入50mL 水冲洗,至全部流出后,该柱直接用于处理下一个样品。 5.3 将纯蜂蜜作为阴性对照品,蜂蜜中掺入5%市售果葡糖浆、蜂蜜中掺入5%市售麦芽糖浆的样品 作为阳性对照品,按照5.1 和5.2 进行操作。 6 测定 6.1 离子色谱条件 6.1.1 色谱柱:CarboPac&trade PA200 3 mm× 250 mm (带CarboPac&trade PA200 3 mm× 50 mm 保护柱) 或相当性能的分离柱,柱温30℃; 6.1.2 流动相:A:100%水;B:200mmol/L 氢氧化钠,200mmol/L 醋酸钠。梯度洗脱条件见表2。 6.1.3 检测器:电化学检测器;Au 工作电极;Ag/AgCl 参比电极。检测池温度30℃。糖检测波形 参见表3。 6.1.4 进样量:20&mu L 6.2 样品测定 依次将麦芽糖标准混合使用液(3.5)、纯蜂蜜阴性对照品(5.3)、含5%果葡糖浆的蜂蜜(5.3)和含5%麦芽糖浆的蜂蜜等阳性对照品(5.3)的寡糖收集液注入离子色谱仪中,观察离子色谱图, 当谱图与附录中参考谱图基本吻合时,方可进行实测样品的测试。 7 结果判定 分析比较纯蜂蜜阴性对照样品和含5%糖浆的蜂蜜阳性对照样品的寡糖谱图,找到两者之间有明 显差异的&ldquo 指纹区&rdquo ,并以此作为纯蜜中掺入淀粉糖浆的判定指标。任一掺入果葡糖浆的蜂蜜样品, 在麦芽五糖~麦芽六糖之间和麦芽六糖~麦芽七糖之间有两个典型的&ldquo 指纹峰&rdquo P1和P2,根据这两个峰的出现可判断蜂蜜中掺入果葡糖浆。任一掺入麦芽糖浆的蜂蜜样品,在麦芽五糖~麦芽六糖之 间、麦芽六糖~麦芽七糖之间以及麦芽七糖之后,有三个典型的&ldquo 指纹峰簇&rdquo P1、P2和P3,根据这三个峰簇的出现可判断蜂蜜中掺入麦芽糖浆(包括高麦芽糖浆、异麦芽糖浆和饴糖糖浆)。除了描述出的基本特点外,不同工艺条件下生产的糖浆还可见到其他出峰位置有其他峰形特征的微量寡糖峰,但不影响&ldquo 指纹区&rdquo 的基本特征和判定。附录A中的图A1为麦芽糖标准混合使用液的定位谱图;图A2为纯洋槐蜜、枣花蜜、椴树蜜、荆条蜜、油菜蜜的寡糖谱图;图A3为不同蜜种掺入5%的不同果葡糖浆时的寡糖谱图、图A4为不同蜜 种掺入5%的不同麦芽糖浆时的寡糖谱图。 附录A (资料性附录) 蜂蜜中淀粉糖浆测定的相关色谱图 DIONEX戴安中国市场部
  • 《食品安全国家标准 预包装食品营养标签通则》(征求意见稿)主要修改内容
    1、范围增加了 “本标准适用于直接提供给消费者的预包装食品营养标签 。非直接提供给消费者的预包装食品和给消费者的预包装食品食品储运包装如需标示营养签应按本准实施”。2、术语和定义能量有标准中用于计算食品能量的供成分有四大类,其转换系数( kJ/g)包括: 白质17,脂肪37,碳水化合物17,膳食纤维8。考虑到食品样中各类成分的含量水平和检测必需性,略去了乙醇,有机酸醇,有机酸 ,糖醇类(包括 ,糖醇类(包括 ,糖醇类(包括,糖醇类(包括D-甘露糖醇、麦芽糖乳山梨、木糖醇糖醇)等单体成分。碳水化合物本标准给出不同条件下可采用的碳水化合物计算方法。即:当营养标签中标示膳食纤维时, 碳水化合物=100-水分-灰分-蛋白质-脂肪-膳食纤维;当营养标签中不标示膳食纤维时,碳水化合物=100-水分-灰分-蛋白质-脂肪 当食品中蛋白质、脂肪含量达到 0 界限值时,碳水化合物= 糖+淀粉 。糖 食品中单糖、双糖之和(不包含糖醇)。用于营养标签标示的糖特指食品中葡萄糖、果糖、蔗糖、麦芽糖的总和。 营养素参考值(NRV) 修订 1.NRV 适用 于 37 月龄以及以上人群食用的预包装食品营养标签。 2.说明了对 NRV 制定的依据3.增加了使用方式。份量 本标准中的预包装食品的份量参考值也是根据消费者一次性消费习惯制定,适用于营养成分表中用“份”标示食品营养成分含量值的食品,并由此给出了对每份食品质量或体积的参考建议值(以可食部计)。3、基本要求增加 3.7 进口预包装食品的营养标签标示内容应符合本标准的规定。4、强制标示内容增加强制标示内容,修订为:4.1 所有预包装食品营养标签强制标示的内容包括:能量、蛋白质、脂肪、饱和脂肪(或饱和脂肪酸)、碳水化合物、糖、钠的含量及其占营养素参考值百分比(NRV%)。 增加警示语:儿童青少年谨慎选择高脂高盐高糖食品。5、可选择标示内容增加可选择标示成分:增加 n-3 脂肪酸、ɑ-亚麻酸、EPA、 DHA“0”界限值和修约间隔 增加份量标示,明确了使用方法:按份标示预包装食品中能量和营养成分的含量时,每份食品的质量或体积可按类别参考附录 E 推荐的食品份量参考值。增加 5.5 其它补充信息,包括可以使用消费者熟悉的“油盐”替代脂肪和钠,用“卡”等替代“千焦”等说明。可以使用膳食指南宝塔图形和核心推荐,宣传合理膳食和三减。 6、营养成分的标示和表达方式6.4 营养成分含量标示值的确定,可以采用现行有效的国家标准方法测定获得,也可根据配方原料组成利用《中国食物成分表》及其他来源可信的数据计算获得。判定营养成分标示值准确性时,宜综合考虑确定标示值的方法。对表 1 中部分营养素的名称、表达单位、修约间隔和“0”界限值进行修订。 1.增加 n-3 多不饱和脂肪酸、α-亚麻酸、EPA、DHA 的表达单位、修约间隔及 “0”界限值; 2.糖和乳糖分别标示,且符合相应单位及“0”界限值; 3.维生素 A、维生素 E、维生素 B12、烟酸(烟酰胺)、锌大的修约间隔及“0” 界限值 对表 2 中能量及营养成分的允许误差进行修订。 食品的蛋白质,多不饱和及单不饱和脂肪(多不饱和及单不饱和脂肪酸),碳水化合物,乳糖,总的、可溶性或不溶性膳食纤维及其单体,维生素,矿物质(不包括钠),强化的其他营养成分的允许误差范围≥ 80 %标示值。 食品中的能量以及脂肪,饱和脂肪(饱和脂肪酸),反式脂肪酸,胆固醇,钠,糖的允许误差范围≤ 120 %标示值。7、豁免强制标示营养标签的预包装食品1.增加了豁免简单处理或清洗的单一生干制品。 2.删除对现制现售以及通过计量方式销售预包装食品的豁免 3.规定豁免“最大表面积≤40cm2的食品”。
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:95%(按中国药典 2010 版校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪 全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等 显微镜不溶性微粒检测仪
  • 爱拓发布PRM-2000a 高精度在线浓度计新品
    【产品介绍】ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,又称在线浓度计,由检测部件(传感器)与显示部件(显示器)构成,专为低浓度样品而设计,可同时测量折射率(nD)和Brix值(蔗糖/高果糖玉米糖浆/无(低)糖饮料),低浓度(Brix 0.000-20.000% 折射率1.32069-1.36500),高精度( 折射率±0.00001, Brix ±0.007 ),非常适合检测各种低浓度液体。ATAGO(爱拓)低浓度高精度在线折光仪PRM-2000α ,七段LED彩色显示屏,远距离也能读数清晰,广泛应用在食品,饮料,制药以及化工行业,帮助在线管理稀释过程,混合过程以及最终产品的浓度/水分/混合比率的浓度监测,还可以用于在线清洗过程的效果监控。【应用范围】在线折光仪PRM-2000α用于生产线液体折射率、可溶性固含量(Brix)和浓度等连续检测。1、实时监测各类低糖饮料、功能性饮料、低浓度液体在生产线上的实时浓度 2、可溶性固含量和浓度的连续检测(蒸发,溶解,混合,稀释,提取等工艺) 3、切削油、润滑油浓度的检测 4、洗涤剂浓度的检测 5、工业清洗剂的检测6、低浓度样品(低糖茶,低糖饮料等)7、淀粉液、纯静水8、咖啡、果汁9、酒精饮料10、各种表面处理剂【技术参数】型号PRM-2000α货号3641测量项目折射率(nD),Brix(三类产品[ATC]:蔗糖,高果糖玉米糖浆和无糖饮料[≤2%]),浓度(%)(ATC),温度(℃)测量范围折射率(nD)1.32069 ~1.36500 Brix 0.000 ~ 20.000%分辨率折射率(nD)0.00001 Brix 0.001%(分辨率可切换:0.001% [默认],0.005% 或 0.01%)测量精度折射率(nD)±0.00001(1.32069 ~ 1.33681)折射率(nD)±0.00010(1.33682 ~ 1.36500)Brix ±0.007%(Brix 0.000 ~ 2.000%)Brix ±0.050%(Brix 2.001 ~ 20.000%)*通过自动温度补偿功能,测量低于 Brix 2% 的样品时可以获取最高精度。测量温度-35.0 ~ 165.0°C温度补偿范围5 ~ 90°C显示系统七段 LED 显示器输出方式RS-232C,DC 4 ~ 20mA测量时间约 1 秒电源AC 100 ~ 240V,50/60Hz电缆检测部件至显示部件之间的标准长度15m(最长可达 200m)材质棱镜:人工蓝宝石 样品槽:SUS316L耐压性0.98MPa环境温度5 ~ 40°C功率30VA国际防护等级检测部件:lP67显示部件:lP67尺寸和重量检测部件:10.8x33.57x10.8cm,4.1kg显示部件:19.2x10x24cm,3.3kg创新点:ATAGO(爱拓)第一台在线折光仪,又称为在线折射仪,诞生至今已有75年了,在这75年中,ATAGO(爱拓)的在线折射仪成员也不断壮大,先后诞生了在线浓度计型号为CM-780N、CM-800α ,PRM-100α 。2015年,ATAGO(爱拓)也再添新丁——PRM-2000α 高精度型在线折光仪 PRM-2000a 高精度在线浓度计
