当前位置: 仪器信息网 > 行业主题 > >

巴尼伯德新鞘氨醇菌

仪器信息网巴尼伯德新鞘氨醇菌专题为您提供2024年最新巴尼伯德新鞘氨醇菌价格报价、厂家品牌的相关信息, 包括巴尼伯德新鞘氨醇菌参数、型号等,不管是国产,还是进口品牌的巴尼伯德新鞘氨醇菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合巴尼伯德新鞘氨醇菌相关的耗材配件、试剂标物,还有巴尼伯德新鞘氨醇菌相关的最新资讯、资料,以及巴尼伯德新鞘氨醇菌相关的解决方案。

巴尼伯德新鞘氨醇菌相关的资讯

  • 通用电气将拨款5亿美元采捞哈德逊河多氯联苯等有毒化学品
    北京时间12月24日凌晨消息,通用电气(GE)周四称,该公司计划进一步拨款5亿美元来采捞30多年前向纽约州东部哈德逊河倾倒的有毒化学品,从而使该公司清理活动在过去20年中的总支出上升至13.3亿美元。   通用电气今天表示,预计包括税收和解协议在内的一次性收益可抵销将计入第四季度财务业绩的税后支出。通用电气并未对整体业绩预期作出变更。   美国环境保护署(EPA)上周责令通用电气在哈德逊河中进行更深的采捞活动,来清理该公司此前向这条河中倾倒的多氯联苯等沉淀物。科学研究已经表明,多氯联苯是一种致癌物质,通用电气将这种物质用作电子部件中的绝缘体。   哈德逊河位于纽约州首府奥尔巴尼北部,奥尔巴尼位于纽约市以北约150英里(约合241千米)。在1977年以前的30年时间里,通用电气向哈德逊河一段长达40英里(约合64千米)的河段倾倒了大量化学品。此后,通用电气在1977年停止使用这些化学品。   自1990年以来,通用电气用于打捞这些化学品的费用已经达到8.3亿美元左右。   通用电气首席执行官杰弗里-伊梅尔特(Jeff Immelt)曾在12月14日向投资者表示,该公司正在制定一项计划,将“在未来几年时间里完成对哈德逊河的采捞工作”。   多氯联苯不但是一种致癌物质,同时还会对人体的免疫、生殖、神经和内分泌系统造成影响。通用电气清理项目的主要目标之一是,大幅降低鱼类身体组织中的多氯联苯含量水平。   汤森路透调查显示,分析师平均预期通用电气第四季度净利润为34.5亿美元,比去年同期增长14% 每股收益预计为32美分。   通用电气确认称,预计该公司向康卡斯特(CMCSA)出售NBC环球多数股份的交易将在明年1月份完成,而不是在本月完成。
  • 新启锣鼓 舞动环控——宾德环境试验设备(上海)有限公司乔迁之喜
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯& nbsp & nbsp /strong 2019年3月19日,在这个微风送暖,晴空晓畅的春日晌午,宾德环境试验设备(上海)有限公司(下简称宾德上海分公司)迎来乔迁之喜,搬迁至位于上海市闵行区申长路990弄虹桥汇T6幢708室的新址内。 德国宾德有限责任公司CEO Peter M. Binder及其夫人、德国宾德有限责任公司销售及订单管理副总Michael Pfaff先生、德国宾德亚太区总经理有泉先生等领导出席了乔迁典礼,与宾德上海分公司全体员工、各地代理商等30余人共同见证了上海分公司新址的首秀。 /p p style=" text-indent: 0em text-align: center " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/cab3c06a-5c7f-48f1-8a82-6a595264f8c1.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 舞狮表演 /strong /p p style=" text-indent: 0em text-align: center " strong & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/8e09963d-bb1f-4e9d-804d-15cececc03b1.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" style=" width: 600px height: 600px " / /strong /p p style=" text-indent: 0em text-align: center " strong 朱砂点睛及合影 /strong /p p style=" text-indent: 2em text-align: justify " 典礼以中国传统的舞狮节目开场,金狮与彩狮摇头摆尾各展神通,时而憨态可掬,时而威猛无双,起势、奋起、抓痒、施礼、惊跃、过山、上楼台……娴熟的舞动造型纷至沓来,博得了出席嘉宾们的一片掌声。在锣鼓齐鸣的喜庆热闹中,Peter M. Binder先生与夫人亲自为舞狮点睛,寓意着德国宾德总部对中国区业务继续生意兴隆,繁荣增长的美好愿望! /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201903/uepic/883e4b4b-9481-464b-9ad1-10a3d36e0432.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong CEO Peter M. Binder先生 致辞 /strong /p p style=" text-indent: 2em text-align: justify " 开场节目结束后,首先由Peter M. Binder先生发表开场致辞,他真诚地感谢参会嘉宾的到来,并对宾德上海分公司近年来的辛勤付出与收获表示肯定。他指出,近年来中国环境模拟设备市场蓬勃发展,今后宾德公司将进一步深入落实在中国市场的战略布局和长远规划,增加研发及市场投入,进一步扩大市场规模,让更多的中国用户了解宾德的产品和服务。他对宾德在中国的营业额也提出了20%增长的希冀。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5e6a03d9-7c44-4d4e-8728-2f18bf7d9757.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 亚太区总经理 有泉先生 致辞(右一) /strong /p p style=" text-indent: 2em " 紧接着,有泉先生也发表了致辞,他表示搬迁新址后,宾德上海分公司的办公区域大幅扩大,办公环境焕然一新,更加适应公司业务发展和规模扩大的需要。希望新址新气象能带给宾德更新的发展机遇、更多的热情及好运,在这一新的奋斗征程中,携手创造更新的辉煌。 /p p style=" text-indent: 2em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/70d58bff-9050-40c5-90a1-fd8391576d1e.jpg" title=" 图片6.jpg" alt=" 图片6.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong 剪彩仪式 /strong strong style=" text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/4d17b4de-e97f-4068-9e84-91cd28d92112.jpg" title=" 图片7.jpg" alt=" 图片7.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" style=" width: 600px height: 399px " / /strong /p p style=" text-align: center text-indent: 0em " strong 揭牌仪式 /strong /p p style=" text-indent: 2em text-align: justify " 在3、2、1的倒数声中,宾德公司高层共剪彩带,标志了宾德上海分公司新址正式落户,Peter M. Binder先生一行在背景板上签字并合影留念。随后Peter M. Binder先生与夫人为新办公楼揭牌,并与到场嘉宾一同参观了宾德上海分公司崭新的办公环境。 /p p style=" text-indent: 0em text-align: center " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/ae211eb2-9f5a-4c80-8ef0-a35e8d6da156.jpg" title=" 图片8.jpg" alt=" 图片8.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" style=" width: 600px height: 600px " / /p p style=" text-align: center text-indent: 0em " strong 背景板留言及办公区参观 /strong /p p style=" text-indent: 2em text-align: justify " 德国宾德有限责任公司是全球最大的科学和工业实验室用模拟箱制造公司之一,公司主要有培养箱、储存、环境模拟、干燥和加热四条产品线,在温度、湿度、气体测量与控制、生物安全等领域拥有多达70多项专利技术,其温控箱广泛应用于制药、食品、材料科学、化妆品、烟草、微生物、化工、电子等领域。发展至今,德国宾德有限责任公司共有员工400多名,宾德上海分公司为其中国区总部,共有员工近10名。2018年,宾德在中国区营业额持续增长,堪称行业内佼佼者。伴随着宾德上海分公司的成功乔迁,这家秉承“德国制造”的公司将继续在中国市场发力,2019年的表现也值得业内同行和用户们的更多期待! /p p style=" text-indent: 2em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/879b1a03-13b5-46ca-bf8e-4d8f1d398b0c.jpg" title=" 图片9.jpg" alt=" 图片9.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" style=" width: 600px height: 399px " / /p p style=" text-align: center text-indent: 0em " strong 合影 /strong /p
  • 关注环保——博纯推出专利除氨器
    在脱硝后烟气气体分析应用中,经常会有逃逸氨问题的困扰。博纯专利除氨器能有效去除逃逸氨,防止采样管线因结盐而堵塞,有效的保护仪器设备。   美国博纯有限责任公司研制了博纯专利除氨器其中的专利洗涤器介质并投入连续生产。该介质的使用寿命取决于样气的流速和气流中的氨浓度,在与气体反应时,具有很强的选择性,仅仅将气体中的氨去除,防止氨盐产生 同时,它是一种非常安全、稳定的化学物质,便于进行搬运和存储。   博纯专利除氨器安装方便(安装于采样探头后方),便于维护。   查看产品图片http://www.instrument.com.cn/netshow/SH101541/C96354.htm   更多产品信息,请登录www.permapure.com   关于博纯   成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。   博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。   博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。   拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。   关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。   销售联系方式   夏黎明先生 中国区销售经理   上海市长宁区仙霞路137号盛高国际大厦1801室   邮编:200051   电话:021-52068686-113   传真:021-52068191   电子信箱: fxia@permapure.com   网址:http://www.permapure.com
  • HORIBA Scientific诚邀您参加第五届椭圆偏振光谱国际会议
    2010 年 5 月 23 日- 28 日,第五届椭圆偏振光谱国际会议(ICSE-V,International Conference on Spectroscopic Ellipsometry)将在美国纽约州奥尔巴尼市(Albany)奥尔巴尼大学纳米科技与工程学院(CNSE)举办。 和历届会议一样,为椭圆偏光术和相关测量技术领域的科学家和工程师提供国际交流的平台。ICSE-V 会议将为您展示椭圆偏振光谱技术和应用的新研究进展,包括涉及偏振技术开发的相关光谱分析技术等。 更多信息: http://www.icse-v.org/web/index.php 向世界同行展示您的工作! HORIBA Scientific(Jobin Yvon 光谱技术)诚邀 Jobvin Yvon 椭偏仪用户提交会议摘要并参加第五届椭圆偏振光谱国际会议(ICSE-V)! 摘要提交起讫时间: Oct.19&mdash Dec.6, 2009 HORIBA Jobin Yvon 赞助 HORIBA Scientific 承诺赞助参与展板展示(poster presentation)或口头报告(oral presentation)的 Jobvin Yvon 用户。 申请赞助,请联系 :tfd-marketing.sci@horiba.com 应用支持,请联系: tfd-sales-sci.fr@horiba.com
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途创新点:上市时间:2019年6月 SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。 美国博纯SASS-3000独立除氨系统
  • 海尔欣受邀参与海螺研究院水泥氨逃逸测试试验
    众所周知,水泥行业三大污染物“粉尘、二氧化硫、氮氧化物”中,氮氧化物超低排放治理难度最大。目前氮氧化物治理主要分为“脱硝技改+SNCR”以及SCR两种方案。而国内现有水泥企业多数采用“脱硝技改+SNCR”控制氮氧化物排放量,但是SNCR技术也存在一大弊端,就是“氨逃逸”问题。日前,海尔欣应海螺建材设计研究院的邀请,参与集团旗下水泥窑炉生产工艺中的氨逃逸排放比对试验,我公司安排专业的技术人员到现场配合客户现场测试,在水泥窑炉高尘,高温等工况条件下,海尔欣的LGM1600便携氨逃逸分析仪依然能够圆满完成测试,为客户获取到宝贵的水泥工况氨逃逸数据,解决了实际生产中的问题。海螺研究院现场测试图海螺简介:安徽海螺建材设计研究院有限责任公司(以下简称“海螺设计院”)创立于1997年,2018年4月16日完成公司化改制,是海螺集团公司的全资子公司,注册资本金1.5亿元,近三年年营业收入均超过5亿元。多年来,通过服务集团工程建设和技术创新,不断积累发展成为拥有水泥工程、轻钢结构、环保专项、工程咨询等4项甲级,建筑工程、非金属矿、新型建材等3项乙级,以及国家级压力管道、消防和防雷等多项工程设计资质的专业化设计研究公司。
  • “单颗粒冷冻电镜之父” Joachim Frank
    祝冷冻电镜之父Joachim Frank82岁生日快乐!约阿希姆弗兰克,德裔生物物理学家,美国国家科学院院士,现任美国哥伦比亚大学教授,研究领域包括生物化学、分子生物物理学等。1975年到2008年间,弗兰克教授完善了电子显微镜图像处理的单颗粒算法,发明了SPIDER软件,该软件至今为全世界上百家实验室广泛使用。弗兰克教授应用冷冻电镜和单颗粒技术,在解析原核和真核细胞核糖体结构和功能领域做出了非凡的贡献。2017年10月,弗兰克教授与雅克杜波谢、理查德亨德森共同获得诺贝尔化学奖,以表彰他们在“冷冻电镜用于生物分子结构的高分辨率解析领域”做出的巨大贡献。本期水木视界对约阿希姆弗兰克教授的诺奖感言自传进行翻译,期望更多冷冻电镜领域的同僚们能够了解这位冷冻电镜之父的传奇过往。原文:"Joachim Frank Biographical"Copyright The Nobel Foundation 2017“Normally, my dog wakes me up in the morning. But today, it was the Nobel Prize!”—Joachim Frank以下内容为弗兰克教授诺奖感言:我于1940年9月12日出生在德国的魏德瑙镇。自1972年以来,魏德瑙镇一直是锡根市的一部分。锡根市拥有约10万左右的居民,位于北莱茵威斯特法伦州的南端。它周围的山区被称为锡格兰,在过去的几个世纪,锡格兰的铁矿开采、加工和冶炼行业都欣欣向荣。作为传统技术,铁矿的开采可以一直追溯到两千年前的凯尔特人。不过,在采矿和加工业转移到发达的鲁尔区后,留给锡格兰的任务就只剩钢铁的冶炼了:锅炉、铁管、铁轨、铁桶和许多其他由铁和钢制成的部件。魏德瑙镇的地标是“富士山”,一个巨大的铁矿渣堆,与日本的名山形状一致。此外,锡根也是奥兰治拿骚家族的所在地,他们是荷兰皇室的血脉。作为画家彼得保罗鲁本斯的出生地,锡根市为此而自豪。然而,画家彼得在锡根出生的原因则是一场闹剧:他的父亲与有身孕的母亲从科隆出发,在乘坐马车途径锡根时被逮捕。三个城市,锡根、科隆和安特卫普都声称彼得是他们的儿子,城市之间的争执是锡根上城区喷泉的永恒主题:在雕塑上,三位母亲一同抱着婴儿彼得保罗,并为之争吵。彼得保罗鲁本斯(Sir Peter Paul Rubens)1577年6月28日-1640年5月30日比利时画家,巴洛克画派早期的代表人物我的父亲威廉弗兰克是锡根法院的一名法官。他于1896年出生在魏德瑙。不过,他并没有完成全部的法律学业:他被征召并参加了一战中的凡尔登战役,并由于受伤而失去了大半个左手。他的母亲,也就是我的奶奶,出身于当地的一个富裕家族:施莱芬鲍姆家族,他们经营着繁荣的钢铁企业。我的爷爷是一名高中教师,来自锡根郊区的一个乡村家庭。我的母亲夏洛特来自杰出的曼斯科普夫家族,该家族在锡根的渊源可以追溯到15世纪。在18世纪,曼斯科普夫家族的一个分支在法兰克福定居,并通过国际葡萄酒贸易获得了无尽的财富和声誉。而在19世纪初,他们则与歌德的家族关系密切。左侧:1940年,与我的母亲夏洛特、父亲威廉、他的妹妹伊丽莎白、我的祖母阿玛莉-施莱芬鲍姆、哥哥赫尔穆特和妹妹英格伯格在一起。我的妹妹雷娜特将在四年后出生。右侧:我父母在魏德瑙的家,恩格斯巴赫大街3号,1905年的建筑图纸显示了原来的两层楼的阳台。我的母亲毕业于Stift Keppel高中,这是一所创办于13世纪的女子高中。婚后,她留在家里照顾她的四个孩子:我、我四岁的妹妹雷娜特和两个哥哥姐姐,英格伯格和赫尔穆特。我们的家宅大而庄严,是我的祖父母在1905年用红色双层玻璃砖建造的,极为坚固。它坐落于一块大小适中的土地上,与街道接壤的地方有一道锻铁栅栏。家宅的一楼和二楼有阳台,可以俯瞰后院。外侧的步道上铺满了装饰性碎石,并种着几颗黄杨树。[战争年代]锡根市,北莱茵威斯特法伦州,德国我出生于二战期间,而战争影响了我的整个童年。由于锡根市发达的钢铁制造业,它是盟军空袭的首要目标。在战争结束时,锡根市80%的建筑物都被夷为了平地。大约是我四岁的时候,一些邻居的房屋被陆续地炸毁了。在1944年2月的一次凌晨空袭中,我父母的房子也被炸毁。由于屋顶和上层被毁,其余的部分也因漏水而无法居住,我们不得不搬到北部20公里左右的希尔兴巴赫镇,在那里,我父亲的同事为我们提供了一套公寓。这套公寓位于威廉斯堡,它是一座18世纪依水而建的城堡,也是当时的法院大楼。在我的记忆中,我当时坐在城堡地下室的防空洞里,周围萦绕着婴儿的哭闹,飞机、空袭和无线电广播声,这些声音充斥着我青少年时期的噩梦。战争结束后的那段时间尤为艰难。母亲常常会乘坐去往乡下的火车,用我们家中剩余的铁制品换取黄油、火腿、面包、面粉和鸡蛋。“天然的黄油”来之不易,母亲会把它们搅拌进人造黄油中,但并不会稀释太多,这样我们就能尽可能长地记住黄油真正的味道。我们也有一个很大的花园,种植了苹果树、梨树和樱桃树。有一段时间,我们为了制作糖浆而种植了一些甜菜,并种植了烟草来满足父亲的吸烟习惯。