当前位置: 仪器信息网 > 行业主题 > >

金雀儿根瘤苍白杆菌

仪器信息网金雀儿根瘤苍白杆菌专题为您提供2024年最新金雀儿根瘤苍白杆菌价格报价、厂家品牌的相关信息, 包括金雀儿根瘤苍白杆菌参数、型号等,不管是国产,还是进口品牌的金雀儿根瘤苍白杆菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金雀儿根瘤苍白杆菌相关的耗材配件、试剂标物,还有金雀儿根瘤苍白杆菌相关的最新资讯、资料,以及金雀儿根瘤苍白杆菌相关的解决方案。

金雀儿根瘤苍白杆菌相关的论坛

  • 土壤农杆菌

    在自然界存在一种叫做土壤杆菌的细菌,它能感染植物的受伤组织,特别是根茎交接处的受伤组织,引起冠瘿瘤。冠瘿病损害为数众多的双子叶植物,特别是葡萄、核果类树木和观赏植物。冠瘿细胞是植物肿瘤细胞,在许多方面与动物肿瘤细胞类似。它们只有无限生长的能力,把一小块冠瘿组织放入不含植物激素的培养基中培养,能长成大的细胞团块(愈伤组织),而正常植物细胞在不加植物激素的培养基中则不能生长。冠瘤拥胞能制造一类叫做冠瘿碱(opine)的氨基酸衍生物(如章鱼碱和蓝曙红),供根癌土壤杆菌作为养料使用,在正常植物细胞中从未发现过这类物质。 根癌土壤杆菌能把植物细胞转化为肿瘤细胞,是由于它含有一种肿瘤诱导质粒,简称Ti质粒。当细菌感染植物时,Ti质粒中大约占这个质粒l/10的DNA片段(称为转移DNA或T—DNA)进入植物细胞,并整合到植物的染色体上,随染色体一起复制。随后T—DNA携带的细菌基因(致瘤基因和合成冠瘿碱的基因)使在植物细胞中表达,使植物细胞转化成肿瘤细胞,并合成冠瘿碱。由于根癌土壤杆菌能把细菌基因引入植物细胞,并在那里表达出蛋白质来,所以人们称它为天然的“遗传工程师”。这给人们以启示。能否用重组DNA技术把与高产、优质、抗病、抗旱和抗盐碱等优良件状有关的基因循人到T—DNA中,然后再通过根癌土壤杆菌的感染把这些基因引入植物细胞呢?最近几年的研究进展表明,这是完全可能的。 Ti质粒是独立复制的环状DNA分子。由大约1.5—2xl05碱基对组成,相当于细菌染色体的3—5%。它有两个主要类型:一类叫章鱼碱质粒,含有这种质粒的细菌能以章鱼碱为氮源和碳源生长;另一类叫蓝署红质粒,含有这种质粒的细菌能利用蓝曙红。每一种根癌土壤杆菌只含有一种Ti质粒,或者是章鱼碱质粒,或者是蓝曙红质粒。这两种质拉的DNA同源性很低,一般为12—16%,说明它们可能具有不同的进化史。T—DNA是Ti质粒中最重要的组成部分.它所携带的基因主要有两个功能:一是决定肿瘤的形成和肿瘤的形态;二是控制冠瘿碱的合成。如果T—DNA中的致瘤基因发生突变,可能出现三种表型:一是产生比正常肿瘤个大的肿瘤;二是使肿瘤长出许多根;三是使肿瘤长出许多芽。在T—DNA区域以外也有一些基因已被定位,其中毒性基因的功能是决定根癌土壤杆菌对植物的感染以及T—DNA的进入和整合;章鱼碱代谢基因和蓝曙红代谢基因分别编码代谢这两种冠瘿碱的酶;质粒转移基因控制细菌的接合作用;不相容性基因控制Ti质粒与其它质粒的不相容性。 Ti质粒之所以能成为把外源基因引入植物的良好载体有两方面的原因。第一,携带质粒的根癌土壤杆菌的寄主范围很广,实际上它能转化所有的双子叶植物。第二,整合到植物染色休上的T—DNA能随种子遗传,而且T—DNA有自己的启动基因,可以启动与其连接的外源基因的转录。此外,也有人研究以植物病毒DNA为载体转移目的基因,或者直接把DNA注射到植物的花粉管和子房中。Ti质粒直接用作基因载体有两个困难:一是它的分子量太大,内切酶位点很多,不容易进行体外重组DNA操作;二是被T—DNA转化的植物细胞成为肿瘤细胞,不能再生成植株。克服第一个困难的办法是先把T—DNA克隆到大肠杆菌的小质粒上,把目的基因插入到小质粒的T—DNA中,然后再设法转移到天然的Ti质粒中。克服第二个困难的办法是在T—DNA的特殊位点中插入目的基因和供筛选用的抗药基因,一方面使致瘤基因发生插入突变,从而使转化细胞能再生成植株,另一方面使目的基因正好位于T—DNA的启动基因的下游,以便启动目的基因的转录。有人经过研究发现了这样一种作用模型:大多数双子叶植物受伤后会产生一种叫丁香酮(acetosyringone)的物质,这时土壤农杆菌感染后,丁香酮在Ti质粒上Vir A的产物A的协同作用下促进了Vir G产物G的活化(即磷酸化),然后产物G相继激活Vir B、V ir c、Vir D、Vir E等操纵子,特别是Vir D和Vir E。前者产生两种蛋白,D1为缺刻酶(nickase),它能特异性地在T—DNA两端产生缺刻;D2则是一种蛋白复合物,它粘在已断开的T—DNA的两端,具“导航”的功能,有人认为它是Rec A,起重组的作用。后者产生单链结分蛋白(SSB),有保护缺刻产生后的T—DNA的功能。T—DNA在诸多蛋白的导航、保护下重组进核基因组。这种转比方法优点是方便,不需分离原生质,且插入的基因拷贝数目少,比较稳定。但它的缺点是土壤农杆菌主要只适于侵染双子叶植物,单子叶植物能被侵染的较少,这就在一定程度上影响了这种方法的推广。有人发现单子叶植物受伤后很少产生丁香酮,这是否是侵染的关键呢?目的许多实验室都在作这方面的探索,以期望能克服这种方法的局限性。http://hiphotos.baidu.com/wfvcshengwu/abpic/item/629fdb39539824d63b87ce6e.jpg

  • 【转帖】146种培养基配方(细菌培养基与植物培养基)!

    培养基及成分 1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 [Note]:When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml [Note]:Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5. Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6. Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7. Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8. Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9. Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 [Note]:Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10. Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml

