当前位置: 仪器信息网 > 行业主题 > >

特拉赛麝香标准品

仪器信息网特拉赛麝香标准品专题为您提供2024年最新特拉赛麝香标准品价格报价、厂家品牌的相关信息, 包括特拉赛麝香标准品参数、型号等,不管是国产,还是进口品牌的特拉赛麝香标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合特拉赛麝香标准品相关的耗材配件、试剂标物,还有特拉赛麝香标准品相关的最新资讯、资料,以及特拉赛麝香标准品相关的解决方案。

特拉赛麝香标准品相关的资讯

  • 2022赛恩思高频红外碳硫分析技术交流会—乌拉特后旗站
    近日,四川赛恩思仪器在内蒙古乌拉特后旗成功举办了2022年赛恩思高频红外碳硫分析技术交流会,与来自当地的数家矿产企业技术负责人共同探讨、交流了关于矿产品检测分析的技术难题及新技术攻克。会议期间,四川赛恩思仪器有限公司产品经理苏林和参会嘉宾就铅锌矿、锌精矿、铜精矿、硫精矿等诸多矿产品在碳、硫元素分析时的技术难点及有效硫测定方法,以及碳硫分析技术国内整个发展过程和目前行业现状等诸多问题同多家矿产企业进行了深度交流,这些内容引起参会人员极大的兴趣和探讨热情,现场大家纷纷提问并进行交流探讨。立足当下,放眼未来。四川赛恩思仪器有限公司坚持“产业报国、科技兴国”为己任,恪守“超越、感恩、反思”的企业精神,以突破分析检测核心技术,助力材料科学的高速发展为企业宗旨,持之以恒的为客户创造超越项目需求的独特价值,并全力打造极具国际竞争力的一流分析仪器品牌。此次赛恩思在乌拉特后旗举办的高频红外碳硫技术交流会圆满落下帷幕!参会企业负责人表达了对四川赛恩思作为民族企业,坚持实事求是地进行产品及技术创新予以了高度评价。
  • 江苏省分析测试协会发布《食品中非法添加物西布曲明的快速检测 拉曼光谱法》等2项团体标准
    各有关单位:根据《江苏省分析测试协会团体标准管理办法》的规定,T/JSAIA 010-2023《食品中非法添加物西布曲明的快速检测 拉曼光谱法》和 T/JSAIA 011-2023《食品中非法添加物盐酸二甲双肌的快速检测 拉曼光谱法》2 项团体标准已按规定程序审查、审批通过,现予以发布。特此公告。江苏省分析测试协会2023年10月9日关于发布《食品中非法添加西布曲明》等2项团体标准的公告.pdf
  • 赛伯乐开通微信啦!
    告诉大家一个好消息,赛伯乐仪器开通官方微信啦!您可以通过以下方式关注我们的微信:打开你的微信,在右上角快捷菜单里选择“扫描二维码”,把手机摄像头对准上面的微信二维码扫描一下即可加关注。也可以依次点击“朋友们-添加朋友-扫描二维码”进行扫描。想了解公司最新动态,想知道拉曼应用领域,一起扫一扫吧~~
  • 福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》等3项团体标准征求意见稿
    福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》、《非即食薯类粉》团体标准征求意见稿《非即食薯类粉》团体标准征求意见函.pdf《食品中安赛蜜的测定 液相色谱法》团体标准征求意见函.pdf《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸的测定》团体标准征求意见函.pdf
  • 陈锐:年底还将公布70余项食品安全标准
    仪器信息网讯 2013年11月6日,由国际食品保护协会(IAFP)主办的&ldquo 2013年中国国际食品安全与质量控制会议暨检测仪器设备展览会(简称为CIFSQ)&rdquo 在北京召开。国家卫生和计划生育委员会食品安全标准与监测评估司副司长陈锐做了《中国食品安全标准工作进展》为题的报告。 国家卫生和计划生育委员会食品安全标准与监测评估司副司长 陈锐 报告题目:中国食品安全标准工作进展   陈锐在报告中介绍到,2009年以来,我国已经公布303项食品安全国家标准,如:乳品、污染物限量、标签和营养标签、农药残留、食品添加剂使用标准等。已发布的303项标准中,基础标准7项、产品标准21项、食品添加剂质量规格207项、检验方法与规程55项、食品相关产品6项、生产经营规范3项、农药残留4项。   同时,陈锐还介绍说,今年年底还将公布70余项食品安全标准。   在食品相关标准清理整合方面,陈锐介绍到,国家卫生计生委已经完成包括食用农产品质量安全标准、食品卫生标准、食品质量标准、行业标准在内的5000余项标准的初步清理工作,目前正在公开征求对清理结果的意见。   此外,由于上半年农夫山泉产品地方标准和国家标准相冲突的事件,国家卫生计生委目前正在部署各地开展食品安全地方标准的清理工作,年底前要完成。   标准清理完成之后,下一阶段(2014年-2015年)的任务就是食品标准的整合。陈锐介绍到,食品相关标准整合的目标有两个,一是解决标准交叉、矛盾、重复、缺失问题;二是完善食品安全标准体系。最后,陈锐还给出了食品安全标准体系的初步设想。 食品安全标准体系(初步设想)
  • 机器视觉|产品合集:选对摄像头,才能拍摄高清图像
    上次介绍完新伙伴Machine Vision 之后很多菲粉们都对它表示好奇经过留言筛选今天小菲就来说说它的主要产品分类~No.1精致小巧的Firefly SFLIR Firefly® S以超紧凑的机身提供您所需的基本机器视觉功能。它体积小,功耗低,重量轻,非常适合嵌入便携式设备。Firefly S通过将强大的相机功能与CMOS传感器相结合,提供非凡的价值。No.2高性能的Blackfly S 板级FLIR Blackfly 板级变体属于高性能机器视觉区域扫描摄像头,设计用于嵌入狭小空间。与许多其他板级摄像头不同,它具有丰富的功能组,适合新的CMOS传感器,与箱式版本功能组相同。以其可靠的兼容性,随时可集成至主流SBC和SOM。Blackfly S 板级型号采用嵌入式系统连接,具有丰富的功能,能够使OEM开发更小、更轻且成本更低的解决方案。No.3高质量成像的Grasshopper3 USB3Grasshopper® 3 相机系列将新的 CCD 和 CMOS 技术与 Point Grey 的专门技术相结合,实现了高性能、高质量的成像。No.4高速传输的Oryx 10GigE屡获殊荣Oryx 10GigE相机系列支持高达10Gbit/s 的传输速度,并能够以超过60FPS的帧率拍摄4K 分辨率的12位图像,从而允许系统设计员充分利用新传感器。Oryx的10GBASE-T接口是经过证明且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。相机内部功能(包括 IEEE1588 时钟同步以及与支持 GigE Vision 的热门第三方软件完全兼容)为系统设计员提供了相关工具,以便快速开发创新型解决方案。No.5应用程序——Spinnaker SDKSpinnaker SDK是FLIR的下一代GenICam3 API 库,专为机器视觉开发人员而构建。它拥有称为SpinView的直观GUI、丰富的代码示例及全面的文档,可助您更快速地创建应用程序。Spinnaker SDK支持FLIR USB3、10GigE和大多数GigE区域扫描相机。支持平台:Windows 7(32和64-bit)/Windows 10 (32和64-bit)/Desktop Ubuntu 18.04 (64-bit)/Desktop Ubuntu 16.04(32-bit)/Ubuntu 18.04(ARM64)/Ubuntu(16.04 ARMHF & ARM64)/MacOS(Mojave & High Sierra)。以上五款产品: 机器视觉摄像头还有相机深度学习——Firefly DL、冰块外形传感器——BlackflyS USB3/Blackfly S GigE、高性价比——Chameleon3 USB3、多功能结合——Blackfly USB3/Blackfly GigE等产品.
  • 2023年9月份有167项标准将实施 食品标准超50%
    2023年9月份有167项标准将实施我们通过国家标准信息平台查询到,在2023年9月份将有167项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在9月份新实施的标准中,与食品相关的标准有85个,占据了51%,紧随其后的领域为医药卫生、环境保护。医药卫生领域标准23个,主要为行业标准,包括医疗器械产品标准、医疗用品标准及各种规范类标准。环境保护领域标准16个,主要涉及土壤、废水、废气等。在9月份新实施的标准中,包含了多品类科学仪器,如:离子色谱仪、原子吸收光谱 仪、辉光放电质谱 仪、电感耦合等离子体发射光谱法等。具体2023年9月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(85个)LS/T 6145-2023 粮油检验 粮食中铅的测定 胶体金快速定量法 LS/T 6144-2023 粮油检验 粮食中镉的测定 胶体金快速定量法 LS/T 6143-2023 粮油检验 谷物中黄曲霉毒素 B1 的测定 时间分辨荧光免疫层析定量法 LS/T 6142-2023 粮食真菌毒素快 速检测方法性能评价 LS/T 6141-2023 粮油检验 大米水浸裂纹粒的测定 LS/T 3273-2023 米皮 LS/T 3272-2023 面皮 LS/T 3271-2023 蒸谷米 LS/T 1805-2023 粮食数据采集技术规范 政策性粮食收购 LS/T 1232-2023 粮油储藏 简易仓囤储粮通风技术规程 LS/T 1231-2023 稻米加工技术规程 DB4104/T 129-2023 郏县饸饹面烹饪技艺 DB12/T 1225-2023 茄果类蔬菜秸秆好氧堆肥技术规程 DB12/T 1224-2023 叶菜类蔬菜尾菜饲料 化技术规程 DB12/T 1223-2023 菜地烟粉 虱 信息素诱捕防控技术规程 DB12/T 1222-2023 梨园主要病虫害绿色防控技术规程 DB12/T 1221-2023 日光温室草莓生产技术规程 DB43/T 1588.37-2023 小吃湘菜 第 37 部分:栖凤渡鱼粉 DB43/T 2650-2023 低温粮仓通用技术要求 DB43/T 2649-2023 食品接触材料及制品 1- 己烯迁移量的测定 DB43/T 2648-2023 一次性竹质餐具(刀、叉、匙)通用技术要求 DB43/T 2645-2023 油茶农业气象观测规范 DB14/T 2793—2023 南方红豆 杉 播种育苗技术规程 DB14/T 2792—2023 文冠果育苗造林技术规程 DB14/T 2791—2023 金黑杨 扦插育苗技术规程 DB14/T 2790—2023 香椿播种育苗技术规程 DB14/T 2789—2023 白桦播种育苗技术规程 DB14/T 2788—2023 栎类轻 基质无纺布容器育苗技术规程 DB14/T 2787—2023 平欧杂种榛 弓形压条育苗技术规程 DB14/T 2786—2023 油松母树林营建技术规程 DB14/T 2785—2023 主要造林针叶树种容器苗质量分级 DB14/T 2784—2023 主要造林树种采种技术规程 DB14/T 2783—2023 草地围栏建设技术规程 DB14/T 2782—2023 通道绿化抚育技术规程 DB14/T 2781—2023 天然 辽东栎林大径材培育技术规程 DB14/T 2780—2023 秸秆容器苗边坡绿化技术规范 DB14/T 2779—2023 营造林工程监理规范 DB14/T 2778—2023 黄土丘陵区水土保持林营造技术规程 DB14/T 2777—2023 植树造林种草技术规范 DB14/T 2776—2023 森林康养基地 导引指南 DB14/T 2775—2023 林业技术推广实训基地建设规范DB14/T 2774—2023 堆肥法处理绿化废弃物技术规程 DB14/T 2773—2023 常见落叶行道树修剪规范 DB14/T 2772—2023 晋北风沙 源治理 技术规程 DB14/T 2771—2023 沙化土地修复治理技术规程 DB14/T 2770—2023 常绿针叶树养护技术规程 DB4115/T 086-2023 茶树花加工技术规程 DB50/T 1442-2023 合川黑猪品种鉴别和种猪等级评定 DB50/T 1441-2023 中蜂生产性 能测定技术规范 DB50/T 1440-2023 中蜂 介 王技术规范 DB50/T 1439-2023 中蜂蜂群 转场技术规范 DB50/T 1438-2023 中蜂蜂群 扩繁技术规范 DB50/T 1437-2023 中蜂蜂蜜 溯源管理规范 DB50/T 1436-2023 丘陵地区油菜飞播生产技术规程 DB50/T 