我们还会在后院养鸡,甚至一度在阳台下面养了一头小猪。这些花园中的时光,使我得以近距离欣赏大自然。附近烧毁和倒塌的房屋瓦砾对我有一种错综复杂的吸引力,令我既恐惧又着迷。恐惧是对混乱和破坏的自然反应,特别是对一个孩子来说,这意味着危险无处不在。着迷的部分源自和其他同龄男孩一起在荒凉的土地上玩耍的经历,到处都堆满了砖头、罐子、扭曲的电线和塑料碎片。我们经常能发现老鼠窝,里面有一些尚处目盲的粉红色鼠崽。[启蒙教育]锡根市,北莱茵威斯特法伦州,德国我的小学就在家的街道对面,在那里我度过了四年的启蒙时光。八岁时,在还没有任何科学概念的时候,我在阳台下面的阴凉处开始了第一次实验,是天生的好奇心驱使我这样做的:我搭了一个架子,收集了一些利口酒的酒瓶,并用它们去装满我能得到的每一种液体:食用油、水、汽油,以及我长大一点之后得到的盐酸。凭着直觉,我把这些液体混合起来,把金属置入其中,并记录结果。我看着碳化钙在水中溶解,并着迷于激烈的反应和逸出气体的气味;我看着锌在盐酸中溶解并冒出气泡;我在一个与管子相连的金属容器中加热煤,因为我听说会有可燃的气体冒出来。迈耶百科词典,这是我在被毁的老房子里发现的一套20卷百科全书,每卷约1000页。这套百科全书登陆了海量的学术文章、技术图纸、彩色照片和世界各地的地图。在我识字之后,它们陪伴我度过了整个童年和青少年时期。我花了几年的时间把它们都读完了。这套出版于1905年的百科全书信心满满地宣称:人类已经把世上所有的东西都研究得不能再透彻,不过,1905年恰好也是爱因斯坦发表光电效应论文的一年,那篇论文证明了能量的量化,也就是量子力学的前身。对于那套百科全书来说,这还是挺讽刺的。如今,这套书的内容并没有太多的参考价值了,却对我来说有相当的纪念价值:它们被我视作纪念那套祖宅的传家宝。高中的科学课。在我身后右侧的两个身位处,他们是霍斯特施密特博金和乌尔里希梅博尔德。在未来,他们将成为物理学家。照片由@弗里德海姆施克提供。从五年级开始,我转学到了莫里茨文理中学,这是以奥兰治拿骚家族一位著名公爵命名的学校,而我是小学班20名学生中仅有的4名升学者之一(在德国的体系中,文理中学将初中和高中合并到一起)。在那里,我对科学课,特别是物理课产生了强烈的兴趣。同时,我扩大了实验范围,并在阁楼开辟了第二个试验场地。在那里我会尝试修补一些小玩意,例如用废弃或邮购的零件组装收音机:哥哥曾向我演示过如何组装一个水晶收音机,而我很快就痴迷于这些精巧的小物件,不可自拔。之后,我制作了几个花哨的微型收音机,并装在肥皂盒里。我的大部分零花钱都用在了阀门、晶体管、电阻器和电容器的购买上,而阁楼上则充满了松香焊接时产生的"蒸汽"味。幸运的是,我在学校里结识了一个志同道合的朋友,他就住在街对面。这时我应该补充一下,我的三个兄弟姐妹都在同一所文理中学上学。在获得高中毕业证后,我的哥哥去攻读并完成了工程博士学位,成为了一名职业安全领域的公务员。我的两个姐姐都在高中二年级时转去了职业学校,进行理疗师的就职培训。在结婚并将几个孩子拉扯大之后,长姐完成了她中断的高中学业,并进入大学,获得了生物化学的博士学位。而二姐从理疗师转型成了一位艺术家,她制作了许多漂亮的被子,直至1998年她因癌症早逝。[进入大学]弗赖堡市,巴登符腾堡州,德国我始终觉得,在大学里我注定会选择物理专业。而我的父亲常常质疑这个选择,理由是这个专业并不能糊口。1960年,在完成高中学业后,我去了弗赖堡大学(University in Freiburg),并从省会城市搬到了僻静的小镇,镇上有一些大型哥特式教堂和许多迷人的中世纪建筑,这令我恍如隔世。我学习了微积分和线性代数,并学会如何去撰写严格的数学证明。此外,我也学习了数学物理学科的特殊函数和统计力学的课程。我视在亚琛攻读工程博士的哥哥为榜样,加入了著名的弗莱堡大学Suevia兄弟会,结识了一些朋友。但后来,受60年代政治动荡的影响和启发,我逐渐意识到了那些扎根于德国学生组织中的民族主义和右翼思想,并退出了兄弟会。当时的弗莱堡大学校长,臭名昭著的马丁海德格尔(Martin Heidegger)公开地支持元首。我曾经看到年迈但瘦小的海德格尔在大学门口发表公开演讲,这一举动在外界看来极为罕见。不过,他被一群学生簇拥着,我几乎看不到他。由于在学士毕业考试中表现突出,我得到了德国学术研究基金会的提名:这是一项特殊的奖学金,并在日后极大地拓宽了我的视野,使我能了解其他学科和人文领域。通过组织科学前沿会议,基金会促进了跨学科的讨论。在1964年的一次会议上,我第一次了解到 "中央教条"原则和DNA结构。也是在这里,我和神经生理学家沃尔夫辛格(Wolf Singer)初识,并开启了直至如今的长远友谊。我和辛格,以及志同道合的学生们一起成立了讨论小组,专注于当时的热门话题—“控制论”。[硕士与博士]慕尼黑市,巴伐利亚州,德国为了得到硕士学位,我前去慕尼黑大学物理系做毕业论文相关的工作。论文项目与液态金上的电子后向散射有关,这个深奥的课题与当时新兴的高能电子束技术息息相关。我的导师恩斯特金德(Ernst Kinder)曾在早期使用电子显微镜做了一些工作:他发现蝴蝶翅膀的彩色图案源自于微小鳞片处于亚显微排列时产生的光干扰。现在,他的办公室里仍然保留着一台古老的电子显微镜。这段经历让我对涉及电子显微镜的项目颇有好感。最终,我选择了沃尔特霍普(Walter Hoppe)作为我的博士导师,他是马克思普朗克蛋白质皮革研究所的X射线晶体学家,后转为电子显微镜专家,该研究所后来迁至马丁斯里德(Martinsried),更名为马克思普朗克生物化学研究所(Max Planck Institutes)。霍普的研究内容是利用电子显微镜对生物分子进行三维成像的方法。我的论文则侧重于利用统计光学等领域的方法探索电子显微照片的特性。我在Optik杂志上发表的第一篇论文,研究了样品漂移对显微照片的光学衍射图案产生的影响,并以傅里叶理论解释了观察到的条纹。当霍普承认这是一项完全独立的工作,拒绝在作者栏签署他的名字时,我无比自豪。我的首次计算机编程使用了ALGOL编程语言,每次编译和运行新写的程序之前,我都要花费20分钟左右步行到大学。后来我学会了用FORTRAN语言进行编程,所使用的设备是IBM1130,它建造于我们研究所的一个小地下室里,我有时会在那里工作到深夜。研究所的生活方式十分独特,具有明显的巴伐利亚色彩,只需要步行短短的几分钟,就能从研究所步行到举办啤酒节的大草坪。在蘑菇生长的季节,人们会在清晨组织采摘蘑菇的活动。三至四名学生会组成户外小组,与一位对蘑菇了如指掌的专家一同出发,带回许多真菌和鸡油菇。我们会用锥形瓶和烧瓶将它们煮熟,撒上盐,与巴伐利亚面包一同食用。我们也曾在图书馆中用一桶啤酒和大块的肉饼来庆祝论文的刊登。当时的慕尼黑和现在一样,是一个文化活动丰富的城市,到处都是娱乐场所:每天去听一场古典音乐会算得上是日常了。我的一个古典音乐爱好者朋友也从弗莱堡搬到了慕尼黑,并邀请我去看了许多出色的演出。耳濡目染下,只靠几个开场音符,我就能辨认出许多古典交响曲。此外,慕尼黑歌剧院的票价平易近人,却总能提供宏大的体验。在那段时间里,我主要有两批朋友,一批是扬格罗内博格等人,格罗内博格是一位具有乌托邦思想的大学辍学生,住在慕尼黑郊外的小屋里。另一批是沃尔夫辛格等人,我通过学术研究基金会认识了他们,靠着沃尔夫辛格的介绍,我认识了我的第一任妻子凯茜恩格伯格。我们于1969年结婚,但这段婚姻只维持了不到10年。1968年,一次在希尔谢洛镇的会议让我有机会认识了几个未来在这个领域举足轻重的人。这次研讨会是由瓦尔特霍普和剑桥MRC分子生物学实验室的马克斯佩鲁茨(Max Perutz)共同组织的,佩鲁茨因在蛋白质X射线晶体学方面的开创性工作而闻名。在那里,我遇见了哈罗德埃里克森、理查德亨德森、肯霍姆斯、休赫胥黎和奈杰尔昂温等人。在下午,与会者们可以自由地滑雪,而上午和晚上都保留给讲座和讨论,其形式类似于戈登会议。与我的论文相关的两篇德文论文后来发表在了会议记录中,载于Bunsengesellschaft für Physikalische Chemie特刊。[博士后阶段]加利福尼亚州,美国1970年初夏,在慕尼黑工业大学的论文答辩结束后,我获得了哈克尼斯奖学金(Harkness Fellowship),这使我可以前往美国两年,并自行决定进入哪些实验室。我选择了加州理工大学的喷气推进实验室(JPL)、加州大学伯克利的唐纳(Donner)实验室、和康奈尔大学。来自欧洲的我,却搬去了帕萨迪纳这样好莱坞一样的地方,那里有繁华的高速公路、紧靠棕榈树的小房子以及穿着网球鞋的小老太太,这种文化冲击难以言喻。事后看来,这三个实验室都给了我未来方向的重要推动力。当时的JPL拥有世界上最好的图像处理设备,并开发了一个模块化的图像处理系统VICAR,我可以将自己的程序挂在上面。这个软件包后来成为我开发SPIDER系统的模型。在唐纳实验室,我和鲍勃格莱泽的小组在一起,他专注于用电磁波进行结构研究的两个典型问题:样品的辐射损伤和对水合环境的需求。他和他的学生肯泰勒(Ken Taylor)已经在试验冷冻水化样品的制备,但当时雅克杜博歇(Jacques Dubochet)决定性的玻璃态冷冻技术还没有被发明出来。在康奈尔大学的本杰明西格尔小组里,我认识了肯唐宁(Ken Downing)和威廉戈德法布(William Goldfarb)。后来我邀请威廉加入了我在奥尔巴尼的团队。这时我需要提一句,1972年我在康奈尔大学时,我的儿子霍西亚扬弗兰克(Hosea Jan Frank)出生了。从美国回来后,我在1972年的冬天短暂地回到了马克思普朗克研究所,研究电子显微镜的部分相干性理论。这项工作使我与世界级的电子光学专家彼得霍克斯(Peter Hawkes)有了接触。1973年,我加入了剑桥大学卡文迪许(Cavendish)实验室的弗农埃利斯科斯莱特(Vernon Ellis Cosslett)小组,担任高级研究助理。与我往来的人中有欧文萨克斯顿(Owen Saxton)和彼得霍克斯(Peter Hawkes)。在卡文迪许的几年里,我进一步研究了部分相干理论,并找到了一种方法:通过计算同一区间的两个连续图像的互相关性来获得电子显微照片的信噪比。这时,单颗粒平均和重建的设想在我的脑海中占据了一席之地:将电子剂量分散到网格上随机排列分子的多个"副本"中。1975年,我发表了一篇概念性的论文,提出了利用溶液中重复出现的分子来检索分子结构的想法。之后,我和欧文一起研究了生物分子的明场图像,并确定了它们在特定的条件下能够以足够的精度排列,从而使图像达到了一定的平均分辨率,这项研究的结果在1977年共同发表。自此我开始相信,单颗粒的方法即使在弱原生对比度的条件下(即蛋白质与水)也能发挥作用。[Wadsworth研究中心]奥尔巴尼市,纽约州,美国1975年,我收到了纽约州Wadsworth研究中心的唐帕森斯(Don Parsons)发来的工作邀请。在那里,我最初的任务是细胞切片的断层重建,但我继续将研究重心放在了单颗粒方法的应用上。这两个领域的交叉使我意识到,我需要一个程序框架来确保后续程序设计的灵活性。因此,我开始对SPIDER进行开发,这是一个模块化的图像处理系统。随着单颗粒技术的发展,SPIDER成为向社会传播单颗粒技术的工具。它最初采取了买断制,只收取一次性费用,后来,它补充了创意共享许可,能够被免费地使用。之后,过了很多年的时间,单颗粒概念才得以被证明有效,我们收到了生物分子的实际图像:由加州大学洛杉矶分校的大卫艾森伯格(David Eisenberg)提供的谷氨酰胺合成酶,戈廷根大学的彼得辛斯海姆(Peter Zingsheim)提供的乙酰胆碱受体,以及罗氏的米罗斯拉夫布布里克(Miloslav Boublik)提供的核糖体。我的朋友马丁凯塞尔也利用休假的时间帮助我进行了一些研究。在每个案例中,二维平均数的可重复性证明了这种方法是合理的。然而,电子显微镜业内仍有不少人持怀疑态度。转折点出现1980年,我和荷兰学生马林范海尔(Marin van Heel)共同开发了一种解决异质性问题的方法。为了寻找具有挑战性的合适分子来尝试这项技术,我开始与法国图尔的让拉米(Jean Lamy)以及他的学生尼古拉斯博伊赛(Nicolas Boisset)合作,对各种节肢动物的血蓝蛋白进行成像。多年来我一直与尼古拉斯保持联系,直到他于2008年不幸去世。他的记录方式一丝不苟,并为单颗粒重建的原理制作了精美的幻灯片。奥尔巴尼镇是纽约州的首府,却淹没在了纽约市的光辉下。该镇被美丽的乡村所包围,仅靠步行便能进入阿迪朗达克山脉。搬到奥尔巴尼不仅让我得到了第一个独立职位,还释放了我在科学之外的领域进行创造性表达的冲动。我加入了一个艺术家集体,名为WORKSPACE,由杰西加雷特(Jacy Garrett)创立。当时,行为艺术正在全美范围内被重新定义,艺术家组织也如雨后春笋般出现。激浪派(FLUXUS)运动将大众的注意力引向了一些边缘的、偶然的东西。我并没有艺术相关的文凭,却凭借创造性的贡献成功地被WORKSPACE接纳了,这让我感觉不错。我参加了他们的邮件通信,并在几年内为一本名为PROP的小型文学杂志提供编辑工作。上方,从左到右:霍西阿(泽)和他的儿子约拿,汤姆墨菲(玛丽尔的丈夫),约阿希姆弗兰克下方,从左到右:泽的妻子乔迪布兰特和他们的女儿罗丝,玛丽尔,我的妻子卡罗尔萨吉诺。这时,我的孩子们都长大成年了,有着自己的生活。我的儿子泽弗兰克在布朗大学主修神经科学,并出于弹吉他的爱好成立了一个乐队。他在音乐和艺术方面的特殊才能在少年时期就得到了体现。后来他搬到了纽约,开始做网页设计。通过一个偶然的途径,他登上了TED演讲的舞台,随后在一夜之间成为了一个互联网人物。最近,他任职于Buzzfeed,职位是媒体总监。他现在与妻子和两个孩子住在洛杉矶。我的女儿玛丽尔弗兰克在巴纳德学院主修语言学。她会说多种语言,在日本教过英语,还曾为一个拉丁裔非营利组织工作,现在是代码学院的程序员和课程开发人员。她已经结婚了,并定居在纽约布鲁克林。[哥伦比亚大学]纽约州,纽约市,美国
  • 检测食品中的阿斯巴甜,Detelogy有办法!
    早前,关于阿斯巴甜可能会致癌的新闻引起人们的关注,一时之间引发了巨大的争议,市面上诸多打着“无糖”标签的食品饮料,实际都使用了阿斯巴甜等甜味剂去增添风味,可谓与我们的生活密切相关。那么阿斯巴甜是什么?它究竟安不安全呢?阿斯巴甜是一种人工甜味剂,多用于无糖饮料、口香糖、酸奶等。化学名称为天门冬酰苯丙胺酸甲酯,由化学家在1965年研制溃疡药物时发现,甜度是普通蔗糖的约200倍。阿斯巴甜尽管有强烈甜味,但热量几乎为零,而且没有糖精那样的苦味,因此被食品工业视为代替蔗糖的甜味剂。我国规定可用于糕点、饼干、 面包 、配制酒、雪糕、冰棍、饮料、糖果、用量按正常生产需要。2023年7月14日,世界卫生组织的国际癌症研究机构(IARC)公布将阿斯巴甜列为“可能对人类致癌的物质”( 国际癌症研究机构第2B组 )。联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)公布“维持阿斯巴甜原风险评估结论,按照目前剂量和范围使用,不会对消费者产生健康危害”。联合专家委员会得出结论,所评估的数据表明没有充分理由改变以往 确定的 阿斯巴甜每公斤 体重0-40毫克这一每日允许摄入量 。因此,委员会重申,人们可在这个每日限量内放心食用。国家食品安全风险中心表示,阿斯巴甜按照目前的剂量和范围使用是不会对消费者产生健康危害,也就是假设没有其他方面的食物摄入,一罐含有200或300毫克阿斯巴甜的减肥软饮料,一位体重70公斤的成人每天要饮用9-14罐以上才会超过每日允许摄入量。所以抛开剂量谈毒性都是不客观的,因此,不必过于担忧阿斯巴甜的食品安全问题。实际上我国也有相关的标准进一步规范了阿斯巴甜的使用:GB 2760-2014 食品安全国家标准 食品添加剂使用标准GB 5009.263-2016 食品安全国家标准 食品中阿斯巴甜和阿力甜的测定GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)NY/T 3473-2019 饲料中纽甜、阿力甜、阿斯巴甜、甜蜜素、安赛蜜、糖精钠的测定 液相色谱-串联质谱法下面参考GB 5009.263-2016 《食品安全国家标准 食品中阿斯巴甜和阿力甜的测定》来看看阿斯巴甜的测定解决方案吧!一、乳制品、含乳饮料和冷冻饮品对于含有固态果肉的液态乳制品需要用MHS-60多样品均质系统进行匀浆,对于干酪等固态乳制品,需用MHS-60多样品均质系统按试样与水的质量比1:4进行匀浆,分别称取约5g液态乳制品、含乳饮料、冷冻饮品、固态乳制品匀浆试样于50 mL离心管,加入10 mL乙醇,盖上盖子;对于含乳饮料和冷冻饮品试样,首先轻轻上下颠倒离心管5次(不能振摇),对于乳制品,先将离心管用MultiVortex多样品涡旋混合器涡旋混匀10 s,然后静置1 min,离心后上清液滤入25 mL容量瓶,沉淀用8mL乙醇-水(2+1)洗涤,离心后合并上清液,用乙醇-水(2+1)定容,过滤膜待测。二、蔬菜及其制品、水果及其制品、食用菌和藻类步骤样品均质提取定容对于较干较硬的试样与水的质量比为1:4于MHS-60多样品均质系统进行匀浆加入10 mL70%的甲醇水溶液,摇匀后超声10 min,离心后取上清液于25 mL容量瓶,再加8 mL50%的甲醇水溶液重复操作一次,合并提取液最后用50%的甲醇水溶液定容,过滤膜待测。对于含糖多的、较粘的、较软的试样与水的质量比为1:2于MHS-60多样品均质系统进行匀浆加入10 mL60%的甲醇水溶液,摇匀后超声10min,离心后取上清液转入25 mL容量瓶,再加10 mL50%的甲醇水溶液重复操作一次,合并提取液其他试样与水的质量比为1:1于MHS-60多样品均质系统进行匀浆3、 果冻对于可吸果冻和透明果冻,用玻璃棒搅匀,含有水果果肉的果冻需要用MHS-60多样品均质系统进行匀浆,称取约5 g试样于50mL的比色管中,加入25mL 80%的甲醇水溶液,在70℃的水浴上加热10min后趁热将提取液转入50 mL容量瓶,再用15 mL80%的甲醇水溶液分两次清洗比色管,并每次MultiVortex多样品涡旋混合器涡旋约10 s;并转入同一个50 mL的容量瓶,冷却至室温,用80%的甲醇水溶液定容到刻度,混匀后离心;过滤膜待测。四、谷物及其制品、焙烤食品和膨化食品称取1g粉碎试样于50 mL离心管中,加入12 mL50%甲醇水溶液MultiVortex多样品涡旋混合器涡旋混匀,超声振荡提取10 min,离心后上清液转移入25 mL容量瓶中,再加10 mL 50%甲醇水溶液,MultiVortex多样品涡旋混合器涡旋混匀,超声振荡提取5min;离心后合并上清液,用蒸馏水定容,过滤膜待测。五、胶基糖果、脂肪类乳化制品、可可制品、巧克力及巧克力制品、坚果与籽类、水产及其制品和蛋制品用MHS-60多样品均质系统按试样与水的质量比为1:4进行均质,称取约5g试样于25 mL离心管中,加入10mL水超声振荡提取20 min,静置1min,离心后上清液转入100mL的分液漏斗中,离心管中再加入8mL水超声振荡提取10min,静置和离心后将上清液再次转入分液漏斗中,向分液漏斗加入15mL正已烷,振摇30 s;静置分层约5 min;将下层水相放入25 mL容量瓶,用水定容至刻度,摇匀后过水相滤膜后用于色谱分析。胶基糖果:称取约3 g剪细的胶基糖果试样,转入100 mL的分液漏斗中,加入25 mL水振摇约1 min,再加入30mL正已烷,继续振摇直至口香糖全部溶解,静置分层后,将下层水相放入50 mL容量瓶,再加入10 mL水,重复2次操作,最后用水定容至刻度,过滤膜待测。六、碳酸饮料、浓缩果汁、固体饮料、餐桌调味料和除胶基糖果以外的其他糖果称取约5g碳酸饮料试样于50mL烧杯中,在50℃水浴上除去二氧化碳,然后将试样全部转入25mL容量瓶中,备用;称取约2g浓缩果汁试样于25mL容量瓶中备用;称取约1g的固体饮料或餐桌调味料或绞碎的糖果试样于50mL烧杯中,加10mL水后超声波震荡提取20min,将提取液移入25mL容量瓶中,烧杯中再加入10mL水超声波震荡提取10min,提取液移入同一25mL容量瓶,备用,将上述容量瓶的液体用水定容,混匀,4000r/min离心5min,过滤膜待测。Detelogy优选仪器MHS-60多样品均质系统✦ 六刀头并联,可同时均质6个样品✦ 可以容纳5mL-180mL标准试管或离心管,可定制冰浴专用试管架✦ 均质过程中,试管架可以自动上下振荡,每分钟可完成60次振荡✦ 均质过程随时启停,完成后蜂鸣报警提示MultiVortex 多样品涡旋混合器✦ 兼容性多种规格样品管,转速可调:200-3000rpm✦ 小巧极简机身,主机低重心设计,运行噪声低✦ 程序调速功能,可自动变速涡旋✦ 5寸高清彩色触屏,实时显示转速和运行时间,随时启停
  • 人均728万美元全球最具生产力公司是?全球制药TOP10仅辉瑞、艾伯维、BMS上榜!