  • 【转帖】阜阳大头婴儿事件中被忽略的杀手:阪崎肠杆菌

    【转帖】阜阳大头婴儿事件中被忽略的杀手:阪崎肠杆菌

    [img]http://ng1.17img.cn/bbsfiles/images/2007/08/200708071106_59953_1631012_3.jpg[/img]  现在回过头来看,在2004年安徽阜阳“大头婴儿”事件中,有一个可能的致病因素在当时被忽略了:在这些劣质奶粉中后来分离出了阪崎肠杆菌 金立旺/图   张田勘   被忽略的“杀手”   2007年7月下旬,国家质量监督检验检疫总局公布了今年4月入境的不合格食品、化妆品信息,其中全球最大的乳品原料供应商新西兰恒天然多个批次的全脂奶粉被检验出含有致病菌阪崎肠杆菌。这些有问题的全脂奶粉,总数达277.9吨,分别是今年1月和3月进口的。恒天然公司表示,尊重中国政府的相关考虑和规定,已对被检验出阪崎肠杆菌的产品按规定做了处理。   阪崎肠杆菌是寄生于人和动物肠道的“条件性肠道致病菌”。也许,阪崎肠杆菌目前只引起了专业人员的高度重视,并未吸引普通公众的目光,原因在于它不仅对公众是陌生的,且现在造成的危害似乎并不算重。回顾近年来国内的食品安全问题,阪崎肠杆菌也确实被忽略了。   2004年安徽阜阳出现著名的“大头婴儿”事件。据该市县级以上医疗机构核查统计,从2003年5月以来,因食用劣质奶粉出现营养不良综合征共171例,死亡13例,病死率7.6%。婴儿发病和死亡的主因是由于劣质奶粉导致的营养不良,但是现在回过头来看,有一个可能的致病因素在当时被忽略了——这些劣质奶粉中含有阪崎肠杆菌。   阜阳劣质奶粉事件发生后,中国疾控中心营养与食品安全研究所的刘秀梅等人运用来自美国和加拿大的方法,建立了婴儿配方奶粉中阪崎肠杆菌的分离鉴定技术。从87份阜阳劣质奶粉样品中,他们检测到11份阪崎肠杆菌阳性样品,污染阳性率为12.6%。   这是国内首次从婴儿配方奶粉中分离到阪崎肠杆菌菌株。   固然,劣质奶粉导致婴幼儿死亡是因其中蛋白质含量极低,不能满足婴儿的生长需要。比如,按照3-6个月婴儿的生长需要,蛋白质每日摄取量为3g / kg,而劣质奶粉每日只能提供0.07g / kg的蛋白质。所以,长期食用这种几乎没有营养的伪劣奶粉的婴儿,会产生四肢短小,身体瘦弱,头部尤显偏大的症状。   阪崎肠杆菌的污染是否会对当地婴幼儿造成雪上加霜的伤害呢?事过境迁,要得出确切的结论已经很难。不过事后查出阜阳劣质奶粉含有阪崎肠杆菌,对今天的食品安全不啻是敲响了一次警钟。   对婴幼儿最具杀伤力   早在2004年,广州检验检疫局就率先提出,在进口婴幼儿配方奶粉和奶制品中,对阪崎肠杆菌进行监测,并首次从进口奶粉中检查出阪崎肠杆菌。2007年以来,广州、中山、汕头检验检疫部门在进口奶粉中已多次检出阪崎肠杆菌。因此国内的专业人员多次呼吁,要重视阪崎肠杆菌对食品污染和对人健康的危害。   那么,阪崎肠杆菌污食品对人类有哪些危害呢?   阪崎肠杆菌并不是近年才发现的新致病菌。1961年,英国研究人员弗兰克林(Franklin)等人首次报道了2例由阪崎肠杆菌引起的脑膜炎病例。随后美国、希腊、荷兰、加拿大、比利时等国家相继发现了新生儿阪崎肠杆菌感染事件。阪崎肠杆菌能引起严重的新生儿脑膜炎、小肠结肠炎和菌血症,并可能引起神经功能紊乱,造成严重的后遗症和死亡,其死亡率高达50%以上。成人也可能罹患此病,但病情显著轻微。   阪崎肠杆菌主要对新出生婴儿,尤其是对发育不良、免疫功能差的婴幼儿最具杀伤力。来自美国FDA的监测表明,在美国出生体重偏低的新生儿中,感染率为8.7 / 10万;而1岁以下婴儿阪崎肠杆菌感染率为1 / 10万,感染死亡率为 20%至50%。全球从1961年至2003年有案可稽的48起婴儿感染事件中,有25起是新生儿感染。   配方奶粉受阪崎肠杆菌污染,很可能发生在干燥和罐装阶段。因为,与大肠埃希菌、沙门菌相比?熏阪崎肠杆菌对渗透压和干燥具有更高的耐受力。这很可能与这种细菌细胞内有大量的海藻糖酶有关。   阪崎肠杆菌特别喜欢夏天,因为高温让它如鱼得水。在25℃放置6小时,该菌的相对危险性可增加30倍;25℃放置10小时,危险可增加30000倍。因此,即使婴儿配方粉中只有极微量的阪崎肠杆菌污染,在配方粉食用前的冲调期和储藏期该菌也可能会大量繁殖。   尽管在环境中有许多地方是阪崎肠杆菌的栖身之处,但迄今能证实的对人患病有直接因果关系的只有婴儿配方奶粉。尤其值得注意的是,即使受到低浓度的污染,阪崎肠杆菌也可在奶粉的冲调、放置过程中大量繁殖而成为感染的危险因素。   刘秀梅等人认为有3种主要途径可以导致婴儿配方奶粉中阪崎肠杆菌的污染。1.通过生产婴儿配方奶粉的原料;2.在巴斯德杀菌后配方奶粉污染或其他添加剂随粉带入;3.喂养婴儿前被污染。   食品安全的新目标   2004年3月29日至4月3日,在美国华盛顿召开的国际食品卫生法典委员会(CCFH)第36次会议上,阪崎肠杆菌受到了食品安全专家的高度重视。与会专家认为,阪崎肠杆菌是食品安全控制的新目标。   当然,卫生专业人员特别关注的并非仅仅是阪崎肠杆菌,而是通过污染食品致人患病的多种微生物。早在1999年的第32次CCFH大会上,与会者就将食品中病原菌的危险性评估列为CCFH讨论的重要内容,并提出了“食品一病原微生物”的特定评估组合。例如,鸡蛋中的肠炎沙门氏菌;禽肉、生牛羊肉、鱼中的沙门氏菌;禽肉中的空肠弯曲杆菌;牛肉、蔬菜中的出血性大肠杆菌;软奶酪、即食食品、熏鱼、沙拉用冷冻蔬菜中的李斯特菌;贝类中的副溶血弧菌;蔬菜中的志贺氏菌;新鲜食品中的隐孢子菌。还有其他食物中的金黄色葡萄球菌、蜡样芽孢杆菌、产气荚膜梭菌和各种病毒等。   对于这些致病微生物,2004年的CCFH特别提出了应对原则。微生物的安全控制不应停留在终端产品的检测上,应该控制食品的生产、加工、贮存、制备、销售等全过程,强调运用良好生产操作规范(GMP)及危害分析和关键控制点(HACCP)等科学管理体系来管理食品,以保证出厂产品的安全性。   鉴于阪崎肠杆菌的特殊性,联合国粮农组织和世界卫生组织在日内瓦召开了有关婴幼儿配方奶粉中病原微生物的专家咨询会。委员会认为,奶粉中的阪崎肠杆菌和沙门氏菌等是导致婴幼儿感染、疾病和死亡的主要原因。阪崎肠杆菌可以对任何年龄段的人群引起疾病,但主要是婴幼儿,特别是1岁以下和出生28天以内的婴儿,早产儿、低体重儿或免疫缺陷的婴幼儿更容易被感染。HIV阳性母亲的婴幼儿更面临双重危险性。因为他们主要依靠奶粉喂养,比其他婴幼儿更容易感染。   一些防范原则   国际上对阪崎肠杆菌防范的基本原则包括,坚决执行食品召回的政策。2001年4月美国田纳西州发生阪崎肠杆菌感染事件后,国际上第一次采取了对商业婴儿配方粉召回的行动。这一原则应在各个国家普遍执行。   其次,专家提议,婴儿出生的前6个月,母乳喂养最有助于婴儿的生长和健康。但是为了保证婴儿发育需要的营养,必须科学地补充喂养适宜的母乳代用品,如符合食品法典委员会(CAC)标准的婴儿配方食品。应对不能进行母乳喂养的婴幼儿,特别是高危人群提出警示:配方乳粉并不是灭菌产品,可能被病原体污染并引起疾病。   第三,采取多项措施降低阪崎肠杆菌和其他致病微生物的危险性。国际法典委员会在修订操作规范时,制定婴儿配方奶粉中适宜的阪崎肠杆菌微生物标准;生产者应制定加工、使用和操作婴儿配方食品的导则,将危险性降到最低;在生产环境和配方奶粉中降低阪崎肠杆菌的浓度和流行的危险性。   第四,消费者应该用商业无菌液体或开水冲调配方食品,喂食婴儿剩余的液体调配食品应放置冰箱保存,并在食用前再加热。   中国在2005年5月通过了《奶粉中阪崎肠杆菌检测方法》行业标准的审定,对奶粉严查此菌。因此,消费者在正规商场购买经过检测的卫生食品是不会有阪崎肠杆菌的。不过,产品买回家后要注意防止二次污染,保持密封以及器具本身的清洁。