1435-2023 郎氏十 框箱继箱生产中蜂成熟蜜 技术规范 DB50/T 1434-2023 桑叶 茶加工 技术规程 DB50/T 1433-2023 桑葚 酱 加工技术规程 DB43/T 2641-2023 稻谷低温储藏技术规范 DB43/T 2640-2023 储备粮油 扦样技术 规范 DB43/T 2636-2023 即食鱼 豆腐加工技术规程 DB 4407/T 101-2023 潭碧冬瓜生产技术规程 DB41/T 974-2023 地理标志产品 内黄大枣 DB41/T 456-2023 丹参生产技术规程 DB41/T 455-2023 连翘生产技术规程 DB41/T 325-2023 南湾鳙鱼 DB41/T 2434-2023 老龄牡丹复壮技术规程 DB41/T 2423-2023 蜡梅 造型苗木生产技术规程 DB41/T 2422-2023 蜡梅 多干大苗培育技术规程 DB41/T 2421-2023 淫羊藿 ( 箭叶淫羊藿 )加工技术规程 DB41/T 2420-2023 丹参烘干储存技术规程 DB41/T 2419-2023 桑稚蚕颗粒人工饲料共育技术规程 DB41/T 2417-2023 烟田滴灌施肥一体化技术规程 DB41/T 2416-2023 高标准农田智慧灌溉技术规程 DB41/T 2415-2023 高标准农田建设项目验收规程 DB4112/T 315—2023 灵绿麦 1 号生产技术规程 DB4112/T 314—2023 旱作夏芝麻生产技术规程 DB4112/T 313—2023 果园再植障碍防控技术规程 DB31/T 645-2023 上海果品等级 葡萄 DB31/T 1406-2023 农用地现状分类 DB3601/T 7—2023 大塘清明酒生产工艺规范 GB/T 42679-2023 农业废弃物资源化利用 生物质资源综合利用 GB/T 42550-2023 农业废弃物资源化利用 农业生产资料包装废弃物处置和回收利用 GB/T 42546-2023 农业废弃物资源化利用 农产品加工废弃物再生利用 GB 23350-2021 限制商品过度包装要求 食品和化妆品 GB/T 42778-2023 无土草毯 环境环保标准(16个)GB/T 18916.6-2023 取水定额 第 6 部分:啤酒 GB/T 18916.12-2023 取水定额 第 12 部分:氧化铝 GB/T 18916.7-2023 取水定额 第 7 部分:酒精 GB/T 18916.16-2023 取水定额 第 16 部分 : 电解铝 GB/T 42642 -2023 海洋底栖动物种群生态修复监测和效果评估技术指南 GB/T 42643-2023 海底沉积物声学特性原位调查规范 GB/T 33233-2023 节水型企业 电解铝行业 GB/T 42637-2023 大洋多金属硫化物资源调查规范 DB5301/T 91-2023 城镇排水系统溢流污染控制技术指南 DB12/T 1228-2023 农村生活污水设施运行检查技术规范 DB12/T 1226-2023 农药包装废弃物回收处理技术规程 DB14/T 2769—2023 表面流人 工湿地治理煤矿废水工程 技术规范 DB31/T 310016-2023 工业园区挥发性有机物传感器法网格化监测技术规范 DB31/T 310015-2023 环境空气气态污染物( SO2 、 NO2 、 NO 、 O3 、 CO )传感器法自动监测系统技术要求及检测方法 DB31/T 310014-2023 固定污染源废气 氯气的测定 离子色谱法 DB43/T 2 637-2023 土壤中总镉的测定 固体进样电热蒸发原子吸收光谱法 医药卫生标准(23个)YY/T 0493-2022 牙科学 弹性体印模材料 YY/T 0321.3-2022 一次性使用麻醉用过滤器 YY/T 1872-2022 负压引流海绵 YY/T 1864-2022 脊柱内固定系统及手术器械的人因设计要求与测评方法 YY/T 1858-2022 人工智能医疗器械 肺部影像辅助分析软件 算法性能测试方法 YY/T 1854-2022 聚氯乙烯医疗器械中偏苯三酸三辛酯( TOTM )溶出量测试方法 YY/T 1852-2022 人类辅助生殖技术用医疗器械 培养用 液中铵离子 的测定 YY/T 1851-2022 用于增材制造 的医用纯钽粉末 YY/T 1842.6-2022 医疗器械 医用贮液容器输送系统用连接件 第 6 部分:神经应用 YY/T 1833.3-2022人工智能医疗器械 质量要求和评价 第 3 部分:数据标注通用要求 YY/T 1829-2022 牙科学 牙本质小管封堵效果体外评价方 法 YY/T 0772.4-2022 外科植入物 超高分子量聚乙烯 第 4 部分:氧 化指数 测试方法 YY/T 0334-2022 硅橡胶外科植入物通用要求 YY/T 0325-2022 一次性使用无菌导尿管 YY/T 1790-2021 纤维蛋白 / 纤维蛋白原降解产物测定试剂盒(胶乳免疫比浊法) YY/T 1780-2021 医用个人防护系统 SB/T 11234-2023 商场消毒操作指南 DB52/T 1744-2023 学校和托幼机构传染病报告及疫情处置管理规范 DB52/T 1742-2023 农村集中式供水单位卫生管理规范 DB4112/T 317—2023 畜牧兽医技能竞赛 兽医化验员现场技能操作规范 DB4112/T 316—2023 畜牧兽医技能竞赛 兽医 防治员 现场技能操作规范 DB31/T 713-2023 零售药店服务规范 DB31/T 12-2023 化妆品皮肤病评判技术规范 石油天然气标准(11个)GB/T 42440-2023 页岩气 工厂化压裂用水输送系统技术要求 GB/T 35212.4-2023 天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第 4 部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成 GB/T 39139.2-2023 页岩气 环境保护 第 2 部分:生产作业环境保护推荐作法 GB/T 11060.2-2023 天然气 含硫化合物的测定 第 2 部分:用亚甲蓝法测定硫化氢含量 GB/T 11060.13-2023 天然气 含硫化合物的测定 第 13 部分:用紫外吸收法测定硫化氢含量 GB/T 11060.1-2023 天然气 含硫化合物的测定 第 1 部分:用碘量法测定硫化氢含量 GB/T 11060.12-2023 天然气 含硫化合物的测定 第 12 部分:用激光吸收光谱法测定硫化氢含量 GB/T 35210.1-2023 页岩甲烷等温吸附 / 解吸量的测定 第 1 部分:静态容积法 GB/T 34533-2023 页岩孔隙度、渗透率和饱和度测定 GB/T 6683.3-2023 石油及相关产品 测 量方法与结果精密度 第 3 部分:试验方法已发布精密度数据的监测和验证 GB/T 17476-2023 润滑油和基础油中多种元素的测定 电感耦合等离子体发射光谱法 冶金矿产标准(6个)GB/T 42439-2023 锑 矿石化学物相分析方法 锑华、辉锑矿和 锑酸 盐中 锑 含量的测定 GB/T 25283-2023 矿产资源综合勘查评价规范 MT/T 1198-2023 煤矿井下人员位置监测系统使用与管理规范 GB/T 42518-2023 锗酸铋 (BGO) 晶体 痕量元素化学分析 辉光放电质谱法 DB41/T 2430-2023 煤炭勘查阶段煤层气试井钻杆地层测试技术规程 DB43/T 2635-2023 大口径 凃 塑复合钢管通用技术要求 电力半导体标准(12个)GB/T 15879.604-2023 半导体器件的机械标准化 第 6-4 部分:表面安装半导体器件封装外形图绘制的一般规则 焊球阵列 ( BGA )封装的尺寸测量方法 GB/T 42706.5-2023 电子元器件 半导体器件长期贮存 第 5 部分:芯片和 晶圆 GB/T 42706.2-2023 电子元器件 半导体器件长期贮存 第 2 部分:退化机理 GB/T 42709.5-2023 半导体器件 微电子机械器件 第 5 部分:射频 MEMS 开关 GB/T 42706.1-2023 电子元器件 半导体器件长期贮存 第 1 部分:总则 GB/T 19749.4-2023 耦合电容器及电容分压器 第 4 部分:直流或交流单相电容分压器
  • 鑫图实时图像拼接和实时景深融合功能将免费为MIchrome显微摄像头用户开放
    搭载MIchrome 5 Pro相机的显微镜在移动载物台的数秒钟时间,如同手机全景摄影一样,完成了显微视频图像到全景拼接的整个过程。 不论4倍、10倍,还是40倍,横轴、纵轴,还是任意角度,MIchrome 5 Pro都能快速准确拼接。 轻快、顺畅、省心! 这样的体验来源于鑫图全新计算成像软件——Mosaic 2.0,不仅提供实时自动拼接功能,还同时提供实时景深融合(EDF)。 得益于鑫图自研的智能拼接算法模型结构,以及大量的显微图像训练和应用测试,Mosaic 2.0 不仅不会出现传统进口软件错拼的尴尬局面,而且和动辄数千美元的定价不同, Mosaic2.0完全向MIchrome 5 Pro用户免费开放。 技术发展到如今高度整合的程度,显微摄像头,尤其是旗舰级别的显微摄像头远不是简单的CMOS芯片、传输控制单片机、成像软件等硬件组合到一起再固定到显微镜接口上那么简单。以鑫图MIchrome 5 Pro为例,鑫图就做了这一技术的原型机,但直到2018年8月,带着智能算法的MIchrome 5 Pro才最终与用户见面。MIchrome 5 Pro的整个方案分为四层,算法、应用、软件层和硬件层。 “鑫图光电的核心竞争力其实是在最上两层,视觉的应用层以及核心的算法能力层。” 鑫图光电高级研发经理赵泽宇博士在发布会上提到,上文提到的实时图像拼接正是集中于这两个层面。 在MIchrome 5 Pro的这套显微成像解决方案中,实际上也涵盖了硬件和软件方面,承担核心图像处理功能的“ISP”就是其中创新意义的典型。 ISP也叫“图像处理引擎”,是目前苹果、华为、谷歌等手机行业一众大佬的竞争天王山所在,谁拿下品质更高的ISP,谁就能向消费者展示一个更精彩的世界。显微成像应用中,这个结合了自动白平衡、自动曝光、高动态范围等复杂算法的处理引擎拥有同样的重要性。 然而日益巨大的ISP算法处理量会让CPU不堪重负,传统方案往往不得不对图像质量进行让步或者导致传输速率急剧下降。 如何开发出更高质量的显微成像ISP,成为各个厂家面临的关键问题。 针对这一问题,作为科学成像领导者的鑫图光电,日前提出了全新的FPGA芯片端全ISP解决方案,创新地将显微行业首个自研ISP集成到28纳米工艺的FPGA芯片中,利用FPGA芯片巨大的并行处理能力完成图像的高速处理,并发布了基于该技术的MIchrome 5 Pro——这款姗姗来迟的显微相机。 可以预见的是,在信息量成十倍百倍增加的显微成像中,计算成像带来的优势将被更多的用户感受到。实时拼接和实时景深融合只是智能显微成像新模式的冰山一角,而鑫图此次发布的MIchrome 5 Pro,针对显微成像从硬件到ISP和算法的一揽子解决方案,作为先锋将居功至伟。产品型号 MIchrome 5 Pro MIchrome 20 MIchrome 6芯片型号 IMX264LQR-C IMX183CQJ-J IMX178LQJ-C芯片尺寸 2/3" 1" 1/1.8"快门方式 Global Rolling Rolling分辨率5MP20MP6.3MP 帧率 35fps@ 15fps@ 40fps
  • 文本公布!GB 31650-2019等10项食品安全国家标准
