当前位置: 仪器信息网 > 行业主题 > >

毒虫畏顺反异构体混

仪器信息网毒虫畏顺反异构体混专题为您提供2024年最新毒虫畏顺反异构体混价格报价、厂家品牌的相关信息, 包括毒虫畏顺反异构体混参数、型号等,不管是国产,还是进口品牌的毒虫畏顺反异构体混您都可以在这里找到。 除此之外,仪器信息网还免费为您整合毒虫畏顺反异构体混相关的耗材配件、试剂标物,还有毒虫畏顺反异构体混相关的最新资讯、资料,以及毒虫畏顺反异构体混相关的解决方案。

毒虫畏顺反异构体混相关的资讯

  • 清华精仪系团队实现高分辨生物分子异构体分析研究
    研究背景与成果生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM 分析方法被纷纷提出,例如迁移时间 DTIMS (Drift time ion mobility spectrometry)、囚禁式 TIMS(Trapped ion mobility spectrometry)、行波 TWIMS(Travelling wave ion mobility spectrometry) 以及非对称场 FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N 图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果。离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。图3. 脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化。本研究由国家自然科学基金项目和清华大学精准医学科研项目资助。论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。这项研究也得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。
  • 欧阳证团队利用超高场离子云扫描技术实现高分辨生物分子异构体分析研究
    生物分子的结构解析与相关生物学功能的关联研究已成为现今生命科学的前沿。生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等 多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,Structural or constitutional isomers)和立体异构现象(连 接 次 序 相 同 但 空 间 排 列 不 同,Spatial isomers or stereoisomers)。  离子迁移(Ion mobility, IM)与质谱(Mass spectrometry, MS)联用(IM-MS)分析已经发展为生物分子特别是生物大分子结构解析的一种主要手段,并成为质谱仪器发展的主要方向。IM可以区分MS不能区分的异构体或同重素(Isobars),这一独到的特性对生物分子的结构解析研究十分关键,近年来被广泛用于糖结构、脂质结构、蛋白质结构和活性、蛋白质-分子相互作用等研究中。近年来,多种IM分析方法被纷纷提出,例如迁移时间DTIMS(Drift time ion mobility spectrometry)、囚禁式TIMS(Trapped ion mobility spectrometry)、行波TWIMS(Travelling wave ion mobility spectrometry)以及非对称场FAIMS(Field asymmetric ion mobility spectrometry)等。然而,这些技术均基于低E/N场原理(E/N   图2. 二糖异构体分析。(a)四种二糖异构体及其(b)离子云扫描谱图。乳糖和纤维二糖混合物的(c)离子云扫描谱图和(d)串级质谱分析谱图。(e)两种二糖标准品及(f)混合物的定量分析结果  图3.脂质与多肽异构体分析。(a)脂质异构方式示意图。各种脂质异构体的离子云扫描谱图:(b)sn异构、(c)碳碳双键位置异构和(d)双键顺反异构。(e)多肽的不同翻译后修饰类型及其异构方式示意图。不同翻译后修饰类型的多肽异构体离子云扫描谱图:(f)甲基化、(g)乙酰化和(h)磷酸化  离子云扫描技术对各类生物分子异构体具有普遍适用性。如图3所示,该技术同样可分辨脂质和多肽分子异构体。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。  该研究成果近日以“超高场离子云扫描技术实现高分辨生物分子异构体分析研究”(High-Resolution Separation of Bioisomers Using Ion Cloud Profiling)为题发表在《自然通讯》(Nature Communications)上。  论文第一作者为清华大学精仪系周晓煜副教授,通讯作者为欧阳证教授,其他作者还包括精仪系2020级博士生王卓凡和范菁津,第一完成单位为清华大学精密仪器系精密测试技术与仪器国家重点实验室。研究得到了清华大学化学系瑕瑜教授、精仪系马潇潇副教授与张文鹏助理教授的大力帮助。该研究由国家自然科学基金项目和清华大学精准医学科研项目资助。  论文链接:  https://www.nature.com/articles/s41467-023-37281-7
  • 8种PCB异构体混标 EPA525 促销
    产品编号:CDGG-132647-05-1ml 名称:8种PCB异构体混标 EPA525 规格:500 mg/L于丙酮,1mL 组份信息 英文名 中文名 CAS 浓度 2-chlorobiphenyl (BZ# 1) 2-氯联苯 2051-60-7 500 +/- 25 mg/L 2,3-dichlorobiphenyl (BZ# 5) 2,3-二氯联苯 16605-91-7 500 +/- 25 mg/L 2,4,5-trichlorobiphenyl (BZ# 29) 2,4,5-三氯联苯 15862-07-4 500 +/- 25 mg/L 2,2&rsquo ,4,4&rsquo -tetrachlorobiphenyl (BZ# 47) 2,2&rsquo ,4,4&rsquo -四氯联苯 2437-79-8 500 +/- 25 mg/L 2,2&rsquo ,3&rsquo ,4,6-pentachlorobiphenyl (BZ# 98) 2,2&rsquo ,3&rsquo ,4,6-五氯联苯 60233-25-2 500 +/- 25 mg/L 2,2&rsquo ,4,4' ,5,6&rsquo -hexachlorobiphenyl (BZ# 154) 2,2&rsquo ,4,4' ,5,6&rsquo -六氯联苯 60145-22-4 500 +/- 25 mg/L 2,2' ,3,3' ,4,4' ,6-heptachlorobiphenyl (BZ# 171) 2,2' ,3,3' ,4,4' ,6-七氯联苯 52663-71-5 500 +/- 25 mg/L 2,2' ,3,3' ,4,5' ,6,6' -octachlorobiphenyl (BZ# 201) 2,2' ,3,3' ,4,5' ,6,6' -八氯联苯 40186-71-8 500 +/- 25 mg/L 现货供应 应用:EPA525 原价:2250.00元 优惠价:1575.00元 促销时间:2012-12-03至2012-12-31 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 【瑞士步琦】通过SFC-UV分离纯化贝达喹啉的四种异构体
    分离纯化贝达喹啉的四种异构体结核病(TB)是导致残疾和死亡的全球性流行病。据估计,世界上多达三分之一的人口感染了结核病,主要由结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)感染引起。由于患者停药或不正确的药物处方导致病原体突变,结核分枝杆菌对一线结核病治疗产生了多药耐药。2005 年,Andries 及其同事报告了第一种耐多药抗结核药物 TMC 207,现在被称为富马酸贝达喹啉(BDQ),成为40年来首个抗结核特异性药物。Andries 等人进行了实验测试四种立体异构体对耐多药结核分枝杆菌菌株的活性。他们报告了每种异构体以及两种异构体的混合物对细菌生长产生 90% 抑制的浓度(IC90)。如图1所示,(R,S)和(S,R)的值分别为 0.03 和8.8μg/mL,组合后的值为 1.8μg/mL。(R,R)和(S,S)同分异构体的IC90值分别为 4.4 和 8.8μg/mL,而混合物的 IC90 值为 4.4μg/mL。这些结果表明,需要对(R,S)异构体进行优化分离,以专门治疗结核分枝杆菌。▲图1:贝达喹啉的四种异构体,及其抗结核分枝杆菌活性(IC90)本文介绍了一种利用 BUCHI Sepiatec SFC-50 仪器分离纯化 BDQ (R,S)异构体的方法。SFC 仪器与蒸发光散射检测器(ELSD)相连。为了提高生产效率,采用了堆叠注入模式。▲图2:BUCHI Sepiatec SFC-501实验条件设备 BUCHI Sepiatec SFC-50色谱柱 Chiralpak IA (4 x 100mm)流动相条件 93.7%二氧化碳、6%(50/50甲醇: 异丙醇)和 0.3%异丙胺,等度洗脱流速 5ml/min背压 150 bar柱温 40℃样品 (RS, SR)对映体BDQ进样量 285mg 叠层进样,每次 100uL检测波长 220nm2结果与讨论通过图3我们可以观察到 BDQ 的两种异构体(RS,SR)在 Sepiatec SFC-50 上能呈现有效的基线分离,并且分离时长控制在 10 分钟以内。▲图3:通过Sepiatec SFC-50以叠层进样的方式获取BDQ (R,S)异构体由于本次实验使用的色谱柱规格较小(4x100mm),不适用于大量样品(285mg)的纯化分离,因此我们采用叠层进样的方式,通过多次进样来高效获取大量目标化合物。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 利用超高效合相色谱系统分离氯菊酯非对映体异构体