  • 质检总局检验司:进口食品添加剂标准将放宽
    4月21日,质检总局正式发文,明确进口食品添加剂检验监管适用标准对暂无食品安全国家标准的食品添加剂,在相关食品安全国家标准发布实施前,现行的国家标准、行业标准仍然有效,可作为进口食品添加剂检验监管的适用标准。  依据2015年10月1日起实施的新《食品安全法》,进口的食品、食品添加剂、食品相关产品应当符合我国食品安全国家标准,不得继续使用其它标准作为进口食品检验的适用标准。  检验检疫部门在执行过程中,陆续接到进口企业反映,由于部分产品尚无对应的食品安全国家标准,严格执行新《食品安全法》要求无法进口,一定程度上影响了正常的进口贸易。  对此,检验检疫部门积极沟通国家卫计委、食药监总局等单位,争取其同意放宽相关适用标准要求。  除上述进口食品添加剂适用标准放宽外,2016年1月还明确在相关食品安全国家标准发布实施前,现行食用农产品质量安全标准、食品卫生标准、食品质量标准和有关食品的行业标准仍然有效,食品生产经营活动及其监督管理应当按照现行相关标准执行。  深圳口岸是我国进口食品的主要口岸之一。2015年10月以来,深圳检验检疫局严格贯彻落实新《食品安全法》要求,截至2016年4月中旬,共监管深圳口岸进口食品30987批,151.23万吨,货值35.16亿美元,实验室检测83046项次,检出不合格187批次,主要不合格项目为大肠菌群、菌落总数及食品添加剂。对检出不合格食品,均严格做退运或销毁处理。  常用的食品添加剂有哪些?  (一) 防腐剂  防腐剂就是能够杀灭微生物或抑制其繁殖作用,减轻食品在生产、运输、销售等过程中因微生物而引起腐败的食品添加剂。防腐剂可以有广义和狭义之不同。狭义的防腐剂主要指山梨酸、苯甲酸等直接加入食品中的化学物质 广义的防腐剂除包括狭义防腐剂所指的化合物质外,还包括那些通常认为是调味料而具有防腐作用的物质,如食盐、醋等,以及那些通常不直接加入食品,而在食品贮藏过程中应用的消毒剂和防腐剂等。作为食品添加剂应用的防腐剂是指为防止食品腐败、变质,延长食品保存期,抑制食品中的微生物繁殖的物质,但在食品中具有同样作用的调味品如食盐、糖、醋、香辛料等不包括在内。食品容器消毒灭菌的消毒剂亦不在此列。常见的几种防腐剂:苯甲酸及其钠盐(目前食品工业中最常见的防腐剂之一,主要用于饮料等液体的防腐。在偏酸性的环境中,具有较广泛的抗菌谱。)  (二) 抗氧化剂  能防止或延缓食品成分氧化变质的食品添加剂称为抗氧化剂。抗氧化剂按溶解性可分为油溶性与水溶性抗氧化剂两类。按来源可分为天然的与人工合成的两类。抗氧化剂能够防止或延缓食品氧化反应的进行,但不能在食品发生氧化后使之复原。因此,抗氧化剂必须在氧化变质之前添加。抗氧化剂的用量一般很少(0.0025%-0.1%),但必须与食品充分混匀才能很好的发挥作用。另外,柠檬酸、酒石酸、磷酸及其衍生物均与抗氧化剂有协同作用,起到增效剂的效果。  (三) 酸味剂  酸味剂是以赋予食品酸味为主要目的的食品添加剂,它还有调节食品pH的作用。酸味剂分为有机酸和无机酸。食品中天然存在的主要有机酸包括柠檬酸、酒石酸、苹果酸和乳酸等。目前,实际应用的酸味剂主要是这些有机酸。酸均有一定抗菌作用,尽管单独使用酸来抑制防腐所需浓度太大,并且会影响食品感官特性,因而难以实际应用。但是,以足够浓度的酸味剂与其他保藏方法并用,可以有效的延长食品的保存期。上述各种酸味剂虽然都可以参加人体内正常代谢,但受消费者可接受性的限制,食品中加入酸味剂的量不可过大。  (四) 着色剂  着色剂是使食品着色和改善食品色泽的食品添加剂,通常包括合成色素和食用天然色素两大类。食用合成色素主要是指化学方法所制得的有机色素。合成着色剂的着色能力强、色泽鲜艳、不易褪色、稳定性好、易溶解、易调色、成本低,但安全性较差。按化学结构又可分为偶氮类和非偶氮类两类。前者有苋菜红、柠檬黄等,后者有赤藓红和亮蓝等。油溶性偶氮类着色剂不溶于水,进入人体内不易被排出体外,毒性较大,目前基本不在使用。水溶性偶氮类着色剂较容易排出体外,毒性较低,目前世界各地允许使用的合成色素几乎全是水溶性的色素。  (五) 漂白剂和护色剂  漂白剂是破坏、抑制食品的发色因素,使其褪色或使食品免于变色的添加剂,分为氧化漂白剂及还原漂白剂两类。氧化漂白剂是通过其本身强烈的氧化作用使着色物质被氧化破坏,从而达到漂白的目的。还原漂白剂大都属于亚硫酸及其盐类,它们通过其所产生的SO2还原作用可使果蔬褪色。而氧化漂白剂主要指过氧化苯甲酰等面粉漂白剂,其他实际应用很少。漂白剂除可改善食品色泽外,还有抑制及抗氧化等作用,在食品加工中应用甚广,可广泛应用于食品的保藏,如果蔬干制和糖制都要熏硫处理使其获得很好的 保藏性。  护色剂又称发色剂,是能与肉及肉制品中成色物质作用,使之在食品加工,保藏等过程中不致分解,破坏,呈现良好色泽的物质。这主要是由亚硝酸盐所产生的NO与肉类中的肌红蛋白和血红蛋白结合,生成一种具有鲜艳红色的亚硝酸基肌红蛋白所致。硝酸盐则需在食品加工中被细菌还原生成亚硝酸盐后再起作用。亚硝酸盐是具有一定毒性,尤其可与胺类物质生成强致癌物亚硝胺,因而人们一直试图开发出某种适当的物质取而代之。亚硝酸盐除可护色外,还能抑制梭状芽孢杆菌为代表的腐败菌的繁殖,从而防止其产生毒素,阻止蛋白质的分解,特别是对于食物中的肉毒梭状芽孢杆菌具有抑制作用,抑制或延缓其产毒。此外,亚硝酸盐还具有增强肉制品风味的作用。迄今为止,尚未见到即能护色又能抑菌,又能增强肉制品的风味的替代品。为此,各国都在保证安全和产品质量的前提下,严格控制亚硝酸盐的使用量。  (六) 乳化剂  乳化剂就是指添加于食品后可显著降低油水两相界面张力,使互不相溶的油和水形成稳定的乳浊液的食品添加剂。食品乳化剂是表面活性剂的一种,其分子结构的共同特点是分子两端不对称,一端是极性的亲水基,另一端是非极性的疏水剂。乳化剂从来源可分为天然和人工合成两大类。而按其在两相中所形成的乳化体系的性质又可分为水包油型和油包水型。  食品是含有水、蛋白质、糖、脂肪等成分的多相体系,食品中许多成分是互不相溶的,由于各组分混合不均匀,致使食品多相体系中各组分相互融合,形成稳定、均匀的形态,改善内部结构,简化和控制加工过程,提高食品质量的一类添加剂。在食品工业中,常常使用食品乳化剂来达到乳化、分散、起酥、稳定、发泡或消泡等目的。此外,有的乳化剂还有改进食品风味、延长货架期等作用。  (七) 增稠剂  增稠剂是指改善食品的物理性质或组织状态,使食品黏滑适口的食品添加剂,也称增黏剂、胶凝剂、乳化稳定剂等。它们在加工食品中的作用是提供稠性、黏度、黏附力、凝胶形成能力、硬度、紧密度、稳定乳化及悬浊体等。由于增稠剂均属亲水性高分子化合物,可水化形成高黏度的均相液,故也称水溶胶、亲水胶体或食用胶。  使用增稠剂后可显著提高食品的粘稠度或形成凝胶,从而改变食品的物理性状,赋予食品黏润、适宜的口感,并兼有乳化、稳定或使其悬浮状态的作用。  增稠剂有60余种,品种很多,按来源可分为天然和人工合成增稠剂两类。多数天然增稠剂来自植物,也有来自动物和微生物的。来自植物的增稠剂有树胶、种子胶、海藻胶和其他植物胶,改性淀粉也被列为食品增稠剂。改性淀粉是一大类物质,由淀粉经不同工序处理后制得,如酸处理淀粉、碱处理淀粉和氧化淀粉等,它们在凝胶强度、流动性、颜色、透明度和稳定性等方面均不同。来自动物的有明胶、酪蛋白酸钠等,来自微生物的有黄原胶等。明胶、酪蛋白酸钠、改性面粉除有增稠作用外,还有一定营养价值、安全性高,应用较广。人工合成的增稠剂如羧甲基纤维素和聚丙烯酸钠等应用较广,安全性也较高。  (八) 稳定剂和凝固剂  稳定剂和凝固剂使食品结构稳定或使食品组织结构不变,增强黏性固形物的一类食品添加剂。常见的有各种钙盐,如氯化钙、乳化钙等。它能使可溶性果胶成为宁胶状果胶酸钙,以保持果蔬加工制品的脆度和硬度,防止果蔬软化。用低酯果胶可制造低糖果冻等。