当前位置: 仪器信息网 > 行业主题 > >

缬沙坦对映异构体

仪器信息网缬沙坦对映异构体专题为您提供2024年最新缬沙坦对映异构体价格报价、厂家品牌的相关信息, 包括缬沙坦对映异构体参数、型号等,不管是国产,还是进口品牌的缬沙坦对映异构体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合缬沙坦对映异构体相关的耗材配件、试剂标物,还有缬沙坦对映异构体相关的最新资讯、资料,以及缬沙坦对映异构体相关的解决方案。

缬沙坦对映异构体相关的资讯

  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。 北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。   研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的 使用沃特世(Waters® )ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。 背景 公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。 氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。 与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。 解决方案 人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。 图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。 总结 利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 单克隆抗体标准物质电荷异构体研究
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 272px " src=" https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 272" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " strong span style=" text-indent: 0em " 欢迎各位专家、同仁报名参会! /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right " 供稿:崔新玲 胡志上 span style=" text-indent: 2em " & nbsp /span /p
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • 使用ACQUITY UPSFC系统分析微量的对映体杂质
    目标 使用沃特世ACQUITY UPSFC™ 系统证明杏仁酸苄酯的快速手性分离和0.02%杂质水平下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种又包含单对映体活性成分。单对映体型手性药物被认为是改善了的化学实体,可提供更高的药效、更好的药理学数据和更为有用的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其他有机杂质。国际协调会议(ICH)已对关于鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPSFC系统的高灵敏度实现了对药用物质中对映体杂质的鉴定和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用ACQUITY UPSFC系统进行分离,其色谱图如图2所示。主要试验参数在表1中列出。 总分析时间不到1.5分钟。平均基峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。保留时间和峰面积的重复性测定基于五次重复进样,结果汇总于表2。在0.20 mg/mL的浓度下,保留时间的重复性RSD小于0.23%,峰面积响应RSD优于0.5%。 图3显示了2 mg/mL R-杏仁酸苄酯的UPSFC色谱图。经紫外光谱确认(结果未显示),1.30分钟处的次要峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检出限),根据峰面积判断相当于主要峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPSFC系统,其中包括改进的泵系统和优化设计的检测器。本例中对映体过量(e.e.)百分比为99.96%。总结 使用ACQUITY UPSFC系统在不到1.5分钟成功完成R-和S-杏仁酸苄酯的UPSFC手性分离。当每种对映体浓度均为0.20 mg/mL时,所得到的重复性极佳(保留时间的可重复性RSD小于0.23%,峰面积RSD小于0.5%)。新型泵系统和优化设计的检测器所带来的更高检测灵敏度使测定0.02%对映体杂质和对映体过量成为可能。ACQUITY UPSFC系统适用于低浓度对映体杂质的分析、对映体过量测定和QA/QC分析。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 瑕瑜团队新成果:基于质谱的脂质异构体分析有助于疾病诊断与靶点发现
    近期,清华大学化学系瑕瑜教授课题组与清华大学药学院尹航教授课题组以及北京清华长庚医院王韫芳研究员团队合作在Angew. Chem. Int. Ed杂志上发表了题为 “sn-1 Specificity of Lysophosphatidylcholine Acyltransferase-1 Revealed by a Mass Spectrometry-based Assay” 的文章。第一作者为清华大学化学系博士生赵雪与梁家琦,通讯作者为瑕瑜教授。该工作首次揭示磷脂酰胆碱酰基转移酶1(LPCAT1)在合成胆碱甘油磷脂 (PC)时对甘油骨架的sn-1位置具有选择性 该选择性与LPACT1在人肝细胞癌组织中的高表达直接导致了sn位置异构体PC 18:1/16: 0的显著升高。以上研究对于发展基于脂质异构体分析的新型疾病诊断与靶点发现具有启示意义。  LPCAT1是细胞内PC的合成通路中脂质重塑过程关键的酶。已有相关研究表明,LPCAT1在多种癌症组织中表达上调并且对饱和或单不饱和的酰基辅酶具有选择性。然而LPCAT1对甘油骨架sn位置的选择性还尚不明确,这主要是由于sn位置异构体难以区分与定量。2019年瑕瑜教授课题组利用PC碳酸氢根加合物([PC+HCO3]-)在串级质谱中碎裂产生的“sn-1 frag.”实现了sn位置异构体的定性与定量(Zhao X, Xia Y, et al. Chemical Science, 2019, 10:10740)。基于此,本工作建立了测定LPCAT的sn位置选择性的LC-MS流程。作者以sn-1 LPC和sn-2 LPC的混合物为底物,LPCAT1过表达的HEK 293T细胞膜碎片作为酶源,加入酰基辅酶,37℃下进行孵育。酶反应产物通过反相液相色谱(RPLC)中分离及质谱检测 其与内标的色谱峰面积比对总的合成产物(sn位置异构体之和)进行定量。继而对酶反应产物的碳酸氢根加合物进行串级质谱分析,通过“sn-1 fragment”的百分比对sn位置异构体进行定量(分析流程如图1)。继而通过建立sn-1 LPC和sn-2 LPC的酶反应动力学曲线,比较动力学常数来确定sn位置选择性。  图1. LC-MS/MS流程用于定量分析LPCAT催化所产生的PC sn位置异构体  鉴于不同分子量的PC分子可以在RPLC中分离,该流程可以同时测定LPCAT1对多种酰基辅酶(如,17:0-CoA, 18:1-CoA和20:4-CoA)的选择性。结果显示LPCAT1对三种酰基辅酶均表现出活性,20:4-CoA的活性最低。当LPCAT1将三种酰基辅酶连接到甘油骨架上时,均选择性的加在了sn-1位置,即只合成了PC 17:0/16:0,PC 18:1/16:0和PC 20:4/16:0。因此,基于图1的LC-MS/MS分析流程,该研究首次明确了LPCAT1对甘油骨架的sn-1位置具有选择性。  已有研究表明LPCAT1在肝细胞癌组织中表达上调。为了探究肝细胞癌中PCsn位置异构体的组成是否会受到LPCAT1对sn-1位置选择性的影响,该工作对人肝细胞癌组织和正常肝组织中PC的sn位置异构体进行LC-MS/MS分析。结果显示PC 18:1/16:0在肝细胞癌组织中显著上升。该工作进一步对常用的肝癌细胞系HepG2中的LPCAT1进行敲降,敲降后PC 18:1/16:0的含量显著下降。这表明肝细胞癌组织中PC 18:1/16:0的含量与LPCAT1对sn-1位置的选择性以及LPCAT1的表达上调直接相关。更重要的是,解吸电喷雾电离质谱(DESI)对PC 18:1/16:0的分布成像与人肝细胞癌组织连续切片的LPCAT1的免疫荧光成像以及H&E染色高度吻合(图2)。因此PC 18:1/16:0可能作为新型生物标志物,用于划分癌变区域和癌旁区域。  图2. 人肝细胞癌组织连续切片H&E染色(a)组织中LPCAT1的免疫荧光成像(b)以及DESI MS2 对PC 16:0_18:1的sn位置异构体分布的成像(c, d)  总的来说,该工作建立了用于测定LPCAT的sn位置选择性的快速、灵敏、高通量的LC-MS/MS分析流程。它深度剖析了组织中sn位置异构体的组成、分布与酶的功能、分布的关系 阐明了脂质异构体作为新型生物标志物用于疾病的诊断与治疗的巨大潜力。不过其他几种LPCAT在连接酰基辅酶时对sn位置选择性还有待进一步研究。
  • 清华大学脂质同分异构体及小型质谱研究成果登Nature子刊
    p   最新一期的Nautre Methods杂志对清华大学瑕瑜课题组和欧阳证课题组在脂类同分异构体及小型质谱技术研究中取得的进展进行了报道。长期以来,质谱小型化技术被国外研究机构所垄断,欧阳证课题组的研究为我国在质谱仪的研发与产业化领域争取到了“原创话语权”。脂类同分异构体中C=C双键位置的确定在全世界一直是难点,瑕瑜课题组利用Paternò –Bü chi反应找到了定位C=C双键的方法,为脂质组学开辟了一个全新的研究维度。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/256c243d-6a9f-40d6-a0d8-13f84fb196f5.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312, SimKai " Nautre & nbsp Methods杂志是Nature子刊,影响因子25.06,主要提供生命科学领域的新方法和基础研究技术重大进展的相关报道 /span /p p    span style=" color: rgb(79, 129, 189) " strong 根据C=C做脂质组学定性、定量分析 /strong /span /p p style=" text-align: center " img title=" 1.jpg" style=" width: 230px height: 295px " src=" http://img1.17img.cn/17img/images/201801/insimg/ac5de0cd-a2ab-4b34-a39f-a9f38337697c.jpg" height=" 295" hspace=" 0" border=" 0" vspace=" 0" width=" 230" / /p p style=" text-align: center " strong 清华大学教授 瑕瑜 /strong /p p   瑕瑜长期从事生物质谱为基础的气相化学自由基研究,一个偶然的机会,瑕瑜课题组的马潇潇博士(现为清华大学精密仪器系助理教授)在进行光化学自由基反应时发现受激发的丙酮与脂质C=C反应的结果并没有形成断裂加成峰,而是整个丙酮加到脂质分子上去。查阅资料之后,发现这是一个已知反应Paternò -Bü chi(PB反应)。根据PB反应的机理就能够清晰地解析离子碎裂谱图从而确定C=C位置。“这个发现对确定脂质同分异构体C=C位置,以及进行脂质定量分析非常有帮助。”瑕瑜说。 /p p style=" text-indent: 2em " 从2014年发表第一篇文章起,他们将这一理论应用在了脂质组学研究中。 