    p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 近日,农业农村部与国家卫生健康委员会、国家市场监督管理总局联合发布《食品安全国家标准 食品中兽药最大残留限量》,该标准及9项兽药残留检测方法食品安全国家标准文本已经发布,且将在六个月后正式实施,公告如下: /span /p p style=" text-align: center " strong 《食品安全国家标准 食品中兽药最大残留限量》(GB31650-2019,代替农业部公告第235号中的相应部分)及9项兽药残留检测方法食品安全国家标准即日起可在我中心网站查询 /strong /p p style=" text-indent: 2em " span style=" font-family: 楷体,楷体_GB2312, SimKai " 根据农业农村部、国家卫生健康委员会和国家市场监督管理总局公告2019年第114号,《食品安全国家标准 食品中兽药最大残留限量》(GB31650-2019,代替农业部公告第235号中的相应部分)及9项兽药残留检测方法食品安全国家标准自发布之日起6个月正式实施。& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   即日起,以上标准文本参考件(见附件)可在本网站通知公告栏目查阅。& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   最终版本以正式出版文本为准。& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   附件:& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31650-2019食品安全国家标准 食品中兽药最大残留限量& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.1-2019食品安全国家标准 水产品中大环内酯类药物残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.2-2019食品安全国家标准 水产品中辛基酚、壬基酚、双酚A、已烯雌酚、雌酮、17α-乙炔雌二醇、17β-雌二醇、雌三醇残留量的测定 气相色谱-质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.3-2019食品安全国家标准 水产品中氟乐灵残留量的测定 气相色谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.4-2019食品安全国家标准 动物性食品中醋酸甲地孕酮和醋酸甲羟孕酮残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.5-2019食品安全国家标准 动物性食品中金刚烷胺残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.6-2019食品安全国家标准动物性食品中5种α2-受体激动剂残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.7-2019食品安全国家标准 猪组织和尿液中赛庚啶及可乐定残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.8-2019食品安全国家标准 牛可食性组织及牛奶中氮氨菲啶残留量的测定 液相色谱-串联质谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   GB31660.9-2019食品安全国家标准 家禽可食性组织中乙氧酰胺苯甲酯残留量的测定 高效液相色谱法& nbsp /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   & nbsp & nbsp /span /p p style=" text-align: right " span style=" font-family: 楷体,楷体_GB2312, SimKai " 2019年10月12日& nbsp /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 此次发布的食品中兽药最大残留限量标准规定了267种(类)兽药在畜禽产品、水产品、蜂产品中的2191项残留限量及使用要求,基本覆盖了我国常用兽药品种和主要食品动物及组织。本标准与农业部公告第 235 号相比,主要变化如下: /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——增加了“可食下水”和“其他食品动物”的术语定义; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——增加了阿维拉霉素等 13 种兽药及残留限量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——增加了阿苯达唑等 28 种兽药的残留限量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——增加了阿莫西林等 15 种兽药的日允许摄入量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——增加了醋酸等 73 种允许用于食品动物,但不需要制定残留限量的兽药; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——修订了乙酰异戊酰泰乐菌素等 17 种兽药的中文名称或英文名称; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——修订了安普霉素等 9 种兽药的日允许摄入量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——修订了阿苯达唑等 15 种兽药的残留标志物; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——修订了阿维菌素等 29 种兽药的靶组织和残留限量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——修订了阿莫西林等 23 种兽药的使用规定; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——删除了蝇毒磷的残留限量; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——删除了氨丙啉等 6 个允许用于食品动物,但不需要制定残留限量的兽药品种; /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " ——不再收载禁止药物及化合物清 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 附件: /span /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.2-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/8211f27d-862d-4556-9bcf-cdd341c1502a.pdf" GB31660.2-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.1-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/117f0b54-e5a0-4236-8b10-5b84e7877039.pdf" GB31660.1-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31650-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/1bb32421-f9ee-4fa0-a381-e8cca4b289df.pdf" GB31650-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.4-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/3f03713c-dae8-483d-a441-e16c93a6eb46.pdf" GB31660.4-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.3-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/59011cb1-f615-480b-9bca-f5db7dd3c292.pdf" GB31660.3-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.5-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/05c208d3-57c6-42fe-ba8a-9d1232f56f30.pdf" GB31660.5-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.8-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/cbb44657-5c29-4637-95c0-dd195dbca968.pdf" GB31660.8-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.6-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/cd61ebbb-0e55-4530-b90f-6457fa2073c9.pdf" GB31660.6-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.7-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/b071c91b-ea1a-4337-89ad-32a400eafb27.pdf" GB31660.7-2019.pdf /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" GB31660.9-2019.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201910/attachment/23b99f77-55e7-480a-85a1-985c54a43d8f.pdf" GB31660.9-2019.pdf /a /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " br/ /span /p p & nbsp /p
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • Bettersize2600激光粒度分析仪测试托拉塞米原料药
    托拉塞米为难溶性药物,原料药颗粒的大小不仅影响药品制备过程中的可加工性,更主要的是影响药物颗粒的溶解性,影响其生物等效性,因此对于托拉塞米颗粒粒度检测是非常重要的。本文使用Bettersize2600激光粒度分析仪测试两款托拉塞米颗粒的粒度,考察两款托拉塞米的差异。湿法或干法对粒度结果的影响湿法是把托拉塞米分散在水或有机溶剂中,通过搅拌、超声以及添加分散剂的方式使粉体颗粒达到良好的分散。图1. 1#托拉塞米样品随分散时间变化曲线(上) 2#托拉塞米样品随分散时间变化曲线(下)由上图来看,1#托拉塞米样品,随着分散时间的增加颗粒粒度逐渐变小,当超声时间达到90s以后基本达到稳定状态。而2#托拉塞米样品,随着分散的进行D10、D50和D90反而增大。图2. 1#托拉塞米样品(A)与2#托拉塞米样品(B)的显微图像这主要是由于两款托拉塞米微粉的粒径差异较大。1#托拉塞米颗粒较大,2#托拉塞米颗粒较小,小颗粒比表面积大,溶解较快,导致粒径逐渐变大。从样品的遮光率变化来看(图3所示),1#托拉塞米遮光率稳定不变,2#托拉塞米遮光率逐渐降低,也进一步证实了2#托拉塞米有溶解现象。图3. 1#与2#托拉塞米遮光率随时间变化曲线从湿法测试结果来看,1#托拉塞米分散90s后结果基本稳定,而2#托拉塞米由于有溶解现象,导致颗粒粒径逐渐变大,因此对于粒径较小的托拉塞米原料药不建议采用湿法测试。干法测试是把托拉塞米干粉直接放到干法进样器中,通过压缩空气将样品“吹过”测试区,从而实现粒度测试。干法测试时,气压将影响结果,我们先用压力滴定的方式,看看能不能找到结果稳定的压力。图4. 1#托拉塞米压力滴定曲线(上) 2#托拉塞米压力滴定曲线(下)从上面两个压力滴定曲线来看,1#托拉塞米随着分散压力增大颗粒粒度逐渐降低,无稳定的平台,这是因为1#托拉塞米的颗粒为片状。空气压力不断将颗粒打碎,导致无稳定的分散平台,这种现象在ISO13320中也给出提示,对1#托拉塞米分散压力选择要慎重。2#托拉塞米当分散压力在0.2~0.4MPa之间,粒度结果都处于相对稳定的状态,说明颗粒达到相对稳定的分散状态,未被进一步破碎,因此2#托拉塞米样品适合用干法激光粒度仪测试粒度。湿法和干法测试的粒度结果由于两款托拉塞米样品差异较大,建议选择丹东百特干湿法两用激光粒度仪Bettersize 2600激光粒度分析仪,用配备的湿法进样器测试颗粒较大的1#托拉塞米,用干法进样器测试颗粒较小的2#托拉塞米,这样对于两款原料药都可以得到较为准确的且具有良好重复性和准确性的粒度结果。图5. 1#托拉塞米样品粒度分布图(上) 2#托拉塞米样品粒度分布图(下)结论1.1#托拉塞米颗粒为片状,易碎,因此建议采用湿法激光粒度仪进行粒度测试,避免干法对颗粒造成破碎,从而影响粒度测试结果的准确性。2.2#托拉塞米样品颗粒较小,比表面积大,在水中有溶解现象,因此建议采用干法激光粒度仪进行粒度测试,避免因小颗粒快速溶解而影响粒度测试结果的准确性。3.选用既有干法进样器、又有湿法进样器的干湿法两用激光粒度仪Bettersize2600,能准确测试两款物性差异较大的托拉塞米样品的粒度。
