当前位置: 仪器信息网 > 行业主题 > >

解鸟氨酸克雷伯菌

仪器信息网解鸟氨酸克雷伯菌专题为您提供2024年最新解鸟氨酸克雷伯菌价格报价、厂家品牌的相关信息, 包括解鸟氨酸克雷伯菌参数、型号等,不管是国产,还是进口品牌的解鸟氨酸克雷伯菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合解鸟氨酸克雷伯菌相关的耗材配件、试剂标物,还有解鸟氨酸克雷伯菌相关的最新资讯、资料,以及解鸟氨酸克雷伯菌相关的解决方案。

解鸟氨酸克雷伯菌相关的论坛

  • 【求助】HPLC分离鸟氨酸

    在用15mmol/L PH4.6的磷酸盐柱前衍生化分离鸟氨酸时发现:鸟氨酸有两个峰,一个是另一个的一半大,已做过走空针,和衍生剂等空白实验,确定是由鸟氨酸衍生后带来的,那位大虾知道这是什么原因?急啊!

  • 基因工程构建菌种生产L-苏氨酸

    摘要 文章主要介绍以基因工程构建菌种E. coli (pTH08+prh-T04)/VT418发酵生产L-苏氨酸,在10M3发酵罐中发酵产酸8.5-9.0%;转化率39-41%;周期48-52小时。文章强调在苏氨酸发酵过程中pH值以及溶氧的控制非常重要关键词:基因工程、发酵、苏氨酸一、前言L-苏氨酸是一种必需氨基酸,按世界粮农组织的标准计算,一克食品蛋白质中含苏氨酸40mg,占全部氨基酸的11%。欧美型食品中缺少苏氨酸,补充苏氨酸就能提高食品的营养价值。配合饲料也需要苏氨酸,因此近十年来,苏氨酸生产增长了5.3倍。具统计,1990年全世界苏氨酸产量为700吨/年,1996年增加到4000吨/年,2002年则猛增至35000吨。资料显示,使用植物型饲料,成畜必需添加赖氨酸和苏氨酸,比例为10:1,而幼畜为3:1。按10:1计算,目前全世界苏氨酸的需求量不应低于5万吨/年,缺口为较大。苏氨酸的生物合成途径及代谢调控机理来看,苏氨酸和赖氨酸一样,同属天冬氨酸族氨基酸。是葡萄糖经糖酵解途径生成丙酮酸,再经三羧酸循环CO2固定反应生成四碳二羧酸,后经氨基化反应生成天冬氨酸。国内外通常用传统育种和基因工程方法来获得苏氨酸的高产菌种,传统育种目前最高产酸为2-3%。在基因工程菌方面,木柱等将解除AKⅠ和HDⅡ反馈抑制的突变株HNr59的Etr-1基因导入产苏氨酸25g/L的T-693菌株,选育出具有6种调节变异组合的转导子T-1026,相同条件下可产苏氨酸40g/L。据日本味之素公司报道,用E.coliK12菌株(AHVr+Ile-+Met-+pro-)含苏氨酸合成酶操纵子基因的质粒转化E.coliK12(Thr-),积累苏氨酸13.4g/L(转化率40%),小罐发酵产酸65g/L,转化率48%。前苏联全苏工业微生物遗传育种研究所的Debabov等构建了大肠杆菌基因工程菌E.coli BKIIMB-3996 工程菌,重组质粒Pvic40中含苏氨酸操纵子的三个基因thr A, thrB, thrC,遗传标记为Sac+(能以蔗糖为碳源), thr r (抗苏氨酸)和Hser(抗高丝氨酸),在蔗糖为碳源的流加补料方式,最高产量为85.0 g/L。综上所述,国内外用传统育种方法的菌种产酸水平在30-40g/L;用基因工程方法的菌种产酸水平在80-90g/L。二、材料与方法1. 菌种:E. coli (pTH08+prh-T04)/VT418 (上海新立公司构建)2. 培养基配方2.1 斜面培养基(g/l)葡萄糖 2.0 NH4Cl 1.0 KH2PO4 1.5 Na2HPO4 3.5 MgSO4·7H2O 0.1琼脂 20.0 加蒸馏水溶解,调pH7.0-7.2,定容1000ml,0.8Kg/cm2灭均30分钟,冷却至50℃左右加入氨苄青霉素溶液,最终浓度为50γ/ml。2.2 摇瓶种子培养基(g/l)葡萄糖 40.0 KH2PO4 1.0 MgSO4·7H2O 0.5 (NH4)2SO4 10.0 玉米浆2.0 CaCO3 15 氨苄青霉素 50γ/ml 加自来水溶解,调pH7.0-7.2,定容1000ml,分装至500ml摇瓶,0.8Kg/cm2 灭菌30分钟,接种前加入CaCO3(121℃,60分钟灭菌,烘干)和氨苄青霉素。2.3摇瓶发酵培养基(g/l)葡萄糖 80.0 (NH4)2SO4 25.0 KH2PO4 2.0 MgSO4·7H2O 1.0MnSO4·5H2O 0.5 FeSO4·7H2O 0.5 CaCO3 30.0 加自来水溶解,调pH7.0-7.2,定容1000ml,分装至500ml摇瓶,0.8Kg/cm2 灭菌30分钟,接种前加入CaCO3(121℃,60分钟灭菌,烘干)2.4 种子罐培养基葡萄糖4% (NH4)2SO4 1% KH2PO4 0.1% MgSO4·7H2O 0.05% 玉米浆 0.2% 泡敌0.01%。加水溶解pH自然,121℃灭菌20分钟,消后定容400L。接种前加入无菌氨苄青霉素50ug/L。2.5 发酵罐培养基葡萄糖8% (NH4)2SO4 2.5% KH2PO4 0.2% MgSO4·7H2O 0.1%FeSO4·5H2O 0.05% MnSO4·5H2O 0.05% 泡敌 0.01%。加自来水溶解pH自然,121℃灭菌20分钟,消后定容5.1M3。1.0Kg/cm2灭菌20分钟。

  • 崩解仪恒温水浴系统藻类繁殖及管路堵塞的解决方案

    [align=left][b]简介[/b][/align][align=left]崩解仪是化验室质量检测的常用仪器,是根据《中国药典》有关片剂、胶囊剂、丸剂等崩解时限检测的规定(崩解时限检查法适用于对固体制剂的片剂、糖衣片、薄膜衣片、肠溶衣片、浸膏片和胶囊等药物进行崩解时限试验而研制的机电一体化药检仪器。广泛应用于医药制造领域。[/align][b]崩解仪水浴箱微生物污染[/b]崩解仪由机箱、控制系统、传动系统、恒温水浴系统、吊篮部件等组成,其中恒温水浴系统是微生物污染的重要环节。在使用时,将水注到水浴箱的规定高度,按下电源开关,水箱内水便开始循环流动。水作为绝大多数化验室的最基本环境,在药品化验中占有非常重要的地位。水质往往决定了很多检验结果的真实性、可重复性。但绝大多数水中都存在一定程度的微生物污染,如沉淀污染、胶体污染、微生物污染等,这些微生物污染具有一定的特殊性,存在快速繁殖成大型微生物膜或菌落的现象,附着在水箱及管路内,对整个水系统的水体,管路及水箱造成严重的污染,很难彻底清洗干净。如果不对水箱进行清洗灭菌,微生物就会持续污染流经的水箱及管路用水,给药品检验带来了一定的风险。[b]如何预防水浴箱藻类繁殖[/b]对于崩解仪的水浴箱,清洗、灭菌一直是头疼的地方。每天更换新水,工作量大,效率不高。而清洗和灭菌的目的就是要尽可能地去除崩解仪在使用过程中管路及水浴箱内壁生成的污物,防止微生物交叉污染,消除腐败微生物的威胁。因此,除了采取正确的操作流程外,还必须对崩解仪的水浴箱及管路进行正确、及时的清洗,并定期进行消毒和杀菌。确保在一个无菌状态下进行药物检测。在此情况下,需要在崩解仪水箱中添加杀菌剂,以防止细菌等微生物和藻类生长,保证水质长期洁净。[b]奥克泰士[/b]奥克泰士--德国原装进口,主要成分是由食品级过氧化氢和银离子组成的复合型溶剂,经过ISO9001\ISO14001管理体系认证、欧盟EMAS检测认证、IFS国际食品检测认证等。是一款能够达到目前两、三种产品同时作用的效果。由于其独特的作用原理,奥克泰士能够杀灭包括假单胞菌、军团菌、非结核分枝杆菌、克雷伯杆菌、芽孢、细菌孢子、真菌孢子、放射菌、分支杆菌、病毒在内的所有类型的200多种微生物,并且具有高效、洁净、安全的特点,用于药物崩解仪水浴系统的杀菌除藻,可以保证崩解仪用水长期洁净、无菌,同时可以清洗管路中的污垢、生物膜等杂质,并抑制管路新污垢累积。其反应终产物是水和氧气,安全无残留。对管道无腐蚀性,对致病菌有较强的抑制作用。彻底解决崩解仪操作过程中所遇到的各种微生物问题。[b]奥克泰士产品特点[/b]1、具有高效广谱的杀菌能力:奥克泰士属于广谱消毒剂,能够杀灭包括假单胞菌、军团菌、非结核分枝杆菌、克雷伯杆菌、芽孢等在内的200多种有害细菌、微生物、芽孢和病毒,可以彻底杀灭崩解仪操作过程中遇到的各种微生物。2、具备清除生物膜和管路清洗功效:奥克泰士可以去除管道内壁和腔体中的生物膜,杀灭致病微生物。另外由于奥克泰士的独特成分,具备清理管路污垢的功效,可以保证处理后的管路洁净、无菌。3、真正意义上的生态消毒杀菌产品:奥克泰士主要成分为作用后分解为氧气和水,不会对产品产生任何有害残留。奥克泰士产品已经通过IFS国际食品标准认证、欧盟EMAS生态审核认证等众多权威结构的检测认证。4、不会产生耐药性:不同于氯类、季铵盐类等消毒产品,奥克泰士独特的杀菌原理,不会产生耐药性,不会出现效用递减的情况,因此可以长期、稳定的应用。5、具有良好稳定性:奥克泰士是多组份复合型溶液,具有良好的稳定性。在高温度下仍能保持稳定,甚至在高温下,其效用还会有所增强。不受温度、光照、PH值影响,不需要添加其它辅助类产品。