    目的 使用沃特世(Waters® )ACQUITY UPC2&trade 系统成功开发非对映体超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,UPC2&trade )方法,用于四种氯菊酯异构体的基线分离。 背景 公众对杀虫剂使用的关注日益增长。目前使用的杀虫剂有25%为手性化合物。在这些杀虫剂中,手性在药效、毒性、代谢特性和环境方面起着重要的作用。因此,对立体选择性分离技术和分析测定杀虫剂对映体纯度的需要正在不断增长。 氯菊酯是一种合成的化学品,广泛用作杀虫剂和驱虫剂。氯菊酯具有四种立体异构体(两对对映体),由环丙烷环上的两个手性中心产生,如图1所示。因此,氯菊酯异构体的分离和定量测定颇具有挑战性。在分离氯菊酯方面,开发正相HPLC和反相HPLC的方法已经做出巨大的努力,但收效不尽如人意。我们在此展示,利用ACQUITY UPC2,在不足6分钟之内实现了四种氯菊酯基线分离。 与HPLC方法相比,UPC2&trade 实现了所有异构体的完全基线分离,运行时间大大缩短;对于杀虫剂的生产厂家而言,进行日常非对映体分析UPC2不愧为理想之选。 解决方案 人们已经对各种手性固定相(CSPs)进行了评估,以利用手性正相HPLC和反相HPLC进行分离。Lisseter和Hambling报道了Pirkle型手性固定相用于正相HPLC条件下分离氯菊酯。总的运行时间大于30min,使用的流动相为含有0.05%异丙醇的正己烷(Journal of Chromatography,539 1991 207-10)。但是,顺式和反式对映体拆分并不理想。Shishovska和Trajkovska使用了手性ß -环糊精手性固定相,用于在反相HPLC条件下拆分氯菊酯,以甲醇和水作为流动相(Chirality,22 2010 527-33)。总的运行时间大于50min,反式氯菊酯对映体的分离度小于1.5。另外,正相HPLC条件下,CHIRALCEL OJ色谱柱也用于氯菊酯的分离(Chromatographia,60 2004 523-26),我们的实验在表1中所示的条件下进行,得到了3个分开的色谱峰,如图2所示,该结果与文献报道一致。 图3显示了利用ACQUITY UPC2系统对氯菊酯进行非对映体分离。所有四种异构体利用更短的OJ-H色谱柱在不足6分钟内实现了基线分离。实验结果总结于表2中。总的来说,与手性HPLC方法相比,当前的UPC2方法实现了更好的分离,且运行时间更短。 总结 利用沃特世ACQUITY UPC2系统成功分离氯菊酯得到了证明,在小于6分钟内实现了四种异构体的基线分离。与手性HPLC方法相比,UPC2方法具有更高的分离度和更短的运行时间。UPC2方法也杜绝了正相HPLC中有毒正己烷的使用。对于杀虫剂生产商而言,进行日常非对映体的分析,ACQUITY UPC2系统不愧为理想之选。
  • 袁谷教授:ESI-MS方法鉴别环肽非对映异构体、碎裂机理及DNA识别的研究
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。   此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。   北京大学化学学院的袁谷教授以手性物质为研究对象,创新地选用质谱作为分析手段进行研究。 北京大学化学学院的袁谷教授 其主要做了以下几个方面工作:ESI质谱法鉴别环肽非对映异构体、环肽质谱碎裂机理研究、环肽识别乙肝病毒发卡型DNA研究、环肽识别HIV-1双链DNA研究。课题组利用ESI-MS测定了8个4对环肽非对映异构体特征离子的相对强度,成功区别了8个异构体,同时用MS鉴别了非对映异构体混合物并确定了相对含量,建立了鉴别环肽非对映异构体混合物的标准曲线和计算方法。   研究发现:MS/MS是鉴别异构体的有用方法 环肽分子对DNA具有识别功能 质谱是分析分子间相互作用力的好方法。
  • 单克隆抗体标准物质电荷异构体研究
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。 br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 272px " src=" https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 272" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " strong span style=" text-indent: 0em " 欢迎各位专家、同仁报名参会! /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right " 供稿:崔新玲 胡志上 span style=" text-indent: 2em " & nbsp /span /p
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • 瑕瑜团队新成果:基于质谱的脂质异构体分析有助于疾病诊断与靶点发现
    近期,清华大学化学系瑕瑜教授课题组与清华大学药学院尹航教授课题组以及北京清华长庚医院王韫芳研究员团队合作在Angew. Chem. Int. Ed杂志上发表了题为 “sn-1 Specificity of Lysophosphatidylcholine Acyltransferase-1 Revealed by a Mass Spectrometry-based Assay” 的文章。第一作者为清华大学化学系博士生赵雪与梁家琦,通讯作者为瑕瑜教授。该工作首次揭示磷脂酰胆碱酰基转移酶1(LPCAT1)在合成胆碱甘油磷脂 (PC)时对甘油骨架的sn-1位置具有选择性 该选择性与LPACT1在人肝细胞癌组织中的高表达直接导致了sn位置异构体PC 18:1/16: 0的显著升高。以上研究对于发展基于脂质异构体分析的新型疾病诊断与靶点发现具有启示意义。  LPCAT1是细胞内PC的合成通路中脂质重塑过程关键的酶。已有相关研究表明,LPCAT1在多种癌症组织中表达上调并且对饱和或单不饱和的酰基辅酶具有选择性。然而LPCAT1对甘油骨架sn位置的选择性还尚不明确,这主要是由于sn位置异构体难以区分与定量。2019年瑕瑜教授课题组利用PC碳酸氢根加合物([PC+HCO3]-)在串级质谱中碎裂产生的“sn-1 frag.”实现了sn位置异构体的定性与定量(Zhao X, Xia Y, et al. Chemical Science, 2019, 10:10740)。基于此,本工作建立了测定LPCAT的sn位置选择性的LC-MS流程。作者以sn-1 LPC和sn-2 LPC的混合物为底物,LPCAT1过表达的HEK 293T细胞膜碎片作为酶源,加入酰基辅酶,37℃下进行孵育。酶反应产物通过反相液相色谱(RPLC)中分离及质谱检测 其与内标的色谱峰面积比对总的合成产物(sn位置异构体之和)进行定量。继而对酶反应产物的碳酸氢根加合物进行串级质谱分析,通过“sn-1 fragment”的百分比对sn位置异构体进行定量(分析流程如图1)。继而通过建立sn-1 LPC和sn-2 LPC的酶反应动力学曲线,比较动力学常数来确定sn位置选择性。  图1. LC-MS/MS流程用于定量分析LPCAT催化所产生的PC sn位置异构体  鉴于不同分子量的PC分子可以在RPLC中分离,该流程可以同时测定LPCAT1对多种酰基辅酶(如,17:0-CoA, 18:1-CoA和20:4-CoA)的选择性。结果显示LPCAT1对三种酰基辅酶均表现出活性,20:4-CoA的活性最低。当LPCAT1将三种酰基辅酶连接到甘油骨架上时,均选择性的加在了sn-1位置,即只合成了PC 17:0/16:0,PC 18:1/16:0和PC 20:4/16:0。因此,基于图1的LC-MS/MS分析流程,该研究首次明确了LPCAT1对甘油骨架的sn-1位置具有选择性。  已有研究表明LPCAT1在肝细胞癌组织中表达上调。为了探究肝细胞癌中PCsn位置异构体的组成是否会受到LPCAT1对sn-1位置选择性的影响,该工作对人肝细胞癌组织和正常肝组织中PC的sn位置异构体进行LC-MS/MS分析。结果显示PC 18:1/16:0在肝细胞癌组织中显著上升。该工作进一步对常用的肝癌细胞系HepG2中的LPCAT1进行敲降,敲降后PC 18:1/16:0的含量显著下降。这表明肝细胞癌组织中PC 18:1/16:0的含量与LPCAT1对sn-1位置的选择性以及LPCAT1的表达上调直接相关。更重要的是,解吸电喷雾电离质谱(DESI)对PC 18:1/16:0的分布成像与人肝细胞癌组织连续切片的LPCAT1的免疫荧光成像以及H&E染色高度吻合(图2)。因此PC 18:1/16:0可能作为新型生物标志物,用于划分癌变区域和癌旁区域。  图2. 人肝细胞癌组织连续切片H&E染色(a)组织中LPCAT1的免疫荧光成像(b)以及DESI MS2 对PC 16:0_18:1的sn位置异构体分布的成像(c, d)  总的来说,该工作建立了用于测定LPCAT的sn位置选择性的快速、灵敏、高通量的LC-MS/MS分析流程。它深度剖析了组织中sn位置异构体的组成、分布与酶的功能、分布的关系 阐明了脂质异构体作为新型生物标志物用于疾病的诊断与治疗的巨大潜力。不过其他几种LPCAT在连接酰基辅酶时对sn位置选择性还有待进一步研究。
  • 岛津推出二十烷以及其同分异构体的超快速LC/MS/MS同时检测方案
    在疾病研究中二十烷担负着重要作用,本方案将二十烷以及其同分异构体及代谢物50种成分的MRM条件最优化,建立了由54个通道组成的同时检测法。使用LCMS-8040对多成分检测,定量限达到pg以下。 花生四烯酸串联是非常重要的代谢路径之一,作为其代谢产物的二十烷以及其同分异构体及代谢物的同时分析方法,在疾病研究中起到重要作用。LC/MS/MS的MRM测定具有高灵敏度与高选择性,广泛应用于二十烷的分析,但随着成分数的增多,从分离・ 离子化的观点来看,现在很难获得稳定的分析结果。本方案使用快速LC/MS/MS系统开发了全面地定量分析二十烷和其类似物的新方法。 本方案作为全面、快速、高灵敏度分析脂信号分子的方法行之有效。 了解详情,请点击&ldquo 基于超快速LC/MS/MS的二十烷以及其同分异构体的同时分析&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 清华大学脂质同分异构体及小型质谱研究成果登Nature子刊