    如果将制药企业的营收平均计算到每个员工头上,谁的生产力最高?9月26日,外媒Fiercepharma评选出了“2021年最具生产力的生物制药公司”,将生物制药公司在2021年的总收入平均到每位员工身上,计算每位员工为公司带来多少收入,也就是这家公司的“平均生产力”,据此评选出了10家2021年最具生产力的生物制药公司。BioNTech、Moderna两家疫苗公司以728万美元与684万美元一骑绝尘,遥遥领先第三名吉利德的195万美元。在2021年营收前10的大型制药公司中,仅有BMS、艾伯维、辉瑞三家上榜。此外,Fiercepharma还强调,如果来自中国的疫苗公司科兴生物没有在纳斯达克退市,以其194亿美元的年销售额和4300名员工来计算,或许也能跻身前三甲。以下是E药经理人对该榜单的详细解读:01 BioNTech2021年员工人数:3082人2021年收入:189.8亿欧元(约合224.5 亿美元)2021年员工平均生产力:728万美元根据BioNTech的2021年年报,截至2021年12月31日,该公司共有3082名员工,较2020年增加了超过1000人。用BioNTech的2021年总营收比上员工人数,得出的“生产力”为728万美元。BioNTech的员工人数增长主要来源于其扩张策略。BioNTech首席执行官Ugur Sahin此前曾公开表示,BioNTech的目标是成为“21世纪免疫疗法巨头”,在此策略下,2021年5月, BioNTech宣布将在新加坡设立其东南亚总部,并将在新加坡建厂,用以生产mRNA疫苗、传染病药物和癌症药物。从员工构成总体情况来看,BioNTech的人员主要是由临床研究和开发、科学研究与发展、运营、质量、支持功能、商业和业务发展六个部分构成,其中科学研究与发展、运营两部分员工最多,都超过了1000名。六部分的员工较2020年都发生了增长,但临床研究与开发、质量两部分的员工增长较少,其余部分的员工几乎都翻倍增长。02 Moderna2021年员工人数:2700人2021年收入:184.7亿美元2021年员工平均生产力:684万美元同样作为mRNA新冠疫苗的制药公司,Moderna在2021年也取得了百亿美元的营收,184.7亿美元如果平均分配到该公司拥有的2700名员工头上,该公司的“生产力”约为684万美元。与2020年相比,Moderna的员工也增长了一倍多。根据Moderna的2021年年报披露,其在2021年招聘了大量员工以促进mRNA新冠疫苗的生产。此外,Moderna还在北美、欧洲和亚太地区设立了办事处,以加强其商业化和注册能力。据悉,在今年2月,Moderna宣布计划扩大其在亚洲的商业网络,在马来西亚、新加坡、中国香港和中国台湾增设4家子公司。该公司此次扩张的目的在于扩大其新冠疫苗及未来mRNA疫苗和疗法的生产和分销规模。此外,Moderna还将计划在欧洲现有的247名员工基础上进行扩张,在比利时、丹麦、荷兰、挪威、波兰和瑞典增加商业化团队,以支持其在当地提供mRNA疫苗。据悉,Moderna 于2021年在意大利、法国、德国、西班牙、英国和瑞士已经建立了商业化子公司。03 吉利德2021 年员工人数:14400人2021 年收入:273.1亿美元2021年员工平均生产力:195万美元与前两家mRNA新冠疫苗公司相比,吉利德的平均“生产力”仅约195万美元,但与其他大型制药公司相比,吉利德已经算是生物制药领域生产力较高的制药商之一。尽管红利不及新冠疫苗和口服药,但瑞德西韦仍旧对吉利德的业绩起到了提振作用,该药物2021年全年销售额为56亿美元,同比增长98%。得益于瑞德西韦带来的增长,吉利德在去年的总营收也增长了11%到273亿美元。除了优势的抗病毒领域,吉利德正在积极拓展其肿瘤业务,加上目前已经上市的细胞疗法Yescarta和Tecartus,吉利德还有超过20种抗肿瘤产品正在开发,吉利德预计到2030年,肿瘤业务收入将占据吉利德总营收的三分之一,目前该业务仅占吉利德营收的约7%。04 再生元2021 年员工人数:10368人2021 年收入:160.7亿美元2021年员工平均生产力:155万美元2021年,再生元总营收为160.7亿美元,较上年同期增长47%。为其营收增长贡献较大的两个产品为治疗有新生血管(湿)年龄相关黄斑变性(AMD)患者的阿柏西普(Eylea)以及新冠中和抗体REGEN-COV。用再生元的2021年营收比其员工人数,平均每位员工为再生元带来了155万美元的收入。据悉,在2021年之前,再生元一直都是全球最富有“生产力”的公司,2021年下滑的一部分原因是该公司在2021年增加了1245个职位,从2020年底的9123名员工增加到2021年底的10368名。其中对高端人才投入巨大,新增员工中有约200名拥有博士学位,致使再生元的博士员工总数达到了1200多名。在员工类型上,工业经营和产品供应新增592人,总数达到5037人;研究和临床前开发人员增加了152名,总数达到1936人,全球临床开发人员增加了156人,总数达到1300人。05 BMS2021年员工人数:32200人2021年收入:463.9亿美元2021年员工平均生产力:144万美元百时美施贵宝2021年的员工平均生产力为144万美元,在该榜单中排名第五,仅次于BioNTech、Moderna、吉利德和再生元。值得一提的是,榜单前四名均从新冠产品中获益,一跃排名前列。其实,BMS如此成绩并不令人感到意外。根据2016年的数据,该公司排名第七,后来以740 亿美元的大型合并收购了当年排名第二的新基(Celgene)。在并购交易之后,公司通常会通过削减重叠职能来节省成本,以实现所谓的“成本协同效应”,同时实现比每个人总和更好的绩效。目前,预计到2022年,BMS通过整合Celgene可每年节省30亿美元。此外,BMS的部分成本节约来自裁员。2018年,BMS和Celgene的合并员工人数分别约为32150人,到2019年底,合并后的BMS员工人数约为30000人,该交易于2019年11月正式结束。备案文件显示,BMS在与Celgene收购相关的裁员人数分别为:2019年125人、2020年1565人、2021年405人。不过,在2021年,BMS的总员工人数增加了约 6.4%,达到32200人,其中约58%的员工工作地位于美国。与此同时,该公司2021年收入同比增长9.1%至463.9亿美元,这得益于三大重磅产品Revlimid(来那度胺)、Eliquis(阿哌沙班)和Opdivo(纳武利尤单抗)的增长。其中,O药依旧是BMS的销售主力军,其2021年实现销售收入75.23亿美元,同比增长8%。值得注意的是,随着2021年CAR-T疗法Breyanzi和Abecma被FDA批准,BMS一直在扩大其细胞疗法的生产能力。同年11 月,BMS在其位于马萨诸塞州德文斯的园区正式开设了一个新的细胞治疗设施,该设施拥有150名新员工,并计划最终增加“数百个”工作岗位。此外,BMS还在荷兰莱顿建造了一个新工厂,预计将于2024年底投入运营,并容纳“数百个”新职位。06 渤健2021年员工人数:9610人2021年收入:109.8亿美元2021年员工平均生产力:114万美元“一味提高员工人数”并非提高生产力排名的成功秘诀。渤健在2021年雇佣了更多工作人员,但是其平均生产力却有所下降。不过,作为一家规模相对较小的制药公司,渤健仍跻身于全行业生产力最高的10家公司之列。具体而言,在2016年榜单中,渤健以每名员工155万美元的平均生产力和 7400人的总人数排名第三。然而,截至2021年底,渤健拥有9610名员工,比2020年底的9100人增加6%。渤健2021年每位员工的平均生产力为114万美元,其生产力在2021年下降了23%,排名第6。与此同时,渤健2021年收入同比下降18%至109.8亿美元,主要原因在于其旗下产品Tecfidera销售额下降了近一半,仅有19.5亿美元。随着专利到期和仿制药的“威胁”,Tecfidera销售额下滑明显。渤健第二畅销的脊髓性肌萎缩药物 Spiraza 也因诺华和罗氏旗下产品的竞争,在2021年销量出现下滑。另一方面,渤健虽然为Aduhelm建立了一个全新的阿尔茨海默病营销团队,但围绕该药物获批争议、其收益风险状况以及令人望而生畏的价格等质疑声不断,均较大限制了该产品的使用。针对如此情况,渤健于今年3月开始解散阿尔茨海默氏症销售团队,裁员的确切数量尚不清楚。07 艾伯维2021年员工人数:50000人2021年收入:562亿美元2021年员工平均生产力:112万美元作为全球制药巨头,艾伯维2021年收入为562亿美元,比2020年增长22%,员工平均生产力为112万美元,在该榜单中排名第7。截至今年1月底,艾伯维总共雇佣了约5万人,比2021年1月的47000人略有上升。虽然许多大型制药公司因新冠产品实现了可观的收入增长,但得益于重磅炸弹修美乐(Humira)和一系列其他畅销药品带来的业绩增长,艾伯维2021年的销售额在大型制药商中仍排名第四。其中,Humira收入为207亿美元,占艾伯维总收入的37%。多年来,艾伯维一直在为应对Humira的仿制竞争做准备,包括在2019年以630亿美元的价格收购了艾尔建(Allergan)。作为此次收购的关键资产,Botox去年在其治疗和美容用途之间获得了46.8亿美元的收入,比2020年增长了87%。由于Humira将在2023年面临巨大的仿制药压力,如安进将于2023年1月启动Humira 生物仿制药市场,部分参与者计划在明年全年分阶段推出,届时,艾伯维的财务状况将如何保持还有待观察。在艾伯维的其他产品组合中,抗癌药物Imbruvica的营收增长2%至54亿美元,免疫学新产品Skyrizi和Rinvoq的营收增长亦较为可观。艾伯维预计,到2025年,这两种免疫药物的总销售额将达到150亿美元。08 安进2021年员工数:24200人2021年营收:259.79亿美元2021年员工平均生产力:107万美元尽管未能实现2021年的营收目标,但安进一直致力于癌症相关药物的研发和外部创新等。2021年,安进全球销售额达到259.79亿美元,人均生产力达107万美元。2021年,安进有两款药物的销售及研发情况值得关注。2019年8月,安进宣布与新基达成协议,以134亿美元现金的价格收购用于治疗银屑病的新药Otezla(阿普斯特)的全球权益。自收购Otezla以来,安进创造了一系列可观的销售额。2021年,Otezla产品营收额为22.49亿美元,涨幅为2%,在其所有产品中的营收总额排名第三。2021年5月,FDA加速批准了安进KRASG12C抑制剂Lumakras(sotorasib)上市,用于二线治疗KRASG12C突变局部晚期或转移性非小细胞肺癌(NSCLC)患者,该产品是全球首个获得批准的靶向KRAS突变的肿瘤治疗药物。据财报披露,Lumakras自上市以来至2021年底,其销售额为0.9亿美元。今年1月,Lumakras在欧盟和日本获批,目前安进正在研究该药物对初期肺癌病人是否有帮助。尽管收购过来的Otezla销售额不错,但为了将业务重点转向即将推出的药物和产品线,在疫情之下采用数字营销工具,更多关注数字化工作,发展其抗癌药物Lumakras等产品,安进去年只增加了约100名员工,去年2月,安进的美国销售团队遭受重创,公司裁员约500人。2021年6月,安进在俄亥俄州新奥尔巴尼投资3.65亿美元建设智能设施,这座占地27万平方英尺的工厂将于2024年投入使用,届时将雇佣400人,此地将产生安进的“最先进的数字化设施”。两个月后,安进承诺斥资5.5亿美元在北卡罗来纳州建设一个生产基地。09 辉瑞2021年员工数:79000人2021年营收:812.88亿美元2021年员工平均生产力:103万美元2021年,辉瑞营收为812.88亿美元,同比增长95%;员工数量从8.83万减少到7.9万,减少数量近1万,而2021年底的员工数量只比年初多了约500人。但按照2021年总人数来看,其规模相较于业内其他公司仍更加庞大。截至目前,在该名单上,辉瑞的员工规模最大,其次是艾伯维和礼来。员工减少的主要原因是该公司在2020年第四季度剥离了仿制药部门Upjohn。根据美国证券交易委员会(SEC)提交的文件,2019年9月,Upjohn有2377名员工。辉瑞一直在控制员工规模。2015年,辉瑞收购了全球最大注射药品供应商Hospira时,彼时该公司的员工人数激增至9.79万人。到了2009年,辉瑞以680亿美元收购惠氏(Wyeth),合并后辉瑞通过关闭旗下办事处和工厂、裁减员工及削减其他支出的方式来提供净利润。2008年底,两家公司的雇员人数分别为8.18万人和4.74万人。一年后,辉瑞将两家公司的员工总数削减至11.65万人,到2013年底,该公司已将员工人数削减至7.77万人。2021年,尽管辉瑞营收有一定增长,但其销售成本却从87亿美元飙升至308亿美元,研发费用从94亿美元上升至138亿美元。不过,辉瑞在其财报中表示,其销售成本增长的部分原因是Comirnaty公司与BioNTech公司的50%利润分成、以及专利使用费所致。2022年,预计辉瑞的人均生产力将显著增加。2022年上半年,辉瑞的收入为543亿美元,其中Comirnaty和口服抗新冠病毒药物Paxlovid的销售额合计超过310亿美元。10 礼来2021年员工数:35000人2021年收入:283.18亿美元2021年员工平均生产力:81万美元2016年底时,礼来拥有近4.2万名员工,彼时员工的平均生产力约为51万美元,其86%的销售额都依赖于成熟产品。近年来,礼来在肿瘤、糖尿病、免疫、疼痛以及神经退行性疾病等领域,采用多元化的模式来进行相关药物的创新与推广,其中包括依靠自身内部的销售队伍来推广上市产品,同时也会借鉴合作方的优势,其努力也逐渐有了一定回报。截至2021年底,礼来的全球营收为283.18亿美元,排名全球第12名,拥有3.5万名员工,较2016年减员7000人工,但人均生产力较2016年提高了30万美元。2017年初,在礼来首席执行官David Ricks掌舵后不久便启动了大规模的成本削减行动,旨在每年节省12亿美元。2020年,礼来在全球范围裁员大约3500人,其中大部分裁减的职位源自其在美国发起的一项“自愿提前退休”计划。礼来此举主要是希望能够更加专注于创新药研发和改善公司的运营成本结构。今年第二季度,礼来称其新推出的产品占其总销售额的67%,不包括COVID-19抗体收入。礼来的新产品包括2型糖尿病药物Trulicity、乳腺癌药物Verzenio、免疫学重磅药物Taltz、预防偏头痛药物Emgality等。去年,该公司的新冠中和抗体也发挥了重要作用,销售额达到22.4亿美元,约占总销售额的8%。注:2021年最具生产力的生物制药公司榜单的排名根据公司 2021 年收入除以其年度报告或证券文件中报告的员工总数。为了确保足够的规模,榜单只计算2021 年收入至少 100 亿美元、截至 2022 年 8 月市值至少 100 亿美元的制药商。本文编译自 The top 10 most productive biopharma companieshttps://www.fiercepharma.com/special-reports/top-10-most-productive-biopharma-companies
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等创新点:SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。
  • 第四届全国职工优秀技术创新成果拟获奖项目公示
    全国总工会、科技部、工业和信息化部、人力资源和社会保障部共同举办的第四届全国职工优秀技术创新成果评审工作已经完成,现将拟获奖项目予以公示。对公示项目持有异议者,请于2013年11月15日前将意见反馈给评选表彰工作组织委员会办公室。   办公室设在全国总工会经济技术部,联系人:查新安、沙磊,电话:(010)68591412、68591418,邮箱:cxcg@acftu.org。 