  • 上海科学家发现三聚氰胺“恶之源”都是菌群惹的祸

    上海科学家发现三聚氰胺“恶之源”都是菌群惹的祸http://www.foodmate.net/skin/default/image/zoomin.gif http://www.foodmate.net/skin/default/image/zoomout.gif发布日期:2014-03-26 来源:东方网 浏览次数:1383核心提示:2008年的三聚氰胺事件过去多年,然而为什么这一非法添加会导致“三鹿宝宝”发生肾结石乃至肾衰,在科学上却至今是个谜。昨天,上海交通大学附属第六人民医院转化医学中心公布了他们的一项研究成果,终于揭开事件谜底:这些都和人体肠道内一种菌群有关。 据《劳动报》报道,2008年的三聚氰胺事件过去多年,然而为什么这一非法添加会导致“三鹿宝宝”发生肾结石乃至肾衰,在科学上却至今是个谜。昨天,上海交通大学附属第六人民医院转化医学中心公布了他们的一项研究成果,终于揭开事件谜底:这些都和人体肠道内一种菌群有关。据悉,这一研究成果被美国《科学》杂志评为“2013年世界十大科技突破”之一。 发生于2008年的该起奶制品污染事件,共导致逾五万名婴儿因患肾结石而就医,其中部分人出现肾衰,有4人死亡。一种用于制造塑料、涂料、化肥等化工产品的工业原料,本来是不会被人体吸收的,为什么会形成结石并致肾功能衰竭?贾伟、郑晓皎和赵爱华等领衔的课题组经过多年追踪、研究,最后发现这一切和肠道细菌的代谢有着密切关系。 转化医学中心课题组首次发现,某些肠道细菌,尤其是克雷伯氏菌,具有代谢含氮化合物(也称为固氮)的能力,能够在肠道中代谢三聚氰胺,转化为三聚氰酸并逐步将其降解。三聚氰胺和三聚氰酸本身毒性极低,但极易互相结合形成晶体,这两类物质进入血液循环后,在肾小管中与尿酸结合形成大分子复合物类的结石,堵塞肾小管,导致肾毒性。 研究先在大鼠模型上得到了证实,随后经过进一步的体外实验,科研人员发现三聚氰胺可以被实验动物的粪便中培养出的肠道细菌所降解。他们将Klebsiella属细菌定植于大鼠的肠道中,发现三聚氰胺的毒性显着增加,肾脏中的结石数目增多。 据分析,只有约1%的婴儿体内具有克雷伯氏菌,而这个百分率与服用婴儿配方奶后罹患肾毒性的婴儿比例刚好契合。这一结果提示肠道细菌在因服用配方奶导致肾毒性方面发挥着至关重要的作用。研究人员指出,这一部分婴幼儿之所以发生中毒现象,是由于他们的肠道含有较高丰度的能够代谢三聚氰胺的细菌如克雷伯氏菌的缘故。 相关研究成果已发表于《科学》杂志的子刊《科学-转化医学》,引起广泛关注。这是真的么?http://simg.instrument.com.cn/bbs/images/default/em09507.gifhttp://simg.instrument.com.cn/bbs/images/default/em09507.gif

  • 【分享】谷氨酸发酵液除菌体提取谷氨酸研究进展

    谷氨酸发酵液除菌体提取谷氨酸研究进展作者:佚名 文章来源:本站原创点击数: 222 更新时间:2010-4-14 13:19:04 file:///C:/Users/%E9%83%AD%E9%9B%B7/AppData/Local/Temp/msohtml1/01/clip_image001.gif我国味精生产,从发酵液中提取谷氨酸大多采用带菌体冷冻等电加离交法,由于发酵液中存在大量的菌体蛋白、悬浮物及其它杂质,给谷氨酸提取操作、提取收率、谷氨酸质量带来显著影响,且废水含高C0D、高B0D等严重污染环境的物质,又给废水治理带来重重困难。 近几年来,国内一些味精生产企业、研究所,对谷氨酸发酵液除菌体及提取谷氨酸进行了大量研究,除菌体工艺有高速离心机分离,絮凝剂分离、膜分离等,都取得了明显成果。按除菌体不同工艺、除菌体率分别达到70%~96%,以膜分离法除菌率最高达95%以上,得到的发酵液澄清,0D低,谷氨酸提取操作方便,由于除去了影响谷氨酸结晶的大量杂质,因而谷氨酸结晶颗粒大,纯度高、质量好,易于沉降分离,提取收率明显提高。高纯度谷氨酸有利于味精精制,味精中和脱色过滤可降低活性碳或树脂用量,提高味精结晶质量,大大降低味精生产成本。除菌体后的发酵液及等电提取后的废液中C0D、BOD大大减少,减轻了环境污染,降低了废水治理负荷与难度。得到的菌体经干燥后可以综合利用,作高蛋白质饲料或作核苷酸的生产原料。 谷氨酸发酵液除菌体及多种新工艺提取谷氨酸的研究,是对我国味精工业清洁生产的有益探索。随着研究的不断深化,许多先进工艺技术将会被应用,味精生产终将进入一个新水平。 1 高速离心分离除菌体,浓缩等电提取 沈阳味精厂从瑞典引进4台ALFA—LAVA公司的FESX5l2S一3lC型蝶片式高速喷咀离心机,转速4650I1) 分,功率45kw,对玉米淀糖为碳源,尿素作氨源、玉米浆为生物素的T一6l3菌发酵液进行了工业性除菌体,进料量20m ,喷咀直径1.0mm,菌体分离率达70%以上,轻流占75% ,重流占25%左右,除菌体后发酵液中谷氨酸略增,还原糖下降,0D值明显降低,工业规模运转证明,该设备对分离谷氨酸发酵液性能可靠,比较适宜。 发酵液除菌体后采用浓缩等电点提取法。 除菌体后的发酵液,经减压蒸发到含谷氨酸12%~15% ,后与重液经水解浓缩制成的二次蒸发液进行等电中和(60℃、40l1)m搅拌),然后冷却、沉淀、离心分离,提取达83.14%~85.03%,比带菌体浓缩等电点提取收率77.24%显著增加。且谷氨酸含量高达96%(干),用于制造味精时脱色液过滤快,透光率高,味精质量好。 2 凝聚剂除菌体一次等电或浓缩等电提取 使用安全性高的壳聚糖作絮凝剂,其阳离子性能与发酵液中菌体(带负电荷)与蛋白凝聚使其沉淀而进行分离。壳聚糖对金属离子、蛋白质、氨基酸、核酸均有很强的吸附能力,特别对胶体微粒有甚大的絮凝作用,其官能基团主要是氨基。在最佳pH、搅拌速度、用量、温度条件下,菌体去除率可达9O%左右。 壳聚糖不易溶于水,而溶解于酸性溶液中。配成一定浓度后,于发酵液中慢慢加人,搅拌速度也以慢为好。过快易将凝絮物打碎,难过滤。菌体凝聚沉降后,抽取上清液,沉降物可加硅藻土或珍珠岩作助滤剂,尤以硅藻土作助滤剂好,不吸附谷氨酸。中试规模过滤可用板框压滤,小试规模实验室中,采用高速离心机分离。应用国产高速离心机分离除菌体凝絮物(包括菌体)至今未见报导,这也是用凝絮法除菌体不能很快推广的一个较大问题。凝聚法去除菌体后的谷氨酸发酵液的提取方法有: 2.1一次等电点法 谷氨酸发酵液经絮凝处理后,采用一次等电点法,(即用酸逐步调到pH3-2法)提取收率可达76.18% ,比对照收率71.3%提高6.2% ,谷氨酸结晶的透光率52.25% ,比对照l1.25%提高了4倍;谷氨酸提取后的母液,可减少谷氨酸0.06%~0.11%。这是提高谷氨酸收率的一个重要原因,即去除了干扰谷氨酸结晶因素。 2.2 浓缩等电点法 将除菌体经过滤的发酵液,真空浓缩一倍,用加热快速调pH的方法,一次性直接调到pH3.2。搅拌到常温,再搅拌2h~3h时,沉淀3h,离心分离谷氨酸,谷氨酸一次收率平均可达85%左右,纯度可达95%左右,且调节pH的酸用量比普通谷氨酸等电点法用量要少。 2.3 先等电提取后浓缩再提取法 谷氨酸发酵液除菌体后,先用一次等电点法(常温或冷冻)提取出谷氨酸的60%~75%,残母液中含1.2%~1.5%左右的残谷氨酸,再加以浓缩(通过多效蒸发器)3倍,再提出剩余谷氨酸,总收率可达85%以上。母液浓缩成浆状可作肥料,再根据当地的土质情况,适当添加磷、钾等肥效成分。这条工艺路线是既提高了谷氨酸的提取收率,又产生综合效益。从发酵液分离出