PB反应在鸟枪法策略中进行脂质同分异构体的定性与定量分析的研究已经取得了成功。目前,PB反应在液质联用策略中的脂质组学分析研究工作也已经完成。瑕瑜表示:“液质联用分析脂质组学能够得到更多的分子信息,应用面会更加广泛。将PB反应用在这个技术中,能够给脂质组学的发展提供更多机会。” /p p    strong span style=" color: rgb(79, 129, 189) " 小型质谱技术简化脂质分析工作流程 /span /strong /p p style=" text-align: center " img title=" 2.jpg" style=" width: 230px height: 295px " src=" http://img1.17img.cn/17img/images/201801/insimg/e3ddfcc2-869d-4a4b-a052-469cdb80b27a.jpg" height=" 295" hspace=" 0" border=" 0" vspace=" 0" width=" 230" / /p p style=" text-align: center " strong 清华大学教授 欧阳证 /strong /p p   不同双键位置揭示的是不同的代谢通路,不同的发病机理,通过脂质同分异构体的定性与定量分析,可应用于临床诊断。现有的商业脂质解析数据库并不包括脂质C=C位置信息,并不能进行脂质同分异构体的定性与定量分析。目前,欧阳证与瑕瑜的研究团队正在进行基于小型质谱的包含C=C位置信息的脂质组学分析工作。“我们希望让更多做脂质组学研究的人知道这个技术,并通过建立数据库帮助到需要了解脂质C=C信息的研究。”欧阳证在谈到该数据库的建立时说,“事实上,我们将要建立的不止是一个数据库,而是包括前端液相方法、PB反应、质谱方法、数据库与软件分析在内的整体工作流程。” /p p style=" text-indent: 2em " 该工作已取得了一系列产业化成果,由欧阳证创立的清谱科技在10月份召开的BCEIA2017上推出了Mini β小型质谱仪、脂质组学双键定位系统Ω反应器以及MS Mate快速检测方案,结合了PB光化学反应的特异性、高效性以及质谱检测的特异性和灵敏度,可实现脂质中双键的快速定位、精准定量、全方位读取。此外,搭载的庞大的数据库可以实现数据检索、数据读取、报告生成一体化工作流程。 /p p style=" text-align: center " img title=" 3.jpg" style=" width: 400px height: 290px " src=" http://img1.17img.cn/17img/images/201801/insimg/9b657d8e-0702-4f7b-a363-4b1a7a569ed6.jpg" height=" 290" hspace=" 0" border=" 0" vspace=" 0" width=" 400" / /p p style=" text-align: center " strong Mini & nbsp β小型质谱仪 /strong /p p   Mini β小型质谱仪与液质联用分析脂质组学的方法相比,突破了实验室环境的束缚,其简化的工作流程,大大降低了对操作人员专业性及检测环境的要求,可在现场检测,更利于质谱脂质分析走向临床、基层。 /p p   更多详细内容: /p p style=" text-align: left text-indent: 2em " a title=" " href=" http://www.instrument.com.cn/news/20170616/222209.shtml" target=" _blank" span style=" color: rgb(79, 129, 189) " C=C位置探索思路或将发现脂质生物标志物——访清华大学瑕瑜教授、欧阳证教授 /span /a /p p style=" text-align: left text-indent: 2em " a title=" " href=" http://www.instrument.com.cn/news/20171013/230960.shtml" target=" _blank" span style=" color: rgb(79, 129, 189) " 十年一剑 & nbsp 欧阳证带领清谱科技推出Mini β小型质谱分析系统 /span /a /p
  • 岛津推出二十烷以及其同分异构体的超快速LC/MS/MS同时检测方案
    在疾病研究中二十烷担负着重要作用,本方案将二十烷以及其同分异构体及代谢物50种成分的MRM条件最优化,建立了由54个通道组成的同时检测法。使用LCMS-8040对多成分检测,定量限达到pg以下。 花生四烯酸串联是非常重要的代谢路径之一,作为其代谢产物的二十烷以及其同分异构体及代谢物的同时分析方法,在疾病研究中起到重要作用。LC/MS/MS的MRM测定具有高灵敏度与高选择性,广泛应用于二十烷的分析,但随着成分数的增多,从分离・ 离子化的观点来看,现在很难获得稳定的分析结果。本方案使用快速LC/MS/MS系统开发了全面地定量分析二十烷和其类似物的新方法。 本方案作为全面、快速、高灵敏度分析脂信号分子的方法行之有效。 了解详情,请点击&ldquo 基于超快速LC/MS/MS的二十烷以及其同分异构体的同时分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 使用超高效合相色谱系统分析微量的对映体杂质
    目的 使用沃特世ACQUITY UPC2&trade 系统证明杏仁酸苄酯(benzyl mandelate)的快速手性分离和0.02%杂质含量下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种药品又包含单一对映体活性成分。单一对映体型手性药物被认为是改善了的化学实体,它能提供更高的药效、更好的药理学数据和更为有利的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其它有机杂质。人用药品注册技术国际协调会(ICH)已对鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPC2系统的高检测灵敏度实现了对药用物质中对映体杂质的鉴别和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用UltraPerformance Convergence Chromatography&trade ( UPC2&trade )进行分离,其色谱图如图2所示。主要实验参数列于表1。总分析时间不到1.5分钟。平均峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。 如表2所示,是5次连续进样的保留时间和峰面积的重现性数据。在0.20 mg/mL的浓度下,保留时间的重现性RSD值优于0.23% ,峰面积重现性RSD值优于0.5%。 图3显示了浓度为2 mg/mL的R-杏仁酸苄酯的UPC2色谱图。经紫外光谱确认(结果未显示),1.30min处的小峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检测限),根据峰面积计算相当于主峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPC2系统,其中包括经改进的泵系统和经优化的检测器设计。本例中对映体过量(e.e.)值为99.96%。 总结 使用ACQUITY UPC2系统在不到1.5分钟时间内,成功完成R-和S-杏仁酸苄酯的UPC2手性分离。在每种对映体浓度均为0.20 mg/mL条件下,可获得优异的重现性(保留时间的重现性RSD优于0.23%,峰面积RSD优于0.5%)。新型泵系统和检测器优化设计带来更高的检测灵敏度,使测定0.02%对映体杂质和对映体过量成为可能。AQUITY UPC2系统适用于微量对映体杂质的分析、对映体过量测定和QA/QC分析。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 8种PCB异构体混标 EPA525 促销
    产品编号:CDGG-132647-05-1ml 名称:8种PCB异构体混标 EPA525 规格:500 mg/L于丙酮,1mL 组份信息 英文名 中文名 CAS 浓度 2-chlorobiphenyl (BZ# 1) 2-氯联苯 2051-60-7 500 +/- 25 mg/L 2,3-dichlorobiphenyl (BZ# 5) 2,3-二氯联苯 16605-91-7 500 +/- 25 mg/L 2,4,5-trichlorobiphenyl (BZ# 29) 2,4,5-三氯联苯 15862-07-4 500 +/- 25 mg/L 2,2&rsquo ,4,4&rsquo -tetrachlorobiphenyl (BZ# 47) 2,2&rsquo ,4,4&rsquo -四氯联苯 2437-79-8 500 +/- 25 mg/L 2,2&rsquo ,3&rsquo ,4,6-pentachlorobiphenyl (BZ# 98) 2,2&rsquo ,3&rsquo ,4,6-五氯联苯 60233-25-2 500 +/- 25 mg/L 2,2&rsquo ,4,4' ,5,6&rsquo -hexachlorobiphenyl (BZ# 154) 2,2&rsquo ,4,4' ,5,6&rsquo -六氯联苯 60145-22-4 500 +/- 25 mg/L 2,2' ,3,3' ,4,4' ,6-heptachlorobiphenyl (BZ# 171) 2,2' ,3,3' ,4,4' ,6-七氯联苯 52663-71-5 500 +/- 25 mg/L 2,2' ,3,3' ,4,5' ,6,6' -octachlorobiphenyl (BZ# 201) 2,2' ,3,3' ,4,5' ,6,6' -八氯联苯 40186-71-8 500 +/- 25 mg/L 现货供应 应用:EPA525 原价:2250.00元 优惠价:1575.00元 促销时间:2012-12-03至2012-12-31 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 利用超高效合相色谱系统对联二酚萘(BINOL)对映体进行分离
    目的 采用沃特世(Waters® )ACQUITY UPC2&trade 系统比较正相HPLC和UPC2&trade 方法分离联二苯酚对映体的效果。 背景 生物体由手性生物分子,如蛋白质、核酸和多糖组成;因此,它们对药物、食品、农药和废弃化合物中的对映体表现出不同的生物反应。因此,分离手性化合物,尤其是具有药物意义的化合物尤为重要。其重要性表现是以单对映体形式获批的手性药物数量不断增加。为符合FDA关于研发立体异构药物的严格指令,制药行业在进行药代动力学、药物代谢、生理学以及毒理学评价之前,已经加强手性纯化合物的制备。 在过去的10年里,超临界流体色谱(SFC)已经显示出其作为分离立体异构体(包括对映体和非对映体)的巨大前景。与传统的手性高效液相色谱(HPLC,主要是正相HPLC)相比,超临界流体色谱(SFC)平均快了3-10倍。超临界流体色谱使用廉价的CO2和极性改性剂(如MeOH)作为流动相,减少有机溶剂的消耗和处理,使分析更高效,更环保。与正相色谱HPLC相比,超高效合相色谱(UPC2)能够实现联二酚萘更快的分离(为正相HPLC的9倍),且每次分析成本大大降低。 解决方案 联二酚萘是一种轴手性有机物,如图1所示。联二酚萘样品采用正相HPLC和ACQUITY UPC2系统进行分离,两种方法的主要参数见表1。 图2给出了采用正相HPLC(A)和UPC2(B)分离手性联二酚萘图谱。与正相HPLC中的第二个峰18min的出峰时间相比,UPC2的出峰时间为2min,使用UPC2速度增加至正相HPLC的9倍。正相HPLC的分离度(USP)为1.73,而UPC2为2.61。这种情况也说明了使用UPC2可以大大地节约每次分析的成本。UPC2方法使用2mL的甲醇洗脱化合物,但正相HPLC需要35.28mL正己烷和0.72mL甲醇。根据有机溶溶剂的用量计,使用正相HPLC每次分析大约需要2.85美元,而使用UPC2,每次分析仅需要0.08美元。 UPC2图谱中的峰形比使用正相HPLC色谱得到的峰形性对称更好。正相HPLC的拖尾因子(USP)分别为1.33和2.18;而UPC2的拖尾因子分别为1.03,1.03。UPC2图谱中的色谱峰比正相HPLC色谱峰更高,更窄,意味着更高的灵敏度和峰容量。在UPC2中,由于使用超临界CO2作为流动相,超临界CO2固有的高扩散性和低粘度对分离产生巨大的影响。高扩散性减少了由流动相和固定相间的传质造成的色谱峰扩散。低粘度可实现最佳高流速而不产生明显的压降。况且,ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。 总结 ACQUITY UPC2系统展示了使用UPC2在2min内实现联二酚萘对映体的成功分离。与正相HPLC相比,UPC2速度快了8倍,且得到的色谱峰更高,对称性更好。ACQUITY UPC2大大减小的系统体积使柱外的谱带展宽降至最小。速度上的改善以及使用相对廉价的甲醇代替了正己烷可大大节约每次分析的成本(正相HPLC的2.85美元/次分析对比UPC2的0.08美元/次分析)。沃特世ACQUITY UPC2是实验室常规分离对映体的理想之选。