在豆腐生产过程中,则用盐卤、硫酸钙等蛋白凝固剂,来达到固化的目的。另外,金属离子螯合剂能与金属离子在 其分子内形成内环,使金属离子成为此环的一部分,从而形成稳定而又能溶解的复合物,消除了金属离子的有害作用,从而提高食品的质量和稳定性。最典型的螯合物是EDTA。  (九) 水分保持剂  水分保持剂用于保持食品的水分,属于品质改良剂,品种较多。我国允许使用的磷酸盐是一类具有多功能的水分保持剂,广泛应用于各种肉、蛋、水产品、乳制品、谷物制品、饮料、果蔬、油脂以及改性淀粉中中具有明显品质的作用。例如,磷酸盐可增加制品的持水性,减少加工时的原汁的流失,从而改善风味,提高出品率,并可延长贮藏期 防止水产品冷藏时蛋白质变性,保持嫩度,减少解冻损失 也可增加方便面的复水性 还可用于生产改性淀粉。食品加工中常用的磷酸盐、焦磷酸盐、聚磷酸盐和偏磷酸盐等。  延伸阅读:  《进口食品添加剂检验监管适用标准问题通知》原文:各直属检验检疫局  根据《食品安全法》和国务院、质检总局的相关文件要求,以及与国家卫生计生委的沟通情况,现将进口食品添加剂检验监管适用标准有关问题进一步明确如下:  一、在相关食品安全国家标准发布实施前,现行的国家标准,即相关标准号中带“GB”字样的食品卫生标准、食品质量标准仍然有效,可作为进口食品添加剂检验监管的适用标准。  二、对于暂无国家标准的进口食品添加剂,应严格按照《国务院办公厅关于严厉打击食品非法添加行为切实加强食品添加剂监管的通知》(国办发﹝2011﹞20号)以及《关于印发的通知》(国质检食监﹝2011﹞241号)要求,有关企业或者行业组织可以依据有关规定向卫计委提出参照国际组织或相关国家标准指定产品标准的申请,各地检验检疫机构应严格按照卫计委指定标准进行检验。  质检总局检验司  2016年4月12日
  • 文献速递 | 玉米的三个SWEET蔗糖转运蛋白旁系同源基因在韧皮部装载中的重要作用
    玉米的三个sweet蔗糖转运蛋白旁系同源基因在韧皮部装载中的重要作用原文以 impaired phloem loading in genome-edited triple knock-out mutants of sweet13 sucrose transporters为标题发表在2017年10月6日的biorxiv上,原文作者margret bezrutczyk等译:贾子毅 作物产量依赖于蔗糖从叶片到籽粒的有效分配。在拟南芥中,韧皮部装载(phloem loading)是通过sweet蔗糖流(sweet sucrose effluxers)以及随之的sut1/suc2蔗糖/h+协同转运子配合完成的。zmsut1对于玉米的碳分配至关重要,但其对质外体韧皮部装载以及易位途径所导致的蔗糖损失回收的贡献还不清楚。因此,研究者检测了玉米中sweets对韧皮部装载的重要性。 研究者们确认了三个基于叶片表达的sweet蔗糖转运蛋白,它们在质外体韧皮部装载中发挥重要作用。尤其是,zmsweet13旁系同源体(a,b,c)是叶脉管系统表达量最高的基因之一。经基因组编辑,三个基因敲除后的突变体明显发育不良。 野生型和突变体植株在生长发育(如株高)以及zmsweets表达方面的差异 为了定量评估突变体在光合作用方面的受损情况,研究者采用li-6800光合荧光自动测量系统评价野生型和突变体玉米植株在光合速率方面的差异。实验在温室条件下进行:温度28℃;光合有效辐射1000μmol/m2/s;相对湿度60%。 li-6800光合荧光自动测量系统 结果发现,突变体的光合作用受损,叶片积累淀粉和可溶性糖。转录组测序(rna-seq)表明,突变体存在显著的与光合器官和碳水化合物代谢相关基因的异常转录。gwas分析表明,zmsweet13s旁系同源体与作物的农艺性状有关,尤其会影响开花时间和叶片角度。 野生型和突变体植株在叶片淀粉以及可溶性糖累积间的差别 实验证实,zmsweet13旁系同源体(a,b,c)和zmsut1在韧皮部装载过程中存在合作。研究者认为,试图通过生物工程措施提高作物产量时,可以将其作为重点候选对象。
  • 高光谱成像技术在果蔬品质检测中的应用
    近年来,食品安全问题备受关注,人们对果蔬品质与安全标准的要求也越来越高,已成为社会关注的热点。通常,果蔬品质包括了形状、颜色、大小和表面缺陷等外部品质与糖度、酸度、硬度、可溶性固形物含量、淀粉含量、水分和成熟度及其他营养元素的含量等内部品质,其品质好坏是其市场销量的重要因素。传统果蔬品质检测方法如化学法、高效液相色谱法、质谱分析法等通常对待测物具有破坏性,且速度慢。机器视觉和光谱技术具有快速、无损、可靠等优点,近年来广泛用于果蔬品质检测中。其中,机器视觉技术通过提取和分析果蔬形状、大小、颜色及表面缺陷等空间信息进行外部品质检测,而近红外光谱技术主要对果蔬内部品质进行检测。高光谱成像技术将图像与光谱技术相结合,可同时获取反映待测物内外部品质的光谱信息与空间信息,近几年国内外对其在果蔬品质的无损检测中进行了广泛的研究。本文将从高光谱成像技术的基本原理与其在果蔬品质无损检测中的研究与应用等方面,介绍其在该领域的最新研究进展。1、高光谱成像技术原理高光谱系统中的每个像元均可获取同一个光谱区间内几十到几百个连续的窄波段信息,并得到一条平滑而完整的光谱曲线,同时整个成像系统还可获取被测物的空间信息,实现对待测物内部成分与外观特征的同时检测,具有光谱连续与分辨率高等特点。系统获取的高光谱图像可用一段连续波段的光学图像组成的立体三维图像来表示,如图2所示。其中XY平面的二维图像表示物体的空间信息,如形状大小、缺陷等。由于物品外部变化会影响反射光谱,故形状、颜色或缺陷在某一特定的波长下图谱会有变化。λ坐标表示物体的光谱信息,将反映出待测物成分结构等内部品质。本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS13进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。2、果蔬外部品质的检测市场上人们对果蔬的直接感受就是其外部品质的好坏,即对颜色、新鲜度、大小、机械损伤、冻伤与腐烂等方面的判断。传统的机器视觉技术在果蔬外部品质的检测中由于精度低、操作复杂,很难区分出机械损伤、冻伤、腐烂及新鲜度等方面外部特征。高光谱成像技术恰好克服了这一缺点,能够实现全方位的无损检测,而且精度高、易于操作,近年来逐步用于果蔬外部品质的检测中。新鲜度是反映果蔬品质的重要指标。刚采摘的果蔬通常需经过储存、运输,最终到达消费者,该过程将影响其新鲜度品质。一般而言,人们对果蔬新鲜度的主观判断是不准确的。分别在失水0、10、24、48小时状态下,利用成像光谱仪采集了小白菜、菠菜、油菜、娃娃菜等四种蔬菜叶片的光谱图像并进行对比分析。其中,小白菜叶片在不同失水时间下的高光谱图像与机器视觉图像的对比分析如图3、4所示。从中可以看出,随着时间的变化两幅图中的叶片状态均有明显变化,但机器视觉图像只能看出失水状态,而高光谱图像通过分析光谱信息的变化发现,叶片在失水过程中其外观形态及内部叶绿素均有变化,叶绿素相对含量值预测模型的相关系数r=0.76,说明高光谱技术可以有效辨别蔬菜叶片的新鲜度。利用高光谱技术和ANN预测模型对苹果冻伤进行了研究,如图5所示。实验采用如图6所示过程,在400-1000 nm波段的冻伤苹果高光谱图像中选择5个主成分波段(717,751,875,960和980 nm)进行ANN模型的建立,其训练集、测试集和验证集的相关系数分别为0.93,0.91和0.92,最终实现了98%以上的识别准确率。对80个苹果样本分别采集4块尺寸为2 cm×2 cm×1.5 cm区域中的高光谱图像,利用偏最小二乘回归法来估算可溶性固形物含量反射数据与近红外光谱数据之间的关系,得到交叉验证系数为0.89,均方根误差0.55%,最后成功绘制出主要波段的高空间分辨率SSC图像,如图7所示。从图中可以看出靠近苹果边缘部分相比于中心部分有着更高的SSC值。结果表明,可用近红外高光谱成像技术测量苹果的可溶性固形物含量。3、结论随着生活水平的提升,人们对健康食品的品质要求越来越高。传统的机器视觉技术和物理化学方法在测量果蔬品质方面操作复杂、破坏性强,难以满足检测需要。高光谱成像技术融合了机器视觉、光谱和图像处理技术,产生的图像是“图谱结合”的三维数据立方体,不仅包含了待测物的空间信息特征,同时还包含了待测物的光谱信息,能够准确、快速、无损的检测出农产品的品质,并且操作简单,近年来广泛应用于果蔬品质的检测中。但是高光谱成像技术在采集和处理图像数据的过程中,受限于仪器性能和处理速度的影响,该技术现目前主要应用于基础性研究,并未广泛应用于工业的在线实时检测中。针对这些问题,为了实现果蔬品质的商业化在线检测,还需要做到如下两点:一是改进并升级高光谱成像技术的相关设备比如成像光谱仪,提升其性能并降低其生产成本,利于高光谱成像技术在果蔬品质检测中的推广;二是针对全波段的、不同品种的果蔬高光谱图像进行特征波长选取,以降低数据冗余量,减少高光谱图像的获取以及处理时间。尽管如此,随着社会发展与科学进步,高光谱成像技术将不断提升和改进,未来在农产品、食品安全领域将具有更加广阔的发展空间和应用前景。
