当前位置: 仪器信息网 > 行业主题 > >

透明质酸钠标准品

仪器信息网透明质酸钠标准品专题为您提供2024年最新透明质酸钠标准品价格报价、厂家品牌的相关信息, 包括透明质酸钠标准品参数、型号等,不管是国产,还是进口品牌的透明质酸钠标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透明质酸钠标准品相关的耗材配件、试剂标物,还有透明质酸钠标准品相关的最新资讯、资料,以及透明质酸钠标准品相关的解决方案。

透明质酸钠标准品相关的资讯

  • 乌氏黏度计测透明质酸钠(HA)的特性黏数
    透明质酸钠(HA),化学式为(C14H20NO11Na)n,是人体内一种固有的成分,是一种葡聚糖醛酸,没有种属特异性,它广泛存在于胎盘、羊水、晶状体、关节软骨、皮肤真皮层等组织、器官中。它分布在细胞质、细胞间质中,对其中所含的细胞和细胞器官本身起润滑与滋养作用,同时提供细胞代谢的微环境.它是将一种人体天然的"透明质酸"配合以其他促进细胞再生除皱药物制成一种凝胶,可以通过注射方法使用。透明质酸钠在化妆品中最重要的作用是保湿作用,与其他保湿剂相比,周围环境的相对湿度对其保湿性的影响较小。透明质酸钠是白色、类白色的粉末,也可能是白色或类白色的颗粒或粉末。是一个由葡萄糖醛酸和乙酰氨基己糖组成双糖单位聚合而成的一种高分子质量的直链黏多糖,其分子量为100万。在水中形成一种稠粘弹性的溶液,具有生理酸碱度及离子强度。其分子形态可变,故用较细的注射针也可通过。此外,透明质酸钠的含量测定颜色是紫色,可以通过葡萄糖醛酸的含量来确定透明质酸钠的含量。透明质酸钠主要应用于化妆品,食品以及医药领域,其中化妆品市场应用占比达55%以上。随着2020年12月28日,国家卫健委正式发布2020年第9号公告,正式批准透明质酸钠为新食品原料。随着透明质酸钠纳入新食品原料,透明质酸钠的使用范围有所扩大。受市场前景吸引,越来越多的企业入局透明质酸钠市场,包括华熙生物、众山生物、丰金生物等企业,随着市场参与者不断增加,未来透明质酸钠市场规模将进一步扩大。目前乌氏毛细管黏度计测透明质酸钠的特性粘度是行业内作为控制产品质量最为重要的指标之一。在YY/T1571-2017标准中明确了采用《中华人民共和国药典》中的通则0633第二法测定(即乌氏粘度计法),并且明确了采用氯化钠为溶剂,从而得出特性黏数。实验过程如下:1. 实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平、磁力搅拌器2. 实验所需试剂:氯化钠(分析纯)或者配置好的氯化钠,纯水。一、溶剂的配置:使用万分之一电子天平称量称量1.17g的氯化钠倒入25ml烧杯备用,加少量纯水溶解后倒入100ml定容瓶,再加25纯水到烧杯中冲洗并倒入100ml定容瓶,反复两次清洗烧杯后定容到100ml,混匀后贴上0.2mol/L氯化钠备用。二、溶剂粘度的测定:卓祥全自动粘度仪温场设置到25.00℃并且稳定后,加入0.2mol/L氯化钠12-15ml,软件中启动测试任务待结束。三、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。四、透明质酸钠溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制到0.00009g/ml(若样品中不完全是透明质酸钠,即按照含量算出需要称量样品多少质量才能达到这个测试要求),样品瓶放入搅拌子后在磁力搅拌器300R/min的转速搅拌1小时。五、样品粘度的测定:加入透明质酸钠溶液样品样品,启动软件中特定公式测试,待任务结束。六、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。七、按以下式计算特性黏数:T/T0-----分别代表的是样品流经平均时间/溶剂流经平均时间,单位为秒(S);C ------溶液质量浓度的数值,单位为克每毫升(g/ml)分子量可通过相对分子质量导出,以上结果在卓祥全自动粘度仪软件样品测量结束后可自动生成报表查看,报表可导出打印。 未经过原作者或者现发布者的同意,任何个人或者单位都不可以转载和使用上述内容
  • 新冠发病另一种机制被找到!研发抑制透明质酸合成的特效药有望成为治疗新冠肺炎的新策略
    新冠肺炎仍在全球肆虐,截至2021年9月28日,已在全球感染超2.3亿人,死亡超472万。变异毒株的不断涌现使新冠病毒与人类共存成为大概率事件,寻找应对新冠病毒的防治策略已成为全球科学家和政府面临的重要议题。  目前,国内外已有数款预防新冠的疫苗获批上市,但治疗新冠肺炎依然缺乏特效药。因此,探索不同病毒株共同的致病机制显得尤为重要。  2021年9月28日,深圳市第三人民医院、复旦大学生物医学研究院以及杭州创将医疗科技有限公司共同主办《NamiRNA、透明质酸与新冠肺炎治疗新策略研讨会暨羟甲香豆素在新冠临床治疗中的应用推介会》,会议邀请到国内外多位新冠防治领域的知名专家和学者,研讨会采取线上加线下的形式,介绍了新冠防治新策略的最新进展和研究成果,以期使国内外的新冠防治工作者得到新冠研究最新动态。  会上复旦大学生物医学研究院于文强指出,新冠致病的罪魁祸首或为HIS基因序列。在过去的近10年里,于文强团队发现了一类在细胞核内发挥独特激活作用的NamiRNA(NuclearActivatingmiRNA),打破了传统miRNA抑制理论经典,创造性地提出NamiRNA-增强子-基因激活理论,这也为新冠致病新机制的研究打下基础。  疫情初期,于文强团队就投入到新冠快速检测和致病机制攻关研究,解析新冠肺炎特殊临床和病理改变分子机制,寻找全新有效防治方案。经研究发现,新冠病毒基因组与人类基因组存在5段完全相同的基因序列,长度为24~27 nt,团队将它命名为HIS(Human Identical Sequence)。HIS在159258个新冠病毒基因组广泛存在,且能靶向性地激活人体中肺、血管等非免疫细胞中与炎症相关的基因。因此,人感染新冠病毒后致病的罪魁祸首很可能是HIS基因序列——携带HIS基因序列的新冠病毒进入人体后和人类基因中HIS共同作用,这可能是引起“炎症因子风暴”的重要原因。  由此于文强与合作团队推出抑制透明质酸合成,治疗新冠的新策略。于文强团队发现,新冠患者的血浆中透明质酸的升高,与淋巴细胞降低和肺部毛玻璃病变等临床症状密切相关。而HIS能够激活透明质酸的合成酶,引起透明质酸增加。在新冠肺炎患者的血浆中,透明质酸是升高的。透明质酸又名玻尿酸,是一种酸性粘多糖,分为大分子和小分子,小分子是重要的炎性介质。  在随后的动物实验中,于文强团队发现,单用透明质酸处理就能引起小鼠肺部典型CT影像学的毛玻璃病变,进一步证实透明质酸是新冠致病的共同物质基础和治疗新靶点,以透明质酸为靶点抑制其合成,可以成为新冠治疗的新策略。  4-MU是透明质酸合成抑制剂,对应药物为中国已上市治疗胆囊炎的口服处方药羟甲香豆素。  此后,于文强团队与深圳市第三人民医院卢洪洲团队合作开展临床试验,共入组新冠肺炎患者130例。初步研究结果显示,羟甲香豆素能显著促进患者体内淋巴细胞恢复,同时改善患者肺部病变。“这项研究找到了新冠的发病机制,进而明确了要怎么去治疗新冠。幸运的是,还找到了羟甲香豆素这样有效的药物。”卢洪洲教授表示。  鉴于国内新冠患者数量较少,该团队联合杭州创将医疗科技有限公司进行合作,在玻利维亚、厄瓜多尔等南美国家开展相关临床试验的前期准备工作。  目前,羟甲香豆素在新冠治疗及阻断重症发展中的作用仍待进一步研究。于文强团队与卢洪洲团队、南方科技大学糖生物学王鹏团队正在申请新课题,将从细胞水平、动物模型和临床试验三个层面入手,深入研究羟甲香豆素对不同新冠变异株的作用及分子机制,以期降低新冠高危人群病死率,将新冠变成 “普通感冒”,为全球应对新冠变异和治疗,提供简单易行可推广的中国方案。
  • 中国食品工业协会制定的团体标准(附下载链接)!
    近日,由中国食品工业协会编制的《低氘水》团体标准”正式发布。标准中将通常以为的氘含量低于-60‰的“低氘水”,通过本次《低氘水》团体标准提高为:氘含量低于-80‰的饮用水为低氘水。低氘水分为天然形成和人工制成:天然低氘水指在自然过程中,由于水汽中同位素的分馏作用,使得分布在高纬度和高海拔地区、降水或冰雪融水中等自然来源且氘含量低于-80‰的饮用水;人工低氘水指通过人工方法降低普通饮用水中氘的含量,使其氘含量低于-150‰的饮用水。该定义为“低氘水”行业未来的发展提供权威的规范准则。中国食品工业协会制定多项食品团体标准,进一步确保食品的安全性和质量。基于此,小编将该协会制定的部分团体标准(截至2024年3月18日)汇总,以飨读者。 标准编号标准名称实施日期T/CNFIA 192-2024低氘水2024.03.18T/CNFIA 111-2024火锅调料 (代替 T/CNFIA 111-2018)2024.02.05T/CNFIA 186-2023蓝莓汁(浆)、蓝莓浓缩汁(浆)及其饮料2023.11.01T/CNFIA 185-2023即食鱼糜制品2023.10.18T/CNFIA 184-2023绵甜型白酒生产技术指南2023.10.22T/CNFIA 183-2023绵甜型白酒2023.10.22T/CNFIA 182-2023冷冻、冷藏食品术语与分类2023.09.20T/CNFIA 181-2023螯虾制品2023.09.20T/CNFIA 180-2023挂浆肉制品2023.09.20T/CNFIA 179-2023速冻调理包2023.09.20T/CNFIA 178-2023液体食品用无菌纸基复合包装环境友好性评价准则2023.10.31T/CNFIA 177-2023食品包装密封性的无损检测 真空衰减法2023.10.31T/CNFIA 176-2023柔雅馥合香型白酒2023.10.16T/CNFIA 175-2023绵甜柔雅型白酒2023.7.31T/CNFIA 174-2023西梅汁、西梅浓缩汁及其饮料2023.7.25T/CNFIA 173-2023素蚝油2023.8.15T/CNFIA 172-2023燕窝肽2023.12.28T/CNFIA 171-2023非油炸方便面皮2023.3.31T/CNFIA 170-2023鲜食玉米制品2023.3.15T/CNFIA 166-2023液体食品用可微波无菌纸基复合包装2023.6.30T/CNFIA 167-2023食品接触用生物降解保鲜袋2023.6.30T/CNFIA 168-2023鲜炖花胶2023.2.21T/CNFIA 169-2023绵柔酱香型白酒2023.2.1T/CNFIA 163-2022食品接触材料及制品用粘合剂符合性声明要求2023.2.10T/CNFIA 162-2022食品接触材料及制品符合性声明通则2023.2.10T/CNFIA 161-2022食品接触用环保型涂布纸和纸板材料及制品2023.2.10T/CNFIA 164-2022豆豉及其制品2022.12.27T/CNFIA 165-2022大豆植物肉及其制品2022.12.27T/CNFIA 160-2022食品数字源安全评价通则2022.10.16T/CNFIA 159-2022豆浆粉2022.09.26T/CNFIA 158-2022食品物流标准体系构建指南2022.09.20T/CNFIA 157-2022透明质酸钠食品通用要求2022.07.27T/CNFIA 144-2022明绿香型白酒2022.07.20T/CNFIA 155-2022透明质酸钠饮品2022.06.30T/CNFIA 156-2022食品中霉菌和酵母的快速计数测试片法2022.06.15T/CNFIA 139-2021全豆腐乳2022.06.01T/CNFIA 138-2021全豆豆浆2022.06.01T/CNFIA 137-2021全豆豆腐2022.06.01T/CNFIA 132-2021上海老酒2021.11.04T/CNFIA 145-2022原包装陈酿年份白酒[瓶(坛)贮年份酒]2022.04.20T/CNFIA 143-2022净香型白酒2022.04.19T/CNFIA 142-2022维生素C产品中抗坏血酸的稳定碳同位素比值(13C12C)测定方法2022.08.01T/CNFIA 141-2022蚝原汁2022.06.15T/CNFIA 136-2022鱼松2022.8.18T/CNFIA 135-2022即食拌饭干制品2022.2.18T/CNFIA 140-2022组合式预制餐品生产商管理评价通用要求2022.1.17T/CNFIA 134-2021海带粉2021.12.28T/CNFIA 131-2021益生菌食品2021.11.08T/CNFIA 130-2021鲜炖燕窝质量要求2021.08.05T/CNFIA 126-2021酱油膏2021.10.15T/CNFIA 125-2021昆布抽提物2021.04.12T/CNFIA 123-2021香米酒2021.03.20T/CNFIA 124-2021古法手工酱油2021.03.20T/CNFIA 120-2020即食发酵火腿2020.12.28T/CNFIA 201-2020食品接触用一次性纸吸管2020.12.10T/CNFIA 123-2020荞香酒2020.11.20T/CNFIA 116-2020猕猴桃(果/米)酒2020.10.15T/CNFIA 118-2020苹果蒸馏酒2020.06.30T/CNFIA 117-2020酸汤调味料2020.06.18T/CNFIA 114-2019原酿本味酱油2019.12.20T/CNFIA 115-2019预制包装菜肴2019.12.01T/CNFIA 005.1-2019坚果籽类食品质量等级 第1部分:生干核桃2019.09.01T/CNFIA 005.2-2019坚果籽类食品质量等级 