第四届全国职工优秀技术创新成果拟获奖项目公示 编号 推荐省(区、市) 项目名称 第一完成人 其他完成人 第一完成人所在单位 一等奖( 1项) 1 江苏 试油测试工艺配套工具的研制与应用 田 明 杨血本、张勤友、程 鹏、朱贵山、李 海、于海洋中石化江苏油田分公司井下作业处 二等奖(10项) 1 河北 辊底式加热炉蓄热式燃烧技术的创新与开发 丁国伟 马中杰、刘 洪、张兆利、张艳龙、李开志、陈志强、魏东明、李宏军、胥 强 唐山钢铁集团有限责任公司 2 河北 延长油井检泵周期工艺配套与完善 付亚荣 刘春平、马永忠、李小永、李冬青、姜一超、李 淼 中石油华北油田第五采油厂 3 山西 大型挤压机缸体内孔珩磨设备 张风奎 左开红、王应林 太原重工股份有限公司 4 上海 激光可视对焦技术 徐小平 上海大众汽车有限公司 5 上海 火箭发动机壳体高效电子束焊接方法与工艺装备 王 勇 潘丽华、姚震忠、胡登禄、周鹰龙、沈慧萍 上海航天动力技术研究所 6 上海 220kV输电线路铁塔易地升高改造带电施工技术研究 杨庆华 刘新平、孟 亮、袁 奇、沈兆新、朱 炜、谢小松、侯晓明、鲍晓华、龚景阳 上海市电力公司检修公司7 江苏 变压器油中溶解气体组分含量量值保证体系研究开发及应用 朱洪斌 江苏省电力试验研究院有限公司 8 山东 ± 660KV直流架空输电线路带电作业研究及应用成果 王 进 卢 刚、刘洪正、李 龙、郑连勇、刘兴君、韩正新 山东电力集团公司检修公司 9 湖南 大吨位轮式起重机椭圆形吊臂国产化及压型效率提升 周鲜平 刘 玮、李 纲、熊先政、程映球、易伟平、胡 宁、任钜彪、陈铁坚、孟 凯、王战锋、苏 敏、袁 勋、关 勇、铁小武、谭正秋、文玉超、周勇强、游 雄、苏继学 中联重科股份有限公司 10 广东 古建筑保护修复新技术及其应用 黄文铮 吴德深 广东省六建集团有限公司 三等奖(31项) 1 北京 防覆冰电力导线 张世永 中铁电气化局集团有限公司 2 北京 400板坯连铸机的仿真及高效化制造技术 卫建平 娄 宇、郭亚杰、王 珂、孔凡威、李 健、张 洋、王三恒 北京首钢机电有限公司机械厂3 天津 特殊扣石油套管接箍拧接技术攻关 李 刚 刘 雨、吴四海、张学武、王德全、王 琰、翟德权、侯丙辛、马 恺、徐文强 天津钢管集团股份有限公司 4 河北 掌上查窃仪 朱劲雷 河北省邯郸供电公司 5 辽宁 多几何外表面形状结构的卷取机卷筒和液压控制程序 王国光 鞍钢集团股份有限公司热轧带钢厂 6 辽宁TRT能源回收集中控制及保护新技术 田印福 中国三冶集团有限公司电气安装工程公司 7 辽宁 PDM-810MR智能型电动机保护控制器 刘永胜 丹东华通测控有限公司 8 辽宁 环保节能房屋 刘成金 抚顺尼耐特环保科技有限公司 9 吉林 动车组铝合金侧墙加工工艺新方案 朱艺海 鲍洪阳、王 锋、曲 双、张俊平、王 隽、李保国 长春轨道客车股份有限公司 10 吉林 一种生物质纤维多孔细旦长丝纤维及其制造方法 彭立伟 王剩勇、夏郁葱、曹 军、郑成军 吉林化纤集团有限公司 11 吉林 油井带压打孔技术研究与应用 崔国臣 王洪绪 吉林油田公司新民采油厂 12 上海 电铸、激光、制模技术在首饰礼品加工上的创新 沈国兴 朱劲松、吴倍青、王伟成、朱 军、周天应、万荣生、张 宏、马 骏、吴伟民、魏 浩、李育刚 上海老凤祥有限公司13 浙江 纳米蒙脱土增强聚氨酯微孔弹性体 周巧萍 李建宇、段伟东、袁水华、李善军、陈本惠 浙江华峰新材料股份有限公司 14 安徽 大口径瓦斯抽采钻孔自平衡浮力法下管关键技术研究与应用 余大有 孙家应、毕万顺、尹德战、陈月化、张海堂 安徽省煤田地质局第一勘探队 15 安徽 摇动式顺推机械炉排 开晓胜 刘安基 安徽盛运机械股份有限公司 16 福建 一种旋翼式流量传感器在耐高温高压型热量表中的应用 蒋韵坚 泉州七洋机电有限公司 17 江西 便携式三相电压互感器智能检定装置研制 靳绍平 江西省电力科学研究院 18 山东 智能高速高层液压驱动升降横移立体车库成果 李祥啟 陈有刚、李天童、胡玉庆、李文波 潍坊大洋自动泊车设备有限公司 19 河南 六氟磷酸锂生产工艺技术创新 闫春生 徐 州、王晓峰、王虎豹、程 申、李 磊 多氟多化工股份有限公司 20 湖北 控制氧化镁涂层机结垢飞溅装置 胡惊雷 彭守军、付 康、雷 磊、黄春文、李 杰、李 冲 武汉钢铁股份有限公司硅钢事业部 21 湖南 天然气涡轮增压器关键技术研究与应用 曾 辉 王一棣、胡辽平、张爱明、卓雁飞、刘 麟、廖 云、欧永健、徐晓波 湖南天雁机械有限责任公司 22 广西 大型柴油机铁木塑复合模具技术创新及产业化 池昭就 陈金元、李智焰、黎 明、张学斌、陈财坤、马国胜广西玉柴机器股份有限公司 23 广西 VAE尾气回收 陆泰榕 汪成美、石显伟、韦 政、何盛教、莫红丽、高申宝、吴辉胜、韦婉贤、邓蒙德、韦羡侠 广西广维化工有限责任公司 24 贵州 磷矿伴生碘资源回收工业化生产技术 雷学联 杨三可、杨 毅、姜庆泉、覃礼云、胡元强、林世俊 瓮福(集团)有限责任公司 25 云南 水下电视 韦献宝 褚 伟、杨 帆、潘少华、张海林、李洪佳、张先奎、李海勇、闫 超 中国船舶重工集团公司七五○试验场26 陕西 井口高压双级光杆密封器 程少春 中石油长庆油田采油四厂 27 甘肃 冶炼制酸尾气洁净化技术与装置创新 史万敬 冯拥军、李平德、薛 勇、彭国华、曹 伟、陈玉胜、艾海元、唐照勇、王超文 金川集团股份有限公司 28 甘肃 不锈钢除尘灰利用技术 张军山 夏峰山、何振生、严宝年、李仁生、孙月娟、王宏斌 嘉峪关大友企业公司 29 宁夏 1000MW超超临界燃煤空冷机组(超)大壁厚SA335P92钢焊接工艺优化研究与应用 韩道永 陈学富、姚宏民、吕 铁、郭建新、张晓东、王 进 宁夏电力建设工程公司 30 海员 &Phi 10.22m土压平衡盾构施工技术 郭玉海 王全贤、靳立伟、赵东华、高树卿、郭秀军、李洪双、蔡志勇 北京市政建设集团有限责任公司第四工程处 31 能源 500kV输电线路行走装置研究 潘志新 蔡剑峰、陈 晟、陈虹君、贾 炜、沈 昱、周 腾、郑 庆 江苏省电力公司无锡供电公司 优秀奖(58项) 1天津 日晒盐母液三效蒸发浓缩技术攻关 吴宗生 张子山、王景波、梁同奇、刘立平、刘润生、曹月柱 天津长芦汉沽盐场有限责任公司 2 天津 按需加氯自动控制新技术在污水处理中的应用 曹德明 魏 彬、向 俊、刘 锐、孙长林、张志谦、霍金玉 天津创业环保集团股份有限公司 3 天津 15安时锂离子电池在XW-1卫星上的应用 罗广求 罗 萍、韩立民、刘红军、郭 杰、喻津汉、白 杨 中国电子科技集团公司第十八研究所 4 山西 薄壁零件微变形热处理技术研制及应用 王广义 何 敏、李晋玉、党红革 淮海工业集团有限公司二分厂 5 山西 镁合金太阳能集热建材板 高 源 高坚珂、高 浩、温晓光、范毓仙、高 玲、范毓林 山西美光科技有限公司 6 山西 公路路面基层施工专用养生液 张伟斌 尚照民、韩永久、吕安祥、梅满朝、荆存业、李建国、姚军峰 山西运城路桥有限责任公司 7 内蒙古 Su,s全胸腔镜下肋骨骨折骨钉骨板内植入固定技术 苏志勇 张镱镭、姜天烁、赵 鑫、崔其福、吴静波、邢淑芳 赤峰学院附属医院 8 内蒙古 超薄壁零件全包容无间隙的特殊装夹方法 闫志宏 中国航天科工集团公司第六研究院359厂 9 内蒙古 汽车发动机多种燃油喷射时序实验台 寿茂峰 张继红、白音布和 内蒙古通辽职业学院 10 辽宁 引流线支架 姜广敏 杨春雷、戴 鹏、郑景宏、金先成、孙 林 盘锦供电公司 11 黑龙江 冲击式水轮机转轮全数控加工 刘洪海 徐 磊、徐 雷 哈尔滨电机厂有限责任公司 12 上海 污泥干化焚烧系统的改造创新和应用 宣建岚 于俊岭、周丕仁、欧如清、陈秋忠、陈文源 上海城投污水处理有限公司石洞口污水处理厂 13 江苏 电位器骨架表面喷涂树脂工艺优化 曹 誉 蒋宝新、张 雁、周顺凯、夏亚君 南京晨光集团有限责任公司 14 江苏 蒸汽冷凝液余热综合利用 黄建新 黄建昌、高春红、吴志坚、赵从涛、袁慰椿、王 聪、白羽飞、陆书明、李 海、宋敏峰 南通醋酸纤维有限公司 15 福建 分体式用电信息采集公网终端 夏桃芳李建新、钟小强、邓伯发、林 华、詹 文、张 颖 福建省电力有限公司 16 福建 采用线性化前馈、导频信号等关键技术在WCDMA网络直放设备中应用 陈冬梅 泉州市协高微波电子有限公司 17 福建 人像生物识别系统 王小勇 福州海景科技开发有限公司 18 福建 畜禽养殖污水达标排放处理技术 王海兴 向 成、吴建平 厦门联南强生物环保科技有限公司 19 江西 一种防止尾门漏水的方法 刘建平 彭艳辉、李宝宝 江铃汽车集团公司 20 山东 一种节能防腐耐磨抽油杆成果 吴吉林 代旭升、王维亮、杨晓莹 胜利油田东辛采油厂 21 山东 烧结砌块挤出成型机-JZK90型双级真空挤砖机组成果 高 玲 张秀科、王胜昌、陈中华、高 华、高 丽 淄博功力机械制造有限责任公司 22 山东 新型分子筛PVC复合稳定剂成果 唐守余 唐守亮、高秀玉、马 亮 山东慧科助剂股份有限公司 23 河南 高炉烟道阀技术改进 田京卫 田漯云、喻 水 世林(漯河)冶金设备有限公司 24河南 TFT-LCD玻璃基板颗粒降低 杜跃武 邱大战、张国平、高宏举、陈志峰、李跃鑫 郑州旭飞光电科技有限公司 25 河南 水文缆道测流信号发生器 马 勇 王 福、赵恩来、杨 新、胡成年、郭 舸、王 博、黄 青、王 晶、余亚南、赵海东、刘新志 河南省南阳水文水资源勘测局 26 河南 综采机电故障分析与处理流程图的研究与应用 程宏图 杨国颖、薛 超、苗国胜、刘鹏宇、郭孝辉 中国平煤神马集团平煤股份四矿 27 湖北 交流电焊机空载自停节能装置 杜建国 中建三局三建安装分公司 28 湖北 可拆式采油井口防盗箱 何成建 江汉油田坪北经理部采油一队 29 湖北 车载集成型阳光及环境光传感器 王清平 李鄂胜、王 芬 湖北开特汽车电子电器系统股份有限公司 30 湖北 运梁车运梁过隧道自动驾驶技术 戴志兵焦灵杰、夏健军 中交第二航务工程局有限公司 31 湖南 冶金煤气安全、节能新技术的开发 佘宏彦 周良墉、王芳春、谭福安、赖 虎、熊 果 湘潭钢铁集团有限公司 32 湖南 耐硫变换系统节能降耗改造 任军平 潘亚虎、周永松、李谟盆、胡跃飞 中石化巴陵分公司化肥事业部 33 湖南 实用新型拼装夹具应用开发 周红梅 刘玉生、周 普、植 伟、苏 波、徐改第、贺 冶、黄赞迪、张菊绒 湖南株洲中航工业南方34 广西 气缸体深孔枪钻机床升级改造 何祥金 林永贤、孔 韶、陆 应、郑光强、庞 辉、陈堂标 广西玉林玉柴机器股份有限公司 35 广西 3zp-0.6型甘蔗中耕培土机研发制造 丘集全 广西成大农机设备有限公司 36 海南 降低感城风电场综合损耗研究与改造 冯少轩 钟侦魁、罗振鸣、刘钦怀、龙德海、邓清华、徐妙香 海南新丰源实业有限公司 37 海南 门机称重无线网络系统 张远斌 吴永强、薛茂林、韩廷贵、万泽甫、李景芳、张运海、李秀标、陈壮志、韩冬波、薛茂丰 国投裕廊洋浦港口有限公司 38 重庆 FY113型废烟支处理机剖切清理装置研发 马驿景 陈晋礼、潘世华、许春林、张纯超、袁廷文、麻海林 重庆烟草工业有限责任公司涪陵卷烟厂 39 重庆 研制10KV验电新型工具 皮 寅 邓志勇、刘钢华、李 伟、袁顺洪、梁宇姝、刘 洋、杜 昕 重庆市南川区供电有限责任公司 40 四川 实用新型车刀&mdash &mdash &ldquo 侯成车刀&rdquo 侯 成 成都飞机工业(集团)有限责任公司 41 云南 ZHW-31.5/T1600-25型铁道专用组合电器 段建平 赵 炘、孔祥品、张学斌 云南云开电气股份有限公司 42 西藏 混凝土骨料预冷预热一体化装置 刘 宏 邢建军 葛洲坝集团藏木电站砂石拌和系统项目部 43 西藏 气象综合服务平台的开发与应用 卢 海 恩 错、李 春、扎 西、毛时成、黄 健、周振波、巴桑卓玛、伦珠群培、其米玉珍 西藏山南地区气象局 44 陕西 一种单井储油罐 张江平 周亚琴、闫凤平 陕西延长油田股分有限公司青化砭采油厂 45 甘肃 合成绝缘子运行特性及使用寿命研究 王 健 李效珍、曹少军、段朝阳、方国祥、李 群、徐向军 甘肃省电力公司兰州供电公司 46 甘肃 改善高线吐丝机动平衡 王彦勋 李钰平、范晋平 酒泉钢铁(集团)有限责任公司 47 青海 双作用机械增力丝杠的革新 裴有珍 李孝德、陈海飞、张 剑、韩晓辉、鲁军锋 青海华鼎重型机床有限责任公司总装分厂 48 青海 钾肥铁路机械化装车设备的研究和应用 余昌伟 李建伟、谢学军、程士彦、刘 健、刘生宏、黄 立 青海盐湖工业股份有限公司 49 青海 一种鼢鼠捕杀装置(草原鼢鼠箭) 王 洪 蔡文庆、袁 宏、阿旺尖措 青海江河源农牧科技发展有限公司 50 新疆 若羌红枣标准化丰产栽培负责技术推广 罗秀荣 苏勇宏、胡文军、阿孜古· 艾则孜、艾则孜· 卡德尔、哈里旦· 毛明 新疆若羌县农业技术推广中心 51 兵团 乳化沥青冷再生技术在沥青路面中的应用 王建疆 余黎明、李 辉 新疆兵团建工师北新四方土木工程试验研究所 52 兵团 甜菜窖机械化卸菜、装窖、除杂系统的开发应用 杨永军 陈志江、高卫军、崔立江、董 成、陈再钦、左河川 新疆绿翔糖业有限责任公司 53 铁路 万向检查器李春林 周成刚、赵迎军、黄福龙、郭志洪 太原铁路局湖东车辆段 54 教科 中国活字保护与传承的创新与开发 张 勋 汪文民、朱永慧、刘现云、严金峰、顾 娟 上海字模一厂 55 教科 影画技术的研究与开发 范 列 浙江省衢州日报社 56 机冶 新型鼠笼转子在镍精矿打散中的应用 石晓明 黄国江、白中山、张子东 金川集团股份有限公司 57 国防 I/O流量平衡稽核技术 杨祖强 肖 晴、袁 来、赵小玉 中国联合网络通信有限公司 58 轻纺 双向冷端螺旋荧光灯 唐建华 徐向阳 江苏日月照明电器有限公司
  • 2023年全国电子显微学学术年会之先进材料专场报告集锦(下)
    中国电子显微镜学会、仪器信息网联合报道 2023年10月27日,2023年全国电子显微学学术年会在东莞市会展国际大酒店龙泉厅盛大开幕。大会由电镜学会电子显微学报编辑部主办,南方科技大学、松山湖材料实验室、大湾区显微科学与技术研究中心共同承办,仪器信息网作为独家合作媒体参会报道。大会为期三天,参会人数再创新高,吸引来自高校院所、企事业单位、仪器技术企业等电子显微学领域专家学者2000余人出席参会。10月27-28日上午进行大会报告,27-28日下午及29日全天同时进行13个不同电镜主题的分会场报告。大会现场本次大会共设置十三个分会场:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学表征(含EBSD);8)聚焦离子束(FIB)在材料科学中的应用;9)低温电子显微学表征;10)生物显微学研究;11)生物医学和生物电镜技术;12)全国电子显微镜运行管理开放共享实验平台经验交流;13)先进材料。其中,第十三分会场“先进材料”是本次大会首次设置,邀请了众多材料领域知名学者分享报告,吸引了材料领域与会者的热烈关注。电子显微学技术是探索微观世界,揭示材料科学奥秘的重要手段,因此广泛应用于材料学等领域。以下为部分精彩报告摘要:报告人:吉林大学 蒋青 教授报告题目: 电化学合成氨催化材料设计与制备氨是现代农业和粮食生产的关键,重要化工产品和几乎所有药品的原料,以及新能源或氢能源载体。但2020年合成氨行业CO2排放量2.19亿吨,占行业总排放量的19.9%,或总排放量的2%。为实现低碳生产,使用新能源清洁生产合成氨是当务之急。为此,蒋青团队通过设计和制备新型催化材料,研究电化学条件下低耗电量生产合成氨的可能性。结果表明,在新型催化材料的催化作用下,可明显提高合成氨的产率和效率,具有应用前景。报告人:中科院物理研究所 沈洁 特聘研究员报告题目:复合量子器件的应用验证拓扑超导和非常规超导的一个重要实验是波函数对称性的验证,超导二极管效应和相位敏感实验都是有效的实验探测手段。沈洁团队在强自旋轨道纳米线中发现了零场下的超导二极管效应,意味了该诱导超导态呈现时间反演对称破缺的特征,是潜在的P波超导态;且该手性可受化学势调试,即电子型和空穴型呈现相反手性。该实验为用强自旋轨道耦合纳米线构筑量子比特提供了无需外场的优势。报告人:纽约州立大学奥巴尼分校医学科学系 隋海心 高级研究员报告题目:Focused ion beam:a materials science invention in biological research applications在透射电子显微学发展中,不少技术都是首先在材料学研究中最先发展,然后再应用到生物学研究领域。会聚离子束减薄 (FIB milling) 就是这样一个例子。透射电子显微镜的应用要求被研究的样品厚度足够薄以使电子束能够穿透成像。于是薄样品的制备在材料学和生物学透射电镜研究中都成为一个重要方面。生物和材料学科各自发展出了有自己特点的薄样品制备手段。离子束技术是一个在固体材料物理学研究中发展起来的一个成像和样品制备手段。电子和离子双束扫描显微镜 (FIBSEM) 商业化以后,FIB milling也成为固体材料领域一个必备的样品制作手段。2007年开始,该手段被生物学领域借鉴,成为冷冻细胞原位样品制备的一个新办法。同时,用FIBSEM获得塑料包埋生物样品三维密度图也成为新型的体式电子显微学 (volume EM) 的一个主要手段之一。报告人:南方科技大学 任富增 研究员报告题目:共格纳米析出强化高熵合金磨损变形机理研究磨损是造成接触并相对运动的金属构件服役过程中失效的重要原因之一。摩擦能消耗掉全世界约1/3的一次能源,磨损可致使约60%的机器零部件失效,50%以上的机械装备恶性事故源于润滑失效或过度磨损。服役于极端环境的金属材料通常需要具有高强度、良好的延展性以及高耐磨性。然而,实现超高强度通常会导致延展性显著降低。任富增基于热力学计算,利用相分离原理,开发了共格纳米析出相强化的多主元合金,实现了强韧性的协同,系统研究了该类合金的强韧化机理以及在干滑动摩擦条件下的表面梯度结构演变机制。报告人:北京工业大学 隋曼龄 教授报告题目:钙钛矿太阳能电池材料及器件的电子显微学研究卤化物钙钛矿作为一种新型功能材料,具有高的吸收系数、长的激子扩散距离、高的载流子迁移率、低的激子结合能等优异的光物理性质。由于其制备工艺简单、生产成本低廉、柔性性能优异等特点,已经作为光伏器件的光吸收层,应用于第三代高效薄膜太阳能电池中,且其光电转化效率经历了飞跃式发展。尽管卤化物钙钛矿太阳能电池取得了令人瞩目的研究进展,具有诱人的发展前景。然而,其大规模应用仍面临诸多挑战。例如,在稳定性方面,存在水、热不稳定性和离子迁移等问题,而且长时间的光照及紫外线辐照也会对电池造成损伤;此外还有铅元素等带来的毒性方面问题。隋曼龄主要从微纳尺度对卤化物钙钛矿材料及其电池器件的失效机制进行研究。通过球差校正透射电子显微镜对卤化物钙钛矿电池器件各个功能层界面微结构的演变进行精细表征,探究了其失稳机制,在原子和分子尺度提出优化界面、提升稳定性的方法。报告人:浙江大学 袁辉球 教授报告题目:重费米子材料中的演生量子态及其调控在含有 f 电子的材料体系中,局域的 f 电子与巡游电子可以通过近藤效应杂化而导致电子有效质量大幅提升(可达自由电子的上千倍),重费米子因此而得名。重费米子化合物中存在多种能量尺度接近的特征温度,基态易于调控,从而表现出丰富的物态性质,是探索奇异量子态及其演化的理想材料体系。袁辉球在报告中简要介绍了课题组在重费米子超导和量子相变等方面的一些最新研究进展。结果表明,重费米子体系呈现出丰富的量子特性,包括非常规超导、非费米液体、强关联拓扑态等。压力和磁场等参量可以调控重费米子体系中局域电子与巡游电子的杂化强度,诱导不同类型的反铁磁量子相变。在纯净的铁磁重费米子化合物CeRh6Ge4中发现了铁磁量子临界存在的确凿证据,并观察到奇异金属行为。报告人:东南大学 沈宝龙 教授报告题目:结构调控制备铁磁性软磁与催化无序合金铁磁性无序合金作为绿色节能材料在电力电子与清洁能源领域应用前景广阔,是实现“双碳”目标关键材料之一。然而,铁磁性无序合金优异软磁性能、高催化活性原子及电子结构起源尚待进一步厘清,新合金体系仍需进一步探索、制备。沈宝龙在报告中探讨了铁磁性无序合金三种结构调控策略优化软磁与催化性能机制:(1) 采用应力热处理调控制备 FeCoBSiCP 非晶软磁合金,饱和磁极化强度达 1.75 T,矫顽力小于2.2A/m,1T、50Hz条件下损耗低于0.11W/kg,1kHz有效磁导率达33000。应力热处理感生纵向单轴磁各向异性,促使退磁及反磁化过程由均匀畴壁位移主导,大幅提升软磁性能;(2)通过调控热传导率规模化制备厚度14μm FeSiBCuNb合金超薄带,超薄带合金磁心经横磁处理后磁导率在100kHz下高达48000,损耗在0.2T/100kHz下降至94kW/m3。均匀细密非晶-纳米晶双相结构、磁化过程中高密度磁畴结构分布、感生磁各向异性与剩余随机磁各向异性间强相互作用及大电阻率协同促成纳米晶合金超薄带磁心具有优异高频软磁性能;(3)提出全新缺陷构建策略制备(FeCoNiB0.75)97Pt3高熵金属玻璃,实现1000 mA/cm2安培级电流密度超低碱性析氢(104 mV)、析氧(301 mV)过电位,在阴离子膜电解水器件(AEM)测试中保持200小时长期耐久性(100 mA/cm2)。晶格畸变、堆垛层错等缺陷结构有助于优化原子配位构型、调节电子相互作用,增强电解水催化性能。报告人:南方科技大学 刘玮书 教授报告题目:Mg 基热电材料性能调控与缺陷结构室温热电材料是物联网传感器实现自供能的关键技术,正成为影响全球物联网技术变革的重要因素。经典的碲化铋室温热电材料发现于上世纪60年代,一直被沿用至今,缺少新的室温热电材料。刘玮书从广义B*参数设计原则出发,讨论新型室温电子热电材料 Mg3+σSb2-xBix:Mn0.01的热电输运特性,该材料在功率因子和热电优值均超越经典的N型 Bi2Te2.7Se0.3材料。报告将主要聚焦Mg3+σSb2-xBix:Mn0.01材料中的Mg空位缺陷、复合缺陷、Janus纳米析相等微观缺陷,对电子和声子输运行为的影响,以及其对热电性能的提升。报告还讨论了基于多元合金策略,解决 Mg3Sb2基界面连接难题,实现高强、低阻、高稳定的可靠连接的最近进展。报告人:南方科技大学/北京工业大学 韩晓东 教授报告题目:《原子分辨的宽温区材料力学显微镜与高强高韧材料设计》、《原子分辨材料力学行为实验方法与装置》人类发展时代就是用材料命名的,而显微科学技术推动材料发展腾飞。韩晓东表示,工欲善其事,必先利其器,当前72%的物理学、81%的化学和95%的生理学或医学诺贝尔奖是借助尖端科学仪器来完成的。而原子尺度原位高温力学实验技术始终处于国际空白领域,面临着诸多技术难点。针对于此,韩晓东所在团队多年来始终致力于原子尺度原位高温力学实验平台研制。界面现象的微观尺度测量是 2021 年 Science 公布的 125个科学问题之一。在材料科学领域,晶界与孪晶界是两类重要的固-固界面,其力学行为的微观尺度表征与测量是材料科学领域的基础科学问题与难题。报告中,韩晓东介绍了小组原创发展的系列材料力学行为的原子层次原位动态表征方法及相关材料弹塑性原子层次机理,晶界及孪晶界塑性原子机制在原子层次原位影响材料弹塑性行为及机理,拓展材料的弹、塑性理论,并提出提高材料弹性及塑性的新途径。 颁发优秀报告奖分会主席韩晓东 致分会闭幕辞“先进材料”专场结束后,由分会主席向三位青年学者颁发了优秀报告奖,并由韩晓东致分会闭幕辞。