  • CNS_12.006_L-丙氨酸

    [align=left][/align][align=left][/align][align=center][/align][align=center][font='黑体'][size=29px]食品添加剂 L[/size][/font][font='黑体'][size=29px]-[/size][/font][font='黑体'][size=29px]丙氨酸[/size][/font][/align][align=center][font='宋体'][size=18px]吴勇[/size][/font][/align][align=center][font='宋体'][size=18px]二〇二一年七月二十二日[/size][/font][/align]1. 概述L-丙氨酸通常指L-α-氨基丙酸,在营养学上属于非必需氨基酸,同时在人体血液氨基酸中含量最高,在食品、医药、化工等领域得到广泛应用。L-丙氨酸作为食品添加剂时属于增味剂或营养强化剂。2. 理化性质性状为白色结晶或结晶性粉末,属斜方晶系。可溶于水和乙醇,不溶于乙醚和丙酮,无臭无毒。密度为1.432gcm[font='等线'][size=13px]-3[/size][/font],熔点为314.5℃,相对分子质量为89.09。3. 制备方法L-丙氨酸的制备方法经历了蛋白水解提取法、发酵法和酶法的发展过程。其中蛋白水解提取法的成本较高,已不适合工业化生产。目前工业化生产的主要方法是酶法转化,即利用携带具有生物活性的L-天冬氨酸-β脱羧酶的微生物,通过生物催化的方式将L-天冬氨酸转化为L-丙氨酸。酶法转化通常可分为两类:固定化细胞法和游离细胞法。生产L-丙氨酸的菌种包括德阿昆哈假单孢菌、黄色短杆菌、产气荚膜梭菌、脱硫脱硫孤菌、小球诺卡氏菌等。[font='等线'][size=13px][1][/size][/font]3.1 固定化细胞法固定化细胞法生产L-丙氨酸的基本工艺流程为:菌体培养加入L-天冬氨酸进行酶转化抽滤L-丙氨酸粗品母液稀释脱色过滤真空浓缩干燥。[font='等线'][size=13px][2][/size][/font]可使用卡拉胶进行固定化,通过固定化德阿昆哈假单孢菌和固定化大肠杆菌装柱串联,可达到从富马酸铵经过转化为L-天冬氨酸的过程转化为L-丙氨酸,从而实现连续化生产。其中,大肠杆菌可实现富马酸到L-天冬氨酸的转化过程,德阿昆哈假单孢菌可实现L-天冬氨酸到L-丙氨酸的转化过程。此方法的关键在于防止固定化过程可能带来的酶失活和pH变化带来的酶失活,以及防止丙氨酸消旋酶对L-丙氨酸的外消旋化。3.2 游离细胞法游离细胞法生产L-丙氨酸的基本工艺流程为:菌体培养离心固定化加入L-天冬氨酸进行酶转化脱色、浓缩、结晶干燥。[font='等线'][size=13px][2][/size][/font]此方法的关键在于抑制丙氨酸消旋酶的活性,同时提高酶的活性和稳定性。4. 应用[font='等线'][size=13px][1][/size][/font]4.1 L-丙氨酸在食品工业的使用L-丙氨酸作为一种广泛存在于食品中的氨基酸,可用作食品的添加剂。4.1.1 防腐剂L-丙氨酸与二元羧酸(如乙酸钠、富马酸)、氧化性酸的混合物可用作保存面条的防腐剂,并且能在防腐的同时保持面条的鲜度。L-丙氨酸与辣椒油、山梨酸钾的混合物能够有效抑制酵母菌、大肠杆菌、黑曲霉等细菌的滋生,可适用于水产品、面条、腌制品、海产品、豆制品、畜产品以及饲料、化妆品、药品的保鲜。4.1.2 风味调味料[font='等线'][size=13px][3][/size][/font]L-丙氨酸具有改善风味的效果,属于重要的氨基酸类调味剂,能够与其它氨基酸配合使用加强食品与饮料的风味。L-丙氨酸与其它氨基酸和(如葡萄糖、阿拉伯糖、甘露糖、果糖、蔗糖、麦芽糖等)以任意比例混合后可显著改善食品、饲料的风味。目前,L-丙氨酸作为食品增味剂的应用已经有了比较大的发展,但仍需要进一步的开发。4.1.2.1 酱油酱油中L-谷氨酸钠等增味剂的添加量较大以及酱油的咸度太高等问题都限制了酱油的使用市场,如何减少味精等添加剂的用量以及降低酱油的咸味已经逐渐成为人们关注的焦点。在酱油中添加L-丙氨酸后,尤其是对于苦涩味特别严重的三级酱油,随着丙氨酸浓度的增大,酸味、苦味、涩味变得柔和,酱油整体风味得到改善。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和。适量L-丙氨酸的添加对已加工酱油和原油都具有良好的改善风味作用,可使酱油咸度降低,甜度提升,味道持久性增加,整体口感变得柔和,尤其是对盐度高、不含L-谷氨酸钠、I+G和酵母抽提物等添加剂的酱油原油的调味效果最为明显。4.1.2.2 鱼露在国外的鱼露的生产中,一般通过添加HVP(植物蛋白水解液,hydrolyzed vegetable protein)补充氨基酸,提高鱼露的鲜味,HVP中含有一种名为3-氯-1, 2-丙二醇(3-MCPD)的物质,这种物质对生殖器官、肾脏和神经均有毒性,同时还存在潜在的致癌和致突变作用,长期食用含有3-MCPD的食品会造成严重身体损伤。针对3-MCPD的安全性和出口限量标准等问题,一些酱油、鱼露生产商对其生产工艺进行了改善,将传统工艺中的HVP替换为丙氨酸、谷氨酸、甘氨酸等的混合溶液,所得鱼露的味道更加醇厚,而且改善后的生产工艺成本与改善前相差不大。4.1.2.3 食用盐国外推出的低钠盐,主要成分为60%~70%氯化钠和20%~30%氯化钾,10%左右的L-丙氨酸、酵母提取物以及I+G,可以实现减盐不减咸,帮助人体钠钾平衡,增加鲜味,尤其是可以减少味精的使用量,对预防及降低高血压均起到了积极的作用。4.1.2.4 鸡精为了提升鸡精的风味,除了增加鸡肉粉的添加量以外,一些生产厂家优选在其鸡精配方中添加丙氨酸,利用丙氨酸的鲜味以及诱发食物风味的作用来 提升鸡精调味料的口感,既起到了协调增鲜的作用,又降低了人体钠的摄入量。鸡精中添加L-丙氨酸后,其鸡肉风味更加醇厚,鲜味增强。4.1.2.5 复配甜味剂许多甜味剂单体都有各自的优点和缺陷,无论哪种甜味剂单体,用量过大时都会产生不良风味和后味,均不能同时满足安全、口感、工艺、成本四项要求。只有对单体甜味剂各自的优点进行利用和发挥,对其缺点进行弥补和改造,用科学合理的方法对多种甜味剂进行复配和改造,才能满足使用要求。在复配甜味剂中加入1%~10%的L-丙氨酸,能提高甜度、柔和甜 味,减少糖精钠等人工合成甜味剂的用量,是制作糖尿病人食品的潜在甜味剂,同时也能满足现代人“低糖”的饮食习惯。4.2 L-丙氨酸在医药上的应用L-丙氨酸作为一种蛋白质的合成原料,能够影响人体的生理活动。40年代起出现第一代氨基酸输液,由水解蛋白制成,含有较多杂质,在临床中出现不良反应;1965年日本出现第二代氨基酸输液,其中含有11种氨基酸,除人体必需氨基酸8种外还存在精氨酸、组氨酸和甘氨酸;1976年开始,多国出现第三代氨基酸输液,在第二代氨基酸输液的基础上加入了L-丙氨酸、脯氨酸和丝氨酸等多种非必需氨基酸。随着临床医学的发展,第四代氨基酸输液不再是营养型输液,而是治疗型输液,通过调整人体的氨基酸代谢水平对部分疾病进行治疗。L-丙氨酸在治疗如肝病引起的蛋白质合成紊乱、糖尿病、急慢性肾功能衰竭以及对维持危急病人的营养、抢救患者的生命方面起到了积极作用。L-丙氨酸可以有效减轻酒精对肝脏的损害。L-丙氨酸可以有效地减轻酒精对肝脏的损害。通过对腹腔注射170mmol/kg体重19%的乙醇的小鼠进行试验表明,投服L-丙氨酸的小鼠的生存率为67%,比不投的高出34%;而L-丙氨酸与鸟氨酸相结合, 则生存率提高到100%。所以可将L-丙氨酸与L-鸟氨酸的混合物按0.01%~10%添加量加到食品中,也可以将L-丙氨酸与谷氨酰胺以 1:0.05~0. 5(摩尔比)混合物制成片剂、胶囊、乳剂、口服液等,能够起到保护肝脏、降低酒精中毒的作用。L-丙氨酸还是血液保存剂的主要成分。目前输血用血液保存方法中除了全血保存外,还有红血球制剂保存。但血液制剂在保存过程中会发生老化,因而保存期有限。为了提高保存期 ,防止老化,采用了添加腺嘌呤、肌苷、蔗糖、乳糖等方法。但这类方法都有缺点,这些添加成分在输血前必须予以除去。例如,在添加蔗糖时,直接将含有蔗糖的血液注射到人体中时,血液中的糖浓度会急剧上升,必须在输液前预先用等渗透压生理盐水洗涤、渗透等方法降低糖浓度后才能输血。而氨基酸既可以降低渗透压又显示与蔗糖相同的抗溶血性,在输血时可 以不必除去,能直接使用,还具有优良的营养效果。5. 限量标准现行标准[font='等线'][size=13px][4][/size][/font]中对L-丙氨酸的功能划分为增味剂,仅用于调味品(食品分类号12.0)生产,对于最大使用量无明确界定,按生产需要适量使用。6. 理化指标及测定方法[font='等线'][size=13px][5][/size][/font]6.1 理化指标现行标准[font='等线'][size=13px][5][/size][/font]中L-丙氨酸的理化指标列于下表。[table][tr][td]项目[/td][td][/td][td]指标[/td][/tr][tr][td]L-丙氨酸(以干基计),w/%[/td][td][/td][td]98.5~101.5[/td][/tr][tr][td]干燥减量,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]pH(50g/L 水溶液)[/td][td][/td][td]5.7~6.7[/td][/tr][tr][td]砷(As)/(mg/kg)[/td][td]≤[/td][td]1[/td][/tr][tr][td]重金属(以Pb计)/(mg/kg)[/td][td]≤[/td][td]10[/td][/tr][tr][td]灼烧残渣,w/%[/td][td]≤[/td][td]0.20[/td][/tr][tr][td]比旋光度 α[font='等线'][size=13px]m[/size][/font](20℃,D)/[(o)dm2 kg[font='等线'][size=13px]-1[/size][/font]][/td][td][/td][td]+13.5~+15.5[/td][/tr][/table]6.2 测定方法6.2.1 鉴别实验6.2.1.1 茚满三酮试验称取约1g样品,精确至0.1g,溶于1000mL水中,取此溶液5mL,加1mL 20g/L茚满三酮溶液,加热至沸,约3min后显紫色。6.2.1.2 氧化试验称取约0.2g实验室样品,溶于10mL (1+30) 硫酸溶液,加入0.1g高锰酸钾,煮沸,有强烈的刺激臭味乙醛产生。6.2.2 L-丙氨酸含量测定称取约0.2g干燥样品,精确至0.0001g,置于250mL干燥的锥形瓶中,加3mL无水甲酸溶解,加50mL冰乙酸,加2滴2g/L结晶紫指示液,用0.1 mol/L高氯酸标准滴定溶液滴定至溶液由蓝色变成蓝绿色为终点。按照相同的步骤,除不加入样品外其它条件不变,进行空白实验。L-丙氨酸的质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]1[/size][/font]表示L-丙氨酸的质量分数,以百分比形式表示;V[font='等线'][size=13px]1[/size][/font]表示样品消耗高氯酸标准滴定溶液的体积(mL);V[font='等线'][size=13px]2[/size][/font]表示空白消耗高氯酸标准滴定溶液的体积(mL);c表示高氯酸标准滴定溶液浓度(molL[font='等线'][size=13px]-1[/size][/font]);m表示样品质量(g);M表示L-丙氨酸的摩尔质量(gmol[font='等线'][size=13px]-1[/size][/font]),M=89.09。6.2.3 干燥减量的测定将电热恒温干燥箱调节至(105±2)℃,之后将称量瓶置于电热恒温干燥箱中干燥,取出后在干燥器中冷却,称量,精确至0.0001g,重复操作至恒重。之后用已恒重的称量瓶称取1g~2g样品,精确至0.0001g。将装有样品的称量瓶和盖子放入电热恒温干燥箱同时干燥2h~4h,之后将称量瓶和盖子迅速移至干燥器中冷却。冷却后盖上盖子进行称量,精确至0.0001g,重复操作至恒重,重复干燥时间为1h。水分质量分数可通过以下公式计算:式中:w[font='等线'][size=13px]2[/size][/font]表示水分的质量分数,以百分比形式表示;m[font='等线'][size=13px]0[/size][/font]表示称量瓶的质量(g);m[font='等线'][size=13px]1[/size][/font]表示称量瓶和干燥前样品质量(g);m[font='等线'][size=13px]2[/size][/font]表示称量瓶和干燥后样品质量(g)。[font='等线'][size=13px][6][/size][/font]6.2.4 pH的测定称取约5g样品,精确至0.01g,加入约20mL无二氧化碳的水溶解并稀释至100mL。将校准后的酸度计的电极用水冲洗一次,之后用样品溶液冲洗一次。调节样品溶液的温度至(25±1)℃,并将酸度计的温度补偿旋钮调至25℃,读取pH值。样品应分为2份进行平行测定,测得的pH值读数稳定1min以上,测得的pH值允许误差绝对值小于等于0.02。[font='等线'][size=13px][7][/size][/font]6.2.5 砷的测定称取0.25g二乙氨基二硫代甲酸银,研碎后用适量三氯甲烷溶解,加入1.0mL三乙醇胺,再用三氯甲烷稀释至100mL,作为吸收液。称取约1g样品,精确至0.01g。吸取一定量的样品溶液和1mL含砷0.001mg的砷标准使用溶液,置于砷发生瓶中,补加硫酸至总量为5mL,加水至50mL。在各瓶中加入3mL 150g/L碘化钾溶液,混匀,放置5min。分别加入1mL 400g/L氯化亚锡溶液,混匀,放置15min。加入5g无砷金属锌,立即塞上装有乙酸铅棉花的导气管,并使管的尖端插入盛有5.0mL吸收液的吸收管中,室温反应1h。取下吸收管,用三氯甲烷将吸收液体积定容至5.0mL。经目视比色或用1cm比色杯,于515nm波长下测定吸收液的吸光度。样品液的色度或吸光度不得超过砷标准吸收液的色度或吸光度。[font='等线'][size=13px][9][/size][/font]6.2.6 重金属的测定准备以下溶液:1. 硫代乙酰胺溶液:称取硫代乙酰胺约4g,精确至0.1g,溶于100mL水中,置于冰箱保存。临用前取此液1.0mL加入预先由15mL 40g/L氢氧化钠溶液、5mL水和20mL甘油组成的混合液5mL,置于水浴上加热20s,冷却后立即使用。2. 乙酸铵缓冲溶液(pH=3.5):称取25.0g乙酸铵,溶于25mL水中,加入45mL 6mol/L盐酸,用稀盐酸或稀氨水调节至pH=3.5,之后用水稀释至100mL。3. 1μg/mL铅标准溶液。临用前配制。称取约10 g样品,精确至0.01g,溶于约60mL无二氧化碳水,之后转移至100mL容量瓶并使用无二氧化碳水定容,摇匀。吸取样品溶液12mL,置于25mL具塞比色管中,即为A 管。吸取10mL铅标准溶液和2mL样品溶液置于25mL具塞比色管中,摇匀,即为B管(标准)。吸取10mL无二氧化碳水和2mL样品溶液置25mL具塞比色管中,摇匀,即为C管(空白)。在 A、B、C 管中,各加入2mL乙酸铵缓冲溶液,摇匀,分别滴加1.2mL硫代乙酰铵溶液,迅速搅拌混合。相对于C管,B管显现了淡棕色。2min后,A管的颜色不应深于B管。6.2.7 灼烧残渣的测定称取约2g~3g样品,精确至0.0001g,置于在800℃±25℃灼烧至恒重的瓷坩埚中,加入适量的(1+8)硫酸溶液将样品完全浸湿,用温火加热,至样品完全炭化,冷却。加入约0.5mL硫酸将残渣完全浸湿,使用相同的方法加热直至硫酸蒸气全部逸散。在(800±25)℃下灼烧45min,之后放入干燥器中冷却至室温,称量残渣的质量。灼烧残渣的质量分数可通过以下公式计算:式中:w3表示灼烧残渣的质量分数,以百分比形式表示;m表示样品质量(g);m1表示残渣质量(g)。6.2.8 比旋光度称取10g样品,精确至0.0001g,加入(1+1)盐酸溶液溶解,转移至100mL容量瓶并使用(1+1)盐酸溶液定容,摇匀。按照仪器的使用说明调整旋光仪,用(1+1)盐酸溶液校正零点。将样品溶液充满洁净、干燥的旋光管,排出气泡,将盖旋紧后放入旋光仪内。调节样品溶液的温度至(20±0.5)℃,按照仪器的使用说明操作并读取旋光角,精确至0.01°。比旋光度可通过以下公式计算:式中:α[font='等线'][size=13px]m[/size][/font](20℃, D)表示20℃钠灯照射下的比旋光度[(°)dm[font='等线'][size=13px]2[/size][/font]kg[font='等线'][size=13px]-1[/size][/font]];α表示旋光角(°);l表示旋光管长度(dm);ρ[font='等线'][size=13px]α[/size][/font]表示溶液中L-丙氨酸的质量浓度(g/mL)。[font='等线'][size=13px][8][/size][/font]参考文献[1] L-丙氨酸的生产及应用. 王雪根, 朱建良, 欧阳平凯. 南京化工大学学报(自然科学版). 1998, 20, 01.[2] 游离细胞法与固定化细胞法生产L-丙氨酸的比较. 徐虹, 王雪根, 范伟平, 欧阳平凯. 工业微生物. 1988, 28, 38-39.[3][font='宋体'][size=24px][color=#333333] [/color][/size][/font]L-丙氨酸在食品工业中的应用潜力. 郭媛, 王丽娟等. 中国调味品[font='宋体'][size=12px][color=#666666]. [/color][/size][/font]2017, 42, 07.[4] GB 2760 - 2014[5] GB 25543 - 2010[6] GB/T 6284 - 2006[7] GB/T 9274 – 2007[8] GB/T 613[9] GB 5009.76 - 2014

