当前位置: 仪器信息网 > 行业主题 > >

碱性蛋白胨水颗粒

仪器信息网碱性蛋白胨水颗粒专题为您提供2024年最新碱性蛋白胨水颗粒价格报价、厂家品牌的相关信息, 包括碱性蛋白胨水颗粒参数、型号等,不管是国产,还是进口品牌的碱性蛋白胨水颗粒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碱性蛋白胨水颗粒相关的耗材配件、试剂标物,还有碱性蛋白胨水颗粒相关的最新资讯、资料,以及碱性蛋白胨水颗粒相关的解决方案。

碱性蛋白胨水颗粒相关的论坛

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

  • PCA培养基中胰蛋白胨能用蛋白胨代替吗

    我是做啤酒微生物检测的新手,做了2次菌落总数都没有成功,遇到几个问题请教一下;1.培养基中是用的蛋白胨代替的胰蛋白胨,可以吗?2.空白培养基上有菌落长出。(生理盐水和培养基是用的灭菌锅灭菌,移液管和培养皿是用的牛皮纸包好后160度干燥2小时灭菌。操作在无菌室内的超净工作台上。)个人觉得是不是移液管灭菌不好,培养皿一直都是这样灭菌的,做酵母的时候没有问题。3.有几个细菌长在培养基表面的,大部分长在培养基内部的,一点一点的,不知道是不是这样子的?

  • 求教(乳糖胆盐与乳糖蛋白胨区别)

    为什么大肠菌群MPN法,GB4789.2-2003是用9管的乳糖胆盐,而GB5750做水时候要用15管法的乳糖蛋白胨,而改版后的新GB4789.2008.2中改用LST,其与乳糖胆盐相比又有什么优势呢?

  • 蛋白胨水培养基(色氨酸肉汤)

    蛋白胨水培养基( l )成分 蛋白胨 10g 水 l000ml 氯化钠 5g ( 2 )制法 取上述成分混合,微温使溶解,调pH 值使灭菌后为7.3 士0.1 ,分装于小试管,121 ℃ 灭菌15 分钟。( 3 )用途 用于鉴别细菌能否分解色氨酸而产生靛基质的生化反应。 ① 靛基质试验取可疑菌落或斜面培养物,接种于蛋白胨水培养基中,置35 ℃ 培养24~48 小时,必要时培养4~5 天,沿管壁加人靛基质试液数滴,液面呈玫瑰红色为阳性,呈试剂本色为阴性。 ② 靛基质试液 称取对二甲氨基苯甲醛5g ,加入戊醇(或异戊醇)75ml ,充分振摇,使完全溶解后,再取盐酸25ml 徐徐滴入,边加边振摇,以免骤热导致溶液色泽变深.或称取对二甲氨基苯甲醛1g ,加人95 %乙醇95ml ,充分振摇,使完全溶解后,再取盐酸20ml 徐徐滴入。

  • 牛肉膏蛋白胨的配制

    一、目的与要求(一)学习制备培养基的基本技术。(二)制备牛肉膏蛋白琼脂培养基。二、原理牛肉膏蛋白培养基是一种应用最广泛和最普通的细菌培养基,这种培养基中含有一般细菌生长繁殖所需要的最基本的营养物质,可供作繁殖之用,制作固体培养基时须加2%琼脂,培养细菌时,应用稀酸或稀碱将PH调至中性或微碱性。牛肉膏蛋白培养基的配方:牛肉膏0.5%,蛋白胨1%,NaCl0.5%,pH7.4~7.6。三、材料与仪器(一)试剂 牛肉膏,蛋白胨、NaCl、琼脂、1mol/L NaOH、1mol/L HCl。(二)其他 试管,三角烧瓶,烧杯,量筒,漏斗,乳胶管,弹簧夹,纱布,棉花,牛皮纸,线绳,pH试纸,电炉,台称。四、操作步骤(一)称量 根据用量按比例依次称取成分,牛肉膏常用玻棒挑取,放在小烧杯或表面皿中称量,用热水溶化后倒入烧杯,蛋白胨易吸湿,称量时要迅速。(二)溶解 在烧杯中加入少于所需要的水量,加热,ZHU一加入各成分,使其溶解,琼脂在溶液煮沸后加入,融化过程需不断搅拌。加热时应注意火力,勿使培养基烧焦或溢出。溶好后,补足所需水分。(三)调PH 用1mol/L NaOH或1mol/L HCl把PH调至所需范围。(四)过滤 趁热用滤纸或多层纱布过滤,以利于某些实验结果的观察,如无特殊要求时可省去此步骤。(五)分装 按实验要求,可将配制的培养基分装入试管内或三解瓶内,分装装置如实验图8所示;分装时注意,勿使培养基沾染在容器口上,以免沾染棉塞引起污染。1.液体分装 分装高度以试管高度的1/4左右为宜,分装三角瓶的量则根据需要而定,一般以不超过三角瓶容积的1/2为宜。2.固体分装 分装试管,其装量不超过管高的1/5,灭菌后制成斜面,斜面长度不超过管长的1/2。分装三解瓶,以不超过容积的1/2为宜。3.半固体分装 装置以试管高度的1/3为宜,灭菌后垂直待凝。(六)加棉塞 分装完毕后,在试管口或三解瓶口塞上棉塞(或泡沫塑料塞及试管帽等,以阻止外界微生物进入培养基而造成污染,并保证有良好的通气性能。(七)包扎 棉塞头上包一层牛皮纸,扎紧,即可进行灭菌。(八)保存 灭菌后的培养基放入37℃养箱中培养24小时,以检验灭菌的效果,无污染方可使用。