  • 食药总局提醒关注含羟乙基淀粉类药品安全风险
    新国家食品药品监督管理总局26日发布通报,提醒关注含羟乙基淀粉类药品对严重脓毒血症患者的肾损伤及死亡率增加风险。   含羟乙基淀粉类药品为血容量补充药,主要用于预防和治疗各种原因造成的低血容量,包括失血性、烧伤性及手术中休克等、血栓闭塞性疾患等。   近期,欧盟、美国、加拿大等国外药品管理部门就含羟乙基淀粉类药品对特定健康条件患者的肾损伤及死亡率增高风险陆续发布了多项风险控制措施。在我国收集到的羟乙基淀粉类药品不良反应报告中,用药原因主要为手术中或手术后补充血容量、失血性低血流量、脑梗塞、外伤、烧伤等 仅有1例用药原因为感染性休克,未发现有明显的使用风险。   为确保用药安全,食品药品监管总局针对其安全性问题再次进行了分析和评估。评估认为,含羟乙基淀粉类药品常见不良反应包括寒战、过敏性休克、呼吸困难、胸闷、高热/发热、过敏样反应、皮疹、肾功能损害等,在特定健康条件的患者中存在着死亡率升高、肾损害及过量出血等风险。   食品药品监管总局表示,将统一修改含羟乙基淀粉说明书。建议医务人员和患者应充分重视此类药品的安全性问题,详细了解含羟乙基淀粉类药品的禁忌症、不良反应、注意事项、相互作用。在治疗前,医生应询问患者的既往病史(如严重脓毒血症、肝肾功能障碍、凝血功能异常等),将可能存在的安全性隐患告知患者,在增加剂量或调整治疗方案时,应密切关注患者的不良反应发生情况。同时,医务人员应根据患者的健康条件,权衡利弊后谨慎使用。如在使用过程中患者出现肾功能异常、凝血机制异常等不良事件,应及时处置。
  • 国家药典委公示药材和饮片检定通则
    2013年4月3日,国家药典委对药材和饮片鉴定通则进行公示,规定药材和饮片的检定包括“性状”、“鉴别”、“检查”、“浸出物”、“含量测定”等,公示中还将相关检测的注意事项详细注明。详情如下: 附录Ⅱ B 药材和饮片检定通则   药材和饮片的检定包括“性状”、“鉴别”、“检查”、“浸出物”、“含量测定”等。检定时应注意下列有关的各项规定。   一、检验样品的取样应按药材和饮片取样法(附录Ⅱ A)的规定进行。   二、为了正确检验,必要时可用符合本版药典规定的相应标本作对照。   三、供试品如已破碎或粉碎,除“性状”、“显微鉴别”项可不完全相同外,其他各项应符合规定。   四、“性状”系指药材和饮片的形状、大小、表面(色泽与特征)、质地、断面(折断面或切断面)及气味等特征。性状的观察方法主要用感官来进行,如眼看(较细小的可借助于扩大镜或体视显微镜)、手摸、鼻闻、口尝等方法。   1. 形状是指药材和饮片的外形。观察时一般不需预处理,如需观察很皱缩的全草、叶或花类时,可先浸湿使软化后,展平,观察。观察某些果实、种子类时,如有必要可浸软后,取下果皮或种皮,以观察内部特征。   2. 大小是指药材和饮片的长短、粗细(直径)和厚薄。一般应测量较多的供试品,可允许有少量高于或低于规定的数值。对细小的种子或果实类,可将每10粒种子紧密排成一行,测量后求其平均值。测量时应用毫米刻度尺。   3. 表面是指在日光下观察药材和饮片的表面色泽(颜色及光泽度) 如用两种色调复合描述颜色时,以后一种色调为主,例如黄棕色,即以棕色为主 以及观察药材和饮片表面的光滑、粗糙、皮孔、皱纹、附属物等外观特征。观察时,供试品一般不作预处理。   4. 质地与断面   质地是指用手折断药材和饮片时的感官感觉。   断面是指在日光下观察药材和饮片的断面色泽(颜色及光泽度),以及断面特征。如折断面不易观察到纹理,可削平后进行观察。   5. 气味是指药材和饮片的嗅感与味感。   嗅感可直接嗅闻,或在折断、破碎或搓揉时进行。必要时可用热水湿润后检查。   味感可取少量直接口尝,或加热水浸泡后尝浸出液。有毒药材和饮片如需尝味时,应注意防止中毒。   6. 药材和饮片不得有虫蛀、发霉及其他物质污染等异常现象。   五、“鉴别”系指检验药材和饮片真实性的方法,包括经验鉴别、显微鉴别、理化鉴别、聚合酶链式反应法等。   1. 经验鉴别系指用简便易行的传统的直观方法观察药材和饮片的颜色变化、浮沉情况以及爆鸣、火焰等特征。   2. 显微鉴别 系指用显微镜对药材和饮片的切片、粉末、解离组织或表面以及含有饮片粉末的制剂进行观察,并根据组织、细胞或内含物等特征进行相应鉴别的方法。照显微鉴别法(附录Ⅱ C ) 项下的方法制片观察。   3. 理化鉴别 系指用物理或化学的方法,对药材和饮片中所含某些化学成分进行的鉴别试验。包括一般鉴别、光谱及色谱鉴别等方法。   (1)如用荧光法鉴别,将供试品(包括断面、浸出物等)或经酸、碱处理后,置紫外光灯下约10cm处观察所产生的荧光。除另有规定外,紫外光灯的波长为365nm。   (2)如用微量升华法鉴别,取金属片或载玻片,置石棉网上,金属片或载玻片上放一高约8mm的金属圈,圈内放里适量供试品粉末,圈上覆盖载玻片,在石棉网下用酒精灯缓缓加热,至粉末开始变焦,去火待冷,载玻片上有升华物凝集。将载玻片反转后,置显微镜下观察结晶形状、色泽,或取升华物加试液观察反应。   (3)如用光谱和色谱鉴别,常用的有紫外-可见分光光度法、红外分光光度法、薄层色谱法、高效液相色谱法、气相色谱法等。   4. 聚合酶链式反应法 是指通过比较药材及饮片间DNA 分子遗传多样性差异来鉴别药材的方法。   六、“检查”系指对药材和饮片的纯净程度、可溶性物质、有害或有毒物质进行的限量检查,包括水分、灰分、杂质、毒性成分、重金属及有害元素、二氧化硫残留、农药残留、黄曲霉毒素等。   除另有规定外,饮片水分不得过13% 饮片的药屑和杂质不得过3% 药材及饮片(矿物类除外)的二氧化硫残留量不得过150mg/Kg。   七、“浸出物测定”系指用水或其他适宜的溶剂对药材和饮片中可溶性物质进行的测定。   八、“含量测定”系指用化学、物理或生物的方法,对药材和饮片中含有的有关成分进行检测。   注意 (1) 进行测定时,需粉碎的药材和饮片,应按正文标准项下规定的要求粉碎过筛,并注意混匀。   (2) 检查和测定的方法按正文标准项下规定的方法或指定的有关附录方法进行。   国家药典委员会   2013年4月3日
  • 新疆维吾尔自治区市场监督管理局抽检1205批次食品 不合格35批次
    2021年10月20日,新疆维吾尔自治区市场监督管理局网站发布食品安全监督抽检信息通告(2021年 第35期)。通告称,近期,新疆维吾尔自治区市场监督管理局组织抽检粮食加工品、调味品、肉制品、乳制品、饮料、方便食品、饼干、冷冻饮品、薯类和膨化食品、糖果制品、茶叶及相关制品、酒类、蔬菜制品、水果制品、炒货食品及坚果制品、食糖、淀粉及淀粉制品、糕点、蜂产品、餐饮食品、食用农产品和食用油、油脂及其制品22类食品1205批次样品。根据食品安全国家标准检验和判定,抽样检验项目合格样品1170批次,不合格样品35批次。不合格食品涉及质量指标不达标、微生物污染、农兽药残留和超范围、超限量使用食品添加剂等问题。一、质量指标不达标(一)呼图壁县徐龙商行第一分店销售的、标称乌鲁木齐名庄葡萄酒业有限公司生产的阿鹿察露酒,经华测检测认证集团北京有限公司检验发现,其中酒精度不符合食品安全国家标准规定。乌鲁木齐名庄葡萄酒业有限公司对检验结果提出异议,并申请复检;经新疆维吾尔自治区产品质量监督检验研究院复检后,维持初检结论。(二)昌吉市阿尔曼专卖店销售的、标称和硕县满卡姆食品有限责任公司生产的山花蜂蜜,经华测检测认证集团北京有限公司检验发现,其中果糖和葡萄糖不符合食品安全国家标准规定。和硕县满卡姆食品有限责任公司对产品真实性提出异议。经巴音郭楞蒙古自治州和硕县市场监督管理局核实,对异议予以认可。该批次样品实际为喀什市塔依尔艾力冒用和硕县满卡姆食品有限责任公司名义生产。(三)玛纳斯县麻氏家和超市销售的、标称玛纳斯县众甲食品有限公司生产的山楂香醋(酿造食醋),总酸(以乙酸计)不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(四)被抽样单位地址为新疆乌鲁木齐市水磨沟区立井街198号丽景湾小区C区五号楼103号商铺的水磨沟区立井街木克拉木商店销售的、标称泽普县努尔鲁克食品有限公司生产的努尔鲁克酿造食醋,不挥发酸(以乳酸计)和总酸(以乙酸计)不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(五)被抽样单位地址为新疆乌鲁木齐市沙依巴克区炉院街249号的沙依巴克区炉院街雅尔博食品商行销售的、标称莎车县民心食品有限公司生产的喀力特丝酿造食醋,总酸(以乙酸计)和不挥发酸(以乳酸计)不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(六)布尔津县长江粮油超市销售的、标称乌鲁木齐市米东区新粮食品厂生产的白醋,经华测检测认证集团北京有限公司检验发现,其中可溶性无盐固形物不符合食品安全国家标准规定。