  • ε-聚赖氨酸

    ε-聚赖氨酸是一种具有抑菌功效的多肽,是目前天然防腐剂中具有优良防腐性能的微生物类食品防腐剂。它由25~35赖氨酸残基聚合而成,是一种营养型防腐剂,安全性高于其他防腐剂。ε-多聚赖氨酸产品特点1) 抑菌谱广 ε-聚赖氨酸对革兰氏阳性菌、革兰氏阴性菌、酵母菌、霉菌均有很好的抑菌效果,并且对一些耐热性芽孢杆菌和病毒也有一定抑制作用。 2) 安全性能高 当人体食用后,可降解为L-赖氨酸这一人体必需氨基酸,无任何毒性,并于2003年通过了美国食品和医药管理(FDA)的许可。3) 热稳定性好 ε-聚赖氨酸在高温条件下很稳定,80℃ 60min及120℃ 40min加热,均保持其抑菌能力,它能承受一般食品加工过程的热处理,可随原料一同进行灭菌处理。 4) 水溶性极强 ε-聚赖氨酸的水溶性好,有利于在食品中的添加使用。  多聚赖氨酸作为抑菌剂在食品中使用时,通常与其他物质配合使用,以达到增效和经济的目的。常用的配合物质可分为五类:1.酒精,使用量为30%~70%,主要应用于各种蛋制品;2.有机酸,常常使用的有机酸一般有醋酸、苹果酸、马来酸、柠檬酸、琥珀酸等,使用量在0.5%~50%之间,主要应用于米饭、饮料、色拉、酱类等食品;3.甘油酯,甘油酯多为低级脂肪酸酯,用量在0.01%~5%之间,主要用于动物性蛋白、乳蛋白较多的食品;4.甘氨酸,用量为0.01%~10%,主要应用于牛奶防腐;5.其他天然抑菌剂,如鱼精蛋白、茶多酚等。

  • 我国“替尼类”(酪氨酸激酶抑制剂)抗肿瘤药的市场现状

    我国“替尼类”(酪氨酸激酶抑制剂)抗肿瘤药的市场现状2012年1月FDA批准辉瑞公司小分子酪氨酸激酶抑制剂阿西替尼上市,开始了又一轮抗肿瘤靶向药物研究的新高潮。酪氨酸激酶在肿瘤的发生、发展过程中起着非常重要的作用,以酪氨酸激酶为靶点进行药物研发已成为国际上抗肿瘤药物研究的热点。酪氨酸酶抑制剂在临床上通过抑制肿瘤细胞的损伤修复、使细胞分裂阻滞在G1期、诱导和维持细胞凋亡、抗新生血管形成等多途径实现抗肿瘤效果;其抗癌谱广,已经成为治疗各种癌症疾病的一线用药。伊马替尼是基于癌细胞分子作用机理而开发的第一个抗癌新药,开创了肿瘤分子靶向治疗的时代。目前我国已有8个酪氨酸激酶抑制剂上市,包括伊马替尼、厄洛替尼、舒尼替尼等,此类药物的市场情况如下表,其中只有埃克替尼一个为国产产品,其它均为进口产品。表1:酪氨酸激酶抑制剂靶向抗肿瘤药在中国上市情况通用名 商品名 中国上市年份 在中国上市的首家公司 伊马替尼 格列卫 2002 诺华 吉非替尼 易瑞莎 2004 阿斯利康 厄洛替尼 特罗凯 2006 罗氏 索拉非尼 多吉美 2006 拜耳 舒尼替尼 索坦 2007 辉瑞 尼洛替尼 达希纳 2009 诺华 达沙替尼 施达赛 2011 百时美施贵宝 埃克替尼 凯美纳 2011 浙江贝达药业有限公司 靶向治疗,是在细胞分子水平上,针对已经明确的致癌位点(该位点可以是肿瘤细胞内部的一个蛋白分子,也可以是一个基因片段),来设计相应的治疗药物,药物进入体内会特异地选择致癌位点来相结合发生作用,使肿瘤细胞特异性死亡,而不会波及肿瘤周围的正常组织细胞。由于靶向制剂可以提高药效、降低毒性,从而增强了药品的安全性、有效性和病人用药的顺应性,所以日益受到国内外医药界的广泛重视。从2011年各大公司年报数据了解到,诺华的伊马替尼销售额最大,超过46亿美元,罗氏的厄洛替尼和辉瑞的舒尼替尼销售额都超过10亿美元。表2:2011年各大药企的酪氨酸激酶抑制剂产品全球销售额通用名 企业 2011年销售额 伊马替尼 诺华 46.59亿美元 厄洛替尼 罗氏 12.51亿瑞士法郎 舒尼替尼 辉瑞 11.87亿美元 索拉非尼 拜耳 7.25亿欧元 达沙替尼 达沙替尼 8.03亿美元 尼洛替尼 诺华 7.16亿美元 吉非替尼 阿斯利康 5.54亿美元 拉帕替尼 葛兰素史克 2.31亿英镑

  • 【分享】细菌鉴定仪出现“不能鉴定细菌”的处理

    [size=4] 我们对现今应用较为普遍的VITEK-AMS鉴定系统中报告“不能鉴定细菌”(UIO)菌株作了进一步分析,探讨其发生原因、处理方法,以期建立一套切实可行的仪器与手工方法相结合的细菌鉴定方法。[/size][size=4]  [b]一、材料与方法[/b][/size][size=4]  1. 仪器与试剂:VITEK-AMS 60型全自动细菌鉴定仪及其配套GNI、GPI、YBC试验卡(生物梅里埃公司产品)。[/size][size=4]  2. 试验菌株:1 025株本院1999.10.21-2000.3.3临床标本分离的菌株进行了Vitek- AMS鉴定,其中应用GNI 卡631例、GPI卡334例、YBC卡60例。[/size][size=4]  3.VITEK-AMS鉴定法:根据细菌表型特征,选择相应GNI+、GPI、YBC卡,严格按仪器操作说明进行,孵育后当检验地带网仪器报告结果为UIO时,挑取生长对照孔(GPI卡第1孔、GNI+卡第3孔、YBC卡第24孔)悬液于非选择性培养基上重新分离,观察是否纯培养,若是,分别按同法及以下两法鉴定。否则, 经纯培养后重新上机鉴定。[/size][size=4]  4. 双歧检索鉴定法:根据Vitek全自动微生物分析系统技术资料提供的双歧检索表,依生化结果检索至属或种。[/size][size=4]  5. 常规鉴定法:按照全国临床检验操作规程[1]进行,并经API系统(生物梅里埃公司) 复核鉴定至种。部分菌株鉴定依据文献[2]进行。 [/size][size=4]  [b]二、结果[/b][/size][size=4]  1. UIO发生机率:总共1025株细菌鉴定中,共出现UIO 44株,占4.3%。其中GPI卡334株,出现UIO16株,占4.8%;GNI+卡631株,出现UIO 24株,占3.8%;YBC卡60株,出现UIO4株,占6.7%。[/size][size=4]  2.UIO发生原因:在44株出现UIO中,9株(0.9%)为待检细菌不纯,3株(0.3%)为浊度不合要求,2株(0.2%)为接种物孵育时间过长(超过48h),2株(0.2%)为超出试验卡鉴定范围(均为臭鼻克雷伯菌),1株(0.1%)为菌悬液不乳化(粘液型绿脓假单胞),其他如冲液时气泡过多,或其他原因不确定者27株(2.6%)。[/size][size=4]  3.处理:(1)9株不纯菌株,经纯培养后,重新上机,均能成功鉴定。(2)35株纯培养但报告UIO菌株中,18株(1.8%)可通过双歧检索法获得结果,并与常规分类法结果完 全一致。3株(0.3%)浊度不合要求者经调整浊度后重新上机获得结果。 2株(0.2%)接种物超过48h菌株,经重新孵育后得以鉴定。1株(0.1%)为悬液不乳化菌株经|检验地带网|配制3个麦氏单位菌悬液,然后低速离心1~2 min(1 000r/min),取上清液比浊并调节到所需的浓度后,得以鉴定。(3)余下11株(1.1%)菌中,仅2株(1株为大肠埃希菌,另1株为臭鼻克雷伯菌)不能从双歧检索表中查出结果,其他9株(主要为洋葱假单胞菌、琼氏不动杆菌、木糖产碱氧化杆菌等),虽能从双歧检索表获得结果,但与常规鉴定法结果不相符合,或出现矛盾的生化结果,需增加试验项目,按常规鉴定方法及 API系统报告结果。[/size][size=4]  [b]三、讨论[/b][/size][size=4]  实验表明95.7%的临床分离菌株可通过VITEK-AMS正确鉴定,仅4.3%菌株无法一次性成功鉴定。细菌不纯是产生这部分菌株的主要原因(占近1/5),其他如待检菌菌龄、菌液浓度也是关系鉴定成败的关键。由于仪器本身原因(如对于罕见生物型、新种或不典型菌株无法鉴定)也不可忽视。正确处理这部分菌株,有重要的临床意义。实际应用自动化仪器时,必须挑取纯培养菌落,可提高鉴定率,对确认为纯培养而无法鉴定者,可通过传统分类法,参照双歧检索表能成功鉴定将近一半菌株,因此合理应用双歧检索表不失为一种较好的辅助方法。但仍有占总数1.1%菌株需用常规方法或其他方法如API系统重新鉴定。[/size][size=4]  参考文献[/size][size=4]  1,叶应妩,王毓三,主编. 全国临床检验操作规程. 第2版. 南京: 东南大学出版社,1997.5.[/size][size=4]  2,Patrick R. Manual of clinical Microbiology (7th Edition). Washington DC: American Society for Microbiology, 1999.316-647. [/size]