  • 中国计量测试学会发布《益生菌活菌计数及代谢活力检测 拉曼光谱法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由青岛星赛生物科技有限公司等单位牵头起草的《益生菌活菌计数及代谢活力检测拉曼光谱法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年3月28日前将《征求意见反馈表》反馈至以下联系方式。联 系 人:周玭 电 话:17196019888地 址:山东省青岛市崂山区株洲路187-1号崂山智慧产业园2号楼1101邮 编:266000 电子邮箱:zhoupin@singlecellbiotech.com 1.《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿2.《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明3.征求意见反馈表 中国计量测试学会2024年2月27日附件1 《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿.pdf附件2 《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明.pdf附件3 征求意见反馈表.doc
  • 【赛纳斯】首席科学家李剑锋教授沉潜“增强拉曼光谱技术” 十一年又磨一剑
    赛纳斯首席科学家李剑锋教授第二次在Nature上发表文章。2010年,正是李剑锋攻读博士学位的最 后一年,当年他在田中群教授课题组发明了一种新型的增强拉曼光谱技术,并将成果刊发于Nature。那是李剑锋教授科研生涯中的第 一篇Nature,也是厦门大学作为第 一单位登上Nature的首篇文章。凌晨四点的厦大是我独爱的风景时隔11年,李剑锋率领自己的团队再次在Nature上发表学术论文,回顾这些年的科研生涯,李剑锋谈到了传承二字。此篇论文的研究方法根植于十一年前发明的增强拉曼光谱技术,而研究的对象——单晶电极界面水分子,也是李剑锋攻读博士学位期间就开始刻苦钻研的课题。当年实验设备简陋,机时紧张,为了争取多做实验的机会,李剑锋与同学错峰而行,日夜颠倒地熬在实验室里,凌晨四点的厦大是他独爱的风景。“那几年的努力和坚持总算熬出了成果,但我变成了一个胖子。”李剑锋自我调侃道。不论是当年那个每天在实验室熬到凌晨四点的李剑锋,还是现在常在灯火通明的实验室里工作到深夜、“走得比学生更晚”的李剑锋,他总是坚定地走着自己的路——成功是99%的努力加1%的天才,而99%的努力更重要,努力、坚持、积累,必能成。传承的另一方面,来源于当年李剑锋的博士导师、化学化工学院田中群院士的言传身教。忆起当年,李剑锋非常感谢导师田中群对他的培养,尤其是教导他养成良好的科研习惯。入学后,田中群教授很快便让他参与大量的论文撰写和检查工作,但是针对的不是正文内容,而是论文的参考文献部分。在文献管理软件并不普及的年代,李剑锋只能耐着性子,一篇篇查验参考文献的出处是否属实、一处处核对行文格式是否规范、一句句检查标点符号是否准确… … 当年的李剑锋有些不思其解,但随着科研之路的深入,他也渐渐明白了导师的“良苦用心”。千里之行,始于足下,做实验、处理数据、写论文,无不需要对科学严谨认真的钻研和对细节无微不至的把控。而今,李剑锋作为导师也同样以此要求自己的学生:不忽视任何一个“微不足道”的现象,关注每一个细节。学生王耀辉对此深有感悟,在本篇文章的工作中,从壳层隔绝纳米粒子的合成制备,到单晶电极的制备与预处理,再到界面水分子拉曼信号的采集,每个细节都需要投入万分的小心。“光是实验的准备往往就需要花费一整天的时间,任何一个小环节上出了差错,实验就要前功尽弃。”人前是三千余字的论文,看不到的背后,却是数年无数个细节的往复交织与日复一日的潜心钻研。没有“想不到”,只有“敢不敢”“敢为先,重细节,合为贵。”李剑锋以自己的方式诠释着对学院高包容、高活力的科研文化氛围的理解。他敢想敢拼,敢于挑战做“别人没做过的、做不到的事情”。11年前在Nature上发表的那篇论文,其实来源于一个“美丽的错误”。在一次实验中,李剑锋想探究金纳米粒子增强水分子拉曼信号的效果,但当时手头并没有配套的金电极,只有一根铂电极可供使用。根据以往的“常识”,样品吸附在光亮铂电极表面时不会产生增强的拉曼信号。由此,他判断更换成光亮的铂电极并不会对实验结果产生影响,便使用铂电极开展了实验。让李剑锋惊讶的是,这一个“错误”的实验却让他发现了来自铂电极表面吸附氢的拉曼信号。原来,金纳米粒子产生的极强局域电磁场也可以增强附近铂电极表面的拉曼信号。一个新的设想由此迸发——他将样品分子支撑基底和拉曼信号放大器在空间上进行分离,由此发明了壳层隔绝纳米粒子增强拉曼光谱技术。这一技术解决了传统表面增强拉曼无法用于非金银铜材料和原子级平滑单晶表面的瓶颈问题,开辟了光谱学分析新方向,使得我国在该领域处于国际领 先地位。2020年1月,由我校田中群院士领衔,任斌教授、李剑锋教授、吴德印教授、刘国坤教授组成的研究团队完成的“电化学表面增强拉曼光谱学研究”项目荣获2019年度国家自然科学二等奖。“失败不是一件坏事,而是一件好事,因为至少它能告诉你,这条路走不通。这从另一方面来说就是一种成功。”李剑锋以此勉励学生。从错误中发现新的方向、从失败中汲取新的灵感,李剑锋总是在追求突破与创新,做“与众不同”的事情。“是这三个心脏支架延续了我的生命,也带来了新的科研灵感。”李剑锋指了指自己的心口,提及人生中最难忘的一次经历,竟也与科研密不可分。2018年李剑锋在长春出差时,零下二十多度的极寒天气让他突发心梗。在这次“死里逃生”后,李剑锋开始思考,将自己的科研技术更多地运用在公共安全和生命健康方面。急性心梗的黄金抢救时间是数十分钟,而在救治前首先需要检测判断患者是否为心梗,目前最快的检测手段需要15至20分钟,但李剑锋团队将拉曼光谱技术与心梗检测技术结合起来,加快辨别判断,将检测时间缩短至6分钟,可以为患者留出宝贵的抢救时间。在危机中寻新机,在李剑锋的人生字典里,没有“想不到”,只有“敢不敢”。用处多多的“拉曼光谱”在旁人看来,李剑锋研究的拉曼光谱是用于科学问题研究的高端表征技术。但其实,它与我们的生活息息相关,且用处多多。鉴珠宝、验农药、测毒 品… … 这些看似“无关”的事情,拉曼光谱都可以做到。由莫桑钻、锆石,甚至是玻璃仿制的“钻石”在市场上涌现,仅凭肉眼观察,它们和天然钻石一样闪闪发光。“只需把未知成分的‘钻石’放到拉曼光谱仪前,点击扫描… … ”数秒后,真伪便显示在屏幕上。手指在屏幕上轻轻一滑,还可以看到样品的拉曼光谱图。“波长位于1333 cm^-1处的单峰是属于金刚石的的拉曼特征峰,也是钻石唯一的特征峰。我们的仪器不仅可以鉴别钻石,还可以检测翡翠的真伪和品质。但凡翡翠或者其他珠宝玉石里存在微小杂质,或经过人工优化处理填补过裂缝,我们都可以在谱图中发现杂峰或是荧光背景。珠宝玉石质量的优劣也就显而易见了。”“我讲课的时候,经常会带着我们研制的手持拉曼仪和翡翠珠宝,给同学们演示如何快速鉴别珠宝的真假。”同时,李剑锋还开设了拉曼光谱的本科实验课程,让同学们沉浸式体验拉曼现场检测。在暑期学校的课堂上,他也试图用简单平实的语言,为大家生动地科普拉曼光谱。“让大家亲身感受到拉曼光谱在日常生活中的作用,就能让更多人了解我们正在做的事情。”只需通过一根简单的棉签,在疑似吸毒者接触过的桌面、茶杯擦拭,再将样品转移到我们的毒 品拉曼快检仪上,简单几个步骤,便可在十秒钟快速识别有无毒 品残留。基于拉曼技术的快速指纹识别能力,以及配上增强拉曼极高的检测灵敏度,可以让毒 品无处遁形。李剑锋课题组推出的毒 品快检仪已应用在深圳海关、南宁海关等单位,数秒内便可以快速筛查出跨境包裹中是否夹杂毒 品。“这款仪器搭载了拉曼增强芯片,该芯片能将分子的拉曼信号放大百万倍。相比于其他技术,我们的产品的检测灵敏度非常高,样品低至百万分之一(ppm)甚至亿万分之一(ppb)的浓度时,我们仍可以在几秒内指纹识别出多种毒 品。”李剑锋介绍道,“我们还在继续研究毒驾自动化检测设备。在未来,交警只需要取一些驾驶员的唾液,在几十秒内就可以判断其是否有吸毒,吸了什么毒。”俯身做科研,放眼看天下,胸怀“国之大者”。着眼国家和社会需求,让科研走出实验室、走进普罗大众的日常生活中,让成果在公共安全、生命健康等不同领域落地生花。
  • 韩国强化食品中有害物质安全标准
    韩国食品医药品安全局于2009年5月7日公布了强化食品中有害物质安全标准的相关文件。   以下为其附则中的主要内容:   一、新设标准等强化的内容   1. 新设对玉米及其单纯加工品的丝状真菌毒素(伏马毒素)标准   - 新设玉米的伏马毒素标准为‘4ppm以下’,新设玉米单纯加工品(粉碎,切断等)及玉米面的伏马毒素标准为‘2ppm以下’。   2. 新设小麦、黑麦、大麦及咖啡中丝状真菌毒素(赭曲毒素)标准   - 新设小麦、黑麦、大麦及炒咖啡的赭曲毒素A的标准为5ppb以下,新设速溶咖啡的赭曲毒素A的标准为10ppb以下。   3. 新设及强化液状茶的重金属标准   - 像饮料一样饮用的液状茶(在市场上销售的液态的‘对身体好的某某茶’同类的茶)的含铅标准从2.0ppm以下强化到0.3ppm以下(与雪绿茶和玄米绿茶一样的浸出茶为5.0mg/kg以下)。   - 新设含镉标准为0.1ppmg以下(与饮料的重金属标准相同)   4. 新设腹泻性贝毒标准   - 二枚贝类(与牡蛎,贻贝相同由两枚壳构成的蛤蚌类,海螺等一枚贝类)的腹泻性贝类毒素标准与 Codex, EU等诸国的标准相同新设为0.16ppm以下。   5. 修正农药及动物用药品的残留许用标准   - 修正醚菊酯等15种农药(包含人参一种)及氨苯砜等29种动物用药品的残留许用标准。   二、中国许可农药中韩国未许可的农药目录   除草剂(19种):莠灭净Ametryn,氰草津Cyanazine,磺草灵asulam,甜安宁phenmedipham,灭草猛vernolate,氯嘧磺隆chlorimuron-ethyl,玉嘧磺隆rimsulfuron,胺苯磺隆ethametsulfuron-methyl,甲磺隆metsulfuron-methyl,苯磺隆tribenuron-methyl,甲氧咪草烟Imazamox,甲咪唑烟酸imazapic,灭草喹imazaquin,咪草烟imazethapyr,异丙隆isoproturon,溴苯腈bromoxynil,环庚草醚Cinmethylin,吡氟草胺diflufenican,哒草特pyridate   杀虫剂(3种):杀螟腈cyanophos,地虫硫磷 fonafos,烯虫灵nitenpyram   植物生长调节剂(1种):烯效唑Uniconazole   三、有中国标准而没有韩国标准的动物用医药品目录   此次公布的2种药品:伊维菌素Abamectin,盐酸沙拉沙星sarafloxacin   本周中预告立案的5种药品:头孢氨苄素Cafalexin,二氟沙星difloxacin,氟苯尼考Florfenicol,吉他霉素kitasamycin,丙氧咪唑Oxibendazole   计划年内开发试验法的15种药品:倍他米松Betamethasone,越霉素A DestomycinA,地塞米松Dexamethesone,卤喹酮Halofuginone,马拉硫磷Malathion,甲苯达唑mebendazole,安乃近Metamizole,硝碘酚腈Nitroxinil,苯唑青霉素Oxacillin,哌嗪Piperazine,碘醚柳胺Rafoxanide,氯苯胍Robenidine,洛克沙胂Roxarsone,氨苯磺酰胍sulfaguanidine,甲基三嗪酮Toltrazuril   四、保存流通标准及原料标准的修订   1. 强化新鲜方便食品(沙拉)及熏制鲢鱼的保存及流通标准   - 沙拉及熏制鲢鱼的保存及流通温度由10℃以下修订为5℃以下以防止李斯特菌生长。   2. 追加‘食品不能使用的原料’品目   - 在附表3‘食品不能使用的原料’目录中(现有木炭等82个品目)增加大麻等46个品目,共计128个品目。