乌鲁木齐市米东区新粮食品厂对检验结果提出异议,并申请复检;经新疆维吾尔自治区产品质量监督检验研究院复检后,维持初检结论。(七)托克逊县巴尔曼超市销售的、标称生产企业地址为新疆阿克苏地区库车市龟兹小微企业创业园B15的新疆麦迪亚农业发展有限公司生产的红花油,酸值(KOH)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(八)于田县白鹅日用品批发零售第一分店销售的、标称于田县骑蓝则尔食品加工厂生产的骑拉尼扎尔瓜子(原味),过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(九)焉耆县大润发百货超市销售的原味瓜子,过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(十)阿图什市彩贝乐第七号店销售的、标称和田迪丽热穆商贸有限公司生产的调和油,酸价(KOH)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(十一)哈密市丰盛市场志军副食店销售的、标称哈密市石油基地锦江酱醋厂生产的酿造食醋,不挥发酸(以乳酸计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十二)被抽样单位地址为新疆吐鲁番市高昌区葡萄镇巴格日社区5组的高昌区情尚商店销售的、标称新和县爱基穆食品酿造有限责任公司生产的爱乐拜合特大蒜姜香醋,不挥发酸(以乳酸计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十三)被抽样单位地址为新疆吐鲁番市高昌区新编十五区绿洲东路南侧西域丽都小区底商住宅楼2#4号的高昌区六九九超市销售的、标称洛浦县穆太力普农副产品加工厂生产的白醋(酿造食醋),不挥发酸(以乳酸计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十四)喀什市扎伊吐尼便民超市销售的、标称喀什市香芝麻饼干作坊生产的特味斯雅粗粮饼干,过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十五)察布查尔锡伯自治县阿克布拉克农副产品加工专业合作社生产的红花籽油,酸值(KOH)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十六)焉耆县赵忠强综合商店销售的、标称玛纳斯县五谷轩食品有限责任公司生产的老陈醋(酿造食醋),总酸(以乙酸计)和不挥发酸(以乳酸计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十七)伊宁县愉香炒货厂生产的愉香好巴郎瓜子,过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(十八)伊宁市肖开提绿色阿雅特食品批发店销售的、标称生产企业地址为新疆阿克苏市阿依库勒镇萨依买里村1小队(314国道1040公里路边)的新疆香春乐商贸有限责任公司生产的白醋,总酸(以乙酸计)、不挥发酸(以乳酸计)和可溶性无盐固形物不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(十九)伊宁县叶希丽阿亚提综合商店销售的、标称生产企业地址为新疆昌吉州呼图壁县工业园区纺织服装产业园的新疆丰盛食品有限公司生产的核桃奶士饼干,经华测检测认证集团北京有限公司检验发现,其中过氧化值(以脂肪计)不符合食品安全国家标准规定。新疆丰盛食品有限公司未在规定时限内提出异议,但在核查处置过程中对样品的真实性提出异议。经昌吉回族自治州呼图壁县市场监督管理局核实,对异议予以认可。(二十)博乐市苏比超市销售的、标称伊宁市拉合曼蜂业科技有限责任公司生产的菜籽蜂蜜,果糖和葡萄糖不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(二十一)于田县永青百货超市销售的亲玫和而系列瓜子(炒货),过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(二十二)被抽样单位地址为新疆吐鲁番市高昌区绿洲东路西域丽都门面房的高昌区美河乃提超市销售的炒瓜子,过氧化值(以脂肪计)不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。二、微生物污染(一)标称生产企业地址为新疆维吾尔自治区和田地区墨玉县芒来乡布都舒克村3组55号的新疆米合曼多斯食品有限公司生产的密河曼食醋(酿造食醋),菌落总数不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(二)被抽样单位地址为新疆吐鲁番市高昌区新编十七区老城路北侧北园春旅游购物商城1层1D-1号的高昌区迈里克阿尔曼加盟店销售的、标称生产企业地址为新疆吐鲁番市高昌区新城路老街80号的高昌区团结醋厂生产的酿造食醋,菌落总数不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(三)新疆华洋三好超市管理有限公司昌吉市华洋广场分公司销售的、标称生产企业地址为新疆昌吉州昌吉市农业科技园区高新农业产业园富园路300号的新疆亿康源食品有限公司生产的香辣烤肉,菌落总数不符合食品安全国家标准规定。检验机构为普研(上海)标准技术服务股份有限公司。(四)被抽样单位地址为新疆乌鲁木齐市天山区团结路585号的天山区团结路乌买尔江超市销售的、标称喀什阿米娜食品有限公司生产的阿美妮红烧牛肉面,大肠菌群和菌落总数不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(五)库尔勒于法志水果批发商行销售的、标称生产企业地址为新疆昌吉州昌吉市大西渠镇工业园区新疆小金牛食品有限公司一层厂房(大西渠镇区工业园区丘221栋)的新疆新东食品有限公司生产的早餐饼(五仁味),霉菌不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(六)博乐市苏比超市销售的、标称伊犁帕科地力食品加工有限公司生产的蜂蜜,嗜渗酵母计数不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。三、超范围、超限量使用食品添加剂(一)玛纳斯县麻氏家和超市销售的、标称玛纳斯县众甲食品有限公司生产的山楂香醋(酿造食醋),苯甲酸及其钠盐(以苯甲酸计)和防腐剂混合使用时各自用量占其最大使用量的比例之和不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(二)呼图壁县多乐福超市销售的、标称奇台县老奇台镇元享利贞杂粮酿造厂生产的奇台杂粮醋,脱氢乙酸及其钠盐(以脱氢乙酸计)不符合食品安全国家标准规定。检验机构为华测检测认证集团北京有限公司。(三)伊宁市喜咖爱爱食品批发商行销售的、标称乌鲁木齐市米东区振中食品厂生产的牛肉味辣条,经华测检测认证集团北京有限公司检验发现,其中脱氢乙酸及其钠盐(以脱氢乙酸计)不符合食品安全国家标准规定。乌鲁木齐市米东区振中食品厂未在规定时限内提出异议,但在核查处置过程中,对样品的真实性提出异议。经乌鲁木齐市米东区市场监督管理局核实,对异议予以认可。(四)皮山县沉稳购物中心销售的、标称生产企业地址为新疆和田地区墨玉县扎瓦镇夏合勒克村4组的新疆赛尔合礼食品开发有限公司生产的赛尔合扎奶皮子馕(月饼),脱氢乙酸及其钠盐(以脱氢乙酸计)和防腐剂混合使用时各自用量占其最大使用量的比例之和不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。(五)伊宁市食香馆农家加工自制的烤架子肉,经新疆维吾尔自治区产品质量监督检验研究院检验发现,其中亚硝酸盐(以亚硝酸钠计)不符合食品安全国家标准规定。伊宁市食香馆农家对检验结果提出异议,并申请复检;经乌鲁木齐海关技术中心复检后,维持初检结论。(六)博乐市心坊西饼总店销售的、标称博乐市心坊食品有限责任公司生产的辣皮子馕,脱氢乙酸及其钠盐(以脱氢乙酸计)和防腐剂混合使用时各自用量占其最大使用量之和不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。(七)乌什县福万家超市公园店销售的、标称揭西县坤达园食品厂生产的伊犁蓝莓干,苋菜红不符合食品安全国家标准规定。检验机构为贵州省检测技术研究应用中心。四、农兽药残留巴里坤县城镇朱军粮油蔬菜瓜果店销售的豇豆,灭蝇胺不符合食品安全国家标准规定。检验机构为新疆维吾尔自治区产品质量监督检验研究院。对抽检中发现的不合格食品,新疆维吾尔自治区市场监督管理局已责成相关地(州、市)市场监管部门立即组织开展处置工作,查清产品流向,采取下架召回不合格产品等措施控制风险;对违法违规行为,依法从严处理;及时将风险防控措施和核查处置情况向社会公示。特别提醒消费者,如在市场上发现或购买到附件所列的不合格食品,请拨打食品安全投诉举报电话12315进行投诉举报。