  • 【资料】生物农药--苏云金芽孢杆菌

    昆虫病原细菌广泛存在自然界,在不同的环境条件下,对昆虫数量的调节起着重要的作用。其中特别是某些芽孢杆菌已发展成为微生物杀虫剂,具有控制农林害虫的巨大潜力,是一种很有发展前途的防治害虫的新途径,在综合防治中越来越引起人们的重视。 自从19世纪末期开始研究家蚕、蜜蜂细菌病害的近一百年间,发现并被描述的昆虫病原细菌约有90多个种和亚种,它们大多属于真细菌纲(Eubacteria)的芽孢杆菌科(Bacilliacene)、假单孢菌科(Pseudomonadacea)和肠杆菌科(Enterobacteriaceae)。从防治害虫的角度来说,在这三科中以芽孢杆菌科最为重要。此科包括有两个属:芽孢杆菌属(Bacillus)和芽孢梭菌属(Clostridium)。在芽孢杆菌属中的乳状病芽孢杆菌(Bac.popillia)、缓死芽孢杆菌(Bac.lentimorbus)、苏云金芽孢杆菌(Bac.thuringiensis)的某些亚种以及球形芽孢杆菌(Bac.spuericus),目前在国内外均已发展成为防治农林害虫及卫生害虫的微生物杀虫剂。而且,迄今为止,昆虫病原细菌的主要研究力量也仍然集中在这些细菌上。 但是在这些众多的病原细菌中,真正能够开发成为一种具有实际应用价值杀虫剂的却并不多,目前应用最广泛的主要是形成芽孢的病原细菌。如乳状病芽孢杆菌和苏云金芽孢杆菌.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64035]苏云金芽孢杆菌[/url]

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽孢杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌污染面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包**头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2。在厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~**5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。

  • 146种培养基配方[细菌培养基和植物培养基]

    培养基及成分 1、Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2、 Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 :When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 3、Azotobacter Medium (固氮菌培养基) KH2PO4 0.2g K2HPO4 0.8g MgSO4.7H2O 0.2g CaSO4.2H2O   0.1g Na2MoO4.2H2O Trace(微量) Yeast axtract(酵母膏) 0.5g Mannitol(甘露醇) 20g FeCl3 Tract(微量) Distilled water (蒸馏水) 1000ml Agar (琼脂) 15g Adjust (调) pH to 7.2 适用范围:固氮菌、胶质芽孢杆菌 4、Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml :Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5、Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6、Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7、Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8、Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9、Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 :Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10、 Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml 11、 Glucose Asparagine (葡萄糖、天门冬素琼脂) Glucose (葡萄糖) 10g Asparagine (天门冬素) 0.5g K2HPO4 0.5g Water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌) 12、Gause′s Synthetic Agar (高氏合成一号琼脂) KNO3 1g Soluble starch(可溶性淀粉) 20g K2HPO4 0.5g MgSO4.7H2O 0.5g NaCl 0.5g FeSO4 0.01g Agar (琼脂) 20g water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌)、白黄链霉菌、白色链霉菌、抗生链霉菌、双重轮丝链霉菌、产色链霉菌、烬灰链霉菌、天蓝色链霉菌、灭蚊链霉菌、红霉素链霉菌、青色链霉菌、球孢链霉菌、浅灰链霉菌、灰色链霉菌、吸水链霉菌、淡紫灰链霉菌、黄色长孢链霉菌、藤黄色链霉菌、细黄链霉菌、黑化链霉菌、玫瑰色链霉菌、华美链霉菌、嗜热链霉菌、委内瑞拉链霉菌、紫色直丝链霉菌、紫色链霉菌、绿色链霉菌 13、Wort Agar (麦芽汁琼脂) Dilute the world (without hop) to 12 Brix. Add 15g agar into 1000ml of the diluted word..Melt the agar by heating, then distribute the medium into tubes. Autoclave at 110 for 30 minutes. (将发酵啤酒的原料(未加酒花),稀释至12柏林,加琼脂15克,溶化后分装。15磅灭菌30分钟。) 适用范围:克鲁斯假丝酵母、郎比可假丝酵母、解脂假丝酵母、马其顿假丝酵母、拟热带假丝酵母、粗壮假丝酵母、皱褶假丝酵母、热带假丝酵母、产朊假丝酵母、阿舒假囊酵母、白地霉、果香地霉、地霉属、异常汉逊酵母、异常汉逊酵母变种、阿拉伯糖醇汉逊酵母、施氏汉逊酵母、菅囊

  • 【分享】几种培养基配方(细菌培养基与植物培养基)

    培养基及成分 1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 :When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml :Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5. Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6. Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7. Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8. Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9. Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 :Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10. Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml 11. Glucose Asparagine (葡萄糖、天门冬素琼脂) Glucose (葡萄糖) 10g Asparagine (天门冬素) 0.5g K2HPO4 0.5g Water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌) 12. Gause′s Synthetic Agar (高氏合成一号琼脂) KNO3 1g Soluble starch(可溶性淀粉) 20g K2HPO4 0.5g MgSO4.7H2O 0.5g NaCl 0.5g FeSO4 0.01g Agar (琼脂) 20g water (水) 1000ml pH 7.2-7.4

  • 大肠杆菌检测仪数据处理过程

    大肠杆菌检测仪数据处理过程

    [size=16px]  大肠杆菌检测仪数据处理过程  大肠杆菌检测仪数据处理过程包括以下步骤:  用去离子水通过蠕动泵清洗分析模块数次,以去除上次测量留下的样品和残留物。  开启蠕动泵对有样品的模块进行清洗,防止模块壁上的水稀释样品,可减少环境造成的误差。  使用MPN法自动定量和自动检测100ml水样中1-2419MNP(单位)的目标细菌。检测100ml水样中的活性大肠菌群和大肠埃希氏菌,假阴性率低。  单位试剂通过精确试剂抑制数百种异养细菌,假阴性低。检测时间不超过24小时,自动进样,自动分析,显示结果。  在整个检测过程中,大肠杆菌检测仪通过清洗、稀释、培养、计数等步骤对水样进行处理和分析,以得到准确的检测结果。在检测过程中,应注意操作规范,确保检测结果的准确性和可靠性。  以上信息仅供参考,如需了解更多信息,建议咨询相关领域的专业人士。另外,使用大肠杆菌检测仪时应按照说明书进行操作,并注意安全和卫生。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312130900045905_6476_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 肉毒梭状杆菌和肉毒素

    鉴于目前恒天然奶粉出肉毒杆菌一事,一起学习一下肉毒杆菌和肉毒素。肉毒杆菌的全名叫肉毒梭状杆菌(也叫肉毒梭菌Clostridium botulinum),是一种革兰氏阳性厌氧杆菌,其生长繁殖及产毒的最适温度为18~30℃。肉毒杆菌广泛分布于土壤、淤泥及动物粪便中,其中土壤是重要污染源,它可借助食品、农作物、水果、海产品、昆虫、禽类等传播到各处。肉毒杆菌家族一共兄弟7个,本身其实没有毒性,但其中有4个能在厌氧环境下(比如肠道、密闭发酵食品)产生肉毒毒素。食品在加工、贮藏过程中被肉毒杆菌污染,食前对带有毒素的食品又未加热或未充分加热,就易引起中毒。在我国的新疆、青海等少数民族地区几乎每年都会出现自制发酵肉制品导致的肉毒中毒、甚至死亡。肉毒毒素(botulinum toxin,AX)是肉毒杆菌产生的含有高分子蛋白的神经毒素,是目前已知在天然毒素和合成毒剂中毒性最强烈的生物毒素,它主要抑制神经末梢释放乙酰胆碱,引起肌肉松弛麻痹,特别是呼吸肌麻痹是致死的主要原因。肉毒毒素真正被大众了解,是因为一些明星注射肉毒来除皱。虽然这个毒素的毒性比较大,一点点就能毒死人,但它本身对热不稳定,煮开几分钟就破坏掉了,真正难解决的是它的芽孢。肉毒杆菌在感觉不舒服的时候就像作茧一样用一些蛋白和糖类物质把自己包起来,然后就能“刀枪不入”,一般的加工手段都杀不死它。等它重新进入合适的环境,比如人的肠道,它又能苏醒过来继续干坏事。成人由于肠道里面的菌群早已站稳了脚跟,少量的肉毒杆菌是斗不过这些“地头蛇”的,因此对成人的危险性相对较小。但婴儿尤其是1岁以下的小宝宝,正常菌群还处于建设阶段,这个时候肉毒杆菌来捣乱的话,有可能对宝宝造成较大影响。  我国乃至全世界都没有乳粉中肉毒杆菌的限量标准,因为肉毒杆菌在乳品中并不是常见的污染物,而标准的管理是要考虑成本的,正因如此,各国都不把它写入标准。但这并不意味着根本不管,比如这次恒天然是在企业的质量控制中发现的问题。用标准管理有限的问题,用过程的控制实现更全面的安全保障,这才是科学的食品安全管理理念。对于负责任的大企业,其质控项目数量和质控要求都是远远高于国家标准要求的。