第2部分:生干扁桃核和仁(巴旦木)2019.09.01T/CNFIA 005.3-2019坚果籽类食品质量等级 第3部分:生干碧根果2019.09.01T/CNFIA 005.4-2019坚果籽类食品质量等级 第4部分:生干澳洲坚果(夏威夷果)和仁2019.09.01T/CNFIA 005.5-2019坚果籽类食品质量等级 第5部分:生干开心果2019.09.01T/CNFIA 005.6-2019坚果籽类食品质量等级 第6部分:生干腰果仁2019.09.01T/CNFIA 005.7-2019坚果籽类食品质量等级 第7部分:生干榛子2019.09.01T/CNFIA 005.8-2019坚果籽类食品质量等级 第8部分:生干杏核和杏仁2019.09.01T/CNFIA 005.9-2019坚果籽类食品质量等级 第9部分:生干松籽2019.09.01T/CNFIA 005.10-2019坚果籽类食品质量等级 第10部分:生干瓜子2019.09.01T/CNFIA 113-2019甜醋2019.11.01T/CNFIA 112-2019什锦果仁2019.06.01T/CNFIA 111-2018火锅调料2018.12.01T/CNFIA 110-2018红糖2018.12.01T/CNFIA 002-2018预包装食品营养成分图形化标示指南2018.11.01T/CNFIA 109-2018豆制品业用大豆2018.10.01T/CNFIA 108-2018千页豆腐2018.10.01T/CNFIA 107-2018山药发酵酒2018.10.01T/CNFIA 106-2018山药蒸馏酒2018.10.01T/CNFIA 105-2018山药露酒2018.10.01T/CNFIA 103-2018沙棘露酒2018.10.01T/CNFIA 004-2018不锈钢非标酿造设备制造规范2018.10.01T/CNFIA 104-2018桑椹(果)酒2018.08.01T/CNFIA 102-2018捞汁2018.08.01T/CNFIA 003-2018复合调味酱良好生产规范2018.08.01T/CNFIA 101-2017食品工业用富色食品2018.01.01T/CNFIA 001-2017食品保质期通用指南2018.01.01TCNFIA001-2017.pdfTCNFIA002-2018.pdfTCNFIA_104-2018.pdfTCNFIA005.1-2019.pdfTCNFIA005.2-2019.pdfTCNFIA003-2018.pdfTCNFIA005.3-2019.pdfTCNFIA005.5-2019.pdfTCNFIA005.4-2019.pdfTCNFIA005.6-2019.pdfTCNFIA005.7-2019.pdfTCNFIA005.8-2019.pdfTCNFIA101-2017.pdfTCNFIA005.9-2019.pdfTCNFIA103-2018.pdfTCNFIA005.10-2019.pdfTCNFIA102-2018.pdfTCNFIA105-2018.pdfTCNFIA106-2018.pdfTCNFIA108-2018.pdfTCNFIA107-2018.pdfTCNFIA110-2018.pdfTCNFIA111-2018.pdfTCNFIA109-2018.pdfTCNFIA114-2019.pdfTCNFIA112-2019.pdfTCNFIA123-2020.pdfTCNFIA125-2021.pdfTCNFIA115-2019.pdfTCNFIA131-2021.pdfTCNFIA117-2020.pdfTCNFIA134-2021.pdfTCNFIA-137-2021.pdfTCNFIA-138-2021.pdfTCNFIA-139-2021.pdfTCNFIA145-2022.pdfTCNFIA155-2022.pdfTCNFIA157-2022.pdfTCNFIA160-2022.pdfTCNFIA-156-2022.pdfTCNFIA162-2022.pdfTCNFIA161-2022.pdfTCNFIA163-2022.pdfTCNFIA166-2023.pdfTCNFIA167-2023.pdfTCNFIA169-2023.pdfTCNFIA178-2023.pdfTCNFIA201-2020.pdfTCNFIA177-2023.pdf
  • 9月份有87项标准将实施 医药卫生、食品环境领衔
    9月份有87项标准将实施我们通过国家标准信息平台查询到,在2022年9月份将有87项与仪器及检测行业的国家标准、行业标准和团体标准将实施。8月份新实施的标准主要集中在医药卫生、食品环境相关领域。主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓国家标准(6个)GB/T 2678.2-2021 纸、纸板和纸浆 水溶性氯化物的测定 GB/T 13214-2021 牛肉类、羊肉类罐头质量通则 GB/T 14215-2021 番茄酱罐头质量通则 GB 24539-2021 防护服装 化学防护服 GB 40554.1-2021 海洋石油天然气开采安全规程 第1部分:总则 GB 40162-2021 饲料加工机械卫生规范 行业标准(47个)JT/T 1428-2022 营运车辆后向碰撞预警系统性能要求和测试规程 LS/T 3549—2022 粮油储藏 横向通风风机技术要求 LS/T 1224—2022 花生储藏技术规范 LS/T 3270—2022 红米 LS/T 6140—2022 粮油检验 免疫亲和柱评价规范 LS/T 1301—2022GC/T 1801—2022 粮食和国家物资储备标准制定、修订程序和要求 YY/T 1809-2021 医用增材制造 粉末床熔融成形工艺金属粉末清洗及清洗效果验证方法 YY/T 1808-2021 医疗器械体外皮肤刺激试验 YY/T 1806.2-2021 生物医用材料体外降解性能评价方法 第2部分:贻贝黏蛋白 YY/T 1806.1-2021 生物医用材料体外降解性能评价方法 第1部分:可降解聚酯类 YY/T 1805.2-2021 组织工程医疗器械产品 胶原蛋白 第2部分:I型胶原蛋白分子量检测-十二烷基硫酸钠聚丙烯酰胺凝胶电泳法YY/T 1803-2021 聚乙烯醇止血海绵 YY/T 1802-2021 增材制造医疗产品 3D打印钛合金植入物金属离子析出评价方法 YY/T 1798-2021 一次性使用宫腔压迫球囊 YY/T 1797-2021 内窥镜手术器械 腔镜切割吻合器及组件 YY/T 1796-2021 医用干式胶片专用技术条件 YY/T 1788-2021 外科植入物 动物源性补片类产品通用要求 YY/T 1787-2021 心血管植入物 心脏瓣膜修复器械及输送系统YY/T 1782-2021 骨科外固定支架力学性能测试方法 YY/T 1781-2021 金属U型钉力学性能试验方法 YY/T 1778.1-2021 医疗应用中呼吸气体通路生物相容性评价 第1部分:风险管理过程中的评价与试验 YY/T 1764-2021 血管支架体外轴向、弯曲、扭转耐久性测试方法 YY/T 1748-2021 神经血管植入物 颅内弹簧圈 YY/T 1745-2021 自动粪便分析仪 YY/T 1708.6-2021 医用诊断X射线影像设备连通性符合性基本要求 第6部分:口腔X射线机 YY/T 1708.5-2021 医用诊断X射线影像设备连通性符合性基本要求 第5部分:乳腺X射线机 YY/T 1708.4-2021 医用诊断X射线影像设备连通性符合性基本要求 第4部分:数字减影血管造影X射线机 YY/T 1708.3-2021 医用诊断X射线影像设备连通性符合性基本要求 第3部分:数字化摄影X射线机 YY/T 1704.3-2021 一次性使用宫颈扩张器 第3部分:球囊式 YY/T 1629.6-2021 电动骨组织手术设备刀具 第6部分:锉刀 YY/T 0988.3-2021 外科植入物涂层 第3部分:贻贝黏蛋白材料 YY/T 0962-2021 整形手术用交联透明质酸钠凝胶 YY/T 0916.1-2021 医用液体和气体用小孔径连接件 第1部分:通用要求 YY/T 0910.1-2021 医用电气设备 医学影像显示系统 第1部分:评价方法 YY/T 0811-2021 外科植入物用大剂量辐射交联超高分子量聚乙烯制品 YY/T 0758-2021 医用激光光纤通用要求 YY/T 0719.9-2021 眼科光学 接触镜护理产品 第9部分:螯合剂测定方法 YY/T 0663.1-2021 心血管植入物 血管内器械 第1部分:血管内假体 YY/T 0617-2021 一次性使用人体末梢血样采集容器 YY/T 0616.6-2021 一次性使用医用手套 第6部分:抗化疗药物渗透性能评定试验方法 YY/T 0480-2021 诊断X射线成像设备 通用及乳腺摄影防散射滤线栅的特性 YY/T 0314-2021 一次性使用人体静脉血样采集容器 YY/T 0290.6-2021 眼科光学 人工晶状体 第6部分:有效期和运输稳定性 YY/T 0290.1-2021 眼科光学 人工晶状体 第1部分:术语YY/T 0106-2021 医用诊断X射线机通用技术条件 YY/T 1750-2020 超声软组织切割止血手术设备 YY/T 1749-2020 基于外部振动的肝组织超声弹性测量设备 地方/团体标准(34个)DB32/T 4331-2022 临床冠脉定量血流分数(QFR)检查技术规范 DB32/T 4330-2022 疫苗冷藏运输车厢体设计规范 DB32/T 4327-2022 化工消防救援站建设规范 DB32/T 4324-2022 河湖库利用变化高分遥感监测规范 DB1501/T 0028-2022 林业有害生物远程智能监测基站选址规范 DB15/T 2763—2022 一般工业固体废物用于矿山采坑回填和生态恢复技术规范 DB15/T 2762—2022 乳制品行业绿色工厂评价指南 DB2308/T 111-2022 水质 游离氯和总氯(便携式分光光度法)监测技术规范 DB2308/T 110-2022 黑臭水体监测技术规范 DB2308/T 109-2022 大气城市污染分布、污染时效性监测技术规范 DB15/T 2748—2022 绿色电力应用评价方法 DB37/T 4542—2022 固体废物 六价铬的测定 微波消解-电感耦合等离子体发射光谱法 DB42/T 1700.3-2022 化肥农药减施增效技术规程 第3部分:棉花 DB42/T 1901-2022 生物质供热系统工程设计规范 DB41/T 1268-2022 粮食作物施肥配方设计规范 DB41/T 1263-2022 甜高梁青粗饲料生产技术规程 DB41/T 2278-2022 矿山地质环境调查评价技术要求 DB50/T 1257-2022 动力环境监控系统现场监控设备智能化技术规范 DB50/T 1256-2022 动力环境监控系统智能化技术规范 DB14/T 2469—2022 煤化工建设项目文件归档规范 DB14/T 2467—2022 煤层气井采出水处理规范 DB50/T 1254-2022 山羊地方性鼻内肿瘤病毒EvaGreen荧光定量PCR检测方法 DB50/T 867.30-2022 安全生产技术规范 第30部分:有色金属铸造企业 DB50/T 867.29-2022 安全生产技术规范 第29部分:有色金属压力加工企业 DB50/T 1244-2022 基于plo基因的山羊化脓隐秘杆菌PCR检测方法 DB44/ 2367-2022 固定污染源挥发性有机物综合排放标准 DB52/T 1669.4-2022 气瓶质量安全追溯系统第4部分:充装读写控制设备 DB52/T 1669.3-2022 气瓶质量安全追溯系统第3部分:气瓶信息化标签 DB52/T 1669.2-2022 气瓶质量安全追溯系统第2部分:数据接口 DB52/T 1669.1-2022 气瓶质量安全追溯系统第1部分:通用要求 DB32/T 4246-2022 江苏省环境卫生信息化系统技术标准 DB32/T 4245-2022 城镇供水厂生物活性炭失效判别和更换标准 DB32/T 4244-2022 餐厨垃圾与生活垃圾焚烧协同处理技术标准 DB65/T 4402-2021 石榴测土配方施肥技术规程 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 从原料到包装:2024年1-8月化妆品执行标准盘点