  • 抗菌纺织品究竟是抗什么菌种?

    抗菌纺织品究竟是抗什么菌种?

    以下文章来源于海恩斯坦 ,作者OEKO-TEX创始机构[size=17px][color=rgba(0, 0, 0, 0.9)]海恩斯坦[/color][/size].作为OEKO-TEX国际环保纺织协会创始成员和官方发证机构之一,海恩斯坦成立于1946年,总部位于德国伯宁海姆,是一家国际上权威的、专业的纺织品检测实验室和研究机构,在全球拥有40多个海外办事处,主要针对纺织品提供检测、认证和研发服务。[size=14px]疫情期间,人们卫生健康意识的增强,使得抗菌产品“知名度”大涨,市场需求量持续走[/size][size=14px]高。[/size][size=14px]纺织品因其多孔、疏松,容易吸附各种杂质的特性,成为微生物生存、繁殖的良好寄生体。[/size][size=14px][/size][align=center][img=,690,347]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151306364361_230_1954597_3.png!w690x347.jpg[/img][/align][align=right][size=10px]病菌通过双手和纺织品的传播途径[/size][/align][size=14px]然而,具备抗菌性能的纺织品能有效地抑制微生物繁殖、扩散和传播,同时能消除异味,使织物保持整洁。[b]日常生活中抗菌/抑菌的种类,一般是指以下三大类代表菌种:[/b][/size][img=,690,881]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151307132675_2139_1954597_3.jpg!w690x881.jpg[/img][size=14px]海恩斯坦卫生、环境和医学部门负责人表示:[/size][size=14px]“[b]我们致力于研究感染的风险,即细菌在人与人之间的传播,是否可以通过使用功能性纺织品来减轻这一情形[/b]”。[/size][size=14px]作为德国国家认证委员会(DAkkS)认可的实验室,海恩斯坦具备检测抗菌纺织品的资质,通过实验得出测试菌种的“抗菌活性值”和“灭菌率”,并由此判定纺织品是否具有抗菌性。[/size][b][size=14px]产品若符合测试标准,便可被授予“抗菌”或“抗微生物”的海恩斯坦质量标签和证书。[/size][/b]01[color=#8064a2][b]抗菌[/b][/color]测试标准[list][*][b]ASTM E 2149标准[/b][size=12px]测试样品对大肠杆菌ATCC 25922和标准中未作要求的革兰氏阳性菌(通常被称为金黄色葡萄球菌ATCC 6538)呈现出显著或强烈的抗菌活性反应。两种试验菌株的菌落至少减少2 log,即灭菌率达99%。 [/size][/list][list][*][b]DIN EN ISO 20743标准[/b][size=12px]测试样品对金黄色葡萄球菌ATCC 6538及肺炎克雷伯菌ATCC 4352呈现出抗菌活性反应。两种试验菌株的菌落至少减少2 log,即灭菌率达99%。 [/size][/list][list][*][b]ISO 22196标准[/b][size=12px]测试样品对金黄色葡萄球菌ATCC 6538及大肠杆菌ATCC 8739呈现出抗菌活性反应。两种试验菌株的菌落至少减少2 log,即灭菌率达99%。[/size][/list]证书和标签通过测试,产品可获得“抗菌”证书和质量标签(有效期:1 年)[align=center][img=,690,503]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151307547354_6419_1954597_3.png!w690x503.jpg[/img][/align]02[color=#0070c0][b]抗微生物[/b][/color][color=#025eaa][b]要获得“抗微生物”证书/质量标签,需要以下三种测试菌种(抗细菌/抗真菌/抗病毒)中至少两个参数达到相应要求。[/b][/color]测试菌种[list][*][b]抗细菌:[/b][size=12px]金黄色葡萄球菌,肺炎克雷伯菌,大肠杆菌 [/size][*][b]抗真菌:[/b][size=12px]霉菌(黑曲霉、球毛壳菌、嗜松青霉菌、宛氏拟青霉菌、绿色木霉菌)、酵母菌(白色念珠菌) [/size][*][b]抗病毒:[/b][size=12px]MS2 噬菌体 [/size][*][b]要求的其他测试菌种 [/b][/list]测试标准[list][*][b]测试细菌:[/b][size=12px][b]根据DIN EN ISO 20743或ISO 22196标准[/b][/size][size=12px]测试样品必须对金黄色葡萄球菌ATCC 6538和肺炎克雷伯菌ATCC 4352或金黄色葡萄球菌ATCC 6538和大肠杆菌ATCC 8739两种试验细菌均呈现出显著或强烈的抗菌活性。试验菌株的菌落至少减少2 log,即灭菌率达99%[/size][*][b]测试真菌:[/b][size=12px][b]根据DIN EN 14119和DIN EN ISO 846标准[/b][/size][size=12px]根据DIN EN 14119标准分别检测黑曲霉ATCC 6275和球毛壳菌ATCC 6205,两种试验菌的滋生预防率必须≥50%。根据DIN EN ISO 84标准,测试样品对黑曲霉ATCC 6275、嗜松青霉菌ATCC 36839、宛氏拟青霉菌ATCC 18502、绿色木霉菌ATCC 9645和球毛壳菌ATCC 6205具有抗真菌活性。试验菌株的真菌生长抑制率必须≥50%。[/size][/list][list][*][b]测试病毒:[/b][size=12px][b]根据悬液实验[/b][/size][size=12px]MS2作为一种非致病性替代病毒,由于其颗粒结构,环境稳定性和可消毒性,常被代替用来测试病毒。[b]海恩斯坦开发了悬液实验[/b](SOP-QM-11.HY.03.054或SOP-QM-11.HY.03.057),与无包膜噬菌体MS2 (ATCC 15597-B1)接触18~24小时,测试样品的抗病毒活性必须≥3 log(99.9%)。 [/size][/list]证书和标签通过测试,产品可获得 “抗微生物”的证书和质量标签(有效期:1 年)[align=center][img=,690,503]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151308303201_96_1954597_3.png!w690x503.jpg[/img][/align][size=14px]抗菌类纺织品的诞生,为人们在纺织产品的选择上又增加了一种可能。消费者对抗菌产品的热情高涨的同时,也要注意[/size][size=14px]在鱼目混珠的市场选购时,[b]需要查看产品标签是否列明相关测试标准及测试机构。只有购买通过第三方检测认证的产品才可真正放心。[/b][/size][size=14px][/size][size=14px][b][/b][/size][align=center][img=,690,235]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151308550870_2362_1954597_3.png!w690x235.jpg[/img][/align][align=center][img=,690,404]https://ng1.17img.cn/bbsfiles/images/2022/11/202211151309212497_2222_1954597_3.jpg!w690x404.jpg[/img][/align][size=12px][color=#888888]编辑| [/color][/size][font=微软雅黑][size=12px][color=#888888]检测微信平台 ID:testbbs [/color][/size][/font]

  • 【每日一贴】苏氨酸

    【每日一贴】苏氨酸

    【中文名称】苏氨酸;α-氨基-β-羟基丁酸;2-氨基-3-羟基丁酸;丁羟氨酸【英文名称】threonine;α-amino-β-hydroxybutyric acid【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202041952_347776_1855403_3.jpg【相对分子量或原子量】119.12【熔点(℃)】左旋体255~257(分解)【性状】 无色晶体或结晶性粉末。【溶解情况】 易溶于水,不溶于无水乙醇、乙醚、氯仿。【用途】 用作营养剂和生物化学试剂。苏氨酸是必须的氨基酸,它在高等动物的体内不能合成,必须由体外供给。苏氨酸是重要的医药原料,主要用于氨基酸输液与制剂;是重要的食品添加剂,用于强化谷物、糕点、牛奶等;也是重要的饲料添加剂,用于猪等动物饲料:仔猪用量为0.85%,生长育肥猪0.68%。【制备或来源】 可由蛋白质(如酪蛋白)经水解、精制而得,或由丙烯酸衍生物中甲醇和乙酸汞合成。 采用葡萄糖核淀粉为原料,利用短杆菌、棒状菌类为菌种经过发酵后在提取得。【其他】 消旋体熔点229~230℃。【生产单位】 江西省鹰潭市生物化学制品厂;武汉化工学院