  • 高通量重组蛋白表达技术在大肠杆菌中的应用

    [b][font=宋体]前言[/font][/b][font=宋体]在当今的生物技术领域,高通量重组蛋白表达技术在基础研究和商业应用中扮演着非常重要的角色。随着后基因组时代的到来,研究人员对大规模蛋白表达和纯化的需求日益增长,大肠杆菌因其易于遗传操作、低成本、生长迅速成为生产重组蛋白的首选微生物宿主。本文将综述大肠杆菌中高通量重组蛋白表达的现状和未来展望,探讨从目的基因获取到蛋白表达和纯化的先进技术,并讨论如何克服[/font][url=https://cn.sinobiological.com/resource/protein-review/protein-expression][u][font=宋体][color=#0000ff]重组蛋白表达[/color][/font][/u][/url][font=宋体]过程中的挑战。[/font][font=Calibri] [/font][b][font=宋体]高通量重组蛋白表达技术[/font][/b][font=宋体][font=宋体]高通量研究是一种能够同时检测数千个生物分子,使大规模重复成为可能的研究。[/font][font=Calibri]20[/font][font=宋体]世纪[/font][font=Calibri]90[/font][font=宋体]年代初,第一台[/font][font=Calibri]DNA[/font][font=宋体]测序仪被开发出来,人类基因组计划随之开启,高通量技术在[/font][font=Calibri]DNA[/font][font=宋体]、[/font][font=Calibri]RNA[/font][font=宋体]、蛋白质、脂质和代谢物检测的需求也急剧增加。自该技术提出以来,大肠杆菌中高通量重组蛋白表达和纯化已经得到了广泛的应用。[/font][/font][font=Calibri] [/font][font=Calibri]1. [/font][b][font=宋体]目的基因的制备[/font][/b][font=宋体][font=宋体]获取目的基因是重组蛋白表达的第一步。传统的方法是从[/font][font=Calibri]cDNA[/font][font=宋体]文库中直接克隆基因,但这种方法存在局限性,如从库中筛选基因较为费时以及难以添加融合标签等。高通量[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]技术是目前获取目的基因最常用的技术,设计引物并调整好参数后,即可在[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]仪中自动完成目的基因的制备。[/font][/font][font=Calibri] [/font][font=Calibri] [/font][font=Calibri]2. [/font][b][font=宋体]表达载体的高通量构建[/font][/b][font=宋体][font=宋体]研究人员开发了多种构建表达载体的克隆方法,包括基于限制性内切酶的克隆、重组克隆和不依赖于连接反应的克隆等。这些方法各有优势和局限性,但在近年来都有显著改进。例如,基于限制性内切酶的克隆因其简单、高效、通用和成本效益而备受关注。一个理想的大肠杆菌表达载体应具备选择标记、复制起点、转录启动子、[/font][font=Calibri]5'[/font][font=宋体]非翻译区([/font][font=Calibri]5'UTR[/font][font=宋体])和翻译起始位点。此外,融合标签的添加对于目的基因的转录和蛋白表达同样至关重要。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]3. [/font][b][font=宋体]大肠杆菌表达菌株的选择和细胞培养[/font][/b][font=宋体][font=宋体]为保证蛋白质表达成功及其表达质量,应选择合适的大肠杆菌菌株,如[/font][font=Calibri]BL21[/font][font=宋体]及其衍生菌株是较常用的重组蛋白生产菌株。培养大肠杆菌比较简单的方法是分批培养,但此方法对生长的控制比较有限。近年来,高通量培养技术使研究人员能够在一系列发酵条件下处理大量样品,大大加快了生产时间。[/font][/font][b][font=Calibri] [/font][/b][font=Calibri]4. [/font][b][font=宋体]高通量蛋白表达和纯化[/font][/b][font=宋体][font=宋体]高通量平台可以快速克隆基因、挑选菌落、分离质粒[/font][font=Calibri]DNA[/font][font=宋体]、转化细菌、表达和纯化蛋白质。这些平台虽然成本高昂,但为复杂的分子生物学实验操作提供了极大的便利。[/font][/font][font=Calibri] [/font][b][font=宋体]结论与展望[/font][/b][font=宋体]大肠杆菌中的[/font][url=https://cn.sinobiological.com/services/high-throughput-antibody-production-service][u][font=宋体][color=#0000ff]高通量重组蛋白表达技术[/color][/font][/u][/url][font=宋体][font=宋体]极大的推进了重组蛋白的表达进程。尽管存在挑战,但通过不断优化和创新,研究人员正在朝着更高效可靠的蛋白质生产系统改进。未来的发展方向包括进一步优化克隆方法、开发新的融合标签、改进表达载体和菌株,以及利用高通量技术实现从[/font][font=Calibri]DNA[/font][font=宋体]到大规模蛋白质生产的快速转变等。[/font][/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol. 2016 6(8):160196. doi:10.1098/rsob.160196[/font]

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌**面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包或馒头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2**厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~4.5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。**

  • 美国农业部颁布六种致命大肠杆菌菌株禁令

    美国农业部(USDA)官员于周一(9月12)表示,为了预防疾病以及挽救生命,同时更好保护美国市场上的牛肉供应,将从牛肉供应中对被称为“the Big Six”的六种危险大肠杆菌菌株颁布禁令。USDA官员称,除了已知的肠出血性大肠埃希氏菌O157:H7(E.coli O157:H7)外,将会新增六种额外的产志贺毒素大肠埃希菌(Shiga toxin-producing E.coli,STEC)菌株。出售携带有这些病原体的商品将被视为违法行为。美国农业部食品安全和检疫局将会就这些病原体对碎牛肉、牛肉等进行测试。1994年起,牛肉制品已被禁止添加E.coli O157:H7,原因是此前西北太平洋地区爆发的疫情导致几百名儿童患病,其中有四名儿童因此去世。按照规定,禁令将扩展至E coli O26、O45、O103、O111、O121和O145。根据美国疾病预防控制中心的统计数据,每年这六种病原体会引发11.3万起的疾病,约有300人因此住院接受治疗。据悉,肉类行业对该举动反应并不热烈,可是却受到了消费者的一致好评。

  • 【资源】大肠杆菌发酵经验总结

    大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生:比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。3、 控制葡萄糖的浓度:葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。 恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不 同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。三、培养方式 微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