  • 感恩过往,致敬未来 – LGC标准品部门2018年回顾
    春雷乍动,万木甦醒。寒冷的冬日即将过去,我们送走了难忘的2018,迎来了充满机遇和挑战的2019。回首2018,LGC持续以丰富的产品和服务为全球客户提供全方位支持,并积极践行LGC集团的愿景:科学,为了一个更安全的世界。 LGC Standards(标准品部门),也为这个愿景做了重要的贡献:在食品领域,我们实现了“科学,为了更安全的食品供应链”:● BRC Global Standards(其中BRC指英国零售协会),是LGC的子公司,发布了其第八版食品安全标准。这是全球食品安全倡议(GFSI)认可的标准,在世界各地有20,000多家生产基地以及全球众多久负盛名的零售商、食品、饮料制造商和快餐厅通过BRC标准保证其食品供应链的运营一致性、食品安全和产品质量。● 我们继续加强标准物质产品线的全球市场领导地位。LGC标准物质生产中心分布于美国(曼彻斯特、查尔斯顿)、德国(奥格斯堡、卢肯瓦尔德)、英国(特丁顿),最近还增加了中国(南京)标准物质生产中心。这些标准物质广泛应用于食品和环境检测实验室,用以检测并筛选出那些危害人类健康的有害物质。● 我们的能力验证服务持续为世界各地的食品和环境检测实验室提供支持,确保检测结果的准确性,以满足各国监管机构的要求,并最终为全球消费者的食品与环境安全保驾护航。 在临床诊断业务中,我们实现了“科学,为了更安全的诊断”:● Maine Standards临床校准标准品业务为全球客户提供仪器校准品,帮助临床检验实验室进行仪器的全量程性能验证。我们新并购的SeraCare业务则为方法开发科学家、IVD制造商和临床实验室提供血液、分子和临床基因组测试所需的标准物质。这些产品对于确保检测的准确性以进行正确的疾病诊断而言都至关重要。● LGC 能力验证部门通过特拉弗斯城、约翰内斯堡和伯里的发样中心,持续服务于世界范围内的临床实验室,帮助这些实验室监控他们的检测水平、高质量地提供临床检验服务。 我们的医药标准物质,通过持续服务广大医药行业的客户实现了“科学,为了更安全的药物”:● 2018 年,我们盛大庆祝了LGC医药标准物质品牌Mikromol 成立25周年,我们将持续为市场提供优质的医药杂质标准品,帮助仿制药公司准确筛选其药品中的杂质。 LGC运动补剂业务,为公平竞技贡献己力,实现了“科学,为了更安全的运动”:● LGC 多是届奥运会反兴奋剂检测服务商,也是众多国际赛马和赛狗竞赛的兴奋剂检测服务提供者,为公平竞技持续发力;此外,LGC的运动补剂认证项目(Informed-Sports, Informed-Choice)为赛事机构、专业运动员和普通消费者远离违禁添加做出了重要的贡献。 刚刚过去的2018 年,是中国改革开放40周年,艰难困苦,玉汝于成。40年来,中国走过了不平凡的历程。伟大的中国人民立足国情,放眼世界,既从悠久的中华文明中汲取智慧,又博采东西方各国之长,充分展现了坚韧不拔、契而不舍的民族个性,发扬了脚踏实地、吃苦耐劳的民族精神,抓住机遇,艰苦奋斗,40年间取得了举世瞩目的经济和社会发展成就。我们感恩这个伟大的时代,为LGC在中国实现其愿景提供了广阔的舞台。 刚刚过去的2018 年,是LGC Standards业务在中国精益运营的5周年:过去五年,我们从北京亦庄一隅的两间办公室、几个员工成长为遍布京、沪、宁三地四十余人的专业团队;过去五年,我们的业务模式从简单的贸易发展为涵盖市场销售、仓储物流和研发生产的全业务线;过去五年,我们从起初的批批进口,改善到在国内建立了五千余种产品的现货供应,更快地响应客户的需求;过去五年,我们为国内客户提供的产品从两三千个品种提高到一万多个品种、涵盖医药、食品环境、冶金、石化、材料等多领域,为国内市场提供了品类齐全的医药杂质和农残标准品以及丰富的能力验证项目。我们感恩中国团队的每一员,是他们让愿景落地,让我们的中国战略完美执行。 刚刚过去的2018年,是南非前总统曼德拉先生诞辰100周年。他有一句名言:“攀上一座高山后,你会发现,还有更多的高山等着你去攀登”。过去几年来,LGC标准品中国业务已经大有作为,新征程上仍大有可为。我们不会满足现状、固步自封、因循守旧。下一个五年,我们将继续在医药、食品、环境、消费者安全领域积极进取,为国人的用药安全、食品安全、环境保护、消费者权益贡献力量;下一个五年,我们将结合LGC集团近200年的知识储备和LGC中国本地运营的优势,为中国检测市场提供完整的质量控制和质量保证解决方案;下一个五年,我们将全面打造本土供应链,给客户带来服务水平质的提升。 我们的业务活动创造了广泛而深刻的社会价值,我们的每个员工都为其工作所带来的社会贡献而自豪。科学,为了一个更安全的世界!这一愿景阐述了我们作为一个组织存在的根本原因,我们将在2019年继续努力。“新故相推,日生不滞”,我们将携手合作伙伴,和我们的客户一起,服务“质量兴国”战略,不断努力,奔向未来。
  • 3项全国首创农产品质量安全拉曼光谱快速检测团体标准发布
    日前,《果蔬中多菌灵、苯菌灵和噻菌灵的快速检测 拉曼光谱法》(T/FJBS 007-2023)、《水产品中恩诺沙星和环丙沙星的快速检测 拉曼光谱法》(T/FJBR 008-20233)、《豆芽中6-苄氨基嘌呤、6-糠氨基嘌呤、N6-异戊烯腺嘌呤的快速检测 拉曼光谱法》(T/FJBR 006-2023)3项团体标准在全国团体标准信息平台发布,为全国首创。据介绍,这3项标准结合长期以来农产品检测的相关经验,符合技术先进、经济合理、安全可靠、切实可行的制标原则,打破了检测耗时长、假阳性(或阴性)概率高等农产品质量安全快速检测的瓶颈。检测一个样品10分钟之内可获取可靠结果,所用设备轻便、价格不高、操作简单,实现保证农产品新鲜度下的质量安全检测,适用于各种果蔬中相关农药残留项目、水产品中相关兽药残留项目的快速检测。据了解,这3项团体标准均由福建省农科院农业质量标准与检测技术研究所科研人员主持制定,联合厦门瑞德利校准检测技术有限公司、厦门市普识纳米科技有限公司、厦门市质量技术评审服务中心、三明市检验检测中心、一品一码检测(福建)有限公司、厦门泓益检测有限公司、厦门市翰均科检测科技有限公司、厦门大学环境与生态学院共同编制,由福建省标准化与认证认可协会归口立项发布。这3项标准的制定与实施,可实现在超市、批发市场、企业、监管现场等场合实时监测农产品质量安全,为社会、政府部门开展质量监管提供准确、快速、简便的技术标准与技术依据,具有重要的应用前景。
  • 国家标准委员会副主任方向一行来赛分科技考察调研
    4月26日下午,国家标准委员会副主任方向一行,在苏州市有关领导的陪同下,莅临赛分科技苏州公司参观考察,赛分科技首席运营官徐炜政博士、生产总监刘干等人员热情接待了来宾。 徐炜政博士代表赛分科技有限公司,对方主任一行的到来表示热烈的欢迎,并向来宾们介绍了赛分科技的公司概况以及近年的发展。 赛分科技是专业的液相色谱产品研发及生产厂家,主要产品是液相色谱柱、色谱填料和固相萃取产品,赛分科技自主研发的液相色谱仪器产品在2012年二季度投放市场。赛分科技的生物分离色谱技术和产品在全球处于领先地位,其产品已经广泛地使用于全球几乎所有的大型制药和生物制药企业。 徐博士就赛分科技在行业标准化制定等方面所做的工作向方主任做了汇报,随后进行了深入的探讨和交流。方主任指出,目前色谱柱的差异性较大,不同厂家,甚至同一厂家不同的批次都有一定差异,建议建立色谱柱的行业标准,将一些共性的指标确定下来,是对国家和行业都有利的一件事。 方主任建议公司在标准建立上多花力气,&ldquo 建立了标准,也就掌握了行业的话语权&rdquo 。当听说赛分科技即将推出自己的色谱仪器时,方主任表示,在仪器行业,常规仪器很难和国外一些仪器大公司相竞争,如果能够设计制造一些专用仪器,尤其是与分离、质谱相结合的专用仪器,应该会有较强的竞争力。 最后,徐炜政博士陪同方主任一行参观了赛分苏州公司的实验室和车间。 方主任一行在徐博士的陪同下参观赛分科技实验室和车间 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 极端条件下的流动化学:合成具有麝香气味的大环化合物 个
    康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度背景介绍目前,连续流技术已经成为药物研发和连续化生产的热门技术之一,香水行业的发展也可以受益于该技术。具有麝香气味的(R)-麝香酮( 化合物1,见图1)在香水中占据特殊地位,这类化合物是从麝的腺体分泌出来的,经常被用作香水基调。图 1. 具有麝香气味的大环分子 1-5 示例(带圆圈的数字是指环的大小)麝香香氛还包括图1中来自麝香籽油的植物性麝香香料(化合物3)、兰花香味中花香的成分大环内酯(化合物4 )和来自当归根油的大环内酯(化合物5)。传统釜式工艺合成香料工业相关的中型环和大环,使用高浓度的过氧化氢,并且中间体三过氧化物(化合物7)需要高温热裂解(方案1)。反应风险等级高,工业化生产存在较高风险。图2. 方案 1 Story法:釜式条件下从环己酮(化合物6)两步合成 1,16-十六烷内酯(化合物4)和环十五烷(化合物8)本文是Leibniz University Hannover(汉诺威莱布尼茨大学)有机化学研究所Alexandra Seemann等人的研究工作,该研究成果2021年5月发表在了JOC上。。我们来看看作者如何在极端条件下,用连续流的方法来合成具有麝香气味的大环化合物。同时,如何通过分离来解决多步反应和操作的连续化。图3.连续流工艺合成中环和大环化合物研究过程:一、改变溶剂,打通连续流工艺研究者优化了连续流条件下环己酮三过氧化物(化合物7)的氧化过程。将三种反应组分(环己酮、98%甲酸,以及30%过氧化氢与65%硝酸混合液)单独储存并使用三台进料泵分别输送。出于生产安全和成本考虑,溶剂使用甲酸代替釜式工艺用的较危险的高氯酸。图4.环己酮(6)氧化成环己酮三过氧化物(7)的连续流工艺流程图三台泵在室温下将反应物送至PTFE材质的反应器中反应。当使用小内径管道反应器或使用有静态混合器的反应器时,两相系统的均匀性达到最佳。环己酮三过氧化物(7)的产率为48%。二、巧妙使用膜分离器连接热解反应为了实现多步连续生产具有商业价值的化合物4和8,需要增加单独的分离步骤,用以分离过量的H2O2,以避免过量的H2O2高温分解引发危险。作者采用了由两块不锈钢板和分离膜组成的膜分离器,研究了配备不同孔径的疏水PTFE膜的分离效果,使用1.2μm的分离膜,效果最好。将分离器出口流出的有机相收集在烧瓶中,并通过一台HPLC泵直接泵送至不锈钢环形反应器,高频电磁感应加热至270℃进行热裂解反应。三、氧化-分离-热解连续合成作者通过使用感应加热技术对三过氧化物7进行热解,从而形成具有重要生产意义的大环产物。图5.多步(氧化-分离-热解)连续合成工艺流程(泵流量设置及反应参数)综上多步连续合成工艺中,第一步的初始氧化在PTFE反应器中进行(V=113 mL,⌀ = 2.4mm),温度为室温,停留时间为93分钟;第二步反应停在不锈钢环流反应器中,反应温度270℃,停留时间为12分钟。通过GC分析,两步的总收率:化合物4为10%,化合物8为25%,与釜式条件下获得的收率相似(化合物 4为14%,化合物8为23%)。最后,作者对脂肪族和乳糖大环进行GC-O(gas chromatography-olfactometry,气相色谱嗅觉测定法)气味分析。结果表明,以下3种大环内酯显示出强烈的麝香酮气味。研究结果:作者提出了一个多步连续合成工艺(氧化、分离和热解),从环酮开始生产大环十六烷内酯和环十五烷等化合物,且该方法具有一定的普适性;连续合成所得的部分化合物有经过气相色谱嗅觉测定法表征,具有麝香酮气味;连续流工艺成功地进行了危险化学品如65%浓度的硝酸,30%浓度的双氧水,以及不稳定的过氧化物中间体等的处理,可以大大提升生产的安全性;香水行业可以从先进的连续流技术中受益。参考文献:DOI 10.1021/acs.joc.1c00663编后语康宁微通道反应器可用于中间体不稳定、强放热等危化反应。康宁反应器可以与Zaiput液液分离器、在线核磁等PAT技术联用,实现目标产物的连续合成、分离或提纯。康宁微通道反应器在香精香料行业也有很多成功的应用案例,在解决安全问题的同时,反应效率和收率都得到了提高。欢迎您拨打400-812-1766 联系康宁反应器技术了解详情。
  • 美国FDA出台“无麸食品”新标准