    p   最新一期的Nautre Methods杂志对清华大学瑕瑜课题组和欧阳证课题组在脂类同分异构体及小型质谱技术研究中取得的进展进行了报道。长期以来,质谱小型化技术被国外研究机构所垄断,欧阳证课题组的研究为我国在质谱仪的研发与产业化领域争取到了“原创话语权”。脂类同分异构体中C=C双键位置的确定在全世界一直是难点,瑕瑜课题组利用Paternò –Bü chi反应找到了定位C=C双键的方法,为脂质组学开辟了一个全新的研究维度。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/256c243d-6a9f-40d6-a0d8-13f84fb196f5.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312, SimKai " Nautre & nbsp Methods杂志是Nature子刊,影响因子25.06,主要提供生命科学领域的新方法和基础研究技术重大进展的相关报道 /span /p p    span style=" color: rgb(79, 129, 189) " strong 根据C=C做脂质组学定性、定量分析 /strong /span /p p style=" text-align: center " img title=" 1.jpg" style=" width: 230px height: 295px " src=" http://img1.17img.cn/17img/images/201801/insimg/ac5de0cd-a2ab-4b34-a39f-a9f38337697c.jpg" height=" 295" hspace=" 0" border=" 0" vspace=" 0" width=" 230" / /p p style=" text-align: center " strong 清华大学教授 瑕瑜 /strong /p p   瑕瑜长期从事生物质谱为基础的气相化学自由基研究,一个偶然的机会,瑕瑜课题组的马潇潇博士(现为清华大学精密仪器系助理教授)在进行光化学自由基反应时发现受激发的丙酮与脂质C=C反应的结果并没有形成断裂加成峰,而是整个丙酮加到脂质分子上去。查阅资料之后,发现这是一个已知反应Paternò -Bü chi(PB反应)。根据PB反应的机理就能够清晰地解析离子碎裂谱图从而确定C=C位置。“这个发现对确定脂质同分异构体C=C位置,以及进行脂质定量分析非常有帮助。”瑕瑜说。 /p p style=" text-indent: 2em " 从2014年发表第一篇文章起,他们将这一理论应用在了脂质组学研究中。 PB反应在鸟枪法策略中进行脂质同分异构体的定性与定量分析的研究已经取得了成功。目前,PB反应在液质联用策略中的脂质组学分析研究工作也已经完成。瑕瑜表示:“液质联用分析脂质组学能够得到更多的分子信息,应用面会更加广泛。将PB反应用在这个技术中,能够给脂质组学的发展提供更多机会。” /p p    strong span style=" color: rgb(79, 129, 189) " 小型质谱技术简化脂质分析工作流程 /span /strong /p p style=" text-align: center " img title=" 2.jpg" style=" width: 230px height: 295px " src=" http://img1.17img.cn/17img/images/201801/insimg/e3ddfcc2-869d-4a4b-a052-469cdb80b27a.jpg" height=" 295" hspace=" 0" border=" 0" vspace=" 0" width=" 230" / /p p style=" text-align: center " strong 清华大学教授 欧阳证 /strong /p p   不同双键位置揭示的是不同的代谢通路,不同的发病机理,通过脂质同分异构体的定性与定量分析,可应用于临床诊断。现有的商业脂质解析数据库并不包括脂质C=C位置信息,并不能进行脂质同分异构体的定性与定量分析。目前,欧阳证与瑕瑜的研究团队正在进行基于小型质谱的包含C=C位置信息的脂质组学分析工作。“我们希望让更多做脂质组学研究的人知道这个技术,并通过建立数据库帮助到需要了解脂质C=C信息的研究。”欧阳证在谈到该数据库的建立时说,“事实上,我们将要建立的不止是一个数据库,而是包括前端液相方法、PB反应、质谱方法、数据库与软件分析在内的整体工作流程。” /p p style=" text-indent: 2em " 该工作已取得了一系列产业化成果,由欧阳证创立的清谱科技在10月份召开的BCEIA2017上推出了Mini β小型质谱仪、脂质组学双键定位系统Ω反应器以及MS Mate快速检测方案,结合了PB光化学反应的特异性、高效性以及质谱检测的特异性和灵敏度,可实现脂质中双键的快速定位、精准定量、全方位读取。此外,搭载的庞大的数据库可以实现数据检索、数据读取、报告生成一体化工作流程。 /p p style=" text-align: center " img title=" 3.jpg" style=" width: 400px height: 290px " src=" http://img1.17img.cn/17img/images/201801/insimg/9b657d8e-0702-4f7b-a363-4b1a7a569ed6.jpg" height=" 290" hspace=" 0" border=" 0" vspace=" 0" width=" 400" / /p p style=" text-align: center " strong Mini & nbsp β小型质谱仪 /strong /p p   Mini β小型质谱仪与液质联用分析脂质组学的方法相比,突破了实验室环境的束缚,其简化的工作流程,大大降低了对操作人员专业性及检测环境的要求,可在现场检测,更利于质谱脂质分析走向临床、基层。 /p p   更多详细内容: /p p style=" text-align: left text-indent: 2em " a title=" " href=" http://www.instrument.com.cn/news/20170616/222209.shtml" target=" _blank" span style=" color: rgb(79, 129, 189) " C=C位置探索思路或将发现脂质生物标志物——访清华大学瑕瑜教授、欧阳证教授 /span /a /p p style=" text-align: left text-indent: 2em " a title=" " href=" http://www.instrument.com.cn/news/20171013/230960.shtml" target=" _blank" span style=" color: rgb(79, 129, 189) " 十年一剑 & nbsp 欧阳证带领清谱科技推出Mini β小型质谱分析系统 /span /a /p
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • N-聚糖唾液酸结合异构体鉴定——SialoCapper™ -ID试剂盒+MALDI-8020
    唾液酸(SA)是酸性单糖的家族名称,包括 N-乙酰神经氨酸 (NeuAc) 和 N-羟乙酰神经氨酸 (NeuGc),主要存在于聚糖的非还原末端。是一种天然存在的碳水化合物,最初由颌下腺粘蛋白分离出,因此而得名。唾液酸通常以低聚糖,糖脂,糖蛋白的形式存在。唾液酸可以以 α2,3- 或 α2,6- 键类型存在。这样的连接异构体在生物学上很重要,因为不同连锁类型可能与各种疾病有关,例如病毒感染和癌症。 近年来,质谱技术已被广泛应用于分析聚糖。然而,鉴定含有多个唾液酸残基的复杂聚糖的唾液酸键类型仍然具有挑战性。本研究工作通过使用“SialoCapper-ID 试剂盒”进行独特的衍生化,然后进行 MALDI-8020 MS分析,从而鉴定2-氨基吡啶(PA)标记的聚糖上的酸谱系类型。 SialoCapper-ID 试剂盒是一种用于聚糖预处理的新型试剂盒,可简化获得专利的唾液酸键特异性烷基酰胺化 (SALSA 方法)步骤。SALSA通过中和残留物来防止在聚糖预处理和 MS 分析过程中唾液酸残留物的损失。此外,它允许通过以特定键的方式衍生残基来基于 MS 区分唾液酸键异构体。 SALSA法的衍生方案 本实验中,N-连接聚糖通过肼解作用从51只大鼠102只耳蜗血管纹衍生的糖蛋白中释放出来的。N-聚糖的还原端用PA标记。然后根据唾液酸的数量通过 DEAE 阴离子交换 HPLC 对 PA 标记的聚糖进行分离,并在 ODS 柱上使用反相 (RP) HPLC 进一步分离。使用酰胺柱和 LC-MS 通过正相 (NP) HPLC 分析分级的 N-聚糖,并根据二维 (2-D) HPLC 分析 (RP/NP) 的结果确定 N-聚糖的结构 和 LC/MS 分析。最后,使用 SialoCapper-ID Kit 进行唾液酸键特异性衍生化,用于未确定唾液酸键类型的分离。 在用碳芯片对 14 份 PA 标记的聚糖进行脱盐后,使用 SialoCapper-ID 试剂盒在试管中以液相反应的形式进行唾液酸键特异性衍生化。除了通过 2-D HPLC 和 LC/MS 进行结构测定外,研究者另辟蹊径,使用MALDI-8020+ SialoCapper-ID 试剂盒根据唾液酸键特异性衍生化产生的质量变化来区分唾液酸键类型。相对于LC/MS,MALDI-MS有利于轻松快速鉴定唾液酸键类型,特别是在分析多个样品时。 A1-14 组分的质谱图和唾液酸键型鉴定结果A2-16 组分的质谱图和唾液酸键型鉴定结果 MALDI-8020+SialoCapper-ID 试剂盒唾液酸结合异构体鉴定优势1 无需与标准聚糖样品的分析结果进行比较,即可识别复杂聚糖的唾液酸键类型。2 SialoCapper-ID Kit可应用于标记糖链,无需改变常规分析流程即可进行唾液酸键联分析。3 无需 LC 分离, MALDI-MS 直接鉴定唾液酸键类型。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻:Sialic Acid Linkage Isomer Discrimination of N-glycansderived from Rat Cochlea using SialoCapper-ID KitM. Inuzuka, T. Nishikaze 本文内容非商业广告,仅供专业人士参考。
  • Sigma-Aldrich反式脂肪酸检测完全解决方案