  • 双岐杆菌是如何在喷雾干燥中存活的

    [b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]在食品工业中,喷雾干燥是一种生产率高、操作费用低的工艺,是普遍采用的制备干燥、稳定、体积小的食品或食品添加剂的方法之一。此外,还可用用保护和浓缩微生物。[/font][font=微软雅黑]许多人还报道了用喷雾干燥制备发酵用于生产发酵乳制品或作为提高奶酪风味的附加物。然而,微生物对喷雾干燥的温度及脱水很敏感。因此,如果喷雾干燥应用于发酵剂制备注意微生物的存活率。[/font][b][font=微软雅黑]双歧杆菌[/font][/b] [font=微软雅黑]Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌分布在胃肠的数量随年龄阶段的增长而减少,分布多的是母乳营养儿。已经发现,双歧杆菌有32个亚型,含有双歧杆菌的生物制剂多达70种。婴儿双歧杆菌占总肠道菌的百分之六十,60岁以上老人双歧杆菌只占百分之七点九。[/font][b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]形态很不一致的杆菌,0.5~1.3 μm×1.5~8μm,常呈弯、棒状和分支状。单生、成对、V字排列,有时成链,细胞平行成栅栏状,或玫瑰花结状。偶尔呈膨大的球杆状 。[/font][align=center][img]https://img69.chem17.com/9/20190409/636904143730081616114.png[/img][/align][b][font=微软雅黑]双岐杆菌[/font][font=微软雅黑]药理作用:[/font][/b][font=微软雅黑]治疗便秘[/font][font=微软雅黑]、[/font][font=微软雅黑]肿瘤防治[/font][font=微软雅黑]、[/font][font=微软雅黑]保护肝脏[/font][font=微软雅黑]、[/font][font=微软雅黑]防治心血管疾病、改善乳糖消化[/font][font=微软雅黑]等[/font][b][font=微软雅黑]双岐杆菌[/font][color=#000000][font=微软雅黑]营养食品作用[/font][/color][color=#000000][font=微软雅黑]:[/font][/color][/b][font=微软雅黑]促吸收[/font][font=微软雅黑]、[/font][font=微软雅黑]抗衰老[/font][font=微软雅黑]、[/font][font=微软雅黑]防治疾病[/font][font=微软雅黑]。[/font][font=微软雅黑]如此重要的[/font][b][font=微软雅黑]双岐杆菌[/font][/b][font=微软雅黑]是如何在喷雾干燥中存活的呢?[/font][font=微软雅黑]双岐杆菌在喷雾干燥的存活情况和载体有很大的关系;有研究表明,双歧杆菌分别与含有明胶、树胶和可溶性淀粉的载体一起喷雾干燥,结果发现喷雾干燥后双歧杆菌的存活因其载体种类不同而不同。[/font][font=微软雅黑]很大程度上取决于所用的载体。比较不同的载体浓度对存活的影响。发现双歧杆菌在与明胶、树胶或可溶性淀粉喷雾干燥后存活率高。经喷雾干燥后双歧杆菌表现大存活,温度升高则失活升高,然后温度升高引起的失活程度因所用载体不同而不同。已有研究表明,采用可溶性淀粉程度大,采用脱脂乳则小。[/font]

  • 【原创大赛】新西兰乳粉惊现肉毒杆菌

    http://ng1.17img.cn/bbsfiles/images/2013/08/201308050854_456024_2762510_3.bmp新西兰初级产业部3日宣布,新西兰乳制品巨头恒天然集团旗下部分产品可能含有肉毒杆菌毒素。可能受污染的产品被用于婴儿配方奶粉和运动饮料的生产。 国家质检总局对此高度重视,立即与新西兰驻华使馆取得联系,要求新方立即采取措施,防止问题产品影响中国消费者健康,同时要求进口商立即召回可能受污染产品。 综合新华社 现代快报记者 吴怡  恒天然集团声明  38吨浓缩乳清蛋白受污染  涉事产品或达900吨,已提醒8家客户  恒天然集团3日举行新闻发布会,恒天然集团新西兰奶制品公司执行董事加里·罗马诺说,有3批浓缩乳清蛋白出现质量问题,这些产品是去年5月在新西兰本地一家工厂生产的,涉嫌被污染的产品总量为38吨。污染源是该公司在北岛怀卡托地区豪塔普工厂的一根受污染的管道。  据悉,这些可能造成服食者中毒的受污染浓缩乳清蛋白粉被提供给8家制造商,用作生产婴儿奶粉、儿童成长奶粉和运动饮料的原料,涉事产品估计达到900吨。  恒天然集团表示,检测结果显示,这些浓缩乳清蛋白可能含有肉毒杆菌的菌株,有可能造成食用者中毒。据介绍,这种浓缩乳清蛋白被广泛用于婴儿奶粉、儿童成长奶粉和运动饮料中。但一般的乳制品如鲜奶、奶酪、酸奶和经过超高温消毒的牛奶产品,则不会受到影响。目前,还没有收到问题产品引发的健康问题报告。2日,恒天然集团已将情况向包含3个中国客户在内的8家客户进行了通报。目前,这些客户已紧急展开调查。如有必要,将召回产品。该集团发言人表示,目前不能透露这8家公司和相关产品的名称,也不能透露这些产品销往哪些国家。但新西兰初级产业部表示,受影响国家包括澳大利亚、中国、马来西亚、泰国、越南和沙特阿拉伯。  恒天然集团全球首席执行官西奥·史毕根斯定于3日从欧洲前往中国,向相关机构和客户通报最新情况。史毕根斯表示,集团将尽全力协助这8家客户进行检查,确保受污染的产品从市场收回,同时让公众知情,如果已经卖出就退货。  今年1月被查出含微量双氰氨  今年1月,新西兰初级产业部宣布,恒天然集团生产的奶粉中曾被检测出含有微量双氰氨。  新西兰政府建议  暂停向宝宝喂食可瑞康2段奶粉  新西兰初级产业部3日发表声明,建议新西兰父母暂停为6个月以上宝宝喂食“可瑞康”牌2段婴儿配方奶粉,因为这种奶粉可能使用含有肉毒杆菌的浓缩乳清蛋白粉。  新西兰初级产业部负责食品安全事务的代理局长斯科特·加拉赫当天表示,目前已经确定5个批次“可瑞康”牌2段婴儿配方奶粉使用含有肉毒杆菌的浓缩乳清蛋白粉。其中3个批次在奥克兰仓库中,1个批次在货轮上,另1个批次在澳大利亚。这些“问题奶粉”不会被投放到市场销售。  反应  国家质检总局要求立即召回  针对新西兰企业在浓缩乳清蛋白粉中检出肉毒杆菌一事,国家质检总局对此高度重视,立即与新西兰驻华使馆取得联系,要求新方立即采取措施,防止问题产品影响中国消费者健康。  国家质检总局要求进口商立即召回可能受污染产品,并要求各地检验检疫机构进一步加强新西兰输华乳制品的检验监管。  调查  网购平台仍在销售据了解,新西兰恒天然集团是全球最大的乳品出口企业,也是世界上第6大乳品生产商。目前,恒天然在中国的上海、北京、广州设有分公司。昨天,记者来到位于新街口和进香河的几家大型超市,在进口乳制品货架上,并没有见到这款蛋白粉及恒天然旗下的乳制品品牌。“我们这里的进口乳制品主要来自美国、法国等地,而进口的乳清蛋白粉只有来自美国的一个牌子。”一位售货员告诉记者。  虽然在部分超市里未见到被爆出的这款恒天然浓缩乳清蛋白粉,但在网购平台上搜索,这款蛋白粉在多家网店都有销售。在产品描述信息中,都写着“奶源世界第一,零污染”的口号。现代快报记者联系上其中一家店主,询问查出肉毒杆菌的消息,店主表示并未听说。【多美滋问题乳粉流入市场400多吨 上海卖场开始下架】由新西兰恒天然受肉毒杆菌污染乳粉制成的多美滋奶粉流入市场达420吨。目前,上海质监部门已经全部封存多美滋公司现场涉及问题乳粉的原料及成品,并要求公司立即启动召回程序。4日下午起上海多家超市已开始下架多美滋涉事产品http://ng1.17img.cn/bbsfiles/images/2013/08/201308050900_456025_2762510_3.bmp