  • 开发用于脑脊液中多种β淀粉样肽的SPE/LC/MS/MS定量测定方法
    引言 &beta 淀粉样肽(A&beta )的不溶性聚集物在脑中沉积/形成被看作为早老性痴呆病(AD)的一个关键事件。治疗策略集中于用以减少&beta 淀粉样肽生成或提高其清除水平的小分子抑制剂或免疫疗法。因此,找到能对脑脊液中的淀粉样肽进行高灵敏且稳定可靠的定量分析方法以确定其与AD关系对很多研究者来说至关重要。然而,对这些A&beta 肽的分析极具挑战性,这不仅因为其在生物液体内的丰度相对偏低,而且也因为它们可能被其它蛋白质结合并具有形成低聚体的趋势。 这些肽的测定常规采用免疫测定法(因其选择性和灵敏度)或者通过冗长的免疫沉淀之后再进行SPE。免疫测定所需的方法开发时间比LC/MS/MS方法开发时间长;它们需要对多种A&beta 肽进行多次测定,并且与LC/MS/MS相比其线性动态范围有限。免疫测定存在交叉反应性和非特异性结合,需要使用价格昂贵的抗体,并且样品/标本的富集依赖于抗体的选择性。免疫测定的劳动强度大,并且测定不准确和基质干扰也是常见的问题。因此,需要开发一种基于LC/MS/MS的高通量、选择性好的生物分析方法,使样品制备能够实现在存在高浓度干扰蛋白和肽的情况下回收得到pg/mL水平的淀粉样肽。 虽然开发免疫测定方法所需的时间在后期药物发展过程中是可接受的,但在较早的阶段中则几乎不切实际;这时,如能有一种可定量多种肽的高通量且可靠的方法则是众望所归。 本研究工作集中于开发用于淀粉样前体蛋白(APP)的1-38、1-40和1-42片段的LC、MS和选择性SPE样品制备方法,以支持临床前研究。使用单一、高通量方法用于多种A&beta 肽的分析测定而无需耗时的免疫沉淀步骤,被成功开发并经过验证。特别是,A&beta 类肽存在很多独特的分析挑战,其中包括非特异性结合、溶解性差、聚集和质谱灵敏度偏低。在方法开发各阶段所进行的步骤尽可能减小或消除了这些问题所带来的影响。 随着AD病情缓解策略的出现,对除了A&beta 38、40和42之外的多种可能与AD病征相关的A&beta 进行定量分析可有助于提供关于此病及其发展过程的更多认识。本文所述的方法也有可能进行相应的修改,以使其适用于那些肽的定量分析。 &beta 淀粉样1-38肽,分子量4132,pI 5.2 DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGG &beta 淀粉样1-40肽,分子量4330,pI 5.2 DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV &beta 淀粉样1-42肽,分子量4516,pI 5.2 DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA 图1:&beta 淀粉样肽1-38、1-40和1-42的氨基酸序列和pI数据 实验 UPLC® 方法的条件 色谱柱: ACQUITY UPLC® BEH C18,300Å ,2.1× 150nm,1.7µ m 流动相: A:0.3% NH4OH(按体积计算)的水溶液 B:90%乙腈,10%流动相A 梯度: 90% A保持1分钟,5.5分钟内降低至55% A并保持0.2分钟,然后返回至初始水平 流速: 0.2 mL/分钟 进样量: 10µ L 温度: 50℃ 质谱条件 系统:沃特世XevoTM TQ三重四极杆质谱仪,在ESI+MRM模式下运行 去溶剂化气体流速:800L/小时 源温度:120℃ 去溶剂化温度:450℃ 碰撞室压力:2.6× 10(-3)毫巴 MRM跃迁态和条件:见表1 样品预处理 用5M盐酸胍以1:1的比例稀释200µ L脑脊液(人脑脊液、猴脑脊液或加标人工脑脊液+5%大鼠血浆),并在室温下振摇45分钟。然后,用200µ L 的4%H3PO4水溶液进一步稀释样品。 注意:对于加标样品而言,在加标后、用盐酸胍稀释前,可在室温下让样品平衡30分钟。 固相萃取(SPE) 基于µ Elution 96孔型的Oasis® MCX 预处理:200µ L甲醇 平衡:200µ L 4% H3PO4水溶液 上样:600µ L预处理后的样品 清洗1:200µ L 4% H3PO4水溶液 清洗2:10% ACN水溶液 洗脱:2× 25µ L 75:15:10 ACN:水:NH4OH浓溶液 稀释:25µ L水 进样量:20µ L 肽名称 前体离子 产物离子 产物离子ID锥孔电压(V) 碰撞能量(eV) &beta 淀粉样1-38肽 1033.5 1000.3 b 36 33 23 &beta 淀粉样1-38肽的N15内标 1046 1012.5 30 22 &beta 淀粉样1-40肽 1083 1053.6 b 39 33 25 &beta 淀粉样1-40肽的N15内标 1096 1066.5 35 22 &beta 淀粉样1-42肽 1129 1078.5 b 40 28 30 &beta 淀粉样1-42肽的N15内标 1142.5 1091.5 35 28 表1:&beta 淀粉样肽及其N15标记型内标的MRM跃迁态和质谱条件 结果和讨论 开发这些方法所遇到的最大挑战就是克服溶解性、吸附性和聚集性问题并获得能满足该应用要求的足够选择性和灵敏度。适当的流动相和进样溶剂构成以及明智选择SPE洗脱溶剂仅仅是应对这些问题的几个关键因素。 质谱分析 质谱分析在正离子模式下进行,因为4+前体的CID产生了几种与固有的特异性b序列离子相对应的不同产物离子(典型光谱如图2所示)。负离子模式下的MS/MS出现了明显的水分流失。图3给出了关于两种方法特异性区别的一个示例。虽然对于溶剂标准品时使用负离子模式的总体灵敏度较高,但在基质存在时负离子模式的灵敏度优势减弱,而正离子模式下的特异度和信噪比的提高对于脑脊液样品中的准确定量具有决定性作用。 超高效液相色谱分析 图4显示了对这三种&beta 淀粉样肽的分离情况。虽然流动相中NH4OH的精确百分比对负离子灵敏度具有关键作用,但ESI+模式下的信号经证实对流动相构成的细微变化更具稳健性,可使液相色谱/自动取样器至少在24小时以上的时间段中保持稳定。与此相反,50%或以上的ESI-信号在10-12小时后因流动相中NH4OH浓度的自然变化(挥发)而损失。这进一步强调了ESI+MS方法的稳健性。 固相萃取(SPE) SPE使用Oasis® MCX(一种混合模式的吸附剂)进行,以加强萃取过程的选择性。该吸附剂同时依赖于反相和离子交换保留机制,以从复杂脑脊液样品中的其它高丰度多肽中选择性分离&beta 淀粉样肽组分。使用特定的96孔Oasis® µ Elution提供了明显的浓缩效果,无需溶剂挥干和复溶,从而尽可能减少了肽损失。此外,通过离子交换进行肽结合为整个方法提供了正交性。 在最初的方法开发过程中,萃取人工脑脊液时观察到了大量非特异性结合(NSB)。我们添加了5%大鼠血浆(有一个不同的&beta 淀粉样肽序列),以消除NSB。 SPE是整个方法中较为重要的环节之一。对淀粉样组分选择性极高的分离再加上标准流速下UPLC的分辨率实现了对临床前研究样品的超快分析。 线性、准确度和精确度 对每种肽均使用了N15标记型内标。对于0.1-10ng/mL人工脑脊液+5%大鼠血浆的等分样本,三种&beta 淀粉样肽的标准曲线均呈线性。&beta 淀粉样1-38肽的典型标准曲线如图5所示。淀粉样肽的基线水平根据同时使用过量加标的人脑脊液和&ldquo 人工脑脊液+5%大鼠血浆&rdquo 而得到的两条标准曲线进行定量分析,基线水平的计算值没有统计学意义上的差异。选择人工脑脊液是因为它的价格不贵,而且是一种比较易得的基质。从3种人脑脊液和1种猴脑脊液萃取得到的&beta 淀粉样1-42肽的基线水平如图6所示。所有3种&beta 淀粉样肽的基线水平测定值的统计结果如表2所示。 用3种人脑脊液混合样品和1种猴脑脊液混合样品配制了0.2、0.8、2和6ng/mL的过量加标的质控样品。准确度和精确度数值符合LC/MS/MS测定的控制标准。质控样品分析的典型结果如表3所示。 结果和讨论 开发这些方法所遇到的最大挑战就是克服溶解性、吸附性和聚集性问题并获得能满足该应用要求的足够选择性和灵敏度。适当的流动相和进样溶剂构成以及明智选择SPE洗脱溶剂仅仅是应对这些问题的几个关键因素。 