  • 乳糖蛋白胨培养基的细节问题

    请教各位老师,从一个资料上看说乳糖蛋白胨中的乳糖不能换成葡萄糖是因为葡萄糖经发酵产酸过多使PH达到4.5,使大肠杆菌死亡!这个说法对吗?还有大肠菌群的生长ph范围是多少。有根据吗?

  • 【资料】-蛋白柱常见问题和日常维护

    蛋白柱常见问题和日常维护在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。①样品不保留:在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。②回收率(质量回收率)低蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。③柱压过高 柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。④性能改变蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。(转贴[em07] )

  • 【分享】蛋白柱常见问题和日常维护

    蛋白柱常见问题和日常维护在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键 不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。 ①样品不保留: 在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。 此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。 在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。 ②回收率(质量回收率)低 蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。 ③柱压过高 柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。 ④性能改变 蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 蛋白柱常见问题和日常维护

    在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。   不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。   ①样品不保留:   在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。   此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。   在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。   ②回收率(质量回收率)低   蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。   ③柱压过高   柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。   ④性能改变   蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 蛋白柱常见问题和日常维护

    在蛋白分离时选择了合适的蛋白柱,有时往往不能成功地完成蛋白的分离,同一根蛋白分离柱在不同的使用者手中可能会有不同的柱寿命及分离效果,正确的使用蛋白柱和正确的日常维护是保证成功分离蛋白及延长柱寿命的关键。   不论使用什么类型的蛋白柱,首先必须对其填料的性能有基本了解。如该柱适用什么样的溶剂,什么类型的样品,流速及耐压范围等,GAT提供的各种类型的蛋白柱,在柱箱内均有详细的说明书,使用柱子前,务必要仔细阅读,以保证正确使用这些柱子。下面就蛋白分离中常出现的问题进行讨论。   ①样品不保留:   在用离子交换柱分离蛋白时,流动相的pH值对保留值影响很大,当选用阴离子型蛋白分析柱时,如#####若流动相的pH值小于蛋白的pI值时,蛋白分子阳离子状态,则在柱上没有保留,只有当流动相的pH值大于蛋白的pI值时,蛋白分子呈阴离子,才能在阴离子交换柱上得到保留。另外,当流动相或样品中的离子强度过大时,也会造成蛋白在离子交换柱上不保留。   此外,上样量过大,亦会使蛋白样品保留变弱,一般样品的上样量不应超过该填料结合蛋白量的20%,在选用GPC柱时,应特别注意填料的孔径及相应的可分离蛋白的分子量范围,若蛋白的分子量超过填料的孔径极限则蛋白样品也不保留。   在用反相色谱分离蛋白时,流动相中有机溶剂的比例会影响蛋白的保留值。有机溶剂比例过高,会使蛋白的样品与填料的作用变弱而过早地洗脱。流动相中的三氟乙酸可作为离子对试剂和pH调节剂,有利于蛋白的保留。   ②回收率(质量回收率)低   蛋白质量回收率低往往发生在使用凝胶过滤柱时,特别是以硅胶为基质的凝胶蛋白分析柱时,尽管硅醇基已经过双醇封口,但残留的硅醇基仍会与蛋白的碱性基团发生非GFC效应,造成回收率低,分离度差等现象,解决这一现象的方法是在流动相(通常是水)中加入0。M-0。3M盐作为改性剂以减少这种非GFC效应。   ③柱压过高   柱压过高的原因在于柱入口的堵塞及填料间的缝隙的减小或堵死,这些原因有:非硅胶填料的颗粒膨胀(主要是由于使用过高比例有机溶剂引起);来自样品,流动相的颗粒堵塞、细菌生长,流速过高等,为防止柱压过高,应使用符合要求的流动相组成。样品,流动相使用前严格过滤。为了保存时防止细菌生长。以硅胶为基质的柱子可使用20%有机水溶液保存。其它柱子在保存液中加入0。02%的叠氨钠。   ④性能改变   蛋白柱在使用一段时间后,其性能会有所改变(保留值变化,柱效下降等)。原因之一是被分离样品中细胞碎片,类脂,酸等的污染,对聚合物基质的柱子可用0。1-1。0N NaOH溶液清洗,注意以硅胶为基质的柱子(如Protein Pak凝胶柱)不能用NaOH清洗。