    化妆品行业正面临消费者对安全、有效性和质量的日益关注,这带来了挑战也蕴藏着机遇。化妆品标准是保障产品质量和消费者安全的关键,涵盖原料、检测方法、功效测定、包装和口腔清洁等多个方面。本文将对2024年1-8月发布的化妆品执行标准进行盘点。化妆品标准化是保障产品质量和消费者安全的根本手段。中国现行的化妆品技术标准包括《化妆品安全技术规范》(以下简称“《技术规范》”)、国家标准、行业标准、地方标准、团体标准和其他标准。通过对2024年发布的标准盘点(见文末附录)发现,化妆品通则及检测方法类占据主导地位。化妆品检测方法是确保产品安全性和有效性的关键环节。标准化的检测方法不仅能够提供可靠的数据支持,并确保不同实验室之间数据的可比性。目前,化妆品检测方法标准涵盖了微生物检测、重金属含量检测、防腐剂效能测试等多个方面。随着检测技术的进步,新的检测方法如高效液相色谱(HPLC)、质谱(MS)等高灵敏度、高选择性的技术逐渐应用于化妆品检测中。在整理中有9条明确指出了高效液相色谱串联质谱法、高效液相色谱法用于对化妆品中功效组分虾青素、牙膏中丙烯酰胺的测定、化妆品中限用组分等的检测分析中。其次,对于化妆品原料的的安全性是保证化妆品产品质量的基础。全球各国和地区对化妆品原料的监管各有不同。在欧盟,《化妆品法规》明确规定了允许使用的化妆品原料清单,并对某些成分设定了使用限制。例如,某些防腐剂、染发剂和紫外线吸收剂在使用量上有严格的限制。中国的《化妆品监督管理条例》同样对化妆品原料有严格规定,尤其对新原料的安全性要求进行了详细描述。今年发布的标准中一共有23条标准对化妆品原料进行了要求,包括有表面活性剂、天然提取物等等,以确保源头的安全性。日常我们所说的具有抗皱、美白、保湿、祛斑等作为宣传的产品,其都需要依据化妆品功效测定标准进行功效检测。目前,欧盟、中国、美国等地区都有相关的化妆品功效测定指导原则。常见的测定方法包括有体外实验、人体试验、皮肤生理指标测试等等。今年发布的标准中多条对口服美容产品、特殊食品和化妆品的功效进行了标准化制定,以确保产品在使用过程中不会对消费者健康产生不良影响。口腔清洁护理用品如牙膏、漱口水等,作为化妆品的一个特殊类别,近年来在标准的发布上也相对来说较多,上半年在牙膏类标准就新增了12条。其标准制定既要考虑口腔健康安全,又要兼顾产品的清洁和护理效果。经了解在许多国家,口腔清洁产品的成分如氟化物、抗菌剂等有明确的使用限制,确保长期使用对人体健康无害。随着消费者对口腔健康的重视,未来口腔清洁产品的标准将更加细化和严格,特别是在功能性成分和产品安全性方面。除上述之外,对于化妆品包装的标准涉及包装材料的安全性、包装的密封性、防污染能力等方面。在欧盟,包装材料必须符合《欧盟食品接触材料法规》的要求,确保包装材料不释放有害物质。中国的《化妆品监督管理条例》也对化妆品包装提出了明确的要求,上半年共发布两条标准,分别为《T/BDCA 0001-2024 北京市国产普通化妆品包装和标签设计指南》和《T/GDCA 039-2024 化妆品包装相容性评估方法》,进一步规范了化妆品包装。化妆品标准化是保障产品质量和消费者安全的根本手段。无论是化妆品原料、检测方法、包装,还是口腔清洁产品的标准,都需要在保障安全和效果的基础上,更多地考虑可持续性和环境友好性。通过持续完善和更新标准,化妆品行业将能更好地满足消费者需求,推动整个行业的健康发展。附录:(以下“2024年1-8月发布的化妆品相关标准”的整理为编辑个人梳理,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024年1-8月发布的化妆品相关标准国家标准标准代号标准名称标准代号标准名称GB/T 43718-2024免洗洗手液GB/T 44365-2024牙膏中6-甲基香豆素、二氢香豆素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素的测定 高效液相色谱法GB/T 43777-2024化妆品中功效组分虾青素的测定 高效液相色谱法GB/T 44366-2024化妆品中限用组分月桂醇聚醚-9的测定 液相色谱-串联质谱法GB/T 43855-2024衣物洗涤质量要求GB/T 44367-2024化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法GB/T 43954-2024重瓣红玫瑰精油GB/T 44428-2024化妆品中大麻二酚和四氢大麻酚的测定 液相色谱-串联质谱法GB/T 44364-2024牙膏中丙烯酰胺的测定 高效液相色谱串联质谱法行业标准标准代号标准名称标准代号标准名称QB/T 5994-2024除味喷雾剂QB/T 8056-2024氨基酸表面活性剂 谷氨酸型QB/T 5995-2024菊酯防蛀剂QB/T 8055-2024氨基酸表面活性剂甘氨酸型QB/T 5997-2024干湿两用纸巾QB/T 8057-2024氨基酸表面活性剂 肌氨酸型QB/T 2548-2024空气清新气雾剂QB/T 8058-2024非离子表面活性剂 椰油酰胺MEAQB/T 2761-2024室内空气净化产品净化效果测定方法地方标准标准代号标准名称标准代号标准名称DB31/T 1472-2024普通化妆品备案资料要求团体标准标准代号标准名称标准代号标准名称T/GDICST 003-2023化妆品舒缓功效评价 脂多糖诱导巨噬细胞炎症因子IL-6测定方法T/GDCA 040-2024化妆品原料 重组可溶性胶原蛋白T/GDICST 002-2023粉类防晒化妆品SPF值体外测试方法T/UNP 69-2024化妆品用原料 山茶籽油T/CAFFCI 73-2024化妆品用原料 铁皮石斛茎提取物T/GDC 9-2024洗脸扑T/CAFFCI 72-2024化妆品用原料 乙酰基二肽-1鲸蜡酯T/GDC 8-2024化妆棉T/CAFFCI 71-2024化妆品用原料 六肽-11T/GDC 7-2024化妆分装瓶T/CASME 1248-2024化妆品用原料 纤连蛋白T/QGCML 4196-2024化妆品用金属瓶盖T/GDICST 001-2023化妆品稳定性测试指南T/CIET 465-2024复合酸祛痘类化妆品质量要求T/SGLYCYX 001-2024化妆品用原料 茶油T/GDCA 041-2024防晒化妆品清水可洗测试评价方法T/ZHCA 032-2024驻留类化妆品温和性评价 重建表皮模型组织活力法T/ZJDAIR 009-2024化妆品用原料 酸橙(常山胡柚)果皮提取物T/ZHCA 031-2024淋洗类化妆品温和性评价 重建表皮模型组织活力法T/QGCML 4193-2024有效祛除牙斑牙垢的增白牙膏T/ZHCA 030-2024化妆品舒缓功效测试 重建表皮模型白介素-8生成抑制法T/GDCA 044-2024化妆品用原料 羟丙基四氢吡喃三醇 (β,S构型)T/ZHCA 029-2024化妆品舒缓功效测试 角质形成细胞白介素-8生成抑制法T/COCIA 31-2024数字化牙刷T/CIET 360-2024美白祛斑功效护肤品通用要求T/CGDF 00041-2024植物性化妆品标准T/CIET 361-2024适合中国人肤质的美白护肤品开发指南T/CHCIA 030-2024活氧泡洗粉T/QGCML 2951-2024海藻酸钠面膜T/CHCIA 027-2024鼠李糖脂表面活性剂含量的测定 蒽酮-硫酸法T/QGCML 3028-2024无胶环保口红管T/SHRH 60-2024精准养肤化妆品研发指南T/GDCA 035-2024极简配方化妆品通则T/SHRH 061-2024底妆持妆效果评价指南T/CIET 355-2024家用射频美容仪T/SHRH 062-2024纯净彩妆通用要求指南T/GDCA 011-2024化妆品 纯净美妆通则T/TIC 031-2024洁颜粉T/CITS 0006-2024实验室质量控制规范 化妆品理化检测T/WHHLW 138-2024化妆品用超氧化物歧化酶T/CITS 0005-2024实验室质量控制规范 化妆品功效评价T/CIET 544-2024化妆品行业绿色工厂评价规范T/CASME 1326-2024化妆品 保湿功效的测定 鱼胚法T/CIET 543-2024护肤品产品碳足迹评价导则T/GDCA 038-2024化妆品舒缓功效人体评价方法T/CITS 0117-2024化妆品中β-烟酰胺单核苷酸(NMN)含量测定高效液相色谱法T/QGCML 3906-2024全面均匀搅拌洗发水生产用匀质乳化机T/CHCIA 032-2024除菌型洗涤剂 通用技术要求T/QGCML 3905-2024混合均匀洗液加工装置T/WHHLW 143-2024婴幼儿用维E保湿霜T/PPZL 022-2024化妆品用羊尾油原料T/JSSKSLXH 02-2024可溶性微晶护理膜T/LNBHXH 004-2024化妆品舒缓功效评价 体外人皮肤模型测试方法T/JSSKSLXH 03-2024手持式可溶性微晶美容仪T/FCA 01-2024化妆品生产企业原料管理规范T/JSQA 184-2024化妆品用寡聚透明质酸钠T/GDCQMA 005-2024化妆品舒缓功效测试—体外皮肤角质形成细胞炎症因子测试法T/CASME 1563-2024美妆产品原料 文冠果油T/BDCA 0001-2024北京市国产普通化妆品包装和标签设计指南T/GDCQMA 006-2024化妆品生产工艺验证指南T/CIET 415-2024口服美容产品抗皱功效测试方法T/UNP 144-2024化妆品安全技术要求T/CIET 414-2024质量分级及“领跑者”评价要求 眼霜T/UNP 145-2024绿色低碳产品评价规范 化妆品T/CIET 411-2024口服美容产品保湿功效测试方法T/UNP 146-2024化妆品舒缓功效评价技术规范T/CIET 410-2024口服美容产品改善皮肤老化功效评价方法T/UNP 147-2024化妆品修复功效评价技术规范T/CIET 406-2024口服美容产品祛斑美白功效测试方法T/GDCA 045-2024儿童天然化妆品指南T/CIET 409-2024适老营养食品通用要求T/GDCA 046-2024化妆品用原料 牡丹枝/花/叶提取物T/FJCA 003-2024特殊食品和化妆品 减脂功效测试 秀丽隐杆线虫法T/GDCA 047-2024化妆品用原料 松口蘑提取物T/QLMZ 12-2024化妆品用原料 羟丙基四氢吡喃三醇T/GDCA 048-2024头皮修护功效人体评价方法T/QLMZ 13-2024化妆品用山东特色植物资源原料目录T/GDCA 049-2024浓缩型护肤产品评价指南T/QLMZ 14-2024化妆品用原料 聚谷氨酸钠T/HZGY 003-2024化妆品CMF设计与评价规范T/QLMZ 15-2024化妆品用原料 四氢甲基嘧啶羧酸T/COCIA 41-2024口腔用品(牙膏、漱口水、口喷等)纸质 包装盒产品评价方法T/SHRH 058-2024化妆品稳定性试验指南T/COCIA 39-2024口腔清洁护理用品 牙膏中黄连生物碱含量的测定方法 高效液相色谱法T/SHRH 057-2024化妆品修护功效评估方法T/COCIA 38-2024绿色生产质量管理规范 牙膏用复合管T/STHZP 0031-2024沐浴油T/COCIA 37-2024口腔清洁护理用品 牙膏用龙血竭T/STHZP 0033-2024眉毛定型液T/COCIA 36-2024口腔清洁护理用品 牙膏功效评价 清除牙菌斑功效实验室评价方法T/STHZP 0032-2024儿童沐浴慕斯T/COCIA 35-2024口腔清洁护理用品 牙膏用右旋糖酐酶T/CHCIA 029-2024化妆品风险物质调查和特定检出值安全评估指南T/CI 447-2024热塑性聚氨酯(TPU)薄膜日用品卫生安全等级评价T/BYXT 025.3-2024稀土抗菌日用品 第3部分:洗涤剂T/COCIA 32-2024口腔清洁护理用品 牙膏用凝血酸T/SHRH 059-2024护肤精华油T/COCIA 20-2024口腔清洁护理用品 牙擦T/GDCA 039-2024化妆品包装相容性评估方法T/ACCEM 024-2024透皮吸收类化妆品通用要求T/GDAQI 141-2024化妆品中椰油酰甘氨酸钾的测定 高效液相色谱法其他标准标准代号标准名称标准代号标准名称BJH 202402化妆品中双氟拉松丙酸酯的测定BJH 202401化妆品中非那雄胺等10种组分的测定
  • AS级直式PTFE活塞滴定管(透明) 促销
    AS级直式PTFE活塞滴定管(透明) 促销货号:SGCR-3-012-503 促销价格:424.00 促销时间:2012.03.05-2012.12.31 介绍: 依照DIN EN ISO 385标准制造 PTFE活塞,可适用于酸性或碱性的滴定 独特的染色专利,可提供棕色A级滴定管 附原厂检测报告 AS级直式PTFE活塞滴定管(透明) 货号 容量mL 最小刻度mL 误差± mL 包装 单价 SGCR-3-012-103 10 0.02 0.02 2 530.00/根 SGCR-3-012-253 25 0.05 0.03 2 530.00/根 SGCR-3-012-503 50 0.10 0.05 2 530.00/根 AS级直式玻璃活塞滴定管(棕色) 货号 容量mL 最小刻度mL 误差± mL 包装 单价 SGCR-3-014-102 10 0.02 0.02 2 650.00/根 SGCR-3-014-252 25 0.05 0.03 2 650.00/根 SGCR-3-014-502 50 0.10 0.05 2 650.00/根 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 阿里健康自建“透明实验室” 曾为抽检花掉1个亿
    p   1月10日,阿里健康对外宣布,自建的“透明实验室”即日起正式运营,保健食品、膳食营养补充剂、滋补食品等网售产品,检测合格后方能在天猫医药销售。图为阿里健康实验室首任主任黄碧海正在检测。 /p p style=" text-align: center "    img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/b0dba0f2-2b97-43b9-b49b-efe1e1727cc4.jpg" / & nbsp /p p   春节将至,健康滋补品迎来采购高峰。阿里健康10日宣布,自建的“透明实验室”即日起正式运营,该实验室将以国家质量标准抽查保健食品、膳食营养补充剂、滋补食品等网售产品,检测合格方可在天猫医药销售。 /p p   据了解,此前淘宝、天猫、1688等平台的网售产品多采用“神秘”抽检、第三方质检的方式。据阿里健康相关负责人表示,确认存在质量问题的产品,商品将被处以下架、删链接、全网摘牌等处罚,严重的还将被关店,每年阿里集团为“神秘”抽检花掉1个亿。 /p p   虽然神秘抽检对控制平台商家和商品品质效果明显,但监督性抽检也有缺憾:商品覆盖率低,送第三方质检周期长。对于消费者品质敏感、需要快速质检的健康业务来说,显然仅凭第三方质检还不够,需要再“往前多走一步”。 /p p   因此,阿里健康自建的“透明实验室”即日起正式运营,该实验室将以国家质量标准为准绳,对保健食品、膳食营养补充剂、滋补食品等网售产品,上架前再进行抽查快检,检测合格才能在天猫医药销售。 /p p   据阿里健康实验室首任主任黄碧海介绍,经过前期试运营,透明实验室已采购紫外分光光度计、酶标仪、电热恒温培养箱等仪器设备,目前已能对微生物、农药残留、非法添加等做快速检测 后续,也会扩充检验能力,针对食药监部门、平台日常检验发现的问题,以及结合消费热点进行专项检测。 /p p   相关负责人介绍,透明实验室现已开展阿里健康大药房相关商品检测,并将对自营入仓的保健食品、膳食营养补充剂、滋补食品快速检测,检测合格方可上架销售。在流程成熟后,也会考虑将实验室用于平台商家的质量抽检。 /p