  • 甲氨蝶呤、革兰阳性菌鉴定等14项试剂注册审查指导原则发布
    近日, 国家药监局器审中心发布了血液融化设备、甲氨蝶呤检测试剂、革兰阳性菌鉴定试剂等14项医疗器械产品注册审查指导原则。在这些原则中“甲氨蝶呤检测试剂注册审查指导原则”和“革兰阳性菌鉴定试剂注册审查指导原则”适用于质谱检测法。甲氨蝶呤检测试剂注册审查指导原则适用范围:本指导原则适用于以化学发光法、液相色谱-串联质谱法、均相酶免疫等方法对人体血清/血浆中甲氨蝶呤进行定量检测的体外诊断试剂。其他方法学的甲氨蝶呤检测试剂注册可参照本指导原则,但应根据产品的具体特性确定其中内容是否适用。革兰阳性菌鉴定试剂注册审查指导原则适用范围:本指导原则适用于利用生化鉴定原理,鉴定临床医学相关的革兰阳性需氧型、厌氧型或兼性厌氧细菌的试剂(革兰阳性菌及其鉴定简介见附件);检测样本为从血液、体液、粪便、泌尿生殖道分泌物等临床样本中分离的纯菌。《血液融化设备注册审查指导原则》等14项医疗器械产品注册审查指导原则.ra
  • J.T.Baker:中国区总部乔迁新址
    尊敬的客户: 我们非常荣幸并高兴的告诉您,2010年10月8日起,J.T.Baker中国区总部地址将乔迁至上海市浦东新区东方路18号保利广场E栋501,新的办公地址扩大了办公区域,使得我们能够更好的服务于中国大陆地区的广大客户,更好的与我们的合作伙伴,代理商,经销商紧密联系,为J.T.Baker(上海)的明天打下更好的硬件基础。 一年来,正是由于您对J.T.Baker的信赖与支持,正是由于您对超高纯化学品的不断追求,正是由于您对更快更好的解决方案的卓越选择,年轻的J.T.Baker(上海)才能够在这么短的时间内得到良好的发展,这一已逾百年的品牌在中国大陆的土地上正蓬勃着青春的气息。 我们希望在迁至新的办公地址之后,能够和您继续保持紧密、良好的合作关系,能够更快更好的为您提供超高纯化学品与实验室解决方案,欢迎新老用户和各界朋友莅临参观指导。这是一个新的起点,我们的承诺不变&mdash &mdash 百年品质,超值呈现! 在此,我们向您致以我们最衷心的感谢,并致以我们最诚挚的问候与祝福,祝您国庆节快乐! PS:值此国庆佳节到来之际,J.T.Baker乔迁之喜,J.T.Baker推出LC/MS溶剂精彩献礼活动,详细信息可参看以下链接: http://jtbaker.instrument.com.cn/news_48383.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国MallinckrodtBaker Inc的全资子公司。MallinckrodtBaker Inc拥有的J.T.Baker和Mallinckrodt 两大品牌有130多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 大连化物所等发展出碱(土)金属钌基配位氢化物合成氨催化剂新体系
    近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍、郭建平团队,与丹麦技术大学教授Tejs Vegge团队、大连化物所研究员李海洋团队/江凌团队合作,在催化合成氨研究方面取得进展。该研究首次将配位氢化物材料应用于催化合成氨反应中,开发出一类新型碱(土)金属钌基三元氢化物催化剂,实现了温和条件下氨的催化合成。  氨是重要的化工原料和颇具前景的能源载体,实现温和条件下氨的高效合成具有重要科学意义和实用价值。以化石能源驱动的现有合成氨工业是高能耗、高碳排放的过程。因此,在以可再生能源驱动的“绿色”合成氨过程中,低温低压高效合成氨催化剂的开发是核心技术,也是科研工作者追求的目标。  本工作中,科研团队开发的碱(土)金属钌基三元氢化物(Li4RuH6和Ba2RuH6)催化剂材料可实现温和条件下氨的催化合成。该催化剂材料是一种离子化合物,由Ru的配位阴离子[RuH6]4-和碱(土)金属阳离子Li+或Ba2+构成,在低温(-是电子和质子传递载体,Li+或Ba2+通过稳定NxHy物种降低反应能垒,通过多组分协同催化,使N2和H2以能量较优的反应路径转化为NH3。  该类三元氢化物催化剂作为独特的化合物催化剂,在组成、结构、反应动力学性质、活性中心作用机制等方面显著不同于常规多相合成氨催化剂,而与均相合成氨催化剂存在一定关联,这为多相固氮和均相固氮研究架起了桥梁。该研究丰富了合成氨催化剂体系,并提出了“富电子、多组分活性位点”合成氨催化剂设计策略,为进一步探寻低温低压高效合成氨催化剂提供了新思路。  相关研究成果以Ternary Ruthenium Complex Hydrides for Ammonia Synthesis via the Associative Mechanism为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家自然科学基金委员会基础科学中心项目“空气主份转化化学”、中科院青年创新促进会等的支持。  论文链接
  • Park System纳米科学中心在 纽约州立大学理工学院成立
    Park System纳米科学中心在纽约州立大学理工学院成立Bahgat G. Sammakia博士担任纽约州立大学理工学院Park Systems新纳米科学中心的临时校长“原子力显微镜的全球领导者Park Systems选择在纽约州立大学设立研究中心,我们感到非常荣幸,热烈欢迎的同时又期待着能与Park Systems进行密切合作,进一步推进这一重要领域的研究成果。” - Bahgat Sammakia博士, Bahgat G. Sammakia博士担任纽约州立大学理工学院Park Systems新纳米科学中心的临时校长. 纽约奥尔巴尼 2017年11月1日 Park Systems作为原子力显微镜的世界领导者,宣布位于纽约州立大学理工学院的Park纳米科学中心的成立,纽约州立理工大学是一所拥有着世界最先进的高科技教育与研究发展的高等学府。Park新纳米科学中心作为全球先进的计量AFM研究活动的中心,位于纽约州大学奥尔巴尼分校的NanoFab东楼。在Park新纳米科学中心将会配备Park最新的原子力显微镜产品,其中包括Park NX20, Park SICM和Park NX-Hivac。原子力显微镜制造商Park Systems在全球主要城市都设有纳米科学中心,其中包括加州的圣克拉拉,日本东京 新加坡 德国海德堡 韩国水原和首尔。 纽约州立理工大学Park纳米科学中心的开幕式在2017年11月10日下午2点举行,其中包括剪彩仪式,之后Park Systems的创始人Sang-il Park博士以及其他著名科学家也都进行了精彩的演讲。Park Systems的公司董事长兼首席执行官Sang-il Park博士表示:“AFM因其无损测量和亚纳米级精度被越来越多地用于纳米技术研究中。纽约州立大学Park纳米技术中心为研究人员提供了更多的机会去接触高尖端AFM 纳米工具,并保证在不损坏样品的前提下在任何环境里都能进行可靠,可重复的细胞结构的高分辨率纳米成像。”Bahgat Sammakia博士说到:“原子力显微镜的全球领导者Park Systems选择在纽约州立大学设立研究中心,我们感到非常荣幸,热烈欢迎的同时又期待着能与Park Systems进行密切合作,进一步推进这一重要领域的研究成果。我们翘首以待在Park纳米技术中心探索的所有研究发展机会。”朴博士补充到:“Park Systems先进的 AFM平台中的创新性软件-智能扫描软件(SmarScan),只需单击鼠标便可生成高质量成像。SmarScan的独特设计为大家展示了原子力显微镜的强大功能性并大大提高了用户的研究工作效率。Park AFM与其他测量解决方案相比效率更高,无论是解决方案的时间决策上还是数据的可靠度上Park AFM都更胜一筹。”Park纳米技术中心作为Park Systems美国分公司的崭新分支,将展示最为先进的原子力显微镜系统以及从化学和生物材料到半导体和器件的各种尖端应用,并常年提供实践经验,培训以及服务。纽约州立大学的Park纳米科学中心将成为探索扫描探针显微镜在材料研究,分析化学,生命科学研究和半导体计量方面最先进发展研究人员的独特来源。纽约州立大学纳米科学学院临时院长说:“Park Systems看重我们理工学院拥有最尖端的教育,研究和发展机会而选择在我们奥尔巴尼校区成立中心,这是一件很令人兴奋的事情!” 纳米科学教授,纳米计量中心总负责人Alain Diebold博士说到:“我们的科学家和工程师都非常期待与Park Systems的密切合作,从而增强现有技术研发新技术,并整体提高全球研究人员的计量能力。”纽约州立大学奥尔巴尼科技园区是纳米科技大学和纳米工程与技术创新大学校区所在地,是一个集研究,开发,推广推进技术,商业孵化,试点原型,以及现场为企业合作伙伴提供测试等技术支持为一体的科技园。其合作的企业包括IBM, GlobalFoundries, 三星,TSMC台积电,Applied Materials,东京电子,ASML,Lam Research以及其他众多着重于纳米研究开发技术等研究活动的企业。 Park Systems的介绍 Park Systems是全球市场领先的原子力显微镜(AFM)和新型纳米显微镜系统的制造商,为化学,材料,物理,生命科学,半导体和数据存储行业的研究人员以及工程师提供全配套产品。Park的显微镜被全球上千家公司和机构使用,并凭借独有的创新工程技术,提供高纳米分辨率,在最低运营成本前提下保证最佳效率而海内外闻名。我们的总部遍及韩国,美国,日本和新加坡,在欧洲,亚洲,美洲拥有无数经销商,我们为研究领域和工业界提供世界上最精确, 最高效的原子力显微镜。 纽约州立大学理工学院简介 纽约州立大学系统是世界上最庞大的高等教育系统,也是美国最大最全面的州立大学教育系统,本校提供纳米科学和纳米技术工程学科的本科硕士学位,在奥尔巴尼分校设有尖端纳米生物科学和纳米经济学课程,工程学院包括工程,网络安全,计算机科学和工程技术的本科硕士学位;专业研究包括商业,护理专业;在尤蒂卡/罗马校区开设的文理学院包括自然科学,数学,人文和社会学专业等。作为世界上最先进的研究型学府,纽约州立大学自成立以来不仅拥有数十亿美元的高科技投资更是拥有数百家企业合作伙伴。
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/LTris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(1.标准物质分别用甲醇配制成100 m-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。
  • 安溪县官桥医院100.00万元采购高压灭菌器
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 安溪县官桥医院腹腔镜选型项目公告 福建省-泉州市-安溪县 状态:公告 更新时间: 2023-01-05 安溪县官桥医院腹腔镜选型项目公告 2023年01月05日 15:06 公告概要: 公告信息: 采购项目名称 腹腔镜选型项目 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 安溪县官桥医院 行政区域 泉州市 公告时间 2023年01月05日 15:06 开标时间 2023年01月16日 15:00 预算金额 ¥100.000000万元(人民币) 联系人及联系方式: 项目联系人 李先生 项目联系电话 17750815566采购单位 安溪县官桥医院 采购单位地址 安溪县官桥医院 采购单位联系方式 联系人:肖先生 手机:13600735813 代理机构名称 福建中信工程造价咨询有限公司 代理机构地址 福州市鼓楼区六一中路123号冠茂都会四号综合楼六层 代理机构联系方式 联系人:李先生 联系电话:17750815566 福建中信工程造价咨询有限公司受安溪县官桥医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对腹腔镜选型项目进行其他招标,欢迎合格的供应商前来投标。 项目名称:腹腔镜选型项目 项目编号:FJZX2022A138 项目联系方式: 项目联系人:李先生 项目联系电话:17750815566 采购单位联系方式: 采购单位:安溪县官桥医院 采购单位地址:安溪县官桥医院 采购单位联系方式:联系人:肖先生 手机:13600735813 代理机构联系方式: 代理机构:福建中信工程造价咨询有限公司 代理机构联系人:联系人:李先生 联系电话:17750815566 代理机构地址: 福州市鼓楼区六一中路123号冠茂都会四号综合楼六层 一、采购项目内容 腹腔镜选型项目公告 福建中信工程造价咨询有限公司受安溪县官桥医院的委托,对腹腔镜选型项目进行公开选型,欢迎应询供应商提供符合要求的应询产品,参与选型。 一、项目名称及内容 1.项目名称:腹腔镜选型项目 2.项目内容: 合同号 品目号 设备 主要用途 功能需求 数量 最高 限价 一 1 腹腔镜 用于开展各项腹腔镜下微创手术 1.摄像系统主机可兼容三晶片全高清摄像头,具备全高清图像处理性能,能够输出1920*1080P动态图像,水平分辨线 1000线; 2.摄像系统主机内置USB输出接口,可直接通过USB移动储存设备储存静态图像和动态视频。动态视频采集支持1920*1080P分辨率,静态图像采集支持1920*1080P分辨率。 3.摄像头具备2倍光学变焦技术;配合摄像主机,还可实现2倍电子放大,能够精准进行手术治疗和检查诊断。 4.LED灯泡工作寿命 20000小时,节约医院后续维护成本。 5.镜头可进行高温高压、等温等离子等灭菌,高温高压灭菌次数 450次。 1台 100万元 二、应询供应商资格 1.具有本次采购货物的供货及售后服务能力; 2.具有独立法人资格,提供有效的营业执照; 3.本项目不接受联合体报名。 4.供应商存在以下不良信用记录情形之一的,不得确定为中选供应商: (1)供应商被人民法院列入失信被执行人的; (2)供应商或其法定代表人或拟派项目经理(项目负责人)被人民检察院列入行贿犯罪档案的; (3)供应商被工商行政管理部门列入企业经营异常名录的; (4)供应商被税务部门列入重大税收违法案件当事人名单的; (5)供应商被政府采购监管部门列入政府采购严重违法失信行为记录名单的。 5.具备下列资质证书: (1)《医疗器械生产许可证》复印件或《医疗器械经营企业许可证》复印件或《医疗器械经营备案凭证》复印件; (2) 所投产品若属于第一类医疗器械,应提供《第一类医疗器械产品备案》复印件,所投产品若属于第二类或第三类医疗器械,应提供完整的《医疗器械注册证》及其附件复印件,证件必须在有效期内(加盖单位公章)。 6.单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段选型或者未划分标段的同一项目选型,否则均作为无效应询供应商。 7.按选型公告文件规定成功报名。 8.供应商须符合安溪县卫生健康局安卫发[2020]125号文件要求: (1)应询供应商如实全面提供应询产品的功能、参数、彩页等详细介绍资料。 (2)应询供应商在2023年1月11日17:30前,向代理机构提供应询产品近3年来在国内市场的销售最低价及销售合同等相应佐证材料复印件(应询产品中标公告(含网页链接)或中标通知书或采购合同),未提交的视为放弃参选。 如应询产品为最新产品且在国内市场尚未销售的,应提供有关定价说明及最低价格承诺。 应询产品因配件等原因,应询价格与市场销售最低价存在差异的,应附有关说明及各配件市场销售最低价。 三、报名及选型公告文件索取办法 1、选型公告文件公告期限及报名时间:2023年1月5日起至2023年1月10日;上午8:00~12:00时,下午15:00~17:00时(北京时间)。 2、报名方式:领购选型公告文件即登记报名(须按合同包报名),选型公告文件每套售价300元,一经售出,谢绝退还。