  • 【转帖】“大头婴”事件中被忽略的杀手:阪崎肠杆菌

    2007年7月下旬,国家质量监督检验检疫 总局公布了今年4月入境的不合格食品、化妆品信息,其中全球最大的乳品原料供应商新西兰恒天然多个批次的全脂奶粉被检验出含有致病菌阪崎肠杆菌。这些有问题的全脂奶粉,总数达277.9吨,分别是今年1月和3月进口的。 恒天然公司表示,尊重中国政府的相关考虑和规定,已对被检验出阪崎肠杆菌的产品按规定做了处理。 阪崎肠杆菌是寄生于人和动物肠道的“条件性肠道致病菌”。也许,阪崎肠杆菌目前只引起了专业人员的高度重视,并未吸引普通公众的目光,原因在于它不仅对公众是陌生的,且现在造成的危害似乎并不算重。回顾近年来国内的食品安全问题,阪崎肠杆菌也确实被忽略了。 2004年安徽阜阳出现著名的“大头婴儿”事件。据该市县级以上医疗机构核查统计,从2003年5月以来,因食用劣质奶粉出现营养不良综合征共171例,死亡13例,病死率7.6%。婴儿发病和死亡的主因是由于劣质奶粉导致的营养不良,但是现在回过头来看,有一个可能的致病因素在当时被忽略了——这些劣质奶粉中含有阪崎肠杆菌。 阜阳劣质奶粉事件发生后,中国疾控中心营养与食品安全研究所的刘秀梅等人运用来自美国和加拿大的方法,建立了婴儿配方奶粉中阪崎肠杆菌的分离鉴定技术。从87份阜阳劣质奶粉样品中,他们检测到11份阪崎肠杆菌阳性样品,污染阳性率为12.6%。 这是国内首次从婴儿配方奶粉中分离到阪崎肠杆菌菌株。固然,劣质奶粉导致婴幼儿死亡是因其中蛋白质含量极低,不能满足婴儿的生长需要。比如,按照3-6个月婴儿的生长需要,蛋白质每日摄取量为3g / kg,而劣质奶粉每日只能提供0.07g / kg的蛋白质。所以,长期食用这种几乎没有营养的伪劣奶粉的婴儿,会产生四肢短小,身体瘦弱,头部尤显偏大的症状。 阪崎肠杆菌的污染是否会对当地婴幼儿造成雪上加霜的伤害呢?事过境迁,要得出确切的结论已经很难。不过事后查出阜阳劣质奶粉含有阪崎肠杆菌,对今天的食品安全不啻是敲响了一次警钟。 对婴幼儿最具杀伤力 早在2004年,广州检验检疫局就率先提出,在进口婴幼儿配方奶粉和奶制品中,对阪崎肠杆菌进行监测,并首次从进口奶粉中检查出阪崎肠杆菌。2007年以来,广州、中山、汕头检验检疫部门在进口奶粉中已多次检出阪崎肠杆菌。因此国内的专业人员多次呼吁,要重视阪崎肠杆菌对食品污染和对人健康的危害。

  • 【分享】在大肠杆菌中高效表达外源蛋白的策略

    在大肠杆菌中高效表达外源蛋白的策略非常详细地说明了表达载体的构建,转录调控,中止子以及翻译过程中的一些选择。理论性很强,也很详细。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=111861]在大肠杆菌中高效表达外源蛋白的策略[/url]

  • 【讨论】关于阪崎肠杆菌的检测

    关于阪崎肠杆菌,新国标规定用缓冲蛋白胨水BPW,规定44℃下称量,但是在规定的温度下,我们不可能完全准确的在44℃下称量,因为如果检侧样品多的情况下没有那么多的条件,那么我们测出来的值会准确么?上传该标准更方便大家讨论

  • 芽袍杆菌类微生态制剂

    芽袍杆菌类微生态制剂

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701091458_620587_676_3.jpg通常市面上常见乳酸菌的营养食品,今天在一篇文章中发现还有芽袍杆菌类微生态制剂,除具有营养价质外,还有耐高温的性能与大家分享一下。根据菌种类型不同,微生态制剂可分为单一菌种微生态制剂、复合微生态制剂。单一菌种微生态制剂又可分成乳酸菌类、芽孢杆菌类、酵母菌类、霉菌类和光合细菌等。芽孢杆菌在逆境下可以产生芽孢来抵抗不良生长环境的影响,因此是很好的微生态制剂生产菌种,人们对芽抱杆菌的研究也越来越多。利用芽孢杆菌生产微生态制剂具有很多的优点:一当芽孢杆菌以芽抱的形式存在时,进入人或动物胃肠道时可以耐受胃酸和胆盐且保持高活性。二由于芽孢的存在可以耐受100℃的高温,在生产制剂制粒的过程中损失率比较小,活性高,保存时间长。三,芽孢杆菌类可以产生活性很强的淀粉酶、蛋白酶、脂肪酶、纤维素酶等多种酶类物质,还可以产生某些小环肤类细菌素或者一些多肤类物质,其对肠道中的致病均有拮抗作用。

  • 全世界都没有奶粉中肉毒杆菌的限量标准!!

    事件回放:新西兰乳制品巨头恒天然集团3日宣布,旗下部分婴儿奶粉和运动饮料等产品可能 “受到污染”,含有肉毒杆菌。之后,娃哈哈,可瑞康,多美滋,可口可乐均中招相继中招。据专家介绍,低的ph值不适宜细菌生长,高温也可以破坏毒素,但是这个温度未必可以杀死芽孢。肉毒杆菌芽孢抗热性很强,芽孢通常认为对人是无害的,但在儿童体内,由于肠道菌群的缺乏,肉毒杆菌的芽胞在儿童的肠道弱碱厌氧环境中是能够产毒的,也就是说即便将食物中的肉毒素破坏掉,但是对儿童的危害是不容忽视的,对成人也是不能排除的。肉毒杆菌,全名肉毒梭状杆菌(也叫肉毒梭菌),是目前毒性最强的毒素之一,在罐头食品及密封腌渍食物中具有极强的生存能力。人们食入和吸收这种毒素后,神经系统将遭到破坏,出现头晕、呼吸困难和肌肉乏力等症状。目前检测方法有:GB/T 4789.12-2003 食品卫生微生物学检验肉毒梭菌及肉毒毒素检验SN/T 2525-2010 食品中肉毒梭菌的PCR检测您是否做过有关肉毒杆菌的检测?有什么样的简便方法?而对于这样的一种细菌毒素,全世界都没有奶粉中肉毒杆菌的限量。于是,不仅是事件本身,限量标准也引起了大家的讨论。有专家表示:肉毒杆菌在乳品中并不是常见的污染物,而标准的管理是要考虑成本的,正因如此,各国都不把它列入标准。但这并不意味着根本不管,比如这次恒天然是在企业的质量控制中发现的问题。你认为该不该制定相关的标准?为防止肉毒杆菌的污染,在食品的生产过程中该如何控制和监管?