  • CBIFS 2013:农药环境行为研究的几个热点问题
    仪器信息网讯 2013年4月2日,作为第六届中国北京国际食品安全高峰论坛分论坛之一的“农兽药残留分析”专题研讨会在北京国家会议中心举行,吸引100余位业内人士参加。 “农兽药残留分析”专题研讨会现场   会议期间,中国农业大学理学院院长、中国植保学会农药委员会主任周志强教授作了题为“农药环境行为研究的几个热点问题”的报告。 周志强教授   周志强报告中介绍说,现阶段的农业生产还离不开化学农药,若停止使用化学农药,粮食、蔬菜、水果会发生大面积减产。近些年发生的一些与农药相关的食品安全事件,大多是由于违规使用农药造成的。我国相关法规和条例对农药的使用对象、使用量、使用安全间隔期、使用方式都进行了严格的规定,若在农药的使用上,能严格遵从这些规定,市场上的农产品中农药残留的量就会非常低、就会符合农药残留限量的有关规定,因而就不会对健康造成影响。   周志强在报告中着重提到,在进行农药残留安全评价中,应关注农药的手性现象、农药中的相关杂质及农药代谢物等三方面的问题。   报告中介绍说,手性现象是指一种对称特点,就好像人的两只手,互为镜像却无法重叠,在化学上称为对映异构体或手性异构体。手性异构体的物理、化学特性几乎相同,但生物活性却往往存在较大差异。手性现象在农药中非常普遍,约28%的农药具有手性,由于其对映异构体间的生物活性、毒性及代谢机制可能有很大不同,而目前使用的手性农药大多不是单一的对映异构体,所以在农药安全评价时要特别注意农药的手性特征。   周志强介绍说,杂质在农药产品中普遍存在,虽然比例很小,但某些杂质可能具有特殊的环境毒性和健康危害 另外,农药在环境中会逐渐发生降解和代谢,某些降解或代谢产物的残留期和毒性可能大于农药母体。因此,若想准确评价农药的安全行为,不但要考虑农药母体、还应充分考虑农药杂质和代谢物的健康效应。 撰稿:孙立桐
  • 手性世界拆分的创新之路
    手性世界手性一词来源于希腊语“手”(cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。也就是说,生命最基本的东西也有左右之分。为什么自然界选择左旋氨基酸而不是右旋氨基酸作为生命的基本结构单元一直是个迷。而更加复杂的蛋白质和dna的螺旋构象都是右旋的。海螺的螺纹和缠绕植物也都是右旋的。因此生物体内存在着手性的环境,使得生物体可以识别常规化学和物理性能完全一样的手性异构体分子。作用于生物体内的手性药物及农药,其药效作用多与它们和体内靶分子间的手性匹配和手性相关。因此,手性药物的不同对映异构体,在生理过程中会显示出不同的药效。甚至会出现一种对映异构体对治疗有效,而另一种对映异构体表现为有害性质这种现象。自然界中的手性表现形式(图片来自于网络)在手性药物未被人们认识以前,二十世纪六十年代的“反应停(thalidomide)悲剧”就是一个突出的例子。当时欧洲一些医生曾给孕妇服用没有经过拆分的消旋体药物(由一对等量对映异构体分子组成)对作为镇痛药或止咳药,很多孕妇服用后,生出了无头或缺腿的先天畸形儿。仅仅四年时间,导致世界范围内诞生了1.2万多名畸形的“海豹婴儿”。这就是被称为“反应停”的惨剧。后来经过德国波恩大学研究人员发现,反应停的r-构型的单一对映体有镇静作用,而s-构型对胚胎有严重的致畸作用。惨痛的教训使人们认识到,手性药物必须对它的两个异构体进行分别考察,都要经过严格的生物活性和毒性试验,以避免其中所含的另一种手性分子对人体的危害,慎重对待一些药物的另一对映异构体。所以手性拆分技术越来越多用于手性药物开发和生产。自然界生物体本身具有手性环境,因此对手性药物的不同对映异构体,会显示出不同的疗效。美国食品与药品管理局(fda)早在1992年就明确规定:对含有手性因素的药物倾向于开发单一的对映体产品;对于外消旋的药物(一对等量对映异构体组成),则要求提供立体异构体的详细生物活性和毒理学研究数据。近二三十年,世界上手性药物的销售以及占据药物总数的比例也呈逐年上升趋势。手性化合物既可以通过不对称合成来获得,也可以通过天然手性化合物的提取,还可以通过手性拆分获得单一对映体。手性化合物的拆分是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到由一对等量对映异构体组成的消旋体。手性色谱分离纯化是获得单一对映体最常用的方法,其自身具有分离效果好、速度快、灵敏度好、操作方便等优点。已成为手性化合物分离分析和制备的重要手段之一,也是不对称合成方法得到单一对映体的辅助方法之一。手性化合物的分离被认为是最有挑战性的色谱分离技术之一。因为色谱分离技术往往是利用混合样品各组份在固定相(色谱填料)和流动相中的分配系数不同,当流动相推动样品中的各组份在色谱填料填充的柱中迁移时,由于各组份在两相中进行连续反复吸附和脱附或其他亲和能力作用的差异,从而形成差速移动,达到分离的目的。分子之间的物理和化学性质相差越大,越容易建立色谱分离方法。但手性分子就像左右手一样,看起来似乎一模一样,其分子组成、分子量一样,物理和化学性质也相同,只是它们在空间结构上却无法完全重合,因此分离难度最大。在精细化工、生物工程及制药工业中制备高纯度的单一对应体手性分子将具有巨大的商业价值和应用前景,因此建立对映体的手性分离方法显得日益重要。因为许多手性药物真正起作用的是其中的一种单一对映体,而另一种对映体可能不仅无药理作用,还会有副作用。二十世纪六十年代以来,色谱技术作为一种分析技术在生命科学、环境科学、药物分析等领域的应用日益普遍。应用在手性色谱分离方面得到很快的发展,而其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的“心脏”。高性能的色谱填料一直是色谱研究中最丰富、最有活力、最富于创造性的研究方向之一。手性化合物可通过物理吸附或化学键合的方式固定到多孔固相载体表面,对应体由于与固定化的手性分子形成非对映异构体络合物的结合能力差异而达到拆分,这样的固定相称手性固定相又称手性色谱填料。一个有效的手性填料应当具有能够快速分离对映体,测定对映体的纯度,尽可能适应多种类型的对映体的分离;应当具有较高的对映体分离选择性和柱容量。目前手性色谱填料主要是在多孔二氧化硅基球上涂覆或键合带有手性结构的生物材料如功能化纤维素,直链淀粉,大环抗生素,环糊精等制备的。所有这些手性材料中,纤维素和直链淀粉型色谱填料使用最为普遍。手性化合物的色谱分离技术已被广泛地用于手性分子的分离和检测。手性色谱填料基本上是由日本的d公司一家独霸,当其它常规色谱柱每根只卖几千元人民币时,而一根装有2.5克的手性填料的色谱柱价格超过1万元人民币,因此每公斤的手性色谱填料装成柱子可以卖到几百万人民币的价格。手性色谱填料寿命短、价格贵,让手性药物研发工作者尽可能地寻找其它解决方案,不对称合成生产手性药物分子就是为了避免昂贵的手性分离工艺。手性色谱填料的高额利润让世界许多色谱公司和精英前仆后继去挑战这些技术,却无法撼动日本d公司的垄断地位,说明手性色谱分离技术壁垒之高及产品产业化难度之大。手性色谱填料国产化创新之路手性色谱填料主要是通过在多孔二氧化硅基球上涂覆或键合带有手性识别位点的生物材料如纤维素,直链淀粉。如要做手性色谱填料,首先要解决的就是合成超大孔硅胶基球作为手性色谱填料的固定相载体。在纳微科技做出超大孔硅胶基球之前,全世界上只能从日本公司才能买到这种超大孔的硅胶基球,价格昂贵,每公斤高达10万元人民币。虽然中国拥有全世界最多的色谱科研究员,发表色谱领域文章数量也于2011年就超过美国稳居世界首位,但遗憾的是中国色谱填料尤其是球形硅胶色谱填料一直未能实现产业化。主要原因就是色谱填料制备技术壁垒高,产业化周期长,投资大,世界上可以大规模生产球形硅胶色谱填料的也就只有四家公司,日本就占了三家。可见日本对色谱填料技术掌控能力的强大。绝大多数商业化的硅胶色谱填料的孔径一般都在10-30纳米,而用于手性硅胶色谱填料的孔径要求达到100纳米,手性色谱用的大孔硅胶比小孔硅胶制备技术难度更大。为了实现球形硅胶色谱填料产业化,纳微投资近5000万元人民币,坚持了十多年跨领域技术研发,最后突破了单分散球形硅胶色谱填料精准制造的世界难题,纳微也因此成为全球首个具备大规模生产单分散球形硅胶色谱填料的公司。纳微不仅填补中国在高性能球形硅胶色谱的空白,而且为世界硅胶色谱填料精准制备技术的进步做出贡献。在此基础上,纳微又研发出超大孔硅胶色谱填料以满足手性色谱填料的要求。电子扫描电镜图对比图及孔径分布对比图可以明显看出纳微大孔硅胶无论是粒径的精确性,粒径均匀性,孔径均匀性,还是球的完整性及机械强度都超过日本产品。超大孔硅胶色谱填料对比图(左-纳微产品,右-国外某公司产品)纳微unisil® 硅胶填料与国际三大硅胶色谱填料品牌粒径分布对比图纳微unisil® 大孔硅胶填料与日本大孔硅胶色谱填料孔径分布对比图手性色谱填料是通过在大孔球形硅胶中涂敷或键合带有手性识别位点的材料,主要包括衍生化的纤维素和直链淀粉两大类。为了达到光学异构体拆分的目的,涂覆或键合后的纤维素和直链淀粉必须保持手性结构环境,使得对映异构体间呈现物理特征的差异。纤维素和直链淀粉手性结构容易在涂覆或键合过程中受到破坏,因此制备手性色谱填料不仅对硅胶要求高,对涂覆或键合工艺要求也高,还对纤维素和直链淀粉的本身的结构、分子量、及衍生功能基团都有极高的要求,因此手性色谱填料的制备技术壁垒极高。纤维素和直链淀粉涂覆大孔硅胶制备的unichiral® 手性色谱填料突破手性色谱填料的制造壁垒,不仅要解决大孔硅胶基球生产问题,还要解决纤维素和直链淀粉生产及其衍生化工艺问题;有了硅胶基球及手性材料后,还要解决涂覆和偶联工艺问题。纤维素和淀粉通常是极为常见而丰富的物质,但能够满足手性色谱填料制备要求的纤维素和淀粉却极难获得,尤其是直链淀粉。全世界上只有日本的一家公司可以买到,但其价格超乎一般人的想象,每公斤直链淀粉的价格高达60万人民币。为了开发手性色谱填料,我们在项目开发期间以这种天价买了日本的直链淀粉,遗憾的是即使用这么昂贵的直链淀粉,做出的手性色谱填料,其性能还是达不到日本公司的水平,因此最好的东西即使我们花天价也不一定能买到。从手性分离填料开发的过程中我们可以发现日本d公司对上下游产业链及其关键材料的掌控程度达到惊人的地步,日本上下游厂家的紧密配合也值得我们学习。这也是为什么这么多年全世界其它公司都无法撼动日本d公司在手性材料的垄断地位的又一原因。过去的二十年,日本被很多国人认为是失落的二十年,但从这件事上可以看出日本并没有失落而是在深耕科技,从原来掌控生产消费端的产品转变成为上游的关键材料,进而掌控产业链源头的技术。去年闹得沸沸扬扬的日本对韩国贸易制裁事件,日本就是通过限制“氟聚酰亚胺”、“光刻胶”和“高纯度氟化氢”等关键材料出口到韩国,就让强大的韩国半导体和显示产业短时间内陷入困境。日本之所以会控制很多产业的关键材料和技术不是因为日本人比别国人聪明,而是日本人有足够的耐心及其精益求精的工匠精神让他们可以把先进材料做到极致,这也是我们中国最该向日本人学习的地方。世界上可以掌握纤维素和直链淀粉的涂覆或偶联技术制备出手性色谱填料的公司屈指可数,但能大规模生产大孔硅胶的公司全世界不到4家,而能大规模生产直链淀粉的公司更是凤毛麟角。纳微是一个专业做微球的公司,制备出能满足手性色谱填料的大孔球形硅胶并不是那么难,但直链淀粉生产技术完全超出纳微的研究领域,因此纳微要突破直接淀粉生产技术,其难度是可以想象。为了解决直链淀粉生产技术问题,纳微一开始是希望与科研院所及专业淀粉公司合作,但合作伙伴最后都没有坚持到成功。为了解决直链淀粉供应问题,纳微不得不自己组建团队边学边做,经过多年的努力和坚持,纳微成功突破直链淀粉生产技术难题并实现规模化生产。从专业来说,纳微科技团队对直链淀粉知识的理解远远不如国内外的专家,但最后能实现产业化,最主要的是保持着耐心和恒心。直链淀粉的生产问题解决之后,纳微接着又解决了涂覆工艺技术问题,最后生产出系列unichiral?手性色谱填料及产品,其分离性能达到国外公司同类材料的水平,而且由于纳微科技自主研发生产的基球粒径均匀,孔径分布窄,使得纳微科技生产的手性色谱填料具有更高柱效,更低的柱压,和更长的寿命。纳微unichiral® 产品涂覆工艺及产品类型纳微unichiral® 产品与国外手性色谱填料在分离手性分子效率的对比图纳微unichiral® 产品实物图例及相关产品订货信息纳微突破手性色谱填料的生产技术这一难题,可以说明耐心和坚持的重要性,只要有足够的付出和努力,足够的坚持,即使一开始看去遥不可及的目标也总有一天可以完成。纳微就是凭借这种坚韧不拔的精神突破了单分散硅胶色谱填料精确制造的世界难题,解决了直链淀粉供应问题,并解决了涂覆工艺问题,最后生产出高性能的手性色谱填料。目前纳微不仅可以提供系列手性色谱填料,而且可以为手性分离纯化方面为客户提供分离纯化整体解决方案,具备生产毫克级到到公斤级甚至百公斤级的手性原料拆分能力。