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 【求助】加入乳糖蛋白到试管中倒管总会有气泡

    做粪大肠菌群前,将倒管放到试管中,加入乳糖蛋白胨10mL,之后我一看,倒管里面几乎都是有气泡的,要颠倒试管好几遍才能把倒管中的气泡赶走。之前我都没看,这样就是说我之前做出来的阳性都有可能是假阳性啦?

  • 【原创大赛】单颗粒冷冻电镜技术的发展前景(译)

    近日,清华大学施一公研究组通过单颗粒冷冻电子显微技术(冷冻电镜)解析了酵母剪接体近原子分辨率的三维结构,并在此结构的基础上进行了详细分析,相关文章发表在《科学》周刊上。这一重要研究成果再次让冷冻电镜技术进入了大家的视野。  施一公表示,如果没有冷冻电镜,就完全不可能得到剪接体近原子水平的分辨率。而早在2007年清华大学采购冷冻电镜时,也没想到冷冻电镜会出现飞跃性的进展。  确实自从2013年以来,随着单电子计数探测相机的问世,以及图像处理算法的发展,冷冻电镜技术在结构生物学研究中的应用越来越多,其重要性也日益凸显,吸引了许多以前从事X射线晶体学研究的研究人员关注。那么冷冻电镜技术未来的发展前景如何呢?  2015年4月,单电子计数探测相机的研发人员之一华人学者程亦凡(Yifan Cheng) 在Cell杂志刊登了《Single-Particle Cryo-EM at Crystallographic Resolution》,其中有一个部分专门介绍了单颗粒冷冻电镜技术未来的发展。现将原文翻译如下,与版友们共享。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  毫无疑问,单颗粒冷冻电镜(single-particle cryo-EM)不再是‘‘blobology’’,而是一种可与X射线晶体学方法分辨率相媲美的新方法。然而,与X射线晶体学不同的是,单颗粒冷冻电镜总是产生一些信息(尽管并不都是原子分辨率级别的信息),甚至对分辨率并不是很高的图像进行重构,也能够获得如何改进样品制备的信息,以及宝贵的生物学见解。因此,在大分子研究方面,单颗粒冷冻电镜技术比X射线晶体学更具吸引力。  然而,单颗粒冷冻电镜技术还远非完美,而且技术发展仍然非常快。目前单颗粒冷冻电镜技术的分辨率水平,依然无法满足许多方面的应用要求。例如,如果分辨率能够突破3埃,这样就能清楚的看到离子的位置,同时不仅能观察到小分子,还能观察到小分子配体与目标蛋白是如何结合在一起的,这一点对于制药公司来说颇具吸引力,因为它能够为基于结构的药物设计和优化提供便利。  最近有一篇综述文章详细探讨了单颗粒冷冻电镜技术的局限性,尤其是在获取更高的分辨率方面,并介绍了可能的解决方法(Agard et al., 2014))。由于分辨率不足,建立新模型和精修所花费的时间常常远远超过了三维重构本身。尽管许多X射线晶体学工具可以被应用在冷冻电镜密度图模型的建立和精修,它也需要显著的改进(Amunts et al., 2014; Brown et al., 2015)。此外,X射线晶体学传统的验证准则,例如自由R-因子,对于建立冷冻电镜密度图的模型并不适用。因此,对于单颗粒冷冻电镜技术来说,建立、精修和验证有效的模型的工具和方法都需要进一步的发展。  除了提高技术本身,还有其他一些因素限制单颗粒冷冻电镜技术的广泛应用。首先,单颗粒冷冻电镜技术并不是一个“交钥匙”方法。即使有自动数据采集技术和流程化数据处理、图像采集和加工处理等,它依然是一个十分复杂的技术,对于一个新手来说,很难通过短时间的培训或使用说明书就能学会操作。其次,必要的基础设施需要价值不菲的投资,包括功能齐全的冷冻电镜设备,用于数据处理和存储的计算机资源等。另外,除了最初的投资,目前高端冷冻电镜设施运行所需要的投资也是巨大的。第三,目前几乎没有类似同步辐射光源向社会大众开放的、致力于高通量数据采集的冷冻电镜设施。 这些限制使得进入冷冻电镜领域的门槛太高,要想有所改变,将需要多方面的努力。  因此,使得冷冻电镜技术更加可靠耐用,并且相对容易掌握,降低设备和运行成本,提供现成的设备及专家,也是促使冷冻电镜技术能够像X射线晶体学技术广泛应用的重要步骤。尽管,单颗粒冷冻电镜技术的未来是光明的,但是需要科学界以及政府投资机构的大力支持,才能使得单颗粒冷冻电镜技术能够像X射线晶体学技术一样受欢迎。