    评价食品中的营养和健康,不能仅仅检测总脂肪含量。更要判断出哪些是“好”脂肪,哪些是可能引起病变的“坏”脂肪(如反式脂肪酸)。而对于食品检测工作者,检测食品中脂肪酸含量,是非常困难的。因为食品中不仅含有各种各样碳链长度的脂肪酸,还含有饱和、不饱和、多重不饱和等不同饱和程度的脂肪酸。 Sigma-Aldrich/Supelco可为脂肪酸检测提供一站式服务,如脂肪酸/脂肪酸甲酯分析专用GC色谱柱(如:SP-2560,货号:24056),SPE前处理小柱(银离子交换SPE小柱,货号:54225-U)及相关的标准品和衍生化试剂。希望对广大食品检测工作者有所帮助。 如欲了解更多详细信息,请随时和Sigma-Aldrich中国沟通! 电话:021-6141 5566 -8105 email:ruihua.ma@sial.com Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 *SP-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; *SP-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; *SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 *Omegawax柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; *Equity® -1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; *Nukol 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; 37种脂肪酸甲酯分析应用谱图举例如下 色谱柱: SP-2560, 100 m x 0.25 mm I.D., 0.20 μm (货号:24056) 柱温: 140 °C (5 min.), 4 °C/min. to 240 °C (15 min.) 进样口温度: 260 °C 检测器: FID, 260 °C 载气: 氦气, 20 cm/sec @ 175 °C 进样量: 1 μL, 100:1 分流 样品: Supelco 37种脂肪酸甲酯混标(货号:47885-U) 货号 产品描述 品牌 规格 24056 SP-2560 (强极性氰丙基硅氧烷)毛细管柱 SUPELCO 100 m x 0.25 mm, 0.20 μm 24110-U SP-2380 (强极性氰丙基硅氧烷)毛细管柱 SUPELCO 30mx0.25m,0.20um 28886-U SLB-IL100 (强极性离子液体固定相) 毛细管柱 SUPELCO 60mx0.25m,0.20um 24079 SUPELCOWAX 10 (聚乙二醇)毛细管柱 SUPELCO 30mx0.25mm,0.25um 24136 Omegawax 250 (聚乙二醇)毛细管柱,用于不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离 SUPELCO 30mx0.25mm,0.25um 24152 Omegawax 320 (聚乙二醇)毛细管柱,用于不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离 SUPELCO 30mx0.32mm,0.25um 28046-U Equity® -1(非极性聚二甲基硅氧烷)毛细管柱,用于不同沸点的脂肪酸甲酯(FAMEs)分离 SUPELCO 30mx0.250mm,0.25um 24107 Nukol (改性聚乙二醇)毛细管柱,用于自由脂肪酸的测定 SUPELCO 30mx0.25mm,0.25um Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 由此达到脂肪酸甲酯(FAME)不同饱和度和顺反异构体的分离效果。 54225-U 银离子交换SPE小柱 SUPELCO 750 mg/6mL,30支/盒 1926.99 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证— SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全— 从C 1到C 31一应俱全; 形式多样— 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 货号 产品描述 规格 价格(RMB) 47885-U SUPELCO 37种脂肪酸甲酯混标 总量10mg/ml溶于二氯甲烷,1mL ¥830.70 47791 4种亚油酸甲酯顺反异构体混标 总量10mg/ml溶于二氯甲烷,1mL ¥760.50 47792 8种亚麻酸甲酯顺反异构体混标 总量10mg/ml溶于二氯甲烷,1mL ¥724.23 反式脂肪酸单标碳链 货号 中文描述 英文俗名 包装 目录价(RMB)C16:1T 76117-100mg 反-9-十六烯酸甲酯 Palmitelaidic Methyl Ester 100mg ¥671.58C18:1n6t 47199 反-6-十八烯酸甲酯 Petroselaidic Methyl Ester 1mL(10mg/ml溶于庚烷) ¥522.99C18:1n9t 45119-1mL 反-9-十八烯酸甲酯(反油酸甲酯) Elaidic Methyl Ester 1mL ¥348.66C18:1n11t 46905-U 反-11-十八烯酸甲酯(反式异油酸甲酯) Transvaccenic Methyl Ester 1mL(10mg/ml溶于庚烷) ¥522.99C18:2n6t 62155-100mg 反-9,12-十八碳二烯酸甲酯(反亚油酸甲酯) Linoelaidic Methyl Ester 100mg ¥542.88衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。 货号 产品描述 品牌 规格 价格(RMB) 33299 5 mL 透明微量反应瓶,带空心盖 SUPELCO 12个/包 27479 10 mL透明微量反应瓶,带空心盖 SUPELCO 12个/包 33318-U 反应加热器(不含加热模块) SUPELCO 33316 加热模块,21mm(3-5mL微量反应瓶) SUPELCO 22971 六位迷你氮吹仪 SUPELCO ¥1715.22 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 33021 三氟化硼甲醇溶液, 10% SUPELCO 25mL 33040-U 三氟化硼甲醇溶液, 10% SUPELCO 10X5mL 61626 三氟化硼甲醇溶液,13-15% Aldrich 500mL35896 无水硫酸钠(除水剂) SUPELCO 500g 33053 2,2-二甲氧基丙烷(除水剂) SUPELCO 25g 661.05 34491 农残级石油醚40-60℃ SUPELCO 2.5L 645.84 34484 农残级正己烷 SUPELCO 2.5L 418.86 34499 农残级异辛烷 SUPELCO 2.5L 649.35 34495 农残级庚烷 SUPELCO 2.5L 889.2 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。 去活玻璃分流衬管(适用于Agilent 4890,5880, 5890,6890) 货号 产品描述 应用 规格 价格(RMB) 2051001 杯型 高分子量化合物 78.5mm x 6.3mm, 1个/包 995.67 2048201 杯型(填充玻璃棉) 较脏样品 78.5mm x 6.3mm, 1个/包 998.01 2055101 杯型(填充10% OV-1 on Chromosorb W HP) 较脏样品,捕集不挥发物,降低岐化 78.5mm x 6.3mm, 1个/包 998.01 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com
  • 860万!中国检验检疫科学研究院环形离子淌度色质联用仪采购项目
    项目编号:22CNIC01-2163项目名称:中国检验检疫科学研究院环形离子淌度色质联用仪采购项目预算金额:860.0000000 万元(人民币)最高限价(如有):844.5200000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品环形离子淌度色质联用仪1台主要用于食品中毒素、农药、环境污染物类中的构造异构、顺反异构、非对映异构体等化合物的分离,并进行精细结构的鉴定。合同签订后90天是合同履行期限:合同签订后90天本项目( 不接受 )联合体投标。
  • 使用超高效合相色谱系统对环金属铱(III)配合物进行同分异构分离
    使用ACQUITY UPC2 系统对环金属铱(III)配合物进行同分异构分离 Rui Chen 和John P. McCauley 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离均配铱络合物中的同分异构体,实现对物质纯化的实时监控。 ■ 在一次色谱运行操作中同时分离均配铱络合物中的同分异构体和光学异构体,实现对纯度的准确评估,而这在其他系统中需要多次色谱分离操作来完成。 ■ 可简单地从 UPC2TM 转换至半制备型超临界流体色谱(SFC),纯化目标异构体,并可以在缓和的条件下轻松地回收收集的组分,减少同分异构体的生成,从而获得有机发光二极体(OLED)设备制造所需的高纯材料。 沃特世解决方案 ACQUITY UPC2TM 系统 Investigator SFC系统 Empower&trade 3软件 ChromScope&trade 软件 ACQUITY UPC2BEH和BEH 2-EP色谱柱 关键词 铱配合物,OLED,同分异构体,面式,经式,对映体,合相色谱,UPC2 引言 有机发光二极体(OLED)应用中环金属铱(III)配合物的合成与表征引起了人们的浓厚兴趣,因为这些配合物具有很高的发光量子产率,并且能够通过简单的合成方法对配体进行系统修饰,从而对颜色进行调整。根据包围在中心铱原子的配体的类型,这些有机金属配合物可能分为均配物和杂配物。均配物和杂配物均可能存在同分异构体,这些异构体被称为经式异构体(meridional,mer)和面式(facial,fac)异构体。同分异构体具有不同的光物理和化学特性1-3,这些特性可影响OLED设备的性能和寿命以及稳定性。此外,杂配物具有光学异构性。