    8月2日,美国食品药品监督管理局出台“无麸食品”标准, 要求美食品厂商无麸产品达到统一的标准。这一举措将有利于减少目前美国300万乳糜泻(celiac disease)患者的数量,并保护当前的乳糜泻患者。   据报道,2012年美国的“无麸食品”的销售额为42亿美元,几乎是2008年销售额的三倍。而该公司于2012年8月对于消费者的民意调查中发现,人们购买“无麸食品”的两个主要原因在于,他们认为这种食物健康并可以帮助他们控制体重。但专家们表示目前尚没有证据证明,无麸食品与减肥有直接关系。   FDA副局长泰勒(Michael R. Taylor)介绍说该局设置的“无麸食品”中面筋含量上限为百万分之二十, 与近年来欧盟和加拿大通过的“无麸食品”标准类似。由于食品业和“无麸食品”病人倡导者们长期以来一直都在就这个标准进行讨论,所以对于这个标准并不吃惊。   波士顿麻萨诸塞州总医院乳糜泻病研究中心主任法萨诺(Alessio Fasano)参与了此次标准的调研,他将8月2日公布的标准称为一个具有重大意义的事情,因为从此以后乳糜泻患者能够放心购买无麸食品。   但他也表示其实FDA早在2007年就建议了这个标准,而美国的很多公司在这个标准公布前就已经将其作为其行业指南。   据悉,FDA将保证食品公司按照此规定实施,他们将找出那些食物中麸质含量超标的食物,或要求相关的食品公司召回这些食物。   原文链接:   http://www.nytimes.com/2013/08/03/health/fda-sets-standard-for-foods-labeled-gluten-free.html?_r=0
  • 日本修订食品、添加剂等规格标准相关条款
    2012年4月26日,日本厚生劳动省发布食安输发0426第2号通知,对食品、添加剂等规格标准进行补充修订,主要包括:   (1)从食品中农药成分“未检出”名单中删除“杀草强”。   (2)设定了农药杀草强(Amitrole)、吲熟酯(Ethychlozate)、乙氧氟草醚(Oxyfluorfen)、呋虫胺(Dinotefuran)、唑虫酰胺(Tolfenpyrad)、吡蚜酮(Pymetrozine)、苯噻菌胺(Benthiavalicarb-isopropyl)和腈菌唑(Myclobutanil)的限量标准值。   (3)设定了兽药克拉维酸(Clavulanic acid)和吡芬溴铵(Prifinium)的限量标准值。   (4)对次氯酸水的标准进行修订。   自2012年10月26日起实施。
  • 山东环境科学学会发布《水质 阿特拉津等4种有机农药的测定 超高效液相色谱-三重四级杆质谱法》等两项团体标准征求意见稿
    各有关单位和专家:由山东省物化探勘查院等单位起草的《水质 阿特拉津等4种有机农药的测定 超高效液相色谱-三重四级杆质谱法》《土壤和沉积物 硼、镉、钴、锗、钼的测定 密闭消解-电感耦合等离子体质谱法》已完成征求意见稿。根据《山东环境科学学会标准管理办法》的要求,现面向社会公开征集意见和建议。欢迎社会各界对标准内容提出宝贵意见和建议,并于2023年12月22日前将《反馈意见表》(附件5)通过邮件反馈给山东环境科学学会标准化工作委员会。逾期未回复将按无异议处理,感谢您的支持! 联系人:李琬聪电 话:15339966752邮 箱:sdsesxsb@163.com地址:山东省济南市历下区姚家街道华润置地广场7号楼601室 山东环境科学学会2023年11月22日附件1《水质 阿特拉津等4种有机农药的测定 超高效液相色谱-三重四级杆质谱法》(征求意见稿).pdf附件2《水质 阿特拉津等4种有机农药的测定 超高效液相色谱-三重四级杆质谱法》征求意见稿编制说明.pdf附件3《土壤和沉积物 硼、镉、钴、锗、钼的测定 密闭消解-电感耦合等离子体质谱法》(征求意见稿).pdf附件4《土壤和沉积物 硼、镉、钴、锗、钼的测定 密闭消解-电感耦合等离子体质谱法》征求意见稿编制说明.pdf附件5 反馈意见表.doc
  • GB 2760-2024《食品安全国家标准 食品添加剂使用标准》国家标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。其中包括GB 2760-2024《食品安全国家标准 食品添加剂使用标准》。该标准代替 GB2760—2014《食品安全国家标准 食品添加剂使用标准》,将于2025年2月8日正式实施。该标准增加了2016年以来国家卫生健康委员会陆续公布的食品添加剂规定,并对附录A、B、C、D、E、F都有了补充和修订。(一)关于GB 2760与国家卫生健康委有关食品添加剂公告的关系  我国对于食品添加剂新品种实行行政许可,对于许可的食品添加剂品种及使用规定,国家卫生健康委以公告形式予以增补,自公告发布之日起,食品添加剂生产使用者就可以按照公告的规定生产使用批准的食品添加剂。为了方便标准使用者查询,GB 2760-2024纳入了GB 2760-2014 实施以来国家卫生健康委以公告形式批准使用的食品添加剂品种和使用规定,截至国家卫生健康委2023年第5号公告。  (二)关于食品添加剂定义的修订  根据2015年实施的《食品安全法》,在食品添加剂的定义中增加了包含营养强化剂的内容。新品种许可、复配食品营养强化剂等食品营养强化剂的管理可参考食品添加剂相关管理规定执行。  (三)关于附录A的修订  附录A的修订内容主要包括:一是修改了附录A中食品添加剂使用规定的查询方式。将原标准中表A.3的内容体现在表A.1和表A.2中,原表A.2合并入表A.1。二是基于食品添加剂安全性和工艺必要性的最新评估结果,修订了部分食品添加剂品种和/或使用规定。例如删除了落葵红、密蒙黄、酸枣色、2,4-二氯苯氧乙酸、海萝胶、偶氮甲酰胺等经过调查不再具有工艺必要性的食品添加剂品种及其使用规定;删除了罐头类食品中防腐剂、食醋中冰乙酸、果蔬汁浆中纳他霉素、蒸馏酒中β-胡萝卜素和双乙酰酒石酸单双甘油酯等的使用规定。三是修改了部分食品添加剂的使用要求。如增加了阿斯巴甜、安赛蜜与天门冬酰苯丙氨酸甲酯乙酰磺胺酸等在相同食品类别中共同使用时的总量要求;完善了饮料类别中液体饮料与相应的固体饮料食品添加剂使用的对应关系;修订了二氧化硫、卡拉胶、瓜尔胶、脱氢乙酸及其钠盐等的使用规定;将原标准中归类为“其他类”的部分食品类别重新进行了归类,并调整了相应的食品添加剂使用规定等。四是修改了部分食品添加剂的基本信息。例如修改了苯甲酸及其钠盐等食品添加剂的中文名称、中国编码(CNS号),按照国际食品法典标准等的最新规定,修改了爱德万甜等食品添加剂的英文名称和国际编码(INS号)等。  (四)关于附录B的修订  附录B的修订内容主要包括:一是对食品用香料、香精使用原则的修订。为避免食品用香料滥用,在B.1.4进一步明确了具有其他食品添加剂功能或其他食品用途的食品用香料的使用要求,如苯甲酸、肉桂醛、瓜拉纳提取物、双乙酸钠、琥珀酸二钠、磷酸三钙、氨基酸类等;明确食品用香料、食品用香精的标签应符合《食品安全国家标准 食品添加剂标识通则》(GB 29924-2013)的规定,凡添加了食品用香料、香精的预包装食品应按照《食品安全国家标准 预包装食品标签通则》(GB 7718-2011)进行标示;明确食品用香料质量规格应符合《食品安全国家标准 食品用香料通则》(GB 29938-2020)及相关香料产品标准的规定。二是修改完善了部分食品用香料品种。梳理了表B.2和表B.3的食品用香料名单,删除了枯茗油等6个香料品种(其中枯茗油、葫芦巴已为香辛料,玫瑰茄、石榴果汁浓缩物、玉米穗丝已为普通食品,3-乙酰基-2,5-二甲基噻吩行业已不再使用);根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)、食用香料和提取物制造者协会(FEMA)对于香料管理的变化,将大茴香脑、根皮素调整为合成香料;修改和/或增加了柚苷(柚皮甙提取物)等香料的中英文名称、FEMA编号、编码等。  (五)关于附录C的修订  附录C的修订内容主要包括:一是删除了部分食品工业用加工助剂品种。如删除了矿物油,将其使用规定与白油(液体石蜡)的使用规定进行整合;删除了磷酸铵,将其使用规定与磷酸氢二铵和磷酸二氢铵进行整合。二是基于安全性和工艺必要性的最新评估结果,结合行业实际使用情况,修订了部分加工助剂品种和/或使用规定。例如根据JECFA最新评估结果,同时参考美国、欧盟的规定,删除了1,2-二氯乙烷品种和使用规定;基于工艺必要性原则,删除了β-环状糊精用于巴氏杀菌乳、灭菌乳的规定;明确了过氧化氢作为加工助剂使用时的具体功能和使用范围等。三是规范部分加工助剂的中英文名称表述。例如将6号轻汽油(植物油抽提溶剂)修改为“植物油抽提溶剂”,植物活性炭(稻壳活性炭)修改为“植物活性炭(稻壳来源)”,修改了纤维二糖酶等部分酶名称,修改了埃默森篮状菌Talaromyces emersonii等的菌种名称等。  (六)关于附录D的修订  根据修改后食品添加剂的定义,附录D中增加了营养强化剂的编号D.16,并根据《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)最新修订版的规定增加了营养强化剂的定义。根据《食品安全国家标准 食品用香精》(GB 30616-2020)中关于食品用香料的定义,将D.21食品用香料定义修改为“添加到食品产品中以产生香味、修饰香味或提高香味的物质”。  (七)关于附录E的修订  食品工业的快速发展导致GB 2760-2014中部分食品类别与相关食品行业分类不一致,不能实现对实际食品类别的精准定位。为了使食品分类描述更加科学合理,在对各个食品行业进行广泛调研、征求意见的基础上,进一步规范了部分食品类别的描述。例如,为与相关食品产品的食品安全国家标准保持协调一致,修改了部分食品类别:如根据《食品安全国家标准 酱油》(GB 2717-2018)、《食品安全国家标准 食醋》(GB 2719-2018)、《食品安全国家标准 复合调味料》(GB 31644-2018)等规定,将配制酱油(食品分类号 12.04.02)和配制食醋(食品分类号 12.03.02)这两类产品归入液体复合调味料(食品分类号 12.10.03),将“醋(食品分类号12.03)”修改为“食醋(食品分类号12.03)”等,并对相应的食品添加剂使用规定进行修改。再如:根据行业反馈意见,结合行业现状,修改了部分食品类别,如增加肉丸类食品类别,删除半起泡葡萄酒食品分类,修改了蜜饯凉果的食品分类,调整食糖的食品分类等。GB 2760-2024 食品安全国家标准 食品添加剂使用标准.pdf点击图片获取更多标准解读》》》》》》
  • 【赛纳斯】2022年国产拉曼检测仪器再踏征程
    2018年3月22日至今,中美贸易战已延续4年多,以美国为首的美西方有关国家对我国高科技技术、产业围堵、封杀,意图让中国只能沦为它们廉价低端产品的生产基地,只能重复陷入高消耗资源,破坏环境的低端产业,低利润值的黄昏行业。检测仪器作为发现数据的眼睛,执行操作的手脚,在工业控制领域在生活当中其重要性不言而喻,为突破封锁,国家层面两大顶层纲领性文件接踵而来!双重利好政策助力国产仪器仪表发展,国产仪器仪表将迎来发展的“春天"!——《中华人民共和国科学技术进步法》与《“十四五"智能制造发展规划》。为打破这一现状,突破检测仪器被进口垄断的局面,国产检测仪器在面对挑战情况下,将加大检测仪器的研发投入,追求技术创新,突破技术壁垒,掌握核心技术,打造出稳定可靠的检测仪器,减少对进口产品的依赖、降低进口技术掣肘。勇踏潮头搏风浪厦门赛纳斯科技有限公司作为一家集研发、生产、销售、服务为一体的科技型企业,坚持自主研发和产业深耕,基于壳层隔绝纳米粒子增强拉曼光谱技术为核心,为政府和行业客户不断提供创新应用开发及解决方案。为公安系统、海事系统、应急系统、海关稽查系统、卫生系统、渔业系统、食药系统、农业系统等提供高科技的现场快速检测执法设备及监管平台、检测服务等整体解决方案。尽管面对着来自进口品牌巨大压力,面对同行竞争的挑战。厦门赛纳斯对标国际领先,秉持“质量就是核心,创新就是灵魂”的理念,在质量和创新的道路上从未停止前进。坚持自主创新研发、独立知识产权赛纳斯科技与嘉庚创新实验室开展产学研合作,成立嘉庚创新实验室公共安全联合研究中心,并与国家毒 品实验室、福建省公安厅等部门建立联合实验室,通过便携式光谱仪和拉曼增强芯片的研发,将其应用在毒 品现场检测。截至到目前为止申请国际PCT发明专利、国家发明专利和实用新型专利达10余项,并承接多项国家重点研发计划。国产拉曼检测仪新征程赛纳斯科技2013年作为产业化单位,切入拉曼检测仪行业,依托核心自主技术,逐渐开创便携检测、在线检测、移动检测、实验室自动化等项目,对标国际巨头助力国产化。目前针对传统毒 品、新精活类物质、麻醉类药品、精神类药品、危化品、爆炸物等检测,公司形成一系列快速检测产品。手持式痕量毒 品拉曼光谱仪SHINS-P700T手持式拉曼光谱仪SHINS-P1000手持式拉曼检测仪SHINS-785-Pro 科研型电化学拉曼光谱仪系统EC-Raman科技自立自强是国家发展的战略支撑,国产仪器肩负着高端科学仪器国产化,推动科技进步的重任。赛纳斯科技作为一家植根于厦门的高科技企业,以国家战略需求为己任,重视履行社会责任,立足厦门大学深厚文化底蕴,继承中华民族优良文化传统,吸收借鉴先进企业优秀文化理念,将持续加大研发技术投入,保持创新动力,抓质量促生产,不断拓展创新应用与解决方案,用卓越的技术和严格的标准为行业、社会、国家创造价值,共同鉴证拉曼检测仪器国产化的新时代这一伟大进程。