  • 冷冻电镜单颗粒技术样品制备载网支持膜的选用

    冷冻电镜单颗粒技术样品制备载网支持膜的选用

    冷冻电镜技术是现今结构生物学里最常用的解析生物大分子三维结构的技术之一。虽然其样品制备过程比另一种同样非常常用的技术——X射线晶体学简便,但成功制备出一个适合进行高分辨数据收集的样品仍然是经验、运气、努力与创新相结合的结果。为了承载样品,使其能送入透射电镜进行观察,样品需要与带支持膜的载网接触并冷冻固定在一起。目前,可供选用的载网支持膜大体分两种:一种是有孔支持膜,包括常用的微栅碳支持膜、碳微阵列支持膜(如Quantifoil,GiG,Cflat等)、金属微阵列支持膜(如Quantifoil金膜,镍钛膜等)等,可直接购买使用。另一种是在有孔支持膜上再加一层连续超薄支持膜,添加的超薄支持膜常用的为超薄碳膜,近期又出现了氧化石墨烯膜等基于石墨烯的超薄膜类型。这种通常需要使用者对市售的有孔支持膜再加工,在其表面多加一层超薄支持膜。无论使用哪种膜,由于提供支撑的有孔膜较厚引入的噪音很高,数据收集都发生在孔内。[align=center][img=,690,728]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260954438579_6129_3224499_3.jpg!w690x728.jpg[/img][/align][align=center]图1.常用有孔支持膜类型[/align][align=center][img=,690,550]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260954588204_7034_3224499_3.jpg!w690x550.jpg[/img][/align][align=center]图2.有孔支持膜加连续超薄支持膜类型[/align]适合单颗粒技术数据收集的冷冻电镜样品需符合以下要求:①生物大分子群体主要为同种分子或者组分相同的复合体,且它们稳定在一种或有限的几种彼此能被计算机图像处理分类技术区分的构象;②样品颗粒彼此分离,同时分布密度又能满足在一次数据采集区域内获得足够的颗粒数量;③样品颗粒的空间取向随机分布。[align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955256336_8129_3224499_3.jpg!w690x262.jpg[/img][/align][align=center]图3.理想化的样品颗粒在冰层中的分布示意图[/align]这些要求看似与载网支持膜的选用无太大关联,但实践经验告诉我们,有时同一个样品使用不同的载网支持膜进行样品制备,其数据收集质量有区别。导致这种差别的原因之一是支持膜表面性质的不同对进孔样品分布密度的影响。使用有孔碳支持膜常见的一个问题是样品大部分粘附在支持膜上,而在孔内的样品数量很少。根据经验,碳支持膜对部分样品的吸附性能相当强,溶液中的样品会优先吸附到碳膜上,以至于游离的样品颗粒浓度大大降低,而分布在支持膜孔内的样品来源于游离的样品颗粒群体。使用添加了连续超薄膜的载网则少有这个问题,毕竟孔内孔外都有碳膜,同时由于碳膜对样品的吸附在一定程度上具有样品富集效应,还可降低制样时所需样品浓度。此外,使用金属材质的有孔支持膜(如金膜,镍钛膜等)能缓解这种情况,因为金属支持膜表面性质与碳支持膜有区别,其对样品的吸附也可能有差异。[align=center][img=,690,263]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955370487_1473_3224499_3.jpg!w690x263.jpg[/img][/align][align=center]图4.连续碳膜上的样品颗粒在冰层中的分布示意图[/align]导致这种差别的原因之二是冷冻样品制备时气液界面对样品的影响。由于电子能穿透的样品厚度很有限,样品被冻住前必须先进行减薄。目前最简单也最通用的减薄法是使用滤纸移除大部分液体而仅剩厚度在几十至上百纳米范围的水膜。根据现今通用的制样方式,从水膜的形成到它被快速冷冻成非晶态冰膜的时长在秒的量级。水膜的上下两层气液界面之间的距离如此短,水膜中样品被冷冻固定前的时间如此长,以至于样品颗粒有成千上万次机会与气液界面接触。每次接触样品颗粒都机率变性,或变成无定形的多肽链,或解体成更小的亚基组合。最终我们看到的样品颗粒或是被“已牺牲”的变性样品所保护而未能接触气液界面,或是幸运地多次接触气液界面而仍未变性。更多关于气液界面对样品影响的介绍,可参考孙飞(2018)以及Glaeser 和Han (2017)发表的综述。[align=center][img=,690,285]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260955485024_3909_3224499_3.jpg!w690x285.jpg[/img][/align][align=center]图5.