富含对映体的配合物发出圆形的偏振光,可用于三维电子显示4。 多种异构形式为这些材料纯度评估以及理解发光设备故障机理所需的异构体的分离提出了特殊的挑战。这种挑战因为目前流行的针对这些材料的纯化方法(即升华)而变得更加复杂5-6。升华过程中,可能会发生分子内的热力学异构化。纯化过程通常生成异构混合物,而不是用于设备生产的预期单一异构体,导致性能降低。显然,开发出在温和条件下的纯化技术对减少异构化具有重大意义。 由于大部分环金属铱配合物溶解性低,目前环金属铱配合物的色谱分析方法一般采用正相液相色谱法(NPLC)。超临界流体色谱(SFC)以及更先进的超高效合相色谱(UPC2)提供了引人关注的正相色谱替代方法,从而可提高分辨率、缩短分析时间,降低有机溶剂的消耗量。在本应用纪要中,我们对三[2(2,4-二氟苯基)吡啶]铱(III)(Ir(Fppy)3)和双(4,6-二氟苯基)吡啶C2,N]甲酰合铱(III)(Flrpic)的结构采用沃特世(Waters® ) ACQUITY UPC2 进行了分离,如图1所示。将SFC用于纯化Flrpic的可行性也说明了使用Waters Investigator SFC系统的可行性。 实验 仪器:所有分析实验均在由Empower 3软件控制的ACQUITY UPC2 上进行。制备实验在由ChromScope软件控制的Investigator SFC系统上进行。 色谱柱:沃特世公司的ACQUITY UPC2 BEH和2-Ethyl Pyridine 3.0 x 100 mm,1.7&mu m色谱柱。CHIRALPAK AS-H 4.6 x 150 mm,5 &mu m,购自Chiral Tec hnologies公司(宾夕法尼亚州西切斯特)。 样品描述 样品购自Sigma Aldrich和1-Material公司。为了形成异构体,将样品置于控温箱内进行热应激,引发异构化反应。冷却至室温后,将样品溶于氯仿中,用于随后的分析操作。 结果与讨论 图2是未经处理以及经过热应激的Ir(Fppy)3 的UPC2/UV色谱图。色谱峰1与色谱峰2的质谱(未显示)相同,但紫外光谱(插图)明显不同,说明它们最有可能是面式异构体和经式异构体。标有&ldquo desfluoro&rdquo 的峰出现的原因是Ir(Fppy)3 中的一个F原子丢失。但是,两张图谱的主要差异在于峰1与峰2之间的相对比例。加热时,1/2的峰比将会增大。其可能是由热异构化过程引起的,在异构化过程中,稳定性较差的经式异构体(峰2)转化成稳定性较高的面式异构体(峰1)。图2清楚地表明,Ir(Fppy)3 的同分异构体可轻易地通过使用ACQUITY UPC2 进行分离。 图2 使用ACQUIT Y UPC2 2-EP3x100mm,1.7&mu m色谱柱得到的Ir(Fppy )3 UPC2/UV色谱图。(A)在280℃ 下处理24 小时的样品;(B)在25℃下未经处理的样品。流速为1.5mL /min;背压为2175 psi;30%异丙醇辅助溶液等度洗脱;温度为40℃。峰标记后面的数据表示以峰面积表示的每个峰的相对百分比。 图3是使用非手性固定相和手性固定相得到的Flrpic UPC2/UV色谱图。在手性柱中,Flrpic裂分为两个峰,如图3B所示。图3B中的两个峰具有相同的质荷比(未示出)和紫外光谱(插图),说明这两个峰最有可能来源于同一对对映体。与均配物Ir(Fppy)3 不同的是,杂配物Flrpic由两种不同的配体构成。这种分子对称性反过来产生了光学异构。在实际应用中,例如三维显示,具有高度的发光不对称性是很有利的。因此,UPC2 提供了一种简单的测定手性荧光化合物对映比的方法,这对于使化学结构与发光对称性相互关联是很重要的。 图3 标准级Flrpic的UPC2/U V 色谱图。(A)使用一根ACQUITY UPC2 BEH 3x100mm,1.7&mu m色谱柱;流 速为1.5mL/min,背压为1740psi,35%异丙醇等度洗脱,温度为40℃。(B)使用两根CHIRALPAKAS-H 4.6x150mm色谱柱(每根均为5&mu m)。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图4是在ACQUITY UPC2BEH色谱柱上得到的未经处理和经热应激的Flrpic UPC2/UV色谱图。对于经热应激的样品,会观察到一个多出的峰,如图4B所示。两个峰的质谱完全相同(结果未示出)。对紫外光谱更仔细地观察发现(如图5所示),图4B中的各个峰的紫外光谱并不相同。与图3B中所示的对映体不同,这些对映体的紫外光谱是相同的。图4B中的小峰的最大吸收波长&lambda max为245 nm,而主峰的最大吸收波长&lambda max为251nm。这些结果说明,经热应激的样品已经发生了异构化,生成了另一种同分异构体,这类似于升华过程中所观察到的一样5,6。因为总分析时间短于5分钟,UPC2 能够实现在升华后对材料纯度的快速测定,并可作为设备制造之前的质量控制方法。 图4 在ACQUITY UPC2 BEH3x100mm,1.7&mu m色谱柱上、等度洗脱(35%辅助溶剂)条件下得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为1.5 mL/min;背压为2175psi;35%异丙醇辅助溶液等度洗脱; 温度为40℃。 图5 一对Flrpic同分异构体的紫外光谱。 理论上讲,每个同分异构体均包含一对对映体。因此,我们尝试同时分离经热应激的Flrpic的四个异构体,如图4B所示。得到的紫外光谱图如图6所示。E1/E1' 和E2/E2' 是两对对映体,而E1/E2和E1' /E2' 是两对同分异构体。 图6 使用两根CHIRALPAK AS-H4.6x150mm色谱柱(每根均为5&mu m)得到的:(A)未经处理的Flrpic和(B)经热应激的Flrpic的UPC2/UV色谱图。流速为3mL/min,背压为2175psi,23%异丙醇共溶液等度洗脱;温度为50℃。 图6中的异构体分离结果超过了简单分析的结果。作为发光设备中所用的环金属铱配合物的主要纯化方法,升华会引起不利的分子内热异构化,如图2、4、6及其他图所示5-6。因此,用在设备中的是异构体混合物而不是纯物质,通常导致性能下降,寿命缩短。图6所示分离说明了超临界色谱有望替代升华成为这些材料的纯化方法。 图7是使用半制备超临界色谱得到的经热应激的Flrpic的SFC/UV色谱图。可以得到所有四种异构体的基线分离度。在50℃下,使用异丙醇作为共溶液,纯异构体可在温和的条件下进行回收,从而降低了异构体形成的可能性。应当指出的是,虽然图6B和图7都是在相同的色谱条件下获得的,但是图6B中的分离度远高于图7中的分离度。分离度的提高很大程度是由于UPC2统体积最小化,因而引起峰分散度降低。 图7 在沃特世InvestigatorSFC系统上使用CHIRALPAK AS-H4.6x150mm色谱柱(每根均为0.5&mu m)得到的经热应激的Flrpic的SFC/UV色谱图。流速为3mL /min ,背压为2175p si ,23%异丙醇辅助溶液等度洗脱;温度为50℃。阴影区域表示收集的组分。 结论 在本应用中,我们论述了使用超高效合相色谱对铱均配物Ir(Fppy)3 和铱杂配物Flrpic异构体进行的分离。对于Ir(Fppy)3 ,面式和经式同分异构体可以轻易地在5分钟以内得以分离。对于Flrpic,四种异构体,无论是同分异构还是光学异构,均要在一次分离操作中实现同时分离。 本文提出的分离方法可提升用于纯化评估的传统分析技术的水平。而纯化评估是合成、工艺和OLED设备和相关材料生产的一个分析难题之一。此外,其中的超临界流体技术也能够把UPC2 方法转换到半制备型超临界色谱仪器的制备方法,从而对目标物质进行分离。 参考文献 1. Kappaun S, Slugovc C, List EJW. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int J Mol Sci. 2008 9: 1527-47. 2. Tamayo B, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN,Bau R, T hompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc. 2003 125(24): 7377-87. 3. McDonald AR, Lutz M, von Chrzanowski LS, van Klink GPM, Spek AL, van Koten G. Probing the mer- to fac-isomerization of triscyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.Inorg Chem. 2008 47: 6681-91. 4. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminop. Inorg Chem. 2008 47: 2039-48. 5. Baranoff E, Saurez S, Bugnon P, Barola C, Buscaino R, Scopeletti R,Zuperoll L, Graetzel M, Nazeeruddin MK. Sublimation not an innocent technique: A case of bis-cyclometalated iridium emitter for OLED.Inorg Chem. 2008 47: 6575-77. 6. Baranoff E, Bolink HJ, De Angelis F, Fantacci S, Di Censo D, Djellab K,Gratzel M, Nazeeruddin MK. An inconvenient influence of iridium (III)isomer on OLED efficiency. Dalton Trans. 2010 39: 8914&ndash 18. 7. Sivasubramaniam V, Brodkord F, Haning S, Loebl HP, van ElsbergenV, Boerner H, Scherf U, Kreyenschmidt M. Investigation of FIrpic in PhOLEDs via LC/MS technique. Cent Eur J Chem. 2009 7(4): 836&ndash 845.