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:纸包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。 【纸包装测试篇】白色信封为纸质不透明包装,普通拉曼难以穿透,黄色牛皮纸信封相较白色信封更厚,穿透难度更大,同时信封颜色也会导致荧光干扰,这些因素给拉曼直接检测带来多重难题。测试包装展示 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品黄色牛皮纸信封内的乙酰氨基酚药片白色纸信封内的乙酰氨基酚药片测试方法使用RS1500及RS1000分别隔着上述2种信封,对信封内的对乙酰氨基酚进行直接检测,观察并分析检测结果。 检测结果1、白色信封RS1500:正确报出对乙酰氨基酚,谱图见下方红色曲线。RS1000:未检出,谱图见黑色曲线。图1.白色信封测试结果2、黄色牛皮纸信封RS1500:正确报出对乙酰氨基酚,谱图见下方蓝色曲线。RS1000:未检出,谱图见黑色曲线。图2.黄色牛皮纸信封测试结果结果分析RS1500可检测到白色信封和牛皮纸信封中的对乙酰氨基酚并正确报出,测试谱图特征峰与对乙酰氨基酚标准谱图完全匹配(图1中蓝色曲线)。普通785nm拉曼无法检测到纸包装内样品信号,谱图信息被荧光淹没,测试白色信封时可在1050cm-1附近观察到疑似纤维素特征峰(图1中绿色曲线)的小尖峰,测试牛皮纸信封时仅观察到强荧光信号(图2中黑色曲线)。
  • 极强X射线轰击金属制成透明铝
    据美国《每日科学》网站7月27日报道,英国牛津大学科学家利用目前世界上最具威力的软X射线激光轰击金属,制成了透明状态的铝。这一研究成果可对行星科学以及核聚变能利用有所启示。相关论文发表在《自然—物理学》(Nature Physics)杂志上。   透明铝之前仅在科幻小说中存在,由于电影《星际迷航4》而名满天下。由牛津大学科学家所领导的国际研究团队,将所有能量聚焦在直径小于人类头发粗细1/20的点上,利用自由电子激光装置(FLASH)产生短脉冲,轰击样本中每个铝原子的核心电子,而不破坏金属内的晶体结构,从而使铝金属在极端紫外线辐射的状态下变得近乎透明。这表明,极强的X射线源可催生新的物质状态。但这一效应仅能持续极短时间,约40飞秒左右。   牛津大学物理学院的贾斯汀沃克说:“我们所研制的是之前从未有人涉及的新态物质。透明铝只是一个开始,我们正在研发的物质的物理性质与大型行星内部的状况紧密相关 我们还希望通过研究此种物质,能对同样需要高强度激光内爆激发的小型恒星的生成过程有更清晰的了解 有朝一日在地球上也能对核聚变的能量加以利用。”   沃克教授表示:“我们实验的非凡之处在于仅利用高强度激光这一个步骤就将普通的铝转化为了新态的物质材料。在某些特定方面,其表现得如同我们已将每个铝原子转化为了硅原子,这就如同你发现可以利用光源将铅转化为金一样神奇!”   这一发现因比世界上任何同步加速器都亮100亿倍的新辐射源的发展而变得可能。德国汉堡电子同步加速器中心的自由电子激光装置(FLASH)能产生极短的软X射线脉冲,其每条脉冲的能量都比能供应一整个城市电力的发电厂还要强劲。研究人员坚信,这一光化电离方式是研制类似新态物质的理想方式,这也将为行星科学、天体物理学和核聚变能利用等不同领域的进一步研究提供有效帮助。
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。 本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。本篇为系列二:塑料包装篇 回顾:系列一 纸包装篇 【塑料包装测试篇】塑料是一种很常见的包装材料,本测试使用包装为常用的白色PE塑料瓶、彩色HDPE塑料瓶及编织袋。 白色PE塑料瓶透光性较差,会干扰普通拉曼的检测。彩色HDPE塑料瓶的颜色会带来荧光干扰,同时瓶壁一般较厚,穿透难度更大。编织袋厚度较薄但有颜色且完全不透明,普通拉曼透过编织袋直接检测时往往受到荧光干扰。这些因素给普通拉曼的直接检测带来诸多难题。 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品不透明PE塑料瓶内的乙醇彩色HDPE塑料瓶内的乙醇编织袋内的蔗糖测试方法使用RS1500及RS1000分别隔着3种塑料包装,对塑料包装内的乙醇、蔗糖进行直接检测,观察并分析检测结果。检测结果1、不透明PE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线,混合物分析结果显示为聚乙烯和乙醇。图1.不透明PE塑料瓶测试结果 2、彩色HDPE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线。图2.彩色HDPE塑料瓶测试结果 3、编织袋RS1500:报出蔗糖,谱图见下方红色曲线,与蔗糖标准谱图(蓝色曲线)一致。RS1000:报出蔗糖,谱图见黑色曲线,特征峰强较弱。图3.编织袋测试结果结果分析 RS1500可检测到3种塑料包装内的不同样品并正确报出,RS1000可穿透编织袋测到包装内的蔗糖。RS1000直接检测白色塑料瓶时,由于采集乙醇信号的同时采集到了塑料包装的信号,导致没有直接报出,但通过混合物分析可正确识别出聚乙烯材料和包装内的乙醇。测试彩色HDPE塑料瓶时,由于瓶壁厚且颜色鲜艳,具有较强荧光,仅RS1500可穿透该包装获得乙醇的拉曼信号(图2红色曲线)。编织袋是化工制药企业原辅料的一种常见包装,RS1000能正确报出包装内蔗糖,但由于其有颜色且不透光,导致荧光信号强,获取到的谱图信息不如RS1500清晰丰富。但总的来说二者都可帮助制药企业在不打开编织袋包装的情况下,实现原辅料的快速无损鉴别。
  • 透明电极指纹传感器问世
    p   让手机屏任何位置都能识别身份 /p p   科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。 /p p   指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。 /p p   消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。 /p p   韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。 /p p   这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。 /p p   研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。 /p p   总编辑圈点 /p p   手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。 /p p br/ /p
  • 我国科学家在透明电磁器件研究方面取得新进展
    近日,西安电子科技大学电子工程学院天线与微波技术重点实验室吴边教授团队在准一维表面等离激元光学与射频双透明电磁器件方面取得突破进展,研究成果以Opticallyand radiofrequency-transparent metadevices based on quasi-one-dimensional surface plasmon polarition structures为题发表在《自然 电子》。在当今各种电子器件共存的复杂电磁环境中,对集成通讯、光隐身、电磁隐身的需求越来越强烈。许多场景(如5G/6G通信、智能家居、物联网、车联网、太阳能量收集等)迫切需要一系列能够提供高光学透过率、高射频透过率、高信号强度的电磁器件。长期以来,光学透明器件的性能依赖于氧化铟锡(ITO)等透明导体材料,其自身载流子浓度与透光率相互制约,具有透光性差、无法实现射频透明、加工成本高等缺陷。 基于准一维表面等离激光的电磁传输与辐射器件。(图片均由西安电子科技大学提供)研究团队搭建了准一维表面等离激元无线图像传输系统,并与传统ITO无线图像传输系统进行了数据传输对比实验。由于准一维SPPs优异的光学透明、射频透明、高辐射效率等优势,在无线图像传输中获得了更好的图像传输质量。准一维表面等离激元结构有望构建一系列传输型和辐射型透明电磁器件,其极佳的透光特性使其在自然环境下几乎不可见。该技术突破了透明电磁器件的光学与射频透过率限制,为高透光与射频隐身无线传输系统提供了新思路,有望应用于5G/6G移动通讯、智能家居、物联网与车联网等高集成隐蔽化通信领域。
  • 科学家研制新型半导体柔性透明储能器件
    中国科学院上海硅酸盐研究所黄富强团队研制成功一种新型透明半导体柔性透明储能器件,综合性能优于目前报道的所有透明储能器件。随着电子产品向可穿戴、移动化、超轻薄、透明、微型化发展,轻便、柔性甚至全透明的储能器件在未来便携式设备中具有广阔的应用前景。然而,在柔性透明储能器件中,透光率和能量密度相互影响,提升单一性能往往导致另一性能的大幅下降,同时还需提高储能器件的容量,这些都带来了极大的挑战。为此,黄富强团队通过合理的晶体掺杂设计,成功制备了一系列间隙硼掺杂的介孔宽禁带半导体氧化物(氧化锡、氧化锌及氧化铟)。在这一类新型的透明半导体氧化物中,间隙硼原子不仅能够大幅度提升掺杂材料的载流子浓度,为羟基的嵌入提供丰富的结合位点,还在间隙掺杂位上引发与OH-的赝电容电化学反应,从而将赝电容惰性的氧化锡、氧化锌和氧化铟,转化为高电化学活性的超级电容器电极材料。通过控制间隙硼掺杂的浓度,这一类介孔透明半导体氧化物的体积比容量可以达到每立方米1172毫法拉,实现与其他非透明金属氧化物的赝电容性能相近。这种新型透明半导体材料与聚乙撑二氧噻吩—聚(苯乙烯磺酸盐)导电聚合物均匀共混后,通过气溶胶喷涂技术涂敷在透明聚对苯二甲酸基底上制作电极。基于这种电极构建的透明柔性超级电容器,在15000次循环后容量保持率接近100%,其面积能量密度和器件透光率可达每平方米1.36 × 10毫瓦时和 85%。该研究为设计合成具有优异电化学活性的透明半导体氧化物提供了全新的研究思路。
  • 生态环境部:日本应接受公开透明的国际监测监督
    据报道,国际原子能机构日前发布了日本福岛核污染水处置综合评估报告。生态环境部(国家核安全局)相关负责人就此事回答记者提问。问:近日,国际原子能机构发布了日本福岛核污染水处置综合评估报告,您怎么看?答:外交部发言人已经代表中国政府表明了态度,这份报告未能充分反映所有参加评估工作各方专家的意见,有关结论未能获得各方专家一致认可。日方在排海的正当性、净化装置的可靠性、监测方案的完善性等方面还存在诸多问题。日方应正视各方正当合理关切,切实以科学、安全、透明的方式处置核污染水,并尽快建立一套包括日本邻国等利益攸关方参与的长期国际监测机制。问:针对日本福岛核污染水排海有关辐射监测安排,生态环境部从专业角度怎样评价?答:日方当前的监测安排还存在以下问题:一是核污染水排放前的监测有延迟,无法第一时间判断排放是否合格,由此可能导致不达标的核污染水直接排入海洋。二是核污染水混合后监测可能造成不合理稀释,日方将10罐核污染水混合后取样监测,可能造成高浓度的核污染水被低浓度的核污染水稀释成达标的核污染水。三是应有公开透明的长期国际监测,日本福岛核污染水排海关乎全球海洋环境和公众健康,应接受利益攸关方参与的公开透明的国际监测监督,而不应仅仅安排日方主导下的“摆样”式的监测。问:针对日本福岛核污染水排海,我国海洋辐射环境监测的安排是怎样的?答:我部高度重视日本福岛核污染水排海问题。2021年、2022年先后组织开展了我国管辖海域海洋辐射环境监测,摸清了目前相关海域海洋辐射环境的本底情况。针对日本福岛核污染水排海后的海洋辐射环境监测,我部已经作出部署,如果发现异常将及时预警,切实维护我国家利益和人民健康。问:网传我国核电厂氚排放是日本福岛核污染水氚排放的6.5倍,事实如何?答:事实上,日本福岛核污染水和世界各国核电厂正常运行液态流出物有本质区别。一是来源不同,二是放射性核素种类不同,三是处理难度不同。日本福岛核污染水来自于事故后注入熔融损毁堆芯的冷却水以及渗入反应堆的地下水和雨水,包含熔融堆芯中存在的各种放射性核素,处理难度大。相比之下,核电厂正常运行产生的废水主要来源于工艺排水、地面排水等,含有少量裂变核素,严格遵守国际通行标准,采用最佳可行技术处理、经严格监测达标后有组织排放,排放量远低于规定的控制值。要高度警惕这种“恶人先告状”、企图混淆视听、蒙混过关的图谋。我们反对的是日本福岛核污染水排海,从来没有反对核电厂正常运行排放。日本福岛核污染水有关误导宣传代替不了事实真相,方案设计代替不了工程实践,口头承诺代替不了真实结果,精心包装的方案掩盖不了企图转嫁危害的图谋,有限的选择性抽查代替不了长期公正的国际监督。
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 不透明液体中样品也能扫!突破限制的原子力显微镜, 只有手掌大小!