  • 预测:蛋白质组学和生命科学促使手性色谱柱市场增长
    p   近日,国外研究机构发布2017-2021年手性色谱柱市场研究报告,报告指出,安捷伦、赛默飞、岛津和默克是手性色谱柱市场的主流厂商,其他供货商包括:BD、Daice、GE医疗、珀金埃尔默、菲罗门、Regis Technologies、Regis Technologies、东曹、VWR、沃特世、W.R Grace和 ZirChrom Separations。 /p p   一位研究分析师在报告中指出:“蛋白质组学市场和生命科学部分的增长是手性色谱住市场发展的趋势之一。过去几年中,蛋白质组学已经表现出强劲的增长态势,预期,到2018年,蛋白质组学市场将达到近2000万美元,主要是由于蛋白质组学在诊断、药物发现以及其他领域中的应用。手性色谱柱在蛋白药物发现过程中扮演着重要的角色,主要用于分离对映异构体,以进一步分析其疗效。人口增长、慢性疾病种类增多、预期寿命延长以及可支配收入的增多刺激医疗保健费用增长,进而促使生命科学工业的快速增长。随之而来的便是药物批准试验中所用到的手性色谱柱增多。因此,蛋白质组学和生命科学工业的发展导致全球手性色谱柱市场的增长。” /p p   报告指出,药物批准试验中色谱分析是驱动手性色谱柱市场发展的因素之一。制药工业中手性化合物的分离越来越重要,药物中对映异构体的分子手性往往导致生物系统表现出不同的反应。人体也对手性化合物具有选择性,其与外消旋药物不同的相互作用使对映异构体代谢出不同的最终产物。因此,一个对映异构体可产生预期的疗效,也可以无效甚至有毒的结果。外消旋药物中的对映异构体在生物活性如药理、毒理和代谢研究可表现出不同的结果。 /p p   报告进一步指出,手性色谱柱市场面临的挑战之一是强有力的替代技术。寿命长、成本高的仪器设备需要频繁的定期维修保养。现代仪器对环境变化和原材料老化非常敏感和脆弱,企业通过提供维修服务和技术支持为其带来很大一部分收益。通过在仪器服役期间提供技术维修服务,企业可以获得额外的收入和利润。例如,2015年,因服务支持、耗材配件以及客户培训的交易,沃特世公司的售后服务部门的销售额增加了30%,这部分业务包括手性色谱柱业务。然而,对客户而言,尤其是重视价格的终端用户,仪器维修保养是一个挑战。因此,任何能够提高性能、改善使用寿命、降低价格的替代技术的出现都将对手性色谱柱市场形成威胁。 /p p br/ /p
  • 南京大学/厦门大学/中科大团队Nat. Catal.:可见光直接激发驱动的新光酶催化
    融合化学创新的生物制造,是可持续生物经济发展的原动力,也是当前中美科技博弈的焦点之一。生物制造的关键“芯片”是酶,然而现有酶的催化功能有限等问题极大地限制了生物制造的范畴。南京大学黄小强课题组自2021年建组以来,致力于融合生物与化学,实现新酶元件的创制和新分子生化体系的开发。近期,黄小强课题组与合作者以烯烃还原酶(ene-reductases, ER)为切入点,开发了可见光直接激发的新策略,实现了一例烯烃的不对称自由基氢芳基化转化。相关工作发表于Nature Catalysis。将酶催化和光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为当下开发新酶功能最有效的策略之一。ER是一类以黄素腺嘌呤单核苷酸(FMN)为辅因子的氧化还原酶,在自然界中催化C=C双键的双电子还原反应。前期Hyster、Huimin Zhao、吴起和徐鉴等课题组,通过可见光激发电子供体-受体(EDA)络合物的策略,开发了一系列净还原的自由基反应(图1b)。然而,直接可见光激发黄素蛋白催化非天然的双分子反应仍未有报道。图1. 受自然启发的光酶的氢芳基化。图片来源:Nat. Catal.除了光引发的自由基反应固有的选择性控制难题外,激发态的黄素蛋白面临很多竞争途径。首先,可见光激发的醌态黄素容易被反应缓冲液或氨基酸残基还原(图2,路径b)。其次,自由基碳碳成键步骤必须足够高效,以实现与无效的电子回转的竞争(图2,路径c)。第三,溶液中游离的未结合黄素可能引起消旋背景反应。受自然界中黄素依赖的脂肪酸光脱羧酶的启发,作者提出了一种直接光激发烯烃还原酶的新催化循环(图2)。首先,ER结合的辅因子FMNox被蓝色LED激发,由基态到达激发态FMNox*(Int. B)。激发态FMNox*单电子氧化富电子芳烃产生芳基自由基阳离子中间体以及半醌状态黄素辅因子FMNsq(Int. C)。随后的自由基C-C键形成,生成前手性自由基中间体(Int. D)。最后,酶活性位点内的电子和质子(或氢原子)转移,生成对映体富集的产物,并再生FMNox(Int. E)。图2. 设计的催化循环。图片来源:Nat. Catal.为了验证所设计的生物催化循环方案,作者选择了3-甲氧基噻吩1a和α-甲基苯乙烯2a作为模板底物,450-460 nm蓝色LED光照,发现几类烯还原酶可以以较低的反应性实现催化加氢芳基化(表1)。进一步研究发现,通过额外加入催化量的FMN作为添加剂,能够显著提高反应收率而不影响对映异构体选择性。通过条件优化,作者筛选到的葡萄糖酸杆菌来源的烯还原酶(GluER)可以实现对模板反应的高产率、高选择性催化,产物具有 (R) 选择性(97.5:2.5 er,entry 5);而来自酿酒酵母的老黄酶(OYE1)的产率为60%,具有 (S) 选择性(90:10 er,entry 6)。对以老黄酶为母本的突变体进行筛选,发现老黄酶的突变体(OYE1-F296A)的产率为65%,具有更好的 (S) 选择性(95:5 er,entry 7)。控制实验表明,惰性气氛、光照、酶都是反应正常进行所必需的。同时,降低酶催化剂的负载量到0.2 mol%,也能有52%的中等收率和优异的 (R) 选择性(95:5 er,entry 11)。表1. 条件优化。图片来源:Nat. Catal.接下来,作者使用GluER(ER1)、GluER_T36A-Y177F(ER2)、OYE1_F296A(ER3)、OYE1_F296G(ER4)对底物的适用性进行了考察(图3)。总体来看,该催化体系具有良好的底物适用范围和官能团耐受性,活化烯烃、内烯烃、非活化烯烃、以及各类芳基底物,都能顺利发生反应(27例,最高达99%收率)。通过使用不同的酶,该体系能够分别获得产物的两个对映异构体,即实现立体发散式生物合成。同时,反应可以以相同的效率和对映选择性放大到1 mmol级,如 (R)-3a的合成所示。此外,单晶X射线衍射研究确认ER3-4催化的产物的绝对构型为 (S)。图3. 代表性底物。图片来源:Nat. Catal.随后,作者进行了一系列的机理研究来验证所提出的催化反应机理。1)紫外-可见吸收光谱鉴定可见光直接激发FMN的关键过程(图4a);2)低温电子顺磁共振(EPR)实验和自由基捕获实验证实了该反应涉及的相关自由基中间体;3)自由基开环实验验证生成的自由基中间体,证实了Int. D的存在(图4d);4)氘代实验探索了自由基终止步骤的氢来源(图4e)。图4. 机理实验。图片来源:Nat. Catal.为了更好地理解关键的光氧化机制,作者进行了含时密度泛函理论(TDDFT)计算。计算结果显示,从1a到激发态FMNox*的单电子转移放热2.3 kcal/mol(图5a),支持可见光引发的单电子氧化在热力学上是有利的。作者为了研究OYE1_F296G中自由基反应过程的对映体选择性(Int. C → Int. E),进行了经典的MD模拟、QM/MM MD模拟和QM/MM计算,模拟结果支持自由基阳离子加成→质子转移→氢原子转移这个反应途径(图5c)。有趣的是,Int. C中的底物2a可以采用两种不同的构象,CH3基团可以朝里的,也可以是朝外的(图5b)。2a通过甲基(CH3-in → CH3-out)的翻转而发生的构象变化在动力学上非常容易,具有2.1 kcal/mol的较小能垒。从Int. C开始,QM/MM计算表明,对于CH3-in构象,1a+和2a之间的C-C耦合的能垒为15.6 kcal/mol,而CH3-out构象的能垒为12.7 kcal/mol,表明CH3-out构象更适合C-C偶联。这主要是因为2a的双键在CH3-out构象(3.75 Å)中与1a+-C2保持的距离比在CH3-in构象(4.17 Å)中更近。从IM1开始,计算表明阴离子FMNsq的N5可以作为从噻吩基C2位点提取质子的碱,CH3-in构象质子转移的能垒为12.9 kcal/mol,在CH3-out构象中,这一步反应能垒为13.5 kcal/mol。最后,前手性碳自由基可以从中性FMNsq物种中发生氢原子提取(HAT),分别从Int. D(CH3-in)得到 (R)-3a,从Int. D(CH3-out)得到 (S)-3a。图5c表明,对映选择性主要由1a+和2a之间的C-C偶联步骤决定。由于OYE1_F296G活性位点对底物的定位,(S)-3a的形成在动力学上优于(R)-3a,这与OYE1突变体形成的产物绝对构型一致。而对GluER催化反应的进一步计算表明,立体选择性也主要由C-C偶联步骤决定。图5. OYE1_F296G催化加氢芳基化的计算研究。图片来源:Nat. Catal.总之,南大/厦大/中科大团队合作报道了一例可见光直接激发黄素蛋白实现烯烃的不对称自由基加氢芳化反应,以优异的产率(最高达99%)和对映选择性(最高达99:1 er)制备了一系列对映体富集的氢芳基化产物。与先前报道的基于烯烃还原酶的光酶催化净还原体系不同,本文发展了一种机理上独特的氧化还原中性的催化循环,关键步骤是可见光直接激发黄素蛋白,并引发后续的单电子氧化和自由基加成途径。本文的理论计算部分由厦门大学王斌举课题组完成,电子顺磁共振实验部分由中国科学技术大学生命科学学院/中国科学院强磁场科学中心田长麟课题组完成,其余部分由南京大学黄小强课题组完成。南京大学博士研究生赵贝贝、厦门大学博士研究生冯键强和中国科学院强磁场科学中心于璐副研究员为论文的共同第一作者。黄小强特聘研究员、王斌举教授和田长麟教授为论文的共同通讯作者。论文得到了南京大学启动经费、科技部重点研发计划(2022YFA0913000, 2019YFA0405600, 2019YFA0706900)、国家自然科学基金(22277053, 22121001, 21927814, 21825703)、江苏省自然科学基金(BK20220760)、中国科学院青促会(2022455)等项目,以及稳态强磁场实验装置(SHMFF)的支持。原文(扫描或长按二维码,识别后直达原文页面):Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylationBeibei Zhao, Jianqiang Feng, Lu Yu, Zhongqiu Xing, Bin Chen, Aokun Liu, Fulu Liu, Fengming Shi, Yue Zhao, Changlin Tian, Binju Wang & Xiaoqiang HuangNat Catal., 2023, DOI: 10.1038/s41929-023-01024-0通讯作者简介黄小强博士,南京大学化学化工学院特聘研究员、国家青年人才(海外)、重点研发计划青年首席;已在Nature, Nat. Catal.(3), Nat. Commun., JACS (3), ACIE (2), Acc. Chem. Res.(2)等杂志发表一作/通讯论文多篇。实验室正在招聘生物合成和化学合成方向的博士后、博士研究生,详见课题组主页:https://www.x-mol.com/groups/huang_xiaoqiang
  • 【安捷伦】全球 TOP10 制药巨头都在用二维液相做什么?