  • 舜宇光学进军安防目标摄像机芯第一品牌
    近日,舜宇光学科技(集团)有限公司(下称舜宇光学)携旗下8家子公司集体亮相第十四届中国光电产业国际博览会。该集团安防事业子公司杭州舜宇安防技术有限公司(下称舜宇安防)展示了多款高清数字一体机芯及模拟一体机芯。该公司市场部程志平向记者表示,公司力争打造国内摄像机芯第一品牌。   据了解,舜宇光学是我国领先的光学产品制造企业,具备全面的设计实力及专业生产技术,在光学非球面技术、AF/ZOOM和多层镀膜等多项核心技术的研究和应用上处于国内领先水平。目前,该公司产品包括光学零件(玻璃/塑料镜片、平面镜、棱镜及各种镜头)、光电产品(手机相机模组及其他光电模组)和光学仪器(显微镜、测量仪器及分析仪器)。2011年4月,舜宇光学在浙江省杭州市成立安防事业子公司——舜宇安防,全面进军安防领域。   据介绍,舜宇安防将定位于安防中高端一体机机芯,凭借集团在光学技术领域的沉淀、强大的研发实力、拥有自主知识产权的AF算法和大规模先进产品制造能力等优势,为广大安防摄像机制造企业提供先进、高端、高性价比的前端核心部件及优质服务,共同创造产业辉煌。
  • FLIR红外热像仪模块Lepton用于EOC早期火灾探测摄像机
    FLIR Lepton可为建筑环境和电动汽车充电站提供超灵敏的24/7早期火灾探测功能。近期,Teledyne Technologies旗下的Teledyne FLIR宣布,韩国视频安全和热成像IP摄像机公司Eye on Cloud(EOC)将在其早期火灾探测(EFD)系列IP摄像机中采用Teledyne FLIR红外热成像仪模块Lepton。EOC推出的早期火灾探测系列产品,是“Thermal by FLIR”合作的一部分。Teledyne FLIR红外热像仪模块Lepton在美国制造,并且不受《国际武器贸易条例》(ITAR)约束,是世界上产量甚高的长波红外(8 µm至14 µm)热成像模块。Lepton结构紧凑、经济高效,实现了各种热成像创新应用,已被数百万客户采用。Lepton提供多种分辨率和视场(FoV)选项,并且特定型号还提供绝对温度输出。Lepton的低功耗、卓越的图像质量和集成支持,可助力客户实现移动、小型电子产品和无人值守传感器的创新性产品开发,适用于智能建筑、火灾探测、占用跟踪、设备状态监控等。红外热像仪模块Lepton技术参数为了降低开发成本并缩短上市时间,Teledyne FLIR不断改进Lepton的在线集成工具箱。应用说明、集成视频、快速入门指南,以及用于在Windows、Linux、Raspberry Pi和BeagleBone上进行测试的补充源代码可确保高效的集成。对于高级、大规模计划,Teledyne FLIR技术服务团队可对MyFLIR®应用软件和图像增强MSX®,以及Vivid-IR™的许可提供支持。EOC开发的HI1612-OH和HI1612-MW系列早期火灾探测摄像机提供多种分辨率选项,可用于持续监控电动汽车(EV)充电站和其它关键的基础设施、安全设施等。通过非接触式温度测量,FLIR Lepton可以在火灾前识别升高的热量,然后触发警报系统。EOC符合ONVIF标准的早期火灾探测摄像机有助于提高安全性,同时使消防人员能够比依靠传统的烟雾报警器更快地扑灭潜在火灾。EOC部分产品展示,其中第二个为早期火灾探测摄像机Teledyne FLIR产品开发副总裁Mike Walters表示:“我们开展了‘Thermal by FLIR’计划,以支持客户针对新的和正在开发的应用进行创新。EOC及其在电动汽车充电站和其它建筑环境中的早期火灾检测工作是FLIR Lepton和‘Thermal by FLIR’计划的自然合作基础。”“Thermal by FLIR”计划是一项合作产品开发和营销计划,支持原始设备制造商(OEM)将Teledyne FLIR红外热像仪模块集成到产品中,并为后续产品创新提供上市支持。EOC首席执行官(CEO)Dong Gyun Shin表示:“变电站、建筑和电动汽车停车设施的管理人员(包括购物中心和办公楼)需要能够帮助他们更好地检测可能威胁生命和财产的火灾的解决方案。我们的早期火灾探测系列摄像机采用‘热成像+可见光’双成像,提供了一种成本相对较低但有效的方法,可以在潜在火灾发生之前就识别出来。”关于Teledyne FLIRTeledyne FLIR专注于设计、开发、生产用于增强态势感知力的专业技术。通过热成像、可见光成像、视频分析、测量和诊断以及先进的威胁检测系统,Teledyne FLIR将创新的传感解决方案带入日常生活中。Teledyne FLIR提供多样化的产品组合,服务于政府与国防、工业和商业市场中的众多应用。Teledyne FLIR产品帮助救援和军事人员保护和挽救生命,提高行业效率,并创新面向消费者的技术。Teledyne FLIR致力于加强公共安全与人们的生活福祉,提高能源和时间效率,为健康和智能的社区做出贡献。
  • 标准进程再进一步 两项拉曼光谱相关国家标准即将宣贯
    p   拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。对拉曼光谱而言,相关标准的滞后也在一定程度上限制了该类仪器的推广应用,不过现在情况已经有了一定的改观,一系列的标准制定工作正在加紧进行中。 /p p   比如,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2018年7月26日,国家标准委发文征求意见,拟立项685个国家标准项目中,《拉曼光谱仪通用规范》在列。 /p p   日前,中国计量院发布国家推荐性标准宣贯会的通知,将对GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》及GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》两项国家标准进行宣贯。 /p p   据悉,由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。 /p p   详细内容请见会议通知: /p p    a href=" https://www.instrument.com.cn/news/20180906/470823.shtml" target=" _blank" strong 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知 /strong /a /p p & nbsp /p
  • 高温及高压量热细分领域的先行者——法国塞塔拉姆仪器公司
    p    strong 仪器信息网讯 /strong 微量热市场是一个比较特殊的热分析细分市场。从“微量热分析仪”这个名词来说,全球主要有法国凯璞科技集团(即法国塞塔拉姆仪器),美国TA公司和英国马尔文公司三个主要制造商。可是从产品的行业应用来说又各自具有明显的独立性。法国凯璞科技集团的产品主要着眼于化学工程、含能材料、核工业、过程安全和新能源等领域。最近三五年塞塔拉姆的产品几乎都保持着较高的增长率,这主要取决于塞塔拉姆多年来的市场培育以及今年国家在安全、环境、新能源等领域的投入。 /p p   热分析仪器细分领域之量热领域的翘楚—法国塞塔拉姆仪器(SETARAM)是法国凯璞科技集团自主分支品牌之一,起源于上世纪中叶,是世界顶级热分析及量热产品制造商,拥有60余年热分析及量热产品的研发和制造经验。法国凯璞科技集团(KEP Technologies High Tech Products)是一家专注于前沿工业科技的研发制造型企业,其总部位于量热技术的发源地法国里昂。法国凯璞科技集团一直致力于为航空航天业、原子能、再生能源、化学、食品、奢侈品领域及大型科研实验室输出多样化的产品、技术和创新型解决方案。 /p p   法国凯璞科技集团的微量热产品主要有三个系列几十个型号的产品,比如在市场上广为人知的C80、BT2.15、C600、MicroSC以及LVC等。以及针对一些特殊应用的定制化产品。 /p p   由于以上所提及的产品其在结构设计上都是采用法国凯璞科技集团所独有“3D卡尔维量热核心技术”,所以在其实际的应用领域具有极其突出的优势。多年来,法国凯璞科技集团一直致力于为各领域的研究者们提供独特的热分析、微量热解决方案,尤其在高温及高压细分领域在行业内可谓一枝独秀。历经数十年磨砺的垂直上天平式结构设计保证了热重(TG)产品拥有超高的灵敏度及超低的高温基线漂移。独一无二的三维卡尔维(Calvet)量热技术凝聚了众多研发人员多年的心血与智慧,如塞塔拉姆的C80、BT2.15、C600、MicroSC以及LVC等多款微量热产品在国内国际积累了深厚的客户基础。法国凯璞科技集团凭借独特的3D传感器及超高的灵敏度和准确性成为国际空间站微量热类仪器的独家供应商,此外更积累了空中客车、NASA、法国原子能机构、中科院、中石化等一批国内外不同领域的客户基础。塞塔拉姆的产品遍布金属、陶瓷、催化、能源、航空航天、食品、生物及医药等众多领域。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/201910/uepic/c2f32495-4988-4b15-be89-6b85eca7a6a3.jpg" title=" 塞塔拉姆微量热仪.png" alt=" 塞塔拉姆微量热仪.png" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 塞塔拉姆微量热仪仪器展示 /strong /p p   研发工作一直是法国凯璞科技集团(KEP Technologies)关注的焦点,也一直将其视为集团前进的基本推动力。为此,集团在世界范围内配置了多层次的研发团队,其核心是位于瑞士日内瓦的KEP创新中心(Innovation Center)以及具有数十年历史的位于法国里昂的Setaram R& amp D部。Setaram R& amp D部立足于塞塔拉姆在微量热领域深厚的技术积累,把握欧洲科技前沿脉搏,结合KEP分布于世界各地的客户、一线工程师及销售人员的实时反馈,不断改进现有产品,并在此基础上规划集团未来的研发战略。基于其在微量热领域的专业地位,塞塔拉姆参与了ASTM C26委员会的NDA技术标准制定工作。2018年法国凯璞科技集团在瑞士日内瓦整合成立全球的产品和技术创新中心,负责全球的产品开发和技术整合。目前,已经在新能源材料、核工业和过程安全等领域都正在开发面向全球的新产品。伴随法国凯璞科技集团产品自身的日臻完善,法国凯璞科技集团不断见证了诸多用户的成功与突破,坚持不懈地协助用户,随时准备着承担起社会赋予的责任和使命。 /p p   正如前言所述,微量热市场本身就是一个比较特殊的热分析细分市场,总体的市场规模有待扩大。所以说微量热的市场开发是一个任重而道远的事业。这不仅仅是一个产品、一个公司的事业,而是全行业的事业。微量热作为一种传统的测试手段,已经官方应用在科研的各个领域,经历数十年的实践,解决了很多问题,也面临着各种各样的挑战。现阶段微量热面临的主要问题在于如何平衡现有微量热仪硬件系统存在的固有矛盾,测试数据质量和测试效率、超高的灵敏度及样品普适性等方面的问题。想要解决这个问题,并不能简单期待单项的技术突破或者二理论创新,首先要求研发团队人员深入一线,充分了解客户需求,在此基础上融汇材料、电子、机械及热力学设计等技术,在尊重量热学客观规律的基础上,提出真正符合客户期待的解决方案。 /p p br/ /p
  • 【赛纳斯】上头电子烟就是毒 品,增强拉曼技术助力低溶度新精活物质快检