    众所周知,原子力显微镜(AFM)对液体中的样品表征十分重要。然而,传统的基于激光反射探测原理的AFM对液体中样品表征存在着诸多不尽如人意的方面。 先,制备传统AFM所用液体样品的时间较长,对扫描样品的尺寸限制多。为了避免液体对传统AFM的激光反射光路产生影响,人们通常会把测试样品通过多个步骤制备在AFM专用的液体腔中。整个制备流程复杂费时。同时,传统的AFM通常不能对较大尺寸的样品进行扫描,例如厘米骨骼样品。这大地限制了医学等学科对各类器官组织的研究。 二,传统的AFM在对液体中样品的表征模式方面存在一定的限制。由于传统AFM在扫描液体中的样品时可能会涉及到AFM探针在大气和液体两个相中的转换。为了避免探针在液气两相转换过程中所出现的问题,基于激光反射原理的AFM在测量液体中的样品时通常使用接触模式(Contact Model),不使用轻敲模式(Tapping Model)。然而对于表面敏感的样品而言,接触模式在扫描过程中接触样品表面时间长,对样品扫描时施加的力大,容易损坏样品表面形貌。 三,传统基于激光反射原理的AFM不能对不透明液体中的样品进行扫描表征。由于传统AFM的成像机理,这类的AFM不可能把探针伸入不透明液体,然后对液体中的样品进行扫描。然而,在生物学等领域,把探针伸入不透明液体对样品进行扫描又是非常必要的研究。因为,细胞在不透明液体(例如血液)和透明缓释液中的状态是不一样的。 四,传统的AFM由于体积原因很难和其他表征设备联用,例如与荧光显微镜进行协同原位表征。 为了解决传统基于激光反射原理AFM在液体中测量样品过程中所遇到的问题。Quantum Design公司推出了基于全电系统的生物学AFM-AFSEM。使用AFSEM对液体中样品表征时,无需繁琐的制样过程,扫描探针进入液体中直接扫描即可[1]。在扫描模式上,AFSEM可在对液体中样品扫描时提供接触和轻敲两种模式,扫描过程中尽可能减少对样品的损伤。由于AFSEM是一款基于全电系统的AFM,可以在不透明液体中对样品进行扫描。突破性地解决了以往AFM不能在不透明液体中扫描样品这一难题。后,由于AFSEM的体积仅有手掌大小,如图1所示,AFSEM可以与各种光学显微,电子显微镜,FIB等多平台结合。图1. AFSEM原子力显微镜实物图。A) AFSEM的两种型号。左侧为AFSEM 1.0,右侧为AFSEM Nano。B)AFSEM 1.0尺寸大小示意图。图2. AFSEM在1:8(血液:水)稀释的血液中扫描样品的结果。A) AFSEM在液体中扫描样品的特写。B)在液体中获得的血红细胞血影的形貌图。图中比例尺为10 μm。 图3. 在不同透明度液体中扫描TGZ2 AFM标样的结果。A)表样浸在牛奶液体中。B)牛奶液体中获得的TGZ2 AFM扫描结果。图中比例尺为为10 μm。C)在去离子水液体中扫描标样的结果。D)血清中扫描标样的结果。E)未稀释血液中扫描标样结果。 图4. AFSEM在不同液体中扫描HS-500MG AFM XYZ标准样的结果。图中上半部分为去离子水中的扫描结果,下半部分为在未稀释的人体血液中获得的结果。扫描速度从左至右从30 μm/s增加到750 μm/s。 图5. 装在SEM中的AFSEM对大尺寸骨骼样本进行多维度原位表征。A)AFSEM对大尺寸骨骼样品表征示意图。B)把AFSEM放在SEM样品腔体中。C)在SEM中获得骨骼样品原位形貌信息示意图。D)C图中白色虚线部分的放大图。E)D图中彩色部分的三维立体结果。 Quantum Design公司拥有一只强大专业的定制化团队,可以根据用户的要求将AFSEM与光学显微镜,电子扫描显微镜,聚焦离子束加工设备,荧光显微镜等设备进行整合。下图为2021年9月Quantum Design公司为斯坦福大学定制的AFSEM系统[2]。图6. 2021年9月Quantum Design公司为斯坦福大学安装定制的AFSEM系统。A)斯坦福大学Fritz Prince教授和Quantum Design工程师在定制AFSEM系统前合影。B)为教授定制的AFSEM系统。定制系统方案为在FEI Teneo电子显微镜的样品腔中将AFSEM与Kleidiek八探针电学测量平台进行整合。 参考文献:[1]. Michael Leitner, Hannah Seferovic, Sarah Stainer, et al.Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine. Sensors, 2020,20,3715.[2]. https://www.qd-microscopy.com/2021-august-microscopy-virtual-conference-2021/
  • 工业和信息化部办公厅关于印发2023年《贝类罐头》等第一批行业标准制修订和外文版项目计划的通知
    各有关单位:根据工业和信息化标准制修订工作总体安排,工业和信息化部编制完成了2023年第一批行业标准制修订和外文版项目计划。现印发给你们,请认真组织落实。具体要求如下:一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。二、有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。三、部机关相关司局、相关地方行业主管部门要做好行业标准制修订、外文版研制过程的管理工作,确保标准的质量和水平。四、计划执行过程中,如需对标准项目进行调整,按有关规定办理。工业和信息化部办公厅2023年4月17日(联系电话:010-68205240)附件下载相关标准如下:序号计划编号项目名称标准类别制修订代替标准项目周期(月)1.2023-0202T-HG工业用乙酸钴产品修订HG/T 2032-1999182.2023-0203T-HG工业用乙酸锰产品修订HG/T 2034-1999183.2023-0205T-HG纤维素材质深层过滤滤芯产品制定244.2023-0206T-HG邻苯二胺产品修订HG/T 3310-2017185.2023-0207T-HG塑料 阻燃聚苯醚专用料产品修订HG/T 2232-1991186.2023-0211T-HG抗菌和抗病毒涂料产品修订HG/T 3950-2007187.2023-0214T-HG抗氧剂 2-甲基-4,6-二[(辛基硫基)甲基]苯酚(1520)产品制定188.2023-0215T-HG硫化剂 N,N'-间苯撑双马来酰亚胺(MPBM)产品制定189.2023-0216T-HG塑料屏蔽料用导电炭黑产品制定2410.2023-0242T-YS铝及铝合金彩色涂层板、带材产品修订YS/T 431-20091811.2023-0243T-YS铝塑复合管用铝及铝合金带、箔材产品修订YS/T 434-20091812.2023-0246T-YS熔融态铝及铝合金产品修订YS/T 1004-20141813.2023-0250T-YS选矿药剂 仲辛基黄药产品修订YS/T 355-19941814.2023-0281T-QB母婴用品质量追溯体系规范管理制定2415.2023-0282T-QB轻工业企业数字化供应链管理通则管理制定2416.2023-0283T-QB轻工智慧园区评价通则管理制定2417.2023-0284T-QB日用化学用品质量追溯体系规范管理制定2418.2023-0285T-QB食用植物油产品质量追溯体系规范管理制定2419.2023-0292T-QB厨房家具产品修订QB/T 2531-20101820.2023-0294T-QB储水式电热水器内胆产品修订QB/T 4101-20101821.2023-0296T-QB家用和类似用途净饮机产品修订QB/T 4991-20161822.2023-0297T-QB家用和类似用途前置过滤器产品修订QB/T 4695-20141823.2023-0298T-QB家用和类似用途嵌入式制冷器具产品修订QB/T 4683-20141824.2023-0299T-QB家用和类似用途软水机产品修订QB/T 4698-20141825.2023-0301T-QB使用环保天然制冷剂生产家用和类似用途房间空调器的特殊要求产品修订QB/T 4975-20161826.2023-0302T-QB使用可燃性制冷剂房间空调器运输的特殊要求产品修订QB/T 4976-20161827.2023-0307T-QB异麦芽酮糖醇产品修订QB/T 4486-20131828.2023-0308T-QB贝类罐头产品修订QB/T 1374-20151829.2023-0309T-QB混合水果罐头产品修订QB/T 1117-20141830.2023-0310T-QB炊饭机产品修订QB/T 4027-20101831.2023-0312T-QB食品包装纸产品修订QB/T 1014-20101832.2023-0313T-QB金属管切割器产品修订QB/T 2350-19971833.2023-0316T-QB工业氯化镁产品修订QB/T 2605-20031834.2023-0317T-QB食盐用水质量控制技术规范管理制定2435.2023-0318T-QB植脂末产品修订QB/T 4791-20151836.2023-0320T-QB黑糖产品修订QB/T 4567-20131837.2023-0321T-QB黄方糖产品修订QB/T 4566-20131838.2023-0322T-QB黄砂糖产品修订QB/T 4095-20101839.2023-0323T-QB金砂糖产品修订QB/T 4563-20131840.2023-0324T-QB精幼砂糖产品修订QB/T 4564-20131841.2023-0325T-QB块糖产品修订QB/T 4562-20131842.2023-0326T-QB全糖粉产品修订QB/T 4565-20131843.2023-0327T-QB糖霜产品修订QB/T 4092-20101844.2023-0328T-QB制糖综合利用加工助剂 固定化酵母产品修订QB/T 4568-20131845.2023-0329T-QB非接触食物搪瓷制品 通用要求产品修订QB/T 1855-19931846.2023-0333T-BB包装容器 聚对苯二甲酸乙二醇酯(PET)瓶坯产品修订BB/T 0060-20121847.2023-0334T-BB纸管产品修订BB/T 0032-20061848.2023-0363T-HG工业溴化钙产品制定2449.2023-0364T-HG工业溴化锌产品制定2450.2023-0365T-HG工业用钴锰复合水溶液产品制定2451.2023-0366T-HG分子筛对挥发性有机物(VOCs)动态吸附容量测定方法方法制定2452.2023-0371T-HG化工研发中试安全风险管控指南管理制定2453.2023-0372T-HG硫化促进剂 二异丙基黄原四硫醚(DIPT)产品制定1854.2023-0373T-HG紫外线吸收剂 2-(2'-羟基-5'-叔辛基苯基)苯并三氮唑(UV-329)产品制定1855.2023-0374T-HG胶乳伸缩管产品制定1856.2023-0375T-HG橡胶胶丝 试验方法方法修订HG/T 2487-20111857.2023-0376T-HG橡胶配合剂 沉淀水合二氧化硅 干燥样品灼烧减量的测定方法修订HG/T 3066-20081858.2023-0377T-HG橡胶配合剂 沉淀水合二氧化硅 水悬浮液pH 值的测定方法修订HG/T 3067-20081859.2023-0449T-QB家用和类似用途馒头机产品制定2460.2023-0453T-QB家用和类似用途自动炒菜机产品制定2461.2023-0455T-QB商用电动洗碗机产品制定2462.2023-0462T-QB瓦楞纸箱生产线产品制定2463.2023-0474T-QB食盐中 pH 值的测定方法制定2464.2023-0475T-QB制盐工业通用检测方法 色度的测定方法制定2465.2023-0476T-QB制盐工业通用检测方法 锶的测定方法制定2466.2023-0477T-QB制盐工业通用检测方法 碳酸盐、碳酸氢盐、氢氧化物的测定方法制定2467.2023-0478T-QB制盐工业通用检测方法 微量溴的测定方法制定2468.2023-0479T-QB制盐工业通用检测方法 硒的测定方法制定2469.2023-0480T-QB单一溶剂型凹版通用塑料复合油墨产品制定2470.2023-0481T-QB油墨剥离力的测定方法方法制定2471.2023-0482T-QB蔗渣浆产品制定2472.2023-0484T-QB焙烤食品用糖浆产品制定2473.2023-0485T-QB焙烤食品预拌(混)粉产品制定2474.2023-0486T-QB焙烤用植物蛋白上色液产品制定2475.2023-0487T-QB蛋黄酥产品制定2476.2023-0488T-QB绿豆糕产品制定2477.2023-0489T-QB杏仁饼产品制定2478.2023-0490T-QB杂粮谷物糕团产品制定2479.2023-0491T-QB氨基酸、氨基酸盐及其类似物 第13部分:β-丙氨酸产品制定2480.2023-0492T-QB氨基酸、氨基酸盐及其类似物 第14部分:L-谷氨酸产品制定2481.2023-0493T-QB氨基酸、氨基酸盐及其类似物 第15部分:L-盐酸鸟氨酸产品制定2482.2023-0494T-QB氨基酸、氨基酸盐及其类似物 第16部分:L-瓜氨酸产品制定2483.2023-0495T-QB包埋型 益生菌产品制定2484.2023-0496T-QB蛋黄球蛋白粉产品制定2485.2023-0497T-QB冻干食品通则基础制定2486.2023-0498T-QB发酵法丁二酸产品制定2487.2023-0499T-QB发酵液中麦角硫因的测定方法制定2488.2023-0500T-QB非变性 II 型胶原蛋白产品制定2489.2023-0501T-QB胍基丁胺产品制定2490.2023-0502T-QB核苷(酸)及其衍生物 第1部分:尿嘧啶核苷产品制定2491.2023-0503T-QB褐藻胶裂解酶制剂产品制定2492.2023-0504T-QB麦芽糖淀粉酶制剂产品制定2493.2023-0505T-QB膜过滤乳(膜分离乳)产品制定2494.2023-0506T-QB葡萄糖氧化酶制剂产品制定2495.2023-0507T-QB漆酶制剂产品制定2496.2023-0508T-QB食品中 2'-岩藻糖基乳糖的测定 离子色谱法方法制定2497.2023-0509T-QB食品中茶多糖分子量及其分布的测定 凝胶色谱法方法制定2498.2023-0510T-QB食品中茶褐素的测定-分光光度法方法制定2499.2023-0511T-QB食品中壳寡糖的测定 离子色谱法方法制定24100.2023-0512T-QB食品中乳铁蛋白的测定 酶联免疫吸附法方法制定24101.2023-0513T-QB食品中透明质酸钠的测定高效液相色谱法方法制定24102.2023-0514T-QB食品中维生素 B12 的测定预包被微孔板式微生物法方法制定24103.2023-0515T-QB熟制与生干山龙眼果(夏威夷果、澳洲坚果)和仁产品制定24104.2023-0516T-QB速溶支链氨基酸粉产品制定24105.2023-0517T-QB脱油蛋黄粉产品制定24106.2023-0518T-QB预制菜 第1部分:预制凉菜产品制定24107.2023-0519T-QB预制菜 第2部分:食用高汤产品制定24108.2023-0520T-QB预制菜 第3部分:佛跳墙产品制定24109.2023-0521T-QB植物基食品通则基础制定24110.2023-0522T-QB自热火锅产品制定24111.2023-0523T-QB自热米饭产品制定24112.2023-0524T-QBα-乳白蛋白产品制定24113.2023-0525T-QB风味面团产品制定24114.2023-0526T-QB聚葡萄糖产品制定24115.2023-0527T-QB醪糟产品制定24116.2023-0528T-QB乳清蛋白肽(水解乳清蛋白)产品制定24117.2023-0529T-QB乳酸菌发酵葡萄糖制品产品制定24118.2023-0530T-QB食品中低聚糖的测定 第1部分:母乳低聚糖含量的测定方法制定24119.2023-0531T-QB食用发酵微藻 第1部分:蛋白核小球藻产品制定24120.2023-0532T-QB食用菌剂体外模拟消化道的活菌率检验方法方法制定24121.2023-0533T-QB微生态制剂术语和分类基础制定24122.2023-0534T-QB玉米发酵核苷酸酱产品制定24123.2023-0535T-QB番茄调味类罐头产品制定24124.2023-0536T-QB鱼胶罐头产品制定24125.2023-0537T-QB坚果与籽类食品设备 术语基础制定24126.2023-0538T-QB坚果与籽类食品设备 型号编制方法基础制定24127.2023-0539T-QB可微波食品接触用复合膜、袋产品制定24128.2023-0540T-QB食品包装用聚烯烃阻隔复合膜、袋产品制定24129.2023-0541T-QB食品包装用流延聚苯乙烯多层复合片产品制定24130.2023-0542T-QB鱼松产品制定24131.2023-0543T-AH高分子复合板桩产品制定24132.2023-0552T-BB包装制品中淀粉粘合剂含量的测定(酶化-重量法和酶化-比色法)方法制定24133.2023-0553T-BB热收缩标签产品制定24