    导读随着药物研发难度日益加大,分子结构的复杂性、生产工艺的发展都对分析技术提出了新的挑战。比如抗体/ADC 等生物制药复杂的结构异质性、多手性中心的对映异构体分子分离、生物药的连续流生产的在线过程分析(PAT)等,这些挑战都是常规一维色谱技术无法解决,或需要牺牲时间/人工成本和数据质量。作为色谱分析领域的 Game Changer,二维液相能否帮我们克服这些挑战?二维液相能否从研发走向 QC?本文将从全球 TOP10 制药巨头:瑞士 Roche(罗氏)、Novartis(诺华)和美国 Merck & Co (默沙东)、BMS(百时美施贵宝)发表的二维文献和相关讲座中,为您寻找这些问题的答案。这些文献和讲座涉及以下应用方向:- 单抗多 CQA 同时分析用于细胞株筛选;在线过程分析(PAT)- 自动化单抗结构异质性表征-在线酶切- ADC 多 CQA 分析方法专属性验证- 二维液相用于杂质质控可行性分析-基于 AQbD 的方法验证- 多手性中心对映异构体分离四大药企简介Merck 和 BMS 虽然不是销售额排名最靠前美国药企,但由于他们的 PD-1 单抗 K 药 Keytruda(Merck & Co)和 O 药 Opdivo(BMS),成为当下被谈论最多的两家企业。根据 EvaluatePharma 发布的 2021 全球医药市场展望,作为全球第一款 FDA 批准的 PD-1 单抗,BMS 的 O 药销售额将突破 88 亿美金,而后来居上的K药将在2023年接棒阿达木单抗,成为新一代药王。[1]Roche 和 Novartis 总部均位于瑞士巴塞尔,2019 年处方药销售全球排名第 1 和第 2 名(据 EvaluatePharma 统计),而他们的发展轨迹确截然不同[1]。Novartis 起源于瑞士的汽巴、嘉基、山德士三家化工巨头,产品管线丰富。目前热门的嵌合抗原受体T细胞免疫疗法(CAR-T),Novartis 是拥有首个 FDA 批准的此类疗法。Roche 是制药巨头中生物制药占比最高公司之一, 80% 以上销售额来自其Biotech产品。Roche 是最会买的公司之一, Roche 的王牌肿瘤药利妥昔单抗(美罗华)、曲妥珠单抗(Herceptin)、贝伐株单抗 (Avastin) 均出自其收购的基因泰克 (Genentech)公司[2]。大分子Merck & Co:单抗多 CQA 同时分析用于细胞株快速筛选聚集体会影响单抗的生物效价、稳定性、安全性,因此聚集体分析是单抗生产工艺开发中最常见的分析。快速的、无需前处理的分析方法将提高细胞株筛选、工艺优化的效率。Merck & Co.与 Agilent Thought Leader (安捷伦思想领袖奖) 获得者 Dwight R. Stoll 教授合作,基于 Agilent InfinityLab 2D-LC 的 ASM-MHC 模式(主动溶解调制多中心切割二维液相)开发了快速 Protein-A X SEC 二维方法,分析已收获的细胞培养液(harvested cell culture fluid samples)中目标单抗的滴度和聚集体;分析时间仅需5分钟。系统考察了方法的回收率、分离度、准确度、精密度,证明快速 Protein-A X SEC 二维方法是一个高效的、高通量的筛选工具。[3]图 1. 测定 HCCF 中单抗聚集体含量的工作流程。快速 Protein-A X SEC 二维液相法无需手动 PAP 分离工作[3]BMS:二维液相进行抗体生产在线过程分析(PAT)在线过程分析(PAT)通过及时测量影响关键质量属性(CQA)的关键过程参数(CPP)来设计、分析和控制生产过程。PAT 可以增强对工艺和产品的理解,以确定设计空间,尤其是在连续流工艺中意义更加重大。PAT 有助于提高产品质量、批次间重复性、效率和灵活性,最大化节约制造空间,优化工艺过程和稳定性,节约资本投入和运营成本。对于结构异质性复杂的抗体类药物,传统方式进行 Pro-A 净化前处理,再进行聚集体、电荷异质性等色谱分析,无法满足在线、实时 PAT 的需求。BMS 的研究人员使用 SegFlow 与 Agilent InfinityLab 2D-LC 联用技术,实时在线分析生物反应器培养基氨基酸、单抗和融合蛋白类药物的滴度和关键质量属性,实现细胞培养过程的代谢平衡和调控。图 2. Agilent 与 LCGC 邀请 BMS 专家举办的关于二维液相进行抗体生产在线过程分析(PAT)的讲座Roche:自动化单抗结构异质性表征-在线酶切通常 mAb 分子量大约 150Kd,IEC 分析电荷异质性时,如果直接完整蛋白除盐进入高分辨质谱,往往只能看到质量数变化比较大的异质性,但是对于质量数变化很小的变异(比如脱氨,分子量变化只有 1Da ),完整蛋白水平很难准确分析判断。Roche 研发人员基于安捷伦液相模块搭建的“四维”系统(4D HPLC/MS),可以对离子交换电荷异质体进行在线酶切肽图分析,能够清晰的看到脱氨基、氧化等 PTM 带来的电荷酸碱变异。[4]4D HPLC/MS 在线除盐酶切系统:一维 IEC 分离 mAb 电荷异质体;二维反相捕获、还原;三维在线胰酶酶切;四维 Peptide Mapping 进入 MS 分析。图 3. 4D LC/MS工作流程简图 [4]Novartis – ADC 多 CQA 分析方法专属性验证抗体偶联药物 ADC 发展至今,已经历了三代,近年来广受关注,2017-2020 共 8 个产品获批。ADC 药物的关键质量属性 CQA 包括:高分子量组分 HMWS,药物抗体偶联比 DAR,载药量分布,未偶联小分子药、连接子、连接子-小分子药含量等。Novartis 研究人员开发了梯度 SEC 方法用于分离 ADC、高分子量组分 HMWS、未偶联小分子药、连接子、连接子-小分子药。并使用 Agilent InfinityLab 2D-LC 的 MHC 模式(多中心切割二维)进行了方法专属性验证,证明他们开发的梯度 SEC 方法的分离效果;同时研究了梯度 SEC 方法和 SEC X RPLC 方法的精密度和回收率;两者精密度均在 0.01%-3.68% 之间,回收率在 82%-107% 之间。[5]图 4. ADC 药物的 SEC X RPLC 二维定量分析[5]小分子Merck & Co -小分子:多手性中心对映异构体分离结构高度相似化合物的分离分析是现代药物的最大挑战之一,比如对映异构体的分析。新开发的小分子药物绝大多数含有手性中心,而且多手性中心药物的开发也已成为一个新的趋势。多手性中心对映异构体,几乎不可能通过一根单一分离机制的色谱柱实现所有异构体的分离。Merck & Co 研究人员使用 Agilent InfinityLab 2DLC 的 MHC 模式(多中心切割二维)研究单手性中心药物法华林和代谢产物羟基法华林的分离,使用反相X手性色谱柱的模式,在第一维实现原型和代谢产物的分离,第二维实现手性分离。使用 Agilent InfinityLab 2D-LC 的 Comprehensive 2D-LC 模式(全二维),采用手性 X 手性色谱柱的模式,实现了多中心药物合成过程中异构体的分析。研究工作作为封面文章,发表在 Analytical Chemistry 杂志上。[6]图5. Merck & Co 使用 Agilent InfinityLab 2D-LC 在 Analytical Chemistry 上发表的封面文章[6]Genentech:二维液相用于 QC 的可行性二维液相在分离上的优势有目共睹,但这种技术是否足够稳定,是否可以应用于 GMP 环境下的 QC 分析呢?Genentech 使用安捷伦单中心切割二维液相,基于 QbD 理念,通过 DoE(实验设计)考察了关键方法参数 CMPs(中心切割的关键因素:进入 2D 的馏分组成(pH、有机相比例) 及 loop 环的填充比例)的设计空间 MODR 和操作空间 PAR,对关键方法属性 CMAs 进行验证,以证明二维在 GMP 环境中的质控可行性。[7]图 6. 通过 QbD 软件进行二维分离三大关键变量设计空间的确认[7]安捷伦二维液相方案,改变你的色谱分析以上案例诠释了安捷伦二维液相方案在解决不确定性问题、复杂样品的完整信息、和复杂处理自动化等方面的优势。安捷伦自 2012 年推出市场第一款商品化二维液相产品以来,一直在该领域持续创新。产品也被世界 TOP 药企广泛认可,并应用于药物研发工作。资料下载扫描下列二维码,简单注册,获得相关文献原文链接、精彩讲座录音、安捷伦二维液相基础导论、安捷伦二维液相产品介绍等。参考文献:[1] 2021全球医药市场展望.EvaluatePharma. www.evaluate.com[2] Fiona Yu. 制药巨擘的成功密码——小故事,大策略,为你解读跨国药企背后的秘密. 药时代. 2020.[3] Zachary D. Dunn, Jayesh Desai, Gabriel M. Leme, Dwight R. Stoll, and Douglas D. Richardson. Rapid two-dimensional Protein-A size exclusion chromatography of monoclonal antibodies for titer and aggregation measurements from harvested cell culture fluid samples. mAbs (Taylor & Francis Online), Volume 12, 2020 - Issue 1[4] Gstöttner, C. Klemm, D. Haberger, M. Bathke, A. Wegele, H. Bell, C. Kopf, R. Fast and Automated Characterization of Antibody Variants with 4D HPLC/MS, Anal. Chem. 2018, 90, 3, 2119–212[5] Alexandre Goyon, Luca Sciascera, Adrian Clarke, Davy Guillarme, Reinhard Pell. Extending the limits of size exclusion chromatography: Simultaneous separation of free payloads and related species from antibody drug conjugates and their aggregates. Journal of Chromatography A, 1539 (2018) 19–29[6] Chandan L. Barhate, Erik L. Regalado, Nathan D. Contrella, Joon Lee, Junyong Jo, Alexey A. Makarov, Daniel W. Armstrong, and Christopher J. Welch. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography experiments. Anal. Chem. 2017, 89, 3545−3553[7] Samuel H. Yang, Jenny Wang, Kelly Zhang. Validation of a two-dimensional liquid chromatography method for quality control testing of pharmaceutical materials. J. Chromatogr. A 1492 (2017) 89–97关注安捷伦微信公众号,获取更多市场资讯