  • Sigma-Aldrich新品亮相BCEIA 2011 (三)
    相关报道: Sigma-Aldrich新品亮相BCEIA 2011 (一) Sigma-Aldrich新品亮相BCEIA 2011 (二) 2011年10月15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆圆满落下帷幕。Sigma-Aldrich公司携旗下著名分析品牌Supelco、Fluka参展此次分析行业的盛会。展会期间,Sigma-Aldrich公司重点展出了Supelco、Fluka品牌的高品质分析产品,如SPE,SPME,色谱柱,气相柱、GC配件、HPLC配件、溶剂和标准品等。 更有来自美国Supelco总部的品牌研发经理Michael Ye博士做了题为“Supelco最新样品前处理技术在营养与食品安全中的应用”的技术应用报告会。报告会上Ye博士介绍了Supleco最新研发的三款新产品以及这些新产品在食品检测中的应用。新颖的报告内容受到了与会专家和老师的热烈欢迎。应用报告会上Ye博士隆重介绍了Supelco推出的三款最新前处理产品,其中一款新产品:Discovery 银离子交换SPE小柱——优化分离不同饱和度和顺反异构体脂肪酸甲酯 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX (磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 由此达到脂肪酸甲酯(FAME)不同饱和度和顺反异构体的分离效果。此吸附保留机理,是基于双键上的两个电子提供电子,Ag+接收电子,从而发生电子转移,使得Ag+与双键形成复合体样品:1.0g油,从微波爆米花的膨化袋中刮出,8ml去离子水混合,石油醚液液萃取,三氟化硼甲醇溶液甲酯化,正己烷液液萃取,浓缩至5ml,无水硫酸钠干燥。 SPE小柱:Discovery 银离子交换SPE小柱,750mg/6ml(54225-U);活化:4ml丙酮,然后4ml正己烷;上样:1ml正己烷提取液;洗脱:6ml正己烷:丙酮(96:4)(馏分1); 4ml正己烷:丙酮(90:10)(馏分2); 4ml丙酮(馏分3);色谱柱:SP-2560,75mx0.18mm,0.14um(23348-U);柱温:180℃进样口温度:220℃检测器:FID,220℃载气:氢气,40cm/sec进样量:0.5uL,100:1分流衬管:4mm内径分流衬管,杯型(2051001)各馏分回收率 馏分 C18:0 C18:1反 C18:1顺 C18:2顺,顺 1 100% 100% 2% -- 2 -- -- 98% -- 3 -- -- --100% 产品订购 描述 包装 货号 Discovery银离子交换SPE小柱 750 mg/6 mL 30 54225-U 750 mg/1 mL Rezorian™ Cartridge 10 54226-U SP-2560 气相色谱柱 75 m x 0.18 mm I.D., 0.14 μm 1 23348-U 100 m x 0.25 mm I.D., 0.20 μm 1 24056 相关产品 描述 包装 货号 SP-2380气相色谱柱 30 m x 0.32 mm I.D., 0.20 μm 1 24116-U 30 m x 0.25 mm I.D., 0.20 μm 1 24110-U Supelco 37 种脂肪酸甲酯混标 1 47885-U关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 24种挥发性有机物 标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 库存:现货 同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 24种挥发性有机物标准品促销
    24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 促销时间:11月29日至12月29日 库存:现货 同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问: www.anpel.com.cn
  • 网络讲座:LC和LC/MS技术在OLED材料的结构确认、杂质表征和质控的应用
    OLED材料由于具有可视角度大、耗电量低、制造成本低等一系列LCD不可比拟的优点,被业内人士普遍看好。使用OLED材料要求纯度越高越好,而且为了延长显示寿命,研究OLED材料的降解机理以及杂质的表征是非常重要的一项内容。由于OLED材料的种类繁多以及结构相似,使用传统的一些分析手段很难实现分析的目的,而近些来在分析领域越来越流行的超高效液相色谱、超高效合相色谱、飞行时间质谱、离子淌度质谱等技术被国外普遍采用与OLED材料的研究,在本次内容的介绍中将详细介绍这些最新的分析手段如何运用于OLED材料分析以及具有哪些优势,内容包括: 1、超高效合相色谱(UPC² )用于OLED混晶配方的表征和降解机理的研究 2、使用超高效液相色谱质谱联用技术(UPLC/MS)对OLED进行结构确认 3、使用离子淌度飞行时间质谱(IMS/QTOF)发现OLED材料的顺反异构体杂质 4、其他应用 我们期待您的参与和交流! 讲座时间:2013年10月31日(星期四) 14:30-16:00 主讲人:蔡麒,市场发展部经理,沃特世科技(上海)有限公司。 报名链接:http://www.waters.com/waters/eventInstance.htm?locale=zh_CN&eiid=134764040
  • 百灵威推荐GB3838-2002专用24种挥发性有机物标准品
    g家环保总局和g家质量监督检验检疫总局制定的地表水环境质量标准GB3838-2002 于2002 年4 月28 日通过,2002 年6月1 日正式实施。这y新标准是为了贯彻《中华人民共和g环境保护法》和《中华人民共和g水污染防治法》,防治水污染,保护地表水水质,保障人体健康,维护良好的生态系统。 根据g家环保总局的推荐,百灵威早在2008 年即针对标准中前38 项物质专门定制多种不同组份混标以满足客户的检测要求。近期百灵威向业内广大客户推荐特别定制的24种挥发性有机物标准溶液: 货号:S-17408A-R2 名称:24种挥发性有机物标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 成分: 序号 英文 中文 CAS 浓度 1 chloroform 三氯甲烷 67-66-3 100ug/ml 2 carbon tetrachloride 四氯化碳 56-23-5 100ug/ml 3 bromoform 溴仿 75-25-2 100ug/ml 4 methylene chloride 二氯甲烷 75-09-2 100ug/ml 5 1,2-dichloroethane 1,2- 二氯乙烷 107-06-2 100ug/ml 6 epichlorohydrin 环氧氯丙烷 106-89-8 500ug/ml 7 vinyl chloride 氯乙烯 75-01-4 100ug/ml 8 1,1-dichloroethylene 1,1- 二氯乙烯 75-35-4 100ug/ml 9 trans-1,2-dichloroethylene 反式-1,2-二氯乙烯 156-60-5 100ug/ml 10 cis-1,2-dichloroethylene 顺式-1,2-二氯乙烯 156-59-2 100ug/ml 11 trichloroethylene 三氯乙烯 79-01-6 100ug/ml 12 tetrachloroethylene 四氯乙烯 127-18-4 100ug/ml 13 chloroprene 2- 氯-1,3- 丁二烯 126-99-8 100ug/ml 14 hexachlorobutadiene 六氯丁二烯 87-68-3 100ug/ml 15 styrene 苯乙烯 100-42-5 100ug/ml 16 benzene 苯 71-43-2 100ug/ml 17 toluene 甲苯 108-88-3 100ug/ml 18 ethylbenzene 乙苯100-41-4 100ug/ml 19 o-xylene 邻二甲苯 95-47-6 100ug/ml 20 m-xylene 间二甲苯 108-38-3 100ug/ml 21 p-xylene 对二甲苯 106-42-3 100ug/ml 22 isopropylbenzene 异丙苯 98-82-8 100ug/ml 23 chlorobenzene 氯苯 108-90-7 100ug/ml 24 1,2-dichlorobenzene 1,2- 二氯苯 95-50-1 100ug/ml 25 1,4-dichlorobenzene 1,4- 二氯苯 106-46-7100ug/ml GB3838-2002中地表水检测更多标样欢迎致电百灵威400-666-7788垂询!