  • 中科院化学所等利用透明墨水打印出全彩结构色图案
    结构色是一种由微观物理结构与自然光之间的相互作用(如散射、干涉、衍射等)所产生的颜色。与传统的化学色相比,结构色可以完全避免染料或色素的使用,是更加环保和稳定的呈色方式。然而,人工结构色的实现,需要借助先进的微纳加工技术或组装手段对纳米生色结构进行高精度调控,成本较高且工艺复杂,较大程度上阻碍了结构色的广泛应用。此外,为了促进结构色的应用拓展,需要将结构色像素点制备成有序的图像,但结构色的像素点是由众多周期与形貌存在差异的微纳结构组成,将这些呈色物理结构精确制备并集成为特征化的彩色图像,颇具挑战性。  中国科学院化学研究所绿色印刷实验室研究员宋延林、李明珠,与复旦大学教授石磊等合作,精准控制微小液滴的成型打印(即精确调控打印基材的浸润性与微小液滴的体积来控制打印墨滴的形貌)与剖析全内反射光学微结构呈色的机理,发展出一种利用透明高分子墨水打印全彩结构色图像的方法。该方法突破了关于彩色印刷的认知(呈现不同的颜色需要不同的墨水),仅利用一种透明的高分子聚合物墨水,便实现了全色系彩色像素点的精准制备。此外,研究凭借对微观像素点空间位置的精确分布,解决了结构色难以实现棕色、白色、银色等特殊色制备的难题。科研人员探索了微结构形貌与颜色、灰度的对应规律,利用高精度喷墨打印实现墨滴精准成形,在不添加任何染料色素的前提下,打印出各种形象逼真的彩色人像图案。这种方法具有普适性,可制成透明墨水的高分子材料均可应用于这种全色系结构色图案的打印,为结构色在彩色印刷、显示、防伪及高灵敏传感等领域的应用提供了全新的思路。  近日,相关研究成果发表在Science Advances(DOI:10.1126/sciadv.abh1992)上。研究工作得到国家自然科学基金、科技部和中科院的支持。
  • 标准解读|食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量
    5月11日,GB 2763.1-2022《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》正式实施,本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021配套使用。最新发布的《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)在广泛征求社会意见、有关部门意见和向世界贸易组织(WTO)成员通报的基础上,经国家农药残留标准审评委员会、食品安全国家标准审评委员会技术总师会议及秘书长会议审查通过,由国家卫生健康委、农业农村部和市场监管总局于2022年11月11日发布,将于2023年5月11日起实施。本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021食品安全国家标准 食品中农药最大残留限量》配套使用。GB 2763.1-2022除前言外,主体部分依然由范围、规范性引用文件、术语与定义、技术要求、索引五大部分组成。一、范围GB 2763.1-2022规定了食品中112种农药共290项最大残留限量。二、规范性引用文件GB 2763.1-2022规范性引用文件共涉及GB/T5009.174花生大豆中异丙甲草胺的残留量的测定等37个检测方法三、技术要求该部分是GB 2763.1-2022的重点部分。其中每种农药的技术要求均由主要用途、ADI值、残留物、最大残留限量表、检测方法构成,主要新增和修订内容如下:1. GB 2763.1-2022规定了112种农药290项最大残留限量。2. 其中22种为新农药项目,新标准规定了22种农药中51 项最大残留量限量。3. 具体新增和修订的农药项目及残留限量可下载标准查看。GB2763.1-2022食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量.pdf
  • 防水且透明柔性有机发光二极管制成
    图片来源:物理学家组织网由韩国科学技术院电气工程学院和国家纳米制造中心科学家领导的联合研究团队宣布,他们使用MXene纳米技术,成功开发出了一款防水且透明的柔性有机发光二极管(OLED),新材料即使暴露在水中也能发光和透光,有望应用于汽车、时尚和功能性服装等领域。相关研究刊发于最新一期美国化学学会《ACS Nano》杂志。透明柔性显示器在包括汽车显示器、生物保健、军事和时尚等多个领域备受瞩目。但众所周知,当发生小变形时,它们很容易断裂。为解决这个问题,科学家们正在对许多透明的柔性导电材料,如碳纳米管、石墨烯、银纳米线和导电聚合物等开展积极研究。MXene是一种具有高电导率和透光率的二维材料,具有优异的电化学和光电性能,可通过溶液加工实现大规模生产。尽管拥有这些诱人特性,但其电性能很容易因空气中的湿气或水而劣化,因此其商业化备受挑战。为解决这一问题,研究团队使用了一种封装策略,可保护MXene材料免受湿气或氧气引起的氧化,进而开发出一种寿命长、抗外部环境因素稳定性高的MXene基OLED。新设计的双层封装薄膜,可阻挡水分并具有柔韧性。其顶部还贴有厚度为几微米的塑料薄膜,使其可在水中洗涤而不会降解。这款基于MXene的OLED,亮度达到1000坎德拉/平方米或更高,即使在阳光直射的户外也可拥有清晰的显示效果。此外,即使在水下浸泡6小时,该OLED的性能也能保持稳定。研究人员指出,最新研究将成为MXene应用于电气设备领域的指导方针,可应用于其他需要柔性透明显示器的领域。
  • 国内数个PX项目低调投产 项目不透明致恐慌
    11月23日,大连,一工人走过福佳大化公司。 11月23日,大连福佳大化。   继厦门PX项目、大连PX项目,因当地居民抗议停建之后,10月28日,宁波镇海PX项目也被迫喊停。一时间,“PX项目”成为敏感词,似乎过街老鼠,人人喊打。有专家对此称,PX项目被妖魔化。在反对声之外,2009年5月,被迫从厦门迁到福建漳浦县的PX项目顺利开工。今年11月20日,据漳浦县县委宣传部官员称,古雷PX项目最迟年后将正式投产运营。   据了解,此前迫于压力停工的大连PX项目也低调复产,并称符合市政府的规划。在停与建的博弈中,一些居民试图获得关于PX项目的信息,却并不顺利。   这正是PX项目成为敏感词,形成群体PX“过敏症”的重要原因:PX项目的信息不够公开透明、利益诉求渠道不畅、公众参与缺失。   “剧毒致癌,可致不孕不育、新生儿畸变,一旦泄漏或爆炸,将如原子弹般秒杀一切,按国际规定,厂房须距市区100公里外。”10月以来,23岁的宁波会计师许军在网络、手机,不断地看到关于镇海PX项目的“技术帖”,号召走上街头抗议PX。   尽管不知PX为何物,10月28日下午,许军还是加入数千宁波市民抗议镇海PX项目的队伍中。   当天,宁波市政府发通告称,坚决不上PX项目。继2007年厦门PX项目搬迁古雷、2011年大连PX项目宣布停产待迁后,PX成为人人喊打的“过街老鼠”。   与此不同,2009年5月,从厦门迁移到福建漳浦县古雷镇的PX项目顺利开工,今年11月20日,记者了解到,该项目年后将投产。   相关人士认为,对PX项目恐慌的背后,是源自对PX信息的不够公开。   PX被妖魔化?   金涌认为,厦门PX之所以成为一次环保事件,与其毒性并无太多关系,而是背后有诸多利益博弈在作祟   “PX不是一项新技术,上个世纪五十年代起,中国就开始生产PX,这项技术广泛用于化纤、纺织原料,作为第一大生产国和第一大消费国,目前,中国在国内有十多家成熟的PX产业基地。”11月4日,中国工程院院士、清华大学化工科学与技术研究院院长金涌称。   2007年,厦门PX事件爆发后,金涌受厦门市政府邀请,前往海沧担任PX事件应急处理专家之一,他至今无法理解厦门PX事件明明“开了个好头”,为何却成为各地反PX的“经典案例”。   金涌说,国际上,没有关于PX生产区和居住区距离的具体限制,须距居住区100公里以上的说法子虚乌有,“美国、新加坡、日韩等国都是PX生产大国,他们的生产厂区都是紧邻生活区,相距几百米最多也就几公里而已”。   金涌认为,厦门PX之所以成为一次环保事件,与该产品本身的毒性并无太多关系,而是背后有诸多利益博弈在作祟,“PX论毒性和汽油差不多”。   记者多次联系作为PX反对派代表的全国政协委员、中国科学院院士、厦门大学化学系教授赵玉芬,均拒绝采访。   “可以辩论嘛,你说PX有多毒,那你就拿出依据来,可以互相对峙,媒体进行监督。”金涌称,PX离开厦门并非是赵玉芬提案中所称的“危险”,而是有着良好深水港的古雷镇,比海沧更适合建厂。   去年,大连PX事件中,金涌再次受邀应急处理专家,他提出意见,“你把PX装罐储备,来回搬运,味会更大,危险更大。现在一般是生产出来就使用掉,如果要运就要建PX库,不搬才会更安全”。   面对市民持续高涨的抗议,大连市政府并未听取金涌的意见,提出“福佳大化PX项目必须停产搬迁”。   “如今,PX在中国已成为敏感符号,成为‘过街老鼠人人喊打’,实际上,这个项目被妖魔化了。”金涌认为,解决问题还在于政府、企业与群众的沟通,项目信息公开透明,政府引导市民广泛参与企业项目的立项、环评和生产建设,“没有神秘了,它自然就不会恐怖”。   漳浦PX顺产经验   “到PX工厂考察,发现居住区都距离厂区数百米或几公里,PX生产用的水都可以直接养鱼,了解了真相就不恐慌了”   2009年5月,从厦门迁移到福建漳浦县古雷镇的PX项目开工。今年11月20日,漳浦县县委宣传部官员称,古雷PX项目最迟年后将正式投产运营。   古雷石化成为全国第一个公众全面参与环评的石化项目。如今,一条数十米宽的水泥路贯通古雷镇,沿线耸立着绵延数公里的输油管道和化学原料存储铅罐。   10月22日,《福建日报》报道该省漳浦县古雷镇PX项目的“速度奇迹”:“一年时间,就完成PX项目的所有审批工作……启动项目建设仅用了不到3年时间,就进入冲刺投产阶段。”   2007年,厦门PX项目被驱逐后,2008年上半年,福建省政府决定将该项目迁建到古雷镇,当年9月,《古雷区域发展建设规划》获省政府批准。2009年3月,国家发改委正式批准古雷PX、PTA项目。   根据规划,“投产后,石化下游产业区与居民生活区距离控制在3公里以上,石化中游产业区与居民生活区距离控制在8公里以上,石化上游产业区与居民生活区距离控制在12公里以上”。   古雷镇杏仔村村民洪和生将与村民搬到18公里外政府新配建的“新港城”居住,不过,规划并未明确界定PX生产区与居住区之间的安全距离。   “一开始都很害怕,很愤怒,当时并不知道PX为何物,但厦门在2007年的集体抗议,驱逐该市海沧区腾龙芳烃PX工厂的消息已满天飞。”11月19日,村民洪和生说,2008年初,PX项目落户古雷镇时,他的想法是“难道是觉得我们这里的群众好欺负?”   “征迁、收海直接触及群众生产生活,开始群众不理解,连门都不让进。”古雷镇征迁宣传组组长洪振垣说。   2008年,选址时,漳浦县政府组织县、镇、村干部到古雷镇分发关于PX的知识宣传册,针对PX的疑惑和期待逐条解答,请专家做讲座。媒体上设立“重大化工项目”专栏节目,邀请腾龙公司技术人员与村民共同参加,现场互动对话。   2008年7月,古雷镇PX项目启动,漳浦县政府抽调了39名科级干部组成工作组,进驻古雷镇的13个村,三人一组,开展“一户一政策”说服工作,做通了村民思想,确保项目得以在2009年5月8日顺利开工。   陈卫彬是当地企业代表之一,作为古雷镇岱仔村鲍鱼养殖大户,他参加了政府PX项目的座谈会,“通过到新加坡、南京扬子等PX工厂考察,发现居住区距离厂区数百米或几公里,环境很优美,PX生产用的水都可以直接养鱼,了解了真相就不恐慌了”。   大连PX低调复产   大连福佳集团一高管证实,该公司PX项目已复产,“据我所知,我们的生产就从没停过”   大连被叫停的PX项目已低调地复产。“一年过去,福佳大化的PX工厂还是继续在生产,再没有搬迁的消息。”大连摄影师王君(化名)说,他是去年抗议活动的推动者之一,复产前,他并没有获得关于该项目开工等信息。   去年8月14日,大连数万市民上街抗议福佳大化公司投资运营的PX生产项目。   今年11月23日,大连市福佳大化公司门口,保安对进厂人员仔细核查,工厂背后正在修建数千米长的沿海防洪堤,周边建有数十个铅罐,用来存放化工原料。滚滚浓烟从福佳公司上空升起,空气里弥漫着一股呛鼻的酸味。   福佳公司一位工作人员说,福佳大化已恢复PX生产近一年,一直比较低调,“公司内部PX已成为禁忌的话题,员工严禁泄露复产消息”。   当天,记者获得一份函件,这份大连金州新区管委会发给大连海关的“申请协助福佳大化集团办理相关业务”的函件称:“福佳大化PX项目经停产整顿,威胁PX罐的安全隐患已经消除,经中国科学院危化所等13名专家勘验、评估与验收合格,专家认定该项目已达到安全生产条件。”   该函件称,大连市委市政府对福佳PX项目的意见为“在积极推进搬迁工作的同时,在安全隐患彻底消除,同意恢复生产”,函件落款时间为2011年12月7日,距大连市民街头散步抗议PX不到四个月。   