  • Vanquish Core带你探索生命之源
    Vanquish Core带你探索生命之源蛋白质作为生命的物质基础,可以说没有蛋白质就没有生命,而氨基酸作为蛋白质的基本单位,可以说是生命之源。氨基酸分子为手性分子,有左旋和右旋两种光学异构体,被称为L型(左)和D型(右)两种。照常理讲,氨基酸化学反应需要L型氨基酸和D型氨基酸等量搭配作用。但存在于地球上所有的生物体中,氨基酸都为左旋型。这种被戏称为“左撇子地球”的偏差一直是一个谜题。在古生物化石中,我们却能发现D型氨基酸的存在。这是由于生物死亡后埋在地下,有机体在自然条件下也被水解为氨基酸保存在化石中,但氨基酸的左旋体结构慢慢地会向右旋体结构转化,而各种左旋体结构的氨基酸都有自己的“半衰期”,考古学家就可以依据化石中氨基酸左旋体与右旋体的比例来确定化石的年代。目前测定氨基酸通常使用氨基酸专用分析仪或液相色谱仪,而液相色谱法的广泛适用性具有其优势性,但常规液相检测氨基酸的分析中,需要进行衍生化处理,由于氨基酸衍生产物衰减较快,而离线手动衍生操作至进样分析的时间和操作强度很难保证均一,常常导致结果不稳定。Vanquish Core赛默飞全新的Vanquish Core 液相色谱仪,无需繁琐的离线手动衍生化操作,只需2ul以内的样品,利用邻苯二甲醛/ N-异丁酰基-L-半胱氨酸 (OPA/IBLC)在线柱前衍生化,生成非对映异构体衍生物(如图1所示),无需成本较高的手性柱,即可完成L型和D型氨基酸异构体的分离和测定。图1 衍生化过程仪器配置:• 系统底座:Vanquish System Base (VC-S01-A)• 泵:Vanquish Binary Pump C(VC-P10-A-01)• 自动进样器:Vanquish Split Sampler CT(VC-A12-A-02)• 柱温箱:Vanquish Column Compartment C(VC-C10-A-03)• 检测器:Vanquish Fluorescence Detector(VC-D50-A-01)色谱条件:• 色谱柱:Accucore XL C18(150mm×4.6 mm,4 μm,P/N:74104-154630)• 流动相:A:50mM乙酸钠水溶液(pH=6.0);B:乙腈/甲醇/水=45:45:10,流速:1.0 mLmin-1,梯度洗脱见表1表1 梯度洗脱程序• 进样量混标:0.5ul ( 注:在线衍生试剂需0.25 ul)样品:2.0ul ( 注:在线衍生试剂需2.2 ul)• 柱 温:30℃• 检测器:激发波长:230nm,发射波长:450nm,灵敏度:5,灯模式:标准在线针内衍生程序和常规进样方式相比,在线针内衍生方法需要使用Vanquish Core液相的用户自定义进样程序功能(User Defined Program,UDP),氨基酸在线针内衍生程序见图2。图2 在线针内衍生程序Position R:A2, 硼酸缓冲液;Position R:A3, 衍生试剂; Position R:A4, 稀释液(点击查看大图)表2 衍生剂信息色谱图:滑动查看更多(点击查看大图)实验结果与讨论本方法使用OPA/IBLC作为手性拆分衍生化试剂,利用全自动衍生功能的自动进样器进行在线衍生,衍生后直接进样分析,完成了手性异构体氨基酸的分离测定,消除了离线衍生进样时间不同和手工操作造成的误差,不仅提高了结果的准确性,而且大大降低了成本和工作强度。不止于此Vanquish Core 液相色谱仪不仅可用于生命的探索,对于测定我们目前生活密切相关的食品、药品以及化妆品中的氨基酸,Vanquish Core 液相色谱仪也不在话下。其可完全满足《SN/T 5223— 2019 蜂蜜中18 种游离氨基酸的测定高效液相色谱- 荧光检测法》中在线自动衍生法测定氨基酸;而对于中草药中的氨基酸,胶原蛋白、肽类等化妆品中的氨基酸,Vanquish Core液相色谱仪也均可满足测定和研发的需求。另外,Vanquish Core液相色谱仪结合赛默飞du有的电雾式检测(CAD)无需衍生化处理,可直接完成氨基酸的测定,省时省力更经济。
  • N-聚糖唾液酸结合异构体鉴定——SialoCapper™ -ID试剂盒+MALDI-8020
    唾液酸(SA)是酸性单糖的家族名称,包括 N-乙酰神经氨酸 (NeuAc) 和 N-羟乙酰神经氨酸 (NeuGc),主要存在于聚糖的非还原末端。是一种天然存在的碳水化合物,最初由颌下腺粘蛋白分离出,因此而得名。唾液酸通常以低聚糖,糖脂,糖蛋白的形式存在。唾液酸可以以 α2,3- 或 α2,6- 键类型存在。这样的连接异构体在生物学上很重要,因为不同连锁类型可能与各种疾病有关,例如病毒感染和癌症。 近年来,质谱技术已被广泛应用于分析聚糖。然而,鉴定含有多个唾液酸残基的复杂聚糖的唾液酸键类型仍然具有挑战性。本研究工作通过使用“SialoCapper-ID 试剂盒”进行独特的衍生化,然后进行 MALDI-8020 MS分析,从而鉴定2-氨基吡啶(PA)标记的聚糖上的酸谱系类型。 SialoCapper-ID 试剂盒是一种用于聚糖预处理的新型试剂盒,可简化获得专利的唾液酸键特异性烷基酰胺化 (SALSA 方法)步骤。SALSA通过中和残留物来防止在聚糖预处理和 MS 分析过程中唾液酸残留物的损失。此外,它允许通过以特定键的方式衍生残基来基于 MS 区分唾液酸键异构体。 SALSA法的衍生方案 本实验中,N-连接聚糖通过肼解作用从51只大鼠102只耳蜗血管纹衍生的糖蛋白中释放出来的。N-聚糖的还原端用PA标记。然后根据唾液酸的数量通过 DEAE 阴离子交换 HPLC 对 PA 标记的聚糖进行分离,并在 ODS 柱上使用反相 (RP) HPLC 进一步分离。使用酰胺柱和 LC-MS 通过正相 (NP) HPLC 分析分级的 N-聚糖,并根据二维 (2-D) HPLC 分析 (RP/NP) 的结果确定 N-聚糖的结构 和 LC/MS 分析。最后,使用 SialoCapper-ID Kit 进行唾液酸键特异性衍生化,用于未确定唾液酸键类型的分离。 在用碳芯片对 14 份 PA 标记的聚糖进行脱盐后,使用 SialoCapper-ID 试剂盒在试管中以液相反应的形式进行唾液酸键特异性衍生化。除了通过 2-D HPLC 和 LC/MS 进行结构测定外,研究者另辟蹊径,使用MALDI-8020+ SialoCapper-ID 试剂盒根据唾液酸键特异性衍生化产生的质量变化来区分唾液酸键类型。相对于LC/MS,MALDI-MS有利于轻松快速鉴定唾液酸键类型,特别是在分析多个样品时。 A1-14 组分的质谱图和唾液酸键型鉴定结果A2-16 组分的质谱图和唾液酸键型鉴定结果 MALDI-8020+SialoCapper-ID 试剂盒唾液酸结合异构体鉴定优势1 无需与标准聚糖样品的分析结果进行比较,即可识别复杂聚糖的唾液酸键类型。2 SialoCapper-ID Kit可应用于标记糖链,无需改变常规分析流程即可进行唾液酸键联分析。3 无需 LC 分离, MALDI-MS 直接鉴定唾液酸键类型。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻:Sialic Acid Linkage Isomer Discrimination of N-glycansderived from Rat Cochlea using SialoCapper-ID KitM. Inuzuka, T. Nishikaze 本文内容非商业广告,仅供专业人士参考。
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • 文献解读丨超临界流体色谱串联质谱法在普通白菜乙酰甲胺磷和甲胺磷对映体分离分析中的应用
    本文由农业农村部环境保护科研监测所课题组所作,通讯作者为耿岳博士,文章发表于Journal of Separation Science(J Sep Sci. 2022,1– 12, https://doi.org/10.1002/jssc.202200006)。 Part 01 研究背景 乙酰甲胺磷是一种广谱有机磷杀虫剂,在作物中可通过酰胺水解转化为毒性更大的代谢物甲胺磷。乙酰甲胺磷和甲胺磷均由一对对映体组成,虽然不同对映体的理化性质相同,但在活性、毒性和降解行为方面存在显著差异。因此,开发高效的乙酰甲胺磷及其代谢物甲胺磷对映体的分离和测定方法,并开展对映体选择性研究对乙酰甲胺磷及其代谢物的评估具有重要意义。目前手性分离主要采用手性色谱柱结合HPLC、GC、GC-MS/MS和LC-MS/MS进行,但对于部分手性农药存在分析时间长、分离度差等问题。 SFC-MS/MS因具有分析时间短、分离度高、有机溶剂消耗低等优点,已广泛应用于手性农药对映体的分析。本研究建立了一种绿色、灵敏、高效的SFC- MS/MS检测普通白菜中乙酰甲胺磷和甲胺磷对映体残留的方法。为了验证所建立的方法,在中国北方温室条件下,通过盆栽试验研究了乙酰甲胺磷及其代谢产物甲胺磷在普通白菜中的残留情况。此研究系利用SFC - MS/MS对蔬菜样品中乙酰甲胺磷和甲胺磷对映体的选择性进行报道,为手性杀虫剂乙酰甲胺磷的科学评价提供了基础资料。 Part 02 研究结果 1、对映体拆分方法的优化采用Nexera UC SFC-MS/MS系统,经过手性固定相、流动相、有机改性剂种类及比例、背压和柱温的优化等,确定最终的仪器条件。 1)色谱条件色谱柱:Chiralcel OD-H column (250 × 4.6 mm, 5 μm) ;流动相:A (CO2)/B乙醇= 95/ 5,v /v;流速:3 mL /min;柱温:40℃;背压:10 MPa;补偿溶剂 (0.1% 甲酸甲醇溶液) 流速:0.1 mL/min; 2)质谱条件离子源参数:雾化气流速:3 L/min (N2, 99.5%);加热气流速:10 L /min(干燥空气);接口温度:300℃;DL温度:250℃;加热块温度:400℃;干燥气体流速:10 L/min (N2, 99.5%)。 质谱参数:按上述条件,不同对映体出峰时间为:R-乙酰甲胺磷(4.20 min)、S-乙酰甲胺磷(4.91 min)、R-甲胺磷(5.97 min)、S-甲胺磷(6.68 min) 。不同条件下的对映体拆分结果见(图1)。图1 SFC-MS/MS上乙酰甲胺磷和甲胺磷对映体的色谱图、分离度和保留时间 2、方法学考察 对建立的对映体分析方法进行系统的方法学考察,包括线性、回收率、精密度、定量限等。不同对映体在溶剂和基质标准中均有良好的线性(具体见表1)。通过比较溶剂标和基质标进行基质效应评价,乙酰甲胺磷和甲胺磷对映体在普通白菜基质中表现出较强的基质抑制效应,为了消除基质效应,本研究采用基质匹配标准溶液进行定量。乙酰甲胺磷和甲胺磷对映体的定量限均为0.005 mg/kg。在3个添加水平(0.01、0.1和1 mg/kg)下对普通白菜空白样品中乙酰甲胺磷和甲胺磷进行回收率试验,评价方法的准确性和精密度。化合物在普通白菜中的日内平均回收率(RSDs)为70.4−98.5% (1.4−10.9%),日间平均回收率(RSDs)为75.4−87.5% (6.1−13.4%)。结果表明,所建立的方法精密度和重现性良好,可满足普通白菜中乙酰甲胺磷和甲胺磷对映体的测定要求。 