  • 复原乳中康氨酸和乳果糖

    今天了解到复原乳中的糠氨酸和乳果糖,以前没有关注过,今天上网查了些资料了解一下,跟大家分享。“糠氨酸”是英文单词furosine的中文暂译名,也有人将其译为“呋喃素”的,目前国内各类辞典尚未收录该单词。它是一种有机化合物的通俗名称,按照“国际纯粹和应用化学化合物系统命名法”,其学名是“ε-N-2-呋喃甲基-L-赖氨酸”。国际奶业早在上世纪80年代就对它有了足够的认识并于1992年被欧盟各国政府所接受,作为判断液态奶成品质量优劣的一个重要指标;其检测方法于1996年被国际奶业联合会(IDF)正式确认,为国际标准化组织(ISO)认可的时间是2004年,颁布标准号:18329。 据文献报道,生奶里的糠氨酸含量微乎其微,每公斤里约含0.15毫克,且不受奶牛处在正常饲养范围内的条件变化影响,但是在不同的奶制品成品里的含量变化却很大。巴氏杀菌奶、直接法超高温瞬间灭菌奶和间接法超高温瞬间灭菌奶(UHT)、以及保持法二次灭菌奶,依次分别约为:0.2、2.2和26、以及270(mg/L);全脂奶粉兑水复原奶的糠氨酸含量一般在每公斤20-250毫克之间。含量幅度变化如此之大,其最主要的原因是生奶在不同的加工工艺过程中所经受热处理的强度不同,即高温和在此温度下保温时间的组合差异,不当的过热处理,其实比使用复原奶的后果更严重;而更进一步的研究表明,摄入过量的糠氨酸对人体健康有害。 奶制品中的糠氨酸,是乳蛋白质在高温条件下与乳糖发生“梅拉德反应”所产生的系列产物之一。当人们加热生奶,企图杀灭其中的致病菌、继而希望彻底杀灭所有细菌时,所利用的原理是:热量促使细菌细胞内的蛋白质变性而丧失活性。与此同时,生奶中的乳蛋白质也无可避免地发生了不同程度的改变,随着热杀菌的越来越彻底,营养物质的变化也越来越大,表观表现是牛奶的“色香味”变了,内在实质是梅拉德反应逐步升级,产物越来越复杂,糠氨酸只是其中之一,属于这类产物的还有乳果糖、羟甲基糠醛等。 在加热牛奶的过程中,早在梅拉德反应发生之初,对生命体具有重要营养功能的另一类物质,乳清蛋白质自身就已经变性而丢失其应有的生理活性了。如其中的“总-β-乳球蛋白”的变性率(%):巴氏杀菌奶为0.48,直接法超高温瞬间灭菌奶为21.7,间接法超高温瞬间灭菌奶为95.6,保持法二次灭菌奶为99.9。再如乳清蛋白中具有“助睡眠”功能的“α-乳球蛋白”的变性率(%):巴氏杀菌奶为0.32,直接法超高温瞬间灭菌奶为3.96,间接法超高温瞬间灭菌奶为61.8,保持法二次灭菌奶为99.9。 比较上述两类物质的含量变化,就不难理解:为什么国际社会历来青睐“仅仅杀灭致病菌”的传统巴氏杀菌奶,以及今天灭菌奶生产和奶粉制造技术日趋向“直接法加热”“靠拢”的原因了。有意思的是,上世纪80年代起,自从人们感到有必要判断液态奶受热强度的测试以来,选所择的对象,都来自于这两类物质。国际奶业联合会和国际标准化组织至今已经颁布了近十个这方面的检验方法国际标准,在不同的热处理强度段使用时具有不同的敏感度和精确度,ISO-18329/2004是其中的一个。 最近各地技术监督部门在“驻厂监管复原奶”期间,也首次运用国际标准检验方法对国内产品进行糠氨酸含量测试,其结果在显示“复原奶”标签方面存在一些问题的同时,也暴露了“过热”处理牛奶的另外一些问题。笔者认为,现在该是我们加强和规范技术基础工作的时候了!否则,以借助“一杯牛奶强壮一个民族”来推动我国农业产业结构调整的良好愿望,将会受到负面影响

  • 【求助】HPLC柱前衍生分析氨基酸遇到的问题

    哪位高手做过氨基酸柱前衍生分析,急切求教!我用2,4-二硝基氟苯衍生鸟氨酸,图谱上除了认为的鸟氨酸和衍生试剂的峰外,还有两个峰存在,不知是什么情况?有做过鸟氨酸分析的吗?你的图谱也是这种情况吗?HPLC条件:ODS柱250*4.6mm ,360nm检测波长,pH=6的醋酸钠:乙腈=60:40衍生化方式:0.5mg/ml鸟氨酸1ml+0.5M碳酸氢钠(pH=9)1ml+0.1%2.4-二硝基氟苯乙腈溶液1ml,80度水浴加热30分钟急盼回复,万分感谢!

  • 【求助】请问怎么溶解酪氨酸?

    [size=3][b]酪氨酸溶解方法[/b][/size]我要用酪氨酸加入到植物组织培养基中,培养基pH不宜太小,约为6左右,请问怎么溶解酪氨酸?谢谢

  • 【每日一贴】蛋氨酸

    【中文名称】蛋氨酸;甲硫基丁氨酸;甲硫氨酸;α-氨基-γ-甲巯基丁酸;2-氨基-4-甲巯基丁酸;DL-蛋氨酸;DL-2-氨基-4-甲硫基丁酸【英文名称】methionine;2-amino-4-methylmercaptobutyricacid;Met;DL-methionine【结构或分子式】 【相对分子量或原子量】149.21【密度】1.340(消旋体)【熔点(℃)】280~281(分解)(L体);281(消旋体)【性状】 白色片状晶体或结晶性粉末。【溶解情况】 (L体):溶于水和湿稀乙醇,不溶于无水乙醇、乙醚、石油醚、苯、丙酮。(消旋体):溶于水、烯酸和稀碱溶液,易溶于95%乙醇,不溶于乙醚。【用途】 能维持机体生长发育和氮平衡。适用于防治肝脏疾病和砷或苯等中毒。也可用于治疗痢疾和慢性传染病后因蛋白质不足而引起的营养不良症。可作饲料营养强化剂,在动物代谢过程中对肾上腺素合成胆碱和肝脂肪的磷脂起一定作用,蛋氨酸在体内可形成胱氨酸,本品与甘氨酸有拮抗作用,禽兽缺乏蛋氨酸会引起发育不良、体重减轻、肝肾机能减弱、肌肉萎缩、皮毛变质等。饲料中添加1kg蛋氨酸,相当于鱼粉50kg的营养价值,在饲料中添加量一般为0.05%~0.2%。【制备或来源】 可用酪蛋白经水解、精制而得。也可由甲硫醇与丙烯醛经斯特雷克合成反应制备。【包装及贮运】【生产单位】 天津河北制药厂;天津化工厂;吉林龙井制药厂;广东何济公制药厂;南宁第二制药厂;四川西南制药厂;吉林和龙县制药厂;江苏镇江制药厂;河北张家口东风制药厂等

  • 【分享】K著名细菌学家 罗伯特科赫

    中文名称: 罗伯特科赫   外文名: Robert Koch   生卒年: 公元1843年—1910年   洲: 欧洲   国别: 德国   省: 哈茨,克劳斯特尔城科赫,德国医生和细菌学家,世界病原细菌学的奠基人和开拓者。1843年12月11日科赫生於德国克劳斯塔尔。5岁时就能借助报纸自己读书,这预示着具有的超凡智慧及毅力。他在高中读书时表现出对生物学的浓厚兴趣。1862年科赫考入格丁根大学学医。1866年在德国格丁根大学学医毕业(获医学博士学位)后,赴柏林进行6个月的化学研究,在那里又受到Virehow的影响,在1867年科赫到汉堡作了一段时间的住院医师,然后先在Langenhagen开业,不久于1869年到Posen省的Rackwitz开业,在Posen他通过了地区医官考试。1870年婚后科赫到东普鲁士一个小乡村沃尔施泰因当外科医生,在那建立了一个简陋的实验室,并多年在此从事病原微生物研究。科赫在没有科研设备,也无法与图书馆联系,更无法与其他科研人员接触情况下开始研究炭疽病。他的实验室就在他的家里,他的科研设备除了他妻子送给他的显微镜外,其余都是他自己设法解决的。1876年他到布雷斯劳用3天时间以公开表演实验的方式证明炭疽杆菌是炭疽病的病因,并报告了炭疽病菌的生活史是从杆菌—芽孢—杆菌的循环,芽孢可以放置较长时间而不死。他认为每种病都有一定的病原菌,纠正了当时认为所有细菌都是一个种的观点,从而兴起了关於疾病生源的研究。1880年科赫应邀赴柏林工作,在德国卫生署任职。在这里他拥有了良好的实验室和助手。1881年他创立了固体培养基划线分离纯种法;应用这种方法,主要的传染病病原菌被相继发现。此后,他转向结核病病原菌研究。他改进染色方法,发现了当时未能得到的纯种结核杆菌。为了大量培养出纯种的结核菌,他又改用在凝固的血清上接种培养,并将培养出的纯种结核菌制成悬液,通过注射豚鼠的腹腔实验,4~6周后豚鼠即死於结核病。他用实验证明结核菌不论来自猴﹑牛或人均有相同症状。并进而阐明了结核病的传染途径。1882年3月24日结核杆菌是科赫在德国柏林生理学会上宣布结核杆菌是是结核病的病原菌。并研究出纯培养其菌的方法。1882年出版了有关结核杆菌的经典著作。1883年科赫被任命为德国霍乱委员会主席并。被派往埃及调查那里的霍乱暴发流行情况。1883年后,他到埃及和印度去调查那里的霍乱暴发流行情况。他和他的同事一起发现了霍乱病原菌是形如逗号的霍乱弧菌,并发现该菌可以经过水﹑食物﹑衣服等途径传播。根据他对霍乱弧菌的生物学知识以及其传播方式的了解,科赫提出控制霍乱流行的法则,这些法则于1893年被各大国批准并形成至今仍沿用的控制霍乱方法的基础。科赫因对霍乱研究作出的贡献而获10万德国马克奖金,他的这项研究工作也对保护饮水规划有重大影响。同时他还发现了阿米巴痢疾和两种结膜炎的病原体。1890年他提出用结核菌素治疗结核病。1891~1899年,他还在埃及﹑印度等地研究了鼠疫﹑疟疾﹑回归热﹑锥虫病和非洲海岸病等。1905年发表了控制结核病的论文,并获得诺贝尔生理学或医学奖。1910年5月27日因患心脏病卒於德国巴登。终年67岁。研究领域:医学领域中的病原细菌学科赫在病原细菌学方面作出了非凡的贡献:世界上第一次发明了细菌照相法;世界上第一次发现了炭疽热的病原细菌——炭疽杆菌;世界上第一次证明了一种特定的微生物引起一种特定疾病的原因;世界上第一次分离出伤寒杆菌;世界上第一次发明了蒸汽杀菌法;世界上第一次分离出结核病细菌;世界上第一次发明了预防炭疽病的接种方法;世界上第一次发现了霍乱弧菌;世界上第一次提出了霍乱预防法;世界上第一次发现了鼠蚤传播鼠疫的秘密;世界上第一次发现了睡眠症是由采采蝇传播的。制定科赫法则:(科赫为研究病原微生物制订了严格准则,被称为科赫法则,包括:一种病原微生物必然存在 於患病动物体内,但不应出现在健康动物内 此病原微生物可从患病动物分离得到纯培养物 将分离出的纯培养物人工接种敏感动物时,必定出现该疾病所特有的症状 从人工接种的动物可以再次分离出性状与原有病原微生物相同的纯培养物。)创立了固体培养基划线分离纯种法。曾获奖项:1、1905年荣获生理学或医学诺贝尔奖海德堡大学及2、柏林市、Wottstein市及他的老家Ctausthal市均授予他名誉市民称号3、获柏林市、维也那等学术团体的名誉会员称号4、被授予德国的皇冠勋章5、被授予红鹰大十字勋章(为医学界第一位获此荣誉者)6、因对霍乱研究作出的贡献而获10万德国马克奖金7、博洛尼亚(Bologna)大学授予以他名誉博士学位8、德国政府於1907年为纪念他的成就,设了一笔100万马克的基金9、1897年被选为英国皇家学会会员10、1903年被选为法国科学院院士