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 【安捷伦】雷尼替丁再引风波 | LC/MS 方法助您从容应对
    继去年缬沙坦原料药中曝出含有基因毒性杂质 N-二甲基亚硝胺 (NDMA)和 N-亚硝基二乙胺(NDEA),今年 3 月,又爆出降压药氯沙坦钾中 N-亚硝基-N-甲基-4-氨基丁酸(NMBA)超标,各大媒体纷纷用“没完没了”来形容接连爆出的降压药中亚硝胺类基因毒性杂质超标事件。8 月份,FDA 公布了 6 种亚硝胺类基因毒性杂质的分析方法;9 月份,FDA 又发布了胃药雷尼替丁中 NDMA 的检测方法;欧盟更是随后发文,将 NDMA 的评估扩展至所有化学合成药。短短几个月,监管法规不仅扩增了亚硝胺检测项目,而且正在席卷全部种类的化学药。亚硝胺类化合物是被国际癌症研究组织判定的 2A 类致癌物,即动物致癌证据明确,但对人体作用尚不明确。亚硝胺类化合物的来源途径多样,除了药物还可能存在于食物、化妆品、香烟、环境中。因为有明确的基因毒性和毒理学数据,亚硝胺类化合物的限量极低。比如 NDMA,现在规定的日摄入限量是 96 ng,换算到药物里的相对含量就是亚 ppm 量级,对分析方法的灵敏度要求极高。为了应对药物中痕量亚硝胺类杂质的检测,安捷伦紧跟法规热点,针对多种亚硝胺化合物、不同种类化学药,准备好了快速、准确、高灵敏度的检测方案。雷尼替丁中 NDMA 的定量检测方法针对最近爆出多个品牌生产的雷尼替丁含有 NDMA 的药物污染事件, 而 GC/MS 方法在检测过程中会降解产生 NDMA,因此 LC/MS 方法更适合 NDMA 的定量检测。基于安捷伦三重四极杆液质联用系统开发的雷尼替丁中 NDMA 定量检测方法,经过灵敏度、线性范围和样品测试,完全满足 FDA 的定量要求。图 1:1 ng/mL NDMA 定量和定性离子色谱图(检测目标:NDMA,检测样品:雷尼替丁原料药和制剂)沙坦类 NMBA 的定量检测方法NMBA 的分子结构特点决定了更适合采用液质联用方法进行检测。采用 HPLC-ESI-MS/MS 检测 NMBA,方法简单且灵敏度高,检测限可达 0.05 ng/mL,换算到药品里可检测 5 ppb,结果远优于法规要求。(温馨提示:NMBA 有顺反异构体,需要合并定量)图 2:0.05-100 ng/mL NMBA 的标准曲线及 0.01 ug/g 的基质添加色谱图(检测目标:NMBA,检测样品:氯沙坦钾)14 种亚硝胺类化合物同时定量检测方法2018 年,EDQM 官网发布了沙坦类 NDMA 和 NDEA 的检测方法,该方法采用安捷伦 6460 三重四极杆液质联用系统。在此基础上,安捷伦根据毒理学信息继续扩充,可以提供多达 14 种亚硝胺类化合物的 LC/MS/MS 同时定量分析方法,包括 FDA 方法中提到的 6 种亚硝胺类化合物,新的方法具有法规依从好,可操作性强的优点。图 3. 1 ng/mL 14 种亚硝胺类化合物色谱图(检测目标:NDMA、NDEA、NMBA、NEIPA、NDIPA、NDBA等14种,后续将继续扩充;检测样品:沙坦类药物)小结基于 6400 系列三重四极杆液质联用系统,安捷伦已经为您备好不同化学药品中多种亚硝胺类基因毒性杂质的痕量检测方案。安捷伦会继续紧随法规监管的步伐,在基因毒性杂质检测领域不断开发更新方案,为您持续提供更可靠、更灵敏的检测方法,助您从容应对分析挑战!您如果对该方案的详细信息感兴趣,请扫描下方二维码关注“安捷伦视界”公众号,发送“姓名+电话+邮箱+获取基因毒性杂质解决方案详细信息”,安捷伦工作人员会主动与您联系。推荐阅读:1. 除了基因毒性杂质 NDMA,还有什么我们不知道的遗传风险? https://www.agilent.com/zh-cn/ndma2. 你的降压药安全吗?- 亚硝胺类基因毒性杂质检测干货速递 https://www.agilent.com/zh-cn/jiangyayao 3. 不用打开棕色玻璃瓶,准确鉴别吐温 20 和吐温 80 https://www.agilent.com/zh-cn/tuwen关注“安捷伦视界”公众号,获取更多资讯。
  • 安谱环境比武专用标样获参赛队伍青睐
    在各省环境大比武预赛中,上海安谱推出的环境比武专用标样受到各省市环境监测站的好评,一个月内创下数百只销量。为感谢各环境监测站的信任和支持,仪器信息网的大力宣传,并为中国的环境事业再尽一些微薄之力,我公司决定让利促销,该产品降价25%。 在第一届全国环境监测专业技术人员大比武比赛方案发布后,公司市场部第一时间确认所需产品信息,联系供应商安排备货,发布产品宣传广告。销售员积极联系各地环境监测机构,通过各种渠道进行宣传,收到广东、上海、北京、湖北等各省市监测站的订单。在公司各部门密切配合下,及时将环境比武专用标样送到客户手中,获得客户的认可和好评,为大比武的顺利进行贡献力量。在此,特别感谢仪器信息网的鼎力相助。 上海安谱科学仪器有限公司作为中国仪器消耗品行业的领导者,在化学标准品领域发展迅速。目前代理的标准品品牌有40多家,产品涵盖环境、食品、工业品、药物、农药、兽药等各个领域。平时更是十分关注检测领域各方动态,为各类突发事件提供最迅速、最优质的产品和解决方案。至7月底,安谱公司标准品线2010年销售额达1400万元,成为代理标准品品牌最多,品种最齐全,销售额最高,市场影响力最广的化学标准品专营公司。 我们的服务理念: 难品搜索: 为客户搜索各种稀少标准品及化学品 专业售前咨询: 相似化学物质的辨析和同类产品的选择 多品牌比较: 在40多代理品牌中根据您对价格、包装、货期、品牌等的要求给出最优推荐 高性价比: 产品品质保障,相同价格低于市场平均水平 及时供货: 备有1000多种,3000多瓶库存,多数品牌每周订货 优质售后服务: 实验室配备气相和液相色谱,提供生产商之外的第二重技术服务和保障 24种挥发性有机物混标(顶空气相色谱-质谱法测定24种挥发性有机物) 货号:CDGG-122768-03-1ml 名称:24种挥发性有机物 标准品 说明:共25组分,因为1,2-二氯乙烯有顺反异构体。 溶剂:甲醇 规格:1ml 价格:1200元 促销:900元 库存:现货 同时提供其他环境标准品:地表水检测混标,挥发性有机物(VOCs),半挥发性有机物(SVOCs),多环芳烃(PAHs),EPA方法标准品等,请关注《安谱标准品专刊2010-2011》或访问:http://www.anpel.com.cn
  • 普立泰科仪器有限公司成功举办广西用户交流会
    阳春三月,普立泰科仪器有限公司(以下简称“普立泰科”)为加强与客户之间的联系,同时提供更优质的服务,于2016年3月25日召开了“广西用户交流会”。会议在南宁市桃源酒店举办,有包括广西出入境,南宁环监站,广西大学,广西药检等各领域共50余名专家学者参加。 普立泰科广州办经理薛莲代表公司对广大客户的到来表示了热烈的欢迎,并介绍了公司的发展历程,普立泰科成立于2001年,是一家集生产、研发、代理及售后服务于一身的高新技术企业。公司一直致力于寻求各种新技术和改良方案,为客户提供专业的技术支持和服务。希望在未来的一年里继续加强沟通与合作,与大家一起成长。 随后,普立泰科公司应用工程师何倩做了样品前处理平台的报告,报告涵盖了公司重点推介的J2 Scientific凝胶净化、普立泰科全自动固相萃取仪和消解仪。何倩工程师从仪器原理出发,详细的阐述了仪器的特点及在食品安全和环境监测方法的应用解决方案。 产品经理代威细致、专业的从全二维的原理,发展历史等方面介绍了ZOEX全二维技术,及全二维在农检、石化分析等领域的应用解决方案。同时介绍了最新的在线固相气红联用技术DiscovlR-GC, DiscovIR是一种用于气相与液相的红外检测器,可应用于中药挥发性油成分的分离及结构鉴定,红外光谱鉴定芳香烃取代基异构体、顺反异构体可靠性明显优于质谱;石油化工中含同分异构体较多C5-C9的馏分、日用化工、有机合成及刑侦等领域。 在会议后半段,普立泰科售后工程师黄碧辉做了OI 1030系列TOC, 4660吹扫捕集,仪器结构,维护与故障排除的学术报告。工程师专业与耐心引发了参与会议的专家学者们的一致好评,并就用户们提出的在仪器使用中遇到的问题进行了耐心解答,并展开热烈的讨论,加强了各用户间的交流与分享。 最后,应用工程师利贵良从PL GPC原理与应用、凝胶色谱柱的选择、以及多检测器联用技术,介绍了普立泰科在高分子领域的应用解决方案。
  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC® 系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC® 配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50&mu l的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN 2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 普立泰科有限公司成功举办PL-GPC产品交流培训会
    艳阳六月,为感谢客户选择美国Agilent(原英国Polymer Laboratories)的凝胶色谱仪(PL-GPC50,PL-GPC220),为了让用户更好地使用这套系统来开展工作,为加强与客户之间的联系及提供更优质的服务,普立泰科仪器有限公司(以下简称“普立泰科”)于2016年6月16-17日在华南理工大学举办了“PL-GPC产品交流培训会”,包括来自中国工程物理研究所、橡胶研究所、中国热带农科院,石化研究所、中山大学、深圳比亚迪等30余名专家学者出席。普立泰科副总经理张林老师代表公司对嘉宾的到来表示了热烈的欢迎及感谢,介绍了公司的发展历程,普立泰科成立于2001年,集生产、研发、代理及售后服务于一身,是国内新一批高新技术企业代表。公司一直致力于专业产品及技术的研发,为广大客户提供更专业和优质的服务。展望未来,希望与广大客户加强沟通与合作,一同成长。张老师详细介绍了GPC(凝胶渗透色谱)的科学背景,与大家分享了GPC的发展历程。张老师详细介绍了GPC的原理及应用领域,并与在座嘉宾进行了讨论与交流;GPC是唯一能准确获得高分子聚合物各分子量及其分布的分析方法,现已广泛应用与石油化工、材料性能分析、科研教学等领域。紧接着,张老师向大家详细介绍了PL产品的优势及服务,PL公司是全球唯一提供GPC主机、色谱柱、标准样品及售后服务的专业GPC领导者,在全球具有众多用户。就PL产品,张老师对在座来宾关于GPC软件应用进行了细致培训,并分享了GPC多检测器及GPC-IR联用技术;PL-GPC三检测器联用系统能准确获得各分子量及其分布数据,还是聚合物结构表征的常用方法,现广泛应用与表征聚合物支化度及分布、聚合物组分及含量及材料性能评价等领域。会中,张老师就各位来宾提出的问题及疑问进行了细致的解答,并组织来宾参观实验室及PL-GPC 220产品,加强与广大客户的互动交流。会议中,应用工程师何倩从全二维原理、发展历史等方面与大家分享了ZOEX全二维技术,介绍了全二维原理及其在农检、石化等领域的应用,是化学分析应用领域里新兴而强有力的分析方法。全二维色谱是传统色谱技术的一大突破,发展到今天已经有几十年的历史,对于复杂成份的分析大家经常感觉到一根色谱柱的峰容量不能满足需求,全二维色谱将两根不同极性,不同长度的色谱柱通过调制解调器串联起来,从而大大提高了色谱的分辨率和灵敏度,在石油化工、天然产物、环境化学等领域都得到非常广泛的应用。此次交流会为大家详细介绍了全二维色谱技术的理论基础、发展及应用。售后工程师陈超明向大家介绍了IR-GC(气红联用)技术,详细介绍了气红联用的原理及应用。IR-GC是一种用于气相与液相的红外检测器,可应用于中药挥发性油成分的分离及结构鉴定,红外光谱鉴定芳香烃取代基异构体、顺反异构体可靠性明显优于质谱;就用户们提出的在仪器使用中遇到的问题进行了耐心解答,并展开热烈的讨论,加强了各用户间的交流与分享。至此,PL产品交流培训会圆满结束!