现实的样品颗粒在冰层中的分布示意图[/align]使用有孔支持膜无可避免地会受到来自上下两层气液界面的影响,某些样品会因此而在冷冻后无法观察到完整颗粒。而使用连续超薄支持膜一面由气液界面转换为固液界面,另一面由于支持膜对样品的吸附而远离气液界面,有效地降低了气液界面对它的影响。既然添加连续超薄支持膜的载网有这么多好处,为什么很多样品仍然使用有孔支持膜呢?原因之一是长期使用的超薄碳支持膜对于小蛋白(特别是分子量小于500kDa)仍然太厚,引入的噪音太多,导致小蛋白数据取向搜索结果不够精确,影响重构分辨率提升。而石墨烯类超薄支持膜理论上为单分子层,比超薄碳膜更薄,在这方面可以帮上忙。但石墨烯类支持膜添加到载网上的方法仍在发展中,目前使用上仍不及有孔支持膜便利。[align=center][img=,690,541]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260956026943_9251_3224499_3.jpg!w690x541.jpg[/img][/align][align=center]图6.样品直径与碳膜厚度的选择(感谢友情出镜的大蛋黄颜值担当评审嘉宾)[/align]原因之二是添加超薄支持膜更大机率引起样品的取向优势,导致某些取向数据采集量远远不足,同样影响重构分辨率提升。[align=center][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811260956143795_3302_3224499_3.jpg!w690x396.jpg[/img][/align][align=center]图7.样品颗粒取向优势示意(感谢友情出镜的大蛋黄实力客串样品颗粒)[/align]纯有孔支持膜与添加超薄支持膜两种方案可谓各有优缺。有孔支持膜的缺点很明显,在于受气液界面的两面夹击。如果有一种方法能缩短样品减薄到冷冻固定的时长至毫秒级别,那么样品颗粒将没有足够的时间多次接触气液界面,同时也减少与支持膜本身的接触,从而使用有孔支持膜的各种问题将可能迎刃而解。Bridget Carragher实验室研发了一种特殊的载网,命名为纳米线载网(nanowire grids)。这种载网具有自减薄功能,即载网孔内多余的液体会被固定在载网梁上的纳米线所吸走,留在载网孔内的液体厚度自然下降。当然纳米线吸附液体体积是有上限的,需要配合他们实验室研发的微量加样设备(Spotiton robot)加注皮升级别的样品量。虽然目前还未得到普及,但这种设置可以实现将减薄步骤的时长降低到百毫秒级别的水平。目前该文章未正式发表。推荐阅读文献:Fei Sun. Orienting the future of bio-macromolecular electronmicroscopy. Chin. Phys. B. 2018, 27(6): 063601Glaeser RM, Han BG. Opinion: hazards faced by macromolecules whenconfined to thin aqueous films. Biophys Rep. 2017, 3(1):1-7Noble AJ, Wei H, Dandey VP, Zhang Z, Potter CS, Carragher B.Reducing effects of particle adsorption to the air-water interface in cryoEM.doi: https://doi.org/10.1101/288340Palovcak E, Wang F, Zheng SQ, Yu Z, Li S, Bulkley D, Agard DA, ChengY. A simple and robust procedure for preparing graphene-oxide cryo-EM grids.doi: http://dx.doi.org/10.1101/290197Russo CJ, Passmore LA. Electron microscopy: Ultrastable goldsubstrates for electron cryomicroscopy. Science. 2014, 346(6215):1377-80.Sader K, Stopps M, Calder LJ, Rosenthal PB. Cryomicroscopy ofradiation sensitive specimens on unmodified graphene sheets: reduction ofelectron-optical effects of charging. J Struct Biol. 2013, 183(3):531-536来源:【生物成像中心】欢迎大家分享讨论使用过的载网支持膜[img]https://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img]