  • 【转帖】NusA技术:显著增强大肠杆菌表达可溶、活性蛋白

    70kDa)中的七个得到了可溶性表达,而其它的融合标签(GST,MBP和hexahistidine)系统则只得到了四个可溶性表达的蛋白。表1. 用大量的目标蛋白评估NusA标签对提高融合蛋白可溶性的作用参考文献a目的蛋白数目目的插入序列种属目标蛋白大小范围NusA融合蛋白可溶性比例Shih等(2002)40酵母,哺乳动物,植物,昆虫9-10060Korf等(2005)75人6-12760bKohl等(2008)96人1-11844ca. Korf等和Kohl等的研究中包含了六组氨酸标签。b. 可溶性蛋白量大于等于10%即认为该融合蛋白可溶。c. 纯化后的融合蛋白如果在SDS-PAGE后考染在合适位置出现条带即认为可溶。Korf等的还发现对于定位于真核细胞细胞器,质膜或者骨架的蛋白,相对于其它标签系统来讲,NusA标签是最好的可溶性表达的选择。Kohl等(2008)也发现只要在20-25℃诱导表达,NusA标签能够大大提高难表达的蛋白比如膜蛋白的可溶性。与Korf等的研究结果一致,Kohl等也发现25℃诱导表达比30℃或37℃诱导表达可以纯化得到更多的NusA融合蛋白。切除NusA标签获得后保持活性且正确折叠的蛋白表2总结了16个采用NusA标签成功获得可溶性蛋白,在切除标签后这些蛋白仍有正确折叠结构和活性。大部分这种研究是是关于分子量小于或接近20kDa的目标蛋白。纯化后的目标蛋白产量范围在1.5-100mg/L。趋化因子和细胞因子可以得到高达30-100mg/L的产量。其它关于这些蛋白表达和纯化的有参考价值信息包括:■ 植物磷酸烯醇式丙酮酸—羧化酶激酶(Ermolova 2003)——目标蛋白切除标签后用BDA(蓝色葡聚糖)亲和层析树脂纯化。纯化后蛋白的催化活性比未切除标签的融合蛋白高50倍。■ Xklp3a,Tep3Ag和E8R(De Marco 2004)——用蛋白酶切割后,His-融合的TEV和NusA被Ni2+离子亲和色谱选择性去除。与Ni2+亲和结合的标签被紧密地结合在树脂上,在流出液中则可以得到纯化的目的蛋白。所有这三种蛋白在纯化后都正确折叠且均一分散在溶液中。纯化的膜结合蛋白E8R牛痘病毒蛋白在Tris缓冲液中除去NusA后出现了沉淀,然而加入0.02%的月桂酰基麦芽糖苷和150mM的氯化钠后,蛋白又重新变得可溶。■ 环麦芽糖糊精酶(Turner 2005)——这个蛋白属于α-淀粉酶家族。这个家族的蛋白通常在大肠杆菌中很难以活性形式表达出来。将其与肠激酶混合孵育24小时以上会使其活性逐渐增强,直到达到未经肠激酶处理过的融合蛋白的2倍以上,这也说明标签的存在降低了该酶的活性。可以用固化了Cu2+的亲和层析柱去除切除的融合标签。■ 八种人趋化因子(Magis-trelli 2005)——所有的蛋白都在OrigamiTM B菌株中表达提高它们在胞质中的二硫键形成率。在趋化因子编码序列的C端引入了AviTMTag(亲和素)生物素化序列。切割后的细胞趋化因子可以用单体的亲和素树脂亲和层析与切割下的NusA标签和蛋白酶混合物分离开。所有切割纯化后的蛋白在细胞趋化实验中都显示了活性,而没有一个融合蛋白有这样的活性。■ 蚯蚓血红蛋白(Karlsen 2005)——酶切后,用分子筛分离纯化蚯蚓血红蛋白,纯化后的蛋白通过圆二色谱检测得到的α-螺旋结构与模型预期结果一致,且纯化后的蛋白可以以单体的形式稳定保存。■ 人白介素-29(Li 2006)——用S-蛋白亲和层析比Ni2+亲和层析可以得到更纯的目的蛋白。将融合蛋白N端的NusA/His•Tag®/S•Tag™标签切掉后,用链亲和素琼脂去除生物素标记的凝血酶。用水疱性口膜炎病毒(VSV)处理固定的人羊膜上皮细胞(WISH 细胞)后,通过检测纯化的IL-29对细胞的保护效应来检测其抗病毒活性。■ 人干扰素-λ2(Li 2007)——酶切后,用Novagen提供的EKaptureTM琼脂除去重组的肠激酶。先用纯化后的干扰素-λ2处理WISH细胞,24小时后加入VSV病毒,可以观察到干扰素-λ2可以有效地保护细胞免于病毒介导的病变。表2. 切除NusA标签获得后保持活性且正确折叠的蛋白参考文献目的蛋白目的蛋白分子量(kDa)切割用蛋白酶融合蛋白亲和层析固定介质纯化后目的蛋白产量(mg/L)Ermolova等(2003)植物磷酸烯醇式丙酮酸羧化酶激酶32凝血酶Ni2+1.5De Marco等(2004)Xklp3ATep3AgE8R15NRa32bTEV酶TEV酶TEV酶Ni2+5.02.54.0Turner等(2005)环麦芽糖糊精酶69肠激酶Cu2+1.6Magistrelli等(2005)八种人趋化因子8-21Xa因子Ni2+30-100Karlsen等(2005)蚯蚓血红蛋白15TEV酶Ni2+NRaLi和He(2006)人白介素-2920凝血酶S-蛋白60Li和Huang(2007)人干扰素-λ220肠激酶Ni2+65a. 未报道b. 根据NCBI报道预测的全长蛋白分子量与NusA标签融合且具有活性的蛋白 与这些切除NusA标签后保持活性且正确折叠的蛋白不同,还有很多报道指出目的蛋白在“NusA-目的蛋白”的融合形式时具有很好的活性。比如单链(ScFv)催化活性抗体14D9(Zheng 2003),来自Aequorea victoria的绿色荧光蛋白(Nallamsetty 2006),人二氢叶酸还原酶(Nallamsetty 2006),来自Ensis directus蛏子的精氨酸酶激酶(Compaan 2003),来自B. thuringiensis的修饰δ-内毒素(Kumar 2005),人BCMA跨膜受体(Guan 2006),植物α-双加氧酶1(Liu 2006),以及来自Plasmodium falciparum的b-ketoacyl-acyl载体蛋白合成酶(Lack 2006)等,反映了各种不同背景的蛋白都显示出了与NusA标签融合后的活性。NusA标签提高蛋白可溶性的可能机制 Houry(1999)等揭示NusA蛋白是分子伴侣GroEL在体内的必须底物。而GroEL与其共作用因子GroES是大肠杆菌唯一的在所有生长条件下必需的分子伴侣系统。Douette等(2005)研究了融合蛋白NusA-UCP1(uncoupling protein 1)的可溶产量。UCP1是一种线粒体膜蛋白。这些作者发现16℃培养时,当GroEL共过表达的情况下,融合蛋白的可溶性有更大的提高。这个结果也表明NusA与分子伴侣途径相作用,从而阻止参与蛋白的聚集。总结 已有充分的证据证明NusA标签系统能显著提高多种不同来源蛋白的可溶性表达,而这些蛋白在单独表达时往往形成不可溶的包涵体。在一些研究报告中,用蛋白酶切除NusA标签能使目的蛋白仍保持正确折叠和生物学活性;相反,在另外许多报道中也指出当目的蛋白与NusA融合而非切除时,融合蛋白也同样具有活性。NusA标签系统的成功至少部分地是由于其与大肠杆菌分子伴侣系统相互作用的结果。