  • 【分享】细说沙门氏菌属(源自网络)

    沙门氏菌属(solmonell)  沙门氏菌属是一群寄生于人和动物肠道内的元芽孢直杆菌,革兰氏阴性,生化特性和抗原结构相似,兼性厌氧。除极少数外,通常都以周生鞭毛运动。绝大多数发酵葡萄糖产酸产气,也偶尔有不产气的。在三糖铁琼脂上常产生H2S。一般利用拘椽酸盐。能使赖氨酸和鸟氨酸脱羧基,但对苯丙氨酸和色氨酸均不脱氨基。除亚利桑那沙门氏菌外,大部分沙门氏菌都不发酵乳糖。运常不利用杨苷、肌醇、蔗糖、侧金盏花醇和棉子糖,也不产生a甲基葡萄糖苷。不产吲哚,不免解尿素,甲基红试验阳性,但VP试验阴性。DNA中G十Cmol%为50~53。  绝大多数沙门氏菌对人和动物有致病性,能引起人和动物的多种不同临床表现的沙门氏菌病,并为人类食物中毒的主要病原之一,在医学、兽医和公共卫生上均十分重要。  根据新近的沙门氏菌的分类方案,本属菌现可分为:肠道沙门氏菌和邦戈尔沙门氏菌两个种,肠道沙门氏菌又分为6个亚种:肠道亚种、萨拉姆亚种、亚利桑那亚种、双相亚利桑那沙门氏菌、豪顿沙门氏菌以及因迪卡沙门氏菌。这些种和亚种均属于对应的DNA同源群。长期以来沙门氏菌根据其血清型分类,目前已有2500种以上,其中只有10个以内的罕见血清型属于邦戈尔沙门氏菌,其余均属于肠道沙门氏菌,几乎包括了所有对人和温血动物致病的各种血清型菌株,并具有属的典型生化特性。  虽然对沙门氏菌已规定新的命名法,但通常仍惯用简单的通用命名,即以该菌所致疾病、或最初分离地名、或抗原式三种方式来命名。目前,对沙门氏菌或各亚种成员的鉴定主要根据生化试验,而血清型分型可作为一项亚种水平以上的鉴定内容。  形态及染色特性 沙门氏菌的形态和染色特性与同科的大多数其他菌属相似,呈直杆状,0.7~1.5umx2.0~5.0um,革兰氏阴性。除雏沙门氏菌和鸡沙门氏菌无鞭毛不运动外,其余名菌均以周生鞭毛运动,且绝大多数具有Ⅰ型菌毛。  培养及生化特性 本属大多数细菌的培养特性与埃希氏菌属相似。只有鸡白痢、鸡伤寒羊流产和甲型副伤寒等沙门氏菌在肉汤琼脂上生长贫瘩,形成较小的菌落。在肠道杆菌鉴别或选择性培养基上,大多数菌株因不发酵乳糖而形成无色菌落。本菌属在培养基上也有S-R变异。file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-16167.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-13473.png  培养基中加入硫代硫酸钠、胱氨酸、血清、葡萄糖、脑心浸液和甘油等均有助于本菌生长。本菌属与其他主要菌属的生化鉴别见表16-1。与肠道亚种相比,其余各亚种的生化反应虽然不太典型,但同一亚种各菌间的生化特性相当一致。有时极个别分离菌株在某一特性上可能有所不同,如发酵蔗糖或产生吲哚等,只要它们仍具有本菌属典型的O和H抗原,就不应将其排除在本菌属外。[fo

  • 【转帖】新型超级细菌蔓延全球 耐药性或致人无药可治

    我不悲观,但是太多的巧合了,这是转自广州日报的一则报道~ 广东尚未发现超级细菌 全省耐药监测网今年覆盖珠三角粤东北西  据新华社电 世界卫生组织将“控制抗菌素耐药性”作为2011年世界卫生日的主题。抗菌素耐药性这个影响人类健康的问题由来已久,近年来在多个国家发现的“超级细菌”更说明这一问题已日趋严重。英国研究人员指出,这敲响了全球公共卫生体系的警钟。据介绍,这类“超级细菌”仍在进一步蔓延。  耐药性或致“无药可治”  统计显示,在印度和巴基斯坦确认感染这类“超级细菌”的病例已达150例,英国也有70例,此外欧洲的奥地利、比利时、德国、荷兰、挪威、瑞典、法国,北美的加拿大和美国,非洲的肯尼亚,亚洲的日本、新加坡等国都有数量不等的确认病例。  与以前曾被冠以“超级细菌”称号的一些细菌相比,携带NDM-1基因的“超级细菌”具有更强的耐药性,它们能抵御除替加环素和多黏菌素之外的其他所有抗菌素的药效,而其中一些细菌甚至对现在所有抗菌素都有耐药性,简单地说就是“无药可治”。  门诊治感冒用抗生素  成细菌耐药主要源头  本报讯 (记者任珊珊、黎蘅 通讯员粤卫信、戴丽娟) 昨天是世界卫生日,今年的主题是“抵御抗菌素耐药性:今天不采取行动,明天就无药可用”。记者从广东省耐药菌监测与质量控制中心获悉,广东未发现广泛耐药的“超级细菌”,但门诊治感冒滥用抗生素成为诱导细菌耐药的主要原因。  广东耐药菌对药物仍敏感  省耐药菌监测与质量控制中心专家组副组长、广州市呼吸病研究所副所长陈荣昌教授表示,去年全省耐药监测机构对6万多名住院感染病人采样,进行细菌培养,结果发现广东耐药菌主要分为阴性杆菌、阳性球菌,这两种所占的比例约为七三开。值得庆幸的是,广东检出的大肠埃希菌和克雷伯菌属对碳青霉烯药物仍保持高度敏感性,情况好于全国大部分地区。  陈荣昌表示,导致细菌耐药的源头有三个,其中,门诊治疗感冒滥用抗生素约占五至六成,医生对手术病人进行不必要的预防用药约占两成,非感染性疾病导致发热的病人使用抗生素约占一成。  “由病毒引发的感冒、发热不需要使用抗生素。”他说,如果三天之后仍然高烧,则存在合并细菌感染的可能,才有必要使用抗生素。  钟南山领衔全省耐药监测  本报讯 (记者任珊珊、黎蘅 通讯员粤卫信、戴丽娟) 记者昨天从省卫生厅获悉,今年,广东将扩大耐药菌监测范围,建立覆盖珠三角、粤东、粤北、粤西等地的耐药菌监测网络。今年,还成立了广东省耐药菌监测与质量控制中心,钟南山院士任专家组组长。  卫生部将开展专项行动  据新华社电 卫生部副部长马晓伟7日在北京举行的世界卫生日主题活动上表示,卫生部将采取系列措施加强抗菌药物临床应用管理,并将开展全国抗菌药物临床应用专项整治行动,减少抗菌药物不合理使用。  钟南山没接诊过恐艾患者  又讯 近日有媒体报道引述“中国工程院院士钟南山的助手黄医生”的说法,称他们已接诊个别所谓的“阴性艾滋病”病友。昨天,钟南山院士的助手孙医生证实,钟院士并没接诊过上述病人,助手中也没人姓黄。 印度巴基斯坦英国加拿大美国日本新加坡及欧洲多国均确认病例

  • 【每日一贴】色氨酸

    【每日一贴】色氨酸

    【中文名称】色氨酸;β-吲哚基丙氨酸;2-氨基-3-吲哚基丙酸【英文名称】tryptophane;DL-tryptophone【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202032015_347713_1855403_3.jpg【相对分子量或原子量】204.23【熔点(℃)】左旋289(分解),右旋281~282【性状】 有三种异构体。消旋体是白色晶体,左旋体是五味片状晶体,右旋体是白色晶体。【溶解情况】 消旋体微溶于水;左旋溶于水和热乙醇,不容遇氯仿;右旋溶于水、热乙醇和氢氧化碱溶液。【用途】 是重要营养剂。医药上用作癞皮病的防治剂。本品可参与动物体内血浆蛋白质的更新,并可促进核黄素发挥作用,还有助于烟酸及血红素的合成,可显著增加怀孕动物胎仔体内抗体,对泌乳期的乳牛核母猪有促进泌乳的作用。当禽畜缺乏色氨酸时。生长停滞,体重下降,脂肪积累降低,种公畜睾丸萎缩。【制备或来源】 可由酪蛋白碱性水解、精制而得,或由β-吲哚醛和马尿酸合成。【其他】 消旋体和左旋体在碱性溶液中稳定。【生产单位】 武汉制药厂;上海生物化学制药厂等

  • 【每日一贴】酪氨酸

    【中文名称】酪氨酸;β-(对羟苯基)-α-氨基丙酸;α-氨基对羟基苯基丙酸;2-氨基-3-(4-羟基苯基)丙酸T【英文名称】Tyrosine【结构或分子式】 file:///C:/Users/h/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif【相对分子量或原子量】181.20【密度】1.456(l)【熔点(℃)】l:342~344(分解);d:310~314(分解);dl:340(分解)【性状】 l-体从水中结晶出来者,无色至白色丝光针状结晶或结晶性粉末;d-体从水中结晶者为无色晶体;dl-体从水中结晶者为有光泽的针状晶体。【用途】 l-体:医药用作甲状腺功能亢进;食品添加剂。【制备或来源】 (1)由含蛋白质的物质(废丝、酪蛋白和玉米等)水解液中提取;(2)以葡萄糖为原料,经短杆菌出发诱导的l-酪氨酸生产菌发酵而得;(3)以苯酚、丙酮酸、氨为原料,利用β-酪氨酸酶催化制取。【其他】 比旋光度:l-体:-10.6°(c=4.1mol/LHCl,25℃);d-体:+10.3℃(c=4.1mol/LHCl)。与糖类共热可产生氨基羰基间的反应,而产生一种特殊的香料。非必须氨基酸。

  • 【每日一贴】酪氨酸

    【每日一贴】酪氨酸

    【中文名称】酪氨酸;β-(对羟苯基)-α-氨基丙酸;α-氨基对羟基苯基丙酸;2-氨基-3-(4-羟基苯基)丙酸T【英文名称】Tyrosine【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/01/201201302014_346951_1855403_3.jpg【相对分子量或原子量】181.20【密度】1.456(l)【熔点(℃)】l:342~344(分解);d:310~314(分解);dl:340(分解)【性状】 l-体从水中结晶出来者,无色至白色丝光针状结晶或结晶性粉末;d-体从水中结晶者为无色晶体;dl-体从水中结晶者为有光泽的针状晶体。【用途】 l-体:医药用作甲状腺功能亢进;食品添加剂。【制备或来源】 (1)由含蛋白质的物质(废丝、酪蛋白和玉米等)水解液中提取;(2)以葡萄糖为原料,经短杆菌出发诱导的l-酪氨酸生产菌发酵而得;(3)以苯酚、丙酮酸、氨为原料,利用β-酪氨酸酶催化制取。【其他】 比旋光度:l-体:-10.6°(c=4.1mol/LHCl,25℃);d-体:+10.3℃(c=4.1mol/LHCl)。与糖类共热可产生氨基羰基间的反应,而产生一种特殊的香料。非必须氨基酸。