质谱分析 质谱分析在正离子模式下进行,因为4+前体的CID产生了几种与固有的特异性b序列离子相对应的不同产物离子(典型光谱如图2所示)。负离子模式下的MS/MS出现了明显的水分流失。图3给出了关于两种方法特异性区别的一个示例。虽然对于溶剂标准品时使用负离子模式的总体灵敏度较高,但在基质存在时负离子模式的灵敏度优势减弱,而正离子模式下的特异度和信噪比的提高对于脑脊液样品中的准确定量具有决定性作用。 超高效液相色谱分析 图4显示了对这三种&beta 淀粉样肽的分离情况。虽然流动相中NH4OH的精确百分比对负离子灵敏度具有关键作用,但ESI+模式下的信号经证实对流动相构成的细微变化更具稳健性,可使液相色谱/自动取样器至少在24小时以上的时间段中保持稳定。与此相反,50%或以上的ESI-信号在10-12小时后因流动相中NH4OH浓度的自然变化(挥发)而损失。这进一步强调了ESI+MS方法的稳健性。 固相萃取(SPE) SPE使用Oasis® MCX(一种混合模式的吸附剂)进行,以加强萃取过程的选择性。该吸附剂同时依赖于反相和离子交换保留机制,以从复杂脑脊液样品中的其它高丰度多肽中选择性分离&beta 淀粉样肽组分。使用特定的96孔Oasis® µ Elution提供了明显的浓缩效果,无需溶剂挥干和复溶,从而尽可能减少了肽损失。此外,通过离子交换进行肽结合为整个方法提供了正交性。 在最初的方法开发过程中,萃取人工脑脊液时观察到了大量非特异性结合(NSB)。我们添加了5%大鼠血浆(有一个不同的&beta 淀粉样肽序列),以消除NSB。 SPE是整个方法中较为重要的环节之一。对淀粉样组分选择性极高的分离再加上标准流速下UPLC的分辨率实现了对临床前研究样品的超快分析。 线性、准确度和精确度 对每种肽均使用了N15标记型内标。对于0.1-10ng/mL人工脑脊液+5%大鼠血浆的等分样本,三种&beta 淀粉样肽的标准曲线均呈线性。&beta 淀粉样1-38肽的典型标准曲线如图5所示。淀粉样肽的基线水平根据同时使用过量加标的人脑脊液和&ldquo 人工脑脊液+5%大鼠血浆&rdquo 而得到的两条标准曲线进行定量分析,基线水平的计算值没有统计学意义上的差异。选择人工脑脊液是因为它的价格不贵,而且是一种比较易得的基质。从3种人脑脊液和1种猴脑脊液萃取得到的&beta 淀粉样1-42肽的基线水平如图6所示。所有3种&beta 淀粉样肽的基线水平测定值的统计结果如表2所示。 用3种人脑脊液混合样品和1种猴脑脊液混合样品配制了0.2、0.8、2和6ng/mL的过量加标的质控样品。准确度和精确度数值符合LC/MS/MS测定的控制标准。质控样品分析的典型结果如表3所示。 1. 我们开发了一种用于同步定量分析人和猴脑脊液中多种&beta 淀粉样肽的SPE-LC/MS/MS生物分析方法并对其进行了验证。 2. 将基于µ Elution型混合模式SPE的高选择性萃取方法与UPLC色谱分析的分辨率相结合是实现对人和猴脑脊液中3种主要&beta 淀粉样肽进行准确、精确而可靠的定量分析的关键。 3. 正离子MS/MS和b离子序列碎片的使用提供了本应用所需的质谱特异度。 4. 用不到30分钟的时间即可完成对96份样品的萃取并作好进样准备,从而满足了临床前研究所需的样品制备处理通量要求。 5. 本文所述的方法避免了在临床前研究工作中进行耗时的免疫测定或免疫沉淀步骤。 6. Xevo TQ质谱的质量范围和灵敏度允许选择高m/z前体进行破碎并能选择特异度高的b离子碎片,从而增加了此项测定的信噪比并总体提高了其特异度。 7. 此类方法也可允许选择性的、特异性的、并按高通量方式同时测定一份样品中的几种不同&beta 淀粉样肽,而同时仍能达到低浓度内源性&beta 淀粉样肽分析所需的高灵敏度。这是一个明显的优点,因为ELISA测定需要使用多种抗体进行多次测定。 所选择的参考文献 1. T.A. Lanz、J.B. Schachter.神经科学方法杂志,169 (2008) 16-22. 2. T. Oe等.质谱分析中的快速通讯,20 (2006) 3723-3735. 3. JR Slemmon等.色谱分析杂志:生物分析,846 (2007) 24-31. 4. NT Ditto等.神经科学方法杂志,182 (2009) 260-265. 5. T.A. Lanz、J.B. Schachter.神经科学方法杂志,157 (2006) 71-81. 6. MJ Ford等.神经科学方法杂志,168 (2008) 465-474. 7. E. Portelius等.蛋白质组学研究杂志,6 (2007) 4433-4439. 致谢 本文作者希望向Wenlin Li(辉瑞公司PDM部)表达谢意,感谢她在使用免疫亲和LC/MS/MS分析&beta 淀粉样肽所作的前期工作。 沃特世公司 美国马萨诸塞州米尔福德Maple街34号,01757 电话:(508) 478-2000;传真:(508) 478-1990 http://www.waters.com
  • 卤素水分测定仪应用于红枣水分测定的作用
    禾工HM-105L水份测定仪是一款高精度,多功能的水份分析仪器。用于替换早期采用烘箱进行加热烘干等失重法检测样品的最佳水份测定仪器,完全避免了传统烘干法检测水份时的长时间等,样品重复性不好等现象,HM快速水份测定仪实现快速测定,大大提高了水份测定的工作效率,经严格的测试完全符合我国的计量标准。现已广泛应用于实验室、食品工业、饲料工业、茶叶加工业、烟草制造业、化学工业、制药行业、中草药加工业、造纸业、农副产品加工业等行业。 适用领域:塑料粒子类:木塑,母料,PA,云母,聚乙烯,聚丙烯,PVC,PS,ABS,聚甲醛, PC, PET,聚苯硫醚(PPS),LCP,聚醚醚酮(PEEL),聚醚酮(PEK),聚醚砜(PES), PSF,硅胶,塑胶粉, 橡胶、轮胎,保丽龙,木粉,塑胶填充剂,珍珠棉,色母粉; 粮食干果饲料:玉米,大米,花生,大豆,棉籽,菜籽,谷物,燕麦,莲子,薏米,荞麦面,酒糟, 八角,魔芋,淀粉(面粉,豆粉,藕粉等),豆粕,麸皮,饲料添加剂,动物饲料,食盐, 咖啡豆, 酵母粉, 腊肉,辣椒、辣椒粉,挂面,月饼馅料,燕窝,红枣, 粉条粉丝, 脱水蔬菜,奶粉,豆奶粉, 米粉,饼干,干果、干货,茶叶,种子,食用菌类,农作物,烟草; 海鲜肉类:海参,虾米,海带,裙带菜,紫菜,鱿鱼干,鱼粉, 琼脂,猪肉,牛肉(羊肉、鸡肉),肉干,鱼干,鱼糜等; 无机化工品:胶水,乳胶,肥皂,洗洁精洗衣粉,颜料染料涂料,润滑油,硫磺,氢氧化钾,氢氧化铝,石墨,电池,玻璃纤维,陶瓷, 氧化锰, 矿石,煤粉,硝安硝石,胚土,磁粉,铁粉,硝化棉,二氧化硅,氧化铁,氧化锌,硅粉,重钙、纳米钙,碳酸钙,硫酸钡,高岭土,滑石粉,石膏,耐火材料,活性炭,造纸,肥料,煤炭等等; 制药保健品类:西药类,保健品(冬虫夏草,人参、西洋参,鹿茸,山药,花粉等); 建筑材料类: 玻璃,水泥,陶泥,沙土沙石,淤泥,防火门材料,淤土,混凝土,瓦片,木材水分仪 / 木板,石英沙,瓷砖原料,白玉石,型砂等; 下面是几种红枣的生产地及其生长环境的介绍和特点:1、沧州金丝小枣:沧州金丝小枣含糖量高达65%。2、阿克苏红枣:阿克苏地区有“塞外江南”、“瓜果之乡”之称,阿克苏实验林场被誉为“中国枣园中的枣园”。由于独特的地理气候,生产的干灰枣均是在树上自然风干的吊干枣,具有皮薄、肉厚、质地较密、色泽鲜亮、含糖量高、口感松软、纯正香甜的特点。3、若羌灰枣:楼兰红枣新疆若羌地区(塔里木楼兰丝路)的“若羌红枣”冰川融水灌溉,最高温差28度左右,华夏第一栆。4、和田玉枣:新疆和田地区的“和田玉枣”。和田玉枣的营养和保健价值极高。它含蛋白质、脂肪、糖类、纤维素;红枣营养十分丰富。5、临泽小枣:甘肃临泽小枣,肉质致密,多汁,鲜枣可溶性固形物含量35~43%,维生素C含量高一般为662.7mg/100g,制干率56%,含糖分72~80%:果皮韧性强,极耐贮藏运输。 主产地新疆、山西、河北、甘肃、山东水份含量干制小红枣水分不高于28%干制大红枣水分不高于25%湿枣水分在35~45% 用户案例:新疆天海绿洲、塔里木大漠枣业、思维特果业、天昆百果、刀郎枣业、驼玲红果业、穗峰绿色农业等 历史据史料记载,红枣是原产中国的传统名优特产树种。经考古学家从新郑斐李岗文化遗址中发现枣核化石,证明枣在中国已有8000多年历史。早在西周时期人们就开始利用红枣发酵酿造红枣酒,作为上乘贡品,宴请宾朋。红枣的营养保健作用,在远古时期就被人们发现并利用。 上海禾工科学仪器有限公司 上海市复华路33号复华高新技术园区 B4-1 电话:021-51001666 传真:021-62607656 禾工分析仪器网:www.hg17.com
  • 上线水溶性肽HPLC创新检测方案,态创生物拥抱化妆品监管新时代