    ‍福建省厦门市公安局7月19日公布,经过10个月的侦破,近日摧毁一个跨省贩卖含有合成大麻素电子烟的贩毒网络,公安部禁毒局将该案列为目标案件督办,目前已抓获犯罪嫌疑人29人,查获违法吸食人员100多人。‍‍‍‍‍‍近年来,在公安机关对毒 品犯罪的高压严打之下,海洛因、鸦片等传统的第一代毒 品与人工合成的冰 毒、氯胺酮等第二代毒 品,价格飞涨,并且较难交易。此时,犯罪团伙就对一些人工合成的管制化学品进行结构修饰,获取被称为新精神活性物质的毒 品类似物,使其具有与管制毒 品相似甚至更强的兴奋、致幻和麻醉效果。这类毒 品被人们称为第三代毒 品,人工合成大麻素就是其中之一。【什么是上头电子烟】所谓“上头电子烟”就是被不法分子掺入了四氢大麻酚或合成大麻素类新精神活性物质,对人体危害极大,有的贩卖者通过提供多种味道的烟油,如烟草口味、水果口味、泡泡糖口味、巧克力口味、奶油口味来吸引青少年人群,并通过朋友圈及网络进行销售。这种特殊的电子烟还打着安全合法的旗号误导消费者。不少青少年认为是‘娱乐消遣品’或者是‘俱乐部毒 品’,认为是一种无害的毒 品,由于新型毒 品与传统毒 品成瘾的症状不同,表现的形式不一样,因此,更容易使吸毒者上当受骗,充当毒 品的俘虏。‍‍‍‍‍‍‍‍厦门赛纳斯基于拉曼光谱技术研发了手持式拉曼光谱仪SHINS-P700T非接触式毒 品检测仪器,配合增强拉曼技术,轻松检测烟油中毒 品,特别适合现场快速安全鉴别。操作简单、检测快速,检出限可达到ng级(浓度手持式拉曼光谱仪SHINS-P700T不仅能够检测合成大麻素,针对其他伪装毒 品、掺杂毒 品、强荧光干扰等毒 品检测难题,厦门赛纳斯的增强拉曼技术也发挥同样优质检测能力。检测方法适用于固体、液体、黏稠胶状等各种检材,已实现200多种毒 品(含三代毒 品芬太尼类、合成大麻素)的高灵敏特异定性鉴别,检出限低至pg~ng级别。该方法的强适用性在面对于层出不穷的新型毒 品发挥了很好的拓展性,利用仪器自建库功能,可快速建立新型毒 品项目数据库,迅速开展禁毒工作。
  • 我国食品安全国家标准共1366项 守护国民“舌尖上的安全”
    食品安全关系民生福祉,为进一步提高食品安全保障水平,让百姓吃得更放心,我国陆续出台了多项食品安全国家标准。近日,国家食品安全风险评估中心专家就网友关注的食品安全国家标准等问题进行了详细解答。什么是食品安全标准?“十四五”食品安全工作如何抓?“民以食为天,食以安为先”,加强食品安全监管,关系着人民群众“舌尖上的安全”。国家食品安全风险评估中心标准一室主任、研究员朱蕾介绍,食品安全标准是我国唯*强制执行的食品标准,是保障食品安全、促进行业发展和保障公平贸易的重要手段,是食品安全监管重要的技术依据。她表示,国家卫生健康委按照《食品安全法》赋予的法定职能,依法管理食品安全国家标准的工作。截至目前,我国共发布了食品安全国家标准1366项,包括通用标准、产品标准、生产规范标准和检验方法标准四大类标准,这四类标准有机衔接、相辅相成,从不同角度管控不同的食品安全风险,能够涵盖我国居民消费的主要食品类别和主要的健康危害因素。朱蕾举例称,例如通用标准《食品中致病菌限量》(GB 29921-2013),针对肉制品、水产制品、即食蛋制品、粮食制品、即食豆类制品、巧克力类及可可制品、即食果蔬制品、即食调味品、坚果制品等共11大类食品设定了致病菌限量要求。还有两类标准《食品添加剂使用标准》(GB 2760-2014)以及《食品营养强化剂使用标准》(GB 14880-2012)结合食品来源和食品加工两方面的特点,对乳及乳制品、脂肪和油、冷冻饮品、水果、蔬菜、豆类、食用菌、藻类、坚果及籽类等16大类、354小类的食品规定了食品添加剂和食品营养强化剂的使用要求。朱蕾表示,为实现到2035年我国食品安全标准水平进入世界前列的目标,整个“十四五”期间,将重点开展四方面工作:加强食品安全标准规划顶层设计。通过制定最严谨的标准,提高从农田到餐桌全过程的食品安全风险控制能力,提升食品全链条质量安全保障水平。深入贯彻食品安全风险分析原则。食品安全标准的制定要基于风险评估的结果,采用我国的膳食暴露和食品污染数据,经过科学评估并考虑标准的社会和经济影响,进一步发挥食品安全风险监测网络的作用,以及食物消费量调查和总膳食研究资料的基础作用,完善风险评估的技术,为食品安全标准制定提供科学的支撑。系统开展食品安全标准体系评估。开展好对现有标准的跟踪评价,从科学性、合理性、可行性三个方面对各类标准开展系统评估,能够及时发现存在的问题并加以调整和完善。在此基础上,建立科学客观的标准评价指标体系,评价标准在保护消费者健康、促进行业发展、影响食品国际贸易等方面发挥作用。通过成本-效益分析模型,了解标准实施后获得的健康保护、产业发展等社会经济效益和标准实施成本之间的关系。在“十三五”工作基础上,继续积极参与全球食品安全治理活动。我国对食品中的致病菌、污染物有哪些限量规定?食品当中的致病菌、污染物(真菌毒素)对消费者健康危害较大。为此,我国制定了《食品安全国家标准 食品中致病菌限量》、《食品安全国家标准 食品中真菌毒素限量》和《食品安全国家标准 食品中污染物限量》,对食品当中的主要致病菌、污染物(真菌毒素)进行限量管理。致病菌是常见的致病性微生物,能够引起人或者动物发生疾病。食品中的致病菌常见的主要有沙门氏菌、副溶血性弧菌、大肠杆菌、金黄色葡萄球菌等等。据统计,我国每年由于致病菌引起的食源性疾病报告病例数占全部报告病例数近一半左右。国家食品安全风险评估中心标准二室主任、研究员王君介绍,《食品安全法》规定,食品安全标准应该对食品当中的致病性微生物、农药残留、兽药残留、重金属、污染物质以及其他危害人体健康物质作出限量规定。为了控制食品当中的致病菌污染,预防食源性疾病,我国制定了食品当中的致病菌限量标准,就是《食品安全国家标准 食品中致病菌限量》(GB29921-2013),2013年发布,2014年7月正式实施。食品在贮存、加工、运输等过程中都有可能被污染,什么算食品中的污染物,我国食品标准中对污染物限量的管理是怎样的?对此,王君解释到,污染物是指食品从生产(包括农作物种植、动物饲养和兽医用药)、加工、包装、贮存、运输、销售,直到食用全过程中产生的或者由于环境污染带入食品当中的,特别强调的是非有意加入的化学性危害物质。我国现行污染物限量标准,即《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)和《食品安全国家标准 食品中污染物限量》(GB 2762-2017),这两个标准都是在原来相应标准的基础上,即2011版和2012版本的基础上修订的。王君提到,与原来的相应标准相比,《食品安全国家标准 食品中真菌毒素限量》通过我国葡萄酒和咖啡中赭***素A风险评估及产品消费量情况,根据膳食暴露风险评估结果,增加了葡萄酒和咖啡中赭***素A限量要求。而《食品安全国家标准 食品中污染物限量》根据我国居民膳食稀土元素风险评估结果,取消了植物性食品当中的稀土限量要求,增加了作为普通食品管理的螺旋藻及其制品中的铅限量要求。除此之外,将《食品安全国家标准 特殊医学用途配方食品通则》《食品安全国家标准 辅食营养补充品》《食品安全国家标准 运动营养食品通则》《食品安全国家标准 孕妇及乳母营养补充食品》这几个标准中有关污染物的指标统一纳入该标准管理。为什么要使用食品添加剂?哪些可以安全使用?平常,大家在看食品配料表时,总被各类添加剂的名称弄得一头雾水。到底哪些是食品添加剂?为何要使用食品添加剂?我国目前批准使用的食品添加剂有多少种呢?对于上述问题,国家食品安全风险评估中心副研究员王华丽回应称,根据《食品安全法》的要求,食品添加剂是指为了改善食品品质和色、香、味,以及为防腐、保鲜和加工工艺的需要,加入到食品中的人工合成的或天然的化学物质。常见的防腐剂、着色剂、营养强化剂、香精香料、胶基糖果中基础剂物质、食品工业用加工助剂等都属于食品添加剂的范畴。按照我国对食品添加剂管理范畴,目前允许使用的食品添加剂品种有2300余种,香料占了很大一部分,将近1800多种。“食品添加剂按功能分为23个类别,大家最熟悉的可能是防腐剂、糖果里的着色剂、香精香料等,不太熟悉的比如食品加工过程中要用的酶制剂、萃取剂、脱模剂、澄清剂等,这种物质也是属于食品添加剂。”她说。那么,为什么要使用食品添加剂呢?王华丽表示,使用食品添加剂有两个方面需求,一方面是食品加工工艺的需要;另一方面是大家对于食品的口味或者营养需求的需要。目前,大家能在超市购买到各式各样的食品很大程度上归功于食品添加剂。如果没有防腐剂,很多食物会在短时间内发生*败变质,无法实现长途运输,也就没有那么多丰富多样的食品可选择。“有了抗氧化剂(比如TBHQ),油、麻花、坚果等食品就不会有哈喇味。比如甜味剂,像安赛蜜、阿斯巴甜等,能够满足糖尿病人对甜味食品的需求和渴望。”她说。针对哪些食品添加剂的品种可以使用这一问题,王华丽指出,凡是不在《食品安全国家标准 食品添加剂使用标准》(GB2760)和国家卫生健康委公告允许使用品种范围的,都不是允许使用的食品添加剂,比如常见的苏*红、三聚氰胺等。俗话说,没有规矩不成方圆。王华丽介绍,为了保证“舌尖上的安全”,我国已制定发布了600多项食品添加剂食品安全国家标准,基本能够满足目前的监管和行业需求。
  • 【赛纳斯】拉曼光谱技术穿透伪装识别合成大麻素等新精活物质
    毒 品从它诞生初始就披着美丽的外衣在诱惑民众,它不断变换形态、外貌引诱人们,从而扑倒在它的阴影下,迈入罪恶的深渊而无从挣扎。为警醒人们,我们好好剥开笼罩在它身上的外衣,让它真实面貌暴露在人们面前。“彩虹烟”的外观颜色酷炫,闻起来有香气,吸食有特殊烟雾,非常具有迷惑性。它是由小树枝、香料掺杂混合毒 品(系合成大麻素)制成,具有较强的兴奋、致幻效果,也会令吸食者出现头晕、恶心、气短、胸痛等症状。其危害丝毫不亚于海洛因、冰 毒等。“奶茶”是一种以小型冲泡饮品包装为伪装的新型毒 品的统称,这类毒 品的外形与真正的奶茶极度相似,却混合了冰 毒、氯胺酮、摇头丸等成分,服用后会产生中毒性精神障碍,情感变得脆弱不稳定,注意力无法集中,轻度意识模糊,产生日夜颠倒的幻觉,甚至陷入昏迷。“可乐”的主要成分是氯胺酮(K粉),外包装与普通可乐极为相似,吸食微量就会使人亢奋、出现幻觉,甚至会引起发狂。它与冰 毒相比危害更大,售价也高出10倍左右,吸食方法也不同。“跳跳糖”表面上看和普通的跳跳糖无异。普通的跳跳糖含二氧化碳,遇水时外边的糖分溶解,里边的二氧化碳冒出就产生“跳”的感觉 而毒 品“跳跳糖”主要含有摇头丸成分,遇水即溶、冲水即饮,服用后两到三天都会处于兴奋之中,会对人的大脑造成不可逆的损伤。“曲奇饼干”从外表看与饼干无异,打开包装袋有明显的异味,含有四氢大麻酚或合成大麻素类新精神活性物质成分。这种“大麻饼干”价格高昂。“迷幻蘑菇”是一种蘑菇外形的新型毒 品,涉毒圈内称之为“金老师”。吸食大麻的人也将“迷幻蘑菇”作为大麻的替代品。“迷幻蘑菇”中含有的成分为赛络新和赛洛西宾,致幻性强,短时间内能迅速作用于人的神经系统,使人对周围感知无限放大。这种伪装成“巧克力”的新型毒 品,是犯罪分子掺入了四氢大麻酚或合成大麻素类新精神活性物质制成的,其包装粗糙简陋,而且没有标明任何品牌。食用后会引起手脚颤抖、心跳加快、头脑昏沉、反应迟钝、短期失忆等不良反应。面对这种毒 品种类多样化,新型毒 品的伪装性及诱惑性极强,一线工作人员的危险性极大的情况下,赛纳斯基于自有搭建物联网平台,运用大数据、物联网、云端管理、人工智能等技术手段,并结合自主研发拉曼光谱技术光谱快检装备,构建了合成大麻素物联网检测与防控系统,实现合成大麻素的可管可治、严防严控,有效抑制合成大麻素的蔓延。结合拉曼光谱技术完美覆盖合成大麻素检测每一种合成大麻素类化学物质都有其独有的光谱特征谱,它就像人的指纹一样具有唯一性。常见的手持拉曼光谱仪的激发光源为785 nm激光,可以实现大部分毒 品标准品的鉴定。但是贩毒链中毒 品纯度较低,且含有的杂质容易带来荧光干扰,甚至有些毒 品本身的就具有较大的荧光基团。785 nm波长激发光下测试的拉曼特征谱峰往往会被被湮没在荧光信号当中,无法实现有效鉴定。而公共安全联合实验开发的SHINS 1064手持拉曼仪,配备1064 nm红外激光器,可以有效规避物质荧光干扰,如此实现合成大麻类毒 品的一网打尽。赛纳斯SHINS-P1000手持式拉曼光谱仪有效降低荧光干扰,能够覆盖荧光强的实际样品检测;用于烟油中合成大麻素样品的隔包装定性识别检测;采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,赛纳斯SHINS-P1000手持式拉曼光谱仪可穿透透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采1064nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:合成大麻素,芬太尼、卡芬太尼及衍生物 新型精神药物 安非他命 可卡因 海洛因 管制前体。SHINS-P1000现场快检装备介绍(1)信息特异性强,可透过透明包装直接鉴定(2)GPS定位、身份证识别、拍照取证、智能辅助为执法工作减负(3)本土化数据库,基于中国毒情建立物联网系统检测流程:合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。直接进行拉曼信号采集容易有杂质干扰,此处采用简单的前处理方式(①),然后将处理后的样品直接滴于增强芯片表面(②)。再将芯片插于拉曼光谱仪的检测槽中(③),进行拉曼检测,直接输出结果,检测限低至ppm级别,检测时间数十秒即可。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制