大连福佳集团一位高管证实,该公司PX项目确已复产,“据我所知,我们的生产就从没停过,每年100多亿的订单,怎么停,这么大损失由谁来承担?”   该高管透露,去年集团总产值260亿,其中PX产值200个亿,单项上交大连市税收达30多亿元,“PX项目每年收入的数十亿会流入集团的地产项目,我们也想搬迁,但搬不起,政府也不会出这笔钱。”   “我们是根据市政府的整体安排来执行的,市政府安排我们搬,什么时间什么地点,政府给安排到什么地方,我们肯定会执行的。”12月17日,福佳大化办公室负责人说,目前该公司复产的PX项目,“符合市政府大的规划”。   该负责人称,公司项目的环评报告和复产审批手续均完善,是否公开发布要由市政府决定,他们无权公布。对此,大连市政府新闻办拒绝回应。   “复产的消息不知,正如当初都不知道福佳的这个工厂何时通过环境评估、生产的PX为何物,我们始终蒙在鼓里。”王君称。   未被公开的环评报告   贝志诚认为,企业和政府应当将“最大可信事故”的可能性、危害性对居住地群众坦诚相告   普通市民想获得PX项目的信息并非易事。   10月29日,在宁波市政府宣布“坚决不上PX”第二天,网名“一毛不拔大师”的北京商人贝志诚发微博称,“将自费购买专业检测设备,到全国PX工厂周围检测工厂排出含硫化物、苯等有害物质的废气和废水,来判断PX生产中排出物的污染情况”。   此前,贝志诚因自费购买仪器检测北京空气质量而广受关注。   贝志诚想查询一个现有PX项目的环评报告,比对实际检测的数据以判断一个地区是否受污染,通过互联网、电话和当地媒体查询国内十多家投产的PX工厂资料后,均无所获。   “环评报告,法律上说都是公开的,我就不明白为什么大多数都查不到,如果看了环评报告,会对这个事的看法好转。”11月5日,贝志诚称,2006年,法律规定,民众可向行政部门索取重大建设项目的环评报告。厦门市政府以PX厂环评报告是2005年7月出具的,拒绝给任何环保组织与个体群众查阅。   一名匿名网友向贝志诚提供了一份海南洋浦PX项目的简版报告——“洋浦海南炼化厂内新建60万吨/年产PX项目的环境影响评价报告”,由海南炼油化工有限公司委托洛阳石化工程公司制作。   石油化学工业规划院总工程师李君发认为,据环评报告,PX工厂的毒性“与汽油差不多”,远不及一些同等级别规模的普通化工厂对空气与水的影响,“所有化工厂都具有易燃易爆的特点,对二甲苯(PX)的燃爆危害和范围不见得更大”。   该报告确定“最大可信事故”:硫化氢将以152千克每分钟持续15分钟释放,甲醇以9千克每分钟泄漏15分钟,苯乙烯以13千克每分钟泄漏15分钟,100000m3原油罐溢油将充满整个防火堤,以980吨每小时燃烧,每分钟燃烧生成CO以2405千克每分钟、SO2以283千克每分钟持续60分钟释放,扩散至大气环境。   报告还预测PX遭遇火灾的情形:“火灾热辐射范围在142m以内,产生的二氧化硫最大落地浓度达780mg/m3,可使人员产生刺激和窒息,苯和硫化氢泄漏浓度在2小时和4小时后达到相应的居住区允许浓度限值。”   贝志诚认为,企业和政府应当将“最大可信事故”的可能性、危害性对居住地群众坦诚相告,“你要告诉群众如何规避可能的事故,出了事故如何控制危害,如何救助群众,甚至教群众如何逃生自救”。   该环评报告中并无此内容。“作为化工厂周边的市民有权知道这些,因为这些与他们的生活息息相关。”贝志诚说。   记者联系了海南当地群众,均称只知洋浦的PX项目已投产,但并未见过此份环评报告。   应独立评估社会风险   国家发改委发文称,将对拟建项目的“合法性、合理性、可行性、可控性”展开社会稳定风险调查   中国是纺织出口大国,PX衍生产品PTA是纺织业广泛的原料,2010年,PX进口380万吨,国内生产400万吨,差不多40%要靠进口 2011年进了490万吨,国内产量400万吨左右,缺口巨大。   11月4日,石油化学工业规划院总工程师李君发称,根据规划,国家仅在已有的化工基地扩建PX项目,不会新建,发改委一直严控PX项目审批,“但因为市场紧俏、投资额巨大,动辄投资数百亿元的年产值和纳税额对地方政府有巨大诱惑,很多地方排队跑PX项目”。   李君发透露,目前在国家发改委排队报批的PX有几十个,而每年得到批复的仅为十分之一都不到,“报批已排到几十年之后,现在是民众对PX反对,地方政府则趋之若鹜”。   李君发称,如何避免大连、宁波PX事件,关键在于信息沟通,“政府要宣传,要信息公开,要增加公众参与,多听取群众的利益诉求,企业把存在的风险明明白白告诉大家,要积极回馈周边环境,为当地居民铺路、修桥,多做些公益,以和谐彼此关系”。   “一出事,地方政府就为了维稳,说我不干了,企业就缩到后边去,群众肯定就觉得你是做贼心虚,长此以往,就造成PX是有害的这种假象。”李君发说。   10月中旬,国家发改委下发关于《固定资产投资项目社会风险评估报告编制大纲》的征求意见稿。该评估稿称,将建立固定资产投资项目社会风险评估的长期制度,对拟建项目的“合法性、合理性、可行性、可控性”展开社会稳定风险调查。   生态环境方面,针对群众可能“不理解、不认同、不满意、不支持”的环节逐一重点分析排查,将风险分为较小、中等、较大、重大、特别重大五个等级,“形成风险防范、化解矛盾的措施建议”。   不过,李君发认为,地方政府既是社会风险评估方,又是建设项目实施方,“应该由独立机构进行评估”。(原标题:“PX项目”群体过敏症)
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style=" text-indent: 2em " 透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。 /p p style=" text-indent: 2em " 因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。 /p p style=" text-indent: 2em " 最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。& nbsp /p p style=" text-indent: 2em text-align: center " span style=" text-align: center text-indent: 0em " img src=" http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title=" 1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 图1. 单根分散、具有碳焊结构的SWCNT网络。 /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (A)典型TEM照片;(B)单根SWCNT的百分含量统计; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。 /span /p p style=" text-indent: 2em " 通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。 /p p style=" text-indent: 2em " 研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title=" 2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " 图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。 /span /p p style=" text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " (A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。 /span /p p style=" text-indent: 2em " 该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。 /p
  • 台湾地区修订食品添加剂柠檬酸钠的规格标准
    2013年9月12日,台湾地区“卫生福利部”发布部授食字第1021301699号令,修正“食品添加物使用范围及限量暨规格标准”第三条之附表二,修订了调味剂柠檬酸钠的规格标准。   修正对照表如下: 修正规定 现行规定 § 11009 柠檬酸钠 Sodium Citrate 别名:Trisodium citrate; INS No.331(iii) 化学名称 :trisodium salt of 2-hydroxy-1,2,3- propanetricarboxylic acid, trisodium salt of ß -hydroxy-tricarballylic acid 分子式: Anhydrous: C6H5Na3O7 Hydrated:C6H5Na3O7‧ nH2O (n=2或5) 分子量:258.07(无水) 1. 含量 :本品含C6H5O7Na3 不得低于99%(180 ℃干燥2小时后定量)。 2. 外观 :无色结晶或白色结晶性粉末,无臭。 3. 性状 :1.可溶于水,不溶于乙醇。 2.本品应呈柠檬酸盐及钠盐之反应。 4. 干燥减重 :无水柠檬酸钠:1%以下(180 ℃至恒重)。 二水柠檬酸钠:13%以下(180 ℃至恒重)。 五水柠檬酸钠:30.3%以下(180 ℃至恒重)。 5. 碱度 :本样品1:20之溶液以石蕊测试为碱性。并于10 ml之此溶液中加入0.2 ml之0.1N硫酸及1滴酚酞后不呈粉红色。 6. 草酸盐 :10 ml之样品溶液(1:10)加入5滴稀释醋酸试液及2 ml氯化钙试液,于1小时内未产生混浊。 7. 铅 :2 mg/kg以下。 8. 分类 :食品添加物第(十一)类。 9. 用途 :调味剂。 § 11009 柠檬酸钠 Sodium Citrate 分子式:C6H5O7Na3‧ 2H2O 分子量:294.11 1. 含量 :本品含C6H5O7Na3 99~101 %(180 ℃干燥2小时后定量)。 2. 外观 :无色结晶或白色结晶性粉末,无臭,具清凉碱味。 3. 溶状 :本品1 g溶于水20 mL,其溶液应无色且浊度在「殆澄明」以下。 4. 液性 :本品水溶液(1→20)之pH值应为7.6~8.6。 5. 氯化物 :0.014 %以下(以Cl计)。 6. 硫酸盐 :0.024 %以下(以SO4计)。 7. 砷 :3 ppm以下(以As2O3计)。 8. 重金属 :10 ppm以下(以Pb计)。 9. 易碳化物 :本品0.5 g加硫酸5 mL,于约90 ℃加热1小时溶解后,其液色不得较比合液K为浓。 10. 干燥减重 :10~13 %(180 ℃,2小时)。 11. 分类 :食品添加物第(十一)类。 12. 用途 :调味剂。
  • 组织透明化三维成像技术线下培训班暨研讨会
    借助组织透明化技术和光片荧光显微技术的发展,研究者对生物组织内部的结构及生理、病理特征的观察和分析从2D提升到了3D。透明化三维成像技术利用深部组织可视化和大数据,引领科学领域的进步。我们针对科学研究中组织三维成像的重点和难点为目标,发展和完善“组织透明化方法”、“光片显微镜成像”、“数据采集分析处理”,并大力推广组织透明化三维成像方法、技术和应用。技术培训班不仅将介绍不同组织透明化方法相关的技术和应用,讲解成像工具的基础知识,而且会进行组织透明化染色、光片显微镜及数据采集,拼接和处理的实操演示。我们将邀请到国内此领域的知名专家学者做特邀报告,借此为致力于组织三维成像研究者提供一个共享科研成果和前沿技术,了解学术发展趋势,拓宽研究思路的机会。本次线下培训班由锘海生物科学仪器(上海)股份有限公司主办,我们专注于高速高分辨率的3D荧光显微成像系统的研发、生产和服务,广泛应用于脑科学、肿瘤学、药物研发、干细胞研究、组织胚胎学等各个研究领域,同时建立起高性能大数据存储系统,目前与国内外数十家高水平实验室开展合作研究,并获得了高质量的成像数据。讲座于2020年8月27日—8月29日在锘海生物科学仪器(上海)股份有限公司的总部上海漕河泾开发区举办,8月我们在锘海期待与您相聚。详情可咨询13818273779(手机与微信同号)
  • 关于举办《建立公平、公正、公开、透明的市场环境的建议》征询沙龙的通知
    科学仪器是科学研究的基础工具,是综合国力的重要体现。改革开放以来,我国国产科学仪器产业取得了长足发展。国有、国有控股以及民营等多种所有制的科学仪器企业不断填补我国国产科学仪器的空白,并在此基础上不断创新。在冶金、能源、化工、纺织、制药、食品等所有行业,均有国产科学仪器企业提供服务与产品,并且为提升&ldquo 中国制造&rdquo 的质量和品质发挥了重要作用。据不完全统计,仅2014年至今,国产科学仪器企业经过自主创新和并购,获得了三重四极质谱、离子源、小型质谱、飞行时间质谱仪等多项世界级核心技术和产品。   政府所有的各监测机构、科研院所是科学仪器的采购主力之一。长期以来,这一政府采购领域基本为国外仪器企业所主宰,并且形成了我国科学仪器产业巨大的贸易逆差。   包括中国农业科学研究院研究员蒋士强等老一辈科学家一直呼吁在政府采购中珍惜资金,购买性价比更高的仪器产品,而不是对国产科学仪器整体采取歧视性采购政策。他并列举,很多领域的国产科学仪器已经能够满足用户的需求,甚至有些已经超越国外产品。   为国产科学仪器的不利生存现状、为国产科学仪器企业在政府采购中能有公平的市场竞争环境和推进国产科学仪器企业的发展,决定举办《建立公平、公正、公开、透明的市场环境的建议》征询沙龙。邀请国产科学仪器企业负责人、科研院所和监测机构负责人等,就相关问题深入讨论,提出建设性意见,并最终形成可行的解决方案建议,整理成文报送国家相关部门以引起足够重视。   会议时间:2015年6月25日上午报到,下午13:00-18:00   会议地点:长春市君怡大酒店   报到地点:外地代表报到及住宿在君怡大酒店   会议注册:参会人员须交纳注册费500元,食宿统一安排,费用自理。   确定参会单位请6月19日前将会议回执分别发送给吉林大学赵纯老师(zhaochun@jlu.edu.cn 18943004801)和学会秘书处曹以刚副秘书长(info@fxxh.org.cn 13901229102)留存、以便安排接待。   中国仪器仪表学会分析仪器分会   2015年06月16日   附件1:会议地点截图   附件2:会议回执   主题词:《建议》 征询 沙龙 通知   中国仪器仪表学会分析仪器分会 2015年06月16日发   附件1    会议地点截图   附件2   会议回执   单位:   联系人: 电话(手机):   参加会议人员:   1.姓名: 性别: 电话: E-mail:   2.姓 名: 性别: 电话: E-mail:   要否安排住宿:
  • 国家药监局综合司关于2024年化妆品标准立项计划公示