  • 应用专家教你快速认识更快、更环保的SFC技术
    仪器信息网讯 2016年4月28日下午,沃特世科技在京举办了“沃特世超高效合相色谱五周年专家座谈会”。北京化工大学分析测试中心杜振霞教授、中国检科院食品安全研究所许秀丽博士、康龙化成(北京)新药技术有限公司刘蕾博士作为资深用户和应用技术专家参加了本次活动。沃特世科技产品应用专家桑磊和沃特世科技食品与环境行业高级市场经理黄春与应用技术专家们一起讨论了超临界流体色谱(supercritical fluid chromatography SFC)和沃特世超高效合相色谱UPC2的发展和应用情况。座谈会现场  会议伊始,沃特世科技产品应用专家桑磊介绍了SFC技术的演变历史及技术特点。早在上世纪60年代SFC的技术理论就已经形成,后又经历了毛细管SFC和填充柱SFC的演变阶段。沃特世超高效合相色谱技术于2012年问世,桑磊介绍说:“在近五年时间里UPC2的性能和应用效果得到了制药、食品、化工和临床研究等多领域用户的认可。”  UPC2被认为是气相色谱和液相色谱的补充技术。它采用超临界流体二氧化碳替代有机溶剂作为主要流动相,对于许多行业来说是一种更为环保的替代选择。SFC的强项是分离结构类似物,如手性异构体、位置异构体、顺反异构体等 在脂溶性化合物的分离技术上,基本可代替液相色谱,在很多样品的分析中获得更佳分离效果 对于热不稳定的挥发性化合物,不需要衍生化,从分析放大到制备超临界流体色谱,突破气相色谱不能制备的瓶颈。桑磊表示:“SFC将与液相色谱、气相色谱并肩成为现代实验室分析的三大关键分离技术之一。”  在技术专家应用分享中,北京化工大学的杜振霞教授介绍说,她从2013年开始在北京化工大学分析测试中心使用沃特世UPC2,在聚合物材料、表面活性剂、油类脂肪酸、纺织品及饲料中合成分散染料等分析中做了很多超临界色谱相关的分析方法研究。杜振霞介绍,对于分子量大、结构复杂的聚合物UPC2具有优异的分离性能,这对改善聚合物材料合成条件、为聚合动力学提供非常有帮助信息。根据研究经历,杜振霞表示UPC2在食药包装材料的有害溶出物分析、汽车内饰有害物分析等方面都有不错的表现。北京化工大学杜振霞课题组与沃特世公司合作建立了聚合物添加剂谱库用以支持SFC技术在这些方面的应用。杜振霞还介绍了SFC技术用在食用油、生物柴油、润滑油质量控制中的优势。长链脂肪酸分子量大,在GC分析时需要衍生化,在检测油品质量时非常不方便。而采用UPC2无需衍生化,而且可以实现中链到24碳的长链脂肪酸的基线分离,常规GC跑一个样品需要30min左右,而使用UPC2仅需4min。另外,杜振霞利用uoc2 -PDA分析检测轮胎回收粒料中的多环芳烃含量,由于分析速度快,可以实现高通量分析。她说:已有研究发现一些天然提取物能给轮胎增加韧性和强度,超临界流体色谱与超临界流体萃取共同应用在天然提取物提高轮胎性能方面将是很好的发展方向。杜振霞  接着,许秀丽博士介绍了中国检科院食品安全研究所利用UPC2在食品类基质分析中的使用体会。“使用UPC2最大的感受是UPC2是环境友好型分析仪器,节省试验溶剂”。首先,SFC技术以超临界CO2代替有机溶剂作为流动相,节省了大量的有机溶剂 其次,食品分析比较注重前处理,采用SFC对于溶于有机溶剂的目标物质可以直接进样,一些蒸发、复溶等处理步骤不再需要,节省了试剂和时间。另外,与传统色谱相比,UPC2分析时间非常快:在研究多种磺胺类药物的分离方法时,采用高效液相色谱方法仅分离5种磺胺药物可能就需要10min以上,而采用UPC2只需6.5min就可分离15种磺胺类物质,且分离度达到1.5以上。目前其团队正在使用UPC2开展中药材中手性成分的分离与分析,许秀丽表示“希望应用UPC2解决食品分析中更多的应用问题。”许秀丽  康龙化成(北京)新药技术有限公司是一家全球制药公司和生物制药研发机构提供综合药物临床前的研发服务的CRO企业。据刘蕾博士介绍,SFC在制药行业多用于新药的研发,特别是在手性药物分析。“一般制药企业的工作量很大,对效率要求非常高,而UPC2比LC分析速度快很多,在4-10min。用了分析快速的UPC2的人再用LC时会感到不适应。”另外,制药企业对药物质量控制分析结果要求相当严格,UPC2的稳定性和重现性好,这令越来越多的药厂都开始将UPC2用于质量控制。合成制备型SFC技术在制药行业也非常受到关注。SFC技术已经加入2015版《中国药典》附录,该版本药典推行以来,药企和药研单位对SFC技术的认识和重视程度得到了很大提高。在谈到SFC技术的发展时,刘蕾说:目前制药行业中的SFC技术应用还不普遍,还需要继续推广,该技术多用于药物研发,质控和其他等方面的研究还有待发展。刘蕾  在座应用专家就SFC技术和沃特世UPC2进行了互动交流。在桑磊提出用SFC技术分析脂溶性成分的可能应用情况时,杜振霞分享了团队曾做过的乳制品分析的例子。该团队以UPC2分析奶粉中的甘油酯类成分,发现从原产国直接采购的某品牌奶粉跟假冒产品具有明显差异。应用此法也可做奶粉溯源、指纹图谱等鉴别奶粉真伪。同时,该团队还做了不同阶段奶粉与母乳的比对,应用SFC技术能够清楚的看出奶粉与母乳中脂肪酸等成分的区别。应用技术专家与沃特世成员合影  在问到UPC2的市场情况时,沃特世科技食品与环境行业高级市场经理黄春告诉仪器信息网编辑:SFC技术理论历史虽然很长,但成熟产品UPC2的推出也刚刚5年时间,任何一个新技术被接受都需要一个过程。之前UPC2一直处在应用技术研发阶段,目前已经进入到了技术的推广阶段。对于今后的发展,黄春表示很有信心:“食品行业对食品标签法的呼声越来越高,标签法的实施会给食品行业中UPC2的发展甚至普及带来很大的推动作用。”编撰:郭浩楠
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制