  • 蛋白结果总是偏低,不知道为啥?

    [color=#555555]各位好,请教各位一个问题,希望得到指点哈!最近做手工蛋白结果总是偏低,不知道为啥?[/color][color=#555555]方法:称取0.2g 硫酸铜和6.0g硫酸钾,加入5.0g含乳蛋白饮料。先消化3.5h,然后冷却,加一级水冲洗,看有无黑色颗粒,一般也没有,然后再消化0.5到1.0h,消化好后,再次用一级水冲洗,冷却后蒸馏。蒸馏前会用纯水将蒸馏系统清洗两次,样品蒸馏5分钟后滴定,滴定用0.1的硫酸标准溶液,最后滴成灰红色,结果连续做几次,我做的结果都比别人的低,不知道是哪里操作错误。[/color]

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 蛋白质的带电性能对于SEC蛋白柱的分离有影响吗?

    大部分蛋白是酸性蛋白,等电点小于7,pH7.0的缓冲液中带负电,色谱柱说明书里的标准蛋白也是这类蛋白。可是对于那些等电点大于7的碱性蛋白来说,pH7.0下带正电荷,蛋白柱对于碱性蛋白的分离效果如何?再比如一个PI=7的蛋白,在pH4.0和pH9.0的buffer中,保留体积是一样的吗?虽然有些蛋白柱的应用案例也有碱性蛋白,但是实际上,我用同样的条件做下来,结果的并不好。不知大家做下来如何?

  • 酸性蛋白CIEF分析

    最近在做几个酸性蛋白的CIEF。贝克曼的方法比较适用于中性和偏碱性的蛋白分析,对于酸性蛋白分析效果不太理想。氨水迁移法比较适合酸性蛋白,但是据说很伤柱子,做不了几个样品。讨论一下,有没有人遇到同样的问题,是怎么优化方法的呢?我尝试调整占位剂的配比,暂时也没有得到理想的结果。

  • 如何明辨重组蛋白、融合蛋白与天然蛋白:重组蛋白常见问题详解

    [font=宋体][b]重组蛋白、融合蛋白与天然蛋白的区别:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]重组蛋白常见问题解析:[/b][/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体] [/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1% BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10% FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体] [/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1) [/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2) [/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。 [/font][font=Calibri]3) IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4) [/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF, IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5) [/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]载体蛋白如[/font] [font=Calibri]HSA [/font][font=宋体]或 [/font][font=Calibri]BSA [/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font] [font=Calibri]0.1% BSA [/font][font=宋体]或 [/font][font=Calibri]0.1% HSA[/font][font=宋体])分装保存,并在 [/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • WB经验之蛋白胶注意事项2

    5.配胶用玻璃板和边条应及时洗净。玻板未洗净的坏处很多。尽管玻璃看似平滑,但是一些细微的凹陷处会凝结肉眼无法分辨的胶颗粒(摸上去疙疙瘩瘩),其坏处是,在该部位极易导致不均匀的胶块,样品经过该处或电泳散热不好,条带变形。如果是RNA的超薄胶,胶板的颗粒会导致局部巨大气泡,非常难于清除;蛋白胶也会导致一些小气泡的产生。玻板没洗净的另一个坏处是,由中学物理知识可知,玻璃表面越光滑粘附越牢,未洗净的玻板会削弱和胶体间的粘附力,拔梳子或边条时会产生微小的错动,胶体下部出现大量气泡(夹在玻板和胶之间,这个关系不大);严重的错动会使上样时,样品从胶和玻璃之间的间隙漏光,或者甚至胶和玻板分开。为避免拔梳子时的错动,可在电泳缓冲液中拔梳子(比水更好,有SDS润滑)。 判断玻板是否洗干净,用手摸一下有没有疙疙瘩瘩的;最好用洗洁精之类,洗衣粉、肥皂都不好用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制