    如果说质量是产品生命,那检验检测就是产品生命的保障。尤其在美妆领域,新法规对化妆品安全性和功效性评价提出了更为严格和详细的技术要求,加强科学研究、提高检测技术能力成为重中之重。实现多物质量产的合成生物新锐态创生物,已构建全面系统的检测技术体系,贯穿从原料研发到产品应用的全链条,可为美肤产品定制专属“体检套餐”,提供规范化、高质量的产品供给与解决方案。依托专利技术的不断创新,态创生物近期首先上线水溶性肽HPLC创新检测方案,为美业伙伴赋能增效。以检测技术为抓手,研究与应用中心锻造美肤产品“质量名片”开发化妆品是一个复杂的过程,任何关键环节出现问题,如原料和配方安全性或功效性不佳,推倒重来就在所难免,因此需要持续不断的实验和论证。对此,态创生物研究与应用中心针对性打造了集基础研究(Foundation)、配方研究与应用(Formulation)、合规质控(Fulfillment)于一体的3F综合研究体系。这是合成生物业内少有的赋能产品开发全流程的管理体系,具备规范化、系统化、标准化、制度化多重优势。对标“ISO9000”族系列标准,同时实现了理化实验、微生物实验、分析实验、细胞实验、生化实验等多个实验方向的全覆盖。图说:态创生物研究人员在做细胞实验其中,态创生物专门布局了全面系统的检测技术体系,包括含量、纯度、安全性、有效性、透皮性、重金属、卫生等检测分析维度。可用以支撑产品上市前的“千锤百炼”,从研发端即严格把控产品质量,为产品进行质控背书,让产品带着“质量名片”来到消费者手中。合成生物创新检测技术,水溶性肽HPLC检测效率提升约5倍在化妆品的全部检测方法中,HPLC(高效液相色谱法)检测通常占据相当大的比例,可用来检测化妆品中的活性成分、防腐剂、色素、香料、塑化剂、抗氧化剂等。但现有HPLC分析方法一般不适用于三个以上多种水溶性肽的分析,多为一个肽对应一个方法。这会导致需不断改变分析条件,如更换流动相、更改分析程序、改变检测波长等,管理和空间投入庞大。此外,现有方法为改善色谱峰形常加入酸类,如如醋酸、三氟乙酸、磷酸等,可能导致产品酸性且有明显酸味,影响肽类稳定性,同时需要强化型色谱柱耐酸。为此,态创的科研团队经过不断探索,开发出了一套创新的水溶性肽HPLC检测方法,并已取得相关发明专利证书。其创新原理在于,溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(station phase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,滞留时间不同,从而先后从固定相中流出,大幅提高对水溶性肽的分析效率和普适性。图说:态创生物研发人员在做HPLC检测分析实验证明,该技术可将传统检测时间的15分钟缩短至3-4分钟,检测效率提升约5倍。经过溶剂调试、过柱创新,还增强了HPLC检测方法的通用性,目前可覆盖寡肽-1、蓝铜胜肽、二肽-2、四肽-9、乙酰基四肽-9、六肽-9、寡肽-3、乙酰基六肽-8等多种水溶性肽。基于生物化学、分析化学、自动化等技术路线,依托小分子肽的丰富研究经验,态创生物在行业内率先构建了小分子肽HPLC检测体系,具备高效率、普适性强、绿色环保等优势。结合Tidetron Tao自动化研发平台,月度可满足4-5k个检测需求。除水溶性肽外,态创生物还有多项专利涵盖棕榈酰基肽、类蛇毒肽、熊果苷等物质的HPLC检测,专利壁垒高筑。以原料研发及应用创新,率先构建纯净美肤服务全链,开启高标准、高质量发展的美业新格局。
  • 上海安谱推出环境比武24种挥发性有机物标准溶液
    根据环办[2010]72号文件《关于举办第一届全国环境监测专业技术人员大比武的通知》,环境保护部、人力资源社会保障部、全国总工会决定共同举办第一届全国环境监测专业技术人员大比武,大比武项目包括环境监测理论考试和现场操作,其中现场操作包括以下5个项目:  1.顶空气相色谱-质谱法测定24种挥发性有机物(定性分析)  2.顶空气相色谱-质谱法测定24种挥发性有机物(定量分析)  3.容量法测定氯离子  4.光度法测定可溶性正磷酸盐  5.原子荧光光度法测定砷和汞  项目1和项目2的目标化合物包括:三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1, 2-二氯乙烷、环氧氯丙烷、氯乙烯、1, 1-二氯乙烯、1, 2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯、氯苯、1, 2-二氯苯、1, 4-二氯苯。  为配合此次环境监测大比武,上海安谱科学仪器有限公司特定做24种挥发性有机物混合标准溶液,产品信息如下:  货号:CDGG-122768-03-1ml  名称:24种挥发性有机物 标准品  说明:共25组分,因为1,2-二氯乙烯有顺反异构体。  溶剂:甲醇  规格:1ml  价格:1200元  成分:序号英文中文CAS#浓度1chloroform三氯甲烷67-66-3100ug/ml2carbon tetrachloride四氯化碳56-23-5100ug/ml3bromoform溴仿75-25-2100ug/ml4methylene chloride二氯甲烷75-09-2100ug/ml51,2-dichloroethane1,2- 二氯乙烷107-06-2100ug/ml6epichlorohydrin环氧氯丙烷106-89-8500ug/ml7vinyl chloride氯乙烯75-01-4100ug/ml81,1-dichloroethylene1,1- 二氯乙烯75-35-4100ug/ml9trans-1,2-dichloroethylene反式-1,2-二氯乙烯156-60-5100ug/ml10cis-1,2-dichloroethylene顺式-1,2-二氯乙烯156-59-2100ug/ml11trichloroethylene三氯乙烯79-01-6100ug/ml12tetrachloroethylene四氯乙烯127-18-4100ug/ml13chloroprene2- 氯-1,3- 丁二烯126-99-8100ug/ml14hexachlorobutadiene六氯丁二烯87-68-3100ug/ml15styrene苯乙烯100-42-5100ug/ml16benzene苯71-43-2100ug/ml17toluene甲苯108-88-3100ug/ml18ethylbenzene乙苯100-41-4100ug/ml19o-xylene邻二甲苯95-47-6100ug/ml20m-xylene间二甲苯108-38-3100ug/ml21p-xylene对二甲苯106-42-3100ug/ml22isopropylbenzene异丙苯98-82-8100ug/ml23chlorobenzene氯苯108-90-7100ug/ml241,2-dichlorobenzene1,2- 二氯苯95-50-1100ug/ml251,4-dichlorobenzene1,4- 二氯苯106-46-7100ug/ml如需订购,请咨询上海安谱科学仪器有限公司,电话021-54890099。产品信息下载:www.instrument.com.cn/Quotation/Manual/1165695.pdf
  • 标准先行,让乳粉中低聚果糖的检测有据可依
    ? 2003年9月13日,国家发布了低聚果糖行业标准QB 2581-2003,标准于2003年10月1日实施;? 2009年5月27日,发布了国家标准GB/T 23528-2009,标准于2009年10月1日实施;? 2016年8月31日,国家卫生和计划生育委员会颁布了国家标准《GB 5009.255-2016 食品安全国家标准食品中果聚糖的测定》,标准于2017年3月1日实施。 近年来,低聚果糖作为可溶性膳食纤维和优质益生元在食品当中特别是婴幼儿配方乳粉领域得到广泛应用,但是添加多少量有益,如何去检测乳粉中低聚果糖含量,成为一个关键的问题。最新版标准修订后,除了把产品本身的标准定得更加科学合理之外,青岛盛瀚更希望把配方乳粉当中低聚果糖的检测方法提供给大家。离子色谱测定乳粉中低聚果糖解决方案如下:盛瀚CIC-D120型离子色谱仪-在离子色谱法检测乳粉中低聚果糖含量的应用中展现出独到的优势:1. 优化梯度洗脱程序,有效分离并准确检测出果糖,合理计算出低聚果糖含量。2. 内置循环式立体恒温技术(CN 204259917U),温度稳定时间小于30min,确保 实验数据准确可靠。3. 搭载天文台智能工作站,仪器部件集成控制,兼容多种仪器,操作画面个性化、人性化。4. 国际领先全系列离子色谱柱(CN 105126936A、CN104788603A),柱效高、柱容量大,满足对各种组分离子的检测。5. 检测方法灵敏度高,线性范围宽,具有较好的检测精密度和准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制