选型公告文件若需邮寄,请加付邮寄费50元;对邮寄过程中可能发生的延误或丢失,采购代理机构概不负责。 3、选型公告文件领取地点:安溪县金融行政服务中心4号楼A幢602室。 四、递交应询响应文件截止时间及评审时间:2023年1月16日 下午15:00 五、递交应询响应文件及评审地点:泉州市洛江区安顺路金马物流大厦A幢二楼 六、有关本次设备选型的相关信息(包括选型公告文件若有修改)都将在中国政府采购网(https://www.ccgp.gov.cn/)及安溪县官桥医院微信公众号上发布,请潜在应询供应商随时关注相关网站,以免错漏重要信息。 二、开标时间:2023年01月16日 15:00 三、其它补充事宜 无 四、预算金额: 预算金额:100.0000000 万元(人民币) × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器 开标时间:2023-01-16 15:00 预算金额:100.00万元 采购单位:安溪县官桥医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:福建中信工程造价咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 安溪县官桥医院腹腔镜选型项目公告 福建省-泉州市-安溪县 状态:公告 更新时间: 2023-01-05 安溪县官桥医院腹腔镜选型项目公告 2023年01月05日 15:06 公告概要: 公告信息: 采购项目名称 腹腔镜选型项目 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 安溪县官桥医院 行政区域 泉州市 公告时间 2023年01月05日 15:06 开标时间 2023年01月16日 15:00 预算金额 ¥100.000000万元(人民币) 联系人及联系方式: 项目联系人 李先生 项目联系电话 17750815566 采购单位 安溪县官桥医院 采购单位地址 安溪县官桥医院 采购单位联系方式 联系人:肖先生 手机:13600735813 代理机构名称 福建中信工程造价咨询有限公司 代理机构地址 福州市鼓楼区六一中路123号冠茂都会四号综合楼六层 代理机构联系方式 联系人:李先生 联系电话:17750815566 福建中信工程造价咨询有限公司受安溪县官桥医院 委托,根据《中华人民共和国政府采购法》等有关规定,现对腹腔镜选型项目进行其他招标,欢迎合格的供应商前来投标。 项目名称:腹腔镜选型项目 项目编号:FJZX2022A138 项目联系方式: 项目联系人:李先生 项目联系电话:17750815566 采购单位联系方式: 采购单位:安溪县官桥医院 采购单位地址:安溪县官桥医院 采购单位联系方式:联系人:肖先生 手机:13600735813 代理机构联系方式: 代理机构:福建中信工程造价咨询有限公司 代理机构联系人:联系人:李先生 联系电话:17750815566 代理机构地址: 福州市鼓楼区六一中路123号冠茂都会四号综合楼六层 一、采购项目内容 腹腔镜选型项目公告 福建中信工程造价咨询有限公司受安溪县官桥医院的委托,对腹腔镜选型项目进行公开选型,欢迎应询供应商提供符合要求的应询产品,参与选型。 一、项目名称及内容 1.项目名称:腹腔镜选型项目 2.项目内容: 合同号 品目号 设备 主要用途 功能需求 数量 最高 限价 一 1 腹腔镜 用于开展各项腹腔镜下微创手术 1.摄像系统主机可兼容三晶片全高清摄像头,具备全高清图像处理性能,能够输出1920*1080P动态图像,水平分辨线 1000线; 2.摄像系统主机内置USB输出接口,可直接通过USB移动储存设备储存静态图像和动态视频。动态视频采集支持1920*1080P分辨率,静态图像采集支持1920*1080P分辨率。 3.摄像头具备2倍光学变焦技术;配合摄像主机,还可实现2倍电子放大,能够精准进行手术治疗和检查诊断。 4.LED灯泡工作寿命 20000小时,节约医院后续维护成本。 5.镜头可进行高温高压、等温等离子等灭菌,高温高压灭菌次数 450次。 1台 100万元 二、应询供应商资格 1.具有本次采购货物的供货及售后服务能力; 2.具有独立法人资格,提供有效的营业执照; 3.本项目不接受联合体报名。 4.供应商存在以下不良信用记录情形之一的,不得确定为中选供应商: (1)供应商被人民法院列入失信被执行人的; (2)供应商或其法定代表人或拟派项目经理(项目负责人)被人民检察院列入行贿犯罪档案的; (3)供应商被工商行政管理部门列入企业经营异常名录的; (4)供应商被税务部门列入重大税收违法案件当事人名单的; (5)供应商被政府采购监管部门列入政府采购严重违法失信行为记录名单的。 5.具备下列资质证书: (1)《医疗器械生产许可证》复印件或《医疗器械经营企业许可证》复印件或《医疗器械经营备案凭证》复印件; (2) 所投产品若属于第一类医疗器械,应提供《第一类医疗器械产品备案》复印件,所投产品若属于第二类或第三类医疗器械,应提供完整的《医疗器械注册证》及其附件复印件,证件必须在有效期内(加盖单位公章)。 6.单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段选型或者未划分标段的同一项目选型,否则均作为无效应询供应商。 7.按选型公告文件规定成功报名。 8.供应商须符合安溪县卫生健康局安卫发[2020]125号文件要求: (1)应询供应商如实全面提供应询产品的功能、参数、彩页等详细介绍资料。 (2)应询供应商在2023年1月11日17:30前,向代理机构提供应询产品近3年来在国内市场的销售最低价及销售合同等相应佐证材料复印件(应询产品中标公告(含网页链接)或中标通知书或采购合同),未提交的视为放弃参选。 如应询产品为最新产品且在国内市场尚未销售的,应提供有关定价说明及最低价格承诺。 应询产品因配件等原因,应询价格与市场销售最低价存在差异的,应附有关说明及各配件市场销售最低价。 三、报名及选型公告文件索取办法 1、选型公告文件公告期限及报名时间:2023年1月5日起至2023年1月10日;上午8:00~12:00时,下午15:00~17:00时(北京时间)。 2、报名方式:领购选型公告文件即登记报名(须按合同包报名),选型公告文件每套售价300元,一经售出,谢绝退还。选型公告文件若需邮寄,请加付邮寄费50元;对邮寄过程中可能发生的延误或丢失,采购代理机构概不负责。 3、选型公告文件领取地点:安溪县金融行政服务中心4号楼A幢602室。 四、递交应询响应文件截止时间及评审时间:2023年1月16日 下午15:00 五、递交应询响应文件及评审地点:泉州市洛江区安顺路金马物流大厦A幢二楼 六、有关本次设备选型的相关信息(包括选型公告文件若有修改)都将在中国政府采购网(https://www.ccgp.gov.cn/)及安溪县官桥医院微信公众号上发布,请潜在应询供应商随时关注相关网站,以免错漏重要信息。 二、开标时间:2023年01月16日 15:00 三、其它补充事宜 无 四、预算金额: 预算金额:100.0000000 万元(人民币)
  • 巴林右旗农牧局1319.62万元采购发酵罐,高压灭菌器,超纯水器,过氧化氢灭菌,生物安全柜,氮氢空一...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 巴林右旗农牧局巴林右旗轻工产业园区奶制品加工日处理鲜奶30吨新建项目加工设备、实验室设备采购招标公告 内蒙古自治区-赤峰市-巴林右旗 状态:公告 更新时间: 2023-06-06 招标文件: 附件1 巴林右旗农牧局巴林右旗轻工产业园区奶制品加工日处理鲜奶30吨新建项目加工设备、实验室设备采购招标公告 【发布时间:2023/6/6 】 项目概况 巴林右旗轻工产业园区奶制品加工日处理鲜奶30吨新建项目加工设备、实验室设备采购招标项目的潜在投标人应在内蒙古自治区政府采购网获取招标文件,并于 2023年06月30日 09时00分 (北京时间)前递交投标文件。 一、项目基本情况 项目编号:CFZCYQS-G-H-230016 项目名称:巴林右旗轻工产业园区奶制品加工日处理鲜奶30吨新建项目加工设备、实验室设备采购 采购方式:公开招标 预算金额:13,196,200.00元 采购需求: 合同包1(奶制品加工设备): 合同包预算金额:7,696,200.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他机械设备 乳清分离锅 17(个) 详见采购文件 210,800.00 - 1-2 其他机械设备 奶豆腐搅搓锅 17(个) 详见采购文件 830,450.00 - 1-3 其他机械设备 牛奶分离器 7(个) 详见采购文件 644,700.00 -1-4 其他机械设备 牛奶分离器 5(个) 详见采购文件 271,150.00 - 1-5 其他自动化仪表 牛奶检测仪 13(个) 详见采购文件 104,442.00 - 1-6 罐式专用汽车 奶罐车 4(个) 详见采购文件 283,044.00 - 1-7 真空包装机械 真空包装机 12(个) 详见采购文件 127,800.00 - 1-8 真空包装机械 真空包装机 12(个) 详见采购文件 105,600.00 - 1-9 其他机械设备 奶皮锅 36(个) 详见采购文件 155,736.00 - 1-10 其他机械设备 奶糖锅 8(个)详见采购文件 69,240.00 -1-11 其他机械设备 气动压榨机 12(个) 详见采购文件 55,200.00 - 1-12 其他机械设备 全自动切片机 12(个) 详见采购文件 336,000.00 - 1-13 其他机械设备 奶皮烘干机 7(个) 详见采购文件 45,500.00 - 1-14 其他机械设备 鲜奶过滤与抽吸机(双) 12(个) 详见采购文件 160,800.00 - 1-15 其他机械设备 奶酒发酵设备 4(个) 详见采购文件 72,800.00 - 1-16 制冷压缩机 制冷罐 5(个) 详见采购文件 391,400.00 - 1-17 消毒灭菌设备及器具 巴氏消毒机 12(个) 详见采购文件 47,208.00- 1-18 其他机械设备 全自动喷码机 12(个) 详见采购文件 23,760.00 - 1-19 冷藏箱柜 保鲜冷藏柜 26(个) 详见采购文件 174,070.00 - 1-20 其他机械设备 不锈钢模具 1,500(个) 详见采购文件 60,000.00 - 1-21 其他机械设备 晾晒架 72(个) 详见采购文件 54,720.00 - 1-22 其他衡器 小型电子秤 13(个) 详见采购文件 2,015.00 - 1-23 其他机械设备 单眼水池 13(个) 详见采购文件 2,275.00 - 1-24 其他机械设备 紫外线消毒车 13(个)详见采购文件 4,550.00 - 1-25 除害虫用灯 灭蝇灯 13(个) 详见采购文件 3,380.00 - 1-26 其他机械设备 软塑奶糖制作模具 60(个) 详见采购文件 10,200.00 - 1-27 风扇 大风扇 26(个) 详见采购文件 6,162.00 - 1-28 其他衡器 立式电子秤 13(个) 详见采购文件 10,712.00 - 1-29 其他机械设备 开水器 13(个) 详见采购文件 8,710.00 - 1-30 其他机械设备 晾晒衣架 13(个) 详见采购文件 10,335.00 - 1-31 其他机械设备 发酵桶 50(个) 详见采购文件 19,000.00 - 1-32 其他机械设备 发酵桶 200(个) 详见采购文件 101,000.00 - 1-33 其他机械设备 发酵桶 1,000(个) 详见采购文件 33,000.00 - 1-34 其他机械设备 不锈钢案板 120(个) 详见采购文件 135,960.00 - 1-35 其他机械设备 卸奶罐 1(个) 详见采购文件 5,565.00 - 1-36 离心泵 卫生级离心泵 2(个) 详见采购文件 6,180.00 - 1-37 其他机械设备 转子泵 1(个) 详见采购文件 12,360.00 - 1-38 其他机械设备清洗回程泵 1(个) 详见采购文件 8,148.00 - 1-39 其他机械设备 双联过滤器 1(个) 详见采购文件 13,390.00 - 1-40 流量计量标准器具 数显式流量计 3(个) 详见采购文件 9,000.00 - 1-41 制冷压缩机 立式制冷罐 1(个) 详见采购文件 36,050.00 - 1-42 其他机械设备 单层暂存罐 2(个) 详见采购文件 40,600.00 - 1-43 其他机械设备 预热罐 1(个) 详见采购文件 37,801.00 - 1-44 离心机 离心分离机 1(个) 详见采购文件 54,500.00 - 1-45 其他机械设备 立式发酵罐 5(个) 详见采购文件 155,000.00 - 1-46 其他机械设备 CIP清洗系统 1(个) 详见采购文件 60,500.00 - 1-47 其他机械设备 发酵罐工作台 1(个) 详见采购文件 24,300.00 - 1-48 其他机械设备 巴氏杀菌罐 2(个) 详见采购文件 42,000.00 - 1-49 其他机械设备 滤乳清槽 2(个) 详见采购文件 30,400.00 - 1-50 其他机械设备 真空包装机 1(个) 详见采购文件 14,935.00 - 1-51 其他机械设备 净水系统 1(个) 详见采购文件 22,660.00 - 1-52 其他机械设备 均质机 1(个) 详见采购文件 53,560.00 - 1-53 其他机械设备 双门酸奶机 2(个) 详见采购文件 18,600.00 - 1-54 灌装机械 杯装灌装机 1(个) 详见采购文件 97,850.00 - 1-55 其他机械设备 袋装包装机 1(个) 详见采购文件 55,620.00 - 1-56 其他机械设备 快装阀门 1(个) 详见采购文件 6,180.00 - 1-57 输送管道管道 1(个) 详见采购文件 9,270.00 - 1-58 其他机械设备 卡箍弯头组件 1(个) 详见采购文件 5,150.00 -1-59 温度仪表 温度表 3(个) 详见采购文件 240.00 - 1-60 配电箱 单控配电箱 1(个) 详见采购文件 20,600.00 - 1-61 线材(盘条) 线材 1(个) 详见采购文件 6,500.00 - 1-62 其他机械设备 控制柜、器具 8(个) 详见采购文件 75,000.00 - 1-63 其他机械设备 乳清制冷罐(暂存罐) 1(个) 详见采购文件 33,000.00 - 1-64 其他机械设备 双联过滤器 2(个) 详见采购文件 26,780.00 - 1-65 其他机械设备 奶酒发酵缸 30(个) 详见采购文件 69,000.00- 1-66 其他机械设备 奶酒发酵罐 12(个) 详见采购文件 197,760.00 - 1-67 其他机械设备 奶酒一次蒸馏器 2(个) 详见采购文件 96,140.00 - 1-68 其他机械设备 奶酒半成品过滤器 2(个) 详见采购文件 11,650.00 - 1-69 其他机械设备 奶酒半成品储存罐 6(个) 详见采购文件 55,620.00 - 1-70 其他机械设备 奶酒二次蒸馏器 1(个) 详见采购文件 29,000.00 - 1-71 其他机械设备 奶酒成品储存罐 4(个) 详见采购文件 66,000.00 - 1-72 其他机械设备 CIP清洗系统 2(个) 详见采购文件 201,880.00 - 1-73 其他机械设备 牛奶储存罐制冷罐 1(个) 详见采购文件 36,050.00 - 1-74 其他机械设备 奶酒发酵缸 30(个) 详见采购文件 540.00 - 1-75 其他机械设备 奶酒发酵罐 12(个) 详见采购文件 21,600.00 - 1-76 其他机械设备 奶酒半成品储存罐 6(个) 详见采购文件 11,400.00 - 1-77 其他机械设备 奶酒二次蒸馏器 1(个) 详见采购文件 39,140.00 - 1-78 其他机械设备 奶酒成品储存罐 4(个) 详见采购文件 30,000.00 - 1-79 其他机械设备 乳清储存制冷罐 1(个) 详见采购文件 33,000.00 - 1-80 搅拌机械 多功能搅拌机 1(个) 详见采购文件 7,000.00 - 1-81 其他机械设备 多功能曲奇机(全自动) 1(个) 详见采购文件 9,800.00 - 1-82 灌装机械 全自动膏体液体灌装机 2(个) 详见采购文件 31,600.00 - 1-83 其他机械设备 奶酪发酵槽 2(个) 详见采购文件 39,200.00 - 1-84 其他机械设备 奶酪压榨机 2(个) 详见采购文件 39,000.00 - 1-85 灌装机械 奶酒全自动灌装线 2(个) 详见采购文件 180,240.00 - 1-86灌装机械 乳清饮料全自动灌装线 1(个) 详见采购文件 125,000.00 - 1-87 其他机械设备 连接管道设备 1(个) 详见采购文件 61,800.00 - 1-88 冷藏箱柜 冷藏设备 1(个) 详见采购文件 86,000.00 - 1-89 其他制冷空调设备 风淋消毒系统 1(个) 详见采购文件 53,560.00 - 1-90 其他制冷空调设备 新风系统 1(个) 详见采购文件 100,000.00 - 1-91 其他机械设备 更衣室设备 1(个) 详见采购文件 5,000.00 - 1-92 其他机械设备 门禁系统 1(个) 详见采购文件 4,762.00 - 1-93 其他机械设备 设备控制柜 10(个) 详见采购文件 45,000.00 - 1-94 视频监控设备 奶酒加工设备监控系统 1(套) 详见采购文件 456,000.00 - 本合同包不接受联合体投标 合同履行期限:自合同签订起30日历天 合同包2(实验室设备): 合同包预算金额:5,500,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 2-1 色谱仪 气相色谱-三重四极杆串联质谱仪 1(台) 详见采购文件 1,207,000.00 - 2-2 色谱仪 液相色谱-三重四极杆质谱仪 1(台) 详见采购文件 1,850,000.00 - 2-3 旋涡泵 旋涡混匀器 2(台) 详见采购文件 4,400.00 - 2-4 其他机械设备 多功能加热平台 1(台) 详见采购文件 12,000.00 - 2-5 其他机械设备 液晶超声波清洗器 1(台) 详见采购文件 7,980.00 - 2-6 其他计量仪器 酒精计 2(台) 详见采购文件 3,600.00 - 2-7 其他机械设备 磁力搅拌器 2(台) 详见采购文件 2,600.00 - 2-8 其他自动化仪表 旋转蒸发仪 1(台) 详见采购文件 9,600.00 - 2-9 其他自动化仪表 正压固相萃取仪 1(台) 详见采购文件 72,000.00 - 2-10 其他自动化仪表 全自动氮吹浓缩仪 1(台) 详见采购文件 55,000.00 - 2-11 离心机 高速冷冻离心机 1(台) 详见采购文件 91,000.00 - 2-12 离心机 高速台式离心机 1(台) 详见采购文件 7,200.00 - 2-13 粉碎机 研磨粉碎机 2(台) 详见采购文件 1,040.00 - 2-14 其他泵 低噪音空气泵 1(台) 详见采购文件 5,200.00 -2-15 其他机械设备 氮氢空一体机 2(台) 详见采购文件 48,400.00 - 2-16 其他自动化仪表 自动凯氏定氮仪 1(台) 详见采购文件 16,000.00 - 2-17 其他自动化仪表 石墨消解仪(含消解排废装置) 1(台) 详见采购文件 16,000.00 - 2-18 其他自动化仪表 均质机 1(台) 详见采购文件 20,800.00 - 2-19 其他机械设备 恒温水浴槽 2(台) 详见采购文件 2,600.00 - 2-20 其他机械设备 数控电热恒温鼓风干燥箱 2(台) 详见采购文件 9,300.00 - 2-21 其他计算仪器 菌落计数器 1(台) 详见采购文件850.00 - 2-22 其他机械设备 霉菌培养箱 1(台) 详见采购文件 15,000.00 - 2-23 其他计量仪器 pH计 2(台) 详见采购文件 7,600.00 - 2-24 分析天平及专用天平 十万分之一电子天平 1(台) 详见采购文件 34,010.00 - 2-25 分析天平及专用天平 万分之一电子天平 2(台) 详见采购文件 25,746.00 - 2-26 分析天平及专用天平 千分之一电子天平 2(台) 详见采购文件 19,300.00 - 2-27 分析天平及专用天平 百分之一电子天平 3(台) 详见采购文件 3,243.00 - 2-28 其他机械设备 水浴恒温振荡器1(台) 详见采购文件 8,500.00 - 2-29 其他机械设备 恒温培养摇床 2(台) 详见采购文件 17,000.00 - 2-30 其他计量仪器 温湿度计 10(台) 详见采购文件 3,450.00 - 2-31 其他自动化仪表 光化学衍生仪 1(台) 详见采购文件 19,800.00 - 2-32 其他机械设备 立式高压蒸汽灭菌器 1(台) 详见采购文件 18,800.00 - 2-33 其他机械设备 马弗炉 1(台) 详见采购文件 4,200.00 - 2-34 其他机械设备 红外灭菌器 1(台) 详见采购文件 2,350.00 - 2-35其他机械设备 玻璃烘干器 4(台) 详见采购文件 4,720.00 - 2-36 其他机械设备 散热设备 19(台) 详见采购文件 74,100.00 - 2-37 其他机械设备 散热设备 2(台) 详见采购文件 17,000.00 - 2-38 其他自动化仪表 微波消解仪 1(台) 详见采购文件 265,620.00 - 2-39 其他自动化仪表 多功能食品安全检测仪 1(台) 详见采购文件 55,800.00 - 2-40 其他机械设备 生物安全柜 1(台) 详见采购文件 56,000.00 - 2-41 其他自动化仪表 电位滴定仪 1(台) 详见采购文件 120,000.00 - 2-42 其他机械设备 超纯水机 1( 台) 详见采购文件 39,800.00 - 2-43 其他处理过水 实验室废水处理系统 1( 台) 详见采购文件 149,000.00 - 2-44 化学试剂和助剂 甲胺磷 6(瓶) 详见采购文件 522.00 - 2-45 化学试剂和助剂 氧化乐果 6(瓶) 详见采购文件 2,241.00 - 2-46 化学试剂和助剂 乐果 6(瓶) 详见采购文件 2,241.00 - 2-47 化学试剂和助剂 甲拌磷 6(瓶) 详见采购文件 2,241.00 - 2-48 化学试剂和助剂 对硫磷 6(瓶) 详见采购文件 1,200.00 -2-49 化学试剂和助剂 甲基对硫磷 6(瓶) 详见采购文件 1,200.00 - 2-50 化学试剂和助剂 异柳磷 6(瓶) 详见采购文件 2,241.00 - 2-51 化学试剂和助剂 水胺硫磷 6(瓶) 详见采购文件 2,241.00 - 2-52 化学试剂和助剂 毒死蜱 6(瓶) 详见采购文件 1,560.00 - 2-53 化学试剂和助剂 敌敌畏 6(瓶) 详见采购文件 1,200.00 - 2-54 化学试剂和助剂 乙酰甲胺磷 6(瓶) 详见采购文件 2,241.00 - 2-55 化学试剂和助剂 三唑磷 6(瓶) 详见采购文件 522.00 - 2-56 化学试剂和助剂 丙溴磷 6(瓶) 详见采购文件 2,241.00 - 2-57 化学试剂和助剂 杀螟硫磷 6(瓶) 详见采购文件 2,241.00 - 2-58 化学试剂和助剂 马拉硫磷 6(瓶) 详见采购文件 1,320.00 - 2-59 化学试剂和助剂 亚胺硫磷 6(瓶) 详见采购文件 1,200.00 - 2-60 化学试剂和助剂 二嗪农 6(瓶) 详见采购文件 522.00 - 2-61 化学试剂和助剂 伏杀硫磷 6(瓶) 详见采购文件 2,241.00 - 2-62 化学试剂和助剂 百菌清 6(瓶) 详见采购文件 810.00 - 2-63 化学试剂和助剂 粉锈宁 6(瓶) 详见采购文件 1,200.00 - 2-64 化学试剂和助剂 异菌脲 6(瓶) 详见采购文件 2,241.00 - 2-65 化学试剂和助剂 三氯杀螨醇 6(瓶) 详见采购文件 2,241.00 - 2-66 化学试剂和助剂 速克灵 6(瓶) 详见采购文件 1,200.00 - 2-67 化学试剂和助剂 五氯硝基苯 6(瓶) 详见采购文件 2,241.00 - 2-68 化学试剂和助剂 乙烯菌核利 6(瓶) 详见采购文件 2,241.00 - 2-69 化学试剂和助剂 氯氰菊酯 6(瓶) 详见采购文件 2,241.00 - 2-70 化学试剂和助剂 氰戊菊酯 6(瓶) 详见采购文件 2,241.00 - 2-71 化学试剂和助剂 溴氰菊酯 6(瓶) 详见采购文件 1,320.00 - 2-72 化学试剂和助剂 甲氰菊酯 6(瓶) 详见采购文件 2,241.00 - 2-73 化学试剂和助剂 氟氯氰菊酯 6(瓶) 详见采购文件 2,241.00 - 2-74 化学试剂和助剂 高效氯氟氰菊酯 6(瓶) 详见采购文件 1,320.00 - 2-75 化学试剂和助剂 氟胺氰菊酯 6(瓶) 详见采购文件 2,241.00 - 2-76 化学试剂和助剂 氟氰戊菊酯6(瓶) 详见采购文件 2,988.00 - 2-77 化学试剂和助剂 联苯菊酯 6(瓶) 详见采购文件 1,320.00 - 2-78 化学试剂和助剂 六六六四种混合体 6(瓶) 详见采购文件 1,200.00 - 2-79 化学试剂和助剂 灭幼脲 6(瓶) 详见采购文件 1,200.00 - 2-80 化学试剂和助剂 除虫脲 6(瓶) 详见采购文件 1,584.00 - 2-81 化学试剂和助剂 多菌灵 6(瓶) 详见采购文件 1,200.00 - 2-82 化学试剂和助剂 阿维菌素 6(瓶) 详见采购文件 2,241.00 - 2-83 化学试剂和助剂吡虫啉 6(瓶) 详见采购文件 864.00 - 2-84 化学试剂和助剂 铅标准溶液 6(瓶) 详见采购文件 420.00 - 2-85 化学试剂和助剂 铜标准溶液 6(瓶) 详见采购文件 420.00 - 2-86 化学试剂和助剂 锌标准溶液 6(瓶) 详见采购文件 420.00 - 2-87 化学试剂和助剂 汞标准溶液 6(瓶) 详见采购文件 420.00 - 2-88 化学试剂和助剂 砷标准溶液 6(瓶) 详见采购文件 810.00 - 2-89 化学试剂和助剂 无水硫酸镁 6(瓶) 详见采购文件 522.00 - 2-90化学试剂和助剂 磷酸二氢钾 6(瓶) 详见采购文件 288.00 - 2-91 化学试剂和助剂 癸烷磺酸钠 6(瓶) 详见采购文件 1,374.00 - 2-92 化学试剂和助剂 无水硫酸钠 6(瓶) 详见采购文件 90.00 - 2-93 化学试剂和助剂 硫酸铵 6(瓶) 详见采购文件 192.00 - 2-94 化学试剂和助剂 柠檬酸铵 6(瓶) 详见采购文件 372.00 - 2-95 化学试剂和助剂 溴百里酚蓝 6(瓶) 详见采购文件 858.00 - 2-96 化学试剂和助剂 4-甲基-2-戊酮 6(瓶) 详见采购文件 258.00 -'
  • IBM发布全球首款2nm芯片
    由IBM的奥尔巴尼工厂制造的2nm晶圆IBM Research表示,公司已制造出了首个2nm工艺的测试半导体芯片,此举将有助于减少能源排放。据IBM称,2nm处理器相比7nm制程芯片,在相同功率下将提高45%的性能,或减少75%的能耗。这款测试芯片在指甲盖大小的面积上集成了500亿个晶体管。IBM Research 在其位于纽约奥尔巴尼的实验室中开发了 2 nm测试芯片。IBM混合云副总裁Mukesh Khare表示,IBM在奥尔巴尼工厂在300 mm硅晶片上创造了2nm工艺的里程碑。IBM 与纽约州、三星电子和英特尔合作推进半导体设计。IBM 分别于 2015 年和 2017 年创建了首个 7 纳米和 5nm 测试芯片。随着知识产权竞争与中国的升温,半导体创新成为美国的热门话题。此外,半导体短缺正在阻碍主要市场的供应链和制造。据IBM称,2nm处理器将能够加速人工智能、边缘计算、自主系统等领域的应用。IBM表示,将在其IBM电力系统和IBM Z以及其他系统中使用这项技术。IBM研究部主任Dario Gil说,新的处理器可以解决可持续性和气候变化问题。数据中心占全球能源使用量的 1%。Khare说,这项2纳米技术将于2024年底投产。
  • Nature | 菌群代谢物激活自然杀伤性T细胞的机制
    机体与共生微生物相互作用,共同进化,在机体的免疫系统发育和稳态维持发挥关键作用。微生物代谢物多样性水平很高,宿主已经进化出复杂的机制来区分病原体和共生体衍生而来的分子。但是在一个物种中,微生物代谢物仍然会存在结构变异。以结构为基础探究化学异构体的生物学作用极具挑战性。在人肠道微生物中,脆弱拟杆菌经常用于研究共生菌衍生物活性的分子机制。目前已经鉴定出α-半乳糖神经酰胺(α-Galactosylceramide BfaGCs)是由脆弱拟杆菌产生的可用做免疫调节分子的衍生物。新生小鼠脆弱拟杆菌单菌定植或者新生小鼠口服BfaGCs可以调节肠道NKT细胞数量。而给与小鼠BfaGCs突变的脆弱拟杆菌,小鼠的表现类似于无菌小鼠。也有报道发现鞘氨醇单胞菌可以调控肠道NKT(natural killer T)细胞功能。但是菌群衍生物在调控宿主免疫系统中的分子机制尚不清楚。2021年11月10日,来自哈佛大学的Dennis L. Kasper 团队在Nature 上发表题为Host immunomodulatory lipids created by symbionts from dietary amino acids 的文章。本研究从结构水平上证实BfaGCs可以直接作用于NKT细胞,与CD1d和TCR结合激活NKT。作者首先利用LC-MS/MS技术分析脆弱拟杆菌鞘脂发现BfaGCs是同源酰基链的混合物。其中C34丰度最高。鉴于共生菌来源鞘脂的结构多样性,作者系统构建了16个BfaGCs类似物,7个异构体。支链BfaGCs在真核生物中相对少见,原核生物中更常见。于是作者评估了支链氨基酸对于BfaGCs生物合成的影响。分析后发现支链氨基酸可以直接渗入脂质决定BfaGCs的结构,而不含氨基酸时BfaGCs倾向于单支和非支化结构。进一步研究发现宿主饮食中补充或者去除支链氨基酸直接影响单支和分支型鞘脂的比例。这些结果在分子水平证实了宿主膳食对于肠道菌群衍生物合成的影响。接下来作者开始通过靶向脆弱杆菌支链氨基酸代谢途径来探究支链BfaGCs对于肠道NKT的调控作用。支链氨基酸转氨酶BCAT将支链氨基酸脱氨基为a-酮羧酸,进一步再转化为支链脂肪酸。作者构建了目标基因敲除菌株(BF9343-Δ3671)。对比发现野生菌株与敲除菌株在小鼠肠道定植水平相当,敲除菌株产生不含分支的BfaGCs水平更高。分析结果显示敲除菌株定植的小鼠成年后结肠NKT细胞数量较高。作者又利用BMDC(小鼠骨髓来源树突状细胞)和NKT共培养体系评估21种合成BfaGCs对NKT的作用。检测IL2的产生水平,作者把21中合成物分成了两组:强刺激物和弱刺激物。10个属于强刺激物都是分支结构,11个弱刺激物没有这些结构。作者又直接挑选了支链和不含支链的代表合成分子SB2222和SB2223,浓度梯度实验发现支链长度与刺激强度无关。作者用脆弱拟杆菌主要合成的SB2217 和SB2219进行体内实验。对比与KRN7000诱导的IFNr产生和CD1d配体OCH诱导的IL4,含支链的SB2217则只能较弱的产生IFNr和IL4,不含支链的SB2219则几乎不能产生IFNr和IL4。预防性给与小鼠SB2217可以保护小鼠免受炎症,减少小鼠体重减轻和组织损伤。为了细致分析SB2217的体内效应,作者分析了SB2217处理后脾脏NKT细胞的转录组特征。分析发现SB2217可以促进NKT相关细胞因子表达以及免疫信号的激活。这表明SB2217是CD1d的功能性配体和NKT细胞的激动剂。最后作者分析了BfaGC和CD1d、TCR相互作用的晶体结构,从结构水平上证明了BfaGC是由CD1d呈递的配体,并被NKT细胞受体以保守方式识别。亲和力比较支链BfaGC SB2217大于非支链 SB2219。本研究证实BfaGCs的分支结构是激活NKT细胞的关键决定因素,从而诱导特定的免疫调节基因表达特征,并从结构水平和亲和力分析证实了BfaGCs与CD1d和TCR相互作用方式。本文为菌群、饮食以及免疫系统相互作用提供了分子机制范式。原文链接:https://doi.org/10.1038/s41586-021-04083-0
  • 【激光氨气分析】AE: 华北农区秋冬季地气氨交换规律
    原文:中国科学院大气物理研究所 题注:宁波海尔欣光电科技有限公司和中科院大气物理研究所和深入合作,研发了一款便携式、高精度、快响应的HT8700开路多通池激光氨分析仪,并以HT8700为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统,这是目前测量地气氨交换通量的理想方法。 本文介绍了一个发表在Atmospheric Environment的研究工作。该项目采用了HT8700和涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据。============================================================================== 华北是我国氨的热点区域,大气中的氨含量高,空间覆盖范围广,这与区域内高强度的农业活动密切相关,如农业施肥、畜牧养殖等。高浓度的大气氨和由此引发的过量活性氮沉降,会导致重霾污染天气,也深刻改变了氮素的生物地球化学循环。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。 相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 鉴于此,中国科学院大气物理研究所联合中国农业大学、中国科学院亚热带农业生态研究所等单位,采用自主研制的开路激光氨分析仪(Wang et al.,2021)和基于大气湍流理论的涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,研究站点位于河北省曲周县,该地区的氨排放和沉降问题尤为突出。 研究团队成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据,并估算出由此损失的氮占氮肥施用量的0.57-0.71%,该结果远远低于同类观测研究的估算结果,这在很大程度上归因于优化后的施肥管理措施,为评估农业氨减排途径的有效性提供了观测证据。得益于观测设备在测量精度和频率上的优良性能,研究团队还首次获得农区高时间分辨率(半小时)的氨干沉降通量数据集,监测到平均沉降速率为14 g N ha-1 d-1,并发现迥然不同于自然生态系统的干沉降日变化规律。未来,利用该自主仪器及方法开展长期定位观测,可为氨干沉降通量的联网观测研究提供有效的验证数据,有助于提升对氨沉降时空变化规律的认识。 图1 基于自主研制仪器的氨湍流通量观测系统 图2 华北典型农区秋冬季氨浓度和氨通量半小时平均观测值(子图b和c中的通量值与子图a相同,纵轴坐标数值范围不同) 图3 华北典型农区秋冬季氨浓度和氨干沉降通量日变化趋势 上述研究成果近期发表于Atmospheric Environment,论文一作为大气物理研究所王凯博士和中国农业大学王敬霞研究生,通讯作者为中国农业大学刘学军教授。研究得到国家大气重污染成因与治理攻关项目(DQGG0208)、国家重点研发计划项目(2018YFC0213301、2017YFD0200101)、国家自然科学基金(41975169、42175137)等项目的资助。 相关文献:1. Wang K., Wang J., Qu Z., Xu W., Wang K., Zhang H., Shen J., Kang P., Zhen X., Wang Y., Zheng X., Liu X., 2022. A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment 278, 119070. 2. Wang K., Kang P., Lu Y., Zheng X., Liu M., Lin T., Butterbach-Bahl K., Wang Y., 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.