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 巴西里约的研究人员本月释放了1万只携带沃尔巴克氏细菌的蚊子,这种细菌可以阻止登革热

    据外媒报道,巴西里约的研究人员本月释放了1万只特殊的蚊子,这些蚊子全部携带一种可以对抗登革热的细菌。研究人员计划总共释放4万只这种蚊子,他们希望这些蚊子不断繁殖扩散,并成为蚊子群体中的大多数,从而减少登革热的案例。“益蚊”以毒攻毒24日,英国广播公司(BBC)报道称,这种特殊的蚊子是“益蚊”。据BBC报道,巴西的研究人员本月在里约热内卢北部的图比亚坎加区释放了1万只“益蚊”。按计划,他们将在4个月内,总共对里约市的4个目标街区释放4万只这种蚊子。巴西菲奥科鲁兹研究所的卢奇亚诺·莫雷拉是这个项目的带头人。据他介绍,这个研究项目开始于2012年。原来,这些蚊子身上携带一种能够阻止登革热病毒在蚊子之间传播的细菌。只要确保这些蚊子不断繁殖和扩散,成为各大街区里蚊子群体的主体,登革热的疫情就能大大得到控制。而此后,研究人员也无需再继续人工释放更多这种蚊子。“我们的团队将每周都对这4个目标街区进行调研。我们将通过特殊的诱捕器收集蚊子,然后对它们进行分析。”莫雷拉说。效仿澳大利亚巴西释放的“益蚊”身上携带的细菌叫做沃尔巴克氏细菌。这是一种昆虫共生细菌,广泛存在于节肢动物的生殖组织内。这种细菌对于携带和传播登革热病毒的埃及斑蚊能起到类似于疫苗的作用。沃尔巴克氏细菌不仅能够阻止登革热病毒在埃及斑蚊体内的繁殖,同时还对埃及斑蚊本身的繁殖起到抑制作用。一旦雄蚊感染了沃尔巴克氏细菌,即使雌蚊未受感染,两者的受精卵也不能发育成幼虫。另外,一旦雌蚊感染了沃尔巴克氏细菌,无论雄蚊是否受感染,两者的后代都会携带沃尔巴克氏细菌。因此,只要携带沃尔巴克氏细菌的蚊子成为一个地方蚊子群体的多数,登革热疫情就会得到抑制。在澳大利亚,这一个过程平均需要10周的时间。据报道,澳大利亚是最早通过这一措施抑制登革热疫情的国家。在巴西之前,越南和印尼已经效仿了澳大利亚这一做法。值得提出的是,沃尔巴克氏细菌不会传播给人类。早在2008年,澳大利亚的莫纳什就开始对沃尔巴克氏细菌进行研究。当时,因为有人担心这种细菌会传播给人类和家畜,研究人员们不得不在5年的时间内都使用自己的手臂来喂养这些蚊子。新闻背景登革热死灰复燃1981年,在巴西消失20多年的登革热突然死灰复燃。在随后的30多年里,巴西总共报告700万个登革热的病例。近年来,巴西一直是世界上登革热案例最多的国家。2009年至2014年,该国总共报告320万个登革热病例,其中有800个死亡病例。未来的3个月里,巴西的研究人员还将在另外3个街区释放3万只携带沃尔巴克氏细菌的蚊子,将在2016年展开大规模的研究评估这一项目的效果。“信息透明和提供恰当的信息对于街区里的住户具有优先的重要性。”莫雷拉强调。

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 菌种相关介绍

    福氏志贺氏菌CICC 21534CICC编号21534中文名称福氏志贺氏菌拉丁名称Shigellaflexneri其它中心编号形态学 http://www.china-cicc.org/UploadFiles/Photo/201006/Original/7046ffbf740044029a5fbc73dc7f6a88.jpg菌体呈短杆状,革兰氏染色阴性,无芽孢。 http://www.china-cicc.org/UploadFiles/Photo/201006/Original/5f71f429a59141c38152126b6b2d4187.jpg http://www.china-cicc.org/UploadFiles/Photo/201006/Original/9b8e7524143e4c8c90e2a4abf79374d7.jpg在EMB培养基上菌落无色透明,圆形,湿润,液滴状、边缘整齐、有光泽、菌落较小在SS培养基上菌落无色透明,圆形,湿润,液滴状、边缘整齐、有光泽、菌落较大关键特性葡萄糖半固体黄色,无动力氧化酶-葡萄糖铵-5%乳糖发酵-西蒙氏柠檬酸盐-七叶苷分解-赖氨酸脱羧酶-靛基质-鸟氨酸脱羧酶-甘露醇+尿素酶-棉子糖-氰化钾生长-甘油-水杨苷分解-志贺氏菌属四种多价血清凝集+三糖铁分解葡萄糖产酸不产气,不发酵乳糖,不产生硫化氢三糖铁试验 http://www.china-cicc.org/UploadFiles/Photo/201006/Original/ba22ef9f76754970aeed6e44d15ce771.jpg空白对照大肠埃希氏菌肠炎沙门氏菌CICC 21534葡萄糖半固体试验 http://www.china-cicc.org/UploadFiles/Photo/201006/Original/65d659d760824583ad2963616bb03295.jpg空白对照大肠埃希氏菌CICC 21534应用“GB/T 4789.05-2003食品卫生微生物学检验 志贺氏菌检验”阳性标准对照株。备注

  • 【原创大赛】VIII因子氨基酸含量测定之:组氨酸与甘氨酸快快分开!

    本人在8月发表的一篇原创中提及”甘氨酸与组氨酸无法分离“的问题,在经过10多天的准备,已有不小的收获,现在分享。摘要 目的: 建立用高效液相色谱法测定人凝血因子VIII中氨基酸含量。方法: 采用6 - 氨基喹啉- N - 羟基琥珀酰亚氨基氨基甲酸酯( AQC) 为衍生剂,与氨基酸柱前衍生后,用Agilent 1200 高效液相色谱仪,AccQ·Tag C18柱( waters 150 mm ×3. 9 mm,4 μm) ,以水Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液和乙腈进行梯度洗脱,检测波长为248 nm,柱温37 ℃,进样量10μL。结果: 各氨基酸在32 min 内测定完毕,回收率为98.7% ~ 101.5%。RSD 均小于1. 5%。结论: 本法分离度好,快速、简便,可作为产品的质量控制方法。关键词: 6 - 氨基喹啉- N - 羟基琥珀酰亚氨基氨基甲酸酯; 人凝血因子VIII; 甘氨酸; 衍生物; 梯度洗脱; 高效液相色谱法;氨基酸; 含量测定人凝血因子VIII,本品对缺乏人凝血因子礓所致的凝血机能障碍具有纠正作用,主要用于防治甲型血友病和获得性凝血因子Ⅷ缺乏而致的出血症状及这类病人的手术出血治疗。该药物制备过程中使用了氨基酸( 精氨酸、丙氨酸、甘氨酸、组氨酸、盐酸赖氨酸、脯氨酸 等) 做稳定剂,为了保证药品质量和用药安全,应对其中氨基酸的含量进行控制。该法依据过量的6 - 氨基喹啉基- N - 羟基琥珀酰亚氨基氨基甲酸酯( AQC) 在一定条件和氨基酸形成稳定的衍生产物( 柱前衍生) ,用高效液相色谱法测定衍生产物,根据衍生产物的含量计算人凝血因子中各氨基酸的含量。1 仪器和试药1200 高效液相色谱系统( 美国Agilent 公司) ,配置低压四元梯度泵、1314B 紫外吸收检测器、自动进样器、柱温箱、Chemistations 化学工作站; Sartorius CP225D 电子微量天平( 德国Sartorius 公司) ; SartoriusPB - 21 型pH 计( 德国Sartorius 公司) ; LDZ5 -2 低速自动平衡离心机( 上海医用离心机厂) 等。各标准品均来自于中国食品药品检定研究院2 色谱条件及系统适用性试验色谱柱: Waters AccQ·Tag C18色谱柱( 3. 9 mm ×150 mm) ; 流动相: 水为溶剂D,Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液( A) - 乙腈( B) - 水( D) ,柱温:37 ℃; 检测波长: 248 nm。精密量取对照品溶液与供试品溶液10 μL,分别注入液相色谱仪,记录色谱图32 min。3 溶液制备3. 1 Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液称取三水乙酸钠190. 4 g,加注射用水1000 mL,搅拌,溶解,用稀磷酸将pH 调至5. 2,加入乙二胺四乙酸二钠溶液( 称取乙二胺四乙酸二钠100 mg,加注射用水100 mL,摇匀使其溶解) 10 mL,加入叠氮化钠0. 1 g 及三乙胺23. 7 mL( 17. 2 g) ,用稀磷酸滴定至pH 4. 95,用0. 45 μm 的滤膜过滤,于4 ℃储存,备用( 此条件下可保存6 个月) 。量取该溶液100 mL,加注射用水稀释至1000 mL,混匀,即得Eluent( 醋酸盐- 磷酸盐缓冲液) 稀释液。3. 2 对照品储备液混合对照品储备液精密称取各氨基酸对照品适量,置同一100 mL量瓶中,以注射用水溶解并定容至刻度。制成含氨基酸含量均含5. 0 mg·mL - 1 的混合对照品溶液,即得。单个对照品储备液: 精密称取各含氨基酸的各对照品适量,分别置100mL 量瓶中,用注射用水溶解并定容至刻度。制成分别含各氨基酸的单个对照品溶液,即得。3. 3 供试品储备液3. 3. 1 加样回收率试验溶液精密称取各氨基酸各0. 3200,0. 4000,0. 4800 g 和辅料适量,加人凝血因子VIII原液7. 5 mL,肝素钠适量,用1. 0 mol·L - 1 盐酸调pH 至6. 9,加0. 01 mol·L - 1枸橼酸三钠溶液溶解并定容于20 mL。分别制备成16. 0, 20. 0, 24. 0 mg·mL - 1溶液。3. 3. 2 空白溶液 按公司处方,加入辅料的混合物,用注射用水制备各空白溶液3. 4 内标溶液精密称取α - 氨基丁酸( AABA)0. 4 g,加注射用水定容至100 mL。4 氨基酸衍生方法4. 1 精密量取供试品储备液、样品及对照品储备液各1. 0 mL,加1. 5%磺基水杨酸9. 0 mL,混匀静置2 h以上, 3000 r·min - 1离心10 min,留取上清液。4. 2 精密量取“4. 1”项下上清液1. 0 mL( 其中对照品储备液对应上清液分别精密量取0. 06, 0. 4,0. 8,1. 0, 1. 2, 1. 6 mL) ,分别置10 mL 量瓶中,用注射用水定容。制备成供试品溶液、样品溶液及浓度分别为1. 5, 10. 0, 20. 0, 25. 0, 30. 0,40. 0 mg·mL - 1 的对照品溶液。4. 3 精密量取“4. 2”项下溶液各100 μL,分别加注射用水0. 4 mL 及内标溶液20 μL,混匀备用。4. 4 精密量取“4. 3”项下溶液30 μL 放入衍生管中,加硼酸缓冲液( pH 8 ~ 10) 210 μL 涡旋混合,并加入AQC 衍生剂60 μL 涡旋混合15 s,即为各供试品溶液,待用。

  • 天冬氨酸的薄层色谱

    [color=#444444]想问一下用薄层色谱法来检验天冬氨酸,能用什么展开剂,哪个更好一点?[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制