表1 不同对映体的线性、相关系数和基质效应图2 R-乙酰甲胺磷、S-乙酰甲胺磷和Rac-乙酰甲胺磷(外消旋乙酰甲胺磷)及其代谢产物R-甲胺磷、S-甲胺磷和Rac-甲胺磷的残留量 图3 R-乙酰甲胺磷(A)、S-乙酰甲胺磷(B)、Rac-乙酰甲胺磷(C)及其代谢产物R-甲胺磷(D)、S-甲胺磷(E)、Rac-甲胺磷(F)(外消旋甲胺磷)在普通白菜中的消解曲线 3、方法应用 为验证SFC-MS/MS分析方法的有效性,对普通白菜样品中乙酰甲胺磷和甲胺磷的对映体进行了分析。结果表明,乙酰甲胺磷和甲胺磷对映体在普通白菜中的降解均符合一级动力学方程,R2在0.944 ~ 0.992之间(图3),半衰期分别为:4.39 (R-乙酰甲胺磷)、2.91 (S-乙酰甲胺磷)、3.9(Rac-乙酰甲胺磷)天、10.91(R-甲胺磷)、6.24(S-甲胺磷)和9.10(Rac-甲胺磷)天。R-乙酰甲胺磷的半衰期是S-乙酰甲胺磷的1.51倍,表明其降解具有对映体选择性;在普通白菜中甲胺磷半衰期比乙酰甲胺磷长,表明甲胺磷比其母体具有更强的持久性。 Part 03 结论 基于岛津Nexara UC系统,建立了一种快速、简便、灵敏的测定普通白菜中乙酰甲胺磷及其高毒代谢物甲胺磷对映体的分析方法,本方法可在8分钟内实现手性对映体的基线分离,每针样品仅消耗1.2 mL有机溶剂(乙醇)。同时进一步应用该方法评价了乙酰甲胺磷及其代谢产物对映体在普通白菜中的手性选择性消解规律研究。本方法具有良好的精密度和重现性,满足普通白菜样品中乙酰甲胺磷和甲胺磷对映体残留测定的要求。 关联仪器Nexera UC 所提供的解决方案• 临界流体的低粘度以实现快速分离• 提高峰容量与分离度• 利用高渗透性,对异构体或手性化合物实现快速分离• 差异化的分离模式提高灵敏度• 无分流样品导入技术提升灵敏度• 减少有机溶剂消耗,在降低成本的同时降低对环境的影响 文献题目《Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry》 使用仪器岛津Nexera UC 作者Linjie Jiang1,2,3 Yue Geng1,2,3 LuWang1,2,3 Yi Peng1,2,3 Wei Jing4 Yaping Xu1,2,3 Xiaowei Liu1,2,31 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, P. R. China2 Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and RuralAffairs, Tianjin, P. R. China3 National Reference Laboratory for Agricultural Testing, Tianjin, P. R. China4 Shimadzu (China) Co., LTD. Beijing Branch, Beijing, P. R. China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。 本文内容非商业广告,仅供专业人士参考。
  • 沃特世超高效合相色谱系统荣获绿色创新奖
    沃特世ACQUITY UPC2系统荣获绿色创新奖   使用压缩二氧化碳替代有机溶剂作为主要流动相,实现更环保的实验室分离操作   阿姆斯特丹市-2013年6月17日   沃特世公司(纽约证券交易所代码:WAT)的ACQUITY UPC2&trade 系统在法国最重要的实验室科学商业展会&mdash &mdash Forum LABO and BIOTECH 2013上荣获绿色创新奖。ACQUITY UPC2系统主要使用二氧化碳来替代有机溶剂用于色谱分离,在多种应用中表现优异,包括脂溶性维生素、脂类、有机发光二极管(OLED)和手性化合物分析等。   实验室往往需要消耗大量有机溶剂,这些溶剂不仅价格昂贵,并且在使用后进行废液处理也需要更多的费用。许多实验室都根据自身的需求制定了积极的可持续发展目标,并且开始挖掘Waters® UPC2技术的潜力来帮助他们实现这些目标,以期在长远发展中上节省大量资金。正相色谱是一种非常消耗溶剂的技术,而ACQUITY® UPC2的目标就是取代这种技术。   因此,运营大型实验室的企业对于这项技术的兴趣尤为强烈。 在一段采访录像中,罗氏公司(瑞士巴塞尔)制药部门资深科学家Daniel Zimmerli也谈及UPC2技术在节约溶剂用量方面的潜力,并提出UPC2技术预计能在&ldquo 3到5年内&rdquo 取代正相色谱。   技术创新和企业可持续性举措的增加对SFC和合相色谱重新成为热点起到了重要作用。根据Genetic Engineering and Biotechnology News 6月1日刊登的一篇关于UPC2的文章中写到乙腈生产过程中的碳排放量十分巨大。乙腈是一种常见的LC溶剂,一瓶四升装的乙腈价格在300到400美元之间,并且使用后废液处理成本是这个价格的两倍。由于这一成本,很多机构不得不开始再次审视实验室的有机溶剂消耗。而与此相比,CO2既可以从大气中提取,使用后还能再次排回大气中。正如文中所言,CO2是&ldquo 最易得、最绿色的HPLC溶剂&rdquo 。   UPC2技术以UltraPerformance Convergence Chromatography&trade 原理为基础,采用压缩CO2作为主要流动相。该仪器基于Waters ACQUITY UPLC® 平台稳定可靠的低扩散设计,非常适合结合亚2微米颗粒技术色谱柱使用。   ACQUITY UPC2系统作为LC和GC的补充技术,已经在制药与生命科学、化工材料、环境以及食品饮料行业得到了广泛应用。这项技术适用于多种化合物,包括大部分有机可溶化合物、大多数有机酸和碱形成的盐类、亲脂性小分子肽和非极性液体。它非常适合分析结构类似的化合物,包括手性异构体、非对映异构体、对映体、位置异构体和结构相似物。几乎所有可溶于有机溶剂的化合物都可以使用合相色谱分析。该技术还可以兼容一些最常用的检测模式,包括质谱等等。   关于UPC2的更多信息和应用纪要请浏览:www.waters.com/upc2   关于沃特世公司(www.waters.com)   50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。   作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。   2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。   ###   Waters、ACQUITY UPLC、ACQUITY UPC2、UltraPerformance Convergence Chromatography和UltraPerformance LC是沃特世公司商标。
  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离 Rui Chen 和John P. McCauley 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。 ■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。 ■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。 沃特世解决方案 ACQUITY UPC2TM 系统 Investigator SFC系统 Empower&trade 3软件 ChromScope&trade 软件 ACQUITY UPC2BEH和BEH 2-EP色谱柱 关键词 铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2 引言 有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。 多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。 由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters® ) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。 实验 仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。 色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。 样品描述 样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。 结果与讨论 图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。 图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃ 下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。 图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。 图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流 速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。 图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。 图5 一对Flrpic同分异构体的紫外光谱。 理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。 图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。 图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。 图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。 结论 在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。 本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。 参考文献 1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47. 2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87. 3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91. 4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48. 5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77. 6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18. 7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • “食品风味分析及安全检测最新技术"主题网络研讨会答疑集锦来了!