  • 大肠杆菌表达系统和酵母表达系统:各自的优缺点

    [font=宋体]蛋白表达是指用模式生物如细菌、酵母、动物细胞或者植物细胞表达外源基因蛋白的一种分子生物学技术。蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过这个体系可以实现外源基因在宿主中表达的目的。[/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、宿主。表达蛋白的生物体。可以为细菌、酵母、植物细胞、动物细胞等。由于各种生物的特性不同,适合表达蛋白的种类也不相同。[/font][/font][font=宋体][font=Calibri]2[/font][font=宋体]、载体。载体的种类与宿主相匹配。根据宿主不同,分为原核(细菌)表达载体、酵母表达载体、植物表达载体、哺乳动物表达载体、昆虫表达载体等。载体中含有外源基因片段。通过载体介导,外源基因可以在宿主中表达。[/font][/font][font=宋体][font=Calibri]3[/font][font=宋体]、辅助成分。有的表达系统中还包括了协助载体进入宿主的辅助成分。比如昆虫[/font][font=Calibri]-[/font][font=宋体]杆状病毒表达体系中的杆状病毒。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]一、大肠杆菌表达系统[/b][/font][font=宋体] [/font][font=宋体][font=宋体]在各种表达系统中,最早被采用进行研究的是大肠杆菌表达系统,也是目前掌握最为成熟的表达系统。大肠杆菌表达系统以其细胞繁殖快速产量高、[/font][font=Calibri]IPTG[/font][font=宋体]诱导表达相对简便等优点成为生产重组蛋白的最常用的系统。目前最常用的大肠杆菌表达系统为[/font][font=Calibri]BL21-PET[/font][font=宋体]表达系统,此系统目前已经商业化,并且普遍应用于各大实验室和生物技术公司。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于表达不同的蛋白,需要采用不同的载体。目前已知的大肠杆菌的表达载体可分为非融合型表达载体和融合型表达载体两种。非融合表达是将外源基因插到表达载体强启动子和有效核糖体结合位点序列下游,以外源基因[/font][font=Calibri]mRNA[/font][font=宋体]的[/font][font=Calibri]AUG[/font][font=宋体]为起始翻译,表达产物在序列上与天然的目的蛋白一致。融合表达是将目的蛋白或多肽与另一个蛋白质或多肽片段的[/font][font=Calibri]DNA[/font][font=宋体]序列融合并在菌体内表达。融合型表达的载体包括分泌表达载体、带纯化标签的表达载体、表面呈现表达载体、带伴侣的表达载体。[/font][/font][font=宋体] [/font][font=宋体]优点:遗传背景清楚;繁殖快、成本低、抗污染能力强;表达量高、表达产物分离纯化相对简单、稳定性好;商品化的载体和菌株种类非常齐全、适用范围广等。[/font][font=宋体] [/font][font=宋体]缺点:[/font][font=宋体][font=宋体]① 没有真核转录后加工的功能,不能进行[/font][font=Calibri]mRNA[/font][font=宋体]的剪接,所以只能表达[/font][font=Calibri]cDNA[/font][font=宋体]而不能表达真核的基因组基因;[/font][/font][font=宋体]② 没有真核翻译后加工的功能,表达产生的蛋白质,不能进行糖基化、磷酸化等修饰,难以形成正确的二硫键配对和空间构像折叠,因而产生的蛋白质常没有足够的生物学活性;[/font][font=宋体][font=宋体]③ 表达的蛋白质经常是不溶的,会在细菌内聚集成包涵体,尤其当表达目的蛋白量超过细菌体总蛋白量[/font][font=Calibri]10%[/font][font=宋体]时,就很容易形成包涵体。生成包涵体的原因可能有是蛋白质合成快速太快,多肽链相互缠绕,缺乏使多肽链正确折叠的因素,导致疏水基因外露等。细菌裂解后,包涵体的离心后的沉淀中,虽然有利于目的蛋白的初步纯化,但无生物活性的不溶性蛋白,要经过复性,使其重新散开、重新折叠成具有天然蛋白构象和良好生物活性的蛋白质,常常是一件很困难的事情。也可以设计载体使大肠杆菌分泌表达出可溶性目的蛋白,但表达量往往不高。[/font][/font][font=宋体][font=宋体]④ 可能会产生一些致热源[/font][font=Calibri]([/font][font=宋体]内毒素[/font][font=Calibri])[/font][font=宋体],并且大肠杆菌本身含有内毒素和有毒蛋白,可能混杂在终产物里。[/font][/font][font=宋体] [/font][font=宋体][b]二、酵母表达系统[/b][/font][font=宋体] [/font][font=宋体]酵母表达系统作为一种后起的外源蛋白表达系统,由于兼具原核以及真核表达系统的优点,正在基因工程领域中得到日益广泛的应用,应用此系统可高水平表达蛋白,且具有翻译后修饰功能,故被认可为一种表达大规模蛋白的强有力的工具。[/font][font=宋体] [/font][font=宋体][font=宋体]常用的酵母表达系统有酿酒酵母表达系统和甲醇营养型酵母表达系统。甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有汉森酵母属[/font][font=Calibri](Hansenula)[/font][font=宋体],毕赤酵母属[/font][font=Calibri](Pichia)[/font][font=宋体],球拟酵母属[/font][font=Calibri](Torulopsis)[/font][font=宋体]等,并以毕赤酵母属应用最多。[/font][/font][font=宋体] [/font][font=宋体]优点[/font][font=宋体][font=Calibri]1. [/font][font=宋体]生长方面:酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖快速,能够耐受较高的流体静压,用于表达基因工程产品时有效降低了生产成本。毕赤酵母具有强烈的好氧生长偏爱性,可进行细胞高密度培养,利于大规模工业化生产。[/font][/font][font=宋体][font=Calibri]2. [/font][font=宋体]安全性方面:酿酒酵母被认为是安全无毒的,有着数十年的大规模发酵研究基础。[/font][/font][font=宋体][font=Calibri]3. [/font][font=宋体]分子生物学操作方面:酿酒酵母在重组[/font][font=Calibri]DNA[/font][font=宋体]中的广泛研究也是基于其己被人们掌握的大量分子生物学及生理学信息。外源基因一般和表达载体一起整合到了酵母染色体上,随染色体一起复制和遗传,不会发生外源基因的丢失现象。[/font][/font][font=宋体][font=Calibri]4. [/font][font=宋体]蛋白表达方面:可以进行蛋白的糖基化,而且还能分泌重组蛋白。[/font][/font][font=宋体][font=Calibri]5. [/font][font=宋体]蛋白分泌方面:由于毕赤酵母自身分泌到培养基中的蛋白很少,因此纯化方便。[/font][/font][font=宋体] [/font][font=宋体]缺点[/font][font=宋体][font=Calibri]1. [/font][font=宋体]克隆基因的表达量低,发酵时间长,不正确的蛋白糖基化及抗细胞分裂。[/font][/font][font=宋体][font=Calibri]2. [/font][font=宋体]培养上清多糖浓度高,不利于纯化。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前大肠杆菌蛋白表达系统是用最广泛,也是最经济实惠的蛋白表达系统。[/font][font=Calibri]E. coli[/font][font=宋体]具有遗传背景清楚、细胞增殖快、表达量高、稳定性好和抗污染能力强等特点,适用于多种属蛋白的表达,尤其对小分子蛋白的生产具有极大的优势,但也存在一些问题,如易形成包涵体和含有内毒素等。义翘神州提供从密码子优化到重组蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化的一站式服务以及内毒素去除等附加服务,以满足不同的定制需求。我们拥有丰富的[/font][font=Calibri]E. coli [/font][font=宋体]可溶性蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化及蛋白复性经验,拥有多种[/font][font=Calibri]E. coli[/font][font=宋体]细胞株和表达载体,可为客户提供优质的[url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]原核蛋白表达服务[/b][/url]。更多关于[/font][font=宋体]大肠杆菌蛋白表达平台[/font][font=宋体]详情可以关注:[/font][/font][url=https://cn.sinobiological.com/services/platform/e-coli-protein-expression][u][font=宋体][color=#0000ff][font=Calibri]https://cn.sinobiological.com/services/platform/e-coli-protein-expression[/font][/color][/font][/u][/url][font=宋体] [/font]

  • 大肠杆菌O157:H7

    一、概述及分类肠杆菌科是由多个菌属组成,生物学性状相似,均为革兰氏阴性杆菌,这些细菌常寄居在人和动物的消化道,并随粪便排出体外,广泛分布在水和土壤中,大多数肠道杆菌属于正常菌群。当机体免疫力降低或侵入肠道外组织时,成为条件致病菌而引起疾病。部分肠道杆菌是致病菌。例如:产毒大肠埃希氏菌、伤寒沙门氏菌、各种志贺氏菌可使人患肠道传染病。肠杆菌科细菌种类繁多,主要根据细菌的形态,生化反应,抗原性质以及核酸相关性进行分类。肠杆菌科的细菌分为20个属。1、 什么是大肠菌群?大肠菌群名称并非细菌分类命名,而是卫生细菌领域的用语,它不代表某一个或某一属细菌,而指的是具有某些特性的一组与粪便污染有关的细菌,这些细菌在生化反应及血清学方面并非完全一致。大肠菌群:需氧及兼性厌氧,在37℃能分解乳糖,产酸,产气的革兰氏染色阴性无芽胞杆菌。一般认为该菌群细菌可包括:大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。目前已被国内外广泛应用于评价食品卫生质量的重要指标之一。2、 什么是大肠杆菌?埃希氏菌属的代表菌种是大肠埃希氏菌。大肠埃希氏菌俗称大肠杆菌,它是人类和动物肠道正常菌群的成员,随粪便排到自然界,并污染食品,本菌是组成水、食品中大肠菌群成员之一,其数目多少代表粪便污染和程度。能引起肠道感染的大肠埃希氏菌有下列五个病原群(1)肠产毒性大肠埃希氏菌(ETEC)产生ST、LT、引起婴儿、旅游者腹泻。(2)肠致病性大肠埃希氏菌(EPEC)寄居十二指肠、回肠、空肠。引起婴儿腹泻。(3)肠侵袭性大肠埃希氏菌(EIEC)有侵袭力,痢疾样症状。(4)肠出血性大肠埃希氏菌(EHEC)引起出血性结肠炎,主要菌型O157。(5)肠粘附性大肠埃希氏菌(EAEC)损害肠细胞外毒素,引起小儿顽固性腹泻。3、 什么是大肠杆菌O157:H7? EHEC O157:H7属于肠杆菌科埃希氏菌属。它是肠出血性大肠杆菌(EHEC)的主要血清型。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制