    根据《化妆品标准制修订工作程序规定(试行)》,国家药监局化妆品标准化技术委员会(以下简称“标委会”)组织开展了2024年化妆品标准制修订项目立项遴选工作,经公开征集立项、标委会组织审查,确定了2024年55项化妆品标准制修订计划项目,现予公示。公示期间,如有异议,请向国家药监局反馈。公示时间:国家药监局发布该公示之日起7日电子邮箱:hzpjgs@nmpa.gov.cn(邮件主题请注明“2024年化妆品标准立项计划反馈意见”)附件:2024年化妆品标准立项计划序号项目名称制修订类型承担项目的标委会分技术委员会1菌落总数(眼部化妆品、口唇化妆品和儿童化妆品)限值修订通用技术要求分技术委员会2二噁烷限值修订通用技术要求分技术委员会34-甲基苄亚基樟脑修订通用技术要求分技术委员会46-氨基间甲酚修订通用技术要求分技术委员会5丁苯基甲基丙醛(铃兰醛)修订通用技术要求分技术委员会6环四聚二甲基硅氧烷(D4)修订通用技术要求分技术委员会7全氟辛基磺酸及其盐类制定通用技术要求分技术委员会8全氟辛酸及其盐类制定通用技术要求分技术委员会9汞及其化合物(化妆品准用防腐剂中的汞化合物除外)修订通用技术要求分技术委员会10吡硫鎓锌修订通用技术要求分技术委员会11水杨酸(最大允许浓度)修订通用技术要求分技术委员会12氯咪巴唑(最大允许浓度)修订通用技术要求分技术委员会13甲基异噻唑啉酮(最大允许浓度)修订通用技术要求分技术委员会14聚氨丙基双胍(最大允许浓度)修订通用技术要求分技术委员会15二苯酮-3(最大允许浓度)修订通用技术要求分技术委员会16胡莫柳酯(最大允许浓度)修订通用技术要求分技术委员会17奥克立林(最大允许浓度)修订通用技术要求分技术委员会18邻苯基苯酚及其盐类(最大允许浓度)修订通用技术要求分技术委员会19酸性紫43号(最大允许浓度)修订通用技术要求分技术委员会20甲苯-2,5-二胺(最大允许浓度)修订通用技术要求分技术委员会21甲苯-2,5-二胺硫酸盐(最大允许浓度)修订通用技术要求分技术委员会22细菌回复突变试验修订安全评价分技术委员会23体外哺乳动物细胞染色体畸变试验修订安全评价分技术委员会24亚慢性经口毒性试验修订安全评价分技术委员会25亚慢性经皮毒性试验修订安全评价分技术委员会26啮齿动物体内外周血Pig-a基因突变试验方法制定安全评价分技术委员会27体外重建3D模型试验方法制定安全评价分技术委员会28 人体皮肤斑贴试验修订人体安全与功效评价分技术委员会29人体试用试验安全性评价修订人体安全与功效评价分技术委员会30防晒化妆品防晒指数(SPF 值)测定方法修订人体安全与功效评价分技术委员会31防晒化妆品长波紫外线防护指数(PFA 值)测定方法修订人体安全与功效评价分技术委员会32化妆品祛斑美白功效测试方法修订人体安全与功效评价分技术委员会33化妆品防脱发功效测试方法修订人体安全与功效评价分技术委员会34胶原类制定原料和包装材料分技术委员会35透明质酸类制定原料和包装材料分技术委员会36卡波姆制定原料和包装材料分技术委员会37对苯二胺制定原料和包装材料分技术委员会38甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物(甲基氯异噻唑啉酮:甲基异噻唑啉酮为3:1 )制定原料和包装材料分技术委员会39珍珠提取物制定原料和包装材料分技术委员会40芦荟类提取物制定原料和包装材料分技术委员会41玫瑰花提取物制定原料和包装材料分技术委员会42石榴提取物类制定原料和包装材料分技术委员会43化妆品产品标准通则制定产品分技术委员会44冻干粉制定产品分技术委员会45次抛型化妆品制定产品分技术委员会46喷雾产品制定产品分技术委员会47气雾产品制定产品分技术委员会48化妆品中N-亚硝基二甲胺等多种亚硝胺组分的检验方法制定检验检测方法分技术委员会49化妆品中32种禁用着色剂的检验方法制定检验检测方法分技术委员会50化妆品中有机溶剂的检验方法(二氯甲烷等15种组分的检验方法、乙醇等37种组分的检验方法)修订检验检测方法分技术委员会51铜绿假单胞菌检验方法修订检验检测方法分技术委员会52牙膏分类目录制定 牙膏通用要求分技术委员会53牙膏中多组分防腐剂的检验方法制定 牙膏检验检测分技术委员会54牙膏中抗感染组分的检验方法制定牙膏检验检测分技术委员会55牙膏中多西拉敏等60种组分的检验方法制定牙膏检验检测分技术委员会
  • 锘海组织透明化/免疫染色/高分辨率3D成像CRO服务
    组织透明化技术和光片荧光显微技术的发展,使研究者能从宏观到微观对生物组织内部的结构及生理、病理特征进行观察和功能性分析。锘海生物科学仪器(上海)股份有限公司提供完整器官的组织透明化、组织免疫荧光染色、高分辨3D显微成像以及大数据分析一体化服务,旨在通过精准、快速、多样化的CRO服务为每一位生命科学工作者提供个体化/定制化的解决方案。基于SHIELD、SWITCH等技术(Park et al., Nature Biotechnology, 2019)的主动式组织透明化方法和快速3D免疫染色让组织处理的时间极大的缩短,同时又很好的保护了荧光蛋白,实现快速、均一的大组织透明化及免疫染色。只需要与我们的技术人员进行简单沟通和必要的前期准备,即可开始你的3D成像之旅。锘海LS 18宣传视频小鼠肺部成像全脑血管成像组织透明化/免疫染色/高分辨率3D成像一体化解决方案无需切片 / 无需等待 / 无需担忧基于SHIELD方法优化的固定剂,对生物组织荧光、蛋白抗原性和组织结构起到保护作用。SHIELD方法无需水凝胶包埋操作,可重复性高。SmartClear II Pro组织透明化仪器与SHIELD、SWITCH等方法固定的组织兼容。与采取有机溶剂的组织透明化(BABB, iDisco, uDisco, 3DISCO, vDISCO等)相比,具有更好的荧光保护效果,并且加快了处理速度,减少了有毒和挥发性物质的危害。SmartLabel独创性地将随机电泳技术和SWITCH技术结合起来,实现对大组织从里到外均一的免疫标记。与其它被动式的免疫标记方法相比,SmartLabel极大地缩短了抗体染色处理时间,达到前所未有的组织穿透深度。锘海LS18光片荧光显微镜采取平铺光片技术,对透明化大组织进行三维高分辨率成像,适用于各种透明化方法制备的微米级到厘米级的组织,为分子生物学研究、药物筛查和各细分学科领域提供更快速、更精准的分析方法。锘海LS18光片显微镜锘海生物科学仪器(上海)股份有限公司与西湖大学高亮(平铺光片技术发明人)实验室共同研制的新型光片照明显微镜LS 18,克服了传统光片显微镜3D空间分辨率、Z轴层析能力和成像视野之间的矛盾;摒弃原有选择性平面照明显微镜中的单光片照明的方式,运用多个薄的光片分段照明,在不损失成像视野的情况下,获得更高分辨率的3D图像。LS 18光片照明显微镜适用于各种不同类型透明化方法处理的样品(水性透明化方法如Scale、SeeDB、CLARITY、CUBIC、SWITCH、SHIELD等;油性透明化方法如BABB、3DISCO、iDISCO、uDISCO、PEGASOS等),都可得到高分辨率、高信噪比的多色荧光3D图像,能够快速定位宏观样品中的目标细胞,获得高分辨率的3D细胞微结构。关于锘海锘海生物科学仪器(上海)股份有限公司是一家创新型科技公司,总部位于开发区的上海漕河泾开发区松江园区内,在北京,广州,成都,沈阳等十余座城市设有办事处, 作为“生命科学的服务者,医疗创新的推动者“,致力于打造完整的生命科学研发、制造、服务生态体系。我们积极推进科学技术转化,其中,与西湖大学高亮实验室合作共同研制的光片显微镜Nuohai LS18是专为大组织样品设计的高速均匀高分辨率的3D荧光成像系统,Nuohai LS18的 “平铺光片技术”完美地解决了传统光片显微镜中空间分辨率、光学层析能力和成像视野大小之间的矛盾,满足高通量、准确定位的荧光成像分析需求,广泛应用于脑科学、肿瘤学、药物研发、干细胞研究、组织胚胎学等各个领域。我们拥有一支专业和经验丰富的研发、销售、技术和本地化服务的团队,团队中80%以上人员为高学历专业硕博人才,致力于为生命科学领域的科研及企业客户提供个性化、专业化的产品、服务和整体解决方案,让生命科学更加简单、高效。
  • 国家食品药品监督管理总局关于8批次面膜类化妆品不合格的通告
    近期,在国家食品药品监督管理总局全国范围组织开展面膜类化妆品监督抽检中,发现8批次产品存在非法添加禁用物质、违规使用限用物质等问题。现将有关情况通告如下:  一、不合格产品涉及的生产企业和不合格项目为:标称朗曜日化(上海)有限公司生产的金蔻4合1密集润白修复面膜和3D紧致V脸弹力面膜两种产品,标称上海臻美高科技发展有限公司生产的i尚i膜瓷娃娃0毛孔面膜,标称广州澳谷生物科技有限公司生产的仟佰草茶树清痘控油隐形面膜,标称广州天姿丽化妆品有限公司生产的透明质酸密集补水隐形蚕丝面膜和水感透亮柔嫩细肤蚕丝面膜两种产品,标称广州市白云区美莲葆化妆品厂生产的左旋C焕采驻颜蚕丝面膜,标称(中德合资)肇庆市清秀日化有限公司生产的美白凝肌蚕丝面膜。上述产品均检出含有禁用物质氯倍他索丙酸酯。  氯倍他索丙酸酯属于糖皮质激素类物质,长期使用含有糖皮质激素的化妆品可能导致面部皮肤黑斑、萎缩变薄等问题,还可能出现激素依赖性皮炎,《化妆品卫生规范》(2007年版)规定其为化妆品禁用物质。  二、上述不合格产品的生产企业所在地上海市、广东省食品药品监管部门正在进行核查。国家食品药品监督管理总局要求上海市、广东省食品药品监管局核实后责令企业停产整顿,对已上市销售产品立即采取下架、召回等措施。上海市和广东省食品药品监管部门要对上述企业立案调查,彻底查清不合格产品的批次、数量和流向,并将相关信息通报产品流向地的食品药品监管部门;在查清事实的基础上,对企业违法违规问题依法查处,涉嫌犯罪的移交公安部门追究刑事责任。  三、各地经营上述产品的商业企业应立即停止销售,就地下架封存,并将有关情况报告当地县级以上食品药品监管部门。各地下架封存情况,由省级食品药品监管部门于8月20日前报国家食品药品监管总局。  特此通告。 关于氯倍他索丙酸酯(以下信息来自搜狐媒体平台入驻作者罗志,男,食品药品安全领域科普专栏作者) 以前听说有的面膜里违法添加荧光剂,这个比较好理解,荧光剂可以让使用者的皮肤洁白有光泽。但是这次检出的氯倍他索丙酸酯是个什么东西呢?它究竟给使用者带来什么样的使用体验和不良后果呢?  打开《中华人民共和国药典》,里面对氯倍他索丙酸酯描述得十分清楚:它除了这个名字,还有许多别名,如氯氟甲泼尼松、丙酸氯倍他索、丙酸氯倍米松、特美肤等,其实都是一种物质,属于糖皮质激素家族中的一员。  如果大家对“糖皮质激素”还有点陌生,它的另外一个名字“肾上腺皮质激素”应该就熟悉多了,这是由肾上腺皮质分泌的一类甾体激素。  糖皮质激素可用于一般的抗生素或消炎药所不及的病症,2003年“非典”时期,为抢救生命和控制疫情,糖皮质激素被大量用于非典紧急治疗。虽然短期效果明显,挽救了了患者的生命,但由于激素的过长时间、过大剂量的使用,许多患者因为药物的副作用出现股骨头坏死症状以及肺部功能障碍,很多人丧失劳动能力,生活难以自理,严重者不得不更换股骨头关节。 从以上这个例子上就可以看出,医生们对糖皮质激素这家伙可谓又爱又恨。糖皮质激素具有强大高效的抗炎、抗过敏、抗中毒、抗休克的作用,但考虑其巨大的副作用,在给患者用药时还是慎之又慎。  糖皮质激素的抗炎能力强,这次检出的氯倍他索丙酸酯更可以称之为“糖皮质激素家族中的战斗机”。一组数据可以让大家目瞪口呆:在同等剂量下,其抗炎作用为同为糖皮质激素家族成员的氢化可的松的112.5倍,倍他米松磷酸钠的2.3倍,氟轻松的18.7倍!这做面膜的黑心商人加的料实在够猛,也确实蛮拼的。  临床上,皮肤科的医生会使用氯倍他索丙酸酯乳膏或霜剂,用来治疗银屑病、顽固性湿疹、扁平苔藓、盘状红斑狼疮等疾病,但使用时会明确对患者说明这种药物是不宜长期使用的,以防产生皮质激素的全身作用等其它不良后果。  正因为短期效果明显,有的不法美容院、化妆品厂家将此类激素掺进嫩肤、美白的化妆品中蒙骗消费者,消费者用了后,感觉效果“立竿见影”,发现自己的皮肤变得紧致而白嫩,连痘痘什么都缓解多了,于是坚信这些产品的神奇功效。殊不知长期使用含有糖皮质激素的化妆品可能导致面部皮肤黑斑、萎缩变薄等问题,还可能出现激素依赖性皮炎。国家颁布的《化妆品卫生规范》(2007年版)规定此类物质为化妆品禁用物质。因此,郑重提醒爱美的女性朋友,如果你使用的面膜在极短时间内让你有很明显的美白效果,颜值提高过快了,就要高度怀疑这种产品极有可能是添加了激素类物质的。 天津阿尔塔科技有限公司天津阿尔塔科技有限公司提供质量稳定的高纯度分析检测用有机化学标准参照物纯品,纯品溶液,和各种混标溶液,涵盖食品检测、环境监测、医药研发标准品参照物,兽残、农残标准品参照物等。所有产品都可提供完整的质量检测报告(CoA)、MSDS、储存记录,可溯源。我们致力于以优质的产品、可靠的质量、合理的价格、负责的态度、互相尊敬的关系与广大客户合作共赢。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 布鲁克海文实验室与洛斯阿拉莫斯共同研发透明纳米薄膜
    美国能源部布鲁克海文国家实验室(Brookhaven)和洛斯阿拉莫斯国家实验室(Los Alamos)于近日宣称,其研究结果表明透明薄膜具有在相对较大面积内吸收光并生产电荷的能力。同时,两家实验室的专家还在《化学材料》(Chemistry of Materials) 期刊上发表了相关文章,称此材料可用于生产透明太阳能电池板或太阳能窗户,从而在实际应用中将吸收的太阳能转换至可使用电力。 六边形的边密集地排列,可吸收强烈光线,也可以方便地进行发电   据称,此种材料是在半导体聚合物中注入富含丰富碳元素的富勒烯(fullerenes)而制成的。在监控条件下,这种材料可以在数微米大的面积上进行自组装并形成如蜂窝状的可重复网格。此蜂窝薄膜是在聚合物/富勒烯混合溶液中滴入微米大小的水滴使其遍布溶液表层而制成的。随着溶剂的蒸发,此聚合物逐渐形成六角型图案,即蜂巢状外观。   “虽然这种蜂窝状图案的薄膜此前曾使用聚苯乙烯等传统聚合物进行制作,但此文章首次提出半导体及富勒烯的混合材料可以有效地吸收光线、产生电荷并进行分离电荷。”布鲁克海文国家实验中心的功能纳米材料首席科学家及物理化学家米尔恰• 科特勒特表示(Mircea Cotlet)。   “此外,由于这种材料的聚合物链只在六角形的边缘处分布稠密,而其余的中心面积则分布非常薄且相对松散,因此其具有较高的透明性。分布稠密的边角处可以更容易地吸收光线并同时促进发电,而中心地带则由于无法吸收足够光线而保持相对透明。”   据CFN材料科学家Xu Zhihua先生表示,此大面积图案可应用在许多方面用来生产能源,包括太阳能窗户、透明太阳能电池板及光显示等。   此蜂窝结构的一致性已被诸多扫描探针和电子显微镜方法验证。此外,结构中的边缘位置、蜂窝中心及网格节点处的光学性质和生产电荷,也已经过共聚焦荧光时间分辨荧光显微镜的测试。   “溶剂蒸发速率越慢,所产出的聚合物就越紧凑,电荷传输效果也就越好,” 科特勒特在讨论聚合物的形成时指出,他还表示,材料的成型程度取决于溶剂的蒸发速率,同时也就决定了材料的电荷传输速率。   科特勒特总结道:“我们的工作使我们更深入地了解了蜂窝结构的光学特性。下一步将是使用这些蜂窝薄膜来制作透明柔性有机太阳能电池及其他设备。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制