    7月15日,哲斯泰携手我要测网成功举办了“食品风味分析及安全检测最新技术"主题网络研讨会(从样品前处理到进样到嗅觉检测全方位解决方案)”主题网络研讨会,五位行业资深专家带来了精彩干货分享,吸引了1000多人次报名参与。下面让我们一起来看看老师分享的精彩内容吧。 来自中国农业科学院茶叶研究所的朱荫老师带来了主题为:“茶叶中手性挥发性成分研究及香气活性成分鉴定”的报告。朱老师从茶叶中手性挥发性成分研究和香气活性成分鉴定两个方面带来了团队最新的研发成果。用Es-GC×GC-TOFMS、Es-GC-MS及Es-GC-O/GC-MS等技术首次建立了茶叶中26种重要手性挥发性成分的精确定量分析方法,查明了茶叶中挥发性萜类及内酯类化合物的对映异构体分布与茶叶类别、茶树品种、产地、加工工艺、季节及储藏时间等因素间的内在联系,最后阐明了各对映异构体的香气特征及其对茶叶香气品质形成的具体贡献。来自北京工商大学的宋焕禄教授带来了主题为:“感官导向风味分析-理论与实践”的报告。分子感官科学( molecular sensory science) 是近年来提出来的,在分子水平上研究食品感官质量的多学科交叉技术。它的特点是将仪器分析与感官评价有机地结合,筛选出由少数物质组成的、代表样品风味特征的风味重组物,从分子水平上揭示了食品感官品质的化学本质,为食品加工贮藏过程中的品质控制提供了科学依据。宋教授就利用气象色谱—嗅闻技术(GC-O)寻找关键香气物质为中心进行讲解,并以具体试验数据案列详细讲解了肉类、水果等分析实验过程。来自中山大学化学学院的欧阳钢锋教授带来了主题为:“固相微萃取活体采样分析技术在食品安全检测中的应用”的报告。欧阳教授重点介绍了其所制备的系列基于传统材料和米、多孔材料的新型SPME探针,及其在多种鱼类和蔬菜中药物、农残、麻醉剂等毒害有机物的活体采样监测,传统的采样分析的操作繁琐,不能对单一生物体进行系统分析研究,发展简单、环保的原位/活体采样分析技术是分析化学的重要发展方向来自江南大学生物工程学院的范文来老师带来了主题为:“饮料酒及发酵食品中痕量与超痕量物质定量策略”的报告。极微量风味成分分析是一项具有挑战性的工作。范老师从痕量与超痕量物质定量策略概述、固体半固体物物料样品前处理与定量技术和液态样品前处理与定量技术三个方面进行了精彩分享。应用Gerstel公司的Multi-Purpose Sampler结合HS-SPME和/或SBSE技术可以检测饮料酒和发酵食品的原料、生产过程和产品中的微量风味成分,包括固体样品(如化合物原料、酒醅、酱)、液体样品(如白酒、黄酒、葡萄酒)和混浊样品(如米醋)。不同的样品、不同测定的目标产物需要选择不同的样品处理方法。multi-purpose sampler与GC-MS联用后,可以快速、稳定和可靠的分析酿造过程的所有样品。 行业资深专家朱建设老师带来了主题为:“应用搅拌棒吸附萃取SBSE技术分析食品饮料中的风味成分”的报告。朱老师重点分享了SBSE技术用于食品和饮料的香气香味化合物的分析的具体案例。品饮料中香气香味化合物种类繁多,结构复杂,浓度范围变化大,有的含量非常低,提取分离鉴定难度大。需要一种简单快速,无溶剂或少许溶剂的提取富集技术。和一般LLC,SDE,SPE,SAFE等样品提取制备方法相比,搅拌棒吸附萃取(SBSE)是一种无溶剂的用于萃取和浓缩痕量有机物的技术。其原理类似于固相微萃取SPME,但是SBSE拥有更多的萃取吸附层,是SPME的50到250倍,使得检测的灵敏度大大提高。具有简单,高效,快速,重现性好,绿色无溶剂等优点。应用SBSE技术测定食品饮料中的香气香味化合物是非常好的选择。  视频回放:https://www.woyaoce.cn/webinar/Video/Video/Collection/10590
  • 【百年传承】百年品质 | 探访最早的她,遇见最美的你
    百年安东帕前几期的内容我们已经介绍了,安东帕自1922年成立至今已经有100年的历史。今天我们一起探访目前了解到的,中国区最古老的安东帕旋光仪。小编提醒:文末有活动哦,记得参加!STORY80年代的Dr.Kernchen (现安东帕)旋光仪图为Dr.Kernchen (现安东帕)旋光仪。据了解,客户的这台旋光仪购置于1981年,比小编的年纪还要大 ,但是在老师长期精心管理和维护下,不但设备外观完好无损,而且依旧能够正常工作、提供稳定可靠的测试数据。90年代的Dr.Kernchen (现安东帕)旋光仪图为山东大学的Dr.Kernchen (现安东帕)旋光仪,这台购于九十年代的旋光仪,相较八十年代,仪器不论从外观到性能都有了很大提升。安东帕从未停止对仪器的创新,在 Dr.Kernchen 长期经验积累的基础上,安东帕MCP系列旋光仪将先进的技术、最现代的设计和出色的适用性集于一身,被广泛应用于各行各业,是制药、食品、化妆品和化工行业测量光学活性物质的完美解决方案。安东帕MCP系列高精度智能旋光仪应用实例Application药物►例如,MCP旋光仪分别研究每种对映异构体的生物特征,或者研究毒理、药理和手性之间的相关性。MCP旋光仪符合国际药典标准,并完全符合FDA所要求的21 CFR Part 11 的规定。香料► 在香水制造中,MCP旋光仪会与DMA密度计和Abbemat折光仪联合使用来测量价格不菲的香精油的纯度,以确保香水质量始终如一。淀粉►MCP旋光仪可用于淀粉及淀粉加工产品、葡萄糖或玉米糖浆(如[HFCS高果糖浆]的质量控制和纯度测定。食品调味剂► 在食品生产过程中,将MCP旋光仪和Abbemat折光仪联合使用,来测试进场原材料和成品的纯度并表征其特点。蜂蜜►MCP可以用来通过鉴别碳水化合物的组成来表征蜂蜜。蜂蜜中碳水化合物的不同光学活性还可以让我们深入了解产品的质量。优质蜂蜜的蔗糖含量较低,而葡萄糖/果糖含量较高。此外,您可以使用MCP旋光仪并按照花朵与蜜露蜂蜜具有相反的旋光度这一特性来区分这两种物质。有奖互动百年传承活动如期而至,本期我们将回馈全国范围内所有安东帕旋光仪的用户,感谢大家对安东帕产品一如既往的信任和支持。欢迎广大安东帕旋光仪用户踊跃参与!活动时间即日起至2022年4月30日互动方式以【照片或视频+文字描述+姓名+公司+手机】的格式将您与安东帕旋光仪的故事撰写成文,内容愈详愈佳。1:发送至邮箱:info.cn@anton-paar.com(以邮件的方式投稿将会收到一封确认邮件,如无收到,请重新投递。)或者2:长按下方二维码,上传旋光仪的照片或视频,文字描述,姓名,公司,手机,提交即可。奖项设置所有参与活动的用户均将获得安东帕定制礼品一份。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 860万!中国检验检疫科学研究院环形离子淌度色质联用仪采购项目
    项目编号:22CNIC01-2163项目名称:中国检验检疫科学研究院环形离子淌度色质联用仪采购项目预算金额:860.0000000 万元(人民币)最高限价(如有):844.5200000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品环形离子淌度色质联用仪1台主要用于食品中毒素、农药、环境污染物类中的构造异构、顺反异构、非对映异构体等化合物的分离,并进行精细结构的鉴定。合同签订后90天是合同履行期限:合同签订后90天本项目( 不接受 )联合体投标。
  • 沃特世超高效合相色谱系统荣获全球百大科技研发奖(R&D 100 Award)
    超高效合相色谱系统以其卓越的创新性获得奖项认可 美国马萨诸塞州米尔福德市,2013年7月29日&mdash 沃特世公司(WAT)今日宣布:R&D Magazine评选沃特世(Waters® ) ACQUITY UPC2TM系统为&ldquo 过去一年中进入市场的最具技术影响力的100种产品&rdquo 之一。 ACQUITY UPC2系统是首款基于超高效合相色谱(UltraPerformance Convergence ChromatographyTM ,UPC2® )技术的新型分离工具。作为LC和GC的补充技术,ACQUITY UPC2系统高效、稳定且可靠,它采用压缩二氧化碳替代有机溶剂作为主要流动相组分,因此对于许多行业的多种应用(包括手性和非手性)来说是一种更为环保的替代选择。 &ldquo 我们对ACQUITY UPC2系统获得R&D Magazine第51届年度全球百大科技研发奖的认可感到无比自豪,&rdquo 沃特世公司总裁Art Caputo说道,&ldquo ACQUITY UPC2自推出以来,已经在我们服务的所有领域获得了广泛的应用&mdash 包括制药、食品、环境、化工材料和临床研究应用。现在,我们比以往任何时候都更加确信,ACQUITY UPC2是一个适用范围广泛的互补分析平台,它将与液相、气相色谱并肩成为现代实验室分析的三大关键分离技术之一。&rdquo ACQUITY UPC2系统曾经获得的奖项: - 2012年Pittcon撰稿人最佳新产品金奖 - SelectScience.net的2012年最佳新型分离产品科学家选择奖 - 2013年Forum LABO& BIOTECH第一届创新奖的绿色创新奖杯 关于沃特世ACQUITY UPC2系统 UPC2技术以超高效合相色谱原理为基础,采用压缩二氧化碳作为主要流动相组分。该仪器基于沃特世ACQUITY UPLC® 平台稳定可靠的低扩散设计,非常适合与亚2微米颗粒技术结合使用。 这项技术适用于多种化合物,包括大部分可溶性有机化合物、大多数有机酸和碱形成的盐类、亲脂性小分子肽和非极性溶质。它非常适合结构类似的化合物,包括手性实体、非对映异构体、对映异构体、位置异构体和结构类似物。几乎所有可溶于有机溶剂的化合物都可以使用合相色谱进行分析。该技术还可以与一些常用的检测模式联用,包括沃特世质谱仪全系产品。 已采购ACQUITY UPC2系统的实验室发现,它能够完美适用于手性分离,可作为溶剂消耗量较大的正相LC的替代方法。 帮助实验室达成可持续发展目标 以实验室为基础的机构通常需要消耗大量有机溶剂,这些溶剂不仅价格昂贵,并且在使用后进行弃置处理时更是需要加倍的费用。许多这样的机构都根据自身的需要制定了积极的、可持续的发展目标,并且开始挖掘沃特世UPC2技术的潜力来帮助他们满足这些目标,以期在长远角度上为他们节省大量资金。 因此,拥有大型实验室的企业对于这项技术的兴趣尤为强烈。在一段采访录像中,罗氏公司(瑞士巴塞尔)制药部门的一位资深科学家Daniel Zimmerli也谈及UPC2技术在节约溶剂用量方面的潜力,并提出UPC2技术预计能在&ldquo 3到5年内&rdquo 取代正相LC。 技术创新和企业可持续性举措的增加对SFC和合相色谱重新成为热点起到了重要作用。根据《基因工程和生物技术新闻》近期刊登的一篇关于UPC2的文章报道,乙腈生产过程中的碳排放量十分巨大。乙腈是一种常见的LC溶剂,一瓶四升装的乙腈价格在300到400美元之间,并且使用后弃置成本是这个价格的两倍。目睹这一成本,广大机构不由得开始再次审视实验室的有机溶剂消耗。而与此相比,二氧化碳既可以从大气中提取,使用后还能再次排回大气中。正如文中所言,二氧化碳是&ldquo 最易得到、最绿色的HPLC溶剂。&rdquo 自1962年开始角逐奖项以来,沃特世曾经六次获得R&D 100 Award,获奖的产品包括M6000 HPLC泵、U6K进样器、高温凝胶渗透色谱、径向压缩模块、Oasis 96孔(微孔)洗脱萃取板和ACQUITY UPLC系统。 关于全球百大科技研发奖(R&D 100 Award) 由R&D Magazine举办的每年一度的全球百大科技研发奖评选如今已进入第51个年头,该奖项主要奖励在过去12个月内推出的100项最具技术影响力的产品。产品或工艺必须在评比前一年内上市销售或注册才拥有评比资格,由独立的专家小组选出最终获胜者。 多年以来,R&D 100 Award甄选出了很多家喻户晓的获奖产品,例如Polacolor胶片(1963)、立方闪光灯(1965)、自动取款机(1973)、卤素灯(1974)、传真机(1975)、液晶显示器(1980)、触摸屏和彩图打印机(1986)、Kodak Photo CD (1991)、Nicoderm戒烟贴(1992)、数字盒式磁带(1993)、Taxol抗癌药物(1993)和Power Beat汽车电池(1994)。 R&D Magazine将会在其九月/十月的刊物上登出获奖者及其产品,并在11月7日于佛罗里达州奥兰多举行庆典,庆祝他们的成就。 关于沃特世公司(www.waters.com) 沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的商标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制