  • 关于巴拉圭冬青叶(马黛茶叶)等9种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对巴拉圭冬青叶(马黛茶叶)等3种物质申请新食品原料、食用单宁等2种物质申请食品添加剂新品种、N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]等4种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年11月23日巴拉圭冬青叶(马黛茶叶)等3种新食品原料.pdf一、新食品原料解读材料(一)巴拉圭冬青叶(马黛茶叶)巴拉圭冬青叶(马黛茶叶)是以冬青科冬青属植物巴拉圭冬青(Ilex paraguariensis A.St.-Hil.)的叶为原料,经采摘、烘烤、切碎、干燥等工艺制成。主要营养成分为碳水化合物、粗纤维、蛋白质、脂肪、维生素、矿物质和氨基酸等,且含有少量的多酚、黄酮和皂苷类等物质。巴拉圭冬青叶(马黛茶叶)在美国被作为“一般认为安全的物质(GRAS)”管理,欧盟批准其作为新食品原料使用,加拿大批准其作为天然健康食品使用,巴西批准巴拉圭冬青的叶和茎可用于制茶。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对巴拉圭冬青叶(马黛茶叶)的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于巴拉圭冬青叶(马黛茶叶)在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。(二)酵母蛋白酵母蛋白是以酿酒酵母(Saccharomyces Cerevisiae)为菌种,经培养、发酵、离心后收集获得菌体原料,经去除核酸、离心、酶解、提取、纯化、分离、灭菌、干燥等工艺制成。主要营养成分为蛋白质(≥70.0g/100g)、脂肪、膳食纤维和水分等。目前,美国已批准酿酒酵母蛋白作为营养补充剂添加到食品中,欧盟已批准酿酒酵母蛋白作为新食品原料,均未做食用量限定。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对酵母蛋白的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于酵母蛋白在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)儿茶素儿茶素是以茶叶为原料,经醇提取、浓缩、分离、萃取、酶解、浓缩、干燥等工艺制成。其中主要成分为儿茶素类,包括表儿茶素(EC)、表没食子儿茶素(EGC)、水合表儿茶素没食子酸酯(ECGH2O)、水合表没食子儿茶素没食子酸酯(EGCGH2O)、没食子儿茶素没食子酸酯(GCG)、儿茶素(dl-C),儿茶素类总含量(以干基计)≥90 g/100g,其中EGCG含量≥50 g/100g。原卫生部2010年第17号公告批准表没食子儿茶素没食子酸酯(EGCG)为新资源食品,每日推荐食用量为≤300毫克/天(以EGCG计)。绿茶儿茶素已被日本批准为特定保健食品用功能配料。本产品推荐食用量为≤300毫克/天(以儿茶素类总量计)(即儿茶素类总含量为100 g/100g的原料的推荐食用量为≤300毫克/天,含量为90-100 g/100g的按照实际含量折算)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对儿茶素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于儿茶素在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)食用单宁1.背景资料。食用单宁作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于黄酒、啤酒、葡萄酒和配制酒的加工工艺,油脂脱色工艺。本次申请扩大使用范围用于制糖工艺。日本厚生劳动省允许其作为加工助剂用于各类食品。2.工艺必要性。该物质作为食品工业用加工助剂用于制糖工艺,提高澄清效果。其质量规格执行《食品安全国家标准食品添加剂食用单宁》(GB 1886.303)。(二)乙酸乙酯1.背景资料。乙酸乙酯作为食品工业用加工助剂已列入《食品安全国家标准食品添加剂使用标准》(GB 2760),允许用于配制酒的加工工艺、酵母抽提物的加工工艺。本次申请扩大使用范围用于茶叶提取物的加工工艺。欧盟委员会、澳大利亚和新西兰食品标准局允许其作为提取溶剂用于各类食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-25mg/kgbw。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶提取物的加工工艺,用于提取茶多酚和茶氨酸。其质量规格执行《食品安全国家标准食品添加剂乙酸乙酯》(GB 1886.190)。三、食品相关产品新品种解读材料(一)N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]1.背景资料。该物质在常温常压下为白色固体粉末。《食品安全国家标准食品接触材料及制品用添加剂使用标准》(GB 9685)已批准其作为添加剂用于橡胶和聚乙烯(PE)、聚丙烯(PP)等多种塑料材料及制品中。本次申请将其使用范围扩大至聚氨酯(PU)传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(二)2,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯 四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯1.背景资料。该物质在常温常压下为白色固体粉末。GB 9685批准其作为添加剂用于橡胶、涂料及涂层、黏合剂以及PE、PP等多种塑料材料及制品中。本次申请将其使用范围扩大至PU传送带。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为抗氧化剂,能够减缓聚氨酯的热氧化降解。(三)咖啡渣1.背景资料。该物质为烘焙咖啡豆经水萃取咖啡后的剩余物料,在常温下为褐色(棕色)至深咖啡色的粉末状细颗粒,不溶于水。葵花籽壳和木质纤维等类似材料已被美国食品药品管理局和欧盟委员会允许用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为填充料,用于聚乳酸(PLA)和聚丁二酸丁二醇酯(PBS)塑料材料及制品中,可改善材料的综合力学性能、成型加工性能和产品的使用性能。(四)甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物1.背景资料。该物质不溶于水,几乎不溶于正辛醇等有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,可用于水性涂料,涂膜附着力强,耐腐蚀性较好。“三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布17条征求意见,共涉及62种化合物。(2023年“三新食品”公示名单汇总!)点击了解更多“三新食品”》》》关于“三新食品”目录及适用的食品安全标准的公告及解读》》》国家卫生健康委员会关于桃胶等15种“三新食品”的公告》》》解读《关于蓝莓花色苷等14种“三新食品”的公告》》》》关于文冠果种仁等8种“三新食品”的公告与解读》》》关于蓝莓花色苷等14种“三新食品”的公告
  • 开放创新 合作共赢——莱伯泰科出席“2024中德(欧)隐形冠军论坛”
    5月13日,北京中德产业合作发展论坛——2024中德(欧)隐形冠军论坛在北京顺义中德国际会议会展中心盛大开幕。本次论坛由北京市顺义区人民政府、国际经济参议院、北京国际技术交易联盟主办,国家发展和改革委员会国际合作中心、亚洲数据集团作为战略合作伙伴单位共同举办。论坛以“开放创新 合作共赢”为主题,近400位国内外政府代表、专家教授、行业领袖、企业高管、来自德国及欧洲各国的政商界代表和隐形冠军企业代表汇聚现场,碰撞发展思路,交流创新经验,共同写下中德(欧)经济技术合作新篇章。作为受邀参展的顺义杰出企业之一,莱伯泰科秉持着"打造世界级实验分析仪器企业"的愿景,致力于提供更准确、更快捷、更智能的分析检测解决方案。在本次论坛上,莱伯泰科展出了自主研发生产的第一款高端质谱仪器——LabMS 3000电感耦合等离子体质谱仪(ICP-MS),向国内外与会代表们展示了莱伯泰科在高端科学仪器领域的重要地位和创新实力。电感耦合等离子体质谱仪Lab-MS 3000ICP-MS强大:集成型高基质进样系统,支持在线氩气稀释和有机样品加氧除碳,从而减少样品前处理时间并避免此过程中引入的各种污染精准:新一代碰撞反应池技术,消除棘手的多原子离子和双电荷离子干扰,提升数据质量安全:具有多重安全防控以及定时维护日志,确保仪器在安全、可靠的状态下运行,尽量减少计划外的停机和提供安全保护智能:HiMass智能工作站,中英文语言实时切换,支持接入实验室管理系统和定制报告模版,向导式设计更符合中国人操作习惯高效:与LabTech前处理设备无缝衔接实现一站式元素分析解决方案,使元素分析更高效、更准确、更安全关于莱伯泰科北京莱伯泰科仪器股份有限公司成立于2002年,是一家专业从事实验分析仪器的研发、生产和销售的科技型公司。莱伯泰科自成立之初便致力于为环境检测、食品安全、疾病控制、半导体检测、生命科学、能源化工、核环保、公安司法、地质与地矿、材料研究等众多行业客户提供实用可靠的实验室分析仪器、智能自动化前处理设备、实验室工程和耗材在内的实验室整体解决方案,是全球范围内能将多种类、多功能的样品前处理技术与全自动实验分析检测平台组合成全自动实验分析仪器系统的主要实验分析仪器供应商之一。莱伯泰科拥有LabTech、CDS、Empore等品牌,在中国和美国设有研发和生产基地,并在中国内地主要城市、中国香港、美国马萨诸塞州和宾夕法尼亚州等地设有产品营销和服务中心。目前,公司产品已销往全球90多个国家,累计服务客户3万余家。未来,莱伯泰科将继续秉承自主创新的发展思路,以安全可靠的智能自动化实验室设备和解决方案服务于各行各业,让分析检测更准确、更快速、更智能!
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 奥思德超纯水机惊艳亮相第十一届慕尼黑上海分析生化展!
    2023年7月11日-13日,第十一届慕尼黑上海分析生化展(analytica china)在国家会展中心(上海)隆重举办。作为亚洲乃至全球最高规格的实验室行业盛会,慕尼黑上海分析生化展备受瞩目,吸引了来自国内外1200多家参展企业及合作单位共襄盛举,总展出面积近80000平方米,百余场重磅高峰论坛及同期会议,为实验圈人士奉上了一场集创新产品、先进技术及解决方案为一体的行业盛宴。本届展会,重庆奥思德仪器设备有限公司携新产品实验室E系列超纯水机及实验室超纯水解决方案闪亮登场,现场更是吸引了广大分析检测客户、专家、经销商等同行驻足展台,深度洽谈。展会现场,许多经销商亲自体验,更加深入地了解了奥思德超纯水机的产品优势和性能,纷纷表示称赞与肯定,同时加深了合作的意向。近年来,奥思德公司紧跟国家产业政策导向,竭力做好国产优质超纯水机,在科研上狠下功夫,先后投入大量的人力、物力,自助研发多项EDI专利系统,使EDI模块的使用寿命延长至5年以上,使超纯化柱的消耗减少10倍以上,为用户节约了大量的耗材费用;在TOC降解技术上,自主研发设计了185nm/254nm双波长紫外灯,配合自主研发的离子交换树脂,可高效去除水中有机污染物,经过几百万组的实验检测数据证明,真正实现了水质TOC小于3ppb,保证了用户的实验水质。未来,奥思德公司将继续秉承“品质第一,顾客至上”的企业理念,不断加大研发投入,坚持自主创新,为广大用户设计制造出先进实用的超纯水设备,提供更加优质的产品与服务。查看更多分享到:
  • 绿色化工新突破!电催化一氧化氮高效合成氨
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室理论催化创新特区研究组肖建平研究员团队和碳基资源电催化转化研究组汪国雄研究员团队在电催化一氧化氮还原反应(eNORR)合成氨研究方面取得新进展,在Cu6Sn5合金催化剂上实现了96.9%的氨法拉第效率和安培级电流密度。图片来源于大连化学物理研究所氮氧化物(NOx)的转化处理是一种缓解环境和能源问题的方法。氨作为一种重要的化学物质,可用于肥料、炸药和硝酸等的制备,还可作为燃料。eNORR合成氨相较于传统的哈伯法,是一种更绿色更经济的去中心化合成氨的策略。  图片来源于大连化学物理研究所本工作中,肖建平团队基于自主开发的图论和反应相图分析算法(ACS Catal. ,2021),通过基于描述符的方法初步筛选出铜锡合金具有高eNORR合成氨活性,汪国雄团队进一步合成了Cu6Sn5合金并验证了其具有安培级的合成氨活性。NO电催化实验表明,Cu6Sn5催化剂比Cu和Sn具有更高的活性和选择性,在更广泛的电压范围内也表现出很高的合成氨选择性,在电压为-0.23V vs. RHE时,得到流动池中的氨产率达到10mmolcm-2h-1,法拉第效率为96.9%,并且在大于600mAcm-2时,保持稳定运行135小时。电化学能垒计算表明,Cu6Sn5催化剂比Cu和Sn上生成氨的能垒更低,而且证明Cu6Sn5合金上各产物决速步能垒的大小关系(NH3N2ON2H2)。合作团队基于自主研发的碱性膜电解器件技术(Nat. Nanotechnology ,2023),在总电流为400A时,Cu6Sn5合金上NO电还原产氨速率达到2.5molh-1,展现出了应用潜力。相关研究以“Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst”为题,于近日发表在《自然—能源》(Nature Energy)上。该工作的第一作者是我所05T8组博士研究生井会娟和523组博士研究生邵加奇。以上工作得到国家重点研发计划、国家自然科学基金、中国科学院洁净能源创新研究院合作基金、中国科学院B类先导专项“功能纳米系统的精准构筑原理与测量”、榆林创新院人工智能科技专项等项目的资助。文章链接:https://doi.org/10.1038/s41560-023-01386-6 小科普:氨,化学式NH3,是一种无色、有刺激性气味的气体。氨的用途很广泛,是合成肥料、硝酸(制造炸药的原料之一)、药物的重要原料,而且它还是一种高能量密度(一定空间或质量物质中储存能量的大小)的零碳能源载体,且相对易储存。传统工业上合成氨主要通过一种叫做哈伯法的制备方法在高温高压下进行,能耗较大且产生污染。科学家一直在探索新的合成路线,用可再生能源发电作为驱动力,通过电化学催化的方式合成氨是目前较有应用前景的方式之一。
  • 荞麦自组装肽基水凝胶登上FM! 便携式原子力显微镜协助打通其合成路径
    标题:Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism期刊: Food Hydrocolloids IF 10.7DOI: https://doi.org/10.1016/j.foodhyd.2021.107378【论文摘要】 肽基水凝胶由于其突出的生物相容性和生物可降解性,在3D打印、伤口愈合、人工合成肉、生物传感器和药物递送等领域得到了关注。肽基水凝胶主要是通过化学合成和微生物重组的方法获得。合成肽的一个优点是可以根据具体需求进行设计和自组装。然而,合成肽在实际应用中还存在序列短、纯化低、分散性差和安全性低等问题。与合成肽相比,天然肽具有绿色、安全等优点,因此从天然来源蛋白质中生产自组装肽的相关研究就显得十分重要。 近日,北京林业大学课题组基于酶水解荞麦蛋白进行自然肽自组装研究,为以天然肽为基础合成水凝胶探索出新的道路。相关工作以《Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism 》为题,发表于国际SCI期刊《Food Hydrocolloids 》上。 值得注意的是,本文作者利用便携式芯片原子力显微镜nGauge完成了所有生物样品的形貌表征。便携式芯片原子力显微镜nGauge是由加拿大ICSPI公司设计研发的,具有小巧、灵活、方便携带、操作简单、扫描速度快、可扫描大尺寸样品、无需后续维护、无需减震以及超级稳定等优点,适合各类纳米表征应用场景,从科学研究、高等教育到户外工作用户的样品都能实现3D表面形貌快速成像分析,创新技术降低了传统AFM的复杂操作,也拓宽了传统AFM的应用范围! 【图文导读】 图1. (A)荞麦蛋白及其水解液的十二烷基硫酸钠聚丙烯酰氨凝胶电泳(SDS-PAGE)和水解程度结果。(B)5.5%的荞麦蛋白浓度在120 min后的水解结果。(C)12%的荞麦蛋白浓度的水溶胶。(D)12%的荞麦蛋白浓度在120 min后的水解结果。图2. (A)荞麦蛋白浓度为12%的水凝胶随着水解时间硬度的变化。(B)水凝胶形成潜力和(C)硬度。BP(荞麦蛋白),BPH(120分钟水解产物),BSP(大分子样品)。图3. 利用便携式芯片原子力显微镜nGauge获得的(A1-A3)BP,BPH和BSP的形貌图,(B1-B3)BP,BPH和BSP的相位图和(C1-C3)BP,BPH和BSP的高度分析结果。扫描面积为5 x 5 μm2。图4. 利用nGauge便携式原子力显微镜获得的BP,BPH,BSP颗粒粒径的统计结果。图5. BP,BPH和BSP水凝胶的扫描电子显微镜结果。【论文结论】 北京林业大学课题组利用温和酶从荞麦蛋白中获得具有成胶能力的天然肽,代替合成肽制备水凝胶。研究人员研究了利用荞麦天然蛋白制备自组装肽的可行性,并获得了水凝胶。此外,还研究了通过水解产生的荞麦肽通过自组装形成具有良好物理性质水凝胶的机理。该研究为从植物蛋白中生产纳米尺度自由组装肽提供了路线,也为天然肽基水泥胶在依赖合成